aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/gcc/ada/g-pehage.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8/gcc/ada/g-pehage.adb')
-rw-r--r--gcc-4.8/gcc/ada/g-pehage.adb2598
1 files changed, 0 insertions, 2598 deletions
diff --git a/gcc-4.8/gcc/ada/g-pehage.adb b/gcc-4.8/gcc/ada/g-pehage.adb
deleted file mode 100644
index ce2428ddd..000000000
--- a/gcc-4.8/gcc/ada/g-pehage.adb
+++ /dev/null
@@ -1,2598 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- G N A T . P E R F E C T _ H A S H _ G E N E R A T O R S --
--- --
--- B o d y --
--- --
--- Copyright (C) 2002-2011, AdaCore --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Ada.IO_Exceptions; use Ada.IO_Exceptions;
-with Ada.Characters.Handling; use Ada.Characters.Handling;
-with Ada.Directories;
-
-with GNAT.Heap_Sort_G;
-with GNAT.OS_Lib; use GNAT.OS_Lib;
-with GNAT.Table;
-
-package body GNAT.Perfect_Hash_Generators is
-
- -- We are using the algorithm of J. Czech as described in Zbigniew J.
- -- Czech, George Havas, and Bohdan S. Majewski ``An Optimal Algorithm for
- -- Generating Minimal Perfect Hash Functions'', Information Processing
- -- Letters, 43(1992) pp.257-264, Oct.1992
-
- -- This minimal perfect hash function generator is based on random graphs
- -- and produces a hash function of the form:
-
- -- h (w) = (g (f1 (w)) + g (f2 (w))) mod m
-
- -- where f1 and f2 are functions that map strings into integers, and g is
- -- a function that maps integers into [0, m-1]. h can be order preserving.
- -- For instance, let W = {w_0, ..., w_i, ..., w_m-1}, h can be defined
- -- such that h (w_i) = i.
-
- -- This algorithm defines two possible constructions of f1 and f2. Method
- -- b) stores the hash function in less memory space at the expense of
- -- greater CPU time.
-
- -- a) fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
-
- -- size (Tk) = max (for w in W) (length (w)) * size (used char set)
-
- -- b) fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
-
- -- size (Tk) = max (for w in W) (length (w)) but the table lookups are
- -- replaced by multiplications.
-
- -- where Tk values are randomly generated. n is defined later on but the
- -- algorithm recommends to use a value a little bit greater than 2m. Note
- -- that for large values of m, the main memory space requirements comes
- -- from the memory space for storing function g (>= 2m entries).
-
- -- Random graphs are frequently used to solve difficult problems that do
- -- not have polynomial solutions. This algorithm is based on a weighted
- -- undirected graph. It comprises two steps: mapping and assignment.
-
- -- In the mapping step, a graph G = (V, E) is constructed, where = {0, 1,
- -- ..., n-1} and E = {(for w in W) (f1 (w), f2 (w))}. In order for the
- -- assignment step to be successful, G has to be acyclic. To have a high
- -- probability of generating an acyclic graph, n >= 2m. If it is not
- -- acyclic, Tk have to be regenerated.
-
- -- In the assignment step, the algorithm builds function g. As G is
- -- acyclic, there is a vertex v1 with only one neighbor v2. Let w_i be
- -- the word such that v1 = f1 (w_i) and v2 = f2 (w_i). Let g (v1) = 0 by
- -- construction and g (v2) = (i - g (v1)) mod n (or h (i) - g (v1) mod n).
- -- If word w_j is such that v2 = f1 (w_j) and v3 = f2 (w_j), g (v3) = (j -
- -- g (v2)) mod (or to be general, (h (j) - g (v2)) mod n). If w_i has no
- -- neighbor, then another vertex is selected. The algorithm traverses G to
- -- assign values to all the vertices. It cannot assign a value to an
- -- already assigned vertex as G is acyclic.
-
- subtype Word_Id is Integer;
- subtype Key_Id is Integer;
- subtype Vertex_Id is Integer;
- subtype Edge_Id is Integer;
- subtype Table_Id is Integer;
-
- No_Vertex : constant Vertex_Id := -1;
- No_Edge : constant Edge_Id := -1;
- No_Table : constant Table_Id := -1;
-
- type Word_Type is new String_Access;
- procedure Free_Word (W : in out Word_Type) renames Free;
- function New_Word (S : String) return Word_Type;
-
- procedure Resize_Word (W : in out Word_Type; Len : Natural);
- -- Resize string W to have a length Len
-
- type Key_Type is record
- Edge : Edge_Id;
- end record;
- -- A key corresponds to an edge in the algorithm graph
-
- type Vertex_Type is record
- First : Edge_Id;
- Last : Edge_Id;
- end record;
- -- A vertex can be involved in several edges. First and Last are the bounds
- -- of an array of edges stored in a global edge table.
-
- type Edge_Type is record
- X : Vertex_Id;
- Y : Vertex_Id;
- Key : Key_Id;
- end record;
- -- An edge is a peer of vertices. In the algorithm, a key is associated to
- -- an edge.
-
- package WT is new GNAT.Table (Word_Type, Word_Id, 0, 32, 32);
- package IT is new GNAT.Table (Integer, Integer, 0, 32, 32);
- -- The two main tables. WT is used to store the words in their initial
- -- version and in their reduced version (that is words reduced to their
- -- significant characters). As an instance of GNAT.Table, WT does not
- -- initialize string pointers to null. This initialization has to be done
- -- manually when the table is allocated. IT is used to store several
- -- tables of components containing only integers.
-
- function Image (Int : Integer; W : Natural := 0) return String;
- function Image (Str : String; W : Natural := 0) return String;
- -- Return a string which includes string Str or integer Int preceded by
- -- leading spaces if required by width W.
-
- function Trim_Trailing_Nuls (Str : String) return String;
- -- Return Str with trailing NUL characters removed
-
- Output : File_Descriptor renames GNAT.OS_Lib.Standout;
- -- Shortcuts
-
- EOL : constant Character := ASCII.LF;
-
- Max : constant := 78;
- Last : Natural := 0;
- Line : String (1 .. Max);
- -- Use this line to provide buffered IO
-
- procedure Add (C : Character);
- procedure Add (S : String);
- -- Add a character or a string in Line and update Last
-
- procedure Put
- (F : File_Descriptor;
- S : String;
- F1 : Natural;
- L1 : Natural;
- C1 : Natural;
- F2 : Natural;
- L2 : Natural;
- C2 : Natural);
- -- Write string S into file F as a element of an array of one or two
- -- dimensions. Fk (resp. Lk and Ck) indicates the first (resp last and
- -- current) index in the k-th dimension. If F1 = L1 the array is considered
- -- as a one dimension array. This dimension is described by F2 and L2. This
- -- routine takes care of all the parenthesis, spaces and commas needed to
- -- format correctly the array. Moreover, the array is well indented and is
- -- wrapped to fit in a 80 col line. When the line is full, the routine
- -- writes it into file F. When the array is completed, the routine adds
- -- semi-colon and writes the line into file F.
-
- procedure New_Line (File : File_Descriptor);
- -- Simulate Ada.Text_IO.New_Line with GNAT.OS_Lib
-
- procedure Put (File : File_Descriptor; Str : String);
- -- Simulate Ada.Text_IO.Put with GNAT.OS_Lib
-
- procedure Put_Used_Char_Set (File : File_Descriptor; Title : String);
- -- Output a title and a used character set
-
- procedure Put_Int_Vector
- (File : File_Descriptor;
- Title : String;
- Vector : Integer;
- Length : Natural);
- -- Output a title and a vector
-
- procedure Put_Int_Matrix
- (File : File_Descriptor;
- Title : String;
- Table : Table_Id;
- Len_1 : Natural;
- Len_2 : Natural);
- -- Output a title and a matrix. When the matrix has only one non-empty
- -- dimension (Len_2 = 0), output a vector.
-
- procedure Put_Edges (File : File_Descriptor; Title : String);
- -- Output a title and an edge table
-
- procedure Put_Initial_Keys (File : File_Descriptor; Title : String);
- -- Output a title and a key table
-
- procedure Put_Reduced_Keys (File : File_Descriptor; Title : String);
- -- Output a title and a key table
-
- procedure Put_Vertex_Table (File : File_Descriptor; Title : String);
- -- Output a title and a vertex table
-
- function Ada_File_Base_Name (Pkg_Name : String) return String;
- -- Return the base file name (i.e. without .ads/.adb extension) for an
- -- Ada source file containing the named package, using the standard GNAT
- -- file-naming convention. For example, if Pkg_Name is "Parent.Child", we
- -- return "parent-child".
-
- ----------------------------------
- -- Character Position Selection --
- ----------------------------------
-
- -- We reduce the maximum key size by selecting representative positions
- -- in these keys. We build a matrix with one word per line. We fill the
- -- remaining space of a line with ASCII.NUL. The heuristic selects the
- -- position that induces the minimum number of collisions. If there are
- -- collisions, select another position on the reduced key set responsible
- -- of the collisions. Apply the heuristic until there is no more collision.
-
- procedure Apply_Position_Selection;
- -- Apply Position selection and build the reduced key table
-
- procedure Parse_Position_Selection (Argument : String);
- -- Parse Argument and compute the position set. Argument is list of
- -- substrings separated by commas. Each substring represents a position
- -- or a range of positions (like x-y).
-
- procedure Select_Character_Set;
- -- Define an optimized used character set like Character'Pos in order not
- -- to allocate tables of 256 entries.
-
- procedure Select_Char_Position;
- -- Find a min char position set in order to reduce the max key length. The
- -- heuristic selects the position that induces the minimum number of
- -- collisions. If there are collisions, select another position on the
- -- reduced key set responsible of the collisions. Apply the heuristic until
- -- there is no collision.
-
- -----------------------------
- -- Random Graph Generation --
- -----------------------------
-
- procedure Random (Seed : in out Natural);
- -- Simulate Ada.Discrete_Numerics.Random
-
- procedure Generate_Mapping_Table
- (Tab : Table_Id;
- L1 : Natural;
- L2 : Natural;
- Seed : in out Natural);
- -- Random generation of the tables below. T is already allocated
-
- procedure Generate_Mapping_Tables
- (Opt : Optimization;
- Seed : in out Natural);
- -- Generate the mapping tables T1 and T2. They are used to define fk (w) =
- -- sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n. Keys, NK and Chars
- -- are used to compute the matrix size.
-
- ---------------------------
- -- Algorithm Computation --
- ---------------------------
-
- procedure Compute_Edges_And_Vertices (Opt : Optimization);
- -- Compute the edge and vertex tables. These are empty when a self loop is
- -- detected (f1 (w) = f2 (w)). The edge table is sorted by X value and then
- -- Y value. Keys is the key table and NK the number of keys. Chars is the
- -- set of characters really used in Keys. NV is the number of vertices
- -- recommended by the algorithm. T1 and T2 are the mapping tables needed to
- -- compute f1 (w) and f2 (w).
-
- function Acyclic return Boolean;
- -- Return True when the graph is acyclic. Vertices is the current vertex
- -- table and Edges the current edge table.
-
- procedure Assign_Values_To_Vertices;
- -- Execute the assignment step of the algorithm. Keys is the current key
- -- table. Vertices and Edges represent the random graph. G is the result of
- -- the assignment step such that:
- -- h (w) = (g (f1 (w)) + g (f2 (w))) mod m
-
- function Sum
- (Word : Word_Type;
- Table : Table_Id;
- Opt : Optimization) return Natural;
- -- For an optimization of CPU_Time return
- -- fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
- -- For an optimization of Memory_Space return
- -- fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
- -- Here NV = n
-
- -------------------------------
- -- Internal Table Management --
- -------------------------------
-
- function Allocate (N : Natural; S : Natural := 1) return Table_Id;
- -- Allocate N * S ints from IT table
-
- ----------
- -- Keys --
- ----------
-
- Keys : Table_Id := No_Table;
- NK : Natural := 0;
- -- NK : Number of Keys
-
- function Initial (K : Key_Id) return Word_Id;
- pragma Inline (Initial);
-
- function Reduced (K : Key_Id) return Word_Id;
- pragma Inline (Reduced);
-
- function Get_Key (N : Key_Id) return Key_Type;
- procedure Set_Key (N : Key_Id; Item : Key_Type);
- -- Get or Set Nth element of Keys table
-
- ------------------
- -- Char_Pos_Set --
- ------------------
-
- Char_Pos_Set : Table_Id := No_Table;
- Char_Pos_Set_Len : Natural;
- -- Character Selected Position Set
-
- function Get_Char_Pos (P : Natural) return Natural;
- procedure Set_Char_Pos (P : Natural; Item : Natural);
- -- Get or Set the string position of the Pth selected character
-
- -------------------
- -- Used_Char_Set --
- -------------------
-
- Used_Char_Set : Table_Id := No_Table;
- Used_Char_Set_Len : Natural;
- -- Used Character Set : Define a new character mapping. When all the
- -- characters are not present in the keys, in order to reduce the size
- -- of some tables, we redefine the character mapping.
-
- function Get_Used_Char (C : Character) return Natural;
- procedure Set_Used_Char (C : Character; Item : Natural);
-
- ------------
- -- Tables --
- ------------
-
- T1 : Table_Id := No_Table;
- T2 : Table_Id := No_Table;
- T1_Len : Natural;
- T2_Len : Natural;
- -- T1 : Values table to compute F1
- -- T2 : Values table to compute F2
-
- function Get_Table (T : Integer; X, Y : Natural) return Natural;
- procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural);
-
- -----------
- -- Graph --
- -----------
-
- G : Table_Id := No_Table;
- G_Len : Natural;
- -- Values table to compute G
-
- NT : Natural := Default_Tries;
- -- Number of tries running the algorithm before raising an error
-
- function Get_Graph (N : Natural) return Integer;
- procedure Set_Graph (N : Natural; Item : Integer);
- -- Get or Set Nth element of graph
-
- -----------
- -- Edges --
- -----------
-
- Edge_Size : constant := 3;
- Edges : Table_Id := No_Table;
- Edges_Len : Natural;
- -- Edges : Edge table of the random graph G
-
- function Get_Edges (F : Natural) return Edge_Type;
- procedure Set_Edges (F : Natural; Item : Edge_Type);
-
- --------------
- -- Vertices --
- --------------
-
- Vertex_Size : constant := 2;
-
- Vertices : Table_Id := No_Table;
- -- Vertex table of the random graph G
-
- NV : Natural;
- -- Number of Vertices
-
- function Get_Vertices (F : Natural) return Vertex_Type;
- procedure Set_Vertices (F : Natural; Item : Vertex_Type);
- -- Comments needed ???
-
- K2V : Float;
- -- Ratio between Keys and Vertices (parameter of Czech's algorithm)
-
- Opt : Optimization;
- -- Optimization mode (memory vs CPU)
-
- Max_Key_Len : Natural := 0;
- Min_Key_Len : Natural := 0;
- -- Maximum and minimum of all the word length
-
- S : Natural;
- -- Seed
-
- function Type_Size (L : Natural) return Natural;
- -- Given the last L of an unsigned integer type T, return its size
-
- -------------
- -- Acyclic --
- -------------
-
- function Acyclic return Boolean is
- Marks : array (0 .. NV - 1) of Vertex_Id := (others => No_Vertex);
-
- function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean;
- -- Propagate Mark from X to Y. X is already marked. Mark Y and propagate
- -- it to the edges of Y except the one representing the same key. Return
- -- False when Y is marked with Mark.
-
- --------------
- -- Traverse --
- --------------
-
- function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean is
- E : constant Edge_Type := Get_Edges (Edge);
- K : constant Key_Id := E.Key;
- Y : constant Vertex_Id := E.Y;
- M : constant Vertex_Id := Marks (E.Y);
- V : Vertex_Type;
-
- begin
- if M = Mark then
- return False;
-
- elsif M = No_Vertex then
- Marks (Y) := Mark;
- V := Get_Vertices (Y);
-
- for J in V.First .. V.Last loop
-
- -- Do not propagate to the edge representing the same key
-
- if Get_Edges (J).Key /= K
- and then not Traverse (J, Mark)
- then
- return False;
- end if;
- end loop;
- end if;
-
- return True;
- end Traverse;
-
- Edge : Edge_Type;
-
- -- Start of processing for Acyclic
-
- begin
- -- Edges valid range is
-
- for J in 1 .. Edges_Len - 1 loop
-
- Edge := Get_Edges (J);
-
- -- Mark X of E when it has not been already done
-
- if Marks (Edge.X) = No_Vertex then
- Marks (Edge.X) := Edge.X;
- end if;
-
- -- Traverse E when this has not already been done
-
- if Marks (Edge.Y) = No_Vertex
- and then not Traverse (J, Edge.X)
- then
- return False;
- end if;
- end loop;
-
- return True;
- end Acyclic;
-
- ------------------------
- -- Ada_File_Base_Name --
- ------------------------
-
- function Ada_File_Base_Name (Pkg_Name : String) return String is
- begin
- -- Convert to lower case, then replace '.' with '-'
-
- return Result : String := To_Lower (Pkg_Name) do
- for J in Result'Range loop
- if Result (J) = '.' then
- Result (J) := '-';
- end if;
- end loop;
- end return;
- end Ada_File_Base_Name;
-
- ---------
- -- Add --
- ---------
-
- procedure Add (C : Character) is
- pragma Assert (C /= ASCII.NUL);
- begin
- Line (Last + 1) := C;
- Last := Last + 1;
- end Add;
-
- ---------
- -- Add --
- ---------
-
- procedure Add (S : String) is
- Len : constant Natural := S'Length;
- begin
- for J in S'Range loop
- pragma Assert (S (J) /= ASCII.NUL);
- null;
- end loop;
-
- Line (Last + 1 .. Last + Len) := S;
- Last := Last + Len;
- end Add;
-
- --------------
- -- Allocate --
- --------------
-
- function Allocate (N : Natural; S : Natural := 1) return Table_Id is
- L : constant Integer := IT.Last;
- begin
- IT.Set_Last (L + N * S);
-
- -- Initialize, so debugging printouts don't trip over uninitialized
- -- components.
-
- for J in L + 1 .. IT.Last loop
- IT.Table (J) := -1;
- end loop;
-
- return L + 1;
- end Allocate;
-
- ------------------------------
- -- Apply_Position_Selection --
- ------------------------------
-
- procedure Apply_Position_Selection is
- begin
- for J in 0 .. NK - 1 loop
- declare
- IW : constant String := WT.Table (Initial (J)).all;
- RW : String (1 .. IW'Length) := (others => ASCII.NUL);
- N : Natural := IW'First - 1;
-
- begin
- -- Select the characters of Word included in the position
- -- selection.
-
- for C in 0 .. Char_Pos_Set_Len - 1 loop
- exit when IW (Get_Char_Pos (C)) = ASCII.NUL;
- N := N + 1;
- RW (N) := IW (Get_Char_Pos (C));
- end loop;
-
- -- Build the new table with the reduced word. Be careful
- -- to deallocate the old version to avoid memory leaks.
-
- Free_Word (WT.Table (Reduced (J)));
- WT.Table (Reduced (J)) := New_Word (RW);
- Set_Key (J, (Edge => No_Edge));
- end;
- end loop;
- end Apply_Position_Selection;
-
- -------------------------------
- -- Assign_Values_To_Vertices --
- -------------------------------
-
- procedure Assign_Values_To_Vertices is
- X : Vertex_Id;
-
- procedure Assign (X : Vertex_Id);
- -- Execute assignment on X's neighbors except the vertex that we are
- -- coming from which is already assigned.
-
- ------------
- -- Assign --
- ------------
-
- procedure Assign (X : Vertex_Id) is
- E : Edge_Type;
- V : constant Vertex_Type := Get_Vertices (X);
-
- begin
- for J in V.First .. V.Last loop
- E := Get_Edges (J);
-
- if Get_Graph (E.Y) = -1 then
- Set_Graph (E.Y, (E.Key - Get_Graph (X)) mod NK);
- Assign (E.Y);
- end if;
- end loop;
- end Assign;
-
- -- Start of processing for Assign_Values_To_Vertices
-
- begin
- -- Value -1 denotes an uninitialized value as it is supposed to
- -- be in the range 0 .. NK.
-
- if G = No_Table then
- G_Len := NV;
- G := Allocate (G_Len, 1);
- end if;
-
- for J in 0 .. G_Len - 1 loop
- Set_Graph (J, -1);
- end loop;
-
- for K in 0 .. NK - 1 loop
- X := Get_Edges (Get_Key (K).Edge).X;
-
- if Get_Graph (X) = -1 then
- Set_Graph (X, 0);
- Assign (X);
- end if;
- end loop;
-
- for J in 0 .. G_Len - 1 loop
- if Get_Graph (J) = -1 then
- Set_Graph (J, 0);
- end if;
- end loop;
-
- if Verbose then
- Put_Int_Vector (Output, "Assign Values To Vertices", G, G_Len);
- end if;
- end Assign_Values_To_Vertices;
-
- -------------
- -- Compute --
- -------------
-
- procedure Compute (Position : String := Default_Position) is
- Success : Boolean := False;
-
- begin
- if NK = 0 then
- raise Program_Error with "keywords set cannot be empty";
- end if;
-
- if Verbose then
- Put_Initial_Keys (Output, "Initial Key Table");
- end if;
-
- if Position'Length /= 0 then
- Parse_Position_Selection (Position);
- else
- Select_Char_Position;
- end if;
-
- if Verbose then
- Put_Int_Vector
- (Output, "Char Position Set", Char_Pos_Set, Char_Pos_Set_Len);
- end if;
-
- Apply_Position_Selection;
-
- if Verbose then
- Put_Reduced_Keys (Output, "Reduced Keys Table");
- end if;
-
- Select_Character_Set;
-
- if Verbose then
- Put_Used_Char_Set (Output, "Character Position Table");
- end if;
-
- -- Perform Czech's algorithm
-
- for J in 1 .. NT loop
- Generate_Mapping_Tables (Opt, S);
- Compute_Edges_And_Vertices (Opt);
-
- -- When graph is not empty (no self-loop from previous operation) and
- -- not acyclic.
-
- if 0 < Edges_Len and then Acyclic then
- Success := True;
- exit;
- end if;
- end loop;
-
- if not Success then
- raise Too_Many_Tries;
- end if;
-
- Assign_Values_To_Vertices;
- end Compute;
-
- --------------------------------
- -- Compute_Edges_And_Vertices --
- --------------------------------
-
- procedure Compute_Edges_And_Vertices (Opt : Optimization) is
- X : Natural;
- Y : Natural;
- Key : Key_Type;
- Edge : Edge_Type;
- Vertex : Vertex_Type;
- Not_Acyclic : Boolean := False;
-
- procedure Move (From : Natural; To : Natural);
- function Lt (L, R : Natural) return Boolean;
- -- Subprograms needed for GNAT.Heap_Sort_G
-
- --------
- -- Lt --
- --------
-
- function Lt (L, R : Natural) return Boolean is
- EL : constant Edge_Type := Get_Edges (L);
- ER : constant Edge_Type := Get_Edges (R);
- begin
- return EL.X < ER.X or else (EL.X = ER.X and then EL.Y < ER.Y);
- end Lt;
-
- ----------
- -- Move --
- ----------
-
- procedure Move (From : Natural; To : Natural) is
- begin
- Set_Edges (To, Get_Edges (From));
- end Move;
-
- package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
-
- -- Start of processing for Compute_Edges_And_Vertices
-
- begin
- -- We store edges from 1 to 2 * NK and leave zero alone in order to use
- -- GNAT.Heap_Sort_G.
-
- Edges_Len := 2 * NK + 1;
-
- if Edges = No_Table then
- Edges := Allocate (Edges_Len, Edge_Size);
- end if;
-
- if Vertices = No_Table then
- Vertices := Allocate (NV, Vertex_Size);
- end if;
-
- for J in 0 .. NV - 1 loop
- Set_Vertices (J, (No_Vertex, No_Vertex - 1));
- end loop;
-
- -- For each w, X = f1 (w) and Y = f2 (w)
-
- for J in 0 .. NK - 1 loop
- Key := Get_Key (J);
- Key.Edge := No_Edge;
- Set_Key (J, Key);
-
- X := Sum (WT.Table (Reduced (J)), T1, Opt);
- Y := Sum (WT.Table (Reduced (J)), T2, Opt);
-
- -- Discard T1 and T2 as soon as we discover a self loop
-
- if X = Y then
- Not_Acyclic := True;
- exit;
- end if;
-
- -- We store (X, Y) and (Y, X) to ease assignment step
-
- Set_Edges (2 * J + 1, (X, Y, J));
- Set_Edges (2 * J + 2, (Y, X, J));
- end loop;
-
- -- Return an empty graph when self loop detected
-
- if Not_Acyclic then
- Edges_Len := 0;
-
- else
- if Verbose then
- Put_Edges (Output, "Unsorted Edge Table");
- Put_Int_Matrix (Output, "Function Table 1", T1,
- T1_Len, T2_Len);
- Put_Int_Matrix (Output, "Function Table 2", T2,
- T1_Len, T2_Len);
- end if;
-
- -- Enforce consistency between edges and keys. Construct Vertices and
- -- compute the list of neighbors of a vertex First .. Last as Edges
- -- is sorted by X and then Y. To compute the neighbor list, sort the
- -- edges.
-
- Sorting.Sort (Edges_Len - 1);
-
- if Verbose then
- Put_Edges (Output, "Sorted Edge Table");
- Put_Int_Matrix (Output, "Function Table 1", T1,
- T1_Len, T2_Len);
- Put_Int_Matrix (Output, "Function Table 2", T2,
- T1_Len, T2_Len);
- end if;
-
- -- Edges valid range is 1 .. 2 * NK
-
- for E in 1 .. Edges_Len - 1 loop
- Edge := Get_Edges (E);
- Key := Get_Key (Edge.Key);
-
- if Key.Edge = No_Edge then
- Key.Edge := E;
- Set_Key (Edge.Key, Key);
- end if;
-
- Vertex := Get_Vertices (Edge.X);
-
- if Vertex.First = No_Edge then
- Vertex.First := E;
- end if;
-
- Vertex.Last := E;
- Set_Vertices (Edge.X, Vertex);
- end loop;
-
- if Verbose then
- Put_Reduced_Keys (Output, "Key Table");
- Put_Edges (Output, "Edge Table");
- Put_Vertex_Table (Output, "Vertex Table");
- end if;
- end if;
- end Compute_Edges_And_Vertices;
-
- ------------
- -- Define --
- ------------
-
- procedure Define
- (Name : Table_Name;
- Item_Size : out Natural;
- Length_1 : out Natural;
- Length_2 : out Natural)
- is
- begin
- case Name is
- when Character_Position =>
- Item_Size := 8;
- Length_1 := Char_Pos_Set_Len;
- Length_2 := 0;
-
- when Used_Character_Set =>
- Item_Size := 8;
- Length_1 := 256;
- Length_2 := 0;
-
- when Function_Table_1
- | Function_Table_2 =>
- Item_Size := Type_Size (NV);
- Length_1 := T1_Len;
- Length_2 := T2_Len;
-
- when Graph_Table =>
- Item_Size := Type_Size (NK);
- Length_1 := NV;
- Length_2 := 0;
- end case;
- end Define;
-
- --------------
- -- Finalize --
- --------------
-
- procedure Finalize is
- begin
- if Verbose then
- Put (Output, "Finalize");
- New_Line (Output);
- end if;
-
- -- Deallocate all the WT components (both initial and reduced ones) to
- -- avoid memory leaks.
-
- for W in 0 .. WT.Last loop
-
- -- Note: WT.Table (NK) is a temporary variable, do not free it since
- -- this would cause a double free.
-
- if W /= NK then
- Free_Word (WT.Table (W));
- end if;
- end loop;
-
- WT.Release;
- IT.Release;
-
- -- Reset all variables for next usage
-
- Keys := No_Table;
-
- Char_Pos_Set := No_Table;
- Char_Pos_Set_Len := 0;
-
- Used_Char_Set := No_Table;
- Used_Char_Set_Len := 0;
-
- T1 := No_Table;
- T2 := No_Table;
-
- T1_Len := 0;
- T2_Len := 0;
-
- G := No_Table;
- G_Len := 0;
-
- Edges := No_Table;
- Edges_Len := 0;
-
- Vertices := No_Table;
- NV := 0;
-
- NK := 0;
- Max_Key_Len := 0;
- Min_Key_Len := 0;
- end Finalize;
-
- ----------------------------
- -- Generate_Mapping_Table --
- ----------------------------
-
- procedure Generate_Mapping_Table
- (Tab : Integer;
- L1 : Natural;
- L2 : Natural;
- Seed : in out Natural)
- is
- begin
- for J in 0 .. L1 - 1 loop
- for K in 0 .. L2 - 1 loop
- Random (Seed);
- Set_Table (Tab, J, K, Seed mod NV);
- end loop;
- end loop;
- end Generate_Mapping_Table;
-
- -----------------------------
- -- Generate_Mapping_Tables --
- -----------------------------
-
- procedure Generate_Mapping_Tables
- (Opt : Optimization;
- Seed : in out Natural)
- is
- begin
- -- If T1 and T2 are already allocated no need to do it twice. Reuse them
- -- as their size has not changed.
-
- if T1 = No_Table and then T2 = No_Table then
- declare
- Used_Char_Last : Natural := 0;
- Used_Char : Natural;
-
- begin
- if Opt = CPU_Time then
- for P in reverse Character'Range loop
- Used_Char := Get_Used_Char (P);
- if Used_Char /= 0 then
- Used_Char_Last := Used_Char;
- exit;
- end if;
- end loop;
- end if;
-
- T1_Len := Char_Pos_Set_Len;
- T2_Len := Used_Char_Last + 1;
- T1 := Allocate (T1_Len * T2_Len);
- T2 := Allocate (T1_Len * T2_Len);
- end;
- end if;
-
- Generate_Mapping_Table (T1, T1_Len, T2_Len, Seed);
- Generate_Mapping_Table (T2, T1_Len, T2_Len, Seed);
-
- if Verbose then
- Put_Used_Char_Set (Output, "Used Character Set");
- Put_Int_Matrix (Output, "Function Table 1", T1,
- T1_Len, T2_Len);
- Put_Int_Matrix (Output, "Function Table 2", T2,
- T1_Len, T2_Len);
- end if;
- end Generate_Mapping_Tables;
-
- ------------------
- -- Get_Char_Pos --
- ------------------
-
- function Get_Char_Pos (P : Natural) return Natural is
- N : constant Natural := Char_Pos_Set + P;
- begin
- return IT.Table (N);
- end Get_Char_Pos;
-
- ---------------
- -- Get_Edges --
- ---------------
-
- function Get_Edges (F : Natural) return Edge_Type is
- N : constant Natural := Edges + (F * Edge_Size);
- E : Edge_Type;
- begin
- E.X := IT.Table (N);
- E.Y := IT.Table (N + 1);
- E.Key := IT.Table (N + 2);
- return E;
- end Get_Edges;
-
- ---------------
- -- Get_Graph --
- ---------------
-
- function Get_Graph (N : Natural) return Integer is
- begin
- return IT.Table (G + N);
- end Get_Graph;
-
- -------------
- -- Get_Key --
- -------------
-
- function Get_Key (N : Key_Id) return Key_Type is
- K : Key_Type;
- begin
- K.Edge := IT.Table (Keys + N);
- return K;
- end Get_Key;
-
- ---------------
- -- Get_Table --
- ---------------
-
- function Get_Table (T : Integer; X, Y : Natural) return Natural is
- N : constant Natural := T + (Y * T1_Len) + X;
- begin
- return IT.Table (N);
- end Get_Table;
-
- -------------------
- -- Get_Used_Char --
- -------------------
-
- function Get_Used_Char (C : Character) return Natural is
- N : constant Natural := Used_Char_Set + Character'Pos (C);
- begin
- return IT.Table (N);
- end Get_Used_Char;
-
- ------------------
- -- Get_Vertices --
- ------------------
-
- function Get_Vertices (F : Natural) return Vertex_Type is
- N : constant Natural := Vertices + (F * Vertex_Size);
- V : Vertex_Type;
- begin
- V.First := IT.Table (N);
- V.Last := IT.Table (N + 1);
- return V;
- end Get_Vertices;
-
- -----------
- -- Image --
- -----------
-
- function Image (Int : Integer; W : Natural := 0) return String is
- B : String (1 .. 32);
- L : Natural := 0;
-
- procedure Img (V : Natural);
- -- Compute image of V into B, starting at B (L), incrementing L
-
- ---------
- -- Img --
- ---------
-
- procedure Img (V : Natural) is
- begin
- if V > 9 then
- Img (V / 10);
- end if;
-
- L := L + 1;
- B (L) := Character'Val ((V mod 10) + Character'Pos ('0'));
- end Img;
-
- -- Start of processing for Image
-
- begin
- if Int < 0 then
- L := L + 1;
- B (L) := '-';
- Img (-Int);
- else
- Img (Int);
- end if;
-
- return Image (B (1 .. L), W);
- end Image;
-
- -----------
- -- Image --
- -----------
-
- function Image (Str : String; W : Natural := 0) return String is
- Len : constant Natural := Str'Length;
- Max : Natural := Len;
-
- begin
- if Max < W then
- Max := W;
- end if;
-
- declare
- Buf : String (1 .. Max) := (1 .. Max => ' ');
-
- begin
- for J in 0 .. Len - 1 loop
- Buf (Max - Len + 1 + J) := Str (Str'First + J);
- end loop;
-
- return Buf;
- end;
- end Image;
-
- -------------
- -- Initial --
- -------------
-
- function Initial (K : Key_Id) return Word_Id is
- begin
- return K;
- end Initial;
-
- ----------------
- -- Initialize --
- ----------------
-
- procedure Initialize
- (Seed : Natural;
- K_To_V : Float := Default_K_To_V;
- Optim : Optimization := Memory_Space;
- Tries : Positive := Default_Tries)
- is
- begin
- if Verbose then
- Put (Output, "Initialize");
- New_Line (Output);
- end if;
-
- -- Deallocate the part of the table concerning the reduced words.
- -- Initial words are already present in the table. We may have reduced
- -- words already there because a previous computation failed. We are
- -- currently retrying and the reduced words have to be deallocated.
-
- for W in Reduced (0) .. WT.Last loop
- Free_Word (WT.Table (W));
- end loop;
-
- IT.Init;
-
- -- Initialize of computation variables
-
- Keys := No_Table;
-
- Char_Pos_Set := No_Table;
- Char_Pos_Set_Len := 0;
-
- Used_Char_Set := No_Table;
- Used_Char_Set_Len := 0;
-
- T1 := No_Table;
- T2 := No_Table;
-
- T1_Len := 0;
- T2_Len := 0;
-
- G := No_Table;
- G_Len := 0;
-
- Edges := No_Table;
- Edges_Len := 0;
-
- Vertices := No_Table;
- NV := 0;
-
- S := Seed;
- K2V := K_To_V;
- Opt := Optim;
- NT := Tries;
-
- if K2V <= 2.0 then
- raise Program_Error with "K to V ratio cannot be lower than 2.0";
- end if;
-
- -- Do not accept a value of K2V too close to 2.0 such that once
- -- rounded up, NV = 2 * NK because the algorithm would not converge.
-
- NV := Natural (Float (NK) * K2V);
- if NV <= 2 * NK then
- NV := 2 * NK + 1;
- end if;
-
- Keys := Allocate (NK);
-
- -- Resize initial words to have all of them at the same size
- -- (so the size of the largest one).
-
- for K in 0 .. NK - 1 loop
- Resize_Word (WT.Table (Initial (K)), Max_Key_Len);
- end loop;
-
- -- Allocated the table to store the reduced words. As WT is a
- -- GNAT.Table (using C memory management), pointers have to be
- -- explicitly initialized to null.
-
- WT.Set_Last (Reduced (NK - 1));
-
- -- Note: Reduced (0) = NK + 1
-
- WT.Table (NK) := null;
-
- for W in 0 .. NK - 1 loop
- WT.Table (Reduced (W)) := null;
- end loop;
- end Initialize;
-
- ------------
- -- Insert --
- ------------
-
- procedure Insert (Value : String) is
- Len : constant Natural := Value'Length;
-
- begin
- if Verbose then
- Put (Output, "Inserting """ & Value & """");
- New_Line (Output);
- end if;
-
- for J in Value'Range loop
- pragma Assert (Value (J) /= ASCII.NUL);
- null;
- end loop;
-
- WT.Set_Last (NK);
- WT.Table (NK) := New_Word (Value);
- NK := NK + 1;
-
- if Max_Key_Len < Len then
- Max_Key_Len := Len;
- end if;
-
- if Min_Key_Len = 0 or else Len < Min_Key_Len then
- Min_Key_Len := Len;
- end if;
- end Insert;
-
- --------------
- -- New_Line --
- --------------
-
- procedure New_Line (File : File_Descriptor) is
- begin
- if Write (File, EOL'Address, 1) /= 1 then
- raise Program_Error;
- end if;
- end New_Line;
-
- --------------
- -- New_Word --
- --------------
-
- function New_Word (S : String) return Word_Type is
- begin
- return new String'(S);
- end New_Word;
-
- ------------------------------
- -- Parse_Position_Selection --
- ------------------------------
-
- procedure Parse_Position_Selection (Argument : String) is
- N : Natural := Argument'First;
- L : constant Natural := Argument'Last;
- M : constant Natural := Max_Key_Len;
-
- T : array (1 .. M) of Boolean := (others => False);
-
- function Parse_Index return Natural;
- -- Parse argument starting at index N to find an index
-
- -----------------
- -- Parse_Index --
- -----------------
-
- function Parse_Index return Natural is
- C : Character := Argument (N);
- V : Natural := 0;
-
- begin
- if C = '$' then
- N := N + 1;
- return M;
- end if;
-
- if C not in '0' .. '9' then
- raise Program_Error with "cannot read position argument";
- end if;
-
- while C in '0' .. '9' loop
- V := V * 10 + (Character'Pos (C) - Character'Pos ('0'));
- N := N + 1;
- exit when L < N;
- C := Argument (N);
- end loop;
-
- return V;
- end Parse_Index;
-
- -- Start of processing for Parse_Position_Selection
-
- begin
- -- Empty specification means all the positions
-
- if L < N then
- Char_Pos_Set_Len := M;
- Char_Pos_Set := Allocate (Char_Pos_Set_Len);
-
- for C in 0 .. Char_Pos_Set_Len - 1 loop
- Set_Char_Pos (C, C + 1);
- end loop;
-
- else
- loop
- declare
- First, Last : Natural;
-
- begin
- First := Parse_Index;
- Last := First;
-
- -- Detect a range
-
- if N <= L and then Argument (N) = '-' then
- N := N + 1;
- Last := Parse_Index;
- end if;
-
- -- Include the positions in the selection
-
- for J in First .. Last loop
- T (J) := True;
- end loop;
- end;
-
- exit when L < N;
-
- if Argument (N) /= ',' then
- raise Program_Error with "cannot read position argument";
- end if;
-
- N := N + 1;
- end loop;
-
- -- Compute position selection length
-
- N := 0;
- for J in T'Range loop
- if T (J) then
- N := N + 1;
- end if;
- end loop;
-
- -- Fill position selection
-
- Char_Pos_Set_Len := N;
- Char_Pos_Set := Allocate (Char_Pos_Set_Len);
-
- N := 0;
- for J in T'Range loop
- if T (J) then
- Set_Char_Pos (N, J);
- N := N + 1;
- end if;
- end loop;
- end if;
- end Parse_Position_Selection;
-
- -------------
- -- Produce --
- -------------
-
- procedure Produce
- (Pkg_Name : String := Default_Pkg_Name;
- Use_Stdout : Boolean := False)
- is
- File : File_Descriptor := Standout;
-
- Status : Boolean;
- -- For call to Close
-
- function Array_Img (N, T, R1 : String; R2 : String := "") return String;
- -- Return string "N : constant array (R1[, R2]) of T;"
-
- function Range_Img (F, L : Natural; T : String := "") return String;
- -- Return string "[T range ]F .. L"
-
- function Type_Img (L : Natural) return String;
- -- Return the larger unsigned type T such that T'Last < L
-
- ---------------
- -- Array_Img --
- ---------------
-
- function Array_Img
- (N, T, R1 : String;
- R2 : String := "") return String
- is
- begin
- Last := 0;
- Add (" ");
- Add (N);
- Add (" : constant array (");
- Add (R1);
-
- if R2 /= "" then
- Add (", ");
- Add (R2);
- end if;
-
- Add (") of ");
- Add (T);
- Add (" :=");
- return Line (1 .. Last);
- end Array_Img;
-
- ---------------
- -- Range_Img --
- ---------------
-
- function Range_Img (F, L : Natural; T : String := "") return String is
- FI : constant String := Image (F);
- FL : constant Natural := FI'Length;
- LI : constant String := Image (L);
- LL : constant Natural := LI'Length;
- TL : constant Natural := T'Length;
- RI : String (1 .. TL + 7 + FL + 4 + LL);
- Len : Natural := 0;
-
- begin
- if TL /= 0 then
- RI (Len + 1 .. Len + TL) := T;
- Len := Len + TL;
- RI (Len + 1 .. Len + 7) := " range ";
- Len := Len + 7;
- end if;
-
- RI (Len + 1 .. Len + FL) := FI;
- Len := Len + FL;
- RI (Len + 1 .. Len + 4) := " .. ";
- Len := Len + 4;
- RI (Len + 1 .. Len + LL) := LI;
- Len := Len + LL;
- return RI (1 .. Len);
- end Range_Img;
-
- --------------
- -- Type_Img --
- --------------
-
- function Type_Img (L : Natural) return String is
- S : constant String := Image (Type_Size (L));
- U : String := "Unsigned_ ";
- N : Natural := 9;
-
- begin
- for J in S'Range loop
- N := N + 1;
- U (N) := S (J);
- end loop;
-
- return U (1 .. N);
- end Type_Img;
-
- F : Natural;
- L : Natural;
- P : Natural;
-
- FName : String := Ada_File_Base_Name (Pkg_Name) & ".ads";
- -- Initially, the name of the spec file, then modified to be the name of
- -- the body file. Not used if Use_Stdout is True.
-
- -- Start of processing for Produce
-
- begin
-
- if Verbose and then not Use_Stdout then
- Put (Output,
- "Producing " & Ada.Directories.Current_Directory & "/" & FName);
- New_Line (Output);
- end if;
-
- if not Use_Stdout then
- File := Create_File (FName, Binary);
-
- if File = Invalid_FD then
- raise Program_Error with "cannot create: " & FName;
- end if;
- end if;
-
- Put (File, "package ");
- Put (File, Pkg_Name);
- Put (File, " is");
- New_Line (File);
- Put (File, " function Hash (S : String) return Natural;");
- New_Line (File);
- Put (File, "end ");
- Put (File, Pkg_Name);
- Put (File, ";");
- New_Line (File);
-
- if not Use_Stdout then
- Close (File, Status);
-
- if not Status then
- raise Device_Error;
- end if;
- end if;
-
- if not Use_Stdout then
-
- -- Set to body file name
-
- FName (FName'Last) := 'b';
-
- File := Create_File (FName, Binary);
-
- if File = Invalid_FD then
- raise Program_Error with "cannot create: " & FName;
- end if;
- end if;
-
- Put (File, "with Interfaces; use Interfaces;");
- New_Line (File);
- New_Line (File);
- Put (File, "package body ");
- Put (File, Pkg_Name);
- Put (File, " is");
- New_Line (File);
- New_Line (File);
-
- if Opt = CPU_Time then
- Put (File, Array_Img ("C", Type_Img (256), "Character"));
- New_Line (File);
-
- F := Character'Pos (Character'First);
- L := Character'Pos (Character'Last);
-
- for J in Character'Range loop
- P := Get_Used_Char (J);
- Put (File, Image (P), 1, 0, 1, F, L, Character'Pos (J));
- end loop;
-
- New_Line (File);
- end if;
-
- F := 0;
- L := Char_Pos_Set_Len - 1;
-
- Put (File, Array_Img ("P", "Natural", Range_Img (F, L)));
- New_Line (File);
-
- for J in F .. L loop
- Put (File, Image (Get_Char_Pos (J)), 1, 0, 1, F, L, J);
- end loop;
-
- New_Line (File);
-
- case Opt is
- when CPU_Time =>
- Put_Int_Matrix
- (File,
- Array_Img ("T1", Type_Img (NV),
- Range_Img (0, T1_Len - 1),
- Range_Img (0, T2_Len - 1, Type_Img (256))),
- T1, T1_Len, T2_Len);
-
- when Memory_Space =>
- Put_Int_Matrix
- (File,
- Array_Img ("T1", Type_Img (NV),
- Range_Img (0, T1_Len - 1)),
- T1, T1_Len, 0);
- end case;
-
- New_Line (File);
-
- case Opt is
- when CPU_Time =>
- Put_Int_Matrix
- (File,
- Array_Img ("T2", Type_Img (NV),
- Range_Img (0, T1_Len - 1),
- Range_Img (0, T2_Len - 1, Type_Img (256))),
- T2, T1_Len, T2_Len);
-
- when Memory_Space =>
- Put_Int_Matrix
- (File,
- Array_Img ("T2", Type_Img (NV),
- Range_Img (0, T1_Len - 1)),
- T2, T1_Len, 0);
- end case;
-
- New_Line (File);
-
- Put_Int_Vector
- (File,
- Array_Img ("G", Type_Img (NK),
- Range_Img (0, G_Len - 1)),
- G, G_Len);
- New_Line (File);
-
- Put (File, " function Hash (S : String) return Natural is");
- New_Line (File);
- Put (File, " F : constant Natural := S'First - 1;");
- New_Line (File);
- Put (File, " L : constant Natural := S'Length;");
- New_Line (File);
- Put (File, " F1, F2 : Natural := 0;");
- New_Line (File);
-
- Put (File, " J : ");
-
- case Opt is
- when CPU_Time =>
- Put (File, Type_Img (256));
- when Memory_Space =>
- Put (File, "Natural");
- end case;
-
- Put (File, ";");
- New_Line (File);
-
- Put (File, " begin");
- New_Line (File);
- Put (File, " for K in P'Range loop");
- New_Line (File);
- Put (File, " exit when L < P (K);");
- New_Line (File);
- Put (File, " J := ");
-
- case Opt is
- when CPU_Time =>
- Put (File, "C");
- when Memory_Space =>
- Put (File, "Character'Pos");
- end case;
-
- Put (File, " (S (P (K) + F));");
- New_Line (File);
-
- Put (File, " F1 := (F1 + Natural (T1 (K");
-
- if Opt = CPU_Time then
- Put (File, ", J");
- end if;
-
- Put (File, "))");
-
- if Opt = Memory_Space then
- Put (File, " * J");
- end if;
-
- Put (File, ") mod ");
- Put (File, Image (NV));
- Put (File, ";");
- New_Line (File);
-
- Put (File, " F2 := (F2 + Natural (T2 (K");
-
- if Opt = CPU_Time then
- Put (File, ", J");
- end if;
-
- Put (File, "))");
-
- if Opt = Memory_Space then
- Put (File, " * J");
- end if;
-
- Put (File, ") mod ");
- Put (File, Image (NV));
- Put (File, ";");
- New_Line (File);
-
- Put (File, " end loop;");
- New_Line (File);
-
- Put (File,
- " return (Natural (G (F1)) + Natural (G (F2))) mod ");
-
- Put (File, Image (NK));
- Put (File, ";");
- New_Line (File);
- Put (File, " end Hash;");
- New_Line (File);
- New_Line (File);
- Put (File, "end ");
- Put (File, Pkg_Name);
- Put (File, ";");
- New_Line (File);
-
- if not Use_Stdout then
- Close (File, Status);
-
- if not Status then
- raise Device_Error;
- end if;
- end if;
- end Produce;
-
- ---------
- -- Put --
- ---------
-
- procedure Put (File : File_Descriptor; Str : String) is
- Len : constant Natural := Str'Length;
- begin
- for J in Str'Range loop
- pragma Assert (Str (J) /= ASCII.NUL);
- null;
- end loop;
-
- if Write (File, Str'Address, Len) /= Len then
- raise Program_Error;
- end if;
- end Put;
-
- ---------
- -- Put --
- ---------
-
- procedure Put
- (F : File_Descriptor;
- S : String;
- F1 : Natural;
- L1 : Natural;
- C1 : Natural;
- F2 : Natural;
- L2 : Natural;
- C2 : Natural)
- is
- Len : constant Natural := S'Length;
-
- procedure Flush;
- -- Write current line, followed by LF
-
- -----------
- -- Flush --
- -----------
-
- procedure Flush is
- begin
- Put (F, Line (1 .. Last));
- New_Line (F);
- Last := 0;
- end Flush;
-
- -- Start of processing for Put
-
- begin
- if C1 = F1 and then C2 = F2 then
- Last := 0;
- end if;
-
- if Last + Len + 3 >= Max then
- Flush;
- end if;
-
- if Last = 0 then
- Add (" ");
-
- if F1 <= L1 then
- if C1 = F1 and then C2 = F2 then
- Add ('(');
-
- if F1 = L1 then
- Add ("0 .. 0 => ");
- end if;
-
- else
- Add (' ');
- end if;
- end if;
- end if;
-
- if C2 = F2 then
- Add ('(');
-
- if F2 = L2 then
- Add ("0 .. 0 => ");
- end if;
-
- else
- Add (' ');
- end if;
-
- Add (S);
-
- if C2 = L2 then
- Add (')');
-
- if F1 > L1 then
- Add (';');
- Flush;
-
- elsif C1 /= L1 then
- Add (',');
- Flush;
-
- else
- Add (')');
- Add (';');
- Flush;
- end if;
-
- else
- Add (',');
- end if;
- end Put;
-
- ---------------
- -- Put_Edges --
- ---------------
-
- procedure Put_Edges (File : File_Descriptor; Title : String) is
- E : Edge_Type;
- F1 : constant Natural := 1;
- L1 : constant Natural := Edges_Len - 1;
- M : constant Natural := Max / 5;
-
- begin
- Put (File, Title);
- New_Line (File);
-
- -- Edges valid range is 1 .. Edge_Len - 1
-
- for J in F1 .. L1 loop
- E := Get_Edges (J);
- Put (File, Image (J, M), F1, L1, J, 1, 4, 1);
- Put (File, Image (E.X, M), F1, L1, J, 1, 4, 2);
- Put (File, Image (E.Y, M), F1, L1, J, 1, 4, 3);
- Put (File, Image (E.Key, M), F1, L1, J, 1, 4, 4);
- end loop;
- end Put_Edges;
-
- ----------------------
- -- Put_Initial_Keys --
- ----------------------
-
- procedure Put_Initial_Keys (File : File_Descriptor; Title : String) is
- F1 : constant Natural := 0;
- L1 : constant Natural := NK - 1;
- M : constant Natural := Max / 5;
- K : Key_Type;
-
- begin
- Put (File, Title);
- New_Line (File);
-
- for J in F1 .. L1 loop
- K := Get_Key (J);
- Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
- Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2);
- Put (File, Trim_Trailing_Nuls (WT.Table (Initial (J)).all),
- F1, L1, J, 1, 3, 3);
- end loop;
- end Put_Initial_Keys;
-
- --------------------
- -- Put_Int_Matrix --
- --------------------
-
- procedure Put_Int_Matrix
- (File : File_Descriptor;
- Title : String;
- Table : Integer;
- Len_1 : Natural;
- Len_2 : Natural)
- is
- F1 : constant Integer := 0;
- L1 : constant Integer := Len_1 - 1;
- F2 : constant Integer := 0;
- L2 : constant Integer := Len_2 - 1;
- Ix : Natural;
-
- begin
- Put (File, Title);
- New_Line (File);
-
- if Len_2 = 0 then
- for J in F1 .. L1 loop
- Ix := IT.Table (Table + J);
- Put (File, Image (Ix), 1, 0, 1, F1, L1, J);
- end loop;
-
- else
- for J in F1 .. L1 loop
- for K in F2 .. L2 loop
- Ix := IT.Table (Table + J + K * Len_1);
- Put (File, Image (Ix), F1, L1, J, F2, L2, K);
- end loop;
- end loop;
- end if;
- end Put_Int_Matrix;
-
- --------------------
- -- Put_Int_Vector --
- --------------------
-
- procedure Put_Int_Vector
- (File : File_Descriptor;
- Title : String;
- Vector : Integer;
- Length : Natural)
- is
- F2 : constant Natural := 0;
- L2 : constant Natural := Length - 1;
-
- begin
- Put (File, Title);
- New_Line (File);
-
- for J in F2 .. L2 loop
- Put (File, Image (IT.Table (Vector + J)), 1, 0, 1, F2, L2, J);
- end loop;
- end Put_Int_Vector;
-
- ----------------------
- -- Put_Reduced_Keys --
- ----------------------
-
- procedure Put_Reduced_Keys (File : File_Descriptor; Title : String) is
- F1 : constant Natural := 0;
- L1 : constant Natural := NK - 1;
- M : constant Natural := Max / 5;
- K : Key_Type;
-
- begin
- Put (File, Title);
- New_Line (File);
-
- for J in F1 .. L1 loop
- K := Get_Key (J);
- Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
- Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2);
- Put (File, Trim_Trailing_Nuls (WT.Table (Reduced (J)).all),
- F1, L1, J, 1, 3, 3);
- end loop;
- end Put_Reduced_Keys;
-
- -----------------------
- -- Put_Used_Char_Set --
- -----------------------
-
- procedure Put_Used_Char_Set (File : File_Descriptor; Title : String) is
- F : constant Natural := Character'Pos (Character'First);
- L : constant Natural := Character'Pos (Character'Last);
-
- begin
- Put (File, Title);
- New_Line (File);
-
- for J in Character'Range loop
- Put
- (File, Image (Get_Used_Char (J)), 1, 0, 1, F, L, Character'Pos (J));
- end loop;
- end Put_Used_Char_Set;
-
- ----------------------
- -- Put_Vertex_Table --
- ----------------------
-
- procedure Put_Vertex_Table (File : File_Descriptor; Title : String) is
- F1 : constant Natural := 0;
- L1 : constant Natural := NV - 1;
- M : constant Natural := Max / 4;
- V : Vertex_Type;
-
- begin
- Put (File, Title);
- New_Line (File);
-
- for J in F1 .. L1 loop
- V := Get_Vertices (J);
- Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
- Put (File, Image (V.First, M), F1, L1, J, 1, 3, 2);
- Put (File, Image (V.Last, M), F1, L1, J, 1, 3, 3);
- end loop;
- end Put_Vertex_Table;
-
- ------------
- -- Random --
- ------------
-
- procedure Random (Seed : in out Natural) is
-
- -- Park & Miller Standard Minimal using Schrage's algorithm to avoid
- -- overflow: Xn+1 = 16807 * Xn mod (2 ** 31 - 1)
-
- R : Natural;
- Q : Natural;
- X : Integer;
-
- begin
- R := Seed mod 127773;
- Q := Seed / 127773;
- X := 16807 * R - 2836 * Q;
-
- Seed := (if X < 0 then X + 2147483647 else X);
- end Random;
-
- -------------
- -- Reduced --
- -------------
-
- function Reduced (K : Key_Id) return Word_Id is
- begin
- return K + NK + 1;
- end Reduced;
-
- -----------------
- -- Resize_Word --
- -----------------
-
- procedure Resize_Word (W : in out Word_Type; Len : Natural) is
- S1 : constant String := W.all;
- S2 : String (1 .. Len) := (others => ASCII.NUL);
- L : constant Natural := S1'Length;
- begin
- if L /= Len then
- Free_Word (W);
- S2 (1 .. L) := S1;
- W := New_Word (S2);
- end if;
- end Resize_Word;
-
- --------------------------
- -- Select_Char_Position --
- --------------------------
-
- procedure Select_Char_Position is
-
- type Vertex_Table_Type is array (Natural range <>) of Vertex_Type;
-
- procedure Build_Identical_Keys_Sets
- (Table : in out Vertex_Table_Type;
- Last : in out Natural;
- Pos : Natural);
- -- Build a list of keys subsets that are identical with the current
- -- position selection plus Pos. Once this routine is called, reduced
- -- words are sorted by subsets and each item (First, Last) in Sets
- -- defines the range of identical keys.
- -- Need comment saying exactly what Last is ???
-
- function Count_Different_Keys
- (Table : Vertex_Table_Type;
- Last : Natural;
- Pos : Natural) return Natural;
- -- For each subset in Sets, count the number of different keys if we add
- -- Pos to the current position selection.
-
- Sel_Position : IT.Table_Type (1 .. Max_Key_Len);
- Last_Sel_Pos : Natural := 0;
- Max_Sel_Pos : Natural := 0;
-
- -------------------------------
- -- Build_Identical_Keys_Sets --
- -------------------------------
-
- procedure Build_Identical_Keys_Sets
- (Table : in out Vertex_Table_Type;
- Last : in out Natural;
- Pos : Natural)
- is
- S : constant Vertex_Table_Type := Table (Table'First .. Last);
- C : constant Natural := Pos;
- -- Shortcuts (why are these not renames ???)
-
- F : Integer;
- L : Integer;
- -- First and last words of a subset
-
- Offset : Natural;
- -- GNAT.Heap_Sort assumes that the first array index is 1. Offset
- -- defines the translation to operate.
-
- function Lt (L, R : Natural) return Boolean;
- procedure Move (From : Natural; To : Natural);
- -- Subprograms needed by GNAT.Heap_Sort_G
-
- --------
- -- Lt --
- --------
-
- function Lt (L, R : Natural) return Boolean is
- C : constant Natural := Pos;
- Left : Natural;
- Right : Natural;
-
- begin
- if L = 0 then
- Left := NK;
- Right := Offset + R;
- elsif R = 0 then
- Left := Offset + L;
- Right := NK;
- else
- Left := Offset + L;
- Right := Offset + R;
- end if;
-
- return WT.Table (Left)(C) < WT.Table (Right)(C);
- end Lt;
-
- ----------
- -- Move --
- ----------
-
- procedure Move (From : Natural; To : Natural) is
- Target, Source : Natural;
-
- begin
- if From = 0 then
- Source := NK;
- Target := Offset + To;
- elsif To = 0 then
- Source := Offset + From;
- Target := NK;
- else
- Source := Offset + From;
- Target := Offset + To;
- end if;
-
- WT.Table (Target) := WT.Table (Source);
- WT.Table (Source) := null;
- end Move;
-
- package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
-
- -- Start of processing for Build_Identical_Key_Sets
-
- begin
- Last := 0;
-
- -- For each subset in S, extract the new subsets we have by adding C
- -- in the position selection.
-
- for J in S'Range loop
- if S (J).First = S (J).Last then
- F := S (J).First;
- L := S (J).Last;
- Last := Last + 1;
- Table (Last) := (F, L);
-
- else
- Offset := Reduced (S (J).First) - 1;
- Sorting.Sort (S (J).Last - S (J).First + 1);
-
- F := S (J).First;
- L := F;
- for N in S (J).First .. S (J).Last loop
-
- -- For the last item, close the last subset
-
- if N = S (J).Last then
- Last := Last + 1;
- Table (Last) := (F, N);
-
- -- Two contiguous words are identical when they have the
- -- same Cth character.
-
- elsif WT.Table (Reduced (N))(C) =
- WT.Table (Reduced (N + 1))(C)
- then
- L := N + 1;
-
- -- Find a new subset of identical keys. Store the current
- -- one and create a new subset.
-
- else
- Last := Last + 1;
- Table (Last) := (F, L);
- F := N + 1;
- L := F;
- end if;
- end loop;
- end if;
- end loop;
- end Build_Identical_Keys_Sets;
-
- --------------------------
- -- Count_Different_Keys --
- --------------------------
-
- function Count_Different_Keys
- (Table : Vertex_Table_Type;
- Last : Natural;
- Pos : Natural) return Natural
- is
- N : array (Character) of Natural;
- C : Character;
- T : Natural := 0;
-
- begin
- -- For each subset, count the number of words that are still
- -- different when we include Pos in the position selection. Only
- -- focus on this position as the other positions already produce
- -- identical keys.
-
- for S in 1 .. Last loop
-
- -- Count the occurrences of the different characters
-
- N := (others => 0);
- for K in Table (S).First .. Table (S).Last loop
- C := WT.Table (Reduced (K))(Pos);
- N (C) := N (C) + 1;
- end loop;
-
- -- Update the number of different keys. Each character used
- -- denotes a different key.
-
- for J in N'Range loop
- if N (J) > 0 then
- T := T + 1;
- end if;
- end loop;
- end loop;
-
- return T;
- end Count_Different_Keys;
-
- -- Start of processing for Select_Char_Position
-
- begin
- -- Initialize the reduced words set
-
- for K in 0 .. NK - 1 loop
- WT.Table (Reduced (K)) := New_Word (WT.Table (Initial (K)).all);
- end loop;
-
- declare
- Differences : Natural;
- Max_Differences : Natural := 0;
- Old_Differences : Natural;
- Max_Diff_Sel_Pos : Natural := 0; -- init to kill warning
- Max_Diff_Sel_Pos_Idx : Natural := 0; -- init to kill warning
- Same_Keys_Sets_Table : Vertex_Table_Type (1 .. NK);
- Same_Keys_Sets_Last : Natural := 1;
-
- begin
- for C in Sel_Position'Range loop
- Sel_Position (C) := C;
- end loop;
-
- Same_Keys_Sets_Table (1) := (0, NK - 1);
-
- loop
- -- Preserve maximum number of different keys and check later on
- -- that this value is strictly incrementing. Otherwise, it means
- -- that two keys are strictly identical.
-
- Old_Differences := Max_Differences;
-
- -- The first position should not exceed the minimum key length.
- -- Otherwise, we may end up with an empty word once reduced.
-
- Max_Sel_Pos :=
- (if Last_Sel_Pos = 0 then Min_Key_Len else Max_Key_Len);
-
- -- Find which position increases more the number of differences
-
- for J in Last_Sel_Pos + 1 .. Max_Sel_Pos loop
- Differences := Count_Different_Keys
- (Same_Keys_Sets_Table,
- Same_Keys_Sets_Last,
- Sel_Position (J));
-
- if Verbose then
- Put (Output,
- "Selecting position" & Sel_Position (J)'Img &
- " results in" & Differences'Img &
- " differences");
- New_Line (Output);
- end if;
-
- if Differences > Max_Differences then
- Max_Differences := Differences;
- Max_Diff_Sel_Pos := Sel_Position (J);
- Max_Diff_Sel_Pos_Idx := J;
- end if;
- end loop;
-
- if Old_Differences = Max_Differences then
- raise Program_Error with "some keys are identical";
- end if;
-
- -- Insert selected position and sort Sel_Position table
-
- Last_Sel_Pos := Last_Sel_Pos + 1;
- Sel_Position (Last_Sel_Pos + 1 .. Max_Diff_Sel_Pos_Idx) :=
- Sel_Position (Last_Sel_Pos .. Max_Diff_Sel_Pos_Idx - 1);
- Sel_Position (Last_Sel_Pos) := Max_Diff_Sel_Pos;
-
- for P in 1 .. Last_Sel_Pos - 1 loop
- if Max_Diff_Sel_Pos < Sel_Position (P) then
- Sel_Position (P + 1 .. Last_Sel_Pos) :=
- Sel_Position (P .. Last_Sel_Pos - 1);
- Sel_Position (P) := Max_Diff_Sel_Pos;
- exit;
- end if;
- end loop;
-
- exit when Max_Differences = NK;
-
- Build_Identical_Keys_Sets
- (Same_Keys_Sets_Table,
- Same_Keys_Sets_Last,
- Max_Diff_Sel_Pos);
-
- if Verbose then
- Put (Output,
- "Selecting position" & Max_Diff_Sel_Pos'Img &
- " results in" & Max_Differences'Img &
- " differences");
- New_Line (Output);
- Put (Output, "--");
- New_Line (Output);
- for J in 1 .. Same_Keys_Sets_Last loop
- for K in
- Same_Keys_Sets_Table (J).First ..
- Same_Keys_Sets_Table (J).Last
- loop
- Put (Output,
- Trim_Trailing_Nuls (WT.Table (Reduced (K)).all));
- New_Line (Output);
- end loop;
- Put (Output, "--");
- New_Line (Output);
- end loop;
- end if;
- end loop;
- end;
-
- Char_Pos_Set_Len := Last_Sel_Pos;
- Char_Pos_Set := Allocate (Char_Pos_Set_Len);
-
- for C in 1 .. Last_Sel_Pos loop
- Set_Char_Pos (C - 1, Sel_Position (C));
- end loop;
- end Select_Char_Position;
-
- --------------------------
- -- Select_Character_Set --
- --------------------------
-
- procedure Select_Character_Set is
- Last : Natural := 0;
- Used : array (Character) of Boolean := (others => False);
- Char : Character;
-
- begin
- for J in 0 .. NK - 1 loop
- for K in 0 .. Char_Pos_Set_Len - 1 loop
- Char := WT.Table (Initial (J))(Get_Char_Pos (K));
- exit when Char = ASCII.NUL;
- Used (Char) := True;
- end loop;
- end loop;
-
- Used_Char_Set_Len := 256;
- Used_Char_Set := Allocate (Used_Char_Set_Len);
-
- for J in Used'Range loop
- if Used (J) then
- Set_Used_Char (J, Last);
- Last := Last + 1;
- else
- Set_Used_Char (J, 0);
- end if;
- end loop;
- end Select_Character_Set;
-
- ------------------
- -- Set_Char_Pos --
- ------------------
-
- procedure Set_Char_Pos (P : Natural; Item : Natural) is
- N : constant Natural := Char_Pos_Set + P;
- begin
- IT.Table (N) := Item;
- end Set_Char_Pos;
-
- ---------------
- -- Set_Edges --
- ---------------
-
- procedure Set_Edges (F : Natural; Item : Edge_Type) is
- N : constant Natural := Edges + (F * Edge_Size);
- begin
- IT.Table (N) := Item.X;
- IT.Table (N + 1) := Item.Y;
- IT.Table (N + 2) := Item.Key;
- end Set_Edges;
-
- ---------------
- -- Set_Graph --
- ---------------
-
- procedure Set_Graph (N : Natural; Item : Integer) is
- begin
- IT.Table (G + N) := Item;
- end Set_Graph;
-
- -------------
- -- Set_Key --
- -------------
-
- procedure Set_Key (N : Key_Id; Item : Key_Type) is
- begin
- IT.Table (Keys + N) := Item.Edge;
- end Set_Key;
-
- ---------------
- -- Set_Table --
- ---------------
-
- procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural) is
- N : constant Natural := T + ((Y * T1_Len) + X);
- begin
- IT.Table (N) := Item;
- end Set_Table;
-
- -------------------
- -- Set_Used_Char --
- -------------------
-
- procedure Set_Used_Char (C : Character; Item : Natural) is
- N : constant Natural := Used_Char_Set + Character'Pos (C);
- begin
- IT.Table (N) := Item;
- end Set_Used_Char;
-
- ------------------
- -- Set_Vertices --
- ------------------
-
- procedure Set_Vertices (F : Natural; Item : Vertex_Type) is
- N : constant Natural := Vertices + (F * Vertex_Size);
- begin
- IT.Table (N) := Item.First;
- IT.Table (N + 1) := Item.Last;
- end Set_Vertices;
-
- ---------
- -- Sum --
- ---------
-
- function Sum
- (Word : Word_Type;
- Table : Table_Id;
- Opt : Optimization) return Natural
- is
- S : Natural := 0;
- R : Natural;
-
- begin
- case Opt is
- when CPU_Time =>
- for J in 0 .. T1_Len - 1 loop
- exit when Word (J + 1) = ASCII.NUL;
- R := Get_Table (Table, J, Get_Used_Char (Word (J + 1)));
- S := (S + R) mod NV;
- end loop;
-
- when Memory_Space =>
- for J in 0 .. T1_Len - 1 loop
- exit when Word (J + 1) = ASCII.NUL;
- R := Get_Table (Table, J, 0);
- S := (S + R * Character'Pos (Word (J + 1))) mod NV;
- end loop;
- end case;
-
- return S;
- end Sum;
-
- ------------------------
- -- Trim_Trailing_Nuls --
- ------------------------
-
- function Trim_Trailing_Nuls (Str : String) return String is
- begin
- for J in reverse Str'Range loop
- if Str (J) /= ASCII.NUL then
- return Str (Str'First .. J);
- end if;
- end loop;
-
- return Str;
- end Trim_Trailing_Nuls;
-
- ---------------
- -- Type_Size --
- ---------------
-
- function Type_Size (L : Natural) return Natural is
- begin
- if L <= 2 ** 8 then
- return 8;
- elsif L <= 2 ** 16 then
- return 16;
- else
- return 32;
- end if;
- end Type_Size;
-
- -----------
- -- Value --
- -----------
-
- function Value
- (Name : Table_Name;
- J : Natural;
- K : Natural := 0) return Natural
- is
- begin
- case Name is
- when Character_Position =>
- return Get_Char_Pos (J);
-
- when Used_Character_Set =>
- return Get_Used_Char (Character'Val (J));
-
- when Function_Table_1 =>
- return Get_Table (T1, J, K);
-
- when Function_Table_2 =>
- return Get_Table (T2, J, K);
-
- when Graph_Table =>
- return Get_Graph (J);
-
- end case;
- end Value;
-
-end GNAT.Perfect_Hash_Generators;