aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/gcc/ada/freeze.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8/gcc/ada/freeze.adb')
-rw-r--r--gcc-4.8/gcc/ada/freeze.adb6713
1 files changed, 0 insertions, 6713 deletions
diff --git a/gcc-4.8/gcc/ada/freeze.adb b/gcc-4.8/gcc/ada/freeze.adb
deleted file mode 100644
index 234cdd2cb..000000000
--- a/gcc-4.8/gcc/ada/freeze.adb
+++ /dev/null
@@ -1,6713 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- F R E E Z E --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Checks; use Checks;
-with Debug; use Debug;
-with Einfo; use Einfo;
-with Elists; use Elists;
-with Errout; use Errout;
-with Exp_Ch3; use Exp_Ch3;
-with Exp_Ch7; use Exp_Ch7;
-with Exp_Disp; use Exp_Disp;
-with Exp_Pakd; use Exp_Pakd;
-with Exp_Util; use Exp_Util;
-with Exp_Tss; use Exp_Tss;
-with Layout; use Layout;
-with Lib; use Lib;
-with Namet; use Namet;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Restrict; use Restrict;
-with Rident; use Rident;
-with Rtsfind; use Rtsfind;
-with Sem; use Sem;
-with Sem_Aux; use Sem_Aux;
-with Sem_Cat; use Sem_Cat;
-with Sem_Ch6; use Sem_Ch6;
-with Sem_Ch7; use Sem_Ch7;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Ch9; use Sem_Ch9;
-with Sem_Ch13; use Sem_Ch13;
-with Sem_Eval; use Sem_Eval;
-with Sem_Mech; use Sem_Mech;
-with Sem_Prag; use Sem_Prag;
-with Sem_Res; use Sem_Res;
-with Sem_Util; use Sem_Util;
-with Sinfo; use Sinfo;
-with Snames; use Snames;
-with Stand; use Stand;
-with Targparm; use Targparm;
-with Tbuild; use Tbuild;
-with Ttypes; use Ttypes;
-with Uintp; use Uintp;
-with Urealp; use Urealp;
-
-package body Freeze is
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
- -- Typ is a type that is being frozen. If no size clause is given,
- -- but a default Esize has been computed, then this default Esize is
- -- adjusted up if necessary to be consistent with a given alignment,
- -- but never to a value greater than Long_Long_Integer'Size. This
- -- is used for all discrete types and for fixed-point types.
-
- procedure Build_And_Analyze_Renamed_Body
- (Decl : Node_Id;
- New_S : Entity_Id;
- After : in out Node_Id);
- -- Build body for a renaming declaration, insert in tree and analyze
-
- procedure Check_Address_Clause (E : Entity_Id);
- -- Apply legality checks to address clauses for object declarations,
- -- at the point the object is frozen. Also ensure any initialization is
- -- performed only after the object has been frozen.
-
- procedure Check_Component_Storage_Order
- (Encl_Type : Entity_Id;
- Comp : Entity_Id);
- -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
- -- clause, verify that the component type is compatible. For arrays,
- -- Comp is Empty; for records, it is the entity of the component under
- -- consideration.
-
- procedure Check_Strict_Alignment (E : Entity_Id);
- -- E is a base type. If E is tagged or has a component that is aliased
- -- or tagged or contains something this is aliased or tagged, set
- -- Strict_Alignment.
-
- procedure Check_Unsigned_Type (E : Entity_Id);
- pragma Inline (Check_Unsigned_Type);
- -- If E is a fixed-point or discrete type, then all the necessary work
- -- to freeze it is completed except for possible setting of the flag
- -- Is_Unsigned_Type, which is done by this procedure. The call has no
- -- effect if the entity E is not a discrete or fixed-point type.
-
- procedure Freeze_And_Append
- (Ent : Entity_Id;
- N : Node_Id;
- Result : in out List_Id);
- -- Freezes Ent using Freeze_Entity, and appends the resulting list of
- -- nodes to Result, modifying Result from No_List if necessary. N has
- -- the same usage as in Freeze_Entity.
-
- procedure Freeze_Enumeration_Type (Typ : Entity_Id);
- -- Freeze enumeration type. The Esize field is set as processing
- -- proceeds (i.e. set by default when the type is declared and then
- -- adjusted by rep clauses. What this procedure does is to make sure
- -- that if a foreign convention is specified, and no specific size
- -- is given, then the size must be at least Integer'Size.
-
- procedure Freeze_Static_Object (E : Entity_Id);
- -- If an object is frozen which has Is_Statically_Allocated set, then
- -- all referenced types must also be marked with this flag. This routine
- -- is in charge of meeting this requirement for the object entity E.
-
- procedure Freeze_Subprogram (E : Entity_Id);
- -- Perform freezing actions for a subprogram (create extra formals,
- -- and set proper default mechanism values). Note that this routine
- -- is not called for internal subprograms, for which neither of these
- -- actions is needed (or desirable, we do not want for example to have
- -- these extra formals present in initialization procedures, where they
- -- would serve no purpose). In this call E is either a subprogram or
- -- a subprogram type (i.e. an access to a subprogram).
-
- function Is_Fully_Defined (T : Entity_Id) return Boolean;
- -- True if T is not private and has no private components, or has a full
- -- view. Used to determine whether the designated type of an access type
- -- should be frozen when the access type is frozen. This is done when an
- -- allocator is frozen, or an expression that may involve attributes of
- -- the designated type. Otherwise freezing the access type does not freeze
- -- the designated type.
-
- procedure Process_Default_Expressions
- (E : Entity_Id;
- After : in out Node_Id);
- -- This procedure is called for each subprogram to complete processing of
- -- default expressions at the point where all types are known to be frozen.
- -- The expressions must be analyzed in full, to make sure that all error
- -- processing is done (they have only been pre-analyzed). If the expression
- -- is not an entity or literal, its analysis may generate code which must
- -- not be executed. In that case we build a function body to hold that
- -- code. This wrapper function serves no other purpose (it used to be
- -- called to evaluate the default, but now the default is inlined at each
- -- point of call).
-
- procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
- -- Typ is a record or array type that is being frozen. This routine sets
- -- the default component alignment from the scope stack values if the
- -- alignment is otherwise not specified.
-
- procedure Check_Debug_Info_Needed (T : Entity_Id);
- -- As each entity is frozen, this routine is called to deal with the
- -- setting of Debug_Info_Needed for the entity. This flag is set if
- -- the entity comes from source, or if we are in Debug_Generated_Code
- -- mode or if the -gnatdV debug flag is set. However, it never sets
- -- the flag if Debug_Info_Off is set. This procedure also ensures that
- -- subsidiary entities have the flag set as required.
-
- procedure Undelay_Type (T : Entity_Id);
- -- T is a type of a component that we know to be an Itype. We don't want
- -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
- -- Full_View or Corresponding_Record_Type.
-
- procedure Warn_Overlay
- (Expr : Node_Id;
- Typ : Entity_Id;
- Nam : Node_Id);
- -- Expr is the expression for an address clause for entity Nam whose type
- -- is Typ. If Typ has a default initialization, and there is no explicit
- -- initialization in the source declaration, check whether the address
- -- clause might cause overlaying of an entity, and emit a warning on the
- -- side effect that the initialization will cause.
-
- -------------------------------
- -- Adjust_Esize_For_Alignment --
- -------------------------------
-
- procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
- Align : Uint;
-
- begin
- if Known_Esize (Typ) and then Known_Alignment (Typ) then
- Align := Alignment_In_Bits (Typ);
-
- if Align > Esize (Typ)
- and then Align <= Standard_Long_Long_Integer_Size
- then
- Set_Esize (Typ, Align);
- end if;
- end if;
- end Adjust_Esize_For_Alignment;
-
- ------------------------------------
- -- Build_And_Analyze_Renamed_Body --
- ------------------------------------
-
- procedure Build_And_Analyze_Renamed_Body
- (Decl : Node_Id;
- New_S : Entity_Id;
- After : in out Node_Id)
- is
- Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
- Ent : constant Entity_Id := Defining_Entity (Decl);
- Body_Node : Node_Id;
- Renamed_Subp : Entity_Id;
-
- begin
- -- If the renamed subprogram is intrinsic, there is no need for a
- -- wrapper body: we set the alias that will be called and expanded which
- -- completes the declaration. This transformation is only legal if the
- -- renamed entity has already been elaborated.
-
- -- Note that it is legal for a renaming_as_body to rename an intrinsic
- -- subprogram, as long as the renaming occurs before the new entity
- -- is frozen. See RM 8.5.4 (5).
-
- if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
- and then Is_Entity_Name (Name (Body_Decl))
- then
- Renamed_Subp := Entity (Name (Body_Decl));
- else
- Renamed_Subp := Empty;
- end if;
-
- if Present (Renamed_Subp)
- and then Is_Intrinsic_Subprogram (Renamed_Subp)
- and then
- (not In_Same_Source_Unit (Renamed_Subp, Ent)
- or else Sloc (Renamed_Subp) < Sloc (Ent))
-
- -- We can make the renaming entity intrinsic if the renamed function
- -- has an interface name, or if it is one of the shift/rotate
- -- operations known to the compiler.
-
- and then (Present (Interface_Name (Renamed_Subp))
- or else Chars (Renamed_Subp) = Name_Rotate_Left
- or else Chars (Renamed_Subp) = Name_Rotate_Right
- or else Chars (Renamed_Subp) = Name_Shift_Left
- or else Chars (Renamed_Subp) = Name_Shift_Right
- or else Chars (Renamed_Subp) = Name_Shift_Right_Arithmetic)
- then
- Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
-
- if Present (Alias (Renamed_Subp)) then
- Set_Alias (Ent, Alias (Renamed_Subp));
- else
- Set_Alias (Ent, Renamed_Subp);
- end if;
-
- Set_Is_Intrinsic_Subprogram (Ent);
- Set_Has_Completion (Ent);
-
- else
- Body_Node := Build_Renamed_Body (Decl, New_S);
- Insert_After (After, Body_Node);
- Mark_Rewrite_Insertion (Body_Node);
- Analyze (Body_Node);
- After := Body_Node;
- end if;
- end Build_And_Analyze_Renamed_Body;
-
- ------------------------
- -- Build_Renamed_Body --
- ------------------------
-
- function Build_Renamed_Body
- (Decl : Node_Id;
- New_S : Entity_Id) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (New_S);
- -- We use for the source location of the renamed body, the location of
- -- the spec entity. It might seem more natural to use the location of
- -- the renaming declaration itself, but that would be wrong, since then
- -- the body we create would look as though it was created far too late,
- -- and this could cause problems with elaboration order analysis,
- -- particularly in connection with instantiations.
-
- N : constant Node_Id := Unit_Declaration_Node (New_S);
- Nam : constant Node_Id := Name (N);
- Old_S : Entity_Id;
- Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
- Actuals : List_Id := No_List;
- Call_Node : Node_Id;
- Call_Name : Node_Id;
- Body_Node : Node_Id;
- Formal : Entity_Id;
- O_Formal : Entity_Id;
- Param_Spec : Node_Id;
-
- Pref : Node_Id := Empty;
- -- If the renamed entity is a primitive operation given in prefix form,
- -- the prefix is the target object and it has to be added as the first
- -- actual in the generated call.
-
- begin
- -- Determine the entity being renamed, which is the target of the call
- -- statement. If the name is an explicit dereference, this is a renaming
- -- of a subprogram type rather than a subprogram. The name itself is
- -- fully analyzed.
-
- if Nkind (Nam) = N_Selected_Component then
- Old_S := Entity (Selector_Name (Nam));
-
- elsif Nkind (Nam) = N_Explicit_Dereference then
- Old_S := Etype (Nam);
-
- elsif Nkind (Nam) = N_Indexed_Component then
- if Is_Entity_Name (Prefix (Nam)) then
- Old_S := Entity (Prefix (Nam));
- else
- Old_S := Entity (Selector_Name (Prefix (Nam)));
- end if;
-
- elsif Nkind (Nam) = N_Character_Literal then
- Old_S := Etype (New_S);
-
- else
- Old_S := Entity (Nam);
- end if;
-
- if Is_Entity_Name (Nam) then
-
- -- If the renamed entity is a predefined operator, retain full name
- -- to ensure its visibility.
-
- if Ekind (Old_S) = E_Operator
- and then Nkind (Nam) = N_Expanded_Name
- then
- Call_Name := New_Copy (Name (N));
- else
- Call_Name := New_Reference_To (Old_S, Loc);
- end if;
-
- else
- if Nkind (Nam) = N_Selected_Component
- and then Present (First_Formal (Old_S))
- and then
- (Is_Controlling_Formal (First_Formal (Old_S))
- or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
- then
-
- -- Retrieve the target object, to be added as a first actual
- -- in the call.
-
- Call_Name := New_Occurrence_Of (Old_S, Loc);
- Pref := Prefix (Nam);
-
- else
- Call_Name := New_Copy (Name (N));
- end if;
-
- -- Original name may have been overloaded, but is fully resolved now
-
- Set_Is_Overloaded (Call_Name, False);
- end if;
-
- -- For simple renamings, subsequent calls can be expanded directly as
- -- calls to the renamed entity. The body must be generated in any case
- -- for calls that may appear elsewhere. This is not done in the case
- -- where the subprogram is an instantiation because the actual proper
- -- body has not been built yet.
-
- if Ekind_In (Old_S, E_Function, E_Procedure)
- and then Nkind (Decl) = N_Subprogram_Declaration
- and then not Is_Generic_Instance (Old_S)
- then
- Set_Body_To_Inline (Decl, Old_S);
- end if;
-
- -- The body generated for this renaming is an internal artifact, and
- -- does not constitute a freeze point for the called entity.
-
- Set_Must_Not_Freeze (Call_Name);
-
- Formal := First_Formal (Defining_Entity (Decl));
-
- if Present (Pref) then
- declare
- Pref_Type : constant Entity_Id := Etype (Pref);
- Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
-
- begin
- -- The controlling formal may be an access parameter, or the
- -- actual may be an access value, so adjust accordingly.
-
- if Is_Access_Type (Pref_Type)
- and then not Is_Access_Type (Form_Type)
- then
- Actuals := New_List
- (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
-
- elsif Is_Access_Type (Form_Type)
- and then not Is_Access_Type (Pref)
- then
- Actuals := New_List
- (Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Access,
- Prefix => Relocate_Node (Pref)));
- else
- Actuals := New_List (Pref);
- end if;
- end;
-
- elsif Present (Formal) then
- Actuals := New_List;
-
- else
- Actuals := No_List;
- end if;
-
- if Present (Formal) then
- while Present (Formal) loop
- Append (New_Reference_To (Formal, Loc), Actuals);
- Next_Formal (Formal);
- end loop;
- end if;
-
- -- If the renamed entity is an entry, inherit its profile. For other
- -- renamings as bodies, both profiles must be subtype conformant, so it
- -- is not necessary to replace the profile given in the declaration.
- -- However, default values that are aggregates are rewritten when
- -- partially analyzed, so we recover the original aggregate to insure
- -- that subsequent conformity checking works. Similarly, if the default
- -- expression was constant-folded, recover the original expression.
-
- Formal := First_Formal (Defining_Entity (Decl));
-
- if Present (Formal) then
- O_Formal := First_Formal (Old_S);
- Param_Spec := First (Parameter_Specifications (Spec));
- while Present (Formal) loop
- if Is_Entry (Old_S) then
- if Nkind (Parameter_Type (Param_Spec)) /=
- N_Access_Definition
- then
- Set_Etype (Formal, Etype (O_Formal));
- Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
- end if;
-
- elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
- or else Nkind (Original_Node (Default_Value (O_Formal))) /=
- Nkind (Default_Value (O_Formal))
- then
- Set_Expression (Param_Spec,
- New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
- end if;
-
- Next_Formal (Formal);
- Next_Formal (O_Formal);
- Next (Param_Spec);
- end loop;
- end if;
-
- -- If the renamed entity is a function, the generated body contains a
- -- return statement. Otherwise, build a procedure call. If the entity is
- -- an entry, subsequent analysis of the call will transform it into the
- -- proper entry or protected operation call. If the renamed entity is
- -- a character literal, return it directly.
-
- if Ekind (Old_S) = E_Function
- or else Ekind (Old_S) = E_Operator
- or else (Ekind (Old_S) = E_Subprogram_Type
- and then Etype (Old_S) /= Standard_Void_Type)
- then
- Call_Node :=
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Make_Function_Call (Loc,
- Name => Call_Name,
- Parameter_Associations => Actuals));
-
- elsif Ekind (Old_S) = E_Enumeration_Literal then
- Call_Node :=
- Make_Simple_Return_Statement (Loc,
- Expression => New_Occurrence_Of (Old_S, Loc));
-
- elsif Nkind (Nam) = N_Character_Literal then
- Call_Node :=
- Make_Simple_Return_Statement (Loc,
- Expression => Call_Name);
-
- else
- Call_Node :=
- Make_Procedure_Call_Statement (Loc,
- Name => Call_Name,
- Parameter_Associations => Actuals);
- end if;
-
- -- Create entities for subprogram body and formals
-
- Set_Defining_Unit_Name (Spec,
- Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
-
- Param_Spec := First (Parameter_Specifications (Spec));
- while Present (Param_Spec) loop
- Set_Defining_Identifier (Param_Spec,
- Make_Defining_Identifier (Loc,
- Chars => Chars (Defining_Identifier (Param_Spec))));
- Next (Param_Spec);
- end loop;
-
- Body_Node :=
- Make_Subprogram_Body (Loc,
- Specification => Spec,
- Declarations => New_List,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (Call_Node)));
-
- if Nkind (Decl) /= N_Subprogram_Declaration then
- Rewrite (N,
- Make_Subprogram_Declaration (Loc,
- Specification => Specification (N)));
- end if;
-
- -- Link the body to the entity whose declaration it completes. If
- -- the body is analyzed when the renamed entity is frozen, it may
- -- be necessary to restore the proper scope (see package Exp_Ch13).
-
- if Nkind (N) = N_Subprogram_Renaming_Declaration
- and then Present (Corresponding_Spec (N))
- then
- Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
- else
- Set_Corresponding_Spec (Body_Node, New_S);
- end if;
-
- return Body_Node;
- end Build_Renamed_Body;
-
- --------------------------
- -- Check_Address_Clause --
- --------------------------
-
- procedure Check_Address_Clause (E : Entity_Id) is
- Addr : constant Node_Id := Address_Clause (E);
- Expr : Node_Id;
- Decl : constant Node_Id := Declaration_Node (E);
- Loc : constant Source_Ptr := Sloc (Decl);
- Typ : constant Entity_Id := Etype (E);
-
- begin
- if Present (Addr) then
- Expr := Expression (Addr);
-
- if Needs_Constant_Address (Decl, Typ) then
- Check_Constant_Address_Clause (Expr, E);
-
- -- Has_Delayed_Freeze was set on E when the address clause was
- -- analyzed, and must remain set because we want the address
- -- clause to be elaborated only after any entity it references
- -- has been elaborated.
- end if;
-
- -- If Rep_Clauses are to be ignored, remove address clause from
- -- list attached to entity, because it may be illegal for gigi,
- -- for example by breaking order of elaboration..
-
- if Ignore_Rep_Clauses then
- declare
- Rep : Node_Id;
-
- begin
- Rep := First_Rep_Item (E);
-
- if Rep = Addr then
- Set_First_Rep_Item (E, Next_Rep_Item (Addr));
-
- else
- while Present (Rep)
- and then Next_Rep_Item (Rep) /= Addr
- loop
- Rep := Next_Rep_Item (Rep);
- end loop;
- end if;
-
- if Present (Rep) then
- Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
- end if;
- end;
-
- Rewrite (Addr, Make_Null_Statement (Sloc (E)));
-
- elsif not Error_Posted (Expr)
- and then not Needs_Finalization (Typ)
- then
- Warn_Overlay (Expr, Typ, Name (Addr));
- end if;
-
- if Present (Expression (Decl)) then
-
- -- Capture initialization value at point of declaration
-
- Remove_Side_Effects (Expression (Decl));
-
- -- Move initialization to freeze actions (once the object has
- -- been frozen, and the address clause alignment check has been
- -- performed.
-
- Append_Freeze_Action (E,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (E, Loc),
- Expression => Expression (Decl)));
-
- Set_No_Initialization (Decl);
- end if;
- end if;
- end Check_Address_Clause;
-
- -----------------------------
- -- Check_Compile_Time_Size --
- -----------------------------
-
- procedure Check_Compile_Time_Size (T : Entity_Id) is
-
- procedure Set_Small_Size (T : Entity_Id; S : Uint);
- -- Sets the compile time known size (32 bits or less) in the Esize
- -- field, of T checking for a size clause that was given which attempts
- -- to give a smaller size, and also checking for an alignment clause.
-
- function Size_Known (T : Entity_Id) return Boolean;
- -- Recursive function that does all the work
-
- function Static_Discriminated_Components (T : Entity_Id) return Boolean;
- -- If T is a constrained subtype, its size is not known if any of its
- -- discriminant constraints is not static and it is not a null record.
- -- The test is conservative and doesn't check that the components are
- -- in fact constrained by non-static discriminant values. Could be made
- -- more precise ???
-
- --------------------
- -- Set_Small_Size --
- --------------------
-
- procedure Set_Small_Size (T : Entity_Id; S : Uint) is
- begin
- if S > 32 then
- return;
-
- -- Check for bad size clause given
-
- elsif Has_Size_Clause (T) then
- if RM_Size (T) < S then
- Error_Msg_Uint_1 := S;
- Error_Msg_NE
- ("size for& too small, minimum allowed is ^",
- Size_Clause (T), T);
- end if;
-
- -- Set size if not set already
-
- elsif Unknown_RM_Size (T) then
- Set_RM_Size (T, S);
- end if;
- end Set_Small_Size;
-
- ----------------
- -- Size_Known --
- ----------------
-
- function Size_Known (T : Entity_Id) return Boolean is
- Index : Entity_Id;
- Comp : Entity_Id;
- Ctyp : Entity_Id;
- Low : Node_Id;
- High : Node_Id;
-
- begin
- if Size_Known_At_Compile_Time (T) then
- return True;
-
- -- Always True for scalar types. This is true even for generic formal
- -- scalar types. We used to return False in the latter case, but the
- -- size is known at compile time, even in the template, we just do
- -- not know the exact size but that's not the point of this routine.
-
- elsif Is_Scalar_Type (T)
- or else Is_Task_Type (T)
- then
- return True;
-
- -- Array types
-
- elsif Is_Array_Type (T) then
-
- -- String literals always have known size, and we can set it
-
- if Ekind (T) = E_String_Literal_Subtype then
- Set_Small_Size (T, Component_Size (T)
- * String_Literal_Length (T));
- return True;
-
- -- Unconstrained types never have known at compile time size
-
- elsif not Is_Constrained (T) then
- return False;
-
- -- Don't do any recursion on type with error posted, since we may
- -- have a malformed type that leads us into a loop.
-
- elsif Error_Posted (T) then
- return False;
-
- -- Otherwise if component size unknown, then array size unknown
-
- elsif not Size_Known (Component_Type (T)) then
- return False;
- end if;
-
- -- Check for all indexes static, and also compute possible size
- -- (in case it is less than 32 and may be packable).
-
- declare
- Esiz : Uint := Component_Size (T);
- Dim : Uint;
-
- begin
- Index := First_Index (T);
- while Present (Index) loop
- if Nkind (Index) = N_Range then
- Get_Index_Bounds (Index, Low, High);
-
- elsif Error_Posted (Scalar_Range (Etype (Index))) then
- return False;
-
- else
- Low := Type_Low_Bound (Etype (Index));
- High := Type_High_Bound (Etype (Index));
- end if;
-
- if not Compile_Time_Known_Value (Low)
- or else not Compile_Time_Known_Value (High)
- or else Etype (Index) = Any_Type
- then
- return False;
-
- else
- Dim := Expr_Value (High) - Expr_Value (Low) + 1;
-
- if Dim >= 0 then
- Esiz := Esiz * Dim;
- else
- Esiz := Uint_0;
- end if;
- end if;
-
- Next_Index (Index);
- end loop;
-
- Set_Small_Size (T, Esiz);
- return True;
- end;
-
- -- Access types always have known at compile time sizes
-
- elsif Is_Access_Type (T) then
- return True;
-
- -- For non-generic private types, go to underlying type if present
-
- elsif Is_Private_Type (T)
- and then not Is_Generic_Type (T)
- and then Present (Underlying_Type (T))
- then
- -- Don't do any recursion on type with error posted, since we may
- -- have a malformed type that leads us into a loop.
-
- if Error_Posted (T) then
- return False;
- else
- return Size_Known (Underlying_Type (T));
- end if;
-
- -- Record types
-
- elsif Is_Record_Type (T) then
-
- -- A class-wide type is never considered to have a known size
-
- if Is_Class_Wide_Type (T) then
- return False;
-
- -- A subtype of a variant record must not have non-static
- -- discriminated components.
-
- elsif T /= Base_Type (T)
- and then not Static_Discriminated_Components (T)
- then
- return False;
-
- -- Don't do any recursion on type with error posted, since we may
- -- have a malformed type that leads us into a loop.
-
- elsif Error_Posted (T) then
- return False;
- end if;
-
- -- Now look at the components of the record
-
- declare
- -- The following two variables are used to keep track of the
- -- size of packed records if we can tell the size of the packed
- -- record in the front end. Packed_Size_Known is True if so far
- -- we can figure out the size. It is initialized to True for a
- -- packed record, unless the record has discriminants or atomic
- -- components or independent components.
-
- -- The reason we eliminate the discriminated case is that
- -- we don't know the way the back end lays out discriminated
- -- packed records. If Packed_Size_Known is True, then
- -- Packed_Size is the size in bits so far.
-
- Packed_Size_Known : Boolean :=
- Is_Packed (T)
- and then not Has_Discriminants (T)
- and then not Has_Atomic_Components (T)
- and then not Has_Independent_Components (T);
-
- Packed_Size : Uint := Uint_0;
- -- SIze in bis so far
-
- begin
- -- Test for variant part present
-
- if Has_Discriminants (T)
- and then Present (Parent (T))
- and then Nkind (Parent (T)) = N_Full_Type_Declaration
- and then Nkind (Type_Definition (Parent (T))) =
- N_Record_Definition
- and then not Null_Present (Type_Definition (Parent (T)))
- and then Present (Variant_Part
- (Component_List (Type_Definition (Parent (T)))))
- then
- -- If variant part is present, and type is unconstrained,
- -- then we must have defaulted discriminants, or a size
- -- clause must be present for the type, or else the size
- -- is definitely not known at compile time.
-
- if not Is_Constrained (T)
- and then
- No (Discriminant_Default_Value (First_Discriminant (T)))
- and then Unknown_RM_Size (T)
- then
- return False;
- end if;
- end if;
-
- -- Loop through components
-
- Comp := First_Component_Or_Discriminant (T);
- while Present (Comp) loop
- Ctyp := Etype (Comp);
-
- -- We do not know the packed size if there is a component
- -- clause present (we possibly could, but this would only
- -- help in the case of a record with partial rep clauses.
- -- That's because in the case of full rep clauses, the
- -- size gets figured out anyway by a different circuit).
-
- if Present (Component_Clause (Comp)) then
- Packed_Size_Known := False;
- end if;
-
- -- We do not know the packed size if we have a by reference
- -- type, or an atomic type or an atomic component.
-
- if Is_Atomic (Ctyp)
- or else Is_Atomic (Comp)
- or else Is_By_Reference_Type (Ctyp)
- then
- Packed_Size_Known := False;
- end if;
-
- -- We need to identify a component that is an array where
- -- the index type is an enumeration type with non-standard
- -- representation, and some bound of the type depends on a
- -- discriminant.
-
- -- This is because gigi computes the size by doing a
- -- substitution of the appropriate discriminant value in
- -- the size expression for the base type, and gigi is not
- -- clever enough to evaluate the resulting expression (which
- -- involves a call to rep_to_pos) at compile time.
-
- -- It would be nice if gigi would either recognize that
- -- this expression can be computed at compile time, or
- -- alternatively figured out the size from the subtype
- -- directly, where all the information is at hand ???
-
- if Is_Array_Type (Etype (Comp))
- and then Present (Packed_Array_Type (Etype (Comp)))
- then
- declare
- Ocomp : constant Entity_Id :=
- Original_Record_Component (Comp);
- OCtyp : constant Entity_Id := Etype (Ocomp);
- Ind : Node_Id;
- Indtyp : Entity_Id;
- Lo, Hi : Node_Id;
-
- begin
- Ind := First_Index (OCtyp);
- while Present (Ind) loop
- Indtyp := Etype (Ind);
-
- if Is_Enumeration_Type (Indtyp)
- and then Has_Non_Standard_Rep (Indtyp)
- then
- Lo := Type_Low_Bound (Indtyp);
- Hi := Type_High_Bound (Indtyp);
-
- if Is_Entity_Name (Lo)
- and then Ekind (Entity (Lo)) = E_Discriminant
- then
- return False;
-
- elsif Is_Entity_Name (Hi)
- and then Ekind (Entity (Hi)) = E_Discriminant
- then
- return False;
- end if;
- end if;
-
- Next_Index (Ind);
- end loop;
- end;
- end if;
-
- -- Clearly size of record is not known if the size of one of
- -- the components is not known.
-
- if not Size_Known (Ctyp) then
- return False;
- end if;
-
- -- Accumulate packed size if possible
-
- if Packed_Size_Known then
-
- -- We can only deal with elementary types, since for
- -- non-elementary components, alignment enters into the
- -- picture, and we don't know enough to handle proper
- -- alignment in this context. Packed arrays count as
- -- elementary if the representation is a modular type.
-
- if Is_Elementary_Type (Ctyp)
- or else (Is_Array_Type (Ctyp)
- and then Present (Packed_Array_Type (Ctyp))
- and then Is_Modular_Integer_Type
- (Packed_Array_Type (Ctyp)))
- then
- -- Packed size unknown if we have an atomic type
- -- or a by reference type, since the back end
- -- knows how these are layed out.
-
- if Is_Atomic (Ctyp)
- or else Is_By_Reference_Type (Ctyp)
- then
- Packed_Size_Known := False;
-
- -- If RM_Size is known and static, then we can keep
- -- accumulating the packed size
-
- elsif Known_Static_RM_Size (Ctyp) then
-
- -- A little glitch, to be removed sometime ???
- -- gigi does not understand zero sizes yet.
-
- if RM_Size (Ctyp) = Uint_0 then
- Packed_Size_Known := False;
-
- -- Normal case where we can keep accumulating the
- -- packed array size.
-
- else
- Packed_Size := Packed_Size + RM_Size (Ctyp);
- end if;
-
- -- If we have a field whose RM_Size is not known then
- -- we can't figure out the packed size here.
-
- else
- Packed_Size_Known := False;
- end if;
-
- -- If we have a non-elementary type we can't figure out
- -- the packed array size (alignment issues).
-
- else
- Packed_Size_Known := False;
- end if;
- end if;
-
- Next_Component_Or_Discriminant (Comp);
- end loop;
-
- if Packed_Size_Known then
- Set_Small_Size (T, Packed_Size);
- end if;
-
- return True;
- end;
-
- -- All other cases, size not known at compile time
-
- else
- return False;
- end if;
- end Size_Known;
-
- -------------------------------------
- -- Static_Discriminated_Components --
- -------------------------------------
-
- function Static_Discriminated_Components
- (T : Entity_Id) return Boolean
- is
- Constraint : Elmt_Id;
-
- begin
- if Has_Discriminants (T)
- and then Present (Discriminant_Constraint (T))
- and then Present (First_Component (T))
- then
- Constraint := First_Elmt (Discriminant_Constraint (T));
- while Present (Constraint) loop
- if not Compile_Time_Known_Value (Node (Constraint)) then
- return False;
- end if;
-
- Next_Elmt (Constraint);
- end loop;
- end if;
-
- return True;
- end Static_Discriminated_Components;
-
- -- Start of processing for Check_Compile_Time_Size
-
- begin
- Set_Size_Known_At_Compile_Time (T, Size_Known (T));
- end Check_Compile_Time_Size;
-
- -----------------------------------
- -- Check_Component_Storage_Order --
- -----------------------------------
-
- procedure Check_Component_Storage_Order
- (Encl_Type : Entity_Id;
- Comp : Entity_Id)
- is
- Comp_Type : Entity_Id;
- Comp_Def : Node_Id;
- Err_Node : Node_Id;
- ADC : Node_Id;
-
- Comp_Byte_Aligned : Boolean;
- -- Set True for the record case, when Comp starts on a byte boundary
- -- (in which case it is allowed to have different storage order).
-
- begin
- -- Record case
-
- if Present (Comp) then
- Err_Node := Comp;
- Comp_Type := Etype (Comp);
-
- if Is_Tag (Comp) then
- Comp_Def := Empty;
- Comp_Byte_Aligned := True;
-
- else
- Comp_Def := Component_Definition (Parent (Comp));
- Comp_Byte_Aligned :=
- Present (Component_Clause (Comp))
- and then
- Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
- end if;
-
- -- Array case
-
- else
- Err_Node := Encl_Type;
- Comp_Type := Component_Type (Encl_Type);
- Comp_Def := Component_Definition
- (Type_Definition (Declaration_Node (Encl_Type)));
-
- Comp_Byte_Aligned := False;
- end if;
-
- -- Note: the Reverse_Storage_Order flag is set on the base type, but
- -- the attribute definition clause is attached to the first subtype.
-
- Comp_Type := Base_Type (Comp_Type);
- ADC := Get_Attribute_Definition_Clause
- (First_Subtype (Comp_Type),
- Attribute_Scalar_Storage_Order);
-
- if Is_Record_Type (Comp_Type) or else Is_Array_Type (Comp_Type) then
- if Present (Comp) and then Chars (Comp) = Name_uParent then
- if Reverse_Storage_Order (Encl_Type)
- /=
- Reverse_Storage_Order (Comp_Type)
- then
- Error_Msg_N
- ("record extension must have same scalar storage order as "
- & "parent", Err_Node);
- end if;
-
- elsif No (ADC) then
- Error_Msg_N ("nested composite must have explicit scalar "
- & "storage order", Err_Node);
-
- elsif (Reverse_Storage_Order (Encl_Type)
- /=
- Reverse_Storage_Order (Comp_Type))
- and then not Comp_Byte_Aligned
- then
- Error_Msg_N
- ("type of non-byte-aligned component must have same scalar "
- & "storage order as enclosing composite", Err_Node);
- end if;
-
- elsif Present (Comp_Def) and then Aliased_Present (Comp_Def) then
- Error_Msg_N
- ("aliased component not permitted for type with "
- & "explicit Scalar_Storage_Order", Err_Node);
- end if;
- end Check_Component_Storage_Order;
-
- -----------------------------
- -- Check_Debug_Info_Needed --
- -----------------------------
-
- procedure Check_Debug_Info_Needed (T : Entity_Id) is
- begin
- if Debug_Info_Off (T) then
- return;
-
- elsif Comes_From_Source (T)
- or else Debug_Generated_Code
- or else Debug_Flag_VV
- or else Needs_Debug_Info (T)
- then
- Set_Debug_Info_Needed (T);
- end if;
- end Check_Debug_Info_Needed;
-
- ----------------------------
- -- Check_Strict_Alignment --
- ----------------------------
-
- procedure Check_Strict_Alignment (E : Entity_Id) is
- Comp : Entity_Id;
-
- begin
- if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
- Set_Strict_Alignment (E);
-
- elsif Is_Array_Type (E) then
- Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
-
- elsif Is_Record_Type (E) then
- if Is_Limited_Record (E) then
- Set_Strict_Alignment (E);
- return;
- end if;
-
- Comp := First_Component (E);
- while Present (Comp) loop
- if not Is_Type (Comp)
- and then (Strict_Alignment (Etype (Comp))
- or else Is_Aliased (Comp))
- then
- Set_Strict_Alignment (E);
- return;
- end if;
-
- Next_Component (Comp);
- end loop;
- end if;
- end Check_Strict_Alignment;
-
- -------------------------
- -- Check_Unsigned_Type --
- -------------------------
-
- procedure Check_Unsigned_Type (E : Entity_Id) is
- Ancestor : Entity_Id;
- Lo_Bound : Node_Id;
- Btyp : Entity_Id;
-
- begin
- if not Is_Discrete_Or_Fixed_Point_Type (E) then
- return;
- end if;
-
- -- Do not attempt to analyze case where range was in error
-
- if No (Scalar_Range (E))
- or else Error_Posted (Scalar_Range (E))
- then
- return;
- end if;
-
- -- The situation that is non trivial is something like
-
- -- subtype x1 is integer range -10 .. +10;
- -- subtype x2 is x1 range 0 .. V1;
- -- subtype x3 is x2 range V2 .. V3;
- -- subtype x4 is x3 range V4 .. V5;
-
- -- where Vn are variables. Here the base type is signed, but we still
- -- know that x4 is unsigned because of the lower bound of x2.
-
- -- The only way to deal with this is to look up the ancestor chain
-
- Ancestor := E;
- loop
- if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
- return;
- end if;
-
- Lo_Bound := Type_Low_Bound (Ancestor);
-
- if Compile_Time_Known_Value (Lo_Bound) then
-
- if Expr_Rep_Value (Lo_Bound) >= 0 then
- Set_Is_Unsigned_Type (E, True);
- end if;
-
- return;
-
- else
- Ancestor := Ancestor_Subtype (Ancestor);
-
- -- If no ancestor had a static lower bound, go to base type
-
- if No (Ancestor) then
-
- -- Note: the reason we still check for a compile time known
- -- value for the base type is that at least in the case of
- -- generic formals, we can have bounds that fail this test,
- -- and there may be other cases in error situations.
-
- Btyp := Base_Type (E);
-
- if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
- return;
- end if;
-
- Lo_Bound := Type_Low_Bound (Base_Type (E));
-
- if Compile_Time_Known_Value (Lo_Bound)
- and then Expr_Rep_Value (Lo_Bound) >= 0
- then
- Set_Is_Unsigned_Type (E, True);
- end if;
-
- return;
- end if;
- end if;
- end loop;
- end Check_Unsigned_Type;
-
- -------------------------
- -- Is_Atomic_Aggregate --
- -------------------------
-
- function Is_Atomic_Aggregate
- (E : Entity_Id;
- Typ : Entity_Id) return Boolean
- is
- Loc : constant Source_Ptr := Sloc (E);
- New_N : Node_Id;
- Par : Node_Id;
- Temp : Entity_Id;
-
- begin
- Par := Parent (E);
-
- -- Array may be qualified, so find outer context
-
- if Nkind (Par) = N_Qualified_Expression then
- Par := Parent (Par);
- end if;
-
- if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
- and then Comes_From_Source (Par)
- then
- Temp := Make_Temporary (Loc, 'T', E);
- New_N :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Object_Definition => New_Occurrence_Of (Typ, Loc),
- Expression => Relocate_Node (E));
- Insert_Before (Par, New_N);
- Analyze (New_N);
-
- Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
- return True;
-
- else
- return False;
- end if;
- end Is_Atomic_Aggregate;
-
- ----------------
- -- Freeze_All --
- ----------------
-
- -- Note: the easy coding for this procedure would be to just build a
- -- single list of freeze nodes and then insert them and analyze them
- -- all at once. This won't work, because the analysis of earlier freeze
- -- nodes may recursively freeze types which would otherwise appear later
- -- on in the freeze list. So we must analyze and expand the freeze nodes
- -- as they are generated.
-
- procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
- E : Entity_Id;
- Decl : Node_Id;
-
- procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
- -- This is the internal recursive routine that does freezing of entities
- -- (but NOT the analysis of default expressions, which should not be
- -- recursive, we don't want to analyze those till we are sure that ALL
- -- the types are frozen).
-
- --------------------
- -- Freeze_All_Ent --
- --------------------
-
- procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
- E : Entity_Id;
- Flist : List_Id;
- Lastn : Node_Id;
-
- procedure Process_Flist;
- -- If freeze nodes are present, insert and analyze, and reset cursor
- -- for next insertion.
-
- -------------------
- -- Process_Flist --
- -------------------
-
- procedure Process_Flist is
- begin
- if Is_Non_Empty_List (Flist) then
- Lastn := Next (After);
- Insert_List_After_And_Analyze (After, Flist);
-
- if Present (Lastn) then
- After := Prev (Lastn);
- else
- After := Last (List_Containing (After));
- end if;
- end if;
- end Process_Flist;
-
- -- Start or processing for Freeze_All_Ent
-
- begin
- E := From;
- while Present (E) loop
-
- -- If the entity is an inner package which is not a package
- -- renaming, then its entities must be frozen at this point. Note
- -- that such entities do NOT get frozen at the end of the nested
- -- package itself (only library packages freeze).
-
- -- Same is true for task declarations, where anonymous records
- -- created for entry parameters must be frozen.
-
- if Ekind (E) = E_Package
- and then No (Renamed_Object (E))
- and then not Is_Child_Unit (E)
- and then not Is_Frozen (E)
- then
- Push_Scope (E);
- Install_Visible_Declarations (E);
- Install_Private_Declarations (E);
-
- Freeze_All (First_Entity (E), After);
-
- End_Package_Scope (E);
-
- if Is_Generic_Instance (E)
- and then Has_Delayed_Freeze (E)
- then
- Set_Has_Delayed_Freeze (E, False);
- Expand_N_Package_Declaration (Unit_Declaration_Node (E));
- end if;
-
- elsif Ekind (E) in Task_Kind
- and then
- (Nkind (Parent (E)) = N_Task_Type_Declaration
- or else
- Nkind (Parent (E)) = N_Single_Task_Declaration)
- then
- Push_Scope (E);
- Freeze_All (First_Entity (E), After);
- End_Scope;
-
- -- For a derived tagged type, we must ensure that all the
- -- primitive operations of the parent have been frozen, so that
- -- their addresses will be in the parent's dispatch table at the
- -- point it is inherited.
-
- elsif Ekind (E) = E_Record_Type
- and then Is_Tagged_Type (E)
- and then Is_Tagged_Type (Etype (E))
- and then Is_Derived_Type (E)
- then
- declare
- Prim_List : constant Elist_Id :=
- Primitive_Operations (Etype (E));
-
- Prim : Elmt_Id;
- Subp : Entity_Id;
-
- begin
- Prim := First_Elmt (Prim_List);
- while Present (Prim) loop
- Subp := Node (Prim);
-
- if Comes_From_Source (Subp)
- and then not Is_Frozen (Subp)
- then
- Flist := Freeze_Entity (Subp, After);
- Process_Flist;
- end if;
-
- Next_Elmt (Prim);
- end loop;
- end;
- end if;
-
- if not Is_Frozen (E) then
- Flist := Freeze_Entity (E, After);
- Process_Flist;
-
- -- If already frozen, and there are delayed aspects, this is where
- -- we do the visibility check for these aspects (see Sem_Ch13 spec
- -- for a description of how we handle aspect visibility).
-
- elsif Has_Delayed_Aspects (E) then
-
- -- Retrieve the visibility to the discriminants in order to
- -- analyze properly the aspects.
-
- Push_Scope_And_Install_Discriminants (E);
-
- declare
- Ritem : Node_Id;
-
- begin
- Ritem := First_Rep_Item (E);
- while Present (Ritem) loop
- if Nkind (Ritem) = N_Aspect_Specification
- and then Entity (Ritem) = E
- and then Is_Delayed_Aspect (Ritem)
- then
- Check_Aspect_At_End_Of_Declarations (Ritem);
- end if;
-
- Ritem := Next_Rep_Item (Ritem);
- end loop;
- end;
-
- Uninstall_Discriminants_And_Pop_Scope (E);
- end if;
-
- -- If an incomplete type is still not frozen, this may be a
- -- premature freezing because of a body declaration that follows.
- -- Indicate where the freezing took place. Freezing will happen
- -- if the body comes from source, but not if it is internally
- -- generated, for example as the body of a type invariant.
-
- -- If the freezing is caused by the end of the current declarative
- -- part, it is a Taft Amendment type, and there is no error.
-
- if not Is_Frozen (E)
- and then Ekind (E) = E_Incomplete_Type
- then
- declare
- Bod : constant Node_Id := Next (After);
-
- begin
- -- The presence of a body freezes all entities previously
- -- declared in the current list of declarations, but this
- -- does not apply if the body does not come from source.
- -- A type invariant is transformed into a subprogram body
- -- which is placed at the end of the private part of the
- -- current package, but this body does not freeze incomplete
- -- types that may be declared in this private part.
-
- if (Nkind_In (Bod, N_Subprogram_Body,
- N_Entry_Body,
- N_Package_Body,
- N_Protected_Body,
- N_Task_Body)
- or else Nkind (Bod) in N_Body_Stub)
- and then
- List_Containing (After) = List_Containing (Parent (E))
- and then Comes_From_Source (Bod)
- then
- Error_Msg_Sloc := Sloc (Next (After));
- Error_Msg_NE
- ("type& is frozen# before its full declaration",
- Parent (E), E);
- end if;
- end;
- end if;
-
- Next_Entity (E);
- end loop;
- end Freeze_All_Ent;
-
- -- Start of processing for Freeze_All
-
- begin
- Freeze_All_Ent (From, After);
-
- -- Now that all types are frozen, we can deal with default expressions
- -- that require us to build a default expression functions. This is the
- -- point at which such functions are constructed (after all types that
- -- might be used in such expressions have been frozen).
-
- -- For subprograms that are renaming_as_body, we create the wrapper
- -- bodies as needed.
-
- -- We also add finalization chains to access types whose designated
- -- types are controlled. This is normally done when freezing the type,
- -- but this misses recursive type definitions where the later members
- -- of the recursion introduce controlled components.
-
- -- Loop through entities
-
- E := From;
- while Present (E) loop
- if Is_Subprogram (E) then
-
- if not Default_Expressions_Processed (E) then
- Process_Default_Expressions (E, After);
- end if;
-
- if not Has_Completion (E) then
- Decl := Unit_Declaration_Node (E);
-
- if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
- if Error_Posted (Decl) then
- Set_Has_Completion (E);
- else
- Build_And_Analyze_Renamed_Body (Decl, E, After);
- end if;
-
- elsif Nkind (Decl) = N_Subprogram_Declaration
- and then Present (Corresponding_Body (Decl))
- and then
- Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
- = N_Subprogram_Renaming_Declaration
- then
- Build_And_Analyze_Renamed_Body
- (Decl, Corresponding_Body (Decl), After);
- end if;
- end if;
-
- elsif Ekind (E) in Task_Kind
- and then
- (Nkind (Parent (E)) = N_Task_Type_Declaration
- or else
- Nkind (Parent (E)) = N_Single_Task_Declaration)
- then
- declare
- Ent : Entity_Id;
-
- begin
- Ent := First_Entity (E);
- while Present (Ent) loop
- if Is_Entry (Ent)
- and then not Default_Expressions_Processed (Ent)
- then
- Process_Default_Expressions (Ent, After);
- end if;
-
- Next_Entity (Ent);
- end loop;
- end;
-
- -- We add finalization masters to access types whose designated types
- -- require finalization. This is normally done when freezing the
- -- type, but this misses recursive type definitions where the later
- -- members of the recursion introduce controlled components (such as
- -- can happen when incomplete types are involved), as well cases
- -- where a component type is private and the controlled full type
- -- occurs after the access type is frozen. Cases that don't need a
- -- finalization master are generic formal types (the actual type will
- -- have it) and types with Java and CIL conventions, since those are
- -- used for API bindings. (Are there any other cases that should be
- -- excluded here???)
-
- elsif Is_Access_Type (E)
- and then Comes_From_Source (E)
- and then not Is_Generic_Type (E)
- and then Needs_Finalization (Designated_Type (E))
- then
- Build_Finalization_Master (E);
- end if;
-
- Next_Entity (E);
- end loop;
- end Freeze_All;
-
- -----------------------
- -- Freeze_And_Append --
- -----------------------
-
- procedure Freeze_And_Append
- (Ent : Entity_Id;
- N : Node_Id;
- Result : in out List_Id)
- is
- L : constant List_Id := Freeze_Entity (Ent, N);
- begin
- if Is_Non_Empty_List (L) then
- if Result = No_List then
- Result := L;
- else
- Append_List (L, Result);
- end if;
- end if;
- end Freeze_And_Append;
-
- -------------------
- -- Freeze_Before --
- -------------------
-
- procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
- Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
- begin
- if Is_Non_Empty_List (Freeze_Nodes) then
- Insert_Actions (N, Freeze_Nodes);
- end if;
- end Freeze_Before;
-
- -------------------
- -- Freeze_Entity --
- -------------------
-
- function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
- Loc : constant Source_Ptr := Sloc (N);
- Test_E : Entity_Id := E;
- Comp : Entity_Id;
- F_Node : Node_Id;
- Indx : Node_Id;
- Formal : Entity_Id;
- Atype : Entity_Id;
-
- Result : List_Id := No_List;
- -- List of freezing actions, left at No_List if none
-
- Has_Default_Initialization : Boolean := False;
- -- This flag gets set to true for a variable with default initialization
-
- procedure Add_To_Result (N : Node_Id);
- -- N is a freezing action to be appended to the Result
-
- function After_Last_Declaration return Boolean;
- -- If Loc is a freeze_entity that appears after the last declaration
- -- in the scope, inhibit error messages on late completion.
-
- procedure Check_Current_Instance (Comp_Decl : Node_Id);
- -- Check that an Access or Unchecked_Access attribute with a prefix
- -- which is the current instance type can only be applied when the type
- -- is limited.
-
- procedure Check_Suspicious_Modulus (Utype : Entity_Id);
- -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
- -- integer literal without an explicit corresponding size clause. The
- -- caller has checked that Utype is a modular integer type.
-
- procedure Freeze_Record_Type (Rec : Entity_Id);
- -- Freeze each component, handle some representation clauses, and freeze
- -- primitive operations if this is a tagged type.
-
- -------------------
- -- Add_To_Result --
- -------------------
-
- procedure Add_To_Result (N : Node_Id) is
- begin
- if No (Result) then
- Result := New_List (N);
- else
- Append (N, Result);
- end if;
- end Add_To_Result;
-
- ----------------------------
- -- After_Last_Declaration --
- ----------------------------
-
- function After_Last_Declaration return Boolean is
- Spec : constant Node_Id := Parent (Current_Scope);
- begin
- if Nkind (Spec) = N_Package_Specification then
- if Present (Private_Declarations (Spec)) then
- return Loc >= Sloc (Last (Private_Declarations (Spec)));
- elsif Present (Visible_Declarations (Spec)) then
- return Loc >= Sloc (Last (Visible_Declarations (Spec)));
- else
- return False;
- end if;
- else
- return False;
- end if;
- end After_Last_Declaration;
-
- ----------------------------
- -- Check_Current_Instance --
- ----------------------------
-
- procedure Check_Current_Instance (Comp_Decl : Node_Id) is
-
- function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
- -- Determine whether Typ is compatible with the rules for aliased
- -- views of types as defined in RM 3.10 in the various dialects.
-
- function Process (N : Node_Id) return Traverse_Result;
- -- Process routine to apply check to given node
-
- -----------------------------
- -- Is_Aliased_View_Of_Type --
- -----------------------------
-
- function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
- Typ_Decl : constant Node_Id := Parent (Typ);
-
- begin
- -- Common case
-
- if Nkind (Typ_Decl) = N_Full_Type_Declaration
- and then Limited_Present (Type_Definition (Typ_Decl))
- then
- return True;
-
- -- The following paragraphs describe what a legal aliased view of
- -- a type is in the various dialects of Ada.
-
- -- Ada 95
-
- -- The current instance of a limited type, and a formal parameter
- -- or generic formal object of a tagged type.
-
- -- Ada 95 limited type
- -- * Type with reserved word "limited"
- -- * A protected or task type
- -- * A composite type with limited component
-
- elsif Ada_Version <= Ada_95 then
- return Is_Limited_Type (Typ);
-
- -- Ada 2005
-
- -- The current instance of a limited tagged type, a protected
- -- type, a task type, or a type that has the reserved word
- -- "limited" in its full definition ... a formal parameter or
- -- generic formal object of a tagged type.
-
- -- Ada 2005 limited type
- -- * Type with reserved word "limited", "synchronized", "task"
- -- or "protected"
- -- * A composite type with limited component
- -- * A derived type whose parent is a non-interface limited type
-
- elsif Ada_Version = Ada_2005 then
- return
- (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
- or else
- (Is_Derived_Type (Typ)
- and then not Is_Interface (Etype (Typ))
- and then Is_Limited_Type (Etype (Typ)));
-
- -- Ada 2012 and beyond
-
- -- The current instance of an immutably limited type ... a formal
- -- parameter or generic formal object of a tagged type.
-
- -- Ada 2012 limited type
- -- * Type with reserved word "limited", "synchronized", "task"
- -- or "protected"
- -- * A composite type with limited component
- -- * A derived type whose parent is a non-interface limited type
- -- * An incomplete view
-
- -- Ada 2012 immutably limited type
- -- * Explicitly limited record type
- -- * Record extension with "limited" present
- -- * Non-formal limited private type that is either tagged
- -- or has at least one access discriminant with a default
- -- expression
- -- * Task type, protected type or synchronized interface
- -- * Type derived from immutably limited type
-
- else
- return
- Is_Immutably_Limited_Type (Typ)
- or else Is_Incomplete_Type (Typ);
- end if;
- end Is_Aliased_View_Of_Type;
-
- -------------
- -- Process --
- -------------
-
- function Process (N : Node_Id) return Traverse_Result is
- begin
- case Nkind (N) is
- when N_Attribute_Reference =>
- if (Attribute_Name (N) = Name_Access
- or else
- Attribute_Name (N) = Name_Unchecked_Access)
- and then Is_Entity_Name (Prefix (N))
- and then Is_Type (Entity (Prefix (N)))
- and then Entity (Prefix (N)) = E
- then
- Error_Msg_N
- ("current instance must be a limited type", Prefix (N));
- return Abandon;
- else
- return OK;
- end if;
-
- when others => return OK;
- end case;
- end Process;
-
- procedure Traverse is new Traverse_Proc (Process);
-
- -- Local variables
-
- Rec_Type : constant Entity_Id :=
- Scope (Defining_Identifier (Comp_Decl));
-
- -- Start of processing for Check_Current_Instance
-
- begin
- if not Is_Aliased_View_Of_Type (Rec_Type) then
- Traverse (Comp_Decl);
- end if;
- end Check_Current_Instance;
-
- ------------------------------
- -- Check_Suspicious_Modulus --
- ------------------------------
-
- procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
- Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
-
- begin
- if not Warn_On_Suspicious_Modulus_Value then
- return;
- end if;
-
- if Nkind (Decl) = N_Full_Type_Declaration then
- declare
- Tdef : constant Node_Id := Type_Definition (Decl);
-
- begin
- if Nkind (Tdef) = N_Modular_Type_Definition then
- declare
- Modulus : constant Node_Id :=
- Original_Node (Expression (Tdef));
-
- begin
- if Nkind (Modulus) = N_Integer_Literal then
- declare
- Modv : constant Uint := Intval (Modulus);
- Sizv : constant Uint := RM_Size (Utype);
-
- begin
- -- First case, modulus and size are the same. This
- -- happens if you have something like mod 32, with
- -- an explicit size of 32, this is for sure a case
- -- where the warning is given, since it is seems
- -- very unlikely that someone would want e.g. a
- -- five bit type stored in 32 bits. It is much
- -- more likely they wanted a 32-bit type.
-
- if Modv = Sizv then
- null;
-
- -- Second case, the modulus is 32 or 64 and no
- -- size clause is present. This is a less clear
- -- case for giving the warning, but in the case
- -- of 32/64 (5-bit or 6-bit types) these seem rare
- -- enough that it is a likely error (and in any
- -- case using 2**5 or 2**6 in these cases seems
- -- clearer. We don't include 8 or 16 here, simply
- -- because in practice 3-bit and 4-bit types are
- -- more common and too many false positives if
- -- we warn in these cases.
-
- elsif not Has_Size_Clause (Utype)
- and then (Modv = Uint_32 or else Modv = Uint_64)
- then
- null;
-
- -- No warning needed
-
- else
- return;
- end if;
-
- -- If we fall through, give warning
-
- Error_Msg_Uint_1 := Modv;
- Error_Msg_N
- ("?M?2 '*'*^' may have been intended here",
- Modulus);
- end;
- end if;
- end;
- end if;
- end;
- end if;
- end Check_Suspicious_Modulus;
-
- ------------------------
- -- Freeze_Record_Type --
- ------------------------
-
- procedure Freeze_Record_Type (Rec : Entity_Id) is
- Comp : Entity_Id;
- IR : Node_Id;
- ADC : Node_Id;
- Prev : Entity_Id;
-
- Junk : Boolean;
- pragma Warnings (Off, Junk);
-
- Rec_Pushed : Boolean := False;
- -- Set True if the record type scope Rec has been pushed on the scope
- -- stack. Needed for the analysis of delayed aspects specified to the
- -- components of Rec.
-
- Unplaced_Component : Boolean := False;
- -- Set True if we find at least one component with no component
- -- clause (used to warn about useless Pack pragmas).
-
- Placed_Component : Boolean := False;
- -- Set True if we find at least one component with a component
- -- clause (used to warn about useless Bit_Order pragmas, and also
- -- to detect cases where Implicit_Packing may have an effect).
-
- All_Scalar_Components : Boolean := True;
- -- Set False if we encounter a component of a non-scalar type
-
- Scalar_Component_Total_RM_Size : Uint := Uint_0;
- Scalar_Component_Total_Esize : Uint := Uint_0;
- -- Accumulates total RM_Size values and total Esize values of all
- -- scalar components. Used for processing of Implicit_Packing.
-
- function Check_Allocator (N : Node_Id) return Node_Id;
- -- If N is an allocator, possibly wrapped in one or more level of
- -- qualified expression(s), return the inner allocator node, else
- -- return Empty.
-
- procedure Check_Itype (Typ : Entity_Id);
- -- If the component subtype is an access to a constrained subtype of
- -- an already frozen type, make the subtype frozen as well. It might
- -- otherwise be frozen in the wrong scope, and a freeze node on
- -- subtype has no effect. Similarly, if the component subtype is a
- -- regular (not protected) access to subprogram, set the anonymous
- -- subprogram type to frozen as well, to prevent an out-of-scope
- -- freeze node at some eventual point of call. Protected operations
- -- are handled elsewhere.
-
- ---------------------
- -- Check_Allocator --
- ---------------------
-
- function Check_Allocator (N : Node_Id) return Node_Id is
- Inner : Node_Id;
- begin
- Inner := N;
- loop
- if Nkind (Inner) = N_Allocator then
- return Inner;
- elsif Nkind (Inner) = N_Qualified_Expression then
- Inner := Expression (Inner);
- else
- return Empty;
- end if;
- end loop;
- end Check_Allocator;
-
- -----------------
- -- Check_Itype --
- -----------------
-
- procedure Check_Itype (Typ : Entity_Id) is
- Desig : constant Entity_Id := Designated_Type (Typ);
-
- begin
- if not Is_Frozen (Desig)
- and then Is_Frozen (Base_Type (Desig))
- then
- Set_Is_Frozen (Desig);
-
- -- In addition, add an Itype_Reference to ensure that the
- -- access subtype is elaborated early enough. This cannot be
- -- done if the subtype may depend on discriminants.
-
- if Ekind (Comp) = E_Component
- and then Is_Itype (Etype (Comp))
- and then not Has_Discriminants (Rec)
- then
- IR := Make_Itype_Reference (Sloc (Comp));
- Set_Itype (IR, Desig);
- Add_To_Result (IR);
- end if;
-
- elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
- and then Convention (Desig) /= Convention_Protected
- then
- Set_Is_Frozen (Desig);
- end if;
- end Check_Itype;
-
- -- Start of processing for Freeze_Record_Type
-
- begin
- -- Deal with delayed aspect specifications for components. The
- -- analysis of the aspect is required to be delayed to the freeze
- -- point, thus we analyze the pragma or attribute definition
- -- clause in the tree at this point. We also analyze the aspect
- -- specification node at the freeze point when the aspect doesn't
- -- correspond to pragma/attribute definition clause.
-
- Comp := First_Entity (Rec);
- while Present (Comp) loop
- if Ekind (Comp) = E_Component
- and then Has_Delayed_Aspects (Comp)
- then
- if not Rec_Pushed then
- Push_Scope (Rec);
- Rec_Pushed := True;
-
- -- The visibility to the discriminants must be restored in
- -- order to properly analyze the aspects.
-
- if Has_Discriminants (Rec) then
- Install_Discriminants (Rec);
- end if;
- end if;
-
- Analyze_Aspects_At_Freeze_Point (Comp);
- end if;
-
- Next_Entity (Comp);
- end loop;
-
- -- Pop the scope if Rec scope has been pushed on the scope stack
- -- during the delayed aspect analysis process.
-
- if Rec_Pushed then
- if Has_Discriminants (Rec) then
- Uninstall_Discriminants (Rec);
- end if;
-
- Pop_Scope;
- end if;
-
- -- Freeze components and embedded subtypes
-
- Comp := First_Entity (Rec);
- Prev := Empty;
- while Present (Comp) loop
-
- -- Handle the component and discriminant case
-
- if Ekind_In (Comp, E_Component, E_Discriminant) then
- declare
- CC : constant Node_Id := Component_Clause (Comp);
-
- begin
- -- Freezing a record type freezes the type of each of its
- -- components. However, if the type of the component is
- -- part of this record, we do not want or need a separate
- -- Freeze_Node. Note that Is_Itype is wrong because that's
- -- also set in private type cases. We also can't check for
- -- the Scope being exactly Rec because of private types and
- -- record extensions.
-
- if Is_Itype (Etype (Comp))
- and then Is_Record_Type (Underlying_Type
- (Scope (Etype (Comp))))
- then
- Undelay_Type (Etype (Comp));
- end if;
-
- Freeze_And_Append (Etype (Comp), N, Result);
-
- -- Check for error of component clause given for variable
- -- sized type. We have to delay this test till this point,
- -- since the component type has to be frozen for us to know
- -- if it is variable length. We omit this test in a generic
- -- context, it will be applied at instantiation time.
-
- -- We also omit this test in CodePeer mode, since we do not
- -- have sufficient info on size and representation clauses.
-
- if Present (CC) then
- Placed_Component := True;
-
- if Inside_A_Generic then
- null;
-
- elsif CodePeer_Mode then
- null;
-
- elsif not
- Size_Known_At_Compile_Time
- (Underlying_Type (Etype (Comp)))
- then
- Error_Msg_N
- ("component clause not allowed for variable " &
- "length component", CC);
- end if;
-
- else
- Unplaced_Component := True;
- end if;
-
- -- Case of component requires byte alignment
-
- if Must_Be_On_Byte_Boundary (Etype (Comp)) then
-
- -- Set the enclosing record to also require byte align
-
- Set_Must_Be_On_Byte_Boundary (Rec);
-
- -- Check for component clause that is inconsistent with
- -- the required byte boundary alignment.
-
- if Present (CC)
- and then Normalized_First_Bit (Comp) mod
- System_Storage_Unit /= 0
- then
- Error_Msg_N
- ("component & must be byte aligned",
- Component_Name (Component_Clause (Comp)));
- end if;
- end if;
- end;
- end if;
-
- -- Gather data for possible Implicit_Packing later. Note that at
- -- this stage we might be dealing with a real component, or with
- -- an implicit subtype declaration.
-
- if not Is_Scalar_Type (Etype (Comp)) then
- All_Scalar_Components := False;
- else
- Scalar_Component_Total_RM_Size :=
- Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
- Scalar_Component_Total_Esize :=
- Scalar_Component_Total_Esize + Esize (Etype (Comp));
- end if;
-
- -- If the component is an Itype with Delayed_Freeze and is either
- -- a record or array subtype and its base type has not yet been
- -- frozen, we must remove this from the entity list of this record
- -- and put it on the entity list of the scope of its base type.
- -- Note that we know that this is not the type of a component
- -- since we cleared Has_Delayed_Freeze for it in the previous
- -- loop. Thus this must be the Designated_Type of an access type,
- -- which is the type of a component.
-
- if Is_Itype (Comp)
- and then Is_Type (Scope (Comp))
- and then Is_Composite_Type (Comp)
- and then Base_Type (Comp) /= Comp
- and then Has_Delayed_Freeze (Comp)
- and then not Is_Frozen (Base_Type (Comp))
- then
- declare
- Will_Be_Frozen : Boolean := False;
- S : Entity_Id;
-
- begin
- -- We have a pretty bad kludge here. Suppose Rec is subtype
- -- being defined in a subprogram that's created as part of
- -- the freezing of Rec'Base. In that case, we know that
- -- Comp'Base must have already been frozen by the time we
- -- get to elaborate this because Gigi doesn't elaborate any
- -- bodies until it has elaborated all of the declarative
- -- part. But Is_Frozen will not be set at this point because
- -- we are processing code in lexical order.
-
- -- We detect this case by going up the Scope chain of Rec
- -- and seeing if we have a subprogram scope before reaching
- -- the top of the scope chain or that of Comp'Base. If we
- -- do, then mark that Comp'Base will actually be frozen. If
- -- so, we merely undelay it.
-
- S := Scope (Rec);
- while Present (S) loop
- if Is_Subprogram (S) then
- Will_Be_Frozen := True;
- exit;
- elsif S = Scope (Base_Type (Comp)) then
- exit;
- end if;
-
- S := Scope (S);
- end loop;
-
- if Will_Be_Frozen then
- Undelay_Type (Comp);
- else
- if Present (Prev) then
- Set_Next_Entity (Prev, Next_Entity (Comp));
- else
- Set_First_Entity (Rec, Next_Entity (Comp));
- end if;
-
- -- Insert in entity list of scope of base type (which
- -- must be an enclosing scope, because still unfrozen).
-
- Append_Entity (Comp, Scope (Base_Type (Comp)));
- end if;
- end;
-
- -- If the component is an access type with an allocator as default
- -- value, the designated type will be frozen by the corresponding
- -- expression in init_proc. In order to place the freeze node for
- -- the designated type before that for the current record type,
- -- freeze it now.
-
- -- Same process if the component is an array of access types,
- -- initialized with an aggregate. If the designated type is
- -- private, it cannot contain allocators, and it is premature
- -- to freeze the type, so we check for this as well.
-
- elsif Is_Access_Type (Etype (Comp))
- and then Present (Parent (Comp))
- and then Present (Expression (Parent (Comp)))
- then
- declare
- Alloc : constant Node_Id :=
- Check_Allocator (Expression (Parent (Comp)));
-
- begin
- if Present (Alloc) then
-
- -- If component is pointer to a classwide type, freeze
- -- the specific type in the expression being allocated.
- -- The expression may be a subtype indication, in which
- -- case freeze the subtype mark.
-
- if Is_Class_Wide_Type
- (Designated_Type (Etype (Comp)))
- then
- if Is_Entity_Name (Expression (Alloc)) then
- Freeze_And_Append
- (Entity (Expression (Alloc)), N, Result);
- elsif
- Nkind (Expression (Alloc)) = N_Subtype_Indication
- then
- Freeze_And_Append
- (Entity (Subtype_Mark (Expression (Alloc))),
- N, Result);
- end if;
-
- elsif Is_Itype (Designated_Type (Etype (Comp))) then
- Check_Itype (Etype (Comp));
-
- else
- Freeze_And_Append
- (Designated_Type (Etype (Comp)), N, Result);
- end if;
- end if;
- end;
-
- elsif Is_Access_Type (Etype (Comp))
- and then Is_Itype (Designated_Type (Etype (Comp)))
- then
- Check_Itype (Etype (Comp));
-
- elsif Is_Array_Type (Etype (Comp))
- and then Is_Access_Type (Component_Type (Etype (Comp)))
- and then Present (Parent (Comp))
- and then Nkind (Parent (Comp)) = N_Component_Declaration
- and then Present (Expression (Parent (Comp)))
- and then Nkind (Expression (Parent (Comp))) = N_Aggregate
- and then Is_Fully_Defined
- (Designated_Type (Component_Type (Etype (Comp))))
- then
- Freeze_And_Append
- (Designated_Type
- (Component_Type (Etype (Comp))), N, Result);
- end if;
-
- Prev := Comp;
- Next_Entity (Comp);
- end loop;
-
- ADC := Get_Attribute_Definition_Clause
- (Rec, Attribute_Scalar_Storage_Order);
-
- if Present (ADC) then
-
- -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
- -- the former is specified.
-
- if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
-
- -- Note: report error on Rec, not on ADC, as ADC may apply to
- -- an ancestor type.
-
- Error_Msg_Sloc := Sloc (ADC);
- Error_Msg_N
- ("scalar storage order for& specified# inconsistent with "
- & "bit order", Rec);
- end if;
-
- -- Warn if there is a Scalar_Storage_Order but no component clause
- -- (or pragma Pack).
-
- if not (Placed_Component or else Is_Packed (Rec)) then
- Error_Msg_N
- ("??scalar storage order specified but no component clause",
- ADC);
- end if;
-
- -- Check attribute on component types
-
- Comp := First_Component (Rec);
- while Present (Comp) loop
- Check_Component_Storage_Order (Rec, Comp);
- Next_Component (Comp);
- end loop;
- end if;
-
- -- Deal with Bit_Order aspect specifying a non-default bit order
-
- ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
-
- if Present (ADC) and then Base_Type (Rec) = Rec then
- if not (Placed_Component or else Is_Packed (Rec)) then
- Error_Msg_N ("??bit order specification has no effect", ADC);
- Error_Msg_N
- ("\??since no component clauses were specified", ADC);
-
- -- Here is where we do the processing for reversed bit order
-
- elsif Reverse_Bit_Order (Rec)
- and then not Reverse_Storage_Order (Rec)
- then
- Adjust_Record_For_Reverse_Bit_Order (Rec);
-
- -- Case where we have both an explicit Bit_Order and the same
- -- Scalar_Storage_Order: leave record untouched, the back-end
- -- will take care of required layout conversions.
-
- else
- null;
-
- end if;
- end if;
-
- -- Complete error checking on record representation clause (e.g.
- -- overlap of components). This is called after adjusting the
- -- record for reverse bit order.
-
- declare
- RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
- begin
- if Present (RRC) then
- Check_Record_Representation_Clause (RRC);
- end if;
- end;
-
- -- Set OK_To_Reorder_Components depending on debug flags
-
- if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
- if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
- or else
- (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
- then
- Set_OK_To_Reorder_Components (Rec);
- end if;
- end if;
-
- -- Check for useless pragma Pack when all components placed. We only
- -- do this check for record types, not subtypes, since a subtype may
- -- have all its components placed, and it still makes perfectly good
- -- sense to pack other subtypes or the parent type. We do not give
- -- this warning if Optimize_Alignment is set to Space, since the
- -- pragma Pack does have an effect in this case (it always resets
- -- the alignment to one).
-
- if Ekind (Rec) = E_Record_Type
- and then Is_Packed (Rec)
- and then not Unplaced_Component
- and then Optimize_Alignment /= 'S'
- then
- -- Reset packed status. Probably not necessary, but we do it so
- -- that there is no chance of the back end doing something strange
- -- with this redundant indication of packing.
-
- Set_Is_Packed (Rec, False);
-
- -- Give warning if redundant constructs warnings on
-
- if Warn_On_Redundant_Constructs then
- Error_Msg_N -- CODEFIX
- ("??pragma Pack has no effect, no unplaced components",
- Get_Rep_Pragma (Rec, Name_Pack));
- end if;
- end if;
-
- -- If this is the record corresponding to a remote type, freeze the
- -- remote type here since that is what we are semantically freezing.
- -- This prevents the freeze node for that type in an inner scope.
-
- -- Also, Check for controlled components and unchecked unions.
- -- Finally, enforce the restriction that access attributes with a
- -- current instance prefix can only apply to limited types.
-
- if Ekind (Rec) = E_Record_Type then
- if Present (Corresponding_Remote_Type (Rec)) then
- Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
- end if;
-
- Comp := First_Component (Rec);
- while Present (Comp) loop
-
- -- Do not set Has_Controlled_Component on a class-wide
- -- equivalent type. See Make_CW_Equivalent_Type.
-
- if not Is_Class_Wide_Equivalent_Type (Rec)
- and then (Has_Controlled_Component (Etype (Comp))
- or else (Chars (Comp) /= Name_uParent
- and then Is_Controlled (Etype (Comp)))
- or else (Is_Protected_Type (Etype (Comp))
- and then Present
- (Corresponding_Record_Type
- (Etype (Comp)))
- and then Has_Controlled_Component
- (Corresponding_Record_Type
- (Etype (Comp)))))
- then
- Set_Has_Controlled_Component (Rec);
- end if;
-
- if Has_Unchecked_Union (Etype (Comp)) then
- Set_Has_Unchecked_Union (Rec);
- end if;
-
- -- Scan component declaration for likely misuses of current
- -- instance, either in a constraint or a default expression.
-
- if Has_Per_Object_Constraint (Comp) then
- Check_Current_Instance (Parent (Comp));
- end if;
-
- Next_Component (Comp);
- end loop;
- end if;
-
- Set_Component_Alignment_If_Not_Set (Rec);
-
- -- For first subtypes, check if there are any fixed-point fields with
- -- component clauses, where we must check the size. This is not done
- -- till the freeze point, since for fixed-point types, we do not know
- -- the size until the type is frozen. Similar processing applies to
- -- bit packed arrays.
-
- if Is_First_Subtype (Rec) then
- Comp := First_Component (Rec);
- while Present (Comp) loop
- if Present (Component_Clause (Comp))
- and then (Is_Fixed_Point_Type (Etype (Comp))
- or else
- Is_Bit_Packed_Array (Etype (Comp)))
- then
- Check_Size
- (Component_Name (Component_Clause (Comp)),
- Etype (Comp),
- Esize (Comp),
- Junk);
- end if;
-
- Next_Component (Comp);
- end loop;
- end if;
-
- -- Generate warning for applying C or C++ convention to a record
- -- with discriminants. This is suppressed for the unchecked union
- -- case, since the whole point in this case is interface C. We also
- -- do not generate this within instantiations, since we will have
- -- generated a message on the template.
-
- if Has_Discriminants (E)
- and then not Is_Unchecked_Union (E)
- and then (Convention (E) = Convention_C
- or else
- Convention (E) = Convention_CPP)
- and then Comes_From_Source (E)
- and then not In_Instance
- and then not Has_Warnings_Off (E)
- and then not Has_Warnings_Off (Base_Type (E))
- then
- declare
- Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
- A2 : Node_Id;
-
- begin
- if Present (Cprag) then
- A2 := Next (First (Pragma_Argument_Associations (Cprag)));
-
- if Convention (E) = Convention_C then
- Error_Msg_N
- ("?x?variant record has no direct equivalent in C",
- A2);
- else
- Error_Msg_N
- ("?x?variant record has no direct equivalent in C++",
- A2);
- end if;
-
- Error_Msg_NE
- ("\?x?use of convention for type& is dubious", A2, E);
- end if;
- end;
- end if;
-
- -- See if Size is too small as is (and implicit packing might help)
-
- if not Is_Packed (Rec)
-
- -- No implicit packing if even one component is explicitly placed
-
- and then not Placed_Component
-
- -- Must have size clause and all scalar components
-
- and then Has_Size_Clause (Rec)
- and then All_Scalar_Components
-
- -- Do not try implicit packing on records with discriminants, too
- -- complicated, especially in the variant record case.
-
- and then not Has_Discriminants (Rec)
-
- -- We can implicitly pack if the specified size of the record is
- -- less than the sum of the object sizes (no point in packing if
- -- this is not the case).
-
- and then RM_Size (Rec) < Scalar_Component_Total_Esize
-
- -- And the total RM size cannot be greater than the specified size
- -- since otherwise packing will not get us where we have to be!
-
- and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
-
- -- Never do implicit packing in CodePeer or Alfa modes since
- -- we don't do any packing in these modes, since this generates
- -- over-complex code that confuses static analysis, and in
- -- general, neither CodePeer not GNATprove care about the
- -- internal representation of objects.
-
- and then not (CodePeer_Mode or Alfa_Mode)
- then
- -- If implicit packing enabled, do it
-
- if Implicit_Packing then
- Set_Is_Packed (Rec);
-
- -- Otherwise flag the size clause
-
- else
- declare
- Sz : constant Node_Id := Size_Clause (Rec);
- begin
- Error_Msg_NE -- CODEFIX
- ("size given for& too small", Sz, Rec);
- Error_Msg_N -- CODEFIX
- ("\use explicit pragma Pack "
- & "or use pragma Implicit_Packing", Sz);
- end;
- end if;
- end if;
- end Freeze_Record_Type;
-
- -- Start of processing for Freeze_Entity
-
- begin
- -- We are going to test for various reasons why this entity need not be
- -- frozen here, but in the case of an Itype that's defined within a
- -- record, that test actually applies to the record.
-
- if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
- Test_E := Scope (E);
- elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
- and then Is_Record_Type (Underlying_Type (Scope (E)))
- then
- Test_E := Underlying_Type (Scope (E));
- end if;
-
- -- Do not freeze if already frozen since we only need one freeze node
-
- if Is_Frozen (E) then
- return No_List;
-
- -- It is improper to freeze an external entity within a generic because
- -- its freeze node will appear in a non-valid context. The entity will
- -- be frozen in the proper scope after the current generic is analyzed.
- -- However, aspects must be analyzed because they may be queried later
- -- within the generic itself, and the corresponding pragma or attribute
- -- definition has not been analyzed yet.
-
- elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
- if Has_Delayed_Aspects (E) then
- Analyze_Aspects_At_Freeze_Point (E);
- end if;
-
- return No_List;
-
- -- AI05-0213: A formal incomplete type does not freeze the actual. In
- -- the instance, the same applies to the subtype renaming the actual.
-
- elsif Is_Private_Type (E)
- and then Is_Generic_Actual_Type (E)
- and then No (Full_View (Base_Type (E)))
- and then Ada_Version >= Ada_2012
- then
- return No_List;
-
- -- Do not freeze a global entity within an inner scope created during
- -- expansion. A call to subprogram E within some internal procedure
- -- (a stream attribute for example) might require freezing E, but the
- -- freeze node must appear in the same declarative part as E itself.
- -- The two-pass elaboration mechanism in gigi guarantees that E will
- -- be frozen before the inner call is elaborated. We exclude constants
- -- from this test, because deferred constants may be frozen early, and
- -- must be diagnosed (e.g. in the case of a deferred constant being used
- -- in a default expression). If the enclosing subprogram comes from
- -- source, or is a generic instance, then the freeze point is the one
- -- mandated by the language, and we freeze the entity. A subprogram that
- -- is a child unit body that acts as a spec does not have a spec that
- -- comes from source, but can only come from source.
-
- elsif In_Open_Scopes (Scope (Test_E))
- and then Scope (Test_E) /= Current_Scope
- and then Ekind (Test_E) /= E_Constant
- then
- declare
- S : Entity_Id;
-
- begin
- S := Current_Scope;
- while Present (S) loop
- if Is_Overloadable (S) then
- if Comes_From_Source (S)
- or else Is_Generic_Instance (S)
- or else Is_Child_Unit (S)
- then
- exit;
- else
- return No_List;
- end if;
- end if;
-
- S := Scope (S);
- end loop;
- end;
-
- -- Similarly, an inlined instance body may make reference to global
- -- entities, but these references cannot be the proper freezing point
- -- for them, and in the absence of inlining freezing will take place in
- -- their own scope. Normally instance bodies are analyzed after the
- -- enclosing compilation, and everything has been frozen at the proper
- -- place, but with front-end inlining an instance body is compiled
- -- before the end of the enclosing scope, and as a result out-of-order
- -- freezing must be prevented.
-
- elsif Front_End_Inlining
- and then In_Instance_Body
- and then Present (Scope (Test_E))
- then
- declare
- S : Entity_Id;
-
- begin
- S := Scope (Test_E);
- while Present (S) loop
- if Is_Generic_Instance (S) then
- exit;
- else
- S := Scope (S);
- end if;
- end loop;
-
- if No (S) then
- return No_List;
- end if;
- end;
- end if;
-
- -- Add checks to detect proper initialization of scalars that may appear
- -- as subprogram parameters.
-
- if Is_Subprogram (E)
- and then Check_Validity_Of_Parameters
- then
- Apply_Parameter_Validity_Checks (E);
- end if;
-
- -- Deal with delayed aspect specifications. The analysis of the aspect
- -- is required to be delayed to the freeze point, thus we analyze the
- -- pragma or attribute definition clause in the tree at this point. We
- -- also analyze the aspect specification node at the freeze point when
- -- the aspect doesn't correspond to pragma/attribute definition clause.
-
- if Has_Delayed_Aspects (E) then
- Analyze_Aspects_At_Freeze_Point (E);
- end if;
-
- -- Here to freeze the entity
-
- Set_Is_Frozen (E);
-
- -- Case of entity being frozen is other than a type
-
- if not Is_Type (E) then
-
- -- If entity is exported or imported and does not have an external
- -- name, now is the time to provide the appropriate default name.
- -- Skip this if the entity is stubbed, since we don't need a name
- -- for any stubbed routine. For the case on intrinsics, if no
- -- external name is specified, then calls will be handled in
- -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
- -- external name is provided, then Expand_Intrinsic_Call leaves
- -- calls in place for expansion by GIGI.
-
- if (Is_Imported (E) or else Is_Exported (E))
- and then No (Interface_Name (E))
- and then Convention (E) /= Convention_Stubbed
- and then Convention (E) /= Convention_Intrinsic
- then
- Set_Encoded_Interface_Name
- (E, Get_Default_External_Name (E));
-
- -- If entity is an atomic object appearing in a declaration and
- -- the expression is an aggregate, assign it to a temporary to
- -- ensure that the actual assignment is done atomically rather
- -- than component-wise (the assignment to the temp may be done
- -- component-wise, but that is harmless).
-
- elsif Is_Atomic (E)
- and then Nkind (Parent (E)) = N_Object_Declaration
- and then Present (Expression (Parent (E)))
- and then Nkind (Expression (Parent (E))) = N_Aggregate
- and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
- then
- null;
- end if;
-
- -- For a subprogram, freeze all parameter types and also the return
- -- type (RM 13.14(14)). However skip this for internal subprograms.
- -- This is also the point where any extra formal parameters are
- -- created since we now know whether the subprogram will use a
- -- foreign convention.
-
- if Is_Subprogram (E) then
- if not Is_Internal (E) then
- declare
- F_Type : Entity_Id;
- R_Type : Entity_Id;
- Warn_Node : Node_Id;
-
- begin
- -- Loop through formals
-
- Formal := First_Formal (E);
- while Present (Formal) loop
- F_Type := Etype (Formal);
-
- -- AI05-0151 : incomplete types can appear in a profile.
- -- By the time the entity is frozen, the full view must
- -- be available, unless it is a limited view.
-
- if Is_Incomplete_Type (F_Type)
- and then Present (Full_View (F_Type))
- then
- F_Type := Full_View (F_Type);
- Set_Etype (Formal, F_Type);
- end if;
-
- Freeze_And_Append (F_Type, N, Result);
-
- if Is_Private_Type (F_Type)
- and then Is_Private_Type (Base_Type (F_Type))
- and then No (Full_View (Base_Type (F_Type)))
- and then not Is_Generic_Type (F_Type)
- and then not Is_Derived_Type (F_Type)
- then
- -- If the type of a formal is incomplete, subprogram
- -- is being frozen prematurely. Within an instance
- -- (but not within a wrapper package) this is an
- -- artifact of our need to regard the end of an
- -- instantiation as a freeze point. Otherwise it is
- -- a definite error.
-
- if In_Instance then
- Set_Is_Frozen (E, False);
- return No_List;
-
- elsif not After_Last_Declaration
- and then not Freezing_Library_Level_Tagged_Type
- then
- Error_Msg_Node_1 := F_Type;
- Error_Msg
- ("type& must be fully defined before this point",
- Loc);
- end if;
- end if;
-
- -- Check suspicious parameter for C function. These tests
- -- apply only to exported/imported subprograms.
-
- if Warn_On_Export_Import
- and then Comes_From_Source (E)
- and then (Convention (E) = Convention_C
- or else
- Convention (E) = Convention_CPP)
- and then (Is_Imported (E) or else Is_Exported (E))
- and then Convention (E) /= Convention (Formal)
- and then not Has_Warnings_Off (E)
- and then not Has_Warnings_Off (F_Type)
- and then not Has_Warnings_Off (Formal)
- then
- -- Qualify mention of formals with subprogram name
-
- Error_Msg_Qual_Level := 1;
-
- -- Check suspicious use of fat C pointer
-
- if Is_Access_Type (F_Type)
- and then Esize (F_Type) > Ttypes.System_Address_Size
- then
- Error_Msg_N
- ("?x?type of & does not correspond to C pointer!",
- Formal);
-
- -- Check suspicious return of boolean
-
- elsif Root_Type (F_Type) = Standard_Boolean
- and then Convention (F_Type) = Convention_Ada
- and then not Has_Warnings_Off (F_Type)
- and then not Has_Size_Clause (F_Type)
- and then VM_Target = No_VM
- then
- Error_Msg_N
- ("& is an 8-bit Ada Boolean?x?", Formal);
- Error_Msg_N
- ("\use appropriate corresponding type in C "
- & "(e.g. char)?x?", Formal);
-
- -- Check suspicious tagged type
-
- elsif (Is_Tagged_Type (F_Type)
- or else (Is_Access_Type (F_Type)
- and then
- Is_Tagged_Type
- (Designated_Type (F_Type))))
- and then Convention (E) = Convention_C
- then
- Error_Msg_N
- ("?x?& involves a tagged type which does not "
- & "correspond to any C type!", Formal);
-
- -- Check wrong convention subprogram pointer
-
- elsif Ekind (F_Type) = E_Access_Subprogram_Type
- and then not Has_Foreign_Convention (F_Type)
- then
- Error_Msg_N
- ("?x?subprogram pointer & should "
- & "have foreign convention!", Formal);
- Error_Msg_Sloc := Sloc (F_Type);
- Error_Msg_NE
- ("\?x?add Convention pragma to declaration of &#",
- Formal, F_Type);
- end if;
-
- -- Turn off name qualification after message output
-
- Error_Msg_Qual_Level := 0;
- end if;
-
- -- Check for unconstrained array in exported foreign
- -- convention case.
-
- if Has_Foreign_Convention (E)
- and then not Is_Imported (E)
- and then Is_Array_Type (F_Type)
- and then not Is_Constrained (F_Type)
- and then Warn_On_Export_Import
-
- -- Exclude VM case, since both .NET and JVM can handle
- -- unconstrained arrays without a problem.
-
- and then VM_Target = No_VM
- then
- Error_Msg_Qual_Level := 1;
-
- -- If this is an inherited operation, place the
- -- warning on the derived type declaration, rather
- -- than on the original subprogram.
-
- if Nkind (Original_Node (Parent (E))) =
- N_Full_Type_Declaration
- then
- Warn_Node := Parent (E);
-
- if Formal = First_Formal (E) then
- Error_Msg_NE
- ("??in inherited operation&", Warn_Node, E);
- end if;
- else
- Warn_Node := Formal;
- end if;
-
- Error_Msg_NE
- ("?x?type of argument& is unconstrained array",
- Warn_Node, Formal);
- Error_Msg_NE
- ("?x?foreign caller must pass bounds explicitly",
- Warn_Node, Formal);
- Error_Msg_Qual_Level := 0;
- end if;
-
- if not From_With_Type (F_Type) then
- if Is_Access_Type (F_Type) then
- F_Type := Designated_Type (F_Type);
- end if;
-
- -- If the formal is an anonymous_access_to_subprogram
- -- freeze the subprogram type as well, to prevent
- -- scope anomalies in gigi, because there is no other
- -- clear point at which it could be frozen.
-
- if Is_Itype (Etype (Formal))
- and then Ekind (F_Type) = E_Subprogram_Type
- then
- Freeze_And_Append (F_Type, N, Result);
- end if;
- end if;
-
- Next_Formal (Formal);
- end loop;
-
- -- Case of function: similar checks on return type
-
- if Ekind (E) = E_Function then
-
- -- Freeze return type
-
- R_Type := Etype (E);
-
- -- AI05-0151: the return type may have been incomplete
- -- at the point of declaration.
-
- if Ekind (R_Type) = E_Incomplete_Type
- and then Present (Full_View (R_Type))
- then
- R_Type := Full_View (R_Type);
- Set_Etype (E, R_Type);
- end if;
-
- Freeze_And_Append (R_Type, N, Result);
-
- -- Check suspicious return type for C function
-
- if Warn_On_Export_Import
- and then (Convention (E) = Convention_C
- or else
- Convention (E) = Convention_CPP)
- and then (Is_Imported (E) or else Is_Exported (E))
- then
- -- Check suspicious return of fat C pointer
-
- if Is_Access_Type (R_Type)
- and then Esize (R_Type) > Ttypes.System_Address_Size
- and then not Has_Warnings_Off (E)
- and then not Has_Warnings_Off (R_Type)
- then
- Error_Msg_N
- ("?x?return type of& does not "
- & "correspond to C pointer!", E);
-
- -- Check suspicious return of boolean
-
- elsif Root_Type (R_Type) = Standard_Boolean
- and then Convention (R_Type) = Convention_Ada
- and then VM_Target = No_VM
- and then not Has_Warnings_Off (E)
- and then not Has_Warnings_Off (R_Type)
- and then not Has_Size_Clause (R_Type)
- then
- declare
- N : constant Node_Id :=
- Result_Definition (Declaration_Node (E));
- begin
- Error_Msg_NE
- ("return type of & is an 8-bit Ada Boolean?x?",
- N, E);
- Error_Msg_NE
- ("\use appropriate corresponding type in C "
- & "(e.g. char)?x?", N, E);
- end;
-
- -- Check suspicious return tagged type
-
- elsif (Is_Tagged_Type (R_Type)
- or else (Is_Access_Type (R_Type)
- and then
- Is_Tagged_Type
- (Designated_Type (R_Type))))
- and then Convention (E) = Convention_C
- and then not Has_Warnings_Off (E)
- and then not Has_Warnings_Off (R_Type)
- then
- Error_Msg_N
- ("?x?return type of & does not "
- & "correspond to C type!", E);
-
- -- Check return of wrong convention subprogram pointer
-
- elsif Ekind (R_Type) = E_Access_Subprogram_Type
- and then not Has_Foreign_Convention (R_Type)
- and then not Has_Warnings_Off (E)
- and then not Has_Warnings_Off (R_Type)
- then
- Error_Msg_N
- ("?x?& should return a foreign "
- & "convention subprogram pointer", E);
- Error_Msg_Sloc := Sloc (R_Type);
- Error_Msg_NE
- ("\?x?add Convention pragma to declaration of& #",
- E, R_Type);
- end if;
- end if;
-
- -- Give warning for suspicious return of a result of an
- -- unconstrained array type in a foreign convention
- -- function.
-
- if Has_Foreign_Convention (E)
-
- -- We are looking for a return of unconstrained array
-
- and then Is_Array_Type (R_Type)
- and then not Is_Constrained (R_Type)
-
- -- Exclude imported routines, the warning does not
- -- belong on the import, but rather on the routine
- -- definition.
-
- and then not Is_Imported (E)
-
- -- Exclude VM case, since both .NET and JVM can handle
- -- return of unconstrained arrays without a problem.
-
- and then VM_Target = No_VM
-
- -- Check that general warning is enabled, and that it
- -- is not suppressed for this particular case.
-
- and then Warn_On_Export_Import
- and then not Has_Warnings_Off (E)
- and then not Has_Warnings_Off (R_Type)
- then
- Error_Msg_N
- ("?x?foreign convention function& should not " &
- "return unconstrained array!", E);
- end if;
- end if;
- end;
-
- -- Pre/post conditions are implemented through a subprogram in
- -- the corresponding body, and therefore are not checked on an
- -- imported subprogram for which the body is not available.
-
- -- Could consider generating a wrapper to take care of this???
-
- if Is_Subprogram (E)
- and then Is_Imported (E)
- and then Present (Contract (E))
- and then Present (Spec_PPC_List (Contract (E)))
- then
- Error_Msg_NE
- ("pre/post conditions on imported subprogram "
- & "are not enforced??", E, Spec_PPC_List (Contract (E)));
- end if;
-
- end if;
-
- -- Must freeze its parent first if it is a derived subprogram
-
- if Present (Alias (E)) then
- Freeze_And_Append (Alias (E), N, Result);
- end if;
-
- -- We don't freeze internal subprograms, because we don't normally
- -- want addition of extra formals or mechanism setting to happen
- -- for those. However we do pass through predefined dispatching
- -- cases, since extra formals may be needed in some cases, such as
- -- for the stream 'Input function (build-in-place formals).
-
- if not Is_Internal (E)
- or else Is_Predefined_Dispatching_Operation (E)
- then
- Freeze_Subprogram (E);
- end if;
-
- -- Here for other than a subprogram or type
-
- else
- -- If entity has a type, and it is not a generic unit, then
- -- freeze it first (RM 13.14(10)).
-
- if Present (Etype (E))
- and then Ekind (E) /= E_Generic_Function
- then
- Freeze_And_Append (Etype (E), N, Result);
- end if;
-
- -- Special processing for objects created by object declaration
-
- if Nkind (Declaration_Node (E)) = N_Object_Declaration then
-
- -- Abstract type allowed only for C++ imported variables or
- -- constants.
-
- -- Note: we inhibit this check for objects that do not come
- -- from source because there is at least one case (the
- -- expansion of x'Class'Input where x is abstract) where we
- -- legitimately generate an abstract object.
-
- if Is_Abstract_Type (Etype (E))
- and then Comes_From_Source (Parent (E))
- and then not (Is_Imported (E)
- and then Is_CPP_Class (Etype (E)))
- then
- Error_Msg_N ("type of object cannot be abstract",
- Object_Definition (Parent (E)));
-
- if Is_CPP_Class (Etype (E)) then
- Error_Msg_NE
- ("\} may need a cpp_constructor",
- Object_Definition (Parent (E)), Etype (E));
- end if;
- end if;
-
- -- For object created by object declaration, perform required
- -- categorization (preelaborate and pure) checks. Defer these
- -- checks to freeze time since pragma Import inhibits default
- -- initialization and thus pragma Import affects these checks.
-
- Validate_Object_Declaration (Declaration_Node (E));
-
- -- If there is an address clause, check that it is valid
-
- Check_Address_Clause (E);
-
- -- If the object needs any kind of default initialization, an
- -- error must be issued if No_Default_Initialization applies.
- -- The check doesn't apply to imported objects, which are not
- -- ever default initialized, and is why the check is deferred
- -- until freezing, at which point we know if Import applies.
- -- Deferred constants are also exempted from this test because
- -- their completion is explicit, or through an import pragma.
-
- if Ekind (E) = E_Constant
- and then Present (Full_View (E))
- then
- null;
-
- elsif Comes_From_Source (E)
- and then not Is_Imported (E)
- and then not Has_Init_Expression (Declaration_Node (E))
- and then
- ((Has_Non_Null_Base_Init_Proc (Etype (E))
- and then not No_Initialization (Declaration_Node (E))
- and then not Is_Value_Type (Etype (E))
- and then not Initialization_Suppressed (Etype (E)))
- or else
- (Needs_Simple_Initialization (Etype (E))
- and then not Is_Internal (E)))
- then
- Has_Default_Initialization := True;
- Check_Restriction
- (No_Default_Initialization, Declaration_Node (E));
- end if;
-
- -- Check that a Thread_Local_Storage variable does not have
- -- default initialization, and any explicit initialization must
- -- either be the null constant or a static constant.
-
- if Has_Pragma_Thread_Local_Storage (E) then
- declare
- Decl : constant Node_Id := Declaration_Node (E);
- begin
- if Has_Default_Initialization
- or else
- (Has_Init_Expression (Decl)
- and then
- (No (Expression (Decl))
- or else not
- (Is_Static_Expression (Expression (Decl))
- or else
- Nkind (Expression (Decl)) = N_Null)))
- then
- Error_Msg_NE
- ("Thread_Local_Storage variable& is "
- & "improperly initialized", Decl, E);
- Error_Msg_NE
- ("\only allowed initialization is explicit "
- & "NULL or static expression", Decl, E);
- end if;
- end;
- end if;
-
- -- For imported objects, set Is_Public unless there is also an
- -- address clause, which means that there is no external symbol
- -- needed for the Import (Is_Public may still be set for other
- -- unrelated reasons). Note that we delayed this processing
- -- till freeze time so that we can be sure not to set the flag
- -- if there is an address clause. If there is such a clause,
- -- then the only purpose of the Import pragma is to suppress
- -- implicit initialization.
-
- if Is_Imported (E)
- and then No (Address_Clause (E))
- then
- Set_Is_Public (E);
- end if;
-
- -- For convention C objects of an enumeration type, warn if
- -- the size is not integer size and no explicit size given.
- -- Skip warning for Boolean, and Character, assume programmer
- -- expects 8-bit sizes for these cases.
-
- if (Convention (E) = Convention_C
- or else
- Convention (E) = Convention_CPP)
- and then Is_Enumeration_Type (Etype (E))
- and then not Is_Character_Type (Etype (E))
- and then not Is_Boolean_Type (Etype (E))
- and then Esize (Etype (E)) < Standard_Integer_Size
- and then not Has_Size_Clause (E)
- then
- Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
- Error_Msg_N
- ("??convention C enumeration object has size less than ^",
- E);
- Error_Msg_N ("\?use explicit size clause to set size", E);
- end if;
- end if;
-
- -- Check that a constant which has a pragma Volatile[_Components]
- -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
-
- -- Note: Atomic[_Components] also sets Volatile[_Components]
-
- if Ekind (E) = E_Constant
- and then (Has_Volatile_Components (E) or else Is_Volatile (E))
- and then not Is_Imported (E)
- then
- -- Make sure we actually have a pragma, and have not merely
- -- inherited the indication from elsewhere (e.g. an address
- -- clause, which is not good enough in RM terms!)
-
- if Has_Rep_Pragma (E, Name_Atomic)
- or else
- Has_Rep_Pragma (E, Name_Atomic_Components)
- then
- Error_Msg_N
- ("stand alone atomic constant must be " &
- "imported (RM C.6(13))", E);
-
- elsif Has_Rep_Pragma (E, Name_Volatile)
- or else
- Has_Rep_Pragma (E, Name_Volatile_Components)
- then
- Error_Msg_N
- ("stand alone volatile constant must be " &
- "imported (RM C.6(13))", E);
- end if;
- end if;
-
- -- Static objects require special handling
-
- if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
- and then Is_Statically_Allocated (E)
- then
- Freeze_Static_Object (E);
- end if;
-
- -- Remaining step is to layout objects
-
- if Ekind (E) = E_Variable
- or else
- Ekind (E) = E_Constant
- or else
- Ekind (E) = E_Loop_Parameter
- or else
- Is_Formal (E)
- then
- Layout_Object (E);
- end if;
-
- -- If initialization statements were captured in an expression
- -- with actions with null expression, and the object does not
- -- have delayed freezing, move them back now directly within the
- -- enclosing statement sequence.
-
- if Ekind_In (E, E_Constant, E_Variable)
- and then not Has_Delayed_Freeze (E)
- then
- declare
- Init_Stmts : constant Node_Id :=
- Initialization_Statements (E);
- begin
- if Present (Init_Stmts)
- and then Nkind (Init_Stmts) = N_Expression_With_Actions
- and then Nkind (Expression (Init_Stmts)) = N_Null_Statement
- then
- Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
- Remove (Init_Stmts);
- Set_Initialization_Statements (E, Empty);
- end if;
- end;
- end if;
-
- end if;
-
- -- Case of a type or subtype being frozen
-
- else
- -- We used to check here that a full type must have preelaborable
- -- initialization if it completes a private type specified with
- -- pragma Preelaborable_Initialization, but that missed cases where
- -- the types occur within a generic package, since the freezing
- -- that occurs within a containing scope generally skips traversal
- -- of a generic unit's declarations (those will be frozen within
- -- instances). This check was moved to Analyze_Package_Specification.
-
- -- The type may be defined in a generic unit. This can occur when
- -- freezing a generic function that returns the type (which is
- -- defined in a parent unit). It is clearly meaningless to freeze
- -- this type. However, if it is a subtype, its size may be determi-
- -- nable and used in subsequent checks, so might as well try to
- -- compute it.
-
- -- In Ada 2012, Freeze_Entities is also used in the front end to
- -- trigger the analysis of aspect expressions, so in this case we
- -- want to continue the freezing process.
-
- if Present (Scope (E))
- and then Is_Generic_Unit (Scope (E))
- and then not Has_Predicates (E)
- then
- Check_Compile_Time_Size (E);
- return No_List;
- end if;
-
- -- Deal with special cases of freezing for subtype
-
- if E /= Base_Type (E) then
-
- -- Before we do anything else, a specialized test for the case of
- -- a size given for an array where the array needs to be packed,
- -- but was not so the size cannot be honored. This would of course
- -- be caught by the backend, and indeed we don't catch all cases.
- -- The point is that we can give a better error message in those
- -- cases that we do catch with the circuitry here. Also if pragma
- -- Implicit_Packing is set, this is where the packing occurs.
-
- -- The reason we do this so early is that the processing in the
- -- automatic packing case affects the layout of the base type, so
- -- it must be done before we freeze the base type.
-
- if Is_Array_Type (E) then
- declare
- Lo, Hi : Node_Id;
- Ctyp : constant Entity_Id := Component_Type (E);
-
- begin
- -- Check enabling conditions. These are straightforward
- -- except for the test for a limited composite type. This
- -- eliminates the rare case of a array of limited components
- -- where there are issues of whether or not we can go ahead
- -- and pack the array (since we can't freely pack and unpack
- -- arrays if they are limited).
-
- -- Note that we check the root type explicitly because the
- -- whole point is we are doing this test before we have had
- -- a chance to freeze the base type (and it is that freeze
- -- action that causes stuff to be inherited).
-
- if Present (Size_Clause (E))
- and then Known_Static_RM_Size (E)
- and then not Is_Packed (E)
- and then not Has_Pragma_Pack (E)
- and then Number_Dimensions (E) = 1
- and then not Has_Component_Size_Clause (E)
- and then Known_Static_RM_Size (Ctyp)
- and then not Is_Limited_Composite (E)
- and then not Is_Packed (Root_Type (E))
- and then not Has_Component_Size_Clause (Root_Type (E))
- and then not (CodePeer_Mode or Alfa_Mode)
- then
- Get_Index_Bounds (First_Index (E), Lo, Hi);
-
- if Compile_Time_Known_Value (Lo)
- and then Compile_Time_Known_Value (Hi)
- and then Known_Static_RM_Size (Ctyp)
- and then RM_Size (Ctyp) < 64
- then
- declare
- Lov : constant Uint := Expr_Value (Lo);
- Hiv : constant Uint := Expr_Value (Hi);
- Len : constant Uint := UI_Max
- (Uint_0,
- Hiv - Lov + 1);
- Rsiz : constant Uint := RM_Size (Ctyp);
- SZ : constant Node_Id := Size_Clause (E);
- Btyp : constant Entity_Id := Base_Type (E);
-
- -- What we are looking for here is the situation where
- -- the RM_Size given would be exactly right if there
- -- was a pragma Pack (resulting in the component size
- -- being the same as the RM_Size). Furthermore, the
- -- component type size must be an odd size (not a
- -- multiple of storage unit). If the component RM size
- -- is an exact number of storage units that is a power
- -- of two, the array is not packed and has a standard
- -- representation.
-
- begin
- if RM_Size (E) = Len * Rsiz
- and then Rsiz mod System_Storage_Unit /= 0
- then
- -- For implicit packing mode, just set the
- -- component size silently.
-
- if Implicit_Packing then
- Set_Component_Size (Btyp, Rsiz);
- Set_Is_Bit_Packed_Array (Btyp);
- Set_Is_Packed (Btyp);
- Set_Has_Non_Standard_Rep (Btyp);
-
- -- Otherwise give an error message
-
- else
- Error_Msg_NE
- ("size given for& too small", SZ, E);
- Error_Msg_N -- CODEFIX
- ("\use explicit pragma Pack "
- & "or use pragma Implicit_Packing", SZ);
- end if;
-
- elsif RM_Size (E) = Len * Rsiz
- and then Implicit_Packing
- and then
- (Rsiz / System_Storage_Unit = 1
- or else Rsiz / System_Storage_Unit = 2
- or else Rsiz / System_Storage_Unit = 4)
- then
-
- -- Not a packed array, but indicate the desired
- -- component size, for the back-end.
-
- Set_Component_Size (Btyp, Rsiz);
- end if;
- end;
- end if;
- end if;
- end;
- end if;
-
- -- If ancestor subtype present, freeze that first. Note that this
- -- will also get the base type frozen. Need RM reference ???
-
- Atype := Ancestor_Subtype (E);
-
- if Present (Atype) then
- Freeze_And_Append (Atype, N, Result);
-
- -- No ancestor subtype present
-
- else
- -- See if we have a nearest ancestor that has a predicate.
- -- That catches the case of derived type with a predicate.
- -- Need RM reference here ???
-
- Atype := Nearest_Ancestor (E);
-
- if Present (Atype) and then Has_Predicates (Atype) then
- Freeze_And_Append (Atype, N, Result);
- end if;
-
- -- Freeze base type before freezing the entity (RM 13.14(15))
-
- if E /= Base_Type (E) then
- Freeze_And_Append (Base_Type (E), N, Result);
- end if;
- end if;
-
- -- A subtype inherits all the type-related representation aspects
- -- from its parents (RM 13.1(8)).
-
- Inherit_Aspects_At_Freeze_Point (E);
-
- -- For a derived type, freeze its parent type first (RM 13.14(15))
-
- elsif Is_Derived_Type (E) then
- Freeze_And_Append (Etype (E), N, Result);
- Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
-
- -- A derived type inherits each type-related representation aspect
- -- of its parent type that was directly specified before the
- -- declaration of the derived type (RM 13.1(15)).
-
- Inherit_Aspects_At_Freeze_Point (E);
- end if;
-
- -- For array type, freeze index types and component type first
- -- before freezing the array (RM 13.14(15)).
-
- if Is_Array_Type (E) then
- declare
- FS : constant Entity_Id := First_Subtype (E);
- Ctyp : constant Entity_Id := Component_Type (E);
- Clause : Entity_Id;
-
- Non_Standard_Enum : Boolean := False;
- -- Set true if any of the index types is an enumeration type
- -- with a non-standard representation.
-
- begin
- Freeze_And_Append (Ctyp, N, Result);
-
- Indx := First_Index (E);
- while Present (Indx) loop
- Freeze_And_Append (Etype (Indx), N, Result);
-
- if Is_Enumeration_Type (Etype (Indx))
- and then Has_Non_Standard_Rep (Etype (Indx))
- then
- Non_Standard_Enum := True;
- end if;
-
- Next_Index (Indx);
- end loop;
-
- -- Processing that is done only for base types
-
- if Ekind (E) = E_Array_Type then
-
- -- Propagate flags for component type
-
- if Is_Controlled (Component_Type (E))
- or else Has_Controlled_Component (Ctyp)
- then
- Set_Has_Controlled_Component (E);
- end if;
-
- if Has_Unchecked_Union (Component_Type (E)) then
- Set_Has_Unchecked_Union (E);
- end if;
-
- -- If packing was requested or if the component size was set
- -- explicitly, then see if bit packing is required. This
- -- processing is only done for base types, since all the
- -- representation aspects involved are type-related. This
- -- is not just an optimization, if we start processing the
- -- subtypes, they interfere with the settings on the base
- -- type (this is because Is_Packed has a slightly different
- -- meaning before and after freezing).
-
- declare
- Csiz : Uint;
- Esiz : Uint;
-
- begin
- if (Is_Packed (E) or else Has_Pragma_Pack (E))
- and then Known_Static_RM_Size (Ctyp)
- and then not Has_Component_Size_Clause (E)
- then
- Csiz := UI_Max (RM_Size (Ctyp), 1);
-
- elsif Known_Component_Size (E) then
- Csiz := Component_Size (E);
-
- elsif not Known_Static_Esize (Ctyp) then
- Csiz := Uint_0;
-
- else
- Esiz := Esize (Ctyp);
-
- -- We can set the component size if it is less than
- -- 16, rounding it up to the next storage unit size.
-
- if Esiz <= 8 then
- Csiz := Uint_8;
- elsif Esiz <= 16 then
- Csiz := Uint_16;
- else
- Csiz := Uint_0;
- end if;
-
- -- Set component size up to match alignment if it
- -- would otherwise be less than the alignment. This
- -- deals with cases of types whose alignment exceeds
- -- their size (padded types).
-
- if Csiz /= 0 then
- declare
- A : constant Uint := Alignment_In_Bits (Ctyp);
- begin
- if Csiz < A then
- Csiz := A;
- end if;
- end;
- end if;
- end if;
-
- -- Case of component size that may result in packing
-
- if 1 <= Csiz and then Csiz <= 64 then
- declare
- Ent : constant Entity_Id :=
- First_Subtype (E);
- Pack_Pragma : constant Node_Id :=
- Get_Rep_Pragma (Ent, Name_Pack);
- Comp_Size_C : constant Node_Id :=
- Get_Attribute_Definition_Clause
- (Ent, Attribute_Component_Size);
- begin
- -- Warn if we have pack and component size so that
- -- the pack is ignored.
-
- -- Note: here we must check for the presence of a
- -- component size before checking for a Pack pragma
- -- to deal with the case where the array type is a
- -- derived type whose parent is currently private.
-
- if Present (Comp_Size_C)
- and then Has_Pragma_Pack (Ent)
- and then Warn_On_Redundant_Constructs
- then
- Error_Msg_Sloc := Sloc (Comp_Size_C);
- Error_Msg_NE
- ("?r?pragma Pack for& ignored!",
- Pack_Pragma, Ent);
- Error_Msg_N
- ("\?r?explicit component size given#!",
- Pack_Pragma);
- Set_Is_Packed (Base_Type (Ent), False);
- Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
- end if;
-
- -- Set component size if not already set by a
- -- component size clause.
-
- if not Present (Comp_Size_C) then
- Set_Component_Size (E, Csiz);
- end if;
-
- -- Check for base type of 8, 16, 32 bits, where an
- -- unsigned subtype has a length one less than the
- -- base type (e.g. Natural subtype of Integer).
-
- -- In such cases, if a component size was not set
- -- explicitly, then generate a warning.
-
- if Has_Pragma_Pack (E)
- and then not Present (Comp_Size_C)
- and then
- (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
- and then Esize (Base_Type (Ctyp)) = Csiz + 1
- then
- Error_Msg_Uint_1 := Csiz;
-
- if Present (Pack_Pragma) then
- Error_Msg_N
- ("??pragma Pack causes component size "
- & "to be ^!", Pack_Pragma);
- Error_Msg_N
- ("\??use Component_Size to set "
- & "desired value!", Pack_Pragma);
- end if;
- end if;
-
- -- Actual packing is not needed for 8, 16, 32, 64.
- -- Also not needed for 24 if alignment is 1.
-
- if Csiz = 8
- or else Csiz = 16
- or else Csiz = 32
- or else Csiz = 64
- or else (Csiz = 24 and then Alignment (Ctyp) = 1)
- then
- -- Here the array was requested to be packed,
- -- but the packing request had no effect, so
- -- Is_Packed is reset.
-
- -- Note: semantically this means that we lose
- -- track of the fact that a derived type
- -- inherited a pragma Pack that was non-
- -- effective, but that seems fine.
-
- -- We regard a Pack pragma as a request to set
- -- a representation characteristic, and this
- -- request may be ignored.
-
- Set_Is_Packed (Base_Type (E), False);
- Set_Is_Bit_Packed_Array (Base_Type (E), False);
-
- if Known_Static_Esize (Component_Type (E))
- and then Esize (Component_Type (E)) = Csiz
- then
- Set_Has_Non_Standard_Rep
- (Base_Type (E), False);
- end if;
-
- -- In all other cases, packing is indeed needed
-
- else
- Set_Has_Non_Standard_Rep (Base_Type (E), True);
- Set_Is_Bit_Packed_Array (Base_Type (E), True);
- Set_Is_Packed (Base_Type (E), True);
- end if;
- end;
- end if;
- end;
-
- -- Check for Atomic_Components or Aliased with unsuitable
- -- packing or explicit component size clause given.
-
- if (Has_Atomic_Components (E)
- or else Has_Aliased_Components (E))
- and then (Has_Component_Size_Clause (E)
- or else Is_Packed (E))
- then
- Alias_Atomic_Check : declare
-
- procedure Complain_CS (T : String);
- -- Outputs error messages for incorrect CS clause or
- -- pragma Pack for aliased or atomic components (T is
- -- "aliased" or "atomic");
-
- -----------------
- -- Complain_CS --
- -----------------
-
- procedure Complain_CS (T : String) is
- begin
- if Has_Component_Size_Clause (E) then
- Clause :=
- Get_Attribute_Definition_Clause
- (FS, Attribute_Component_Size);
-
- if Known_Static_Esize (Ctyp) then
- Error_Msg_N
- ("incorrect component size for "
- & T & " components", Clause);
- Error_Msg_Uint_1 := Esize (Ctyp);
- Error_Msg_N
- ("\only allowed value is^", Clause);
-
- else
- Error_Msg_N
- ("component size cannot be given for "
- & T & " components", Clause);
- end if;
-
- else
- Error_Msg_N
- ("cannot pack " & T & " components",
- Get_Rep_Pragma (FS, Name_Pack));
- end if;
-
- return;
- end Complain_CS;
-
- -- Start of processing for Alias_Atomic_Check
-
- begin
-
- -- If object size of component type isn't known, we
- -- cannot be sure so we defer to the back end.
-
- if not Known_Static_Esize (Ctyp) then
- null;
-
- -- Case where component size has no effect. First
- -- check for object size of component type multiple
- -- of the storage unit size.
-
- elsif Esize (Ctyp) mod System_Storage_Unit = 0
-
- -- OK in both packing case and component size case
- -- if RM size is known and static and the same as
- -- the object size.
-
- and then
- ((Known_Static_RM_Size (Ctyp)
- and then Esize (Ctyp) = RM_Size (Ctyp))
-
- -- Or if we have an explicit component size
- -- clause and the component size and object size
- -- are equal.
-
- or else
- (Has_Component_Size_Clause (E)
- and then Component_Size (E) = Esize (Ctyp)))
- then
- null;
-
- elsif Has_Aliased_Components (E)
- or else Is_Aliased (Ctyp)
- then
- Complain_CS ("aliased");
-
- elsif Has_Atomic_Components (E)
- or else Is_Atomic (Ctyp)
- then
- Complain_CS ("atomic");
- end if;
- end Alias_Atomic_Check;
- end if;
-
- -- Warn for case of atomic type
-
- Clause := Get_Rep_Pragma (FS, Name_Atomic);
-
- if Present (Clause)
- and then not Addressable (Component_Size (FS))
- then
- Error_Msg_NE
- ("non-atomic components of type& may not be "
- & "accessible by separate tasks??", Clause, E);
-
- if Has_Component_Size_Clause (E) then
- Error_Msg_Sloc :=
- Sloc
- (Get_Attribute_Definition_Clause
- (FS, Attribute_Component_Size));
- Error_Msg_N
- ("\because of component size clause#??",
- Clause);
-
- elsif Has_Pragma_Pack (E) then
- Error_Msg_Sloc :=
- Sloc (Get_Rep_Pragma (FS, Name_Pack));
- Error_Msg_N
- ("\because of pragma Pack#??", Clause);
- end if;
- end if;
-
- -- Check for scalar storage order
-
- if Present (Get_Attribute_Definition_Clause
- (E, Attribute_Scalar_Storage_Order))
- then
- Check_Component_Storage_Order (E, Empty);
- end if;
-
- -- Processing that is done only for subtypes
-
- else
- -- Acquire alignment from base type
-
- if Unknown_Alignment (E) then
- Set_Alignment (E, Alignment (Base_Type (E)));
- Adjust_Esize_Alignment (E);
- end if;
- end if;
-
- -- For bit-packed arrays, check the size
-
- if Is_Bit_Packed_Array (E) and then Known_RM_Size (E) then
- declare
- SizC : constant Node_Id := Size_Clause (E);
-
- Discard : Boolean;
- pragma Warnings (Off, Discard);
-
- begin
- -- It is not clear if it is possible to have no size
- -- clause at this stage, but it is not worth worrying
- -- about. Post error on the entity name in the size
- -- clause if present, else on the type entity itself.
-
- if Present (SizC) then
- Check_Size (Name (SizC), E, RM_Size (E), Discard);
- else
- Check_Size (E, E, RM_Size (E), Discard);
- end if;
- end;
- end if;
-
- -- If any of the index types was an enumeration type with a
- -- non-standard rep clause, then we indicate that the array
- -- type is always packed (even if it is not bit packed).
-
- if Non_Standard_Enum then
- Set_Has_Non_Standard_Rep (Base_Type (E));
- Set_Is_Packed (Base_Type (E));
- end if;
-
- Set_Component_Alignment_If_Not_Set (E);
-
- -- If the array is packed, we must create the packed array
- -- type to be used to actually implement the type. This is
- -- only needed for real array types (not for string literal
- -- types, since they are present only for the front end).
-
- if Is_Packed (E)
- and then Ekind (E) /= E_String_Literal_Subtype
- then
- Create_Packed_Array_Type (E);
- Freeze_And_Append (Packed_Array_Type (E), N, Result);
-
- -- Size information of packed array type is copied to the
- -- array type, since this is really the representation. But
- -- do not override explicit existing size values. If the
- -- ancestor subtype is constrained the packed_array_type
- -- will be inherited from it, but the size may have been
- -- provided already, and must not be overridden either.
-
- if not Has_Size_Clause (E)
- and then
- (No (Ancestor_Subtype (E))
- or else not Has_Size_Clause (Ancestor_Subtype (E)))
- then
- Set_Esize (E, Esize (Packed_Array_Type (E)));
- Set_RM_Size (E, RM_Size (Packed_Array_Type (E)));
- end if;
-
- if not Has_Alignment_Clause (E) then
- Set_Alignment (E, Alignment (Packed_Array_Type (E)));
- end if;
- end if;
-
- -- For non-packed arrays set the alignment of the array to the
- -- alignment of the component type if it is unknown. Skip this
- -- in atomic case (atomic arrays may need larger alignments).
-
- if not Is_Packed (E)
- and then Unknown_Alignment (E)
- and then Known_Alignment (Ctyp)
- and then Known_Static_Component_Size (E)
- and then Known_Static_Esize (Ctyp)
- and then Esize (Ctyp) = Component_Size (E)
- and then not Is_Atomic (E)
- then
- Set_Alignment (E, Alignment (Component_Type (E)));
- end if;
- end;
-
- -- For a class-wide type, the corresponding specific type is
- -- frozen as well (RM 13.14(15))
-
- elsif Is_Class_Wide_Type (E) then
- Freeze_And_Append (Root_Type (E), N, Result);
-
- -- If the base type of the class-wide type is still incomplete,
- -- the class-wide remains unfrozen as well. This is legal when
- -- E is the formal of a primitive operation of some other type
- -- which is being frozen.
-
- if not Is_Frozen (Root_Type (E)) then
- Set_Is_Frozen (E, False);
- return Result;
- end if;
-
- -- The equivalent type associated with a class-wide subtype needs
- -- to be frozen to ensure that its layout is done.
-
- if Ekind (E) = E_Class_Wide_Subtype
- and then Present (Equivalent_Type (E))
- then
- Freeze_And_Append (Equivalent_Type (E), N, Result);
- end if;
-
- -- Generate an itype reference for a library-level class-wide type
- -- at the freeze point. Otherwise the first explicit reference to
- -- the type may appear in an inner scope which will be rejected by
- -- the back-end.
-
- if Is_Itype (E)
- and then Is_Compilation_Unit (Scope (E))
- then
- declare
- Ref : constant Node_Id := Make_Itype_Reference (Loc);
-
- begin
- Set_Itype (Ref, E);
-
- -- From a gigi point of view, a class-wide subtype derives
- -- from its record equivalent type. As a result, the itype
- -- reference must appear after the freeze node of the
- -- equivalent type or gigi will reject the reference.
-
- if Ekind (E) = E_Class_Wide_Subtype
- and then Present (Equivalent_Type (E))
- then
- Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
- else
- Add_To_Result (Ref);
- end if;
- end;
- end if;
-
- -- For a record type or record subtype, freeze all component types
- -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
- -- using Is_Record_Type, because we don't want to attempt the freeze
- -- for the case of a private type with record extension (we will do
- -- that later when the full type is frozen).
-
- elsif Ekind_In (E, E_Record_Type, E_Record_Subtype) then
- Freeze_Record_Type (E);
-
- -- For a concurrent type, freeze corresponding record type. This
- -- does not correspond to any specific rule in the RM, but the
- -- record type is essentially part of the concurrent type.
- -- Freeze as well all local entities. This includes record types
- -- created for entry parameter blocks, and whatever local entities
- -- may appear in the private part.
-
- elsif Is_Concurrent_Type (E) then
- if Present (Corresponding_Record_Type (E)) then
- Freeze_And_Append
- (Corresponding_Record_Type (E), N, Result);
- end if;
-
- Comp := First_Entity (E);
- while Present (Comp) loop
- if Is_Type (Comp) then
- Freeze_And_Append (Comp, N, Result);
-
- elsif (Ekind (Comp)) /= E_Function then
- if Is_Itype (Etype (Comp))
- and then Underlying_Type (Scope (Etype (Comp))) = E
- then
- Undelay_Type (Etype (Comp));
- end if;
-
- Freeze_And_Append (Etype (Comp), N, Result);
- end if;
-
- Next_Entity (Comp);
- end loop;
-
- -- Private types are required to point to the same freeze node as
- -- their corresponding full views. The freeze node itself has to
- -- point to the partial view of the entity (because from the partial
- -- view, we can retrieve the full view, but not the reverse).
- -- However, in order to freeze correctly, we need to freeze the full
- -- view. If we are freezing at the end of a scope (or within the
- -- scope of the private type), the partial and full views will have
- -- been swapped, the full view appears first in the entity chain and
- -- the swapping mechanism ensures that the pointers are properly set
- -- (on scope exit).
-
- -- If we encounter the partial view before the full view (e.g. when
- -- freezing from another scope), we freeze the full view, and then
- -- set the pointers appropriately since we cannot rely on swapping to
- -- fix things up (subtypes in an outer scope might not get swapped).
-
- elsif Is_Incomplete_Or_Private_Type (E)
- and then not Is_Generic_Type (E)
- then
- -- The construction of the dispatch table associated with library
- -- level tagged types forces freezing of all the primitives of the
- -- type, which may cause premature freezing of the partial view.
- -- For example:
-
- -- package Pkg is
- -- type T is tagged private;
- -- type DT is new T with private;
- -- procedure Prim (X : in out T; Y : in out DT'Class);
- -- private
- -- type T is tagged null record;
- -- Obj : T;
- -- type DT is new T with null record;
- -- end;
-
- -- In this case the type will be frozen later by the usual
- -- mechanism: an object declaration, an instantiation, or the
- -- end of a declarative part.
-
- if Is_Library_Level_Tagged_Type (E)
- and then not Present (Full_View (E))
- then
- Set_Is_Frozen (E, False);
- return Result;
-
- -- Case of full view present
-
- elsif Present (Full_View (E)) then
-
- -- If full view has already been frozen, then no further
- -- processing is required
-
- if Is_Frozen (Full_View (E)) then
- Set_Has_Delayed_Freeze (E, False);
- Set_Freeze_Node (E, Empty);
- Check_Debug_Info_Needed (E);
-
- -- Otherwise freeze full view and patch the pointers so that
- -- the freeze node will elaborate both views in the back-end.
-
- else
- declare
- Full : constant Entity_Id := Full_View (E);
-
- begin
- if Is_Private_Type (Full)
- and then Present (Underlying_Full_View (Full))
- then
- Freeze_And_Append
- (Underlying_Full_View (Full), N, Result);
- end if;
-
- Freeze_And_Append (Full, N, Result);
-
- if Has_Delayed_Freeze (E) then
- F_Node := Freeze_Node (Full);
-
- if Present (F_Node) then
- Set_Freeze_Node (E, F_Node);
- Set_Entity (F_Node, E);
-
- else
- -- {Incomplete,Private}_Subtypes with Full_Views
- -- constrained by discriminants.
-
- Set_Has_Delayed_Freeze (E, False);
- Set_Freeze_Node (E, Empty);
- end if;
- end if;
- end;
-
- Check_Debug_Info_Needed (E);
- end if;
-
- -- AI-117 requires that the convention of a partial view be the
- -- same as the convention of the full view. Note that this is a
- -- recognized breach of privacy, but it's essential for logical
- -- consistency of representation, and the lack of a rule in
- -- RM95 was an oversight.
-
- Set_Convention (E, Convention (Full_View (E)));
-
- Set_Size_Known_At_Compile_Time (E,
- Size_Known_At_Compile_Time (Full_View (E)));
-
- -- Size information is copied from the full view to the
- -- incomplete or private view for consistency.
-
- -- We skip this is the full view is not a type. This is very
- -- strange of course, and can only happen as a result of
- -- certain illegalities, such as a premature attempt to derive
- -- from an incomplete type.
-
- if Is_Type (Full_View (E)) then
- Set_Size_Info (E, Full_View (E));
- Set_RM_Size (E, RM_Size (Full_View (E)));
- end if;
-
- return Result;
-
- -- Case of no full view present. If entity is derived or subtype,
- -- it is safe to freeze, correctness depends on the frozen status
- -- of parent. Otherwise it is either premature usage, or a Taft
- -- amendment type, so diagnosis is at the point of use and the
- -- type might be frozen later.
-
- elsif E /= Base_Type (E)
- or else Is_Derived_Type (E)
- then
- null;
-
- else
- Set_Is_Frozen (E, False);
- return No_List;
- end if;
-
- -- For access subprogram, freeze types of all formals, the return
- -- type was already frozen, since it is the Etype of the function.
- -- Formal types can be tagged Taft amendment types, but otherwise
- -- they cannot be incomplete.
-
- elsif Ekind (E) = E_Subprogram_Type then
- Formal := First_Formal (E);
- while Present (Formal) loop
- if Ekind (Etype (Formal)) = E_Incomplete_Type
- and then No (Full_View (Etype (Formal)))
- and then not Is_Value_Type (Etype (Formal))
- then
- if Is_Tagged_Type (Etype (Formal)) then
- null;
-
- -- AI05-151: Incomplete types are allowed in access to
- -- subprogram specifications.
-
- elsif Ada_Version < Ada_2012 then
- Error_Msg_NE
- ("invalid use of incomplete type&", E, Etype (Formal));
- end if;
- end if;
-
- Freeze_And_Append (Etype (Formal), N, Result);
- Next_Formal (Formal);
- end loop;
-
- Freeze_Subprogram (E);
-
- -- For access to a protected subprogram, freeze the equivalent type
- -- (however this is not set if we are not generating code or if this
- -- is an anonymous type used just for resolution).
-
- elsif Is_Access_Protected_Subprogram_Type (E) then
- if Present (Equivalent_Type (E)) then
- Freeze_And_Append (Equivalent_Type (E), N, Result);
- end if;
- end if;
-
- -- Generic types are never seen by the back-end, and are also not
- -- processed by the expander (since the expander is turned off for
- -- generic processing), so we never need freeze nodes for them.
-
- if Is_Generic_Type (E) then
- return Result;
- end if;
-
- -- Some special processing for non-generic types to complete
- -- representation details not known till the freeze point.
-
- if Is_Fixed_Point_Type (E) then
- Freeze_Fixed_Point_Type (E);
-
- -- Some error checks required for ordinary fixed-point type. Defer
- -- these till the freeze-point since we need the small and range
- -- values. We only do these checks for base types
-
- if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
- if Small_Value (E) < Ureal_2_M_80 then
- Error_Msg_Name_1 := Name_Small;
- Error_Msg_N
- ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
-
- elsif Small_Value (E) > Ureal_2_80 then
- Error_Msg_Name_1 := Name_Small;
- Error_Msg_N
- ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
- end if;
-
- if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
- Error_Msg_Name_1 := Name_First;
- Error_Msg_N
- ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
- end if;
-
- if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
- Error_Msg_Name_1 := Name_Last;
- Error_Msg_N
- ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
- end if;
- end if;
-
- elsif Is_Enumeration_Type (E) then
- Freeze_Enumeration_Type (E);
-
- elsif Is_Integer_Type (E) then
- Adjust_Esize_For_Alignment (E);
-
- if Is_Modular_Integer_Type (E)
- and then Warn_On_Suspicious_Modulus_Value
- then
- Check_Suspicious_Modulus (E);
- end if;
-
- elsif Is_Access_Type (E)
- and then not Is_Access_Subprogram_Type (E)
- then
- -- If a pragma Default_Storage_Pool applies, and this type has no
- -- Storage_Pool or Storage_Size clause (which must have occurred
- -- before the freezing point), then use the default. This applies
- -- only to base types.
-
- -- None of this applies to access to subprograms, for which there
- -- are clearly no pools.
-
- if Present (Default_Pool)
- and then Is_Base_Type (E)
- and then not Has_Storage_Size_Clause (E)
- and then No (Associated_Storage_Pool (E))
- then
- -- Case of pragma Default_Storage_Pool (null)
-
- if Nkind (Default_Pool) = N_Null then
- Set_No_Pool_Assigned (E);
-
- -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
-
- else
- Set_Associated_Storage_Pool (E, Entity (Default_Pool));
- end if;
- end if;
-
- -- Check restriction for standard storage pool
-
- if No (Associated_Storage_Pool (E)) then
- Check_Restriction (No_Standard_Storage_Pools, E);
- end if;
-
- -- Deal with error message for pure access type. This is not an
- -- error in Ada 2005 if there is no pool (see AI-366).
-
- if Is_Pure_Unit_Access_Type (E)
- and then (Ada_Version < Ada_2005
- or else not No_Pool_Assigned (E))
- then
- Error_Msg_N ("named access type not allowed in pure unit", E);
-
- if Ada_Version >= Ada_2005 then
- Error_Msg_N
- ("\would be legal if Storage_Size of 0 given??", E);
-
- elsif No_Pool_Assigned (E) then
- Error_Msg_N
- ("\would be legal in Ada 2005??", E);
-
- else
- Error_Msg_N
- ("\would be legal in Ada 2005 if "
- & "Storage_Size of 0 given??", E);
- end if;
- end if;
- end if;
-
- -- Case of composite types
-
- if Is_Composite_Type (E) then
-
- -- AI-117 requires that all new primitives of a tagged type must
- -- inherit the convention of the full view of the type. Inherited
- -- and overriding operations are defined to inherit the convention
- -- of their parent or overridden subprogram (also specified in
- -- AI-117), which will have occurred earlier (in Derive_Subprogram
- -- and New_Overloaded_Entity). Here we set the convention of
- -- primitives that are still convention Ada, which will ensure
- -- that any new primitives inherit the type's convention. Class-
- -- wide types can have a foreign convention inherited from their
- -- specific type, but are excluded from this since they don't have
- -- any associated primitives.
-
- if Is_Tagged_Type (E)
- and then not Is_Class_Wide_Type (E)
- and then Convention (E) /= Convention_Ada
- then
- declare
- Prim_List : constant Elist_Id := Primitive_Operations (E);
- Prim : Elmt_Id;
-
- begin
- Prim := First_Elmt (Prim_List);
- while Present (Prim) loop
- if Convention (Node (Prim)) = Convention_Ada then
- Set_Convention (Node (Prim), Convention (E));
- end if;
-
- Next_Elmt (Prim);
- end loop;
- end;
- end if;
-
- -- If the type is a simple storage pool type, then this is where
- -- we attempt to locate and validate its Allocate, Deallocate, and
- -- Storage_Size operations (the first is required, and the latter
- -- two are optional). We also verify that the full type for a
- -- private type is allowed to be a simple storage pool type.
-
- if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
- and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
- then
- -- If the type is marked Has_Private_Declaration, then this is
- -- a full type for a private type that was specified with the
- -- pragma Simple_Storage_Pool_Type, and here we ensure that the
- -- pragma is allowed for the full type (for example, it can't
- -- be an array type, or a nonlimited record type).
-
- if Has_Private_Declaration (E) then
- if (not Is_Record_Type (E)
- or else not Is_Immutably_Limited_Type (E))
- and then not Is_Private_Type (E)
- then
- Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
- Error_Msg_N
- ("pragma% can only apply to full type that is an " &
- "explicitly limited type", E);
- end if;
- end if;
-
- Validate_Simple_Pool_Ops : declare
- Pool_Type : Entity_Id renames E;
- Address_Type : constant Entity_Id := RTE (RE_Address);
- Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
-
- procedure Validate_Simple_Pool_Op_Formal
- (Pool_Op : Entity_Id;
- Pool_Op_Formal : in out Entity_Id;
- Expected_Mode : Formal_Kind;
- Expected_Type : Entity_Id;
- Formal_Name : String;
- OK_Formal : in out Boolean);
- -- Validate one formal Pool_Op_Formal of the candidate pool
- -- operation Pool_Op. The formal must be of Expected_Type
- -- and have mode Expected_Mode. OK_Formal will be set to
- -- False if the formal doesn't match. If OK_Formal is False
- -- on entry, then the formal will effectively be ignored
- -- (because validation of the pool op has already failed).
- -- Upon return, Pool_Op_Formal will be updated to the next
- -- formal, if any.
-
- procedure Validate_Simple_Pool_Operation (Op_Name : Name_Id);
- -- Search for and validate a simple pool operation with the
- -- name Op_Name. If the name is Allocate, then there must be
- -- exactly one such primitive operation for the simple pool
- -- type. If the name is Deallocate or Storage_Size, then
- -- there can be at most one such primitive operation. The
- -- profile of the located primitive must conform to what
- -- is expected for each operation.
-
- ------------------------------------
- -- Validate_Simple_Pool_Op_Formal --
- ------------------------------------
-
- procedure Validate_Simple_Pool_Op_Formal
- (Pool_Op : Entity_Id;
- Pool_Op_Formal : in out Entity_Id;
- Expected_Mode : Formal_Kind;
- Expected_Type : Entity_Id;
- Formal_Name : String;
- OK_Formal : in out Boolean)
- is
- begin
- -- If OK_Formal is False on entry, then simply ignore
- -- the formal, because an earlier formal has already
- -- been flagged.
-
- if not OK_Formal then
- return;
-
- -- If no formal is passed in, then issue an error for a
- -- missing formal.
-
- elsif not Present (Pool_Op_Formal) then
- Error_Msg_NE
- ("simple storage pool op missing formal " &
- Formal_Name & " of type&", Pool_Op, Expected_Type);
- OK_Formal := False;
-
- return;
- end if;
-
- if Etype (Pool_Op_Formal) /= Expected_Type then
-
- -- If the pool type was expected for this formal, then
- -- this will not be considered a candidate operation
- -- for the simple pool, so we unset OK_Formal so that
- -- the op and any later formals will be ignored.
-
- if Expected_Type = Pool_Type then
- OK_Formal := False;
-
- return;
-
- else
- Error_Msg_NE
- ("wrong type for formal " & Formal_Name &
- " of simple storage pool op; expected type&",
- Pool_Op_Formal, Expected_Type);
- end if;
- end if;
-
- -- Issue error if formal's mode is not the expected one
-
- if Ekind (Pool_Op_Formal) /= Expected_Mode then
- Error_Msg_N
- ("wrong mode for formal of simple storage pool op",
- Pool_Op_Formal);
- end if;
-
- -- Advance to the next formal
-
- Next_Formal (Pool_Op_Formal);
- end Validate_Simple_Pool_Op_Formal;
-
- ------------------------------------
- -- Validate_Simple_Pool_Operation --
- ------------------------------------
-
- procedure Validate_Simple_Pool_Operation
- (Op_Name : Name_Id)
- is
- Op : Entity_Id;
- Found_Op : Entity_Id := Empty;
- Formal : Entity_Id;
- Is_OK : Boolean;
-
- begin
- pragma Assert
- (Op_Name = Name_Allocate
- or else Op_Name = Name_Deallocate
- or else Op_Name = Name_Storage_Size);
-
- Error_Msg_Name_1 := Op_Name;
-
- -- For each homonym declared immediately in the scope
- -- of the simple storage pool type, determine whether
- -- the homonym is an operation of the pool type, and,
- -- if so, check that its profile is as expected for
- -- a simple pool operation of that name.
-
- Op := Get_Name_Entity_Id (Op_Name);
- while Present (Op) loop
- if Ekind_In (Op, E_Function, E_Procedure)
- and then Scope (Op) = Current_Scope
- then
- Formal := First_Entity (Op);
-
- Is_OK := True;
-
- -- The first parameter must be of the pool type
- -- in order for the operation to qualify.
-
- if Op_Name = Name_Storage_Size then
- Validate_Simple_Pool_Op_Formal
- (Op, Formal, E_In_Parameter, Pool_Type,
- "Pool", Is_OK);
- else
- Validate_Simple_Pool_Op_Formal
- (Op, Formal, E_In_Out_Parameter, Pool_Type,
- "Pool", Is_OK);
- end if;
-
- -- If another operation with this name has already
- -- been located for the type, then flag an error,
- -- since we only allow the type to have a single
- -- such primitive.
-
- if Present (Found_Op) and then Is_OK then
- Error_Msg_NE
- ("only one % operation allowed for " &
- "simple storage pool type&", Op, Pool_Type);
- end if;
-
- -- In the case of Allocate and Deallocate, a formal
- -- of type System.Address is required.
-
- if Op_Name = Name_Allocate then
- Validate_Simple_Pool_Op_Formal
- (Op, Formal, E_Out_Parameter,
- Address_Type, "Storage_Address", Is_OK);
- elsif Op_Name = Name_Deallocate then
- Validate_Simple_Pool_Op_Formal
- (Op, Formal, E_In_Parameter,
- Address_Type, "Storage_Address", Is_OK);
- end if;
-
- -- In the case of Allocate and Deallocate, formals
- -- of type Storage_Count are required as the third
- -- and fourth parameters.
-
- if Op_Name /= Name_Storage_Size then
- Validate_Simple_Pool_Op_Formal
- (Op, Formal, E_In_Parameter,
- Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
- Validate_Simple_Pool_Op_Formal
- (Op, Formal, E_In_Parameter,
- Stg_Cnt_Type, "Alignment", Is_OK);
- end if;
-
- -- If no mismatched formals have been found (Is_OK)
- -- and no excess formals are present, then this
- -- operation has been validated, so record it.
-
- if not Present (Formal) and then Is_OK then
- Found_Op := Op;
- end if;
- end if;
-
- Op := Homonym (Op);
- end loop;
-
- -- There must be a valid Allocate operation for the type,
- -- so issue an error if none was found.
-
- if Op_Name = Name_Allocate
- and then not Present (Found_Op)
- then
- Error_Msg_N ("missing % operation for simple " &
- "storage pool type", Pool_Type);
-
- elsif Present (Found_Op) then
-
- -- Simple pool operations can't be abstract
-
- if Is_Abstract_Subprogram (Found_Op) then
- Error_Msg_N
- ("simple storage pool operation must not be " &
- "abstract", Found_Op);
- end if;
-
- -- The Storage_Size operation must be a function with
- -- Storage_Count as its result type.
-
- if Op_Name = Name_Storage_Size then
- if Ekind (Found_Op) = E_Procedure then
- Error_Msg_N
- ("% operation must be a function", Found_Op);
-
- elsif Etype (Found_Op) /= Stg_Cnt_Type then
- Error_Msg_NE
- ("wrong result type for%, expected type&",
- Found_Op, Stg_Cnt_Type);
- end if;
-
- -- Allocate and Deallocate must be procedures
-
- elsif Ekind (Found_Op) = E_Function then
- Error_Msg_N
- ("% operation must be a procedure", Found_Op);
- end if;
- end if;
- end Validate_Simple_Pool_Operation;
-
- -- Start of processing for Validate_Simple_Pool_Ops
-
- begin
- Validate_Simple_Pool_Operation (Name_Allocate);
- Validate_Simple_Pool_Operation (Name_Deallocate);
- Validate_Simple_Pool_Operation (Name_Storage_Size);
- end Validate_Simple_Pool_Ops;
- end if;
- end if;
-
- -- Now that all types from which E may depend are frozen, see if the
- -- size is known at compile time, if it must be unsigned, or if
- -- strict alignment is required
-
- Check_Compile_Time_Size (E);
- Check_Unsigned_Type (E);
-
- if Base_Type (E) = E then
- Check_Strict_Alignment (E);
- end if;
-
- -- Do not allow a size clause for a type which does not have a size
- -- that is known at compile time
-
- if Has_Size_Clause (E)
- and then not Size_Known_At_Compile_Time (E)
- then
- -- Suppress this message if errors posted on E, even if we are
- -- in all errors mode, since this is often a junk message
-
- if not Error_Posted (E) then
- Error_Msg_N
- ("size clause not allowed for variable length type",
- Size_Clause (E));
- end if;
- end if;
-
- -- Now we set/verify the representation information, in particular
- -- the size and alignment values. This processing is not required for
- -- generic types, since generic types do not play any part in code
- -- generation, and so the size and alignment values for such types
- -- are irrelevant. Ditto for types declared within a generic unit,
- -- which may have components that depend on generic parameters, and
- -- that will be recreated in an instance.
-
- if Inside_A_Generic then
- null;
-
- -- Otherwise we call the layout procedure
-
- else
- Layout_Type (E);
- end if;
-
- -- If this is an access to subprogram whose designated type is itself
- -- a subprogram type, the return type of this anonymous subprogram
- -- type must be decorated as well.
-
- if Ekind (E) = E_Anonymous_Access_Subprogram_Type
- and then Ekind (Designated_Type (E)) = E_Subprogram_Type
- then
- Layout_Type (Etype (Designated_Type (E)));
- end if;
-
- -- If the type has a Defaut_Value/Default_Component_Value aspect,
- -- this is where we analye the expression (after the type is frozen,
- -- since in the case of Default_Value, we are analyzing with the
- -- type itself, and we treat Default_Component_Value similarly for
- -- the sake of uniformity).
-
- if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
- declare
- Nam : Name_Id;
- Exp : Node_Id;
- Typ : Entity_Id;
-
- begin
- if Is_Scalar_Type (E) then
- Nam := Name_Default_Value;
- Typ := E;
- Exp := Default_Aspect_Value (Typ);
- else
- Nam := Name_Default_Component_Value;
- Typ := Component_Type (E);
- Exp := Default_Aspect_Component_Value (E);
- end if;
-
- Analyze_And_Resolve (Exp, Typ);
-
- if Etype (Exp) /= Any_Type then
- if not Is_Static_Expression (Exp) then
- Error_Msg_Name_1 := Nam;
- Flag_Non_Static_Expr
- ("aspect% requires static expression", Exp);
- end if;
- end if;
- end;
- end if;
-
- -- End of freeze processing for type entities
- end if;
-
- -- Here is where we logically freeze the current entity. If it has a
- -- freeze node, then this is the point at which the freeze node is
- -- linked into the result list.
-
- if Has_Delayed_Freeze (E) then
-
- -- If a freeze node is already allocated, use it, otherwise allocate
- -- a new one. The preallocation happens in the case of anonymous base
- -- types, where we preallocate so that we can set First_Subtype_Link.
- -- Note that we reset the Sloc to the current freeze location.
-
- if Present (Freeze_Node (E)) then
- F_Node := Freeze_Node (E);
- Set_Sloc (F_Node, Loc);
-
- else
- F_Node := New_Node (N_Freeze_Entity, Loc);
- Set_Freeze_Node (E, F_Node);
- Set_Access_Types_To_Process (F_Node, No_Elist);
- Set_TSS_Elist (F_Node, No_Elist);
- Set_Actions (F_Node, No_List);
- end if;
-
- Set_Entity (F_Node, E);
- Add_To_Result (F_Node);
-
- -- A final pass over record types with discriminants. If the type
- -- has an incomplete declaration, there may be constrained access
- -- subtypes declared elsewhere, which do not depend on the discrimi-
- -- nants of the type, and which are used as component types (i.e.
- -- the full view is a recursive type). The designated types of these
- -- subtypes can only be elaborated after the type itself, and they
- -- need an itype reference.
-
- if Ekind (E) = E_Record_Type
- and then Has_Discriminants (E)
- then
- declare
- Comp : Entity_Id;
- IR : Node_Id;
- Typ : Entity_Id;
-
- begin
- Comp := First_Component (E);
- while Present (Comp) loop
- Typ := Etype (Comp);
-
- if Ekind (Comp) = E_Component
- and then Is_Access_Type (Typ)
- and then Scope (Typ) /= E
- and then Base_Type (Designated_Type (Typ)) = E
- and then Is_Itype (Designated_Type (Typ))
- then
- IR := Make_Itype_Reference (Sloc (Comp));
- Set_Itype (IR, Designated_Type (Typ));
- Append (IR, Result);
- end if;
-
- Next_Component (Comp);
- end loop;
- end;
- end if;
- end if;
-
- -- When a type is frozen, the first subtype of the type is frozen as
- -- well (RM 13.14(15)). This has to be done after freezing the type,
- -- since obviously the first subtype depends on its own base type.
-
- if Is_Type (E) then
- Freeze_And_Append (First_Subtype (E), N, Result);
-
- -- If we just froze a tagged non-class wide record, then freeze the
- -- corresponding class-wide type. This must be done after the tagged
- -- type itself is frozen, because the class-wide type refers to the
- -- tagged type which generates the class.
-
- if Is_Tagged_Type (E)
- and then not Is_Class_Wide_Type (E)
- and then Present (Class_Wide_Type (E))
- then
- Freeze_And_Append (Class_Wide_Type (E), N, Result);
- end if;
- end if;
-
- Check_Debug_Info_Needed (E);
-
- -- Special handling for subprograms
-
- if Is_Subprogram (E) then
-
- -- If subprogram has address clause then reset Is_Public flag, since
- -- we do not want the backend to generate external references.
-
- if Present (Address_Clause (E))
- and then not Is_Library_Level_Entity (E)
- then
- Set_Is_Public (E, False);
-
- -- If no address clause and not intrinsic, then for imported
- -- subprogram in main unit, generate descriptor if we are in
- -- Propagate_Exceptions mode.
-
- -- This is very odd code, it makes a null result, why ???
-
- elsif Propagate_Exceptions
- and then Is_Imported (E)
- and then not Is_Intrinsic_Subprogram (E)
- and then Convention (E) /= Convention_Stubbed
- then
- if Result = No_List then
- Result := Empty_List;
- end if;
- end if;
- end if;
-
- return Result;
- end Freeze_Entity;
-
- -----------------------------
- -- Freeze_Enumeration_Type --
- -----------------------------
-
- procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
- begin
- -- By default, if no size clause is present, an enumeration type with
- -- Convention C is assumed to interface to a C enum, and has integer
- -- size. This applies to types. For subtypes, verify that its base
- -- type has no size clause either. Treat other foreign conventions
- -- in the same way, and also make sure alignment is set right.
-
- if Has_Foreign_Convention (Typ)
- and then not Has_Size_Clause (Typ)
- and then not Has_Size_Clause (Base_Type (Typ))
- and then Esize (Typ) < Standard_Integer_Size
- then
- Init_Esize (Typ, Standard_Integer_Size);
- Set_Alignment (Typ, Alignment (Standard_Integer));
-
- else
- -- If the enumeration type interfaces to C, and it has a size clause
- -- that specifies less than int size, it warrants a warning. The
- -- user may intend the C type to be an enum or a char, so this is
- -- not by itself an error that the Ada compiler can detect, but it
- -- it is a worth a heads-up. For Boolean and Character types we
- -- assume that the programmer has the proper C type in mind.
-
- if Convention (Typ) = Convention_C
- and then Has_Size_Clause (Typ)
- and then Esize (Typ) /= Esize (Standard_Integer)
- and then not Is_Boolean_Type (Typ)
- and then not Is_Character_Type (Typ)
- then
- Error_Msg_N
- ("C enum types have the size of a C int??", Size_Clause (Typ));
- end if;
-
- Adjust_Esize_For_Alignment (Typ);
- end if;
- end Freeze_Enumeration_Type;
-
- -----------------------
- -- Freeze_Expression --
- -----------------------
-
- procedure Freeze_Expression (N : Node_Id) is
- In_Spec_Exp : constant Boolean := In_Spec_Expression;
- Typ : Entity_Id;
- Nam : Entity_Id;
- Desig_Typ : Entity_Id;
- P : Node_Id;
- Parent_P : Node_Id;
-
- Freeze_Outside : Boolean := False;
- -- This flag is set true if the entity must be frozen outside the
- -- current subprogram. This happens in the case of expander generated
- -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
- -- not freeze all entities like other bodies, but which nevertheless
- -- may reference entities that have to be frozen before the body and
- -- obviously cannot be frozen inside the body.
-
- function In_Exp_Body (N : Node_Id) return Boolean;
- -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
- -- it is the handled statement sequence of an expander-generated
- -- subprogram (init proc, stream subprogram, or renaming as body).
- -- If so, this is not a freezing context.
-
- -----------------
- -- In_Exp_Body --
- -----------------
-
- function In_Exp_Body (N : Node_Id) return Boolean is
- P : Node_Id;
- Id : Entity_Id;
-
- begin
- if Nkind (N) = N_Subprogram_Body then
- P := N;
- else
- P := Parent (N);
- end if;
-
- if Nkind (P) /= N_Subprogram_Body then
- return False;
-
- else
- Id := Defining_Unit_Name (Specification (P));
-
- -- Following complex conditional could use comments ???
-
- if Nkind (Id) = N_Defining_Identifier
- and then (Is_Init_Proc (Id)
- or else Is_TSS (Id, TSS_Stream_Input)
- or else Is_TSS (Id, TSS_Stream_Output)
- or else Is_TSS (Id, TSS_Stream_Read)
- or else Is_TSS (Id, TSS_Stream_Write)
- or else Nkind_In (Original_Node (P),
- N_Subprogram_Renaming_Declaration,
- N_Expression_Function))
- then
- return True;
- else
- return False;
- end if;
- end if;
- end In_Exp_Body;
-
- -- Start of processing for Freeze_Expression
-
- begin
- -- Immediate return if freezing is inhibited. This flag is set by the
- -- analyzer to stop freezing on generated expressions that would cause
- -- freezing if they were in the source program, but which are not
- -- supposed to freeze, since they are created.
-
- if Must_Not_Freeze (N) then
- return;
- end if;
-
- -- If expression is non-static, then it does not freeze in a default
- -- expression, see section "Handling of Default Expressions" in the
- -- spec of package Sem for further details. Note that we have to make
- -- sure that we actually have a real expression (if we have a subtype
- -- indication, we can't test Is_Static_Expression!) However, we exclude
- -- the case of the prefix of an attribute of a static scalar subtype
- -- from this early return, because static subtype attributes should
- -- always cause freezing, even in default expressions, but the attribute
- -- may not have been marked as static yet (because in Resolve_Attribute,
- -- the call to Eval_Attribute follows the call of Freeze_Expression on
- -- the prefix).
-
- if In_Spec_Exp
- and then Nkind (N) in N_Subexpr
- and then not Is_Static_Expression (N)
- and then (Nkind (Parent (N)) /= N_Attribute_Reference
- or else not (Is_Entity_Name (N)
- and then Is_Type (Entity (N))
- and then Is_Static_Subtype (Entity (N))))
- then
- return;
- end if;
-
- -- Freeze type of expression if not frozen already
-
- Typ := Empty;
-
- if Nkind (N) in N_Has_Etype then
- if not Is_Frozen (Etype (N)) then
- Typ := Etype (N);
-
- -- Base type may be an derived numeric type that is frozen at
- -- the point of declaration, but first_subtype is still unfrozen.
-
- elsif not Is_Frozen (First_Subtype (Etype (N))) then
- Typ := First_Subtype (Etype (N));
- end if;
- end if;
-
- -- For entity name, freeze entity if not frozen already. A special
- -- exception occurs for an identifier that did not come from source.
- -- We don't let such identifiers freeze a non-internal entity, i.e.
- -- an entity that did come from source, since such an identifier was
- -- generated by the expander, and cannot have any semantic effect on
- -- the freezing semantics. For example, this stops the parameter of
- -- an initialization procedure from freezing the variable.
-
- if Is_Entity_Name (N)
- and then not Is_Frozen (Entity (N))
- and then (Nkind (N) /= N_Identifier
- or else Comes_From_Source (N)
- or else not Comes_From_Source (Entity (N)))
- then
- Nam := Entity (N);
- else
- Nam := Empty;
- end if;
-
- -- For an allocator freeze designated type if not frozen already
-
- -- For an aggregate whose component type is an access type, freeze the
- -- designated type now, so that its freeze does not appear within the
- -- loop that might be created in the expansion of the aggregate. If the
- -- designated type is a private type without full view, the expression
- -- cannot contain an allocator, so the type is not frozen.
-
- -- For a function, we freeze the entity when the subprogram declaration
- -- is frozen, but a function call may appear in an initialization proc.
- -- before the declaration is frozen. We need to generate the extra
- -- formals, if any, to ensure that the expansion of the call includes
- -- the proper actuals. This only applies to Ada subprograms, not to
- -- imported ones.
-
- Desig_Typ := Empty;
-
- case Nkind (N) is
- when N_Allocator =>
- Desig_Typ := Designated_Type (Etype (N));
-
- when N_Aggregate =>
- if Is_Array_Type (Etype (N))
- and then Is_Access_Type (Component_Type (Etype (N)))
- then
- Desig_Typ := Designated_Type (Component_Type (Etype (N)));
- end if;
-
- when N_Selected_Component |
- N_Indexed_Component |
- N_Slice =>
-
- if Is_Access_Type (Etype (Prefix (N))) then
- Desig_Typ := Designated_Type (Etype (Prefix (N)));
- end if;
-
- when N_Identifier =>
- if Present (Nam)
- and then Ekind (Nam) = E_Function
- and then Nkind (Parent (N)) = N_Function_Call
- and then Convention (Nam) = Convention_Ada
- then
- Create_Extra_Formals (Nam);
- end if;
-
- when others =>
- null;
- end case;
-
- if Desig_Typ /= Empty
- and then (Is_Frozen (Desig_Typ)
- or else (not Is_Fully_Defined (Desig_Typ)))
- then
- Desig_Typ := Empty;
- end if;
-
- -- All done if nothing needs freezing
-
- if No (Typ)
- and then No (Nam)
- and then No (Desig_Typ)
- then
- return;
- end if;
-
- -- Loop for looking at the right place to insert the freeze nodes,
- -- exiting from the loop when it is appropriate to insert the freeze
- -- node before the current node P.
-
- -- Also checks some special exceptions to the freezing rules. These
- -- cases result in a direct return, bypassing the freeze action.
-
- P := N;
- loop
- Parent_P := Parent (P);
-
- -- If we don't have a parent, then we are not in a well-formed tree.
- -- This is an unusual case, but there are some legitimate situations
- -- in which this occurs, notably when the expressions in the range of
- -- a type declaration are resolved. We simply ignore the freeze
- -- request in this case. Is this right ???
-
- if No (Parent_P) then
- return;
- end if;
-
- -- See if we have got to an appropriate point in the tree
-
- case Nkind (Parent_P) is
-
- -- A special test for the exception of (RM 13.14(8)) for the case
- -- of per-object expressions (RM 3.8(18)) occurring in component
- -- definition or a discrete subtype definition. Note that we test
- -- for a component declaration which includes both cases we are
- -- interested in, and furthermore the tree does not have explicit
- -- nodes for either of these two constructs.
-
- when N_Component_Declaration =>
-
- -- The case we want to test for here is an identifier that is
- -- a per-object expression, this is either a discriminant that
- -- appears in a context other than the component declaration
- -- or it is a reference to the type of the enclosing construct.
-
- -- For either of these cases, we skip the freezing
-
- if not In_Spec_Expression
- and then Nkind (N) = N_Identifier
- and then (Present (Entity (N)))
- then
- -- We recognize the discriminant case by just looking for
- -- a reference to a discriminant. It can only be one for
- -- the enclosing construct. Skip freezing in this case.
-
- if Ekind (Entity (N)) = E_Discriminant then
- return;
-
- -- For the case of a reference to the enclosing record,
- -- (or task or protected type), we look for a type that
- -- matches the current scope.
-
- elsif Entity (N) = Current_Scope then
- return;
- end if;
- end if;
-
- -- If we have an enumeration literal that appears as the choice in
- -- the aggregate of an enumeration representation clause, then
- -- freezing does not occur (RM 13.14(10)).
-
- when N_Enumeration_Representation_Clause =>
-
- -- The case we are looking for is an enumeration literal
-
- if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
- and then Is_Enumeration_Type (Etype (N))
- then
- -- If enumeration literal appears directly as the choice,
- -- do not freeze (this is the normal non-overloaded case)
-
- if Nkind (Parent (N)) = N_Component_Association
- and then First (Choices (Parent (N))) = N
- then
- return;
-
- -- If enumeration literal appears as the name of function
- -- which is the choice, then also do not freeze. This
- -- happens in the overloaded literal case, where the
- -- enumeration literal is temporarily changed to a function
- -- call for overloading analysis purposes.
-
- elsif Nkind (Parent (N)) = N_Function_Call
- and then
- Nkind (Parent (Parent (N))) = N_Component_Association
- and then
- First (Choices (Parent (Parent (N)))) = Parent (N)
- then
- return;
- end if;
- end if;
-
- -- Normally if the parent is a handled sequence of statements,
- -- then the current node must be a statement, and that is an
- -- appropriate place to insert a freeze node.
-
- when N_Handled_Sequence_Of_Statements =>
-
- -- An exception occurs when the sequence of statements is for
- -- an expander generated body that did not do the usual freeze
- -- all operation. In this case we usually want to freeze
- -- outside this body, not inside it, and we skip past the
- -- subprogram body that we are inside.
-
- if In_Exp_Body (Parent_P) then
- declare
- Subp : constant Node_Id := Parent (Parent_P);
- Spec : Entity_Id;
-
- begin
- -- Freeze the entity only when it is declared inside the
- -- body of the expander generated procedure. This case
- -- is recognized by the scope of the entity or its type,
- -- which is either the spec for some enclosing body, or
- -- (in the case of init_procs, for which there are no
- -- separate specs) the current scope.
-
- if Nkind (Subp) = N_Subprogram_Body then
- Spec := Corresponding_Spec (Subp);
-
- if (Present (Typ) and then Scope (Typ) = Spec)
- or else
- (Present (Nam) and then Scope (Nam) = Spec)
- then
- exit;
-
- elsif Present (Typ)
- and then Scope (Typ) = Current_Scope
- and then Defining_Entity (Subp) = Current_Scope
- then
- exit;
- end if;
- end if;
-
- -- An expression function may act as a completion of
- -- a function declaration. As such, it can reference
- -- entities declared between the two views:
-
- -- Hidden []; -- 1
- -- function F return ...;
- -- private
- -- function Hidden return ...;
- -- function F return ... is (Hidden); -- 2
-
- -- Refering to the example above, freezing the expression
- -- of F (2) would place Hidden's freeze node (1) in the
- -- wrong place. Avoid explicit freezing and let the usual
- -- scenarios do the job - for example, reaching the end
- -- of the private declarations.
-
- if Nkind (Original_Node (Subp)) =
- N_Expression_Function
- then
- null;
-
- -- Freeze outside the body
-
- else
- Parent_P := Parent (Parent_P);
- Freeze_Outside := True;
- end if;
- end;
-
- -- Here if normal case where we are in handled statement
- -- sequence and want to do the insertion right there.
-
- else
- exit;
- end if;
-
- -- If parent is a body or a spec or a block, then the current node
- -- is a statement or declaration and we can insert the freeze node
- -- before it.
-
- when N_Block_Statement |
- N_Entry_Body |
- N_Package_Body |
- N_Package_Specification |
- N_Protected_Body |
- N_Subprogram_Body |
- N_Task_Body => exit;
-
- -- The expander is allowed to define types in any statements list,
- -- so any of the following parent nodes also mark a freezing point
- -- if the actual node is in a list of statements or declarations.
-
- when N_Abortable_Part |
- N_Accept_Alternative |
- N_And_Then |
- N_Case_Statement_Alternative |
- N_Compilation_Unit_Aux |
- N_Conditional_Entry_Call |
- N_Delay_Alternative |
- N_Elsif_Part |
- N_Entry_Call_Alternative |
- N_Exception_Handler |
- N_Extended_Return_Statement |
- N_Freeze_Entity |
- N_If_Statement |
- N_Or_Else |
- N_Selective_Accept |
- N_Triggering_Alternative =>
-
- exit when Is_List_Member (P);
-
- -- Note: The N_Loop_Statement is a special case. A type that
- -- appears in the source can never be frozen in a loop (this
- -- occurs only because of a loop expanded by the expander), so we
- -- keep on going. Otherwise we terminate the search. Same is true
- -- of any entity which comes from source. (if they have predefined
- -- type, that type does not appear to come from source, but the
- -- entity should not be frozen here).
-
- when N_Loop_Statement =>
- exit when not Comes_From_Source (Etype (N))
- and then (No (Nam) or else not Comes_From_Source (Nam));
-
- -- For all other cases, keep looking at parents
-
- when others =>
- null;
- end case;
-
- -- We fall through the case if we did not yet find the proper
- -- place in the free for inserting the freeze node, so climb!
-
- P := Parent_P;
- end loop;
-
- -- If the expression appears in a record or an initialization procedure,
- -- the freeze nodes are collected and attached to the current scope, to
- -- be inserted and analyzed on exit from the scope, to insure that
- -- generated entities appear in the correct scope. If the expression is
- -- a default for a discriminant specification, the scope is still void.
- -- The expression can also appear in the discriminant part of a private
- -- or concurrent type.
-
- -- If the expression appears in a constrained subcomponent of an
- -- enclosing record declaration, the freeze nodes must be attached to
- -- the outer record type so they can eventually be placed in the
- -- enclosing declaration list.
-
- -- The other case requiring this special handling is if we are in a
- -- default expression, since in that case we are about to freeze a
- -- static type, and the freeze scope needs to be the outer scope, not
- -- the scope of the subprogram with the default parameter.
-
- -- For default expressions and other spec expressions in generic units,
- -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
- -- placing them at the proper place, after the generic unit.
-
- if (In_Spec_Exp and not Inside_A_Generic)
- or else Freeze_Outside
- or else (Is_Type (Current_Scope)
- and then (not Is_Concurrent_Type (Current_Scope)
- or else not Has_Completion (Current_Scope)))
- or else Ekind (Current_Scope) = E_Void
- then
- declare
- N : constant Node_Id := Current_Scope;
- Freeze_Nodes : List_Id := No_List;
- Pos : Int := Scope_Stack.Last;
-
- begin
- if Present (Desig_Typ) then
- Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
- end if;
-
- if Present (Typ) then
- Freeze_And_Append (Typ, N, Freeze_Nodes);
- end if;
-
- if Present (Nam) then
- Freeze_And_Append (Nam, N, Freeze_Nodes);
- end if;
-
- -- The current scope may be that of a constrained component of
- -- an enclosing record declaration, or of a loop of an enclosing
- -- quantified expression, which is above the current scope in the
- -- scope stack. Indeed in the context of a quantified expression,
- -- a scope is created and pushed above the current scope in order
- -- to emulate the loop-like behavior of the quantified expression.
- -- If the expression is within a top-level pragma, as for a pre-
- -- condition on a library-level subprogram, nothing to do.
-
- if not Is_Compilation_Unit (Current_Scope)
- and then (Is_Record_Type (Scope (Current_Scope))
- or else Nkind (Parent (Current_Scope)) =
- N_Quantified_Expression)
- then
- Pos := Pos - 1;
- end if;
-
- if Is_Non_Empty_List (Freeze_Nodes) then
- if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
- Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
- Freeze_Nodes;
- else
- Append_List (Freeze_Nodes,
- Scope_Stack.Table (Pos).Pending_Freeze_Actions);
- end if;
- end if;
- end;
-
- return;
- end if;
-
- -- Now we have the right place to do the freezing. First, a special
- -- adjustment, if we are in spec-expression analysis mode, these freeze
- -- actions must not be thrown away (normally all inserted actions are
- -- thrown away in this mode. However, the freeze actions are from static
- -- expressions and one of the important reasons we are doing this
- -- special analysis is to get these freeze actions. Therefore we turn
- -- off the In_Spec_Expression mode to propagate these freeze actions.
- -- This also means they get properly analyzed and expanded.
-
- In_Spec_Expression := False;
-
- -- Freeze the designated type of an allocator (RM 13.14(13))
-
- if Present (Desig_Typ) then
- Freeze_Before (P, Desig_Typ);
- end if;
-
- -- Freeze type of expression (RM 13.14(10)). Note that we took care of
- -- the enumeration representation clause exception in the loop above.
-
- if Present (Typ) then
- Freeze_Before (P, Typ);
- end if;
-
- -- Freeze name if one is present (RM 13.14(11))
-
- if Present (Nam) then
- Freeze_Before (P, Nam);
- end if;
-
- -- Restore In_Spec_Expression flag
-
- In_Spec_Expression := In_Spec_Exp;
- end Freeze_Expression;
-
- -----------------------------
- -- Freeze_Fixed_Point_Type --
- -----------------------------
-
- -- Certain fixed-point types and subtypes, including implicit base types
- -- and declared first subtypes, have not yet set up a range. This is
- -- because the range cannot be set until the Small and Size values are
- -- known, and these are not known till the type is frozen.
-
- -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
- -- whose bounds are unanalyzed real literals. This routine will recognize
- -- this case, and transform this range node into a properly typed range
- -- with properly analyzed and resolved values.
-
- procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
- Rng : constant Node_Id := Scalar_Range (Typ);
- Lo : constant Node_Id := Low_Bound (Rng);
- Hi : constant Node_Id := High_Bound (Rng);
- Btyp : constant Entity_Id := Base_Type (Typ);
- Brng : constant Node_Id := Scalar_Range (Btyp);
- BLo : constant Node_Id := Low_Bound (Brng);
- BHi : constant Node_Id := High_Bound (Brng);
- Small : constant Ureal := Small_Value (Typ);
- Loval : Ureal;
- Hival : Ureal;
- Atype : Entity_Id;
-
- Actual_Size : Nat;
-
- function Fsize (Lov, Hiv : Ureal) return Nat;
- -- Returns size of type with given bounds. Also leaves these
- -- bounds set as the current bounds of the Typ.
-
- -----------
- -- Fsize --
- -----------
-
- function Fsize (Lov, Hiv : Ureal) return Nat is
- begin
- Set_Realval (Lo, Lov);
- Set_Realval (Hi, Hiv);
- return Minimum_Size (Typ);
- end Fsize;
-
- -- Start of processing for Freeze_Fixed_Point_Type
-
- begin
- -- If Esize of a subtype has not previously been set, set it now
-
- if Unknown_Esize (Typ) then
- Atype := Ancestor_Subtype (Typ);
-
- if Present (Atype) then
- Set_Esize (Typ, Esize (Atype));
- else
- Set_Esize (Typ, Esize (Base_Type (Typ)));
- end if;
- end if;
-
- -- Immediate return if the range is already analyzed. This means that
- -- the range is already set, and does not need to be computed by this
- -- routine.
-
- if Analyzed (Rng) then
- return;
- end if;
-
- -- Immediate return if either of the bounds raises Constraint_Error
-
- if Raises_Constraint_Error (Lo)
- or else Raises_Constraint_Error (Hi)
- then
- return;
- end if;
-
- Loval := Realval (Lo);
- Hival := Realval (Hi);
-
- -- Ordinary fixed-point case
-
- if Is_Ordinary_Fixed_Point_Type (Typ) then
-
- -- For the ordinary fixed-point case, we are allowed to fudge the
- -- end-points up or down by small. Generally we prefer to fudge up,
- -- i.e. widen the bounds for non-model numbers so that the end points
- -- are included. However there are cases in which this cannot be
- -- done, and indeed cases in which we may need to narrow the bounds.
- -- The following circuit makes the decision.
-
- -- Note: our terminology here is that Incl_EP means that the bounds
- -- are widened by Small if necessary to include the end points, and
- -- Excl_EP means that the bounds are narrowed by Small to exclude the
- -- end-points if this reduces the size.
-
- -- Note that in the Incl case, all we care about is including the
- -- end-points. In the Excl case, we want to narrow the bounds as
- -- much as permitted by the RM, to give the smallest possible size.
-
- Fudge : declare
- Loval_Incl_EP : Ureal;
- Hival_Incl_EP : Ureal;
-
- Loval_Excl_EP : Ureal;
- Hival_Excl_EP : Ureal;
-
- Size_Incl_EP : Nat;
- Size_Excl_EP : Nat;
-
- Model_Num : Ureal;
- First_Subt : Entity_Id;
- Actual_Lo : Ureal;
- Actual_Hi : Ureal;
-
- begin
- -- First step. Base types are required to be symmetrical. Right
- -- now, the base type range is a copy of the first subtype range.
- -- This will be corrected before we are done, but right away we
- -- need to deal with the case where both bounds are non-negative.
- -- In this case, we set the low bound to the negative of the high
- -- bound, to make sure that the size is computed to include the
- -- required sign. Note that we do not need to worry about the
- -- case of both bounds negative, because the sign will be dealt
- -- with anyway. Furthermore we can't just go making such a bound
- -- symmetrical, since in a twos-complement system, there is an
- -- extra negative value which could not be accommodated on the
- -- positive side.
-
- if Typ = Btyp
- and then not UR_Is_Negative (Loval)
- and then Hival > Loval
- then
- Loval := -Hival;
- Set_Realval (Lo, Loval);
- end if;
-
- -- Compute the fudged bounds. If the number is a model number,
- -- then we do nothing to include it, but we are allowed to backoff
- -- to the next adjacent model number when we exclude it. If it is
- -- not a model number then we straddle the two values with the
- -- model numbers on either side.
-
- Model_Num := UR_Trunc (Loval / Small) * Small;
-
- if Loval = Model_Num then
- Loval_Incl_EP := Model_Num;
- else
- Loval_Incl_EP := Model_Num - Small;
- end if;
-
- -- The low value excluding the end point is Small greater, but
- -- we do not do this exclusion if the low value is positive,
- -- since it can't help the size and could actually hurt by
- -- crossing the high bound.
-
- if UR_Is_Negative (Loval_Incl_EP) then
- Loval_Excl_EP := Loval_Incl_EP + Small;
-
- -- If the value went from negative to zero, then we have the
- -- case where Loval_Incl_EP is the model number just below
- -- zero, so we want to stick to the negative value for the
- -- base type to maintain the condition that the size will
- -- include signed values.
-
- if Typ = Btyp
- and then UR_Is_Zero (Loval_Excl_EP)
- then
- Loval_Excl_EP := Loval_Incl_EP;
- end if;
-
- else
- Loval_Excl_EP := Loval_Incl_EP;
- end if;
-
- -- Similar processing for upper bound and high value
-
- Model_Num := UR_Trunc (Hival / Small) * Small;
-
- if Hival = Model_Num then
- Hival_Incl_EP := Model_Num;
- else
- Hival_Incl_EP := Model_Num + Small;
- end if;
-
- if UR_Is_Positive (Hival_Incl_EP) then
- Hival_Excl_EP := Hival_Incl_EP - Small;
- else
- Hival_Excl_EP := Hival_Incl_EP;
- end if;
-
- -- One further adjustment is needed. In the case of subtypes, we
- -- cannot go outside the range of the base type, or we get
- -- peculiarities, and the base type range is already set. This
- -- only applies to the Incl values, since clearly the Excl values
- -- are already as restricted as they are allowed to be.
-
- if Typ /= Btyp then
- Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
- Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
- end if;
-
- -- Get size including and excluding end points
-
- Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
- Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
-
- -- No need to exclude end-points if it does not reduce size
-
- if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
- Loval_Excl_EP := Loval_Incl_EP;
- end if;
-
- if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
- Hival_Excl_EP := Hival_Incl_EP;
- end if;
-
- -- Now we set the actual size to be used. We want to use the
- -- bounds fudged up to include the end-points but only if this
- -- can be done without violating a specifically given size
- -- size clause or causing an unacceptable increase in size.
-
- -- Case of size clause given
-
- if Has_Size_Clause (Typ) then
-
- -- Use the inclusive size only if it is consistent with
- -- the explicitly specified size.
-
- if Size_Incl_EP <= RM_Size (Typ) then
- Actual_Lo := Loval_Incl_EP;
- Actual_Hi := Hival_Incl_EP;
- Actual_Size := Size_Incl_EP;
-
- -- If the inclusive size is too large, we try excluding
- -- the end-points (will be caught later if does not work).
-
- else
- Actual_Lo := Loval_Excl_EP;
- Actual_Hi := Hival_Excl_EP;
- Actual_Size := Size_Excl_EP;
- end if;
-
- -- Case of size clause not given
-
- else
- -- If we have a base type whose corresponding first subtype
- -- has an explicit size that is large enough to include our
- -- end-points, then do so. There is no point in working hard
- -- to get a base type whose size is smaller than the specified
- -- size of the first subtype.
-
- First_Subt := First_Subtype (Typ);
-
- if Has_Size_Clause (First_Subt)
- and then Size_Incl_EP <= Esize (First_Subt)
- then
- Actual_Size := Size_Incl_EP;
- Actual_Lo := Loval_Incl_EP;
- Actual_Hi := Hival_Incl_EP;
-
- -- If excluding the end-points makes the size smaller and
- -- results in a size of 8,16,32,64, then we take the smaller
- -- size. For the 64 case, this is compulsory. For the other
- -- cases, it seems reasonable. We like to include end points
- -- if we can, but not at the expense of moving to the next
- -- natural boundary of size.
-
- elsif Size_Incl_EP /= Size_Excl_EP
- and then Addressable (Size_Excl_EP)
- then
- Actual_Size := Size_Excl_EP;
- Actual_Lo := Loval_Excl_EP;
- Actual_Hi := Hival_Excl_EP;
-
- -- Otherwise we can definitely include the end points
-
- else
- Actual_Size := Size_Incl_EP;
- Actual_Lo := Loval_Incl_EP;
- Actual_Hi := Hival_Incl_EP;
- end if;
-
- -- One pathological case: normally we never fudge a low bound
- -- down, since it would seem to increase the size (if it has
- -- any effect), but for ranges containing single value, or no
- -- values, the high bound can be small too large. Consider:
-
- -- type t is delta 2.0**(-14)
- -- range 131072.0 .. 0;
-
- -- That lower bound is *just* outside the range of 32 bits, and
- -- does need fudging down in this case. Note that the bounds
- -- will always have crossed here, since the high bound will be
- -- fudged down if necessary, as in the case of:
-
- -- type t is delta 2.0**(-14)
- -- range 131072.0 .. 131072.0;
-
- -- So we detect the situation by looking for crossed bounds,
- -- and if the bounds are crossed, and the low bound is greater
- -- than zero, we will always back it off by small, since this
- -- is completely harmless.
-
- if Actual_Lo > Actual_Hi then
- if UR_Is_Positive (Actual_Lo) then
- Actual_Lo := Loval_Incl_EP - Small;
- Actual_Size := Fsize (Actual_Lo, Actual_Hi);
-
- -- And of course, we need to do exactly the same parallel
- -- fudge for flat ranges in the negative region.
-
- elsif UR_Is_Negative (Actual_Hi) then
- Actual_Hi := Hival_Incl_EP + Small;
- Actual_Size := Fsize (Actual_Lo, Actual_Hi);
- end if;
- end if;
- end if;
-
- Set_Realval (Lo, Actual_Lo);
- Set_Realval (Hi, Actual_Hi);
- end Fudge;
-
- -- For the decimal case, none of this fudging is required, since there
- -- are no end-point problems in the decimal case (the end-points are
- -- always included).
-
- else
- Actual_Size := Fsize (Loval, Hival);
- end if;
-
- -- At this stage, the actual size has been calculated and the proper
- -- required bounds are stored in the low and high bounds.
-
- if Actual_Size > 64 then
- Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
- Error_Msg_N
- ("size required (^) for type& too large, maximum allowed is 64",
- Typ);
- Actual_Size := 64;
- end if;
-
- -- Check size against explicit given size
-
- if Has_Size_Clause (Typ) then
- if Actual_Size > RM_Size (Typ) then
- Error_Msg_Uint_1 := RM_Size (Typ);
- Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
- Error_Msg_NE
- ("size given (^) for type& too small, minimum allowed is ^",
- Size_Clause (Typ), Typ);
-
- else
- Actual_Size := UI_To_Int (Esize (Typ));
- end if;
-
- -- Increase size to next natural boundary if no size clause given
-
- else
- if Actual_Size <= 8 then
- Actual_Size := 8;
- elsif Actual_Size <= 16 then
- Actual_Size := 16;
- elsif Actual_Size <= 32 then
- Actual_Size := 32;
- else
- Actual_Size := 64;
- end if;
-
- Init_Esize (Typ, Actual_Size);
- Adjust_Esize_For_Alignment (Typ);
- end if;
-
- -- If we have a base type, then expand the bounds so that they extend to
- -- the full width of the allocated size in bits, to avoid junk range
- -- checks on intermediate computations.
-
- if Base_Type (Typ) = Typ then
- Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
- Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
- end if;
-
- -- Final step is to reanalyze the bounds using the proper type
- -- and set the Corresponding_Integer_Value fields of the literals.
-
- Set_Etype (Lo, Empty);
- Set_Analyzed (Lo, False);
- Analyze (Lo);
-
- -- Resolve with universal fixed if the base type, and the base type if
- -- it is a subtype. Note we can't resolve the base type with itself,
- -- that would be a reference before definition.
-
- if Typ = Btyp then
- Resolve (Lo, Universal_Fixed);
- else
- Resolve (Lo, Btyp);
- end if;
-
- -- Set corresponding integer value for bound
-
- Set_Corresponding_Integer_Value
- (Lo, UR_To_Uint (Realval (Lo) / Small));
-
- -- Similar processing for high bound
-
- Set_Etype (Hi, Empty);
- Set_Analyzed (Hi, False);
- Analyze (Hi);
-
- if Typ = Btyp then
- Resolve (Hi, Universal_Fixed);
- else
- Resolve (Hi, Btyp);
- end if;
-
- Set_Corresponding_Integer_Value
- (Hi, UR_To_Uint (Realval (Hi) / Small));
-
- -- Set type of range to correspond to bounds
-
- Set_Etype (Rng, Etype (Lo));
-
- -- Set Esize to calculated size if not set already
-
- if Unknown_Esize (Typ) then
- Init_Esize (Typ, Actual_Size);
- end if;
-
- -- Set RM_Size if not already set. If already set, check value
-
- declare
- Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
-
- begin
- if RM_Size (Typ) /= Uint_0 then
- if RM_Size (Typ) < Minsiz then
- Error_Msg_Uint_1 := RM_Size (Typ);
- Error_Msg_Uint_2 := Minsiz;
- Error_Msg_NE
- ("size given (^) for type& too small, minimum allowed is ^",
- Size_Clause (Typ), Typ);
- end if;
-
- else
- Set_RM_Size (Typ, Minsiz);
- end if;
- end;
- end Freeze_Fixed_Point_Type;
-
- ------------------
- -- Freeze_Itype --
- ------------------
-
- procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
- L : List_Id;
-
- begin
- Set_Has_Delayed_Freeze (T);
- L := Freeze_Entity (T, N);
-
- if Is_Non_Empty_List (L) then
- Insert_Actions (N, L);
- end if;
- end Freeze_Itype;
-
- --------------------------
- -- Freeze_Static_Object --
- --------------------------
-
- procedure Freeze_Static_Object (E : Entity_Id) is
-
- Cannot_Be_Static : exception;
- -- Exception raised if the type of a static object cannot be made
- -- static. This happens if the type depends on non-global objects.
-
- procedure Ensure_Expression_Is_SA (N : Node_Id);
- -- Called to ensure that an expression used as part of a type definition
- -- is statically allocatable, which means that the expression type is
- -- statically allocatable, and the expression is either static, or a
- -- reference to a library level constant.
-
- procedure Ensure_Type_Is_SA (Typ : Entity_Id);
- -- Called to mark a type as static, checking that it is possible
- -- to set the type as static. If it is not possible, then the
- -- exception Cannot_Be_Static is raised.
-
- -----------------------------
- -- Ensure_Expression_Is_SA --
- -----------------------------
-
- procedure Ensure_Expression_Is_SA (N : Node_Id) is
- Ent : Entity_Id;
-
- begin
- Ensure_Type_Is_SA (Etype (N));
-
- if Is_Static_Expression (N) then
- return;
-
- elsif Nkind (N) = N_Identifier then
- Ent := Entity (N);
-
- if Present (Ent)
- and then Ekind (Ent) = E_Constant
- and then Is_Library_Level_Entity (Ent)
- then
- return;
- end if;
- end if;
-
- raise Cannot_Be_Static;
- end Ensure_Expression_Is_SA;
-
- -----------------------
- -- Ensure_Type_Is_SA --
- -----------------------
-
- procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
- N : Node_Id;
- C : Entity_Id;
-
- begin
- -- If type is library level, we are all set
-
- if Is_Library_Level_Entity (Typ) then
- return;
- end if;
-
- -- We are also OK if the type already marked as statically allocated,
- -- which means we processed it before.
-
- if Is_Statically_Allocated (Typ) then
- return;
- end if;
-
- -- Mark type as statically allocated
-
- Set_Is_Statically_Allocated (Typ);
-
- -- Check that it is safe to statically allocate this type
-
- if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
- Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
- Ensure_Expression_Is_SA (Type_High_Bound (Typ));
-
- elsif Is_Array_Type (Typ) then
- N := First_Index (Typ);
- while Present (N) loop
- Ensure_Type_Is_SA (Etype (N));
- Next_Index (N);
- end loop;
-
- Ensure_Type_Is_SA (Component_Type (Typ));
-
- elsif Is_Access_Type (Typ) then
- if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
-
- declare
- F : Entity_Id;
- T : constant Entity_Id := Etype (Designated_Type (Typ));
-
- begin
- if T /= Standard_Void_Type then
- Ensure_Type_Is_SA (T);
- end if;
-
- F := First_Formal (Designated_Type (Typ));
- while Present (F) loop
- Ensure_Type_Is_SA (Etype (F));
- Next_Formal (F);
- end loop;
- end;
-
- else
- Ensure_Type_Is_SA (Designated_Type (Typ));
- end if;
-
- elsif Is_Record_Type (Typ) then
- C := First_Entity (Typ);
- while Present (C) loop
- if Ekind (C) = E_Discriminant
- or else Ekind (C) = E_Component
- then
- Ensure_Type_Is_SA (Etype (C));
-
- elsif Is_Type (C) then
- Ensure_Type_Is_SA (C);
- end if;
-
- Next_Entity (C);
- end loop;
-
- elsif Ekind (Typ) = E_Subprogram_Type then
- Ensure_Type_Is_SA (Etype (Typ));
-
- C := First_Formal (Typ);
- while Present (C) loop
- Ensure_Type_Is_SA (Etype (C));
- Next_Formal (C);
- end loop;
-
- else
- raise Cannot_Be_Static;
- end if;
- end Ensure_Type_Is_SA;
-
- -- Start of processing for Freeze_Static_Object
-
- begin
- Ensure_Type_Is_SA (Etype (E));
-
- exception
- when Cannot_Be_Static =>
-
- -- If the object that cannot be static is imported or exported, then
- -- issue an error message saying that this object cannot be imported
- -- or exported. If it has an address clause it is an overlay in the
- -- current partition and the static requirement is not relevant.
- -- Do not issue any error message when ignoring rep clauses.
-
- if Ignore_Rep_Clauses then
- null;
-
- elsif Is_Imported (E) then
- if No (Address_Clause (E)) then
- Error_Msg_N
- ("& cannot be imported (local type is not constant)", E);
- end if;
-
- -- Otherwise must be exported, something is wrong if compiler
- -- is marking something as statically allocated which cannot be).
-
- else pragma Assert (Is_Exported (E));
- Error_Msg_N
- ("& cannot be exported (local type is not constant)", E);
- end if;
- end Freeze_Static_Object;
-
- -----------------------
- -- Freeze_Subprogram --
- -----------------------
-
- procedure Freeze_Subprogram (E : Entity_Id) is
- Retype : Entity_Id;
- F : Entity_Id;
-
- begin
- -- Subprogram may not have an address clause unless it is imported
-
- if Present (Address_Clause (E)) then
- if not Is_Imported (E) then
- Error_Msg_N
- ("address clause can only be given " &
- "for imported subprogram",
- Name (Address_Clause (E)));
- end if;
- end if;
-
- -- Reset the Pure indication on an imported subprogram unless an
- -- explicit Pure_Function pragma was present. We do this because
- -- otherwise it is an insidious error to call a non-pure function from
- -- pure unit and have calls mysteriously optimized away. What happens
- -- here is that the Import can bypass the normal check to ensure that
- -- pure units call only pure subprograms.
-
- if Is_Imported (E)
- and then Is_Pure (E)
- and then not Has_Pragma_Pure_Function (E)
- then
- Set_Is_Pure (E, False);
- end if;
-
- -- For non-foreign convention subprograms, this is where we create
- -- the extra formals (for accessibility level and constrained bit
- -- information). We delay this till the freeze point precisely so
- -- that we know the convention!
-
- if not Has_Foreign_Convention (E) then
- Create_Extra_Formals (E);
- Set_Mechanisms (E);
-
- -- If this is convention Ada and a Valued_Procedure, that's odd
-
- if Ekind (E) = E_Procedure
- and then Is_Valued_Procedure (E)
- and then Convention (E) = Convention_Ada
- and then Warn_On_Export_Import
- then
- Error_Msg_N
- ("??Valued_Procedure has no effect for convention Ada", E);
- Set_Is_Valued_Procedure (E, False);
- end if;
-
- -- Case of foreign convention
-
- else
- Set_Mechanisms (E);
-
- -- For foreign conventions, warn about return of an
- -- unconstrained array.
-
- -- Note: we *do* allow a return by descriptor for the VMS case,
- -- though here there is probably more to be done ???
-
- if Ekind (E) = E_Function then
- Retype := Underlying_Type (Etype (E));
-
- -- If no return type, probably some other error, e.g. a
- -- missing full declaration, so ignore.
-
- if No (Retype) then
- null;
-
- -- If the return type is generic, we have emitted a warning
- -- earlier on, and there is nothing else to check here. Specific
- -- instantiations may lead to erroneous behavior.
-
- elsif Is_Generic_Type (Etype (E)) then
- null;
-
- -- Display warning if returning unconstrained array
-
- elsif Is_Array_Type (Retype)
- and then not Is_Constrained (Retype)
-
- -- Exclude cases where descriptor mechanism is set, since the
- -- VMS descriptor mechanisms allow such unconstrained returns.
-
- and then Mechanism (E) not in Descriptor_Codes
-
- -- Check appropriate warning is enabled (should we check for
- -- Warnings (Off) on specific entities here, probably so???)
-
- and then Warn_On_Export_Import
-
- -- Exclude the VM case, since return of unconstrained arrays
- -- is properly handled in both the JVM and .NET cases.
-
- and then VM_Target = No_VM
- then
- Error_Msg_N
- ("?x?foreign convention function& should not return " &
- "unconstrained array", E);
- return;
- end if;
- end if;
-
- -- If any of the formals for an exported foreign convention
- -- subprogram have defaults, then emit an appropriate warning since
- -- this is odd (default cannot be used from non-Ada code)
-
- if Is_Exported (E) then
- F := First_Formal (E);
- while Present (F) loop
- if Warn_On_Export_Import
- and then Present (Default_Value (F))
- then
- Error_Msg_N
- ("?x?parameter cannot be defaulted in non-Ada call",
- Default_Value (F));
- end if;
-
- Next_Formal (F);
- end loop;
- end if;
- end if;
-
- -- For VMS, descriptor mechanisms for parameters are allowed only for
- -- imported/exported subprograms. Moreover, the NCA descriptor is not
- -- allowed for parameters of exported subprograms.
-
- if OpenVMS_On_Target then
- if Is_Exported (E) then
- F := First_Formal (E);
- while Present (F) loop
- if Mechanism (F) = By_Descriptor_NCA then
- Error_Msg_N
- ("'N'C'A' descriptor for parameter not permitted", F);
- Error_Msg_N
- ("\can only be used for imported subprogram", F);
- end if;
-
- Next_Formal (F);
- end loop;
-
- elsif not Is_Imported (E) then
- F := First_Formal (E);
- while Present (F) loop
- if Mechanism (F) in Descriptor_Codes then
- Error_Msg_N
- ("descriptor mechanism for parameter not permitted", F);
- Error_Msg_N
- ("\can only be used for imported/exported subprogram", F);
- end if;
-
- Next_Formal (F);
- end loop;
- end if;
- end if;
-
- -- Pragma Inline_Always is disallowed for dispatching subprograms
- -- because the address of such subprograms is saved in the dispatch
- -- table to support dispatching calls, and dispatching calls cannot
- -- be inlined. This is consistent with the restriction against using
- -- 'Access or 'Address on an Inline_Always subprogram.
-
- if Is_Dispatching_Operation (E)
- and then Has_Pragma_Inline_Always (E)
- then
- Error_Msg_N
- ("pragma Inline_Always not allowed for dispatching subprograms", E);
- end if;
-
- -- Because of the implicit representation of inherited predefined
- -- operators in the front-end, the overriding status of the operation
- -- may be affected when a full view of a type is analyzed, and this is
- -- not captured by the analysis of the corresponding type declaration.
- -- Therefore the correctness of a not-overriding indicator must be
- -- rechecked when the subprogram is frozen.
-
- if Nkind (E) = N_Defining_Operator_Symbol
- and then not Error_Posted (Parent (E))
- then
- Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
- end if;
- end Freeze_Subprogram;
-
- ----------------------
- -- Is_Fully_Defined --
- ----------------------
-
- function Is_Fully_Defined (T : Entity_Id) return Boolean is
- begin
- if Ekind (T) = E_Class_Wide_Type then
- return Is_Fully_Defined (Etype (T));
-
- elsif Is_Array_Type (T) then
- return Is_Fully_Defined (Component_Type (T));
-
- elsif Is_Record_Type (T)
- and not Is_Private_Type (T)
- then
- -- Verify that the record type has no components with private types
- -- without completion.
-
- declare
- Comp : Entity_Id;
-
- begin
- Comp := First_Component (T);
- while Present (Comp) loop
- if not Is_Fully_Defined (Etype (Comp)) then
- return False;
- end if;
-
- Next_Component (Comp);
- end loop;
- return True;
- end;
-
- -- For the designated type of an access to subprogram, all types in
- -- the profile must be fully defined.
-
- elsif Ekind (T) = E_Subprogram_Type then
- declare
- F : Entity_Id;
-
- begin
- F := First_Formal (T);
- while Present (F) loop
- if not Is_Fully_Defined (Etype (F)) then
- return False;
- end if;
-
- Next_Formal (F);
- end loop;
-
- return Is_Fully_Defined (Etype (T));
- end;
-
- else
- return not Is_Private_Type (T)
- or else Present (Full_View (Base_Type (T)));
- end if;
- end Is_Fully_Defined;
-
- ---------------------------------
- -- Process_Default_Expressions --
- ---------------------------------
-
- procedure Process_Default_Expressions
- (E : Entity_Id;
- After : in out Node_Id)
- is
- Loc : constant Source_Ptr := Sloc (E);
- Dbody : Node_Id;
- Formal : Node_Id;
- Dcopy : Node_Id;
- Dnam : Entity_Id;
-
- begin
- Set_Default_Expressions_Processed (E);
-
- -- A subprogram instance and its associated anonymous subprogram share
- -- their signature. The default expression functions are defined in the
- -- wrapper packages for the anonymous subprogram, and should not be
- -- generated again for the instance.
-
- if Is_Generic_Instance (E)
- and then Present (Alias (E))
- and then Default_Expressions_Processed (Alias (E))
- then
- return;
- end if;
-
- Formal := First_Formal (E);
- while Present (Formal) loop
- if Present (Default_Value (Formal)) then
-
- -- We work with a copy of the default expression because we
- -- do not want to disturb the original, since this would mess
- -- up the conformance checking.
-
- Dcopy := New_Copy_Tree (Default_Value (Formal));
-
- -- The analysis of the expression may generate insert actions,
- -- which of course must not be executed. We wrap those actions
- -- in a procedure that is not called, and later on eliminated.
- -- The following cases have no side-effects, and are analyzed
- -- directly.
-
- if Nkind (Dcopy) = N_Identifier
- or else Nkind (Dcopy) = N_Expanded_Name
- or else Nkind (Dcopy) = N_Integer_Literal
- or else (Nkind (Dcopy) = N_Real_Literal
- and then not Vax_Float (Etype (Dcopy)))
- or else Nkind (Dcopy) = N_Character_Literal
- or else Nkind (Dcopy) = N_String_Literal
- or else Known_Null (Dcopy)
- or else (Nkind (Dcopy) = N_Attribute_Reference
- and then
- Attribute_Name (Dcopy) = Name_Null_Parameter)
- then
-
- -- If there is no default function, we must still do a full
- -- analyze call on the default value, to ensure that all error
- -- checks are performed, e.g. those associated with static
- -- evaluation. Note: this branch will always be taken if the
- -- analyzer is turned off (but we still need the error checks).
-
- -- Note: the setting of parent here is to meet the requirement
- -- that we can only analyze the expression while attached to
- -- the tree. Really the requirement is that the parent chain
- -- be set, we don't actually need to be in the tree.
-
- Set_Parent (Dcopy, Declaration_Node (Formal));
- Analyze (Dcopy);
-
- -- Default expressions are resolved with their own type if the
- -- context is generic, to avoid anomalies with private types.
-
- if Ekind (Scope (E)) = E_Generic_Package then
- Resolve (Dcopy);
- else
- Resolve (Dcopy, Etype (Formal));
- end if;
-
- -- If that resolved expression will raise constraint error,
- -- then flag the default value as raising constraint error.
- -- This allows a proper error message on the calls.
-
- if Raises_Constraint_Error (Dcopy) then
- Set_Raises_Constraint_Error (Default_Value (Formal));
- end if;
-
- -- If the default is a parameterless call, we use the name of
- -- the called function directly, and there is no body to build.
-
- elsif Nkind (Dcopy) = N_Function_Call
- and then No (Parameter_Associations (Dcopy))
- then
- null;
-
- -- Else construct and analyze the body of a wrapper procedure
- -- that contains an object declaration to hold the expression.
- -- Given that this is done only to complete the analysis, it
- -- simpler to build a procedure than a function which might
- -- involve secondary stack expansion.
-
- else
- Dnam := Make_Temporary (Loc, 'D');
-
- Dbody :=
- Make_Subprogram_Body (Loc,
- Specification =>
- Make_Procedure_Specification (Loc,
- Defining_Unit_Name => Dnam),
-
- Declarations => New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => Make_Temporary (Loc, 'T'),
- Object_Definition =>
- New_Occurrence_Of (Etype (Formal), Loc),
- Expression => New_Copy_Tree (Dcopy))),
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => Empty_List));
-
- Set_Scope (Dnam, Scope (E));
- Set_Assignment_OK (First (Declarations (Dbody)));
- Set_Is_Eliminated (Dnam);
- Insert_After (After, Dbody);
- Analyze (Dbody);
- After := Dbody;
- end if;
- end if;
-
- Next_Formal (Formal);
- end loop;
- end Process_Default_Expressions;
-
- ----------------------------------------
- -- Set_Component_Alignment_If_Not_Set --
- ----------------------------------------
-
- procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
- begin
- -- Ignore if not base type, subtypes don't need anything
-
- if Typ /= Base_Type (Typ) then
- return;
- end if;
-
- -- Do not override existing representation
-
- if Is_Packed (Typ) then
- return;
-
- elsif Has_Specified_Layout (Typ) then
- return;
-
- elsif Component_Alignment (Typ) /= Calign_Default then
- return;
-
- else
- Set_Component_Alignment
- (Typ, Scope_Stack.Table
- (Scope_Stack.Last).Component_Alignment_Default);
- end if;
- end Set_Component_Alignment_If_Not_Set;
-
- ------------------
- -- Undelay_Type --
- ------------------
-
- procedure Undelay_Type (T : Entity_Id) is
- begin
- Set_Has_Delayed_Freeze (T, False);
- Set_Freeze_Node (T, Empty);
-
- -- Since we don't want T to have a Freeze_Node, we don't want its
- -- Full_View or Corresponding_Record_Type to have one either.
-
- -- ??? Fundamentally, this whole handling is a kludge. What we really
- -- want is to be sure that for an Itype that's part of record R and is a
- -- subtype of type T, that it's frozen after the later of the freeze
- -- points of R and T. We have no way of doing that directly, so what we
- -- do is force most such Itypes to be frozen as part of freezing R via
- -- this procedure and only delay the ones that need to be delayed
- -- (mostly the designated types of access types that are defined as part
- -- of the record).
-
- if Is_Private_Type (T)
- and then Present (Full_View (T))
- and then Is_Itype (Full_View (T))
- and then Is_Record_Type (Scope (Full_View (T)))
- then
- Undelay_Type (Full_View (T));
- end if;
-
- if Is_Concurrent_Type (T)
- and then Present (Corresponding_Record_Type (T))
- and then Is_Itype (Corresponding_Record_Type (T))
- and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
- then
- Undelay_Type (Corresponding_Record_Type (T));
- end if;
- end Undelay_Type;
-
- ------------------
- -- Warn_Overlay --
- ------------------
-
- procedure Warn_Overlay
- (Expr : Node_Id;
- Typ : Entity_Id;
- Nam : Entity_Id)
- is
- Ent : constant Entity_Id := Entity (Nam);
- -- The object to which the address clause applies
-
- Init : Node_Id;
- Old : Entity_Id := Empty;
- Decl : Node_Id;
-
- begin
- -- No warning if address clause overlay warnings are off
-
- if not Address_Clause_Overlay_Warnings then
- return;
- end if;
-
- -- No warning if there is an explicit initialization
-
- Init := Original_Node (Expression (Declaration_Node (Ent)));
-
- if Present (Init) and then Comes_From_Source (Init) then
- return;
- end if;
-
- -- We only give the warning for non-imported entities of a type for
- -- which a non-null base init proc is defined, or for objects of access
- -- types with implicit null initialization, or when Normalize_Scalars
- -- applies and the type is scalar or a string type (the latter being
- -- tested for because predefined String types are initialized by inline
- -- code rather than by an init_proc). Note that we do not give the
- -- warning for Initialize_Scalars, since we suppressed initialization
- -- in this case. Also, do not warn if Suppress_Initialization is set.
-
- if Present (Expr)
- and then not Is_Imported (Ent)
- and then not Initialization_Suppressed (Typ)
- and then (Has_Non_Null_Base_Init_Proc (Typ)
- or else Is_Access_Type (Typ)
- or else (Normalize_Scalars
- and then (Is_Scalar_Type (Typ)
- or else Is_String_Type (Typ))))
- then
- if Nkind (Expr) = N_Attribute_Reference
- and then Is_Entity_Name (Prefix (Expr))
- then
- Old := Entity (Prefix (Expr));
-
- elsif Is_Entity_Name (Expr)
- and then Ekind (Entity (Expr)) = E_Constant
- then
- Decl := Declaration_Node (Entity (Expr));
-
- if Nkind (Decl) = N_Object_Declaration
- and then Present (Expression (Decl))
- and then Nkind (Expression (Decl)) = N_Attribute_Reference
- and then Is_Entity_Name (Prefix (Expression (Decl)))
- then
- Old := Entity (Prefix (Expression (Decl)));
-
- elsif Nkind (Expr) = N_Function_Call then
- return;
- end if;
-
- -- A function call (most likely to To_Address) is probably not an
- -- overlay, so skip warning. Ditto if the function call was inlined
- -- and transformed into an entity.
-
- elsif Nkind (Original_Node (Expr)) = N_Function_Call then
- return;
- end if;
-
- Decl := Next (Parent (Expr));
-
- -- If a pragma Import follows, we assume that it is for the current
- -- target of the address clause, and skip the warning.
-
- if Present (Decl)
- and then Nkind (Decl) = N_Pragma
- and then Pragma_Name (Decl) = Name_Import
- then
- return;
- end if;
-
- if Present (Old) then
- Error_Msg_Node_2 := Old;
- Error_Msg_N
- ("default initialization of & may modify &??",
- Nam);
- else
- Error_Msg_N
- ("default initialization of & may modify overlaid storage??",
- Nam);
- end if;
-
- -- Add friendly warning if initialization comes from a packed array
- -- component.
-
- if Is_Record_Type (Typ) then
- declare
- Comp : Entity_Id;
-
- begin
- Comp := First_Component (Typ);
- while Present (Comp) loop
- if Nkind (Parent (Comp)) = N_Component_Declaration
- and then Present (Expression (Parent (Comp)))
- then
- exit;
- elsif Is_Array_Type (Etype (Comp))
- and then Present (Packed_Array_Type (Etype (Comp)))
- then
- Error_Msg_NE
- ("\packed array component& " &
- "will be initialized to zero??",
- Nam, Comp);
- exit;
- else
- Next_Component (Comp);
- end if;
- end loop;
- end;
- end if;
-
- Error_Msg_N
- ("\use pragma Import for & to " &
- "suppress initialization (RM B.1(24))??",
- Nam);
- end if;
- end Warn_Overlay;
-
-end Freeze;