aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/gcc/ada/exp_util.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8/gcc/ada/exp_util.adb')
-rw-r--r--gcc-4.8/gcc/ada/exp_util.adb8000
1 files changed, 0 insertions, 8000 deletions
diff --git a/gcc-4.8/gcc/ada/exp_util.adb b/gcc-4.8/gcc/ada/exp_util.adb
deleted file mode 100644
index 1900a9fd7..000000000
--- a/gcc-4.8/gcc/ada/exp_util.adb
+++ /dev/null
@@ -1,8000 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- E X P _ U T I L --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Aspects; use Aspects;
-with Atree; use Atree;
-with Casing; use Casing;
-with Checks; use Checks;
-with Debug; use Debug;
-with Einfo; use Einfo;
-with Elists; use Elists;
-with Errout; use Errout;
-with Exp_Aggr; use Exp_Aggr;
-with Exp_Ch6; use Exp_Ch6;
-with Exp_Ch7; use Exp_Ch7;
-with Inline; use Inline;
-with Itypes; use Itypes;
-with Lib; use Lib;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Restrict; use Restrict;
-with Rident; use Rident;
-with Sem; use Sem;
-with Sem_Aux; use Sem_Aux;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Eval; use Sem_Eval;
-with Sem_Prag; use Sem_Prag;
-with Sem_Res; use Sem_Res;
-with Sem_Type; use Sem_Type;
-with Sem_Util; use Sem_Util;
-with Snames; use Snames;
-with Stand; use Stand;
-with Stringt; use Stringt;
-with Targparm; use Targparm;
-with Tbuild; use Tbuild;
-with Ttypes; use Ttypes;
-with Urealp; use Urealp;
-with Validsw; use Validsw;
-
-package body Exp_Util is
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- function Build_Task_Array_Image
- (Loc : Source_Ptr;
- Id_Ref : Node_Id;
- A_Type : Entity_Id;
- Dyn : Boolean := False) return Node_Id;
- -- Build function to generate the image string for a task that is an array
- -- component, concatenating the images of each index. To avoid storage
- -- leaks, the string is built with successive slice assignments. The flag
- -- Dyn indicates whether this is called for the initialization procedure of
- -- an array of tasks, or for the name of a dynamically created task that is
- -- assigned to an indexed component.
-
- function Build_Task_Image_Function
- (Loc : Source_Ptr;
- Decls : List_Id;
- Stats : List_Id;
- Res : Entity_Id) return Node_Id;
- -- Common processing for Task_Array_Image and Task_Record_Image. Build
- -- function body that computes image.
-
- procedure Build_Task_Image_Prefix
- (Loc : Source_Ptr;
- Len : out Entity_Id;
- Res : out Entity_Id;
- Pos : out Entity_Id;
- Prefix : Entity_Id;
- Sum : Node_Id;
- Decls : List_Id;
- Stats : List_Id);
- -- Common processing for Task_Array_Image and Task_Record_Image. Create
- -- local variables and assign prefix of name to result string.
-
- function Build_Task_Record_Image
- (Loc : Source_Ptr;
- Id_Ref : Node_Id;
- Dyn : Boolean := False) return Node_Id;
- -- Build function to generate the image string for a task that is a record
- -- component. Concatenate name of variable with that of selector. The flag
- -- Dyn indicates whether this is called for the initialization procedure of
- -- record with task components, or for a dynamically created task that is
- -- assigned to a selected component.
-
- function Make_CW_Equivalent_Type
- (T : Entity_Id;
- E : Node_Id) return Entity_Id;
- -- T is a class-wide type entity, E is the initial expression node that
- -- constrains T in case such as: " X: T := E" or "new T'(E)". This function
- -- returns the entity of the Equivalent type and inserts on the fly the
- -- necessary declaration such as:
- --
- -- type anon is record
- -- _parent : Root_Type (T); constrained with E discriminants (if any)
- -- Extension : String (1 .. expr to match size of E);
- -- end record;
- --
- -- This record is compatible with any object of the class of T thanks to
- -- the first field and has the same size as E thanks to the second.
-
- function Make_Literal_Range
- (Loc : Source_Ptr;
- Literal_Typ : Entity_Id) return Node_Id;
- -- Produce a Range node whose bounds are:
- -- Low_Bound (Literal_Type) ..
- -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
- -- this is used for expanding declarations like X : String := "sdfgdfg";
- --
- -- If the index type of the target array is not integer, we generate:
- -- Low_Bound (Literal_Type) ..
- -- Literal_Type'Val
- -- (Literal_Type'Pos (Low_Bound (Literal_Type))
- -- + (Length (Literal_Typ) -1))
-
- function Make_Non_Empty_Check
- (Loc : Source_Ptr;
- N : Node_Id) return Node_Id;
- -- Produce a boolean expression checking that the unidimensional array
- -- node N is not empty.
-
- function New_Class_Wide_Subtype
- (CW_Typ : Entity_Id;
- N : Node_Id) return Entity_Id;
- -- Create an implicit subtype of CW_Typ attached to node N
-
- function Requires_Cleanup_Actions
- (L : List_Id;
- Lib_Level : Boolean;
- Nested_Constructs : Boolean) return Boolean;
- -- Given a list L, determine whether it contains one of the following:
- --
- -- 1) controlled objects
- -- 2) library-level tagged types
- --
- -- Lib_Level is True when the list comes from a construct at the library
- -- level, and False otherwise. Nested_Constructs is True when any nested
- -- packages declared in L must be processed, and False otherwise.
-
- -------------------------------------
- -- Activate_Atomic_Synchronization --
- -------------------------------------
-
- procedure Activate_Atomic_Synchronization (N : Node_Id) is
- Msg_Node : Node_Id;
-
- begin
- case Nkind (Parent (N)) is
-
- -- Check for cases of appearing in the prefix of a construct where
- -- we don't need atomic synchronization for this kind of usage.
-
- when
- -- Nothing to do if we are the prefix of an attribute, since we
- -- do not want an atomic sync operation for things like 'Size.
-
- N_Attribute_Reference |
-
- -- The N_Reference node is like an attribute
-
- N_Reference |
-
- -- Nothing to do for a reference to a component (or components)
- -- of a composite object. Only reads and updates of the object
- -- as a whole require atomic synchronization (RM C.6 (15)).
-
- N_Indexed_Component |
- N_Selected_Component |
- N_Slice =>
-
- -- For all the above cases, nothing to do if we are the prefix
-
- if Prefix (Parent (N)) = N then
- return;
- end if;
-
- when others => null;
- end case;
-
- -- Go ahead and set the flag
-
- Set_Atomic_Sync_Required (N);
-
- -- Generate info message if requested
-
- if Warn_On_Atomic_Synchronization then
- case Nkind (N) is
- when N_Identifier =>
- Msg_Node := N;
-
- when N_Selected_Component | N_Expanded_Name =>
- Msg_Node := Selector_Name (N);
-
- when N_Explicit_Dereference | N_Indexed_Component =>
- Msg_Node := Empty;
-
- when others =>
- pragma Assert (False);
- return;
- end case;
-
- if Present (Msg_Node) then
- Error_Msg_N
- ("?N?info: atomic synchronization set for &", Msg_Node);
- else
- Error_Msg_N
- ("?N?info: atomic synchronization set", N);
- end if;
- end if;
- end Activate_Atomic_Synchronization;
-
- ----------------------
- -- Adjust_Condition --
- ----------------------
-
- procedure Adjust_Condition (N : Node_Id) is
- begin
- if No (N) then
- return;
- end if;
-
- declare
- Loc : constant Source_Ptr := Sloc (N);
- T : constant Entity_Id := Etype (N);
- Ti : Entity_Id;
-
- begin
- -- Defend against a call where the argument has no type, or has a
- -- type that is not Boolean. This can occur because of prior errors.
-
- if No (T) or else not Is_Boolean_Type (T) then
- return;
- end if;
-
- -- Apply validity checking if needed
-
- if Validity_Checks_On and Validity_Check_Tests then
- Ensure_Valid (N);
- end if;
-
- -- Immediate return if standard boolean, the most common case,
- -- where nothing needs to be done.
-
- if Base_Type (T) = Standard_Boolean then
- return;
- end if;
-
- -- Case of zero/non-zero semantics or non-standard enumeration
- -- representation. In each case, we rewrite the node as:
-
- -- ityp!(N) /= False'Enum_Rep
-
- -- where ityp is an integer type with large enough size to hold any
- -- value of type T.
-
- if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
- if Esize (T) <= Esize (Standard_Integer) then
- Ti := Standard_Integer;
- else
- Ti := Standard_Long_Long_Integer;
- end if;
-
- Rewrite (N,
- Make_Op_Ne (Loc,
- Left_Opnd => Unchecked_Convert_To (Ti, N),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Enum_Rep,
- Prefix =>
- New_Occurrence_Of (First_Literal (T), Loc))));
- Analyze_And_Resolve (N, Standard_Boolean);
-
- else
- Rewrite (N, Convert_To (Standard_Boolean, N));
- Analyze_And_Resolve (N, Standard_Boolean);
- end if;
- end;
- end Adjust_Condition;
-
- ------------------------
- -- Adjust_Result_Type --
- ------------------------
-
- procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
- begin
- -- Ignore call if current type is not Standard.Boolean
-
- if Etype (N) /= Standard_Boolean then
- return;
- end if;
-
- -- If result is already of correct type, nothing to do. Note that
- -- this will get the most common case where everything has a type
- -- of Standard.Boolean.
-
- if Base_Type (T) = Standard_Boolean then
- return;
-
- else
- declare
- KP : constant Node_Kind := Nkind (Parent (N));
-
- begin
- -- If result is to be used as a Condition in the syntax, no need
- -- to convert it back, since if it was changed to Standard.Boolean
- -- using Adjust_Condition, that is just fine for this usage.
-
- if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
- return;
-
- -- If result is an operand of another logical operation, no need
- -- to reset its type, since Standard.Boolean is just fine, and
- -- such operations always do Adjust_Condition on their operands.
-
- elsif KP in N_Op_Boolean
- or else KP in N_Short_Circuit
- or else KP = N_Op_Not
- then
- return;
-
- -- Otherwise we perform a conversion from the current type, which
- -- must be Standard.Boolean, to the desired type.
-
- else
- Set_Analyzed (N);
- Rewrite (N, Convert_To (T, N));
- Analyze_And_Resolve (N, T);
- end if;
- end;
- end if;
- end Adjust_Result_Type;
-
- --------------------------
- -- Append_Freeze_Action --
- --------------------------
-
- procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
- Fnode : Node_Id;
-
- begin
- Ensure_Freeze_Node (T);
- Fnode := Freeze_Node (T);
-
- if No (Actions (Fnode)) then
- Set_Actions (Fnode, New_List (N));
- else
- Append (N, Actions (Fnode));
- end if;
-
- end Append_Freeze_Action;
-
- ---------------------------
- -- Append_Freeze_Actions --
- ---------------------------
-
- procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
- Fnode : Node_Id;
-
- begin
- if No (L) then
- return;
- end if;
-
- Ensure_Freeze_Node (T);
- Fnode := Freeze_Node (T);
-
- if No (Actions (Fnode)) then
- Set_Actions (Fnode, L);
- else
- Append_List (L, Actions (Fnode));
- end if;
- end Append_Freeze_Actions;
-
- ------------------------------------
- -- Build_Allocate_Deallocate_Proc --
- ------------------------------------
-
- procedure Build_Allocate_Deallocate_Proc
- (N : Node_Id;
- Is_Allocate : Boolean)
- is
- Desig_Typ : Entity_Id;
- Expr : Node_Id;
- Pool_Id : Entity_Id;
- Proc_To_Call : Node_Id := Empty;
- Ptr_Typ : Entity_Id;
-
- function Find_Finalize_Address (Typ : Entity_Id) return Entity_Id;
- -- Locate TSS primitive Finalize_Address in type Typ
-
- function Find_Object (E : Node_Id) return Node_Id;
- -- Given an arbitrary expression of an allocator, try to find an object
- -- reference in it, otherwise return the original expression.
-
- function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean;
- -- Determine whether subprogram Subp denotes a custom allocate or
- -- deallocate.
-
- ---------------------------
- -- Find_Finalize_Address --
- ---------------------------
-
- function Find_Finalize_Address (Typ : Entity_Id) return Entity_Id is
- Utyp : Entity_Id := Typ;
-
- begin
- -- Handle protected class-wide or task class-wide types
-
- if Is_Class_Wide_Type (Utyp) then
- if Is_Concurrent_Type (Root_Type (Utyp)) then
- Utyp := Root_Type (Utyp);
-
- elsif Is_Private_Type (Root_Type (Utyp))
- and then Present (Full_View (Root_Type (Utyp)))
- and then Is_Concurrent_Type (Full_View (Root_Type (Utyp)))
- then
- Utyp := Full_View (Root_Type (Utyp));
- end if;
- end if;
-
- -- Handle private types
-
- if Is_Private_Type (Utyp) and then Present (Full_View (Utyp)) then
- Utyp := Full_View (Utyp);
- end if;
-
- -- Handle protected and task types
-
- if Is_Concurrent_Type (Utyp)
- and then Present (Corresponding_Record_Type (Utyp))
- then
- Utyp := Corresponding_Record_Type (Utyp);
- end if;
-
- Utyp := Underlying_Type (Base_Type (Utyp));
-
- -- Deal with non-tagged derivation of private views. If the parent is
- -- now known to be protected, the finalization routine is the one
- -- defined on the corresponding record of the ancestor (corresponding
- -- records do not automatically inherit operations, but maybe they
- -- should???)
-
- if Is_Untagged_Derivation (Typ) then
- if Is_Protected_Type (Typ) then
- Utyp := Corresponding_Record_Type (Root_Type (Base_Type (Typ)));
- else
- Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
-
- if Is_Protected_Type (Utyp) then
- Utyp := Corresponding_Record_Type (Utyp);
- end if;
- end if;
- end if;
-
- -- If the underlying_type is a subtype, we are dealing with the
- -- completion of a private type. We need to access the base type and
- -- generate a conversion to it.
-
- if Utyp /= Base_Type (Utyp) then
- pragma Assert (Is_Private_Type (Typ));
-
- Utyp := Base_Type (Utyp);
- end if;
-
- -- When dealing with an internally built full view for a type with
- -- unknown discriminants, use the original record type.
-
- if Is_Underlying_Record_View (Utyp) then
- Utyp := Etype (Utyp);
- end if;
-
- return TSS (Utyp, TSS_Finalize_Address);
- end Find_Finalize_Address;
-
- -----------------
- -- Find_Object --
- -----------------
-
- function Find_Object (E : Node_Id) return Node_Id is
- Expr : Node_Id;
-
- begin
- pragma Assert (Is_Allocate);
-
- Expr := E;
- loop
- if Nkind_In (Expr, N_Qualified_Expression,
- N_Unchecked_Type_Conversion)
- then
- Expr := Expression (Expr);
-
- elsif Nkind (Expr) = N_Explicit_Dereference then
- Expr := Prefix (Expr);
-
- else
- exit;
- end if;
- end loop;
-
- return Expr;
- end Find_Object;
-
- ---------------------------------
- -- Is_Allocate_Deallocate_Proc --
- ---------------------------------
-
- function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean is
- begin
- -- Look for a subprogram body with only one statement which is a
- -- call to Allocate_Any_Controlled / Deallocate_Any_Controlled.
-
- if Ekind (Subp) = E_Procedure
- and then Nkind (Parent (Parent (Subp))) = N_Subprogram_Body
- then
- declare
- HSS : constant Node_Id :=
- Handled_Statement_Sequence (Parent (Parent (Subp)));
- Proc : Entity_Id;
-
- begin
- if Present (Statements (HSS))
- and then Nkind (First (Statements (HSS))) =
- N_Procedure_Call_Statement
- then
- Proc := Entity (Name (First (Statements (HSS))));
-
- return
- Is_RTE (Proc, RE_Allocate_Any_Controlled)
- or else Is_RTE (Proc, RE_Deallocate_Any_Controlled);
- end if;
- end;
- end if;
-
- return False;
- end Is_Allocate_Deallocate_Proc;
-
- -- Start of processing for Build_Allocate_Deallocate_Proc
-
- begin
- -- Do not perform this expansion in Alfa mode because it is not
- -- necessary.
-
- if Alfa_Mode then
- return;
- end if;
-
- -- Obtain the attributes of the allocation / deallocation
-
- if Nkind (N) = N_Free_Statement then
- Expr := Expression (N);
- Ptr_Typ := Base_Type (Etype (Expr));
- Proc_To_Call := Procedure_To_Call (N);
-
- else
- if Nkind (N) = N_Object_Declaration then
- Expr := Expression (N);
- else
- Expr := N;
- end if;
-
- -- In certain cases an allocator with a qualified expression may
- -- be relocated and used as the initialization expression of a
- -- temporary:
-
- -- before:
- -- Obj : Ptr_Typ := new Desig_Typ'(...);
-
- -- after:
- -- Tmp : Ptr_Typ := new Desig_Typ'(...);
- -- Obj : Ptr_Typ := Tmp;
-
- -- Since the allocator is always marked as analyzed to avoid infinite
- -- expansion, it will never be processed by this routine given that
- -- the designated type needs finalization actions. Detect this case
- -- and complete the expansion of the allocator.
-
- if Nkind (Expr) = N_Identifier
- and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
- and then Nkind (Expression (Parent (Entity (Expr)))) = N_Allocator
- then
- Build_Allocate_Deallocate_Proc (Parent (Entity (Expr)), True);
- return;
- end if;
-
- -- The allocator may have been rewritten into something else in which
- -- case the expansion performed by this routine does not apply.
-
- if Nkind (Expr) /= N_Allocator then
- return;
- end if;
-
- Ptr_Typ := Base_Type (Etype (Expr));
- Proc_To_Call := Procedure_To_Call (Expr);
- end if;
-
- Pool_Id := Associated_Storage_Pool (Ptr_Typ);
- Desig_Typ := Available_View (Designated_Type (Ptr_Typ));
-
- -- Handle concurrent types
-
- if Is_Concurrent_Type (Desig_Typ)
- and then Present (Corresponding_Record_Type (Desig_Typ))
- then
- Desig_Typ := Corresponding_Record_Type (Desig_Typ);
- end if;
-
- -- Do not process allocations / deallocations without a pool
-
- if No (Pool_Id) then
- return;
-
- -- Do not process allocations on / deallocations from the secondary
- -- stack.
-
- elsif Is_RTE (Pool_Id, RE_SS_Pool) then
- return;
-
- -- Do not replicate the machinery if the allocator / free has already
- -- been expanded and has a custom Allocate / Deallocate.
-
- elsif Present (Proc_To_Call)
- and then Is_Allocate_Deallocate_Proc (Proc_To_Call)
- then
- return;
- end if;
-
- if Needs_Finalization (Desig_Typ) then
-
- -- Certain run-time configurations and targets do not provide support
- -- for controlled types.
-
- if Restriction_Active (No_Finalization) then
- return;
-
- -- Do nothing if the access type may never allocate / deallocate
- -- objects.
-
- elsif No_Pool_Assigned (Ptr_Typ) then
- return;
-
- -- Access-to-controlled types are not supported on .NET/JVM since
- -- these targets cannot support pools and address arithmetic.
-
- elsif VM_Target /= No_VM then
- return;
- end if;
-
- -- The allocation / deallocation of a controlled object must be
- -- chained on / detached from a finalization master.
-
- pragma Assert (Present (Finalization_Master (Ptr_Typ)));
-
- -- The only other kind of allocation / deallocation supported by this
- -- routine is on / from a subpool.
-
- elsif Nkind (Expr) = N_Allocator
- and then No (Subpool_Handle_Name (Expr))
- then
- return;
- end if;
-
- declare
- Loc : constant Source_Ptr := Sloc (N);
- Addr_Id : constant Entity_Id := Make_Temporary (Loc, 'A');
- Alig_Id : constant Entity_Id := Make_Temporary (Loc, 'L');
- Proc_Id : constant Entity_Id := Make_Temporary (Loc, 'P');
- Size_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
-
- Actuals : List_Id;
- Fin_Addr_Id : Entity_Id;
- Fin_Mas_Act : Node_Id;
- Fin_Mas_Id : Entity_Id;
- Proc_To_Call : Entity_Id;
- Subpool : Node_Id := Empty;
-
- begin
- -- Step 1: Construct all the actuals for the call to library routine
- -- Allocate_Any_Controlled / Deallocate_Any_Controlled.
-
- -- a) Storage pool
-
- Actuals := New_List (New_Reference_To (Pool_Id, Loc));
-
- if Is_Allocate then
-
- -- b) Subpool
-
- if Nkind (Expr) = N_Allocator then
- Subpool := Subpool_Handle_Name (Expr);
- end if;
-
- -- If a subpool is present it can be an arbitrary name, so make
- -- the actual by copying the tree.
-
- if Present (Subpool) then
- Append_To (Actuals, New_Copy_Tree (Subpool, New_Sloc => Loc));
- else
- Append_To (Actuals, Make_Null (Loc));
- end if;
-
- -- c) Finalization master
-
- if Needs_Finalization (Desig_Typ) then
- Fin_Mas_Id := Finalization_Master (Ptr_Typ);
- Fin_Mas_Act := New_Reference_To (Fin_Mas_Id, Loc);
-
- -- Handle the case where the master is actually a pointer to a
- -- master. This case arises in build-in-place functions.
-
- if Is_Access_Type (Etype (Fin_Mas_Id)) then
- Append_To (Actuals, Fin_Mas_Act);
- else
- Append_To (Actuals,
- Make_Attribute_Reference (Loc,
- Prefix => Fin_Mas_Act,
- Attribute_Name => Name_Unrestricted_Access));
- end if;
- else
- Append_To (Actuals, Make_Null (Loc));
- end if;
-
- -- d) Finalize_Address
-
- -- Primitive Finalize_Address is never generated in CodePeer mode
- -- since it contains an Unchecked_Conversion.
-
- if Needs_Finalization (Desig_Typ) and then not CodePeer_Mode then
- Fin_Addr_Id := Find_Finalize_Address (Desig_Typ);
- pragma Assert (Present (Fin_Addr_Id));
-
- Append_To (Actuals,
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Fin_Addr_Id, Loc),
- Attribute_Name => Name_Unrestricted_Access));
- else
- Append_To (Actuals, Make_Null (Loc));
- end if;
- end if;
-
- -- e) Address
- -- f) Storage_Size
- -- g) Alignment
-
- Append_To (Actuals, New_Reference_To (Addr_Id, Loc));
- Append_To (Actuals, New_Reference_To (Size_Id, Loc));
-
- if Is_Allocate or else not Is_Class_Wide_Type (Desig_Typ) then
- Append_To (Actuals, New_Reference_To (Alig_Id, Loc));
-
- -- For deallocation of class wide types we obtain the value of
- -- alignment from the Type Specific Record of the deallocated object.
- -- This is needed because the frontend expansion of class-wide types
- -- into equivalent types confuses the backend.
-
- else
- -- Generate:
- -- Obj.all'Alignment
-
- -- ... because 'Alignment applied to class-wide types is expanded
- -- into the code that reads the value of alignment from the TSD
- -- (see Expand_N_Attribute_Reference)
-
- Append_To (Actuals,
- Unchecked_Convert_To (RTE (RE_Storage_Offset),
- Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Explicit_Dereference (Loc, Relocate_Node (Expr)),
- Attribute_Name => Name_Alignment)));
- end if;
-
- -- h) Is_Controlled
-
- -- Generate a run-time check to determine whether a class-wide object
- -- is truly controlled.
-
- if Needs_Finalization (Desig_Typ) then
- if Is_Class_Wide_Type (Desig_Typ)
- or else Is_Generic_Actual_Type (Desig_Typ)
- then
- declare
- Flag_Id : constant Entity_Id := Make_Temporary (Loc, 'F');
- Flag_Expr : Node_Id;
- Param : Node_Id;
- Temp : Node_Id;
-
- begin
- if Is_Allocate then
- Temp := Find_Object (Expression (Expr));
- else
- Temp := Expr;
- end if;
-
- -- Processing for generic actuals
-
- if Is_Generic_Actual_Type (Desig_Typ) then
- Flag_Expr :=
- New_Reference_To (Boolean_Literals
- (Needs_Finalization (Base_Type (Desig_Typ))), Loc);
-
- -- Processing for subtype indications
-
- elsif Nkind (Temp) in N_Has_Entity
- and then Is_Type (Entity (Temp))
- then
- Flag_Expr :=
- New_Reference_To (Boolean_Literals
- (Needs_Finalization (Entity (Temp))), Loc);
-
- -- Generate a runtime check to test the controlled state of
- -- an object for the purposes of allocation / deallocation.
-
- else
- -- The following case arises when allocating through an
- -- interface class-wide type, generate:
- --
- -- Temp.all
-
- if Is_RTE (Etype (Temp), RE_Tag_Ptr) then
- Param :=
- Make_Explicit_Dereference (Loc,
- Prefix =>
- Relocate_Node (Temp));
-
- -- Generate:
- -- Temp'Tag
-
- else
- Param :=
- Make_Attribute_Reference (Loc,
- Prefix =>
- Relocate_Node (Temp),
- Attribute_Name => Name_Tag);
- end if;
-
- -- Generate:
- -- Needs_Finalization (<Param>)
-
- Flag_Expr :=
- Make_Function_Call (Loc,
- Name =>
- New_Reference_To (RTE (RE_Needs_Finalization), Loc),
- Parameter_Associations => New_List (Param));
- end if;
-
- -- Create the temporary which represents the finalization
- -- state of the expression. Generate:
- --
- -- F : constant Boolean := <Flag_Expr>;
-
- Insert_Action (N,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Flag_Id,
- Constant_Present => True,
- Object_Definition =>
- New_Reference_To (Standard_Boolean, Loc),
- Expression => Flag_Expr));
-
- -- The flag acts as the last actual
-
- Append_To (Actuals, New_Reference_To (Flag_Id, Loc));
- end;
-
- -- The object is statically known to be controlled
-
- else
- Append_To (Actuals, New_Reference_To (Standard_True, Loc));
- end if;
-
- else
- Append_To (Actuals, New_Reference_To (Standard_False, Loc));
- end if;
-
- -- i) On_Subpool
-
- if Is_Allocate then
- Append_To (Actuals,
- New_Reference_To (Boolean_Literals (Present (Subpool)), Loc));
- end if;
-
- -- Step 2: Build a wrapper Allocate / Deallocate which internally
- -- calls Allocate_Any_Controlled / Deallocate_Any_Controlled.
-
- -- Select the proper routine to call
-
- if Is_Allocate then
- Proc_To_Call := RTE (RE_Allocate_Any_Controlled);
- else
- Proc_To_Call := RTE (RE_Deallocate_Any_Controlled);
- end if;
-
- -- Create a custom Allocate / Deallocate routine which has identical
- -- profile to that of System.Storage_Pools.
-
- Insert_Action (N,
- Make_Subprogram_Body (Loc,
- Specification =>
-
- -- procedure Pnn
-
- Make_Procedure_Specification (Loc,
- Defining_Unit_Name => Proc_Id,
- Parameter_Specifications => New_List (
-
- -- P : Root_Storage_Pool
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Make_Temporary (Loc, 'P'),
- Parameter_Type =>
- New_Reference_To (RTE (RE_Root_Storage_Pool), Loc)),
-
- -- A : [out] Address
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Addr_Id,
- Out_Present => Is_Allocate,
- Parameter_Type =>
- New_Reference_To (RTE (RE_Address), Loc)),
-
- -- S : Storage_Count
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Size_Id,
- Parameter_Type =>
- New_Reference_To (RTE (RE_Storage_Count), Loc)),
-
- -- L : Storage_Count
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => Alig_Id,
- Parameter_Type =>
- New_Reference_To (RTE (RE_Storage_Count), Loc)))),
-
- Declarations => No_List,
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (Proc_To_Call, Loc),
- Parameter_Associations => Actuals)))));
-
- -- The newly generated Allocate / Deallocate becomes the default
- -- procedure to call when the back end processes the allocation /
- -- deallocation.
-
- if Is_Allocate then
- Set_Procedure_To_Call (Expr, Proc_Id);
- else
- Set_Procedure_To_Call (N, Proc_Id);
- end if;
- end;
- end Build_Allocate_Deallocate_Proc;
-
- ------------------------
- -- Build_Runtime_Call --
- ------------------------
-
- function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
- begin
- -- If entity is not available, we can skip making the call (this avoids
- -- junk duplicated error messages in a number of cases).
-
- if not RTE_Available (RE) then
- return Make_Null_Statement (Loc);
- else
- return
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (RTE (RE), Loc));
- end if;
- end Build_Runtime_Call;
-
- ----------------------------
- -- Build_Task_Array_Image --
- ----------------------------
-
- -- This function generates the body for a function that constructs the
- -- image string for a task that is an array component. The function is
- -- local to the init proc for the array type, and is called for each one
- -- of the components. The constructed image has the form of an indexed
- -- component, whose prefix is the outer variable of the array type.
- -- The n-dimensional array type has known indexes Index, Index2...
-
- -- Id_Ref is an indexed component form created by the enclosing init proc.
- -- Its successive indexes are Val1, Val2, ... which are the loop variables
- -- in the loops that call the individual task init proc on each component.
-
- -- The generated function has the following structure:
-
- -- function F return String is
- -- Pref : string renames Task_Name;
- -- T1 : String := Index1'Image (Val1);
- -- ...
- -- Tn : String := indexn'image (Valn);
- -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
- -- -- Len includes commas and the end parentheses.
- -- Res : String (1..Len);
- -- Pos : Integer := Pref'Length;
- --
- -- begin
- -- Res (1 .. Pos) := Pref;
- -- Pos := Pos + 1;
- -- Res (Pos) := '(';
- -- Pos := Pos + 1;
- -- Res (Pos .. Pos + T1'Length - 1) := T1;
- -- Pos := Pos + T1'Length;
- -- Res (Pos) := '.';
- -- Pos := Pos + 1;
- -- ...
- -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
- -- Res (Len) := ')';
- --
- -- return Res;
- -- end F;
- --
- -- Needless to say, multidimensional arrays of tasks are rare enough that
- -- the bulkiness of this code is not really a concern.
-
- function Build_Task_Array_Image
- (Loc : Source_Ptr;
- Id_Ref : Node_Id;
- A_Type : Entity_Id;
- Dyn : Boolean := False) return Node_Id
- is
- Dims : constant Nat := Number_Dimensions (A_Type);
- -- Number of dimensions for array of tasks
-
- Temps : array (1 .. Dims) of Entity_Id;
- -- Array of temporaries to hold string for each index
-
- Indx : Node_Id;
- -- Index expression
-
- Len : Entity_Id;
- -- Total length of generated name
-
- Pos : Entity_Id;
- -- Running index for substring assignments
-
- Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
- -- Name of enclosing variable, prefix of resulting name
-
- Res : Entity_Id;
- -- String to hold result
-
- Val : Node_Id;
- -- Value of successive indexes
-
- Sum : Node_Id;
- -- Expression to compute total size of string
-
- T : Entity_Id;
- -- Entity for name at one index position
-
- Decls : constant List_Id := New_List;
- Stats : constant List_Id := New_List;
-
- begin
- -- For a dynamic task, the name comes from the target variable. For a
- -- static one it is a formal of the enclosing init proc.
-
- if Dyn then
- Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Pref,
- Object_Definition => New_Occurrence_Of (Standard_String, Loc),
- Expression =>
- Make_String_Literal (Loc,
- Strval => String_From_Name_Buffer)));
-
- else
- Append_To (Decls,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Pref,
- Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
- Name => Make_Identifier (Loc, Name_uTask_Name)));
- end if;
-
- Indx := First_Index (A_Type);
- Val := First (Expressions (Id_Ref));
-
- for J in 1 .. Dims loop
- T := Make_Temporary (Loc, 'T');
- Temps (J) := T;
-
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => T,
- Object_Definition => New_Occurrence_Of (Standard_String, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Image,
- Prefix => New_Occurrence_Of (Etype (Indx), Loc),
- Expressions => New_List (New_Copy_Tree (Val)))));
-
- Next_Index (Indx);
- Next (Val);
- end loop;
-
- Sum := Make_Integer_Literal (Loc, Dims + 1);
-
- Sum :=
- Make_Op_Add (Loc,
- Left_Opnd => Sum,
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix => New_Occurrence_Of (Pref, Loc),
- Expressions => New_List (Make_Integer_Literal (Loc, 1))));
-
- for J in 1 .. Dims loop
- Sum :=
- Make_Op_Add (Loc,
- Left_Opnd => Sum,
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix =>
- New_Occurrence_Of (Temps (J), Loc),
- Expressions => New_List (Make_Integer_Literal (Loc, 1))));
- end loop;
-
- Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
-
- Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Indexed_Component (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
- Expression =>
- Make_Character_Literal (Loc,
- Chars => Name_Find,
- Char_Literal_Value => UI_From_Int (Character'Pos ('(')))));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Pos, Loc),
- Expression =>
- Make_Op_Add (Loc,
- Left_Opnd => New_Occurrence_Of (Pos, Loc),
- Right_Opnd => Make_Integer_Literal (Loc, 1))));
-
- for J in 1 .. Dims loop
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Slice (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Discrete_Range =>
- Make_Range (Loc,
- Low_Bound => New_Occurrence_Of (Pos, Loc),
- High_Bound =>
- Make_Op_Subtract (Loc,
- Left_Opnd =>
- Make_Op_Add (Loc,
- Left_Opnd => New_Occurrence_Of (Pos, Loc),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix =>
- New_Occurrence_Of (Temps (J), Loc),
- Expressions =>
- New_List (Make_Integer_Literal (Loc, 1)))),
- Right_Opnd => Make_Integer_Literal (Loc, 1)))),
-
- Expression => New_Occurrence_Of (Temps (J), Loc)));
-
- if J < Dims then
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Pos, Loc),
- Expression =>
- Make_Op_Add (Loc,
- Left_Opnd => New_Occurrence_Of (Pos, Loc),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix => New_Occurrence_Of (Temps (J), Loc),
- Expressions =>
- New_List (Make_Integer_Literal (Loc, 1))))));
-
- Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => Make_Indexed_Component (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
- Expression =>
- Make_Character_Literal (Loc,
- Chars => Name_Find,
- Char_Literal_Value => UI_From_Int (Character'Pos (',')))));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Pos, Loc),
- Expression =>
- Make_Op_Add (Loc,
- Left_Opnd => New_Occurrence_Of (Pos, Loc),
- Right_Opnd => Make_Integer_Literal (Loc, 1))));
- end if;
- end loop;
-
- Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Indexed_Component (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Expressions => New_List (New_Occurrence_Of (Len, Loc))),
- Expression =>
- Make_Character_Literal (Loc,
- Chars => Name_Find,
- Char_Literal_Value => UI_From_Int (Character'Pos (')')))));
- return Build_Task_Image_Function (Loc, Decls, Stats, Res);
- end Build_Task_Array_Image;
-
- ----------------------------
- -- Build_Task_Image_Decls --
- ----------------------------
-
- function Build_Task_Image_Decls
- (Loc : Source_Ptr;
- Id_Ref : Node_Id;
- A_Type : Entity_Id;
- In_Init_Proc : Boolean := False) return List_Id
- is
- Decls : constant List_Id := New_List;
- T_Id : Entity_Id := Empty;
- Decl : Node_Id;
- Expr : Node_Id := Empty;
- Fun : Node_Id := Empty;
- Is_Dyn : constant Boolean :=
- Nkind (Parent (Id_Ref)) = N_Assignment_Statement
- and then
- Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
-
- begin
- -- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
- -- generate a dummy declaration only.
-
- if Restriction_Active (No_Implicit_Heap_Allocations)
- or else Global_Discard_Names
- then
- T_Id := Make_Temporary (Loc, 'J');
- Name_Len := 0;
-
- return
- New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => T_Id,
- Object_Definition => New_Occurrence_Of (Standard_String, Loc),
- Expression =>
- Make_String_Literal (Loc,
- Strval => String_From_Name_Buffer)));
-
- else
- if Nkind (Id_Ref) = N_Identifier
- or else Nkind (Id_Ref) = N_Defining_Identifier
- then
- -- For a simple variable, the image of the task is built from
- -- the name of the variable. To avoid possible conflict with the
- -- anonymous type created for a single protected object, add a
- -- numeric suffix.
-
- T_Id :=
- Make_Defining_Identifier (Loc,
- New_External_Name (Chars (Id_Ref), 'T', 1));
-
- Get_Name_String (Chars (Id_Ref));
-
- Expr :=
- Make_String_Literal (Loc,
- Strval => String_From_Name_Buffer);
-
- elsif Nkind (Id_Ref) = N_Selected_Component then
- T_Id :=
- Make_Defining_Identifier (Loc,
- New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
- Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
-
- elsif Nkind (Id_Ref) = N_Indexed_Component then
- T_Id :=
- Make_Defining_Identifier (Loc,
- New_External_Name (Chars (A_Type), 'N'));
-
- Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
- end if;
- end if;
-
- if Present (Fun) then
- Append (Fun, Decls);
- Expr := Make_Function_Call (Loc,
- Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
-
- if not In_Init_Proc and then VM_Target = No_VM then
- Set_Uses_Sec_Stack (Defining_Entity (Fun));
- end if;
- end if;
-
- Decl := Make_Object_Declaration (Loc,
- Defining_Identifier => T_Id,
- Object_Definition => New_Occurrence_Of (Standard_String, Loc),
- Constant_Present => True,
- Expression => Expr);
-
- Append (Decl, Decls);
- return Decls;
- end Build_Task_Image_Decls;
-
- -------------------------------
- -- Build_Task_Image_Function --
- -------------------------------
-
- function Build_Task_Image_Function
- (Loc : Source_Ptr;
- Decls : List_Id;
- Stats : List_Id;
- Res : Entity_Id) return Node_Id
- is
- Spec : Node_Id;
-
- begin
- Append_To (Stats,
- Make_Simple_Return_Statement (Loc,
- Expression => New_Occurrence_Of (Res, Loc)));
-
- Spec := Make_Function_Specification (Loc,
- Defining_Unit_Name => Make_Temporary (Loc, 'F'),
- Result_Definition => New_Occurrence_Of (Standard_String, Loc));
-
- -- Calls to 'Image use the secondary stack, which must be cleaned up
- -- after the task name is built.
-
- return Make_Subprogram_Body (Loc,
- Specification => Spec,
- Declarations => Decls,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
- end Build_Task_Image_Function;
-
- -----------------------------
- -- Build_Task_Image_Prefix --
- -----------------------------
-
- procedure Build_Task_Image_Prefix
- (Loc : Source_Ptr;
- Len : out Entity_Id;
- Res : out Entity_Id;
- Pos : out Entity_Id;
- Prefix : Entity_Id;
- Sum : Node_Id;
- Decls : List_Id;
- Stats : List_Id)
- is
- begin
- Len := Make_Temporary (Loc, 'L', Sum);
-
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Len,
- Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
- Expression => Sum));
-
- Res := Make_Temporary (Loc, 'R');
-
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Res,
- Object_Definition =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints =>
- New_List (
- Make_Range (Loc,
- Low_Bound => Make_Integer_Literal (Loc, 1),
- High_Bound => New_Occurrence_Of (Len, Loc)))))));
-
- Pos := Make_Temporary (Loc, 'P');
-
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Pos,
- Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
-
- -- Pos := Prefix'Length;
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Pos, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix => New_Occurrence_Of (Prefix, Loc),
- Expressions => New_List (Make_Integer_Literal (Loc, 1)))));
-
- -- Res (1 .. Pos) := Prefix;
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Slice (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Discrete_Range =>
- Make_Range (Loc,
- Low_Bound => Make_Integer_Literal (Loc, 1),
- High_Bound => New_Occurrence_Of (Pos, Loc))),
-
- Expression => New_Occurrence_Of (Prefix, Loc)));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Pos, Loc),
- Expression =>
- Make_Op_Add (Loc,
- Left_Opnd => New_Occurrence_Of (Pos, Loc),
- Right_Opnd => Make_Integer_Literal (Loc, 1))));
- end Build_Task_Image_Prefix;
-
- -----------------------------
- -- Build_Task_Record_Image --
- -----------------------------
-
- function Build_Task_Record_Image
- (Loc : Source_Ptr;
- Id_Ref : Node_Id;
- Dyn : Boolean := False) return Node_Id
- is
- Len : Entity_Id;
- -- Total length of generated name
-
- Pos : Entity_Id;
- -- Index into result
-
- Res : Entity_Id;
- -- String to hold result
-
- Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
- -- Name of enclosing variable, prefix of resulting name
-
- Sum : Node_Id;
- -- Expression to compute total size of string
-
- Sel : Entity_Id;
- -- Entity for selector name
-
- Decls : constant List_Id := New_List;
- Stats : constant List_Id := New_List;
-
- begin
- -- For a dynamic task, the name comes from the target variable. For a
- -- static one it is a formal of the enclosing init proc.
-
- if Dyn then
- Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Pref,
- Object_Definition => New_Occurrence_Of (Standard_String, Loc),
- Expression =>
- Make_String_Literal (Loc,
- Strval => String_From_Name_Buffer)));
-
- else
- Append_To (Decls,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Pref,
- Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
- Name => Make_Identifier (Loc, Name_uTask_Name)));
- end if;
-
- Sel := Make_Temporary (Loc, 'S');
-
- Get_Name_String (Chars (Selector_Name (Id_Ref)));
-
- Append_To (Decls,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Sel,
- Object_Definition => New_Occurrence_Of (Standard_String, Loc),
- Expression =>
- Make_String_Literal (Loc,
- Strval => String_From_Name_Buffer)));
-
- Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
-
- Sum :=
- Make_Op_Add (Loc,
- Left_Opnd => Sum,
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix =>
- New_Occurrence_Of (Pref, Loc),
- Expressions => New_List (Make_Integer_Literal (Loc, 1))));
-
- Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
-
- Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
-
- -- Res (Pos) := '.';
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => Make_Indexed_Component (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
- Expression =>
- Make_Character_Literal (Loc,
- Chars => Name_Find,
- Char_Literal_Value =>
- UI_From_Int (Character'Pos ('.')))));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Pos, Loc),
- Expression =>
- Make_Op_Add (Loc,
- Left_Opnd => New_Occurrence_Of (Pos, Loc),
- Right_Opnd => Make_Integer_Literal (Loc, 1))));
-
- -- Res (Pos .. Len) := Selector;
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => Make_Slice (Loc,
- Prefix => New_Occurrence_Of (Res, Loc),
- Discrete_Range =>
- Make_Range (Loc,
- Low_Bound => New_Occurrence_Of (Pos, Loc),
- High_Bound => New_Occurrence_Of (Len, Loc))),
- Expression => New_Occurrence_Of (Sel, Loc)));
-
- return Build_Task_Image_Function (Loc, Decls, Stats, Res);
- end Build_Task_Record_Image;
-
- ----------------------------------
- -- Component_May_Be_Bit_Aligned --
- ----------------------------------
-
- function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
- UT : Entity_Id;
-
- begin
- -- If no component clause, then everything is fine, since the back end
- -- never bit-misaligns by default, even if there is a pragma Packed for
- -- the record.
-
- if No (Comp) or else No (Component_Clause (Comp)) then
- return False;
- end if;
-
- UT := Underlying_Type (Etype (Comp));
-
- -- It is only array and record types that cause trouble
-
- if not Is_Record_Type (UT) and then not Is_Array_Type (UT) then
- return False;
-
- -- If we know that we have a small (64 bits or less) record or small
- -- bit-packed array, then everything is fine, since the back end can
- -- handle these cases correctly.
-
- elsif Esize (Comp) <= 64
- and then (Is_Record_Type (UT) or else Is_Bit_Packed_Array (UT))
- then
- return False;
-
- -- Otherwise if the component is not byte aligned, we know we have the
- -- nasty unaligned case.
-
- elsif Normalized_First_Bit (Comp) /= Uint_0
- or else Esize (Comp) mod System_Storage_Unit /= Uint_0
- then
- return True;
-
- -- If we are large and byte aligned, then OK at this level
-
- else
- return False;
- end if;
- end Component_May_Be_Bit_Aligned;
-
- -----------------------------------
- -- Corresponding_Runtime_Package --
- -----------------------------------
-
- function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
- Pkg_Id : RTU_Id := RTU_Null;
-
- begin
- pragma Assert (Is_Concurrent_Type (Typ));
-
- if Ekind (Typ) in Protected_Kind then
- if Has_Entries (Typ)
-
- -- A protected type without entries that covers an interface and
- -- overrides the abstract routines with protected procedures is
- -- considered equivalent to a protected type with entries in the
- -- context of dispatching select statements. It is sufficient to
- -- check for the presence of an interface list in the declaration
- -- node to recognize this case.
-
- or else Present (Interface_List (Parent (Typ)))
- or else
- (((Has_Attach_Handler (Typ) and then not Restricted_Profile)
- or else Has_Interrupt_Handler (Typ))
- and then not Restriction_Active (No_Dynamic_Attachment))
- then
- if Abort_Allowed
- or else Restriction_Active (No_Entry_Queue) = False
- or else Number_Entries (Typ) > 1
- or else (Has_Attach_Handler (Typ)
- and then not Restricted_Profile)
- then
- Pkg_Id := System_Tasking_Protected_Objects_Entries;
- else
- Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
- end if;
-
- else
- Pkg_Id := System_Tasking_Protected_Objects;
- end if;
- end if;
-
- return Pkg_Id;
- end Corresponding_Runtime_Package;
-
- -------------------------------
- -- Convert_To_Actual_Subtype --
- -------------------------------
-
- procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
- Act_ST : Entity_Id;
-
- begin
- Act_ST := Get_Actual_Subtype (Exp);
-
- if Act_ST = Etype (Exp) then
- return;
- else
- Rewrite (Exp, Convert_To (Act_ST, Relocate_Node (Exp)));
- Analyze_And_Resolve (Exp, Act_ST);
- end if;
- end Convert_To_Actual_Subtype;
-
- -----------------------------------
- -- Current_Sem_Unit_Declarations --
- -----------------------------------
-
- function Current_Sem_Unit_Declarations return List_Id is
- U : Node_Id := Unit (Cunit (Current_Sem_Unit));
- Decls : List_Id;
-
- begin
- -- If the current unit is a package body, locate the visible
- -- declarations of the package spec.
-
- if Nkind (U) = N_Package_Body then
- U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
- end if;
-
- if Nkind (U) = N_Package_Declaration then
- U := Specification (U);
- Decls := Visible_Declarations (U);
-
- if No (Decls) then
- Decls := New_List;
- Set_Visible_Declarations (U, Decls);
- end if;
-
- else
- Decls := Declarations (U);
-
- if No (Decls) then
- Decls := New_List;
- Set_Declarations (U, Decls);
- end if;
- end if;
-
- return Decls;
- end Current_Sem_Unit_Declarations;
-
- -----------------------
- -- Duplicate_Subexpr --
- -----------------------
-
- function Duplicate_Subexpr
- (Exp : Node_Id;
- Name_Req : Boolean := False) return Node_Id
- is
- begin
- Remove_Side_Effects (Exp, Name_Req);
- return New_Copy_Tree (Exp);
- end Duplicate_Subexpr;
-
- ---------------------------------
- -- Duplicate_Subexpr_No_Checks --
- ---------------------------------
-
- function Duplicate_Subexpr_No_Checks
- (Exp : Node_Id;
- Name_Req : Boolean := False) return Node_Id
- is
- New_Exp : Node_Id;
- begin
- Remove_Side_Effects (Exp, Name_Req);
- New_Exp := New_Copy_Tree (Exp);
- Remove_Checks (New_Exp);
- return New_Exp;
- end Duplicate_Subexpr_No_Checks;
-
- -----------------------------------
- -- Duplicate_Subexpr_Move_Checks --
- -----------------------------------
-
- function Duplicate_Subexpr_Move_Checks
- (Exp : Node_Id;
- Name_Req : Boolean := False) return Node_Id
- is
- New_Exp : Node_Id;
- begin
- Remove_Side_Effects (Exp, Name_Req);
- New_Exp := New_Copy_Tree (Exp);
- Remove_Checks (Exp);
- return New_Exp;
- end Duplicate_Subexpr_Move_Checks;
-
- --------------------
- -- Ensure_Defined --
- --------------------
-
- procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
- IR : Node_Id;
-
- begin
- -- An itype reference must only be created if this is a local itype, so
- -- that gigi can elaborate it on the proper objstack.
-
- if Is_Itype (Typ) and then Scope (Typ) = Current_Scope then
- IR := Make_Itype_Reference (Sloc (N));
- Set_Itype (IR, Typ);
- Insert_Action (N, IR);
- end if;
- end Ensure_Defined;
-
- --------------------
- -- Entry_Names_OK --
- --------------------
-
- function Entry_Names_OK return Boolean is
- begin
- return
- not Restricted_Profile
- and then not Global_Discard_Names
- and then not Restriction_Active (No_Implicit_Heap_Allocations)
- and then not Restriction_Active (No_Local_Allocators);
- end Entry_Names_OK;
-
- -------------------
- -- Evaluate_Name --
- -------------------
-
- procedure Evaluate_Name (Nam : Node_Id) is
- K : constant Node_Kind := Nkind (Nam);
-
- begin
- -- For an explicit dereference, we simply force the evaluation of the
- -- name expression. The dereference provides a value that is the address
- -- for the renamed object, and it is precisely this value that we want
- -- to preserve.
-
- if K = N_Explicit_Dereference then
- Force_Evaluation (Prefix (Nam));
-
- -- For a selected component, we simply evaluate the prefix
-
- elsif K = N_Selected_Component then
- Evaluate_Name (Prefix (Nam));
-
- -- For an indexed component, or an attribute reference, we evaluate the
- -- prefix, which is itself a name, recursively, and then force the
- -- evaluation of all the subscripts (or attribute expressions).
-
- elsif Nkind_In (K, N_Indexed_Component, N_Attribute_Reference) then
- Evaluate_Name (Prefix (Nam));
-
- declare
- E : Node_Id;
-
- begin
- E := First (Expressions (Nam));
- while Present (E) loop
- Force_Evaluation (E);
-
- if Original_Node (E) /= E then
- Set_Do_Range_Check (E, Do_Range_Check (Original_Node (E)));
- end if;
-
- Next (E);
- end loop;
- end;
-
- -- For a slice, we evaluate the prefix, as for the indexed component
- -- case and then, if there is a range present, either directly or as the
- -- constraint of a discrete subtype indication, we evaluate the two
- -- bounds of this range.
-
- elsif K = N_Slice then
- Evaluate_Name (Prefix (Nam));
-
- declare
- DR : constant Node_Id := Discrete_Range (Nam);
- Constr : Node_Id;
- Rexpr : Node_Id;
-
- begin
- if Nkind (DR) = N_Range then
- Force_Evaluation (Low_Bound (DR));
- Force_Evaluation (High_Bound (DR));
-
- elsif Nkind (DR) = N_Subtype_Indication then
- Constr := Constraint (DR);
-
- if Nkind (Constr) = N_Range_Constraint then
- Rexpr := Range_Expression (Constr);
-
- Force_Evaluation (Low_Bound (Rexpr));
- Force_Evaluation (High_Bound (Rexpr));
- end if;
- end if;
- end;
-
- -- For a type conversion, the expression of the conversion must be the
- -- name of an object, and we simply need to evaluate this name.
-
- elsif K = N_Type_Conversion then
- Evaluate_Name (Expression (Nam));
-
- -- For a function call, we evaluate the call
-
- elsif K = N_Function_Call then
- Force_Evaluation (Nam);
-
- -- The remaining cases are direct name, operator symbol and character
- -- literal. In all these cases, we do nothing, since we want to
- -- reevaluate each time the renamed object is used.
-
- else
- return;
- end if;
- end Evaluate_Name;
-
- ---------------------
- -- Evolve_And_Then --
- ---------------------
-
- procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
- begin
- if No (Cond) then
- Cond := Cond1;
- else
- Cond :=
- Make_And_Then (Sloc (Cond1),
- Left_Opnd => Cond,
- Right_Opnd => Cond1);
- end if;
- end Evolve_And_Then;
-
- --------------------
- -- Evolve_Or_Else --
- --------------------
-
- procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
- begin
- if No (Cond) then
- Cond := Cond1;
- else
- Cond :=
- Make_Or_Else (Sloc (Cond1),
- Left_Opnd => Cond,
- Right_Opnd => Cond1);
- end if;
- end Evolve_Or_Else;
-
- ------------------------------
- -- Expand_Subtype_From_Expr --
- ------------------------------
-
- -- This function is applicable for both static and dynamic allocation of
- -- objects which are constrained by an initial expression. Basically it
- -- transforms an unconstrained subtype indication into a constrained one.
-
- -- The expression may also be transformed in certain cases in order to
- -- avoid multiple evaluation. In the static allocation case, the general
- -- scheme is:
-
- -- Val : T := Expr;
-
- -- is transformed into
-
- -- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
- --
- -- Here are the main cases :
- --
- -- <if Expr is a Slice>
- -- Val : T ([Index_Subtype (Expr)]) := Expr;
- --
- -- <elsif Expr is a String Literal>
- -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
- --
- -- <elsif Expr is Constrained>
- -- subtype T is Type_Of_Expr
- -- Val : T := Expr;
- --
- -- <elsif Expr is an entity_name>
- -- Val : T (constraints taken from Expr) := Expr;
- --
- -- <else>
- -- type Axxx is access all T;
- -- Rval : Axxx := Expr'ref;
- -- Val : T (constraints taken from Rval) := Rval.all;
-
- -- ??? note: when the Expression is allocated in the secondary stack
- -- we could use it directly instead of copying it by declaring
- -- Val : T (...) renames Rval.all
-
- procedure Expand_Subtype_From_Expr
- (N : Node_Id;
- Unc_Type : Entity_Id;
- Subtype_Indic : Node_Id;
- Exp : Node_Id)
- is
- Loc : constant Source_Ptr := Sloc (N);
- Exp_Typ : constant Entity_Id := Etype (Exp);
- T : Entity_Id;
-
- begin
- -- In general we cannot build the subtype if expansion is disabled,
- -- because internal entities may not have been defined. However, to
- -- avoid some cascaded errors, we try to continue when the expression is
- -- an array (or string), because it is safe to compute the bounds. It is
- -- in fact required to do so even in a generic context, because there
- -- may be constants that depend on the bounds of a string literal, both
- -- standard string types and more generally arrays of characters.
-
- if not Expander_Active
- and then (No (Etype (Exp)) or else not Is_String_Type (Etype (Exp)))
- then
- return;
- end if;
-
- if Nkind (Exp) = N_Slice then
- declare
- Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
-
- begin
- Rewrite (Subtype_Indic,
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (Unc_Type, Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints => New_List
- (New_Reference_To (Slice_Type, Loc)))));
-
- -- This subtype indication may be used later for constraint checks
- -- we better make sure that if a variable was used as a bound of
- -- of the original slice, its value is frozen.
-
- Force_Evaluation (Low_Bound (Scalar_Range (Slice_Type)));
- Force_Evaluation (High_Bound (Scalar_Range (Slice_Type)));
- end;
-
- elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
- Rewrite (Subtype_Indic,
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (Unc_Type, Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints => New_List (
- Make_Literal_Range (Loc,
- Literal_Typ => Exp_Typ)))));
-
- elsif Is_Constrained (Exp_Typ)
- and then not Is_Class_Wide_Type (Unc_Type)
- then
- if Is_Itype (Exp_Typ) then
-
- -- Within an initialization procedure, a selected component
- -- denotes a component of the enclosing record, and it appears as
- -- an actual in a call to its own initialization procedure. If
- -- this component depends on the outer discriminant, we must
- -- generate the proper actual subtype for it.
-
- if Nkind (Exp) = N_Selected_Component
- and then Within_Init_Proc
- then
- declare
- Decl : constant Node_Id :=
- Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
- begin
- if Present (Decl) then
- Insert_Action (N, Decl);
- T := Defining_Identifier (Decl);
- else
- T := Exp_Typ;
- end if;
- end;
-
- -- No need to generate a new one (new what???)
-
- else
- T := Exp_Typ;
- end if;
-
- else
- T := Make_Temporary (Loc, 'T');
-
- Insert_Action (N,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => T,
- Subtype_Indication => New_Reference_To (Exp_Typ, Loc)));
-
- -- This type is marked as an itype even though it has an explicit
- -- declaration since otherwise Is_Generic_Actual_Type can get
- -- set, resulting in the generation of spurious errors. (See
- -- sem_ch8.Analyze_Package_Renaming and sem_type.covers)
-
- Set_Is_Itype (T);
- Set_Associated_Node_For_Itype (T, Exp);
- end if;
-
- Rewrite (Subtype_Indic, New_Reference_To (T, Loc));
-
- -- Nothing needs to be done for private types with unknown discriminants
- -- if the underlying type is not an unconstrained composite type or it
- -- is an unchecked union.
-
- elsif Is_Private_Type (Unc_Type)
- and then Has_Unknown_Discriminants (Unc_Type)
- and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
- or else Is_Constrained (Underlying_Type (Unc_Type))
- or else Is_Unchecked_Union (Underlying_Type (Unc_Type)))
- then
- null;
-
- -- Case of derived type with unknown discriminants where the parent type
- -- also has unknown discriminants.
-
- elsif Is_Record_Type (Unc_Type)
- and then not Is_Class_Wide_Type (Unc_Type)
- and then Has_Unknown_Discriminants (Unc_Type)
- and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
- then
- -- Nothing to be done if no underlying record view available
-
- if No (Underlying_Record_View (Unc_Type)) then
- null;
-
- -- Otherwise use the Underlying_Record_View to create the proper
- -- constrained subtype for an object of a derived type with unknown
- -- discriminants.
-
- else
- Remove_Side_Effects (Exp);
- Rewrite (Subtype_Indic,
- Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type)));
- end if;
-
- -- Renamings of class-wide interface types require no equivalent
- -- constrained type declarations because we only need to reference
- -- the tag component associated with the interface. The same is
- -- presumably true for class-wide types in general, so this test
- -- is broadened to include all class-wide renamings, which also
- -- avoids cases of unbounded recursion in Remove_Side_Effects.
- -- (Is this really correct, or are there some cases of class-wide
- -- renamings that require action in this procedure???)
-
- elsif Present (N)
- and then Nkind (N) = N_Object_Renaming_Declaration
- and then Is_Class_Wide_Type (Unc_Type)
- then
- null;
-
- -- In Ada 95 nothing to be done if the type of the expression is limited
- -- because in this case the expression cannot be copied, and its use can
- -- only be by reference.
-
- -- In Ada 2005 the context can be an object declaration whose expression
- -- is a function that returns in place. If the nominal subtype has
- -- unknown discriminants, the call still provides constraints on the
- -- object, and we have to create an actual subtype from it.
-
- -- If the type is class-wide, the expression is dynamically tagged and
- -- we do not create an actual subtype either. Ditto for an interface.
- -- For now this applies only if the type is immutably limited, and the
- -- function being called is build-in-place. This will have to be revised
- -- when build-in-place functions are generalized to other types.
-
- elsif Is_Immutably_Limited_Type (Exp_Typ)
- and then
- (Is_Class_Wide_Type (Exp_Typ)
- or else Is_Interface (Exp_Typ)
- or else not Has_Unknown_Discriminants (Exp_Typ)
- or else not Is_Composite_Type (Unc_Type))
- then
- null;
-
- -- For limited objects initialized with build in place function calls,
- -- nothing to be done; otherwise we prematurely introduce an N_Reference
- -- node in the expression initializing the object, which breaks the
- -- circuitry that detects and adds the additional arguments to the
- -- called function.
-
- elsif Is_Build_In_Place_Function_Call (Exp) then
- null;
-
- else
- Remove_Side_Effects (Exp);
- Rewrite (Subtype_Indic,
- Make_Subtype_From_Expr (Exp, Unc_Type));
- end if;
- end Expand_Subtype_From_Expr;
-
- ------------------------
- -- Find_Interface_ADT --
- ------------------------
-
- function Find_Interface_ADT
- (T : Entity_Id;
- Iface : Entity_Id) return Elmt_Id
- is
- ADT : Elmt_Id;
- Typ : Entity_Id := T;
-
- begin
- pragma Assert (Is_Interface (Iface));
-
- -- Handle private types
-
- if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
- Typ := Full_View (Typ);
- end if;
-
- -- Handle access types
-
- if Is_Access_Type (Typ) then
- Typ := Designated_Type (Typ);
- end if;
-
- -- Handle task and protected types implementing interfaces
-
- if Is_Concurrent_Type (Typ) then
- Typ := Corresponding_Record_Type (Typ);
- end if;
-
- pragma Assert
- (not Is_Class_Wide_Type (Typ)
- and then Ekind (Typ) /= E_Incomplete_Type);
-
- if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
- return First_Elmt (Access_Disp_Table (Typ));
-
- else
- ADT :=
- Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
- while Present (ADT)
- and then Present (Related_Type (Node (ADT)))
- and then Related_Type (Node (ADT)) /= Iface
- and then not Is_Ancestor (Iface, Related_Type (Node (ADT)),
- Use_Full_View => True)
- loop
- Next_Elmt (ADT);
- end loop;
-
- pragma Assert (Present (Related_Type (Node (ADT))));
- return ADT;
- end if;
- end Find_Interface_ADT;
-
- ------------------------
- -- Find_Interface_Tag --
- ------------------------
-
- function Find_Interface_Tag
- (T : Entity_Id;
- Iface : Entity_Id) return Entity_Id
- is
- AI_Tag : Entity_Id;
- Found : Boolean := False;
- Typ : Entity_Id := T;
-
- procedure Find_Tag (Typ : Entity_Id);
- -- Internal subprogram used to recursively climb to the ancestors
-
- --------------
- -- Find_Tag --
- --------------
-
- procedure Find_Tag (Typ : Entity_Id) is
- AI_Elmt : Elmt_Id;
- AI : Node_Id;
-
- begin
- -- This routine does not handle the case in which the interface is an
- -- ancestor of Typ. That case is handled by the enclosing subprogram.
-
- pragma Assert (Typ /= Iface);
-
- -- Climb to the root type handling private types
-
- if Present (Full_View (Etype (Typ))) then
- if Full_View (Etype (Typ)) /= Typ then
- Find_Tag (Full_View (Etype (Typ)));
- end if;
-
- elsif Etype (Typ) /= Typ then
- Find_Tag (Etype (Typ));
- end if;
-
- -- Traverse the list of interfaces implemented by the type
-
- if not Found
- and then Present (Interfaces (Typ))
- and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
- then
- -- Skip the tag associated with the primary table
-
- pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
- AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
- pragma Assert (Present (AI_Tag));
-
- AI_Elmt := First_Elmt (Interfaces (Typ));
- while Present (AI_Elmt) loop
- AI := Node (AI_Elmt);
-
- if AI = Iface
- or else Is_Ancestor (Iface, AI, Use_Full_View => True)
- then
- Found := True;
- return;
- end if;
-
- AI_Tag := Next_Tag_Component (AI_Tag);
- Next_Elmt (AI_Elmt);
- end loop;
- end if;
- end Find_Tag;
-
- -- Start of processing for Find_Interface_Tag
-
- begin
- pragma Assert (Is_Interface (Iface));
-
- -- Handle access types
-
- if Is_Access_Type (Typ) then
- Typ := Designated_Type (Typ);
- end if;
-
- -- Handle class-wide types
-
- if Is_Class_Wide_Type (Typ) then
- Typ := Root_Type (Typ);
- end if;
-
- -- Handle private types
-
- if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
- Typ := Full_View (Typ);
- end if;
-
- -- Handle entities from the limited view
-
- if Ekind (Typ) = E_Incomplete_Type then
- pragma Assert (Present (Non_Limited_View (Typ)));
- Typ := Non_Limited_View (Typ);
- end if;
-
- -- Handle task and protected types implementing interfaces
-
- if Is_Concurrent_Type (Typ) then
- Typ := Corresponding_Record_Type (Typ);
- end if;
-
- -- If the interface is an ancestor of the type, then it shared the
- -- primary dispatch table.
-
- if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
- pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
- return First_Tag_Component (Typ);
-
- -- Otherwise we need to search for its associated tag component
-
- else
- Find_Tag (Typ);
- pragma Assert (Found);
- return AI_Tag;
- end if;
- end Find_Interface_Tag;
-
- ------------------
- -- Find_Prim_Op --
- ------------------
-
- function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
- Prim : Elmt_Id;
- Typ : Entity_Id := T;
- Op : Entity_Id;
-
- begin
- if Is_Class_Wide_Type (Typ) then
- Typ := Root_Type (Typ);
- end if;
-
- Typ := Underlying_Type (Typ);
-
- -- Loop through primitive operations
-
- Prim := First_Elmt (Primitive_Operations (Typ));
- while Present (Prim) loop
- Op := Node (Prim);
-
- -- We can retrieve primitive operations by name if it is an internal
- -- name. For equality we must check that both of its operands have
- -- the same type, to avoid confusion with user-defined equalities
- -- than may have a non-symmetric signature.
-
- exit when Chars (Op) = Name
- and then
- (Name /= Name_Op_Eq
- or else Etype (First_Formal (Op)) = Etype (Last_Formal (Op)));
-
- Next_Elmt (Prim);
-
- -- Raise Program_Error if no primitive found
-
- if No (Prim) then
- raise Program_Error;
- end if;
- end loop;
-
- return Node (Prim);
- end Find_Prim_Op;
-
- ------------------
- -- Find_Prim_Op --
- ------------------
-
- function Find_Prim_Op
- (T : Entity_Id;
- Name : TSS_Name_Type) return Entity_Id
- is
- Inher_Op : Entity_Id := Empty;
- Own_Op : Entity_Id := Empty;
- Prim_Elmt : Elmt_Id;
- Prim_Id : Entity_Id;
- Typ : Entity_Id := T;
-
- begin
- if Is_Class_Wide_Type (Typ) then
- Typ := Root_Type (Typ);
- end if;
-
- Typ := Underlying_Type (Typ);
-
- -- This search is based on the assertion that the dispatching version
- -- of the TSS routine always precedes the real primitive.
-
- Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
- while Present (Prim_Elmt) loop
- Prim_Id := Node (Prim_Elmt);
-
- if Is_TSS (Prim_Id, Name) then
- if Present (Alias (Prim_Id)) then
- Inher_Op := Prim_Id;
- else
- Own_Op := Prim_Id;
- end if;
- end if;
-
- Next_Elmt (Prim_Elmt);
- end loop;
-
- if Present (Own_Op) then
- return Own_Op;
- elsif Present (Inher_Op) then
- return Inher_Op;
- else
- raise Program_Error;
- end if;
- end Find_Prim_Op;
-
- ----------------------------
- -- Find_Protection_Object --
- ----------------------------
-
- function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
- S : Entity_Id;
-
- begin
- S := Scop;
- while Present (S) loop
- if Ekind_In (S, E_Entry, E_Entry_Family, E_Function, E_Procedure)
- and then Present (Protection_Object (S))
- then
- return Protection_Object (S);
- end if;
-
- S := Scope (S);
- end loop;
-
- -- If we do not find a Protection object in the scope chain, then
- -- something has gone wrong, most likely the object was never created.
-
- raise Program_Error;
- end Find_Protection_Object;
-
- --------------------------
- -- Find_Protection_Type --
- --------------------------
-
- function Find_Protection_Type (Conc_Typ : Entity_Id) return Entity_Id is
- Comp : Entity_Id;
- Typ : Entity_Id := Conc_Typ;
-
- begin
- if Is_Concurrent_Type (Typ) then
- Typ := Corresponding_Record_Type (Typ);
- end if;
-
- -- Since restriction violations are not considered serious errors, the
- -- expander remains active, but may leave the corresponding record type
- -- malformed. In such cases, component _object is not available so do
- -- not look for it.
-
- if not Analyzed (Typ) then
- return Empty;
- end if;
-
- Comp := First_Component (Typ);
- while Present (Comp) loop
- if Chars (Comp) = Name_uObject then
- return Base_Type (Etype (Comp));
- end if;
-
- Next_Component (Comp);
- end loop;
-
- -- The corresponding record of a protected type should always have an
- -- _object field.
-
- raise Program_Error;
- end Find_Protection_Type;
-
- ----------------------
- -- Force_Evaluation --
- ----------------------
-
- procedure Force_Evaluation (Exp : Node_Id; Name_Req : Boolean := False) is
- begin
- Remove_Side_Effects (Exp, Name_Req, Variable_Ref => True);
- end Force_Evaluation;
-
- ---------------------------------
- -- Fully_Qualified_Name_String --
- ---------------------------------
-
- function Fully_Qualified_Name_String (E : Entity_Id) return String_Id is
- procedure Internal_Full_Qualified_Name (E : Entity_Id);
- -- Compute recursively the qualified name without NUL at the end, adding
- -- it to the currently started string being generated
-
- ----------------------------------
- -- Internal_Full_Qualified_Name --
- ----------------------------------
-
- procedure Internal_Full_Qualified_Name (E : Entity_Id) is
- Ent : Entity_Id;
-
- begin
- -- Deal properly with child units
-
- if Nkind (E) = N_Defining_Program_Unit_Name then
- Ent := Defining_Identifier (E);
- else
- Ent := E;
- end if;
-
- -- Compute qualification recursively (only "Standard" has no scope)
-
- if Present (Scope (Scope (Ent))) then
- Internal_Full_Qualified_Name (Scope (Ent));
- Store_String_Char (Get_Char_Code ('.'));
- end if;
-
- -- Every entity should have a name except some expanded blocks
- -- don't bother about those.
-
- if Chars (Ent) = No_Name then
- return;
- end if;
-
- -- Generates the entity name in upper case
-
- Get_Decoded_Name_String (Chars (Ent));
- Set_All_Upper_Case;
- Store_String_Chars (Name_Buffer (1 .. Name_Len));
- return;
- end Internal_Full_Qualified_Name;
-
- -- Start of processing for Full_Qualified_Name
-
- begin
- Start_String;
- Internal_Full_Qualified_Name (E);
- Store_String_Char (Get_Char_Code (ASCII.NUL));
- return End_String;
- end Fully_Qualified_Name_String;
-
- ------------------------
- -- Generate_Poll_Call --
- ------------------------
-
- procedure Generate_Poll_Call (N : Node_Id) is
- begin
- -- No poll call if polling not active
-
- if not Polling_Required then
- return;
-
- -- Otherwise generate require poll call
-
- else
- Insert_Before_And_Analyze (N,
- Make_Procedure_Call_Statement (Sloc (N),
- Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
- end if;
- end Generate_Poll_Call;
-
- ---------------------------------
- -- Get_Current_Value_Condition --
- ---------------------------------
-
- -- Note: the implementation of this procedure is very closely tied to the
- -- implementation of Set_Current_Value_Condition. In the Get procedure, we
- -- interpret Current_Value fields set by the Set procedure, so the two
- -- procedures need to be closely coordinated.
-
- procedure Get_Current_Value_Condition
- (Var : Node_Id;
- Op : out Node_Kind;
- Val : out Node_Id)
- is
- Loc : constant Source_Ptr := Sloc (Var);
- Ent : constant Entity_Id := Entity (Var);
-
- procedure Process_Current_Value_Condition
- (N : Node_Id;
- S : Boolean);
- -- N is an expression which holds either True (S = True) or False (S =
- -- False) in the condition. This procedure digs out the expression and
- -- if it refers to Ent, sets Op and Val appropriately.
-
- -------------------------------------
- -- Process_Current_Value_Condition --
- -------------------------------------
-
- procedure Process_Current_Value_Condition
- (N : Node_Id;
- S : Boolean)
- is
- Cond : Node_Id;
- Sens : Boolean;
-
- begin
- Cond := N;
- Sens := S;
-
- -- Deal with NOT operators, inverting sense
-
- while Nkind (Cond) = N_Op_Not loop
- Cond := Right_Opnd (Cond);
- Sens := not Sens;
- end loop;
-
- -- Deal with AND THEN and AND cases
-
- if Nkind_In (Cond, N_And_Then, N_Op_And) then
-
- -- Don't ever try to invert a condition that is of the form of an
- -- AND or AND THEN (since we are not doing sufficiently general
- -- processing to allow this).
-
- if Sens = False then
- Op := N_Empty;
- Val := Empty;
- return;
- end if;
-
- -- Recursively process AND and AND THEN branches
-
- Process_Current_Value_Condition (Left_Opnd (Cond), True);
-
- if Op /= N_Empty then
- return;
- end if;
-
- Process_Current_Value_Condition (Right_Opnd (Cond), True);
- return;
-
- -- Case of relational operator
-
- elsif Nkind (Cond) in N_Op_Compare then
- Op := Nkind (Cond);
-
- -- Invert sense of test if inverted test
-
- if Sens = False then
- case Op is
- when N_Op_Eq => Op := N_Op_Ne;
- when N_Op_Ne => Op := N_Op_Eq;
- when N_Op_Lt => Op := N_Op_Ge;
- when N_Op_Gt => Op := N_Op_Le;
- when N_Op_Le => Op := N_Op_Gt;
- when N_Op_Ge => Op := N_Op_Lt;
- when others => raise Program_Error;
- end case;
- end if;
-
- -- Case of entity op value
-
- if Is_Entity_Name (Left_Opnd (Cond))
- and then Ent = Entity (Left_Opnd (Cond))
- and then Compile_Time_Known_Value (Right_Opnd (Cond))
- then
- Val := Right_Opnd (Cond);
-
- -- Case of value op entity
-
- elsif Is_Entity_Name (Right_Opnd (Cond))
- and then Ent = Entity (Right_Opnd (Cond))
- and then Compile_Time_Known_Value (Left_Opnd (Cond))
- then
- Val := Left_Opnd (Cond);
-
- -- We are effectively swapping operands
-
- case Op is
- when N_Op_Eq => null;
- when N_Op_Ne => null;
- when N_Op_Lt => Op := N_Op_Gt;
- when N_Op_Gt => Op := N_Op_Lt;
- when N_Op_Le => Op := N_Op_Ge;
- when N_Op_Ge => Op := N_Op_Le;
- when others => raise Program_Error;
- end case;
-
- else
- Op := N_Empty;
- end if;
-
- return;
-
- -- Case of Boolean variable reference, return as though the
- -- reference had said var = True.
-
- else
- if Is_Entity_Name (Cond) and then Ent = Entity (Cond) then
- Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
-
- if Sens = False then
- Op := N_Op_Ne;
- else
- Op := N_Op_Eq;
- end if;
- end if;
- end if;
- end Process_Current_Value_Condition;
-
- -- Start of processing for Get_Current_Value_Condition
-
- begin
- Op := N_Empty;
- Val := Empty;
-
- -- Immediate return, nothing doing, if this is not an object
-
- if Ekind (Ent) not in Object_Kind then
- return;
- end if;
-
- -- Otherwise examine current value
-
- declare
- CV : constant Node_Id := Current_Value (Ent);
- Sens : Boolean;
- Stm : Node_Id;
-
- begin
- -- If statement. Condition is known true in THEN section, known False
- -- in any ELSIF or ELSE part, and unknown outside the IF statement.
-
- if Nkind (CV) = N_If_Statement then
-
- -- Before start of IF statement
-
- if Loc < Sloc (CV) then
- return;
-
- -- After end of IF statement
-
- elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
- return;
- end if;
-
- -- At this stage we know that we are within the IF statement, but
- -- unfortunately, the tree does not record the SLOC of the ELSE so
- -- we cannot use a simple SLOC comparison to distinguish between
- -- the then/else statements, so we have to climb the tree.
-
- declare
- N : Node_Id;
-
- begin
- N := Parent (Var);
- while Parent (N) /= CV loop
- N := Parent (N);
-
- -- If we fall off the top of the tree, then that's odd, but
- -- perhaps it could occur in some error situation, and the
- -- safest response is simply to assume that the outcome of
- -- the condition is unknown. No point in bombing during an
- -- attempt to optimize things.
-
- if No (N) then
- return;
- end if;
- end loop;
-
- -- Now we have N pointing to a node whose parent is the IF
- -- statement in question, so now we can tell if we are within
- -- the THEN statements.
-
- if Is_List_Member (N)
- and then List_Containing (N) = Then_Statements (CV)
- then
- Sens := True;
-
- -- If the variable reference does not come from source, we
- -- cannot reliably tell whether it appears in the else part.
- -- In particular, if it appears in generated code for a node
- -- that requires finalization, it may be attached to a list
- -- that has not been yet inserted into the code. For now,
- -- treat it as unknown.
-
- elsif not Comes_From_Source (N) then
- return;
-
- -- Otherwise we must be in ELSIF or ELSE part
-
- else
- Sens := False;
- end if;
- end;
-
- -- ELSIF part. Condition is known true within the referenced
- -- ELSIF, known False in any subsequent ELSIF or ELSE part,
- -- and unknown before the ELSE part or after the IF statement.
-
- elsif Nkind (CV) = N_Elsif_Part then
-
- -- if the Elsif_Part had condition_actions, the elsif has been
- -- rewritten as a nested if, and the original elsif_part is
- -- detached from the tree, so there is no way to obtain useful
- -- information on the current value of the variable.
- -- Can this be improved ???
-
- if No (Parent (CV)) then
- return;
- end if;
-
- Stm := Parent (CV);
-
- -- Before start of ELSIF part
-
- if Loc < Sloc (CV) then
- return;
-
- -- After end of IF statement
-
- elsif Loc >= Sloc (Stm) +
- Text_Ptr (UI_To_Int (End_Span (Stm)))
- then
- return;
- end if;
-
- -- Again we lack the SLOC of the ELSE, so we need to climb the
- -- tree to see if we are within the ELSIF part in question.
-
- declare
- N : Node_Id;
-
- begin
- N := Parent (Var);
- while Parent (N) /= Stm loop
- N := Parent (N);
-
- -- If we fall off the top of the tree, then that's odd, but
- -- perhaps it could occur in some error situation, and the
- -- safest response is simply to assume that the outcome of
- -- the condition is unknown. No point in bombing during an
- -- attempt to optimize things.
-
- if No (N) then
- return;
- end if;
- end loop;
-
- -- Now we have N pointing to a node whose parent is the IF
- -- statement in question, so see if is the ELSIF part we want.
- -- the THEN statements.
-
- if N = CV then
- Sens := True;
-
- -- Otherwise we must be in subsequent ELSIF or ELSE part
-
- else
- Sens := False;
- end if;
- end;
-
- -- Iteration scheme of while loop. The condition is known to be
- -- true within the body of the loop.
-
- elsif Nkind (CV) = N_Iteration_Scheme then
- declare
- Loop_Stmt : constant Node_Id := Parent (CV);
-
- begin
- -- Before start of body of loop
-
- if Loc < Sloc (Loop_Stmt) then
- return;
-
- -- After end of LOOP statement
-
- elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
- return;
-
- -- We are within the body of the loop
-
- else
- Sens := True;
- end if;
- end;
-
- -- All other cases of Current_Value settings
-
- else
- return;
- end if;
-
- -- If we fall through here, then we have a reportable condition, Sens
- -- is True if the condition is true and False if it needs inverting.
-
- Process_Current_Value_Condition (Condition (CV), Sens);
- end;
- end Get_Current_Value_Condition;
-
- ---------------------
- -- Get_Stream_Size --
- ---------------------
-
- function Get_Stream_Size (E : Entity_Id) return Uint is
- begin
- -- If we have a Stream_Size clause for this type use it
-
- if Has_Stream_Size_Clause (E) then
- return Static_Integer (Expression (Stream_Size_Clause (E)));
-
- -- Otherwise the Stream_Size if the size of the type
-
- else
- return Esize (E);
- end if;
- end Get_Stream_Size;
-
- ---------------------------
- -- Has_Access_Constraint --
- ---------------------------
-
- function Has_Access_Constraint (E : Entity_Id) return Boolean is
- Disc : Entity_Id;
- T : constant Entity_Id := Etype (E);
-
- begin
- if Has_Per_Object_Constraint (E) and then Has_Discriminants (T) then
- Disc := First_Discriminant (T);
- while Present (Disc) loop
- if Is_Access_Type (Etype (Disc)) then
- return True;
- end if;
-
- Next_Discriminant (Disc);
- end loop;
-
- return False;
- else
- return False;
- end if;
- end Has_Access_Constraint;
-
- ----------------------------------
- -- Has_Following_Address_Clause --
- ----------------------------------
-
- -- Should this function check the private part in a package ???
-
- function Has_Following_Address_Clause (D : Node_Id) return Boolean is
- Id : constant Entity_Id := Defining_Identifier (D);
- Decl : Node_Id;
-
- begin
- Decl := Next (D);
- while Present (Decl) loop
- if Nkind (Decl) = N_At_Clause
- and then Chars (Identifier (Decl)) = Chars (Id)
- then
- return True;
-
- elsif Nkind (Decl) = N_Attribute_Definition_Clause
- and then Chars (Decl) = Name_Address
- and then Chars (Name (Decl)) = Chars (Id)
- then
- return True;
- end if;
-
- Next (Decl);
- end loop;
-
- return False;
- end Has_Following_Address_Clause;
-
- --------------------
- -- Homonym_Number --
- --------------------
-
- function Homonym_Number (Subp : Entity_Id) return Nat is
- Count : Nat;
- Hom : Entity_Id;
-
- begin
- Count := 1;
- Hom := Homonym (Subp);
- while Present (Hom) loop
- if Scope (Hom) = Scope (Subp) then
- Count := Count + 1;
- end if;
-
- Hom := Homonym (Hom);
- end loop;
-
- return Count;
- end Homonym_Number;
-
- -----------------------------------
- -- In_Library_Level_Package_Body --
- -----------------------------------
-
- function In_Library_Level_Package_Body (Id : Entity_Id) return Boolean is
- begin
- -- First determine whether the entity appears at the library level, then
- -- look at the containing unit.
-
- if Is_Library_Level_Entity (Id) then
- declare
- Container : constant Node_Id := Cunit (Get_Source_Unit (Id));
-
- begin
- return Nkind (Unit (Container)) = N_Package_Body;
- end;
- end if;
-
- return False;
- end In_Library_Level_Package_Body;
-
- ------------------------------
- -- In_Unconditional_Context --
- ------------------------------
-
- function In_Unconditional_Context (Node : Node_Id) return Boolean is
- P : Node_Id;
-
- begin
- P := Node;
- while Present (P) loop
- case Nkind (P) is
- when N_Subprogram_Body =>
- return True;
-
- when N_If_Statement =>
- return False;
-
- when N_Loop_Statement =>
- return False;
-
- when N_Case_Statement =>
- return False;
-
- when others =>
- P := Parent (P);
- end case;
- end loop;
-
- return False;
- end In_Unconditional_Context;
-
- -------------------
- -- Insert_Action --
- -------------------
-
- procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
- begin
- if Present (Ins_Action) then
- Insert_Actions (Assoc_Node, New_List (Ins_Action));
- end if;
- end Insert_Action;
-
- -- Version with check(s) suppressed
-
- procedure Insert_Action
- (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
- is
- begin
- Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
- end Insert_Action;
-
- -------------------------
- -- Insert_Action_After --
- -------------------------
-
- procedure Insert_Action_After
- (Assoc_Node : Node_Id;
- Ins_Action : Node_Id)
- is
- begin
- Insert_Actions_After (Assoc_Node, New_List (Ins_Action));
- end Insert_Action_After;
-
- --------------------
- -- Insert_Actions --
- --------------------
-
- procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
- N : Node_Id;
- P : Node_Id;
-
- Wrapped_Node : Node_Id := Empty;
-
- begin
- if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
- return;
- end if;
-
- -- Ignore insert of actions from inside default expression (or other
- -- similar "spec expression") in the special spec-expression analyze
- -- mode. Any insertions at this point have no relevance, since we are
- -- only doing the analyze to freeze the types of any static expressions.
- -- See section "Handling of Default Expressions" in the spec of package
- -- Sem for further details.
-
- if In_Spec_Expression then
- return;
- end if;
-
- -- If the action derives from stuff inside a record, then the actions
- -- are attached to the current scope, to be inserted and analyzed on
- -- exit from the scope. The reason for this is that we may also be
- -- generating freeze actions at the same time, and they must eventually
- -- be elaborated in the correct order.
-
- if Is_Record_Type (Current_Scope)
- and then not Is_Frozen (Current_Scope)
- then
- if No (Scope_Stack.Table
- (Scope_Stack.Last).Pending_Freeze_Actions)
- then
- Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
- Ins_Actions;
- else
- Append_List
- (Ins_Actions,
- Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
- end if;
-
- return;
- end if;
-
- -- We now intend to climb up the tree to find the right point to
- -- insert the actions. We start at Assoc_Node, unless this node is a
- -- subexpression in which case we start with its parent. We do this for
- -- two reasons. First it speeds things up. Second, if Assoc_Node is
- -- itself one of the special nodes like N_And_Then, then we assume that
- -- an initial request to insert actions for such a node does not expect
- -- the actions to get deposited in the node for later handling when the
- -- node is expanded, since clearly the node is being dealt with by the
- -- caller. Note that in the subexpression case, N is always the child we
- -- came from.
-
- -- N_Raise_xxx_Error is an annoying special case, it is a statement if
- -- it has type Standard_Void_Type, and a subexpression otherwise.
- -- otherwise. Procedure calls, and similarly procedure attribute
- -- references, are also statements.
-
- if Nkind (Assoc_Node) in N_Subexpr
- and then (Nkind (Assoc_Node) not in N_Raise_xxx_Error
- or else Etype (Assoc_Node) /= Standard_Void_Type)
- and then Nkind (Assoc_Node) /= N_Procedure_Call_Statement
- and then (Nkind (Assoc_Node) /= N_Attribute_Reference
- or else
- not Is_Procedure_Attribute_Name
- (Attribute_Name (Assoc_Node)))
- then
- N := Assoc_Node;
- P := Parent (Assoc_Node);
-
- -- Non-subexpression case. Note that N is initially Empty in this case
- -- (N is only guaranteed Non-Empty in the subexpr case).
-
- else
- N := Empty;
- P := Assoc_Node;
- end if;
-
- -- Capture root of the transient scope
-
- if Scope_Is_Transient then
- Wrapped_Node := Node_To_Be_Wrapped;
- end if;
-
- loop
- pragma Assert (Present (P));
-
- -- Make sure that inserted actions stay in the transient scope
-
- if Present (Wrapped_Node) and then N = Wrapped_Node then
- Store_Before_Actions_In_Scope (Ins_Actions);
- return;
- end if;
-
- case Nkind (P) is
-
- -- Case of right operand of AND THEN or OR ELSE. Put the actions
- -- in the Actions field of the right operand. They will be moved
- -- out further when the AND THEN or OR ELSE operator is expanded.
- -- Nothing special needs to be done for the left operand since
- -- in that case the actions are executed unconditionally.
-
- when N_Short_Circuit =>
- if N = Right_Opnd (P) then
-
- -- We are now going to either append the actions to the
- -- actions field of the short-circuit operation. We will
- -- also analyze the actions now.
-
- -- This analysis is really too early, the proper thing would
- -- be to just park them there now, and only analyze them if
- -- we find we really need them, and to it at the proper
- -- final insertion point. However attempting to this proved
- -- tricky, so for now we just kill current values before and
- -- after the analyze call to make sure we avoid peculiar
- -- optimizations from this out of order insertion.
-
- Kill_Current_Values;
-
- if Present (Actions (P)) then
- Insert_List_After_And_Analyze
- (Last (Actions (P)), Ins_Actions);
- else
- Set_Actions (P, Ins_Actions);
- Analyze_List (Actions (P));
- end if;
-
- Kill_Current_Values;
-
- return;
- end if;
-
- -- Then or Else dependent expression of an if expression. Add
- -- actions to Then_Actions or Else_Actions field as appropriate.
- -- The actions will be moved further out when the if is expanded.
-
- when N_If_Expression =>
- declare
- ThenX : constant Node_Id := Next (First (Expressions (P)));
- ElseX : constant Node_Id := Next (ThenX);
-
- begin
- -- If the enclosing expression is already analyzed, as
- -- is the case for nested elaboration checks, insert the
- -- conditional further out.
-
- if Analyzed (P) then
- null;
-
- -- Actions belong to the then expression, temporarily place
- -- them as Then_Actions of the if expression. They will be
- -- moved to the proper place later when the if expression
- -- is expanded.
-
- elsif N = ThenX then
- if Present (Then_Actions (P)) then
- Insert_List_After_And_Analyze
- (Last (Then_Actions (P)), Ins_Actions);
- else
- Set_Then_Actions (P, Ins_Actions);
- Analyze_List (Then_Actions (P));
- end if;
-
- return;
-
- -- Actions belong to the else expression, temporarily place
- -- them as Else_Actions of the if expression. They will be
- -- moved to the proper place later when the if expression
- -- is expanded.
-
- elsif N = ElseX then
- if Present (Else_Actions (P)) then
- Insert_List_After_And_Analyze
- (Last (Else_Actions (P)), Ins_Actions);
- else
- Set_Else_Actions (P, Ins_Actions);
- Analyze_List (Else_Actions (P));
- end if;
-
- return;
-
- -- Actions belong to the condition. In this case they are
- -- unconditionally executed, and so we can continue the
- -- search for the proper insert point.
-
- else
- null;
- end if;
- end;
-
- -- Alternative of case expression, we place the action in the
- -- Actions field of the case expression alternative, this will
- -- be handled when the case expression is expanded.
-
- when N_Case_Expression_Alternative =>
- if Present (Actions (P)) then
- Insert_List_After_And_Analyze
- (Last (Actions (P)), Ins_Actions);
- else
- Set_Actions (P, Ins_Actions);
- Analyze_List (Actions (P));
- end if;
-
- return;
-
- -- Case of appearing within an Expressions_With_Actions node. When
- -- the new actions come from the expression of the expression with
- -- actions, they must be added to the existing actions. The other
- -- alternative is when the new actions are related to one of the
- -- existing actions of the expression with actions. In that case
- -- they must be inserted further up the tree.
-
- when N_Expression_With_Actions =>
- if N = Expression (P) then
- Insert_List_After_And_Analyze
- (Last (Actions (P)), Ins_Actions);
- return;
- end if;
-
- -- Case of appearing in the condition of a while expression or
- -- elsif. We insert the actions into the Condition_Actions field.
- -- They will be moved further out when the while loop or elsif
- -- is analyzed.
-
- when N_Iteration_Scheme |
- N_Elsif_Part
- =>
- if N = Condition (P) then
- if Present (Condition_Actions (P)) then
- Insert_List_After_And_Analyze
- (Last (Condition_Actions (P)), Ins_Actions);
- else
- Set_Condition_Actions (P, Ins_Actions);
-
- -- Set the parent of the insert actions explicitly. This
- -- is not a syntactic field, but we need the parent field
- -- set, in particular so that freeze can understand that
- -- it is dealing with condition actions, and properly
- -- insert the freezing actions.
-
- Set_Parent (Ins_Actions, P);
- Analyze_List (Condition_Actions (P));
- end if;
-
- return;
- end if;
-
- -- Statements, declarations, pragmas, representation clauses
-
- when
- -- Statements
-
- N_Procedure_Call_Statement |
- N_Statement_Other_Than_Procedure_Call |
-
- -- Pragmas
-
- N_Pragma |
-
- -- Representation_Clause
-
- N_At_Clause |
- N_Attribute_Definition_Clause |
- N_Enumeration_Representation_Clause |
- N_Record_Representation_Clause |
-
- -- Declarations
-
- N_Abstract_Subprogram_Declaration |
- N_Entry_Body |
- N_Exception_Declaration |
- N_Exception_Renaming_Declaration |
- N_Expression_Function |
- N_Formal_Abstract_Subprogram_Declaration |
- N_Formal_Concrete_Subprogram_Declaration |
- N_Formal_Object_Declaration |
- N_Formal_Type_Declaration |
- N_Full_Type_Declaration |
- N_Function_Instantiation |
- N_Generic_Function_Renaming_Declaration |
- N_Generic_Package_Declaration |
- N_Generic_Package_Renaming_Declaration |
- N_Generic_Procedure_Renaming_Declaration |
- N_Generic_Subprogram_Declaration |
- N_Implicit_Label_Declaration |
- N_Incomplete_Type_Declaration |
- N_Number_Declaration |
- N_Object_Declaration |
- N_Object_Renaming_Declaration |
- N_Package_Body |
- N_Package_Body_Stub |
- N_Package_Declaration |
- N_Package_Instantiation |
- N_Package_Renaming_Declaration |
- N_Private_Extension_Declaration |
- N_Private_Type_Declaration |
- N_Procedure_Instantiation |
- N_Protected_Body |
- N_Protected_Body_Stub |
- N_Protected_Type_Declaration |
- N_Single_Task_Declaration |
- N_Subprogram_Body |
- N_Subprogram_Body_Stub |
- N_Subprogram_Declaration |
- N_Subprogram_Renaming_Declaration |
- N_Subtype_Declaration |
- N_Task_Body |
- N_Task_Body_Stub |
- N_Task_Type_Declaration |
-
- -- Use clauses can appear in lists of declarations
-
- N_Use_Package_Clause |
- N_Use_Type_Clause |
-
- -- Freeze entity behaves like a declaration or statement
-
- N_Freeze_Entity
- =>
- -- Do not insert here if the item is not a list member (this
- -- happens for example with a triggering statement, and the
- -- proper approach is to insert before the entire select).
-
- if not Is_List_Member (P) then
- null;
-
- -- Do not insert if parent of P is an N_Component_Association
- -- node (i.e. we are in the context of an N_Aggregate or
- -- N_Extension_Aggregate node. In this case we want to insert
- -- before the entire aggregate.
-
- elsif Nkind (Parent (P)) = N_Component_Association then
- null;
-
- -- Do not insert if the parent of P is either an N_Variant node
- -- or an N_Record_Definition node, meaning in either case that
- -- P is a member of a component list, and that therefore the
- -- actions should be inserted outside the complete record
- -- declaration.
-
- elsif Nkind_In (Parent (P), N_Variant, N_Record_Definition) then
- null;
-
- -- Do not insert freeze nodes within the loop generated for
- -- an aggregate, because they may be elaborated too late for
- -- subsequent use in the back end: within a package spec the
- -- loop is part of the elaboration procedure and is only
- -- elaborated during the second pass.
-
- -- If the loop comes from source, or the entity is local to the
- -- loop itself it must remain within.
-
- elsif Nkind (Parent (P)) = N_Loop_Statement
- and then not Comes_From_Source (Parent (P))
- and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
- and then
- Scope (Entity (First (Ins_Actions))) /= Current_Scope
- then
- null;
-
- -- Otherwise we can go ahead and do the insertion
-
- elsif P = Wrapped_Node then
- Store_Before_Actions_In_Scope (Ins_Actions);
- return;
-
- else
- Insert_List_Before_And_Analyze (P, Ins_Actions);
- return;
- end if;
-
- -- A special case, N_Raise_xxx_Error can act either as a statement
- -- or a subexpression. We tell the difference by looking at the
- -- Etype. It is set to Standard_Void_Type in the statement case.
-
- when
- N_Raise_xxx_Error =>
- if Etype (P) = Standard_Void_Type then
- if P = Wrapped_Node then
- Store_Before_Actions_In_Scope (Ins_Actions);
- else
- Insert_List_Before_And_Analyze (P, Ins_Actions);
- end if;
-
- return;
-
- -- In the subexpression case, keep climbing
-
- else
- null;
- end if;
-
- -- If a component association appears within a loop created for
- -- an array aggregate, attach the actions to the association so
- -- they can be subsequently inserted within the loop. For other
- -- component associations insert outside of the aggregate. For
- -- an association that will generate a loop, its Loop_Actions
- -- attribute is already initialized (see exp_aggr.adb).
-
- -- The list of loop_actions can in turn generate additional ones,
- -- that are inserted before the associated node. If the associated
- -- node is outside the aggregate, the new actions are collected
- -- at the end of the loop actions, to respect the order in which
- -- they are to be elaborated.
-
- when
- N_Component_Association =>
- if Nkind (Parent (P)) = N_Aggregate
- and then Present (Loop_Actions (P))
- then
- if Is_Empty_List (Loop_Actions (P)) then
- Set_Loop_Actions (P, Ins_Actions);
- Analyze_List (Ins_Actions);
-
- else
- declare
- Decl : Node_Id;
-
- begin
- -- Check whether these actions were generated by a
- -- declaration that is part of the loop_ actions
- -- for the component_association.
-
- Decl := Assoc_Node;
- while Present (Decl) loop
- exit when Parent (Decl) = P
- and then Is_List_Member (Decl)
- and then
- List_Containing (Decl) = Loop_Actions (P);
- Decl := Parent (Decl);
- end loop;
-
- if Present (Decl) then
- Insert_List_Before_And_Analyze
- (Decl, Ins_Actions);
- else
- Insert_List_After_And_Analyze
- (Last (Loop_Actions (P)), Ins_Actions);
- end if;
- end;
- end if;
-
- return;
-
- else
- null;
- end if;
-
- -- Another special case, an attribute denoting a procedure call
-
- when
- N_Attribute_Reference =>
- if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
- if P = Wrapped_Node then
- Store_Before_Actions_In_Scope (Ins_Actions);
- else
- Insert_List_Before_And_Analyze (P, Ins_Actions);
- end if;
-
- return;
-
- -- In the subexpression case, keep climbing
-
- else
- null;
- end if;
-
- -- A contract node should not belong to the tree
-
- when N_Contract =>
- raise Program_Error;
-
- -- For all other node types, keep climbing tree
-
- when
- N_Abortable_Part |
- N_Accept_Alternative |
- N_Access_Definition |
- N_Access_Function_Definition |
- N_Access_Procedure_Definition |
- N_Access_To_Object_Definition |
- N_Aggregate |
- N_Allocator |
- N_Aspect_Specification |
- N_Case_Expression |
- N_Case_Statement_Alternative |
- N_Character_Literal |
- N_Compilation_Unit |
- N_Compilation_Unit_Aux |
- N_Component_Clause |
- N_Component_Declaration |
- N_Component_Definition |
- N_Component_List |
- N_Constrained_Array_Definition |
- N_Decimal_Fixed_Point_Definition |
- N_Defining_Character_Literal |
- N_Defining_Identifier |
- N_Defining_Operator_Symbol |
- N_Defining_Program_Unit_Name |
- N_Delay_Alternative |
- N_Delta_Constraint |
- N_Derived_Type_Definition |
- N_Designator |
- N_Digits_Constraint |
- N_Discriminant_Association |
- N_Discriminant_Specification |
- N_Empty |
- N_Entry_Body_Formal_Part |
- N_Entry_Call_Alternative |
- N_Entry_Declaration |
- N_Entry_Index_Specification |
- N_Enumeration_Type_Definition |
- N_Error |
- N_Exception_Handler |
- N_Expanded_Name |
- N_Explicit_Dereference |
- N_Extension_Aggregate |
- N_Floating_Point_Definition |
- N_Formal_Decimal_Fixed_Point_Definition |
- N_Formal_Derived_Type_Definition |
- N_Formal_Discrete_Type_Definition |
- N_Formal_Floating_Point_Definition |
- N_Formal_Modular_Type_Definition |
- N_Formal_Ordinary_Fixed_Point_Definition |
- N_Formal_Package_Declaration |
- N_Formal_Private_Type_Definition |
- N_Formal_Incomplete_Type_Definition |
- N_Formal_Signed_Integer_Type_Definition |
- N_Function_Call |
- N_Function_Specification |
- N_Generic_Association |
- N_Handled_Sequence_Of_Statements |
- N_Identifier |
- N_In |
- N_Index_Or_Discriminant_Constraint |
- N_Indexed_Component |
- N_Integer_Literal |
- N_Iterator_Specification |
- N_Itype_Reference |
- N_Label |
- N_Loop_Parameter_Specification |
- N_Mod_Clause |
- N_Modular_Type_Definition |
- N_Not_In |
- N_Null |
- N_Op_Abs |
- N_Op_Add |
- N_Op_And |
- N_Op_Concat |
- N_Op_Divide |
- N_Op_Eq |
- N_Op_Expon |
- N_Op_Ge |
- N_Op_Gt |
- N_Op_Le |
- N_Op_Lt |
- N_Op_Minus |
- N_Op_Mod |
- N_Op_Multiply |
- N_Op_Ne |
- N_Op_Not |
- N_Op_Or |
- N_Op_Plus |
- N_Op_Rem |
- N_Op_Rotate_Left |
- N_Op_Rotate_Right |
- N_Op_Shift_Left |
- N_Op_Shift_Right |
- N_Op_Shift_Right_Arithmetic |
- N_Op_Subtract |
- N_Op_Xor |
- N_Operator_Symbol |
- N_Ordinary_Fixed_Point_Definition |
- N_Others_Choice |
- N_Package_Specification |
- N_Parameter_Association |
- N_Parameter_Specification |
- N_Pop_Constraint_Error_Label |
- N_Pop_Program_Error_Label |
- N_Pop_Storage_Error_Label |
- N_Pragma_Argument_Association |
- N_Procedure_Specification |
- N_Protected_Definition |
- N_Push_Constraint_Error_Label |
- N_Push_Program_Error_Label |
- N_Push_Storage_Error_Label |
- N_Qualified_Expression |
- N_Quantified_Expression |
- N_Range |
- N_Range_Constraint |
- N_Real_Literal |
- N_Real_Range_Specification |
- N_Record_Definition |
- N_Reference |
- N_SCIL_Dispatch_Table_Tag_Init |
- N_SCIL_Dispatching_Call |
- N_SCIL_Membership_Test |
- N_Selected_Component |
- N_Signed_Integer_Type_Definition |
- N_Single_Protected_Declaration |
- N_Slice |
- N_String_Literal |
- N_Subprogram_Info |
- N_Subtype_Indication |
- N_Subunit |
- N_Task_Definition |
- N_Terminate_Alternative |
- N_Triggering_Alternative |
- N_Type_Conversion |
- N_Unchecked_Expression |
- N_Unchecked_Type_Conversion |
- N_Unconstrained_Array_Definition |
- N_Unused_At_End |
- N_Unused_At_Start |
- N_Variant |
- N_Variant_Part |
- N_Validate_Unchecked_Conversion |
- N_With_Clause
- =>
- null;
-
- end case;
-
- -- If we fall through above tests, keep climbing tree
-
- N := P;
-
- if Nkind (Parent (N)) = N_Subunit then
-
- -- This is the proper body corresponding to a stub. Insertion must
- -- be done at the point of the stub, which is in the declarative
- -- part of the parent unit.
-
- P := Corresponding_Stub (Parent (N));
-
- else
- P := Parent (N);
- end if;
- end loop;
- end Insert_Actions;
-
- -- Version with check(s) suppressed
-
- procedure Insert_Actions
- (Assoc_Node : Node_Id;
- Ins_Actions : List_Id;
- Suppress : Check_Id)
- is
- begin
- if Suppress = All_Checks then
- declare
- Sva : constant Suppress_Array := Scope_Suppress.Suppress;
- begin
- Scope_Suppress.Suppress := (others => True);
- Insert_Actions (Assoc_Node, Ins_Actions);
- Scope_Suppress.Suppress := Sva;
- end;
-
- else
- declare
- Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
- begin
- Scope_Suppress.Suppress (Suppress) := True;
- Insert_Actions (Assoc_Node, Ins_Actions);
- Scope_Suppress.Suppress (Suppress) := Svg;
- end;
- end if;
- end Insert_Actions;
-
- --------------------------
- -- Insert_Actions_After --
- --------------------------
-
- procedure Insert_Actions_After
- (Assoc_Node : Node_Id;
- Ins_Actions : List_Id)
- is
- begin
- if Scope_Is_Transient and then Assoc_Node = Node_To_Be_Wrapped then
- Store_After_Actions_In_Scope (Ins_Actions);
- else
- Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
- end if;
- end Insert_Actions_After;
-
- ---------------------------------
- -- Insert_Library_Level_Action --
- ---------------------------------
-
- procedure Insert_Library_Level_Action (N : Node_Id) is
- Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
-
- begin
- Push_Scope (Cunit_Entity (Main_Unit));
- -- ??? should this be Current_Sem_Unit instead of Main_Unit?
-
- if No (Actions (Aux)) then
- Set_Actions (Aux, New_List (N));
- else
- Append (N, Actions (Aux));
- end if;
-
- Analyze (N);
- Pop_Scope;
- end Insert_Library_Level_Action;
-
- ----------------------------------
- -- Insert_Library_Level_Actions --
- ----------------------------------
-
- procedure Insert_Library_Level_Actions (L : List_Id) is
- Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
-
- begin
- if Is_Non_Empty_List (L) then
- Push_Scope (Cunit_Entity (Main_Unit));
- -- ??? should this be Current_Sem_Unit instead of Main_Unit?
-
- if No (Actions (Aux)) then
- Set_Actions (Aux, L);
- Analyze_List (L);
- else
- Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
- end if;
-
- Pop_Scope;
- end if;
- end Insert_Library_Level_Actions;
-
- ----------------------
- -- Inside_Init_Proc --
- ----------------------
-
- function Inside_Init_Proc return Boolean is
- S : Entity_Id;
-
- begin
- S := Current_Scope;
- while Present (S) and then S /= Standard_Standard loop
- if Is_Init_Proc (S) then
- return True;
- else
- S := Scope (S);
- end if;
- end loop;
-
- return False;
- end Inside_Init_Proc;
-
- ----------------------------
- -- Is_All_Null_Statements --
- ----------------------------
-
- function Is_All_Null_Statements (L : List_Id) return Boolean is
- Stm : Node_Id;
-
- begin
- Stm := First (L);
- while Present (Stm) loop
- if Nkind (Stm) /= N_Null_Statement then
- return False;
- end if;
-
- Next (Stm);
- end loop;
-
- return True;
- end Is_All_Null_Statements;
-
- --------------------------------------------------
- -- Is_Displacement_Of_Object_Or_Function_Result --
- --------------------------------------------------
-
- function Is_Displacement_Of_Object_Or_Function_Result
- (Obj_Id : Entity_Id) return Boolean
- is
- function Is_Controlled_Function_Call (N : Node_Id) return Boolean;
- -- Determine if particular node denotes a controlled function call
-
- function Is_Displace_Call (N : Node_Id) return Boolean;
- -- Determine whether a particular node is a call to Ada.Tags.Displace.
- -- The call might be nested within other actions such as conversions.
-
- function Is_Source_Object (N : Node_Id) return Boolean;
- -- Determine whether a particular node denotes a source object
-
- ---------------------------------
- -- Is_Controlled_Function_Call --
- ---------------------------------
-
- function Is_Controlled_Function_Call (N : Node_Id) return Boolean is
- Expr : Node_Id := Original_Node (N);
-
- begin
- if Nkind (Expr) = N_Function_Call then
- Expr := Name (Expr);
- end if;
-
- -- The function call may appear in object.operation format
-
- if Nkind (Expr) = N_Selected_Component then
- Expr := Selector_Name (Expr);
- end if;
-
- return
- Nkind_In (Expr, N_Expanded_Name, N_Identifier)
- and then Ekind (Entity (Expr)) = E_Function
- and then Needs_Finalization (Etype (Entity (Expr)));
- end Is_Controlled_Function_Call;
-
- ----------------------
- -- Is_Displace_Call --
- ----------------------
-
- function Is_Displace_Call (N : Node_Id) return Boolean is
- Call : Node_Id := N;
-
- begin
- -- Strip various actions which may precede a call to Displace
-
- loop
- if Nkind (Call) = N_Explicit_Dereference then
- Call := Prefix (Call);
-
- elsif Nkind_In (Call, N_Type_Conversion,
- N_Unchecked_Type_Conversion)
- then
- Call := Expression (Call);
-
- else
- exit;
- end if;
- end loop;
-
- return
- Present (Call)
- and then Nkind (Call) = N_Function_Call
- and then Is_RTE (Entity (Name (Call)), RE_Displace);
- end Is_Displace_Call;
-
- ----------------------
- -- Is_Source_Object --
- ----------------------
-
- function Is_Source_Object (N : Node_Id) return Boolean is
- begin
- return
- Present (N)
- and then Nkind (N) in N_Has_Entity
- and then Is_Object (Entity (N))
- and then Comes_From_Source (N);
- end Is_Source_Object;
-
- -- Local variables
-
- Decl : constant Node_Id := Parent (Obj_Id);
- Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
- Orig_Decl : constant Node_Id := Original_Node (Decl);
-
- -- Start of processing for Is_Displacement_Of_Object_Or_Function_Result
-
- begin
- -- Case 1:
-
- -- Obj : CW_Type := Function_Call (...);
-
- -- rewritten into:
-
- -- Tmp : ... := Function_Call (...)'reference;
- -- Obj : CW_Type renames (... Ada.Tags.Displace (Tmp));
-
- -- where the return type of the function and the class-wide type require
- -- dispatch table pointer displacement.
-
- -- Case 2:
-
- -- Obj : CW_Type := Src_Obj;
-
- -- rewritten into:
-
- -- Obj : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
-
- -- where the type of the source object and the class-wide type require
- -- dispatch table pointer displacement.
-
- return
- Nkind (Decl) = N_Object_Renaming_Declaration
- and then Nkind (Orig_Decl) = N_Object_Declaration
- and then Comes_From_Source (Orig_Decl)
- and then Is_Class_Wide_Type (Obj_Typ)
- and then Is_Displace_Call (Renamed_Object (Obj_Id))
- and then
- (Is_Controlled_Function_Call (Expression (Orig_Decl))
- or else Is_Source_Object (Expression (Orig_Decl)));
- end Is_Displacement_Of_Object_Or_Function_Result;
-
- ------------------------------
- -- Is_Finalizable_Transient --
- ------------------------------
-
- function Is_Finalizable_Transient
- (Decl : Node_Id;
- Rel_Node : Node_Id) return Boolean
- is
- Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
- Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
- Desig : Entity_Id := Obj_Typ;
-
- function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean;
- -- Determine whether transient object Trans_Id is initialized either
- -- by a function call which returns an access type or simply renames
- -- another pointer.
-
- function Initialized_By_Aliased_BIP_Func_Call
- (Trans_Id : Entity_Id) return Boolean;
- -- Determine whether transient object Trans_Id is initialized by a
- -- build-in-place function call where the BIPalloc parameter is of
- -- value 1 and BIPaccess is not null. This case creates an aliasing
- -- between the returned value and the value denoted by BIPaccess.
-
- function Is_Aliased
- (Trans_Id : Entity_Id;
- First_Stmt : Node_Id) return Boolean;
- -- Determine whether transient object Trans_Id has been renamed or
- -- aliased through 'reference in the statement list starting from
- -- First_Stmt.
-
- function Is_Allocated (Trans_Id : Entity_Id) return Boolean;
- -- Determine whether transient object Trans_Id is allocated on the heap
-
- function Is_Iterated_Container
- (Trans_Id : Entity_Id;
- First_Stmt : Node_Id) return Boolean;
- -- Determine whether transient object Trans_Id denotes a container which
- -- is in the process of being iterated in the statement list starting
- -- from First_Stmt.
-
- ---------------------------
- -- Initialized_By_Access --
- ---------------------------
-
- function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean is
- Expr : constant Node_Id := Expression (Parent (Trans_Id));
-
- begin
- return
- Present (Expr)
- and then Nkind (Expr) /= N_Reference
- and then Is_Access_Type (Etype (Expr));
- end Initialized_By_Access;
-
- ------------------------------------------
- -- Initialized_By_Aliased_BIP_Func_Call --
- ------------------------------------------
-
- function Initialized_By_Aliased_BIP_Func_Call
- (Trans_Id : Entity_Id) return Boolean
- is
- Call : Node_Id := Expression (Parent (Trans_Id));
-
- begin
- -- Build-in-place calls usually appear in 'reference format
-
- if Nkind (Call) = N_Reference then
- Call := Prefix (Call);
- end if;
-
- if Is_Build_In_Place_Function_Call (Call) then
- declare
- Access_Nam : Name_Id := No_Name;
- Access_OK : Boolean := False;
- Actual : Node_Id;
- Alloc_Nam : Name_Id := No_Name;
- Alloc_OK : Boolean := False;
- Formal : Node_Id;
- Func_Id : Entity_Id;
- Param : Node_Id;
-
- begin
- -- Examine all parameter associations of the function call
-
- Param := First (Parameter_Associations (Call));
- while Present (Param) loop
- if Nkind (Param) = N_Parameter_Association
- and then Nkind (Selector_Name (Param)) = N_Identifier
- then
- Actual := Explicit_Actual_Parameter (Param);
- Formal := Selector_Name (Param);
-
- -- Construct the names of formals BIPaccess and BIPalloc
- -- using the function name retrieved from an arbitrary
- -- formal.
-
- if Access_Nam = No_Name
- and then Alloc_Nam = No_Name
- and then Present (Entity (Formal))
- then
- Func_Id := Scope (Entity (Formal));
-
- Access_Nam :=
- New_External_Name (Chars (Func_Id),
- BIP_Formal_Suffix (BIP_Object_Access));
-
- Alloc_Nam :=
- New_External_Name (Chars (Func_Id),
- BIP_Formal_Suffix (BIP_Alloc_Form));
- end if;
-
- -- A match for BIPaccess => Temp has been found
-
- if Chars (Formal) = Access_Nam
- and then Nkind (Actual) /= N_Null
- then
- Access_OK := True;
- end if;
-
- -- A match for BIPalloc => 1 has been found
-
- if Chars (Formal) = Alloc_Nam
- and then Nkind (Actual) = N_Integer_Literal
- and then Intval (Actual) = Uint_1
- then
- Alloc_OK := True;
- end if;
- end if;
-
- Next (Param);
- end loop;
-
- return Access_OK and Alloc_OK;
- end;
- end if;
-
- return False;
- end Initialized_By_Aliased_BIP_Func_Call;
-
- ----------------
- -- Is_Aliased --
- ----------------
-
- function Is_Aliased
- (Trans_Id : Entity_Id;
- First_Stmt : Node_Id) return Boolean
- is
- function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id;
- -- Given an object renaming declaration, retrieve the entity of the
- -- renamed name. Return Empty if the renamed name is anything other
- -- than a variable or a constant.
-
- -------------------------
- -- Find_Renamed_Object --
- -------------------------
-
- function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id is
- Ren_Obj : Node_Id := Empty;
-
- function Find_Object (N : Node_Id) return Traverse_Result;
- -- Try to detect an object which is either a constant or a
- -- variable.
-
- -----------------
- -- Find_Object --
- -----------------
-
- function Find_Object (N : Node_Id) return Traverse_Result is
- begin
- -- Stop the search once a constant or a variable has been
- -- detected.
-
- if Nkind (N) = N_Identifier
- and then Present (Entity (N))
- and then Ekind_In (Entity (N), E_Constant, E_Variable)
- then
- Ren_Obj := Entity (N);
- return Abandon;
- end if;
-
- return OK;
- end Find_Object;
-
- procedure Search is new Traverse_Proc (Find_Object);
-
- -- Local variables
-
- Typ : constant Entity_Id := Etype (Defining_Identifier (Ren_Decl));
-
- -- Start of processing for Find_Renamed_Object
-
- begin
- -- Actions related to dispatching calls may appear as renamings of
- -- tags. Do not process this type of renaming because it does not
- -- use the actual value of the object.
-
- if not Is_RTE (Typ, RE_Tag_Ptr) then
- Search (Name (Ren_Decl));
- end if;
-
- return Ren_Obj;
- end Find_Renamed_Object;
-
- -- Local variables
-
- Expr : Node_Id;
- Ren_Obj : Entity_Id;
- Stmt : Node_Id;
-
- -- Start of processing for Is_Aliased
-
- begin
- Stmt := First_Stmt;
- while Present (Stmt) loop
- if Nkind (Stmt) = N_Object_Declaration then
- Expr := Expression (Stmt);
-
- if Present (Expr)
- and then Nkind (Expr) = N_Reference
- and then Nkind (Prefix (Expr)) = N_Identifier
- and then Entity (Prefix (Expr)) = Trans_Id
- then
- return True;
- end if;
-
- elsif Nkind (Stmt) = N_Object_Renaming_Declaration then
- Ren_Obj := Find_Renamed_Object (Stmt);
-
- if Present (Ren_Obj) and then Ren_Obj = Trans_Id then
- return True;
- end if;
- end if;
-
- Next (Stmt);
- end loop;
-
- return False;
- end Is_Aliased;
-
- ------------------
- -- Is_Allocated --
- ------------------
-
- function Is_Allocated (Trans_Id : Entity_Id) return Boolean is
- Expr : constant Node_Id := Expression (Parent (Trans_Id));
- begin
- return
- Is_Access_Type (Etype (Trans_Id))
- and then Present (Expr)
- and then Nkind (Expr) = N_Allocator;
- end Is_Allocated;
-
- ---------------------------
- -- Is_Iterated_Container --
- ---------------------------
-
- function Is_Iterated_Container
- (Trans_Id : Entity_Id;
- First_Stmt : Node_Id) return Boolean
- is
- Aspect : Node_Id;
- Call : Node_Id;
- Iter : Entity_Id;
- Param : Node_Id;
- Stmt : Node_Id;
- Typ : Entity_Id;
-
- begin
- -- It is not possible to iterate over containers in non-Ada 2012 code
-
- if Ada_Version < Ada_2012 then
- return False;
- end if;
-
- Typ := Etype (Trans_Id);
-
- -- Handle access type created for secondary stack use
-
- if Is_Access_Type (Typ) then
- Typ := Designated_Type (Typ);
- end if;
-
- -- Look for aspect Default_Iterator
-
- if Has_Aspects (Parent (Typ)) then
- Aspect := Find_Aspect (Typ, Aspect_Default_Iterator);
-
- if Present (Aspect) then
- Iter := Entity (Aspect);
-
- -- Examine the statements following the container object and
- -- look for a call to the default iterate routine where the
- -- first parameter is the transient. Such a call appears as:
-
- -- It : Access_To_CW_Iterator :=
- -- Iterate (Tran_Id.all, ...)'reference;
-
- Stmt := First_Stmt;
- while Present (Stmt) loop
-
- -- Detect an object declaration which is initialized by a
- -- secondary stack function call.
-
- if Nkind (Stmt) = N_Object_Declaration
- and then Present (Expression (Stmt))
- and then Nkind (Expression (Stmt)) = N_Reference
- and then Nkind (Prefix (Expression (Stmt))) =
- N_Function_Call
- then
- Call := Prefix (Expression (Stmt));
-
- -- The call must invoke the default iterate routine of
- -- the container and the transient object must appear as
- -- the first actual parameter. Skip any calls whose names
- -- are not entities.
-
- if Is_Entity_Name (Name (Call))
- and then Entity (Name (Call)) = Iter
- and then Present (Parameter_Associations (Call))
- then
- Param := First (Parameter_Associations (Call));
-
- if Nkind (Param) = N_Explicit_Dereference
- and then Entity (Prefix (Param)) = Trans_Id
- then
- return True;
- end if;
- end if;
- end if;
-
- Next (Stmt);
- end loop;
- end if;
- end if;
-
- return False;
- end Is_Iterated_Container;
-
- -- Start of processing for Is_Finalizable_Transient
-
- begin
- -- Handle access types
-
- if Is_Access_Type (Desig) then
- Desig := Available_View (Designated_Type (Desig));
- end if;
-
- return
- Ekind_In (Obj_Id, E_Constant, E_Variable)
- and then Needs_Finalization (Desig)
- and then Requires_Transient_Scope (Desig)
- and then Nkind (Rel_Node) /= N_Simple_Return_Statement
-
- -- Do not consider renamed or 'reference-d transient objects because
- -- the act of renaming extends the object's lifetime.
-
- and then not Is_Aliased (Obj_Id, Decl)
-
- -- Do not consider transient objects allocated on the heap since
- -- they are attached to a finalization master.
-
- and then not Is_Allocated (Obj_Id)
-
- -- If the transient object is a pointer, check that it is not
- -- initialized by a function which returns a pointer or acts as a
- -- renaming of another pointer.
-
- and then
- (not Is_Access_Type (Obj_Typ)
- or else not Initialized_By_Access (Obj_Id))
-
- -- Do not consider transient objects which act as indirect aliases
- -- of build-in-place function results.
-
- and then not Initialized_By_Aliased_BIP_Func_Call (Obj_Id)
-
- -- Do not consider conversions of tags to class-wide types
-
- and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
-
- -- Do not consider containers in the context of iterator loops. Such
- -- transient objects must exist for as long as the loop is around,
- -- otherwise any operation carried out by the iterator will fail.
-
- and then not Is_Iterated_Container (Obj_Id, Decl);
- end Is_Finalizable_Transient;
-
- ---------------------------------
- -- Is_Fully_Repped_Tagged_Type --
- ---------------------------------
-
- function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is
- U : constant Entity_Id := Underlying_Type (T);
- Comp : Entity_Id;
-
- begin
- if No (U) or else not Is_Tagged_Type (U) then
- return False;
- elsif Has_Discriminants (U) then
- return False;
- elsif not Has_Specified_Layout (U) then
- return False;
- end if;
-
- -- Here we have a tagged type, see if it has any unlayed out fields
- -- other than a possible tag and parent fields. If so, we return False.
-
- Comp := First_Component (U);
- while Present (Comp) loop
- if not Is_Tag (Comp)
- and then Chars (Comp) /= Name_uParent
- and then No (Component_Clause (Comp))
- then
- return False;
- else
- Next_Component (Comp);
- end if;
- end loop;
-
- -- All components are layed out
-
- return True;
- end Is_Fully_Repped_Tagged_Type;
-
- ----------------------------------
- -- Is_Library_Level_Tagged_Type --
- ----------------------------------
-
- function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
- begin
- return Is_Tagged_Type (Typ) and then Is_Library_Level_Entity (Typ);
- end Is_Library_Level_Tagged_Type;
-
- --------------------------
- -- Is_Non_BIP_Func_Call --
- --------------------------
-
- function Is_Non_BIP_Func_Call (Expr : Node_Id) return Boolean is
- begin
- -- The expected call is of the format
- --
- -- Func_Call'reference
-
- return
- Nkind (Expr) = N_Reference
- and then Nkind (Prefix (Expr)) = N_Function_Call
- and then not Is_Build_In_Place_Function_Call (Prefix (Expr));
- end Is_Non_BIP_Func_Call;
-
- ----------------------------------
- -- Is_Possibly_Unaligned_Object --
- ----------------------------------
-
- function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
- T : constant Entity_Id := Etype (N);
-
- begin
- -- If renamed object, apply test to underlying object
-
- if Is_Entity_Name (N)
- and then Is_Object (Entity (N))
- and then Present (Renamed_Object (Entity (N)))
- then
- return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
- end if;
-
- -- Tagged and controlled types and aliased types are always aligned, as
- -- are concurrent types.
-
- if Is_Aliased (T)
- or else Has_Controlled_Component (T)
- or else Is_Concurrent_Type (T)
- or else Is_Tagged_Type (T)
- or else Is_Controlled (T)
- then
- return False;
- end if;
-
- -- If this is an element of a packed array, may be unaligned
-
- if Is_Ref_To_Bit_Packed_Array (N) then
- return True;
- end if;
-
- -- Case of indexed component reference: test whether prefix is unaligned
-
- if Nkind (N) = N_Indexed_Component then
- return Is_Possibly_Unaligned_Object (Prefix (N));
-
- -- Case of selected component reference
-
- elsif Nkind (N) = N_Selected_Component then
- declare
- P : constant Node_Id := Prefix (N);
- C : constant Entity_Id := Entity (Selector_Name (N));
- M : Nat;
- S : Nat;
-
- begin
- -- If component reference is for an array with non-static bounds,
- -- then it is always aligned: we can only process unaligned arrays
- -- with static bounds (more precisely compile time known bounds).
-
- if Is_Array_Type (T)
- and then not Compile_Time_Known_Bounds (T)
- then
- return False;
- end if;
-
- -- If component is aliased, it is definitely properly aligned
-
- if Is_Aliased (C) then
- return False;
- end if;
-
- -- If component is for a type implemented as a scalar, and the
- -- record is packed, and the component is other than the first
- -- component of the record, then the component may be unaligned.
-
- if Is_Packed (Etype (P))
- and then Represented_As_Scalar (Etype (C))
- and then First_Entity (Scope (C)) /= C
- then
- return True;
- end if;
-
- -- Compute maximum possible alignment for T
-
- -- If alignment is known, then that settles things
-
- if Known_Alignment (T) then
- M := UI_To_Int (Alignment (T));
-
- -- If alignment is not known, tentatively set max alignment
-
- else
- M := Ttypes.Maximum_Alignment;
-
- -- We can reduce this if the Esize is known since the default
- -- alignment will never be more than the smallest power of 2
- -- that does not exceed this Esize value.
-
- if Known_Esize (T) then
- S := UI_To_Int (Esize (T));
-
- while (M / 2) >= S loop
- M := M / 2;
- end loop;
- end if;
- end if;
-
- -- The following code is historical, it used to be present but it
- -- is too cautious, because the front-end does not know the proper
- -- default alignments for the target. Also, if the alignment is
- -- not known, the front end can't know in any case! If a copy is
- -- needed, the back-end will take care of it. This whole section
- -- including this comment can be removed later ???
-
- -- If the component reference is for a record that has a specified
- -- alignment, and we either know it is too small, or cannot tell,
- -- then the component may be unaligned.
-
- -- What is the following commented out code ???
-
- -- if Known_Alignment (Etype (P))
- -- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
- -- and then M > Alignment (Etype (P))
- -- then
- -- return True;
- -- end if;
-
- -- Case of component clause present which may specify an
- -- unaligned position.
-
- if Present (Component_Clause (C)) then
-
- -- Otherwise we can do a test to make sure that the actual
- -- start position in the record, and the length, are both
- -- consistent with the required alignment. If not, we know
- -- that we are unaligned.
-
- declare
- Align_In_Bits : constant Nat := M * System_Storage_Unit;
- begin
- if Component_Bit_Offset (C) mod Align_In_Bits /= 0
- or else Esize (C) mod Align_In_Bits /= 0
- then
- return True;
- end if;
- end;
- end if;
-
- -- Otherwise, for a component reference, test prefix
-
- return Is_Possibly_Unaligned_Object (P);
- end;
-
- -- If not a component reference, must be aligned
-
- else
- return False;
- end if;
- end Is_Possibly_Unaligned_Object;
-
- ---------------------------------
- -- Is_Possibly_Unaligned_Slice --
- ---------------------------------
-
- function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
- begin
- -- Go to renamed object
-
- if Is_Entity_Name (N)
- and then Is_Object (Entity (N))
- and then Present (Renamed_Object (Entity (N)))
- then
- return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
- end if;
-
- -- The reference must be a slice
-
- if Nkind (N) /= N_Slice then
- return False;
- end if;
-
- -- Always assume the worst for a nested record component with a
- -- component clause, which gigi/gcc does not appear to handle well.
- -- It is not clear why this special test is needed at all ???
-
- if Nkind (Prefix (N)) = N_Selected_Component
- and then Nkind (Prefix (Prefix (N))) = N_Selected_Component
- and then
- Present (Component_Clause (Entity (Selector_Name (Prefix (N)))))
- then
- return True;
- end if;
-
- -- We only need to worry if the target has strict alignment
-
- if not Target_Strict_Alignment then
- return False;
- end if;
-
- -- If it is a slice, then look at the array type being sliced
-
- declare
- Sarr : constant Node_Id := Prefix (N);
- -- Prefix of the slice, i.e. the array being sliced
-
- Styp : constant Entity_Id := Etype (Prefix (N));
- -- Type of the array being sliced
-
- Pref : Node_Id;
- Ptyp : Entity_Id;
-
- begin
- -- The problems arise if the array object that is being sliced
- -- is a component of a record or array, and we cannot guarantee
- -- the alignment of the array within its containing object.
-
- -- To investigate this, we look at successive prefixes to see
- -- if we have a worrisome indexed or selected component.
-
- Pref := Sarr;
- loop
- -- Case of array is part of an indexed component reference
-
- if Nkind (Pref) = N_Indexed_Component then
- Ptyp := Etype (Prefix (Pref));
-
- -- The only problematic case is when the array is packed, in
- -- which case we really know nothing about the alignment of
- -- individual components.
-
- if Is_Bit_Packed_Array (Ptyp) then
- return True;
- end if;
-
- -- Case of array is part of a selected component reference
-
- elsif Nkind (Pref) = N_Selected_Component then
- Ptyp := Etype (Prefix (Pref));
-
- -- We are definitely in trouble if the record in question
- -- has an alignment, and either we know this alignment is
- -- inconsistent with the alignment of the slice, or we don't
- -- know what the alignment of the slice should be.
-
- if Known_Alignment (Ptyp)
- and then (Unknown_Alignment (Styp)
- or else Alignment (Styp) > Alignment (Ptyp))
- then
- return True;
- end if;
-
- -- We are in potential trouble if the record type is packed.
- -- We could special case when we know that the array is the
- -- first component, but that's not such a simple case ???
-
- if Is_Packed (Ptyp) then
- return True;
- end if;
-
- -- We are in trouble if there is a component clause, and
- -- either we do not know the alignment of the slice, or
- -- the alignment of the slice is inconsistent with the
- -- bit position specified by the component clause.
-
- declare
- Field : constant Entity_Id := Entity (Selector_Name (Pref));
- begin
- if Present (Component_Clause (Field))
- and then
- (Unknown_Alignment (Styp)
- or else
- (Component_Bit_Offset (Field) mod
- (System_Storage_Unit * Alignment (Styp))) /= 0)
- then
- return True;
- end if;
- end;
-
- -- For cases other than selected or indexed components we know we
- -- are OK, since no issues arise over alignment.
-
- else
- return False;
- end if;
-
- -- We processed an indexed component or selected component
- -- reference that looked safe, so keep checking prefixes.
-
- Pref := Prefix (Pref);
- end loop;
- end;
- end Is_Possibly_Unaligned_Slice;
-
- -------------------------------
- -- Is_Related_To_Func_Return --
- -------------------------------
-
- function Is_Related_To_Func_Return (Id : Entity_Id) return Boolean is
- Expr : constant Node_Id := Related_Expression (Id);
- begin
- return
- Present (Expr)
- and then Nkind (Expr) = N_Explicit_Dereference
- and then Nkind (Parent (Expr)) = N_Simple_Return_Statement;
- end Is_Related_To_Func_Return;
-
- --------------------------------
- -- Is_Ref_To_Bit_Packed_Array --
- --------------------------------
-
- function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
- Result : Boolean;
- Expr : Node_Id;
-
- begin
- if Is_Entity_Name (N)
- and then Is_Object (Entity (N))
- and then Present (Renamed_Object (Entity (N)))
- then
- return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
- end if;
-
- if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
- if Is_Bit_Packed_Array (Etype (Prefix (N))) then
- Result := True;
- else
- Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
- end if;
-
- if Result and then Nkind (N) = N_Indexed_Component then
- Expr := First (Expressions (N));
- while Present (Expr) loop
- Force_Evaluation (Expr);
- Next (Expr);
- end loop;
- end if;
-
- return Result;
-
- else
- return False;
- end if;
- end Is_Ref_To_Bit_Packed_Array;
-
- --------------------------------
- -- Is_Ref_To_Bit_Packed_Slice --
- --------------------------------
-
- function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
- begin
- if Nkind (N) = N_Type_Conversion then
- return Is_Ref_To_Bit_Packed_Slice (Expression (N));
-
- elsif Is_Entity_Name (N)
- and then Is_Object (Entity (N))
- and then Present (Renamed_Object (Entity (N)))
- then
- return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
-
- elsif Nkind (N) = N_Slice
- and then Is_Bit_Packed_Array (Etype (Prefix (N)))
- then
- return True;
-
- elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
- return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
-
- else
- return False;
- end if;
- end Is_Ref_To_Bit_Packed_Slice;
-
- -----------------------
- -- Is_Renamed_Object --
- -----------------------
-
- function Is_Renamed_Object (N : Node_Id) return Boolean is
- Pnod : constant Node_Id := Parent (N);
- Kind : constant Node_Kind := Nkind (Pnod);
- begin
- if Kind = N_Object_Renaming_Declaration then
- return True;
- elsif Nkind_In (Kind, N_Indexed_Component, N_Selected_Component) then
- return Is_Renamed_Object (Pnod);
- else
- return False;
- end if;
- end Is_Renamed_Object;
-
- --------------------------------------
- -- Is_Secondary_Stack_BIP_Func_Call --
- --------------------------------------
-
- function Is_Secondary_Stack_BIP_Func_Call (Expr : Node_Id) return Boolean is
- Call : Node_Id := Expr;
-
- begin
- -- Build-in-place calls usually appear in 'reference format. Note that
- -- the accessibility check machinery may add an extra 'reference due to
- -- side effect removal.
-
- while Nkind (Call) = N_Reference loop
- Call := Prefix (Call);
- end loop;
-
- if Nkind_In (Call, N_Qualified_Expression,
- N_Unchecked_Type_Conversion)
- then
- Call := Expression (Call);
- end if;
-
- if Is_Build_In_Place_Function_Call (Call) then
- declare
- Access_Nam : Name_Id := No_Name;
- Actual : Node_Id;
- Param : Node_Id;
- Formal : Node_Id;
-
- begin
- -- Examine all parameter associations of the function call
-
- Param := First (Parameter_Associations (Call));
- while Present (Param) loop
- if Nkind (Param) = N_Parameter_Association
- and then Nkind (Selector_Name (Param)) = N_Identifier
- then
- Formal := Selector_Name (Param);
- Actual := Explicit_Actual_Parameter (Param);
-
- -- Construct the name of formal BIPalloc. It is much easier
- -- to extract the name of the function using an arbitrary
- -- formal's scope rather than the Name field of Call.
-
- if Access_Nam = No_Name
- and then Present (Entity (Formal))
- then
- Access_Nam :=
- New_External_Name
- (Chars (Scope (Entity (Formal))),
- BIP_Formal_Suffix (BIP_Alloc_Form));
- end if;
-
- -- A match for BIPalloc => 2 has been found
-
- if Chars (Formal) = Access_Nam
- and then Nkind (Actual) = N_Integer_Literal
- and then Intval (Actual) = Uint_2
- then
- return True;
- end if;
- end if;
-
- Next (Param);
- end loop;
- end;
- end if;
-
- return False;
- end Is_Secondary_Stack_BIP_Func_Call;
-
- -------------------------------------
- -- Is_Tag_To_Class_Wide_Conversion --
- -------------------------------------
-
- function Is_Tag_To_Class_Wide_Conversion
- (Obj_Id : Entity_Id) return Boolean
- is
- Expr : constant Node_Id := Expression (Parent (Obj_Id));
-
- begin
- return
- Is_Class_Wide_Type (Etype (Obj_Id))
- and then Present (Expr)
- and then Nkind (Expr) = N_Unchecked_Type_Conversion
- and then Etype (Expression (Expr)) = RTE (RE_Tag);
- end Is_Tag_To_Class_Wide_Conversion;
-
- ----------------------------
- -- Is_Untagged_Derivation --
- ----------------------------
-
- function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
- begin
- return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
- or else
- (Is_Private_Type (T) and then Present (Full_View (T))
- and then not Is_Tagged_Type (Full_View (T))
- and then Is_Derived_Type (Full_View (T))
- and then Etype (Full_View (T)) /= T);
- end Is_Untagged_Derivation;
-
- ---------------------------
- -- Is_Volatile_Reference --
- ---------------------------
-
- function Is_Volatile_Reference (N : Node_Id) return Boolean is
- begin
- if Nkind (N) in N_Has_Etype
- and then Present (Etype (N))
- and then Treat_As_Volatile (Etype (N))
- then
- return True;
-
- elsif Is_Entity_Name (N) then
- return Treat_As_Volatile (Entity (N));
-
- elsif Nkind (N) = N_Slice then
- return Is_Volatile_Reference (Prefix (N));
-
- elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
- if (Is_Entity_Name (Prefix (N))
- and then Has_Volatile_Components (Entity (Prefix (N))))
- or else (Present (Etype (Prefix (N)))
- and then Has_Volatile_Components (Etype (Prefix (N))))
- then
- return True;
- else
- return Is_Volatile_Reference (Prefix (N));
- end if;
-
- else
- return False;
- end if;
- end Is_Volatile_Reference;
-
- --------------------------
- -- Is_VM_By_Copy_Actual --
- --------------------------
-
- function Is_VM_By_Copy_Actual (N : Node_Id) return Boolean is
- begin
- return VM_Target /= No_VM
- and then (Nkind (N) = N_Slice
- or else
- (Nkind (N) = N_Identifier
- and then Present (Renamed_Object (Entity (N)))
- and then Nkind (Renamed_Object (Entity (N))) =
- N_Slice));
- end Is_VM_By_Copy_Actual;
-
- --------------------
- -- Kill_Dead_Code --
- --------------------
-
- procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
- W : Boolean := Warn;
- -- Set False if warnings suppressed
-
- begin
- if Present (N) then
- Remove_Warning_Messages (N);
-
- -- Generate warning if appropriate
-
- if W then
-
- -- We suppress the warning if this code is under control of an
- -- if statement, whose condition is a simple identifier, and
- -- either we are in an instance, or warnings off is set for this
- -- identifier. The reason for killing it in the instance case is
- -- that it is common and reasonable for code to be deleted in
- -- instances for various reasons.
-
- if Nkind (Parent (N)) = N_If_Statement then
- declare
- C : constant Node_Id := Condition (Parent (N));
- begin
- if Nkind (C) = N_Identifier
- and then
- (In_Instance
- or else (Present (Entity (C))
- and then Has_Warnings_Off (Entity (C))))
- then
- W := False;
- end if;
- end;
- end if;
-
- -- Generate warning if not suppressed
-
- if W then
- Error_Msg_F
- ("?t?this code can never be executed and has been deleted!",
- N);
- end if;
- end if;
-
- -- Recurse into block statements and bodies to process declarations
- -- and statements.
-
- if Nkind (N) = N_Block_Statement
- or else Nkind (N) = N_Subprogram_Body
- or else Nkind (N) = N_Package_Body
- then
- Kill_Dead_Code (Declarations (N), False);
- Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
-
- if Nkind (N) = N_Subprogram_Body then
- Set_Is_Eliminated (Defining_Entity (N));
- end if;
-
- elsif Nkind (N) = N_Package_Declaration then
- Kill_Dead_Code (Visible_Declarations (Specification (N)));
- Kill_Dead_Code (Private_Declarations (Specification (N)));
-
- -- ??? After this point, Delete_Tree has been called on all
- -- declarations in Specification (N), so references to entities
- -- therein look suspicious.
-
- declare
- E : Entity_Id := First_Entity (Defining_Entity (N));
- begin
- while Present (E) loop
- if Ekind (E) = E_Operator then
- Set_Is_Eliminated (E);
- end if;
-
- Next_Entity (E);
- end loop;
- end;
-
- -- Recurse into composite statement to kill individual statements in
- -- particular instantiations.
-
- elsif Nkind (N) = N_If_Statement then
- Kill_Dead_Code (Then_Statements (N));
- Kill_Dead_Code (Elsif_Parts (N));
- Kill_Dead_Code (Else_Statements (N));
-
- elsif Nkind (N) = N_Loop_Statement then
- Kill_Dead_Code (Statements (N));
-
- elsif Nkind (N) = N_Case_Statement then
- declare
- Alt : Node_Id;
- begin
- Alt := First (Alternatives (N));
- while Present (Alt) loop
- Kill_Dead_Code (Statements (Alt));
- Next (Alt);
- end loop;
- end;
-
- elsif Nkind (N) = N_Case_Statement_Alternative then
- Kill_Dead_Code (Statements (N));
-
- -- Deal with dead instances caused by deleting instantiations
-
- elsif Nkind (N) in N_Generic_Instantiation then
- Remove_Dead_Instance (N);
- end if;
- end if;
- end Kill_Dead_Code;
-
- -- Case where argument is a list of nodes to be killed
-
- procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
- N : Node_Id;
- W : Boolean;
- begin
- W := Warn;
- if Is_Non_Empty_List (L) then
- N := First (L);
- while Present (N) loop
- Kill_Dead_Code (N, W);
- W := False;
- Next (N);
- end loop;
- end if;
- end Kill_Dead_Code;
-
- ------------------------
- -- Known_Non_Negative --
- ------------------------
-
- function Known_Non_Negative (Opnd : Node_Id) return Boolean is
- begin
- if Is_OK_Static_Expression (Opnd) and then Expr_Value (Opnd) >= 0 then
- return True;
-
- else
- declare
- Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
- begin
- return
- Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
- end;
- end if;
- end Known_Non_Negative;
-
- --------------------
- -- Known_Non_Null --
- --------------------
-
- function Known_Non_Null (N : Node_Id) return Boolean is
- begin
- -- Checks for case where N is an entity reference
-
- if Is_Entity_Name (N) and then Present (Entity (N)) then
- declare
- E : constant Entity_Id := Entity (N);
- Op : Node_Kind;
- Val : Node_Id;
-
- begin
- -- First check if we are in decisive conditional
-
- Get_Current_Value_Condition (N, Op, Val);
-
- if Known_Null (Val) then
- if Op = N_Op_Eq then
- return False;
- elsif Op = N_Op_Ne then
- return True;
- end if;
- end if;
-
- -- If OK to do replacement, test Is_Known_Non_Null flag
-
- if OK_To_Do_Constant_Replacement (E) then
- return Is_Known_Non_Null (E);
-
- -- Otherwise if not safe to do replacement, then say so
-
- else
- return False;
- end if;
- end;
-
- -- True if access attribute
-
- elsif Nkind (N) = N_Attribute_Reference
- and then (Attribute_Name (N) = Name_Access
- or else
- Attribute_Name (N) = Name_Unchecked_Access
- or else
- Attribute_Name (N) = Name_Unrestricted_Access)
- then
- return True;
-
- -- True if allocator
-
- elsif Nkind (N) = N_Allocator then
- return True;
-
- -- For a conversion, true if expression is known non-null
-
- elsif Nkind (N) = N_Type_Conversion then
- return Known_Non_Null (Expression (N));
-
- -- Above are all cases where the value could be determined to be
- -- non-null. In all other cases, we don't know, so return False.
-
- else
- return False;
- end if;
- end Known_Non_Null;
-
- ----------------
- -- Known_Null --
- ----------------
-
- function Known_Null (N : Node_Id) return Boolean is
- begin
- -- Checks for case where N is an entity reference
-
- if Is_Entity_Name (N) and then Present (Entity (N)) then
- declare
- E : constant Entity_Id := Entity (N);
- Op : Node_Kind;
- Val : Node_Id;
-
- begin
- -- Constant null value is for sure null
-
- if Ekind (E) = E_Constant
- and then Known_Null (Constant_Value (E))
- then
- return True;
- end if;
-
- -- First check if we are in decisive conditional
-
- Get_Current_Value_Condition (N, Op, Val);
-
- if Known_Null (Val) then
- if Op = N_Op_Eq then
- return True;
- elsif Op = N_Op_Ne then
- return False;
- end if;
- end if;
-
- -- If OK to do replacement, test Is_Known_Null flag
-
- if OK_To_Do_Constant_Replacement (E) then
- return Is_Known_Null (E);
-
- -- Otherwise if not safe to do replacement, then say so
-
- else
- return False;
- end if;
- end;
-
- -- True if explicit reference to null
-
- elsif Nkind (N) = N_Null then
- return True;
-
- -- For a conversion, true if expression is known null
-
- elsif Nkind (N) = N_Type_Conversion then
- return Known_Null (Expression (N));
-
- -- Above are all cases where the value could be determined to be null.
- -- In all other cases, we don't know, so return False.
-
- else
- return False;
- end if;
- end Known_Null;
-
- -----------------------------
- -- Make_CW_Equivalent_Type --
- -----------------------------
-
- -- Create a record type used as an equivalent of any member of the class
- -- which takes its size from exp.
-
- -- Generate the following code:
-
- -- type Equiv_T is record
- -- _parent : T (List of discriminant constraints taken from Exp);
- -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
- -- end Equiv_T;
- --
- -- ??? Note that this type does not guarantee same alignment as all
- -- derived types
-
- function Make_CW_Equivalent_Type
- (T : Entity_Id;
- E : Node_Id) return Entity_Id
- is
- Loc : constant Source_Ptr := Sloc (E);
- Root_Typ : constant Entity_Id := Root_Type (T);
- List_Def : constant List_Id := Empty_List;
- Comp_List : constant List_Id := New_List;
- Equiv_Type : Entity_Id;
- Range_Type : Entity_Id;
- Str_Type : Entity_Id;
- Constr_Root : Entity_Id;
- Sizexpr : Node_Id;
-
- begin
- -- If the root type is already constrained, there are no discriminants
- -- in the expression.
-
- if not Has_Discriminants (Root_Typ)
- or else Is_Constrained (Root_Typ)
- then
- Constr_Root := Root_Typ;
- else
- Constr_Root := Make_Temporary (Loc, 'R');
-
- -- subtype cstr__n is T (List of discr constraints taken from Exp)
-
- Append_To (List_Def,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Constr_Root,
- Subtype_Indication => Make_Subtype_From_Expr (E, Root_Typ)));
- end if;
-
- -- Generate the range subtype declaration
-
- Range_Type := Make_Temporary (Loc, 'G');
-
- if not Is_Interface (Root_Typ) then
-
- -- subtype rg__xx is
- -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
-
- Sizexpr :=
- Make_Op_Subtract (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
- Attribute_Name => Name_Size),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Constr_Root, Loc),
- Attribute_Name => Name_Object_Size));
- else
- -- subtype rg__xx is
- -- Storage_Offset range 1 .. Expr'size / Storage_Unit
-
- Sizexpr :=
- Make_Attribute_Reference (Loc,
- Prefix =>
- OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
- Attribute_Name => Name_Size);
- end if;
-
- Set_Paren_Count (Sizexpr, 1);
-
- Append_To (List_Def,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Range_Type,
- Subtype_Indication =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (RTE (RE_Storage_Offset), Loc),
- Constraint => Make_Range_Constraint (Loc,
- Range_Expression =>
- Make_Range (Loc,
- Low_Bound => Make_Integer_Literal (Loc, 1),
- High_Bound =>
- Make_Op_Divide (Loc,
- Left_Opnd => Sizexpr,
- Right_Opnd => Make_Integer_Literal (Loc,
- Intval => System_Storage_Unit)))))));
-
- -- subtype str__nn is Storage_Array (rg__x);
-
- Str_Type := Make_Temporary (Loc, 'S');
- Append_To (List_Def,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Str_Type,
- Subtype_Indication =>
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (RTE (RE_Storage_Array), Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints =>
- New_List (New_Reference_To (Range_Type, Loc))))));
-
- -- type Equiv_T is record
- -- [ _parent : Tnn; ]
- -- E : Str_Type;
- -- end Equiv_T;
-
- Equiv_Type := Make_Temporary (Loc, 'T');
- Set_Ekind (Equiv_Type, E_Record_Type);
- Set_Parent_Subtype (Equiv_Type, Constr_Root);
-
- -- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
- -- treatment for this type. In particular, even though _parent's type
- -- is a controlled type or contains controlled components, we do not
- -- want to set Has_Controlled_Component on it to avoid making it gain
- -- an unwanted _controller component.
-
- Set_Is_Class_Wide_Equivalent_Type (Equiv_Type);
-
- if not Is_Interface (Root_Typ) then
- Append_To (Comp_List,
- Make_Component_Declaration (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_uParent),
- Component_Definition =>
- Make_Component_Definition (Loc,
- Aliased_Present => False,
- Subtype_Indication => New_Reference_To (Constr_Root, Loc))));
- end if;
-
- Append_To (Comp_List,
- Make_Component_Declaration (Loc,
- Defining_Identifier => Make_Temporary (Loc, 'C'),
- Component_Definition =>
- Make_Component_Definition (Loc,
- Aliased_Present => False,
- Subtype_Indication => New_Reference_To (Str_Type, Loc))));
-
- Append_To (List_Def,
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => Equiv_Type,
- Type_Definition =>
- Make_Record_Definition (Loc,
- Component_List =>
- Make_Component_List (Loc,
- Component_Items => Comp_List,
- Variant_Part => Empty))));
-
- -- Suppress all checks during the analysis of the expanded code to avoid
- -- the generation of spurious warnings under ZFP run-time.
-
- Insert_Actions (E, List_Def, Suppress => All_Checks);
- return Equiv_Type;
- end Make_CW_Equivalent_Type;
-
- -------------------------
- -- Make_Invariant_Call --
- -------------------------
-
- function Make_Invariant_Call (Expr : Node_Id) return Node_Id is
- Loc : constant Source_Ptr := Sloc (Expr);
- Typ : constant Entity_Id := Etype (Expr);
-
- begin
- pragma Assert
- (Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)));
-
- if Check_Enabled (Name_Invariant)
- or else
- Check_Enabled (Name_Assertion)
- then
- return
- Make_Procedure_Call_Statement (Loc,
- Name =>
- New_Occurrence_Of (Invariant_Procedure (Typ), Loc),
- Parameter_Associations => New_List (Relocate_Node (Expr)));
-
- else
- return
- Make_Null_Statement (Loc);
- end if;
- end Make_Invariant_Call;
-
- ------------------------
- -- Make_Literal_Range --
- ------------------------
-
- function Make_Literal_Range
- (Loc : Source_Ptr;
- Literal_Typ : Entity_Id) return Node_Id
- is
- Lo : constant Node_Id :=
- New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
- Index : constant Entity_Id := Etype (Lo);
-
- Hi : Node_Id;
- Length_Expr : constant Node_Id :=
- Make_Op_Subtract (Loc,
- Left_Opnd =>
- Make_Integer_Literal (Loc,
- Intval => String_Literal_Length (Literal_Typ)),
- Right_Opnd =>
- Make_Integer_Literal (Loc, 1));
-
- begin
- Set_Analyzed (Lo, False);
-
- if Is_Integer_Type (Index) then
- Hi :=
- Make_Op_Add (Loc,
- Left_Opnd => New_Copy_Tree (Lo),
- Right_Opnd => Length_Expr);
- else
- Hi :=
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Val,
- Prefix => New_Occurrence_Of (Index, Loc),
- Expressions => New_List (
- Make_Op_Add (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Pos,
- Prefix => New_Occurrence_Of (Index, Loc),
- Expressions => New_List (New_Copy_Tree (Lo))),
- Right_Opnd => Length_Expr)));
- end if;
-
- return
- Make_Range (Loc,
- Low_Bound => Lo,
- High_Bound => Hi);
- end Make_Literal_Range;
-
- --------------------------
- -- Make_Non_Empty_Check --
- --------------------------
-
- function Make_Non_Empty_Check
- (Loc : Source_Ptr;
- N : Node_Id) return Node_Id
- is
- begin
- return
- Make_Op_Ne (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
- Right_Opnd =>
- Make_Integer_Literal (Loc, 0));
- end Make_Non_Empty_Check;
-
- -------------------------
- -- Make_Predicate_Call --
- -------------------------
-
- function Make_Predicate_Call
- (Typ : Entity_Id;
- Expr : Node_Id) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (Expr);
-
- begin
- pragma Assert (Present (Predicate_Function (Typ)));
-
- return
- Make_Function_Call (Loc,
- Name =>
- New_Occurrence_Of (Predicate_Function (Typ), Loc),
- Parameter_Associations => New_List (Relocate_Node (Expr)));
- end Make_Predicate_Call;
-
- --------------------------
- -- Make_Predicate_Check --
- --------------------------
-
- function Make_Predicate_Check
- (Typ : Entity_Id;
- Expr : Node_Id) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (Expr);
-
- begin
- return
- Make_Pragma (Loc,
- Pragma_Identifier => Make_Identifier (Loc, Name_Check),
- Pragma_Argument_Associations => New_List (
- Make_Pragma_Argument_Association (Loc,
- Expression => Make_Identifier (Loc, Name_Predicate)),
- Make_Pragma_Argument_Association (Loc,
- Expression => Make_Predicate_Call (Typ, Expr))));
- end Make_Predicate_Check;
-
- ----------------------------
- -- Make_Subtype_From_Expr --
- ----------------------------
-
- -- 1. If Expr is an unconstrained array expression, creates
- -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
-
- -- 2. If Expr is a unconstrained discriminated type expression, creates
- -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
-
- -- 3. If Expr is class-wide, creates an implicit class wide subtype
-
- function Make_Subtype_From_Expr
- (E : Node_Id;
- Unc_Typ : Entity_Id) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (E);
- List_Constr : constant List_Id := New_List;
- D : Entity_Id;
-
- Full_Subtyp : Entity_Id;
- Priv_Subtyp : Entity_Id;
- Utyp : Entity_Id;
- Full_Exp : Node_Id;
-
- begin
- if Is_Private_Type (Unc_Typ)
- and then Has_Unknown_Discriminants (Unc_Typ)
- then
- -- Prepare the subtype completion, Go to base type to
- -- find underlying type, because the type may be a generic
- -- actual or an explicit subtype.
-
- Utyp := Underlying_Type (Base_Type (Unc_Typ));
- Full_Subtyp := Make_Temporary (Loc, 'C');
- Full_Exp :=
- Unchecked_Convert_To (Utyp, Duplicate_Subexpr_No_Checks (E));
- Set_Parent (Full_Exp, Parent (E));
-
- Priv_Subtyp := Make_Temporary (Loc, 'P');
-
- Insert_Action (E,
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Full_Subtyp,
- Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
-
- -- Define the dummy private subtype
-
- Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
- Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
- Set_Scope (Priv_Subtyp, Full_Subtyp);
- Set_Is_Constrained (Priv_Subtyp);
- Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
- Set_Is_Itype (Priv_Subtyp);
- Set_Associated_Node_For_Itype (Priv_Subtyp, E);
-
- if Is_Tagged_Type (Priv_Subtyp) then
- Set_Class_Wide_Type
- (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
- Set_Direct_Primitive_Operations (Priv_Subtyp,
- Direct_Primitive_Operations (Unc_Typ));
- end if;
-
- Set_Full_View (Priv_Subtyp, Full_Subtyp);
-
- return New_Reference_To (Priv_Subtyp, Loc);
-
- elsif Is_Array_Type (Unc_Typ) then
- for J in 1 .. Number_Dimensions (Unc_Typ) loop
- Append_To (List_Constr,
- Make_Range (Loc,
- Low_Bound =>
- Make_Attribute_Reference (Loc,
- Prefix => Duplicate_Subexpr_No_Checks (E),
- Attribute_Name => Name_First,
- Expressions => New_List (
- Make_Integer_Literal (Loc, J))),
-
- High_Bound =>
- Make_Attribute_Reference (Loc,
- Prefix => Duplicate_Subexpr_No_Checks (E),
- Attribute_Name => Name_Last,
- Expressions => New_List (
- Make_Integer_Literal (Loc, J)))));
- end loop;
-
- elsif Is_Class_Wide_Type (Unc_Typ) then
- declare
- CW_Subtype : Entity_Id;
- EQ_Typ : Entity_Id := Empty;
-
- begin
- -- A class-wide equivalent type is not needed when VM_Target
- -- because the VM back-ends handle the class-wide object
- -- initialization itself (and doesn't need or want the
- -- additional intermediate type to handle the assignment).
-
- if Expander_Active and then Tagged_Type_Expansion then
-
- -- If this is the class_wide type of a completion that is a
- -- record subtype, set the type of the class_wide type to be
- -- the full base type, for use in the expanded code for the
- -- equivalent type. Should this be done earlier when the
- -- completion is analyzed ???
-
- if Is_Private_Type (Etype (Unc_Typ))
- and then
- Ekind (Full_View (Etype (Unc_Typ))) = E_Record_Subtype
- then
- Set_Etype (Unc_Typ, Base_Type (Full_View (Etype (Unc_Typ))));
- end if;
-
- EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
- end if;
-
- CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
- Set_Equivalent_Type (CW_Subtype, EQ_Typ);
- Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
-
- return New_Occurrence_Of (CW_Subtype, Loc);
- end;
-
- -- Indefinite record type with discriminants
-
- else
- D := First_Discriminant (Unc_Typ);
- while Present (D) loop
- Append_To (List_Constr,
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr_No_Checks (E),
- Selector_Name => New_Reference_To (D, Loc)));
-
- Next_Discriminant (D);
- end loop;
- end if;
-
- return
- Make_Subtype_Indication (Loc,
- Subtype_Mark => New_Reference_To (Unc_Typ, Loc),
- Constraint =>
- Make_Index_Or_Discriminant_Constraint (Loc,
- Constraints => List_Constr));
- end Make_Subtype_From_Expr;
-
- -----------------------------
- -- May_Generate_Large_Temp --
- -----------------------------
-
- -- At the current time, the only types that we return False for (i.e. where
- -- we decide we know they cannot generate large temps) are ones where we
- -- know the size is 256 bits or less at compile time, and we are still not
- -- doing a thorough job on arrays and records ???
-
- function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
- begin
- if not Size_Known_At_Compile_Time (Typ) then
- return False;
-
- elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
- return False;
-
- elsif Is_Array_Type (Typ) and then Present (Packed_Array_Type (Typ)) then
- return May_Generate_Large_Temp (Packed_Array_Type (Typ));
-
- -- We could do more here to find other small types ???
-
- else
- return True;
- end if;
- end May_Generate_Large_Temp;
-
- ------------------------
- -- Needs_Finalization --
- ------------------------
-
- function Needs_Finalization (T : Entity_Id) return Boolean is
- function Has_Some_Controlled_Component (Rec : Entity_Id) return Boolean;
- -- If type is not frozen yet, check explicitly among its components,
- -- because the Has_Controlled_Component flag is not necessarily set.
-
- -----------------------------------
- -- Has_Some_Controlled_Component --
- -----------------------------------
-
- function Has_Some_Controlled_Component
- (Rec : Entity_Id) return Boolean
- is
- Comp : Entity_Id;
-
- begin
- if Has_Controlled_Component (Rec) then
- return True;
-
- elsif not Is_Frozen (Rec) then
- if Is_Record_Type (Rec) then
- Comp := First_Entity (Rec);
-
- while Present (Comp) loop
- if not Is_Type (Comp)
- and then Needs_Finalization (Etype (Comp))
- then
- return True;
- end if;
-
- Next_Entity (Comp);
- end loop;
-
- return False;
-
- elsif Is_Array_Type (Rec) then
- return Needs_Finalization (Component_Type (Rec));
-
- else
- return Has_Controlled_Component (Rec);
- end if;
- else
- return False;
- end if;
- end Has_Some_Controlled_Component;
-
- -- Start of processing for Needs_Finalization
-
- begin
- -- Certain run-time configurations and targets do not provide support
- -- for controlled types.
-
- if Restriction_Active (No_Finalization) then
- return False;
-
- -- C, C++, CIL and Java types are not considered controlled. It is
- -- assumed that the non-Ada side will handle their clean up.
-
- elsif Convention (T) = Convention_C
- or else Convention (T) = Convention_CIL
- or else Convention (T) = Convention_CPP
- or else Convention (T) = Convention_Java
- then
- return False;
-
- else
- -- Class-wide types are treated as controlled because derivations
- -- from the root type can introduce controlled components.
-
- return
- Is_Class_Wide_Type (T)
- or else Is_Controlled (T)
- or else Has_Controlled_Component (T)
- or else Has_Some_Controlled_Component (T)
- or else
- (Is_Concurrent_Type (T)
- and then Present (Corresponding_Record_Type (T))
- and then Needs_Finalization (Corresponding_Record_Type (T)));
- end if;
- end Needs_Finalization;
-
- ----------------------------
- -- Needs_Constant_Address --
- ----------------------------
-
- function Needs_Constant_Address
- (Decl : Node_Id;
- Typ : Entity_Id) return Boolean
- is
- begin
-
- -- If we have no initialization of any kind, then we don't need to place
- -- any restrictions on the address clause, because the object will be
- -- elaborated after the address clause is evaluated. This happens if the
- -- declaration has no initial expression, or the type has no implicit
- -- initialization, or the object is imported.
-
- -- The same holds for all initialized scalar types and all access types.
- -- Packed bit arrays of size up to 64 are represented using a modular
- -- type with an initialization (to zero) and can be processed like other
- -- initialized scalar types.
-
- -- If the type is controlled, code to attach the object to a
- -- finalization chain is generated at the point of declaration, and
- -- therefore the elaboration of the object cannot be delayed: the
- -- address expression must be a constant.
-
- if No (Expression (Decl))
- and then not Needs_Finalization (Typ)
- and then
- (not Has_Non_Null_Base_Init_Proc (Typ)
- or else Is_Imported (Defining_Identifier (Decl)))
- then
- return False;
-
- elsif (Present (Expression (Decl)) and then Is_Scalar_Type (Typ))
- or else Is_Access_Type (Typ)
- or else
- (Is_Bit_Packed_Array (Typ)
- and then Is_Modular_Integer_Type (Packed_Array_Type (Typ)))
- then
- return False;
-
- else
-
- -- Otherwise, we require the address clause to be constant because
- -- the call to the initialization procedure (or the attach code) has
- -- to happen at the point of the declaration.
-
- -- Actually the IP call has been moved to the freeze actions anyway,
- -- so maybe we can relax this restriction???
-
- return True;
- end if;
- end Needs_Constant_Address;
-
- ----------------------------
- -- New_Class_Wide_Subtype --
- ----------------------------
-
- function New_Class_Wide_Subtype
- (CW_Typ : Entity_Id;
- N : Node_Id) return Entity_Id
- is
- Res : constant Entity_Id := Create_Itype (E_Void, N);
- Res_Name : constant Name_Id := Chars (Res);
- Res_Scope : constant Entity_Id := Scope (Res);
-
- begin
- Copy_Node (CW_Typ, Res);
- Set_Comes_From_Source (Res, False);
- Set_Sloc (Res, Sloc (N));
- Set_Is_Itype (Res);
- Set_Associated_Node_For_Itype (Res, N);
- Set_Is_Public (Res, False); -- By default, may be changed below.
- Set_Public_Status (Res);
- Set_Chars (Res, Res_Name);
- Set_Scope (Res, Res_Scope);
- Set_Ekind (Res, E_Class_Wide_Subtype);
- Set_Next_Entity (Res, Empty);
- Set_Etype (Res, Base_Type (CW_Typ));
- Set_Is_Frozen (Res, False);
- Set_Freeze_Node (Res, Empty);
- return (Res);
- end New_Class_Wide_Subtype;
-
- --------------------------------
- -- Non_Limited_Designated_Type --
- ---------------------------------
-
- function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
- Desig : constant Entity_Id := Designated_Type (T);
- begin
- if Ekind (Desig) = E_Incomplete_Type
- and then Present (Non_Limited_View (Desig))
- then
- return Non_Limited_View (Desig);
- else
- return Desig;
- end if;
- end Non_Limited_Designated_Type;
-
- -----------------------------------
- -- OK_To_Do_Constant_Replacement --
- -----------------------------------
-
- function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
- ES : constant Entity_Id := Scope (E);
- CS : Entity_Id;
-
- begin
- -- Do not replace statically allocated objects, because they may be
- -- modified outside the current scope.
-
- if Is_Statically_Allocated (E) then
- return False;
-
- -- Do not replace aliased or volatile objects, since we don't know what
- -- else might change the value.
-
- elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
- return False;
-
- -- Debug flag -gnatdM disconnects this optimization
-
- elsif Debug_Flag_MM then
- return False;
-
- -- Otherwise check scopes
-
- else
- CS := Current_Scope;
-
- loop
- -- If we are in right scope, replacement is safe
-
- if CS = ES then
- return True;
-
- -- Packages do not affect the determination of safety
-
- elsif Ekind (CS) = E_Package then
- exit when CS = Standard_Standard;
- CS := Scope (CS);
-
- -- Blocks do not affect the determination of safety
-
- elsif Ekind (CS) = E_Block then
- CS := Scope (CS);
-
- -- Loops do not affect the determination of safety. Note that we
- -- kill all current values on entry to a loop, so we are just
- -- talking about processing within a loop here.
-
- elsif Ekind (CS) = E_Loop then
- CS := Scope (CS);
-
- -- Otherwise, the reference is dubious, and we cannot be sure that
- -- it is safe to do the replacement.
-
- else
- exit;
- end if;
- end loop;
-
- return False;
- end if;
- end OK_To_Do_Constant_Replacement;
-
- ------------------------------------
- -- Possible_Bit_Aligned_Component --
- ------------------------------------
-
- function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
- begin
- case Nkind (N) is
-
- -- Case of indexed component
-
- when N_Indexed_Component =>
- declare
- P : constant Node_Id := Prefix (N);
- Ptyp : constant Entity_Id := Etype (P);
-
- begin
- -- If we know the component size and it is less than 64, then
- -- we are definitely OK. The back end always does assignment of
- -- misaligned small objects correctly.
-
- if Known_Static_Component_Size (Ptyp)
- and then Component_Size (Ptyp) <= 64
- then
- return False;
-
- -- Otherwise, we need to test the prefix, to see if we are
- -- indexing from a possibly unaligned component.
-
- else
- return Possible_Bit_Aligned_Component (P);
- end if;
- end;
-
- -- Case of selected component
-
- when N_Selected_Component =>
- declare
- P : constant Node_Id := Prefix (N);
- Comp : constant Entity_Id := Entity (Selector_Name (N));
-
- begin
- -- If there is no component clause, then we are in the clear
- -- since the back end will never misalign a large component
- -- unless it is forced to do so. In the clear means we need
- -- only the recursive test on the prefix.
-
- if Component_May_Be_Bit_Aligned (Comp) then
- return True;
- else
- return Possible_Bit_Aligned_Component (P);
- end if;
- end;
-
- -- For a slice, test the prefix, if that is possibly misaligned,
- -- then for sure the slice is!
-
- when N_Slice =>
- return Possible_Bit_Aligned_Component (Prefix (N));
-
- -- For an unchecked conversion, check whether the expression may
- -- be bit-aligned.
-
- when N_Unchecked_Type_Conversion =>
- return Possible_Bit_Aligned_Component (Expression (N));
-
- -- If we have none of the above, it means that we have fallen off the
- -- top testing prefixes recursively, and we now have a stand alone
- -- object, where we don't have a problem.
-
- when others =>
- return False;
-
- end case;
- end Possible_Bit_Aligned_Component;
-
- -----------------------------------------------
- -- Process_Statements_For_Controlled_Objects --
- -----------------------------------------------
-
- procedure Process_Statements_For_Controlled_Objects (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
-
- function Are_Wrapped (L : List_Id) return Boolean;
- -- Determine whether list L contains only one statement which is a block
-
- function Wrap_Statements_In_Block (L : List_Id) return Node_Id;
- -- Given a list of statements L, wrap it in a block statement and return
- -- the generated node.
-
- -----------------
- -- Are_Wrapped --
- -----------------
-
- function Are_Wrapped (L : List_Id) return Boolean is
- Stmt : constant Node_Id := First (L);
- begin
- return
- Present (Stmt)
- and then No (Next (Stmt))
- and then Nkind (Stmt) = N_Block_Statement;
- end Are_Wrapped;
-
- ------------------------------
- -- Wrap_Statements_In_Block --
- ------------------------------
-
- function Wrap_Statements_In_Block (L : List_Id) return Node_Id is
- begin
- return
- Make_Block_Statement (Loc,
- Declarations => No_List,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => L));
- end Wrap_Statements_In_Block;
-
- -- Local variables
-
- Block : Node_Id;
-
- -- Start of processing for Process_Statements_For_Controlled_Objects
-
- begin
- -- Whenever a non-handled statement list is wrapped in a block, the
- -- block must be explicitly analyzed to redecorate all entities in the
- -- list and ensure that a finalizer is properly built.
-
- case Nkind (N) is
- when N_Elsif_Part |
- N_If_Statement |
- N_Conditional_Entry_Call |
- N_Selective_Accept =>
-
- -- Check the "then statements" for elsif parts and if statements
-
- if Nkind_In (N, N_Elsif_Part, N_If_Statement)
- and then not Is_Empty_List (Then_Statements (N))
- and then not Are_Wrapped (Then_Statements (N))
- and then Requires_Cleanup_Actions
- (Then_Statements (N), False, False)
- then
- Block := Wrap_Statements_In_Block (Then_Statements (N));
- Set_Then_Statements (N, New_List (Block));
-
- Analyze (Block);
- end if;
-
- -- Check the "else statements" for conditional entry calls, if
- -- statements and selective accepts.
-
- if Nkind_In (N, N_Conditional_Entry_Call,
- N_If_Statement,
- N_Selective_Accept)
- and then not Is_Empty_List (Else_Statements (N))
- and then not Are_Wrapped (Else_Statements (N))
- and then Requires_Cleanup_Actions
- (Else_Statements (N), False, False)
- then
- Block := Wrap_Statements_In_Block (Else_Statements (N));
- Set_Else_Statements (N, New_List (Block));
-
- Analyze (Block);
- end if;
-
- when N_Abortable_Part |
- N_Accept_Alternative |
- N_Case_Statement_Alternative |
- N_Delay_Alternative |
- N_Entry_Call_Alternative |
- N_Exception_Handler |
- N_Loop_Statement |
- N_Triggering_Alternative =>
-
- if not Is_Empty_List (Statements (N))
- and then not Are_Wrapped (Statements (N))
- and then Requires_Cleanup_Actions (Statements (N), False, False)
- then
- Block := Wrap_Statements_In_Block (Statements (N));
- Set_Statements (N, New_List (Block));
-
- Analyze (Block);
- end if;
-
- when others =>
- null;
- end case;
- end Process_Statements_For_Controlled_Objects;
-
- ----------------------
- -- Remove_Init_Call --
- ----------------------
-
- function Remove_Init_Call
- (Var : Entity_Id;
- Rep_Clause : Node_Id) return Node_Id
- is
- Par : constant Node_Id := Parent (Var);
- Typ : constant Entity_Id := Etype (Var);
-
- Init_Proc : Entity_Id;
- -- Initialization procedure for Typ
-
- function Find_Init_Call_In_List (From : Node_Id) return Node_Id;
- -- Look for init call for Var starting at From and scanning the
- -- enclosing list until Rep_Clause or the end of the list is reached.
-
- ----------------------------
- -- Find_Init_Call_In_List --
- ----------------------------
-
- function Find_Init_Call_In_List (From : Node_Id) return Node_Id is
- Init_Call : Node_Id;
-
- begin
- Init_Call := From;
- while Present (Init_Call) and then Init_Call /= Rep_Clause loop
- if Nkind (Init_Call) = N_Procedure_Call_Statement
- and then Is_Entity_Name (Name (Init_Call))
- and then Entity (Name (Init_Call)) = Init_Proc
- then
- return Init_Call;
- end if;
-
- Next (Init_Call);
- end loop;
-
- return Empty;
- end Find_Init_Call_In_List;
-
- Init_Call : Node_Id;
-
- -- Start of processing for Find_Init_Call
-
- begin
- if Present (Initialization_Statements (Var)) then
- Init_Call := Initialization_Statements (Var);
- Set_Initialization_Statements (Var, Empty);
-
- elsif not Has_Non_Null_Base_Init_Proc (Typ) then
-
- -- No init proc for the type, so obviously no call to be found
-
- return Empty;
-
- else
- -- We might be able to handle other cases below by just properly
- -- setting Initialization_Statements at the point where the init proc
- -- call is generated???
-
- Init_Proc := Base_Init_Proc (Typ);
-
- -- First scan the list containing the declaration of Var
-
- Init_Call := Find_Init_Call_In_List (From => Next (Par));
-
- -- If not found, also look on Var's freeze actions list, if any,
- -- since the init call may have been moved there (case of an address
- -- clause applying to Var).
-
- if No (Init_Call) and then Present (Freeze_Node (Var)) then
- Init_Call :=
- Find_Init_Call_In_List (First (Actions (Freeze_Node (Var))));
- end if;
-
- -- If the initialization call has actuals that use the secondary
- -- stack, the call may have been wrapped into a temporary block, in
- -- which case the block itself has to be removed.
-
- if No (Init_Call) and then Nkind (Next (Par)) = N_Block_Statement then
- declare
- Blk : constant Node_Id := Next (Par);
- begin
- if Present
- (Find_Init_Call_In_List
- (First (Statements (Handled_Statement_Sequence (Blk)))))
- then
- Init_Call := Blk;
- end if;
- end;
- end if;
- end if;
-
- if Present (Init_Call) then
- Remove (Init_Call);
- end if;
- return Init_Call;
- end Remove_Init_Call;
-
- -------------------------
- -- Remove_Side_Effects --
- -------------------------
-
- procedure Remove_Side_Effects
- (Exp : Node_Id;
- Name_Req : Boolean := False;
- Variable_Ref : Boolean := False)
- is
- Loc : constant Source_Ptr := Sloc (Exp);
- Exp_Type : constant Entity_Id := Etype (Exp);
- Svg_Suppress : constant Suppress_Record := Scope_Suppress;
- Def_Id : Entity_Id;
- E : Node_Id;
- New_Exp : Node_Id;
- Ptr_Typ_Decl : Node_Id;
- Ref_Type : Entity_Id;
- Res : Node_Id;
-
- function Side_Effect_Free (N : Node_Id) return Boolean;
- -- Determines if the tree N represents an expression that is known not
- -- to have side effects, and for which no processing is required.
-
- function Side_Effect_Free (L : List_Id) return Boolean;
- -- Determines if all elements of the list L are side effect free
-
- function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
- -- The argument N is a construct where the Prefix is dereferenced if it
- -- is an access type and the result is a variable. The call returns True
- -- if the construct is side effect free (not considering side effects in
- -- other than the prefix which are to be tested by the caller).
-
- function Within_In_Parameter (N : Node_Id) return Boolean;
- -- Determines if N is a subcomponent of a composite in-parameter. If so,
- -- N is not side-effect free when the actual is global and modifiable
- -- indirectly from within a subprogram, because it may be passed by
- -- reference. The front-end must be conservative here and assume that
- -- this may happen with any array or record type. On the other hand, we
- -- cannot create temporaries for all expressions for which this
- -- condition is true, for various reasons that might require clearing up
- -- ??? For example, discriminant references that appear out of place, or
- -- spurious type errors with class-wide expressions. As a result, we
- -- limit the transformation to loop bounds, which is so far the only
- -- case that requires it.
-
- -----------------------------
- -- Safe_Prefixed_Reference --
- -----------------------------
-
- function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
- begin
- -- If prefix is not side effect free, definitely not safe
-
- if not Side_Effect_Free (Prefix (N)) then
- return False;
-
- -- If the prefix is of an access type that is not access-to-constant,
- -- then this construct is a variable reference, which means it is to
- -- be considered to have side effects if Variable_Ref is set True.
-
- elsif Is_Access_Type (Etype (Prefix (N)))
- and then not Is_Access_Constant (Etype (Prefix (N)))
- and then Variable_Ref
- then
- -- Exception is a prefix that is the result of a previous removal
- -- of side-effects.
-
- return Is_Entity_Name (Prefix (N))
- and then not Comes_From_Source (Prefix (N))
- and then Ekind (Entity (Prefix (N))) = E_Constant
- and then Is_Internal_Name (Chars (Entity (Prefix (N))));
-
- -- If the prefix is an explicit dereference then this construct is a
- -- variable reference, which means it is to be considered to have
- -- side effects if Variable_Ref is True.
-
- -- We do NOT exclude dereferences of access-to-constant types because
- -- we handle them as constant view of variables.
-
- elsif Nkind (Prefix (N)) = N_Explicit_Dereference
- and then Variable_Ref
- then
- return False;
-
- -- Note: The following test is the simplest way of solving a complex
- -- problem uncovered by the following test (Side effect on loop bound
- -- that is a subcomponent of a global variable:
-
- -- with Text_Io; use Text_Io;
- -- procedure Tloop is
- -- type X is
- -- record
- -- V : Natural := 4;
- -- S : String (1..5) := (others => 'a');
- -- end record;
- -- X1 : X;
-
- -- procedure Modi;
-
- -- generic
- -- with procedure Action;
- -- procedure Loop_G (Arg : X; Msg : String)
-
- -- procedure Loop_G (Arg : X; Msg : String) is
- -- begin
- -- Put_Line ("begin loop_g " & Msg & " will loop till: "
- -- & Natural'Image (Arg.V));
- -- for Index in 1 .. Arg.V loop
- -- Text_Io.Put_Line
- -- (Natural'Image (Index) & " " & Arg.S (Index));
- -- if Index > 2 then
- -- Modi;
- -- end if;
- -- end loop;
- -- Put_Line ("end loop_g " & Msg);
- -- end;
-
- -- procedure Loop1 is new Loop_G (Modi);
- -- procedure Modi is
- -- begin
- -- X1.V := 1;
- -- Loop1 (X1, "from modi");
- -- end;
- --
- -- begin
- -- Loop1 (X1, "initial");
- -- end;
-
- -- The output of the above program should be:
-
- -- begin loop_g initial will loop till: 4
- -- 1 a
- -- 2 a
- -- 3 a
- -- begin loop_g from modi will loop till: 1
- -- 1 a
- -- end loop_g from modi
- -- 4 a
- -- begin loop_g from modi will loop till: 1
- -- 1 a
- -- end loop_g from modi
- -- end loop_g initial
-
- -- If a loop bound is a subcomponent of a global variable, a
- -- modification of that variable within the loop may incorrectly
- -- affect the execution of the loop.
-
- elsif Nkind (Parent (Parent (N))) = N_Loop_Parameter_Specification
- and then Within_In_Parameter (Prefix (N))
- and then Variable_Ref
- then
- return False;
-
- -- All other cases are side effect free
-
- else
- return True;
- end if;
- end Safe_Prefixed_Reference;
-
- ----------------------
- -- Side_Effect_Free --
- ----------------------
-
- function Side_Effect_Free (N : Node_Id) return Boolean is
- begin
- -- Note on checks that could raise Constraint_Error. Strictly, if we
- -- take advantage of 11.6, these checks do not count as side effects.
- -- However, we would prefer to consider that they are side effects,
- -- since the backend CSE does not work very well on expressions which
- -- can raise Constraint_Error. On the other hand if we don't consider
- -- them to be side effect free, then we get some awkward expansions
- -- in -gnato mode, resulting in code insertions at a point where we
- -- do not have a clear model for performing the insertions.
-
- -- Special handling for entity names
-
- if Is_Entity_Name (N) then
-
- -- Variables are considered to be a side effect if Variable_Ref
- -- is set or if we have a volatile reference and Name_Req is off.
- -- If Name_Req is True then we can't help returning a name which
- -- effectively allows multiple references in any case.
-
- if Is_Variable (N, Use_Original_Node => False) then
- return not Variable_Ref
- and then (not Is_Volatile_Reference (N) or else Name_Req);
-
- -- Any other entity (e.g. a subtype name) is definitely side
- -- effect free.
-
- else
- return True;
- end if;
-
- -- A value known at compile time is always side effect free
-
- elsif Compile_Time_Known_Value (N) then
- return True;
-
- -- A variable renaming is not side-effect free, because the renaming
- -- will function like a macro in the front-end in some cases, and an
- -- assignment can modify the component designated by N, so we need to
- -- create a temporary for it.
-
- -- The guard testing for Entity being present is needed at least in
- -- the case of rewritten predicate expressions, and may well also be
- -- appropriate elsewhere. Obviously we can't go testing the entity
- -- field if it does not exist, so it's reasonable to say that this is
- -- not the renaming case if it does not exist.
-
- elsif Is_Entity_Name (Original_Node (N))
- and then Present (Entity (Original_Node (N)))
- and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
- and then Ekind (Entity (Original_Node (N))) /= E_Constant
- then
- declare
- RO : constant Node_Id :=
- Renamed_Object (Entity (Original_Node (N)));
-
- begin
- -- If the renamed object is an indexed component, or an
- -- explicit dereference, then the designated object could
- -- be modified by an assignment.
-
- if Nkind_In (RO, N_Indexed_Component,
- N_Explicit_Dereference)
- then
- return False;
-
- -- A selected component must have a safe prefix
-
- elsif Nkind (RO) = N_Selected_Component then
- return Safe_Prefixed_Reference (RO);
-
- -- In all other cases, designated object cannot be changed so
- -- we are side effect free.
-
- else
- return True;
- end if;
- end;
-
- -- Remove_Side_Effects generates an object renaming declaration to
- -- capture the expression of a class-wide expression. In VM targets
- -- the frontend performs no expansion for dispatching calls to
- -- class- wide types since they are handled by the VM. Hence, we must
- -- locate here if this node corresponds to a previous invocation of
- -- Remove_Side_Effects to avoid a never ending loop in the frontend.
-
- elsif VM_Target /= No_VM
- and then not Comes_From_Source (N)
- and then Nkind (Parent (N)) = N_Object_Renaming_Declaration
- and then Is_Class_Wide_Type (Etype (N))
- then
- return True;
- end if;
-
- -- For other than entity names and compile time known values,
- -- check the node kind for special processing.
-
- case Nkind (N) is
-
- -- An attribute reference is side effect free if its expressions
- -- are side effect free and its prefix is side effect free or
- -- is an entity reference.
-
- -- Is this right? what about x'first where x is a variable???
-
- when N_Attribute_Reference =>
- return Side_Effect_Free (Expressions (N))
- and then Attribute_Name (N) /= Name_Input
- and then (Is_Entity_Name (Prefix (N))
- or else Side_Effect_Free (Prefix (N)));
-
- -- A binary operator is side effect free if and both operands are
- -- side effect free. For this purpose binary operators include
- -- membership tests and short circuit forms.
-
- when N_Binary_Op | N_Membership_Test | N_Short_Circuit =>
- return Side_Effect_Free (Left_Opnd (N))
- and then
- Side_Effect_Free (Right_Opnd (N));
-
- -- An explicit dereference is side effect free only if it is
- -- a side effect free prefixed reference.
-
- when N_Explicit_Dereference =>
- return Safe_Prefixed_Reference (N);
-
- -- A call to _rep_to_pos is side effect free, since we generate
- -- this pure function call ourselves. Moreover it is critically
- -- important to make this exception, since otherwise we can have
- -- discriminants in array components which don't look side effect
- -- free in the case of an array whose index type is an enumeration
- -- type with an enumeration rep clause.
-
- -- All other function calls are not side effect free
-
- when N_Function_Call =>
- return Nkind (Name (N)) = N_Identifier
- and then Is_TSS (Name (N), TSS_Rep_To_Pos)
- and then
- Side_Effect_Free (First (Parameter_Associations (N)));
-
- -- An indexed component is side effect free if it is a side
- -- effect free prefixed reference and all the indexing
- -- expressions are side effect free.
-
- when N_Indexed_Component =>
- return Side_Effect_Free (Expressions (N))
- and then Safe_Prefixed_Reference (N);
-
- -- A type qualification is side effect free if the expression
- -- is side effect free.
-
- when N_Qualified_Expression =>
- return Side_Effect_Free (Expression (N));
-
- -- A selected component is side effect free only if it is a side
- -- effect free prefixed reference. If it designates a component
- -- with a rep. clause it must be treated has having a potential
- -- side effect, because it may be modified through a renaming, and
- -- a subsequent use of the renaming as a macro will yield the
- -- wrong value. This complex interaction between renaming and
- -- removing side effects is a reminder that the latter has become
- -- a headache to maintain, and that it should be removed in favor
- -- of the gcc mechanism to capture values ???
-
- when N_Selected_Component =>
- if Nkind (Parent (N)) = N_Explicit_Dereference
- and then Has_Non_Standard_Rep (Designated_Type (Etype (N)))
- then
- return False;
- else
- return Safe_Prefixed_Reference (N);
- end if;
-
- -- A range is side effect free if the bounds are side effect free
-
- when N_Range =>
- return Side_Effect_Free (Low_Bound (N))
- and then Side_Effect_Free (High_Bound (N));
-
- -- A slice is side effect free if it is a side effect free
- -- prefixed reference and the bounds are side effect free.
-
- when N_Slice =>
- return Side_Effect_Free (Discrete_Range (N))
- and then Safe_Prefixed_Reference (N);
-
- -- A type conversion is side effect free if the expression to be
- -- converted is side effect free.
-
- when N_Type_Conversion =>
- return Side_Effect_Free (Expression (N));
-
- -- A unary operator is side effect free if the operand
- -- is side effect free.
-
- when N_Unary_Op =>
- return Side_Effect_Free (Right_Opnd (N));
-
- -- An unchecked type conversion is side effect free only if it
- -- is safe and its argument is side effect free.
-
- when N_Unchecked_Type_Conversion =>
- return Safe_Unchecked_Type_Conversion (N)
- and then Side_Effect_Free (Expression (N));
-
- -- An unchecked expression is side effect free if its expression
- -- is side effect free.
-
- when N_Unchecked_Expression =>
- return Side_Effect_Free (Expression (N));
-
- -- A literal is side effect free
-
- when N_Character_Literal |
- N_Integer_Literal |
- N_Real_Literal |
- N_String_Literal =>
- return True;
-
- -- We consider that anything else has side effects. This is a bit
- -- crude, but we are pretty close for most common cases, and we
- -- are certainly correct (i.e. we never return True when the
- -- answer should be False).
-
- when others =>
- return False;
- end case;
- end Side_Effect_Free;
-
- -- A list is side effect free if all elements of the list are side
- -- effect free.
-
- function Side_Effect_Free (L : List_Id) return Boolean is
- N : Node_Id;
-
- begin
- if L = No_List or else L = Error_List then
- return True;
-
- else
- N := First (L);
- while Present (N) loop
- if not Side_Effect_Free (N) then
- return False;
- else
- Next (N);
- end if;
- end loop;
-
- return True;
- end if;
- end Side_Effect_Free;
-
- -------------------------
- -- Within_In_Parameter --
- -------------------------
-
- function Within_In_Parameter (N : Node_Id) return Boolean is
- begin
- if not Comes_From_Source (N) then
- return False;
-
- elsif Is_Entity_Name (N) then
- return Ekind (Entity (N)) = E_In_Parameter;
-
- elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
- return Within_In_Parameter (Prefix (N));
-
- else
- return False;
- end if;
- end Within_In_Parameter;
-
- -- Start of processing for Remove_Side_Effects
-
- begin
- -- Handle cases in which there is nothing to do
-
- if not Expander_Active then
- return;
- end if;
-
- -- Cannot generate temporaries if the invocation to remove side effects
- -- was issued too early and the type of the expression is not resolved
- -- (this happens because routines Duplicate_Subexpr_XX implicitly invoke
- -- Remove_Side_Effects).
-
- if No (Exp_Type)
- or else Ekind (Exp_Type) = E_Access_Attribute_Type
- then
- return;
-
- -- No action needed for side-effect free expressions
-
- elsif Side_Effect_Free (Exp) then
- return;
- end if;
-
- -- The remaining procesaing is done with all checks suppressed
-
- -- Note: from now on, don't use return statements, instead do a goto
- -- Leave, to ensure that we properly restore Scope_Suppress.Suppress.
-
- Scope_Suppress.Suppress := (others => True);
-
- -- If it is a scalar type and we need to capture the value, just make
- -- a copy. Likewise for a function call, an attribute reference, an
- -- allocator, or an operator. And if we have a volatile reference and
- -- Name_Req is not set (see comments above for Side_Effect_Free).
-
- if Is_Elementary_Type (Exp_Type)
- and then (Variable_Ref
- or else Nkind_In (Exp, N_Function_Call,
- N_Attribute_Reference,
- N_Allocator)
- or else Nkind (Exp) in N_Op
- or else (not Name_Req and then Is_Volatile_Reference (Exp)))
- then
- Def_Id := Make_Temporary (Loc, 'R', Exp);
- Set_Etype (Def_Id, Exp_Type);
- Res := New_Reference_To (Def_Id, Loc);
-
- -- If the expression is a packed reference, it must be reanalyzed and
- -- expanded, depending on context. This is the case for actuals where
- -- a constraint check may capture the actual before expansion of the
- -- call is complete.
-
- if Nkind (Exp) = N_Indexed_Component
- and then Is_Packed (Etype (Prefix (Exp)))
- then
- Set_Analyzed (Exp, False);
- Set_Analyzed (Prefix (Exp), False);
- end if;
-
- E :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Object_Definition => New_Reference_To (Exp_Type, Loc),
- Constant_Present => True,
- Expression => Relocate_Node (Exp));
-
- Set_Assignment_OK (E);
- Insert_Action (Exp, E);
-
- -- If the expression has the form v.all then we can just capture the
- -- pointer, and then do an explicit dereference on the result.
-
- elsif Nkind (Exp) = N_Explicit_Dereference then
- Def_Id := Make_Temporary (Loc, 'R', Exp);
- Res :=
- Make_Explicit_Dereference (Loc, New_Reference_To (Def_Id, Loc));
-
- Insert_Action (Exp,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Object_Definition =>
- New_Reference_To (Etype (Prefix (Exp)), Loc),
- Constant_Present => True,
- Expression => Relocate_Node (Prefix (Exp))));
-
- -- Similar processing for an unchecked conversion of an expression of
- -- the form v.all, where we want the same kind of treatment.
-
- elsif Nkind (Exp) = N_Unchecked_Type_Conversion
- and then Nkind (Expression (Exp)) = N_Explicit_Dereference
- then
- Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
- goto Leave;
-
- -- If this is a type conversion, leave the type conversion and remove
- -- the side effects in the expression. This is important in several
- -- circumstances: for change of representations, and also when this is a
- -- view conversion to a smaller object, where gigi can end up creating
- -- its own temporary of the wrong size.
-
- elsif Nkind (Exp) = N_Type_Conversion then
- Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
- goto Leave;
-
- -- If this is an unchecked conversion that Gigi can't handle, make
- -- a copy or a use a renaming to capture the value.
-
- elsif Nkind (Exp) = N_Unchecked_Type_Conversion
- and then not Safe_Unchecked_Type_Conversion (Exp)
- then
- if CW_Or_Has_Controlled_Part (Exp_Type) then
-
- -- Use a renaming to capture the expression, rather than create
- -- a controlled temporary.
-
- Def_Id := Make_Temporary (Loc, 'R', Exp);
- Res := New_Reference_To (Def_Id, Loc);
-
- Insert_Action (Exp,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Subtype_Mark => New_Reference_To (Exp_Type, Loc),
- Name => Relocate_Node (Exp)));
-
- else
- Def_Id := Make_Temporary (Loc, 'R', Exp);
- Set_Etype (Def_Id, Exp_Type);
- Res := New_Reference_To (Def_Id, Loc);
-
- E :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Object_Definition => New_Reference_To (Exp_Type, Loc),
- Constant_Present => not Is_Variable (Exp),
- Expression => Relocate_Node (Exp));
-
- Set_Assignment_OK (E);
- Insert_Action (Exp, E);
- end if;
-
- -- For expressions that denote objects, we can use a renaming scheme.
- -- This is needed for correctness in the case of a volatile object of
- -- a non-volatile type because the Make_Reference call of the "default"
- -- approach would generate an illegal access value (an access value
- -- cannot designate such an object - see Analyze_Reference). We skip
- -- using this scheme if we have an object of a volatile type and we do
- -- not have Name_Req set true (see comments above for Side_Effect_Free).
-
- -- In Ada 2012 a qualified expression is an object, but for purposes of
- -- removing side effects it still need to be transformed into a separate
- -- declaration, particularly if the expression is an aggregate.
-
- elsif Is_Object_Reference (Exp)
- and then Nkind (Exp) /= N_Function_Call
- and then Nkind (Exp) /= N_Qualified_Expression
- and then (Name_Req or else not Treat_As_Volatile (Exp_Type))
- then
- Def_Id := Make_Temporary (Loc, 'R', Exp);
-
- if Nkind (Exp) = N_Selected_Component
- and then Nkind (Prefix (Exp)) = N_Function_Call
- and then Is_Array_Type (Exp_Type)
- then
- -- Avoid generating a variable-sized temporary, by generating
- -- the renaming declaration just for the function call. The
- -- transformation could be refined to apply only when the array
- -- component is constrained by a discriminant???
-
- Res :=
- Make_Selected_Component (Loc,
- Prefix => New_Occurrence_Of (Def_Id, Loc),
- Selector_Name => Selector_Name (Exp));
-
- Insert_Action (Exp,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Subtype_Mark =>
- New_Reference_To (Base_Type (Etype (Prefix (Exp))), Loc),
- Name => Relocate_Node (Prefix (Exp))));
-
- else
- Res := New_Reference_To (Def_Id, Loc);
-
- Insert_Action (Exp,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Subtype_Mark => New_Reference_To (Exp_Type, Loc),
- Name => Relocate_Node (Exp)));
- end if;
-
- -- If this is a packed reference, or a selected component with
- -- a non-standard representation, a reference to the temporary
- -- will be replaced by a copy of the original expression (see
- -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
- -- elaborated by gigi, and is of course not to be replaced in-line
- -- by the expression it renames, which would defeat the purpose of
- -- removing the side-effect.
-
- if Nkind_In (Exp, N_Selected_Component, N_Indexed_Component)
- and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
- then
- null;
- else
- Set_Is_Renaming_Of_Object (Def_Id, False);
- end if;
-
- -- Otherwise we generate a reference to the value
-
- else
- -- An expression which is in Alfa mode is considered side effect free
- -- if the resulting value is captured by a variable or a constant.
-
- if Alfa_Mode and then Nkind (Parent (Exp)) = N_Object_Declaration then
- goto Leave;
- end if;
-
- -- Special processing for function calls that return a limited type.
- -- We need to build a declaration that will enable build-in-place
- -- expansion of the call. This is not done if the context is already
- -- an object declaration, to prevent infinite recursion.
-
- -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
- -- to accommodate functions returning limited objects by reference.
-
- if Ada_Version >= Ada_2005
- and then Nkind (Exp) = N_Function_Call
- and then Is_Immutably_Limited_Type (Etype (Exp))
- and then Nkind (Parent (Exp)) /= N_Object_Declaration
- then
- declare
- Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp);
- Decl : Node_Id;
-
- begin
- Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Obj,
- Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
- Expression => Relocate_Node (Exp));
-
- Insert_Action (Exp, Decl);
- Set_Etype (Obj, Exp_Type);
- Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
- goto Leave;
- end;
- end if;
-
- Def_Id := Make_Temporary (Loc, 'R', Exp);
- Set_Etype (Def_Id, Exp_Type);
-
- -- The regular expansion of functions with side effects involves the
- -- generation of an access type to capture the return value found on
- -- the secondary stack. Since Alfa (and why) cannot process access
- -- types, use a different approach which ignores the secondary stack
- -- and "copies" the returned object.
-
- if Alfa_Mode then
- Res := New_Reference_To (Def_Id, Loc);
- Ref_Type := Exp_Type;
-
- -- Regular expansion utilizing an access type and 'reference
-
- else
- Res :=
- Make_Explicit_Dereference (Loc,
- Prefix => New_Reference_To (Def_Id, Loc));
-
- -- Generate:
- -- type Ann is access all <Exp_Type>;
-
- Ref_Type := Make_Temporary (Loc, 'A');
-
- Ptr_Typ_Decl :=
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => Ref_Type,
- Type_Definition =>
- Make_Access_To_Object_Definition (Loc,
- All_Present => True,
- Subtype_Indication =>
- New_Reference_To (Exp_Type, Loc)));
-
- Insert_Action (Exp, Ptr_Typ_Decl);
- end if;
-
- E := Exp;
- if Nkind (E) = N_Explicit_Dereference then
- New_Exp := Relocate_Node (Prefix (E));
- else
- E := Relocate_Node (E);
-
- -- Do not generate a 'reference in Alfa mode since the access type
- -- is not created in the first place.
-
- if Alfa_Mode then
- New_Exp := E;
-
- -- Otherwise generate reference, marking the value as non-null
- -- since we know it cannot be null and we don't want a check.
-
- else
- New_Exp := Make_Reference (Loc, E);
- Set_Is_Known_Non_Null (Def_Id);
- end if;
- end if;
-
- if Is_Delayed_Aggregate (E) then
-
- -- The expansion of nested aggregates is delayed until the
- -- enclosing aggregate is expanded. As aggregates are often
- -- qualified, the predicate applies to qualified expressions as
- -- well, indicating that the enclosing aggregate has not been
- -- expanded yet. At this point the aggregate is part of a
- -- stand-alone declaration, and must be fully expanded.
-
- if Nkind (E) = N_Qualified_Expression then
- Set_Expansion_Delayed (Expression (E), False);
- Set_Analyzed (Expression (E), False);
- else
- Set_Expansion_Delayed (E, False);
- end if;
-
- Set_Analyzed (E, False);
- end if;
-
- Insert_Action (Exp,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Def_Id,
- Object_Definition => New_Reference_To (Ref_Type, Loc),
- Constant_Present => True,
- Expression => New_Exp));
- end if;
-
- -- Preserve the Assignment_OK flag in all copies, since at least one
- -- copy may be used in a context where this flag must be set (otherwise
- -- why would the flag be set in the first place).
-
- Set_Assignment_OK (Res, Assignment_OK (Exp));
-
- -- Finally rewrite the original expression and we are done
-
- Rewrite (Exp, Res);
- Analyze_And_Resolve (Exp, Exp_Type);
-
- <<Leave>>
- Scope_Suppress := Svg_Suppress;
- end Remove_Side_Effects;
-
- ---------------------------
- -- Represented_As_Scalar --
- ---------------------------
-
- function Represented_As_Scalar (T : Entity_Id) return Boolean is
- UT : constant Entity_Id := Underlying_Type (T);
- begin
- return Is_Scalar_Type (UT)
- or else (Is_Bit_Packed_Array (UT)
- and then Is_Scalar_Type (Packed_Array_Type (UT)));
- end Represented_As_Scalar;
-
- ------------------------------
- -- Requires_Cleanup_Actions --
- ------------------------------
-
- function Requires_Cleanup_Actions
- (N : Node_Id;
- Lib_Level : Boolean) return Boolean
- is
- At_Lib_Level : constant Boolean :=
- Lib_Level
- and then Nkind_In (N, N_Package_Body,
- N_Package_Specification);
- -- N is at the library level if the top-most context is a package and
- -- the path taken to reach N does not inlcude non-package constructs.
-
- begin
- case Nkind (N) is
- when N_Accept_Statement |
- N_Block_Statement |
- N_Entry_Body |
- N_Package_Body |
- N_Protected_Body |
- N_Subprogram_Body |
- N_Task_Body =>
- return
- Requires_Cleanup_Actions (Declarations (N), At_Lib_Level, True)
- or else
- (Present (Handled_Statement_Sequence (N))
- and then
- Requires_Cleanup_Actions
- (Statements (Handled_Statement_Sequence (N)),
- At_Lib_Level, True));
-
- when N_Package_Specification =>
- return
- Requires_Cleanup_Actions
- (Visible_Declarations (N), At_Lib_Level, True)
- or else
- Requires_Cleanup_Actions
- (Private_Declarations (N), At_Lib_Level, True);
-
- when others =>
- return False;
- end case;
- end Requires_Cleanup_Actions;
-
- ------------------------------
- -- Requires_Cleanup_Actions --
- ------------------------------
-
- function Requires_Cleanup_Actions
- (L : List_Id;
- Lib_Level : Boolean;
- Nested_Constructs : Boolean) return Boolean
- is
- Decl : Node_Id;
- Expr : Node_Id;
- Obj_Id : Entity_Id;
- Obj_Typ : Entity_Id;
- Pack_Id : Entity_Id;
- Typ : Entity_Id;
-
- begin
- if No (L)
- or else Is_Empty_List (L)
- then
- return False;
- end if;
-
- Decl := First (L);
- while Present (Decl) loop
-
- -- Library-level tagged types
-
- if Nkind (Decl) = N_Full_Type_Declaration then
- Typ := Defining_Identifier (Decl);
-
- if Is_Tagged_Type (Typ)
- and then Is_Library_Level_Entity (Typ)
- and then Convention (Typ) = Convention_Ada
- and then Present (Access_Disp_Table (Typ))
- and then RTE_Available (RE_Unregister_Tag)
- and then not No_Run_Time_Mode
- and then not Is_Abstract_Type (Typ)
- then
- return True;
- end if;
-
- -- Regular object declarations
-
- elsif Nkind (Decl) = N_Object_Declaration then
- Obj_Id := Defining_Identifier (Decl);
- Obj_Typ := Base_Type (Etype (Obj_Id));
- Expr := Expression (Decl);
-
- -- Bypass any form of processing for objects which have their
- -- finalization disabled. This applies only to objects at the
- -- library level.
-
- if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
- null;
-
- -- Transient variables are treated separately in order to minimize
- -- the size of the generated code. See Exp_Ch7.Process_Transient_
- -- Objects.
-
- elsif Is_Processed_Transient (Obj_Id) then
- null;
-
- -- The object is of the form:
- -- Obj : Typ [:= Expr];
- --
- -- Do not process the incomplete view of a deferred constant. Do
- -- not consider tag-to-class-wide conversions.
-
- elsif not Is_Imported (Obj_Id)
- and then Needs_Finalization (Obj_Typ)
- and then not (Ekind (Obj_Id) = E_Constant
- and then not Has_Completion (Obj_Id))
- and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
- then
- return True;
-
- -- The object is of the form:
- -- Obj : Access_Typ := Non_BIP_Function_Call'reference;
- --
- -- Obj : Access_Typ :=
- -- BIP_Function_Call (BIPalloc => 2, ...)'reference;
-
- elsif Is_Access_Type (Obj_Typ)
- and then Needs_Finalization
- (Available_View (Designated_Type (Obj_Typ)))
- and then Present (Expr)
- and then
- (Is_Secondary_Stack_BIP_Func_Call (Expr)
- or else
- (Is_Non_BIP_Func_Call (Expr)
- and then not Is_Related_To_Func_Return (Obj_Id)))
- then
- return True;
-
- -- Processing for "hook" objects generated for controlled
- -- transients declared inside an Expression_With_Actions.
-
- elsif Is_Access_Type (Obj_Typ)
- and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
- and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
- N_Object_Declaration
- and then Is_Finalizable_Transient
- (Status_Flag_Or_Transient_Decl (Obj_Id), Decl)
- then
- return True;
-
- -- Processing for intermediate results of if expressions where
- -- one of the alternatives uses a controlled function call.
-
- elsif Is_Access_Type (Obj_Typ)
- and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
- and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
- N_Defining_Identifier
- and then Present (Expr)
- and then Nkind (Expr) = N_Null
- then
- return True;
-
- -- Simple protected objects which use type System.Tasking.
- -- Protected_Objects.Protection to manage their locks should be
- -- treated as controlled since they require manual cleanup.
-
- elsif Ekind (Obj_Id) = E_Variable
- and then
- (Is_Simple_Protected_Type (Obj_Typ)
- or else Has_Simple_Protected_Object (Obj_Typ))
- then
- return True;
- end if;
-
- -- Specific cases of object renamings
-
- elsif Nkind (Decl) = N_Object_Renaming_Declaration then
- Obj_Id := Defining_Identifier (Decl);
- Obj_Typ := Base_Type (Etype (Obj_Id));
-
- -- Bypass any form of processing for objects which have their
- -- finalization disabled. This applies only to objects at the
- -- library level.
-
- if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
- null;
-
- -- Return object of a build-in-place function. This case is
- -- recognized and marked by the expansion of an extended return
- -- statement (see Expand_N_Extended_Return_Statement).
-
- elsif Needs_Finalization (Obj_Typ)
- and then Is_Return_Object (Obj_Id)
- and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
- then
- return True;
-
- -- Detect a case where a source object has been initialized by
- -- a controlled function call or another object which was later
- -- rewritten as a class-wide conversion of Ada.Tags.Displace.
-
- -- Obj1 : CW_Type := Src_Obj;
- -- Obj2 : CW_Type := Function_Call (...);
-
- -- Obj1 : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
- -- Tmp : ... := Function_Call (...)'reference;
- -- Obj2 : CW_Type renames (... Ada.Tags.Displace (Tmp));
-
- elsif Is_Displacement_Of_Object_Or_Function_Result (Obj_Id) then
- return True;
- end if;
-
- -- Inspect the freeze node of an access-to-controlled type and look
- -- for a delayed finalization master. This case arises when the
- -- freeze actions are inserted at a later time than the expansion of
- -- the context. Since Build_Finalizer is never called on a single
- -- construct twice, the master will be ultimately left out and never
- -- finalized. This is also needed for freeze actions of designated
- -- types themselves, since in some cases the finalization master is
- -- associated with a designated type's freeze node rather than that
- -- of the access type (see handling for freeze actions in
- -- Build_Finalization_Master).
-
- elsif Nkind (Decl) = N_Freeze_Entity
- and then Present (Actions (Decl))
- then
- Typ := Entity (Decl);
-
- if ((Is_Access_Type (Typ)
- and then not Is_Access_Subprogram_Type (Typ)
- and then Needs_Finalization
- (Available_View (Designated_Type (Typ))))
- or else
- (Is_Type (Typ)
- and then Needs_Finalization (Typ)))
- and then Requires_Cleanup_Actions
- (Actions (Decl), Lib_Level, Nested_Constructs)
- then
- return True;
- end if;
-
- -- Nested package declarations
-
- elsif Nested_Constructs
- and then Nkind (Decl) = N_Package_Declaration
- then
- Pack_Id := Defining_Unit_Name (Specification (Decl));
-
- if Nkind (Pack_Id) = N_Defining_Program_Unit_Name then
- Pack_Id := Defining_Identifier (Pack_Id);
- end if;
-
- if Ekind (Pack_Id) /= E_Generic_Package
- and then
- Requires_Cleanup_Actions (Specification (Decl), Lib_Level)
- then
- return True;
- end if;
-
- -- Nested package bodies
-
- elsif Nested_Constructs and then Nkind (Decl) = N_Package_Body then
- Pack_Id := Corresponding_Spec (Decl);
-
- if Ekind (Pack_Id) /= E_Generic_Package
- and then Requires_Cleanup_Actions (Decl, Lib_Level)
- then
- return True;
- end if;
- end if;
-
- Next (Decl);
- end loop;
-
- return False;
- end Requires_Cleanup_Actions;
-
- ------------------------------------
- -- Safe_Unchecked_Type_Conversion --
- ------------------------------------
-
- -- Note: this function knows quite a bit about the exact requirements of
- -- Gigi with respect to unchecked type conversions, and its code must be
- -- coordinated with any changes in Gigi in this area.
-
- -- The above requirements should be documented in Sinfo ???
-
- function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
- Otyp : Entity_Id;
- Ityp : Entity_Id;
- Oalign : Uint;
- Ialign : Uint;
- Pexp : constant Node_Id := Parent (Exp);
-
- begin
- -- If the expression is the RHS of an assignment or object declaration
- -- we are always OK because there will always be a target.
-
- -- Object renaming declarations, (generated for view conversions of
- -- actuals in inlined calls), like object declarations, provide an
- -- explicit type, and are safe as well.
-
- if (Nkind (Pexp) = N_Assignment_Statement
- and then Expression (Pexp) = Exp)
- or else Nkind_In (Pexp, N_Object_Declaration,
- N_Object_Renaming_Declaration)
- then
- return True;
-
- -- If the expression is the prefix of an N_Selected_Component we should
- -- also be OK because GCC knows to look inside the conversion except if
- -- the type is discriminated. We assume that we are OK anyway if the
- -- type is not set yet or if it is controlled since we can't afford to
- -- introduce a temporary in this case.
-
- elsif Nkind (Pexp) = N_Selected_Component
- and then Prefix (Pexp) = Exp
- then
- if No (Etype (Pexp)) then
- return True;
- else
- return
- not Has_Discriminants (Etype (Pexp))
- or else Is_Constrained (Etype (Pexp));
- end if;
- end if;
-
- -- Set the output type, this comes from Etype if it is set, otherwise we
- -- take it from the subtype mark, which we assume was already fully
- -- analyzed.
-
- if Present (Etype (Exp)) then
- Otyp := Etype (Exp);
- else
- Otyp := Entity (Subtype_Mark (Exp));
- end if;
-
- -- The input type always comes from the expression, and we assume
- -- this is indeed always analyzed, so we can simply get the Etype.
-
- Ityp := Etype (Expression (Exp));
-
- -- Initialize alignments to unknown so far
-
- Oalign := No_Uint;
- Ialign := No_Uint;
-
- -- Replace a concurrent type by its corresponding record type and each
- -- type by its underlying type and do the tests on those. The original
- -- type may be a private type whose completion is a concurrent type, so
- -- find the underlying type first.
-
- if Present (Underlying_Type (Otyp)) then
- Otyp := Underlying_Type (Otyp);
- end if;
-
- if Present (Underlying_Type (Ityp)) then
- Ityp := Underlying_Type (Ityp);
- end if;
-
- if Is_Concurrent_Type (Otyp) then
- Otyp := Corresponding_Record_Type (Otyp);
- end if;
-
- if Is_Concurrent_Type (Ityp) then
- Ityp := Corresponding_Record_Type (Ityp);
- end if;
-
- -- If the base types are the same, we know there is no problem since
- -- this conversion will be a noop.
-
- if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
- return True;
-
- -- Same if this is an upwards conversion of an untagged type, and there
- -- are no constraints involved (could be more general???)
-
- elsif Etype (Ityp) = Otyp
- and then not Is_Tagged_Type (Ityp)
- and then not Has_Discriminants (Ityp)
- and then No (First_Rep_Item (Base_Type (Ityp)))
- then
- return True;
-
- -- If the expression has an access type (object or subprogram) we assume
- -- that the conversion is safe, because the size of the target is safe,
- -- even if it is a record (which might be treated as having unknown size
- -- at this point).
-
- elsif Is_Access_Type (Ityp) then
- return True;
-
- -- If the size of output type is known at compile time, there is never
- -- a problem. Note that unconstrained records are considered to be of
- -- known size, but we can't consider them that way here, because we are
- -- talking about the actual size of the object.
-
- -- We also make sure that in addition to the size being known, we do not
- -- have a case which might generate an embarrassingly large temp in
- -- stack checking mode.
-
- elsif Size_Known_At_Compile_Time (Otyp)
- and then
- (not Stack_Checking_Enabled
- or else not May_Generate_Large_Temp (Otyp))
- and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
- then
- return True;
-
- -- If either type is tagged, then we know the alignment is OK so
- -- Gigi will be able to use pointer punning.
-
- elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
- return True;
-
- -- If either type is a limited record type, we cannot do a copy, so say
- -- safe since there's nothing else we can do.
-
- elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
- return True;
-
- -- Conversions to and from packed array types are always ignored and
- -- hence are safe.
-
- elsif Is_Packed_Array_Type (Otyp)
- or else Is_Packed_Array_Type (Ityp)
- then
- return True;
- end if;
-
- -- The only other cases known to be safe is if the input type's
- -- alignment is known to be at least the maximum alignment for the
- -- target or if both alignments are known and the output type's
- -- alignment is no stricter than the input's. We can use the component
- -- type alignement for an array if a type is an unpacked array type.
-
- if Present (Alignment_Clause (Otyp)) then
- Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
-
- elsif Is_Array_Type (Otyp)
- and then Present (Alignment_Clause (Component_Type (Otyp)))
- then
- Oalign := Expr_Value (Expression (Alignment_Clause
- (Component_Type (Otyp))));
- end if;
-
- if Present (Alignment_Clause (Ityp)) then
- Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
-
- elsif Is_Array_Type (Ityp)
- and then Present (Alignment_Clause (Component_Type (Ityp)))
- then
- Ialign := Expr_Value (Expression (Alignment_Clause
- (Component_Type (Ityp))));
- end if;
-
- if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
- return True;
-
- elsif Ialign /= No_Uint and then Oalign /= No_Uint
- and then Ialign <= Oalign
- then
- return True;
-
- -- Otherwise, Gigi cannot handle this and we must make a temporary
-
- else
- return False;
- end if;
- end Safe_Unchecked_Type_Conversion;
-
- ---------------------------------
- -- Set_Current_Value_Condition --
- ---------------------------------
-
- -- Note: the implementation of this procedure is very closely tied to the
- -- implementation of Get_Current_Value_Condition. Here we set required
- -- Current_Value fields, and in Get_Current_Value_Condition, we interpret
- -- them, so they must have a consistent view.
-
- procedure Set_Current_Value_Condition (Cnode : Node_Id) is
-
- procedure Set_Entity_Current_Value (N : Node_Id);
- -- If N is an entity reference, where the entity is of an appropriate
- -- kind, then set the current value of this entity to Cnode, unless
- -- there is already a definite value set there.
-
- procedure Set_Expression_Current_Value (N : Node_Id);
- -- If N is of an appropriate form, sets an appropriate entry in current
- -- value fields of relevant entities. Multiple entities can be affected
- -- in the case of an AND or AND THEN.
-
- ------------------------------
- -- Set_Entity_Current_Value --
- ------------------------------
-
- procedure Set_Entity_Current_Value (N : Node_Id) is
- begin
- if Is_Entity_Name (N) then
- declare
- Ent : constant Entity_Id := Entity (N);
-
- begin
- -- Don't capture if not safe to do so
-
- if not Safe_To_Capture_Value (N, Ent, Cond => True) then
- return;
- end if;
-
- -- Here we have a case where the Current_Value field may need
- -- to be set. We set it if it is not already set to a compile
- -- time expression value.
-
- -- Note that this represents a decision that one condition
- -- blots out another previous one. That's certainly right if
- -- they occur at the same level. If the second one is nested,
- -- then the decision is neither right nor wrong (it would be
- -- equally OK to leave the outer one in place, or take the new
- -- inner one. Really we should record both, but our data
- -- structures are not that elaborate.
-
- if Nkind (Current_Value (Ent)) not in N_Subexpr then
- Set_Current_Value (Ent, Cnode);
- end if;
- end;
- end if;
- end Set_Entity_Current_Value;
-
- ----------------------------------
- -- Set_Expression_Current_Value --
- ----------------------------------
-
- procedure Set_Expression_Current_Value (N : Node_Id) is
- Cond : Node_Id;
-
- begin
- Cond := N;
-
- -- Loop to deal with (ignore for now) any NOT operators present. The
- -- presence of NOT operators will be handled properly when we call
- -- Get_Current_Value_Condition.
-
- while Nkind (Cond) = N_Op_Not loop
- Cond := Right_Opnd (Cond);
- end loop;
-
- -- For an AND or AND THEN, recursively process operands
-
- if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
- Set_Expression_Current_Value (Left_Opnd (Cond));
- Set_Expression_Current_Value (Right_Opnd (Cond));
- return;
- end if;
-
- -- Check possible relational operator
-
- if Nkind (Cond) in N_Op_Compare then
- if Compile_Time_Known_Value (Right_Opnd (Cond)) then
- Set_Entity_Current_Value (Left_Opnd (Cond));
- elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
- Set_Entity_Current_Value (Right_Opnd (Cond));
- end if;
-
- -- Check possible boolean variable reference
-
- else
- Set_Entity_Current_Value (Cond);
- end if;
- end Set_Expression_Current_Value;
-
- -- Start of processing for Set_Current_Value_Condition
-
- begin
- Set_Expression_Current_Value (Condition (Cnode));
- end Set_Current_Value_Condition;
-
- --------------------------
- -- Set_Elaboration_Flag --
- --------------------------
-
- procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
- Asn : Node_Id;
-
- begin
- if Present (Ent) then
-
- -- Nothing to do if at the compilation unit level, because in this
- -- case the flag is set by the binder generated elaboration routine.
-
- if Nkind (Parent (N)) = N_Compilation_Unit then
- null;
-
- -- Here we do need to generate an assignment statement
-
- else
- Check_Restriction (No_Elaboration_Code, N);
- Asn :=
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Ent, Loc),
- Expression => Make_Integer_Literal (Loc, Uint_1));
-
- if Nkind (Parent (N)) = N_Subunit then
- Insert_After (Corresponding_Stub (Parent (N)), Asn);
- else
- Insert_After (N, Asn);
- end if;
-
- Analyze (Asn);
-
- -- Kill current value indication. This is necessary because the
- -- tests of this flag are inserted out of sequence and must not
- -- pick up bogus indications of the wrong constant value.
-
- Set_Current_Value (Ent, Empty);
- end if;
- end if;
- end Set_Elaboration_Flag;
-
- ----------------------------
- -- Set_Renamed_Subprogram --
- ----------------------------
-
- procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
- begin
- -- If input node is an identifier, we can just reset it
-
- if Nkind (N) = N_Identifier then
- Set_Chars (N, Chars (E));
- Set_Entity (N, E);
-
- -- Otherwise we have to do a rewrite, preserving Comes_From_Source
-
- else
- declare
- CS : constant Boolean := Comes_From_Source (N);
- begin
- Rewrite (N, Make_Identifier (Sloc (N), Chars (E)));
- Set_Entity (N, E);
- Set_Comes_From_Source (N, CS);
- Set_Analyzed (N, True);
- end;
- end if;
- end Set_Renamed_Subprogram;
-
- ----------------------------------
- -- Silly_Boolean_Array_Not_Test --
- ----------------------------------
-
- -- This procedure implements an odd and silly test. We explicitly check
- -- for the case where the 'First of the component type is equal to the
- -- 'Last of this component type, and if this is the case, we make sure
- -- that constraint error is raised. The reason is that the NOT is bound
- -- to cause CE in this case, and we will not otherwise catch it.
-
- -- No such check is required for AND and OR, since for both these cases
- -- False op False = False, and True op True = True. For the XOR case,
- -- see Silly_Boolean_Array_Xor_Test.
-
- -- Believe it or not, this was reported as a bug. Note that nearly always,
- -- the test will evaluate statically to False, so the code will be
- -- statically removed, and no extra overhead caused.
-
- procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- CT : constant Entity_Id := Component_Type (T);
-
- begin
- -- The check we install is
-
- -- constraint_error when
- -- component_type'first = component_type'last
- -- and then array_type'Length /= 0)
-
- -- We need the last guard because we don't want to raise CE for empty
- -- arrays since no out of range values result. (Empty arrays with a
- -- component type of True .. True -- very useful -- even the ACATS
- -- does not test that marginal case!)
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_And_Then (Loc,
- Left_Opnd =>
- Make_Op_Eq (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (CT, Loc),
- Attribute_Name => Name_First),
-
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (CT, Loc),
- Attribute_Name => Name_Last)),
-
- Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
- Reason => CE_Range_Check_Failed));
- end Silly_Boolean_Array_Not_Test;
-
- ----------------------------------
- -- Silly_Boolean_Array_Xor_Test --
- ----------------------------------
-
- -- This procedure implements an odd and silly test. We explicitly check
- -- for the XOR case where the component type is True .. True, since this
- -- will raise constraint error. A special check is required since CE
- -- will not be generated otherwise (cf Expand_Packed_Not).
-
- -- No such check is required for AND and OR, since for both these cases
- -- False op False = False, and True op True = True, and no check is
- -- required for the case of False .. False, since False xor False = False.
- -- See also Silly_Boolean_Array_Not_Test
-
- procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- CT : constant Entity_Id := Component_Type (T);
-
- begin
- -- The check we install is
-
- -- constraint_error when
- -- Boolean (component_type'First)
- -- and then Boolean (component_type'Last)
- -- and then array_type'Length /= 0)
-
- -- We need the last guard because we don't want to raise CE for empty
- -- arrays since no out of range values result (Empty arrays with a
- -- component type of True .. True -- very useful -- even the ACATS
- -- does not test that marginal case!).
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_And_Then (Loc,
- Left_Opnd =>
- Make_And_Then (Loc,
- Left_Opnd =>
- Convert_To (Standard_Boolean,
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (CT, Loc),
- Attribute_Name => Name_First)),
-
- Right_Opnd =>
- Convert_To (Standard_Boolean,
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (CT, Loc),
- Attribute_Name => Name_Last))),
-
- Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
- Reason => CE_Range_Check_Failed));
- end Silly_Boolean_Array_Xor_Test;
-
- --------------------------
- -- Target_Has_Fixed_Ops --
- --------------------------
-
- Integer_Sized_Small : Ureal;
- -- Set to 2.0 ** -(Integer'Size - 1) the first time that this function is
- -- called (we don't want to compute it more than once!)
-
- Long_Integer_Sized_Small : Ureal;
- -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this function
- -- is called (we don't want to compute it more than once)
-
- First_Time_For_THFO : Boolean := True;
- -- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
-
- function Target_Has_Fixed_Ops
- (Left_Typ : Entity_Id;
- Right_Typ : Entity_Id;
- Result_Typ : Entity_Id) return Boolean
- is
- function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
- -- Return True if the given type is a fixed-point type with a small
- -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
- -- an absolute value less than 1.0. This is currently limited to
- -- fixed-point types that map to Integer or Long_Integer.
-
- ------------------------
- -- Is_Fractional_Type --
- ------------------------
-
- function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
- begin
- if Esize (Typ) = Standard_Integer_Size then
- return Small_Value (Typ) = Integer_Sized_Small;
-
- elsif Esize (Typ) = Standard_Long_Integer_Size then
- return Small_Value (Typ) = Long_Integer_Sized_Small;
-
- else
- return False;
- end if;
- end Is_Fractional_Type;
-
- -- Start of processing for Target_Has_Fixed_Ops
-
- begin
- -- Return False if Fractional_Fixed_Ops_On_Target is false
-
- if not Fractional_Fixed_Ops_On_Target then
- return False;
- end if;
-
- -- Here the target has Fractional_Fixed_Ops, if first time, compute
- -- standard constants used by Is_Fractional_Type.
-
- if First_Time_For_THFO then
- First_Time_For_THFO := False;
-
- Integer_Sized_Small :=
- UR_From_Components
- (Num => Uint_1,
- Den => UI_From_Int (Standard_Integer_Size - 1),
- Rbase => 2);
-
- Long_Integer_Sized_Small :=
- UR_From_Components
- (Num => Uint_1,
- Den => UI_From_Int (Standard_Long_Integer_Size - 1),
- Rbase => 2);
- end if;
-
- -- Return True if target supports fixed-by-fixed multiply/divide for
- -- fractional fixed-point types (see Is_Fractional_Type) and the operand
- -- and result types are equivalent fractional types.
-
- return Is_Fractional_Type (Base_Type (Left_Typ))
- and then Is_Fractional_Type (Base_Type (Right_Typ))
- and then Is_Fractional_Type (Base_Type (Result_Typ))
- and then Esize (Left_Typ) = Esize (Right_Typ)
- and then Esize (Left_Typ) = Esize (Result_Typ);
- end Target_Has_Fixed_Ops;
-
- ------------------------------------------
- -- Type_May_Have_Bit_Aligned_Components --
- ------------------------------------------
-
- function Type_May_Have_Bit_Aligned_Components
- (Typ : Entity_Id) return Boolean
- is
- begin
- -- Array type, check component type
-
- if Is_Array_Type (Typ) then
- return
- Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
-
- -- Record type, check components
-
- elsif Is_Record_Type (Typ) then
- declare
- E : Entity_Id;
-
- begin
- E := First_Component_Or_Discriminant (Typ);
- while Present (E) loop
- if Component_May_Be_Bit_Aligned (E)
- or else Type_May_Have_Bit_Aligned_Components (Etype (E))
- then
- return True;
- end if;
-
- Next_Component_Or_Discriminant (E);
- end loop;
-
- return False;
- end;
-
- -- Type other than array or record is always OK
-
- else
- return False;
- end if;
- end Type_May_Have_Bit_Aligned_Components;
-
- ----------------------------------
- -- Within_Case_Or_If_Expression --
- ----------------------------------
-
- function Within_Case_Or_If_Expression (N : Node_Id) return Boolean is
- Par : Node_Id;
-
- begin
- -- Locate an enclosing case or if expression. Note: these constructs can
- -- get expanded into Expression_With_Actions, hence the need to test
- -- using the original node.
-
- Par := N;
- while Present (Par) loop
- if Nkind_In (Original_Node (Par), N_Case_Expression,
- N_If_Expression)
- then
- return True;
-
- -- Prevent the search from going too far
-
- elsif Nkind_In (Par, N_Entry_Body,
- N_Package_Body,
- N_Package_Declaration,
- N_Protected_Body,
- N_Subprogram_Body,
- N_Task_Body)
- then
- return False;
- end if;
-
- Par := Parent (Par);
- end loop;
-
- return False;
- end Within_Case_Or_If_Expression;
-
- ----------------------------
- -- Wrap_Cleanup_Procedure --
- ----------------------------
-
- procedure Wrap_Cleanup_Procedure (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Stseq : constant Node_Id := Handled_Statement_Sequence (N);
- Stmts : constant List_Id := Statements (Stseq);
-
- begin
- if Abort_Allowed then
- Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
- Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
- end if;
- end Wrap_Cleanup_Procedure;
-
-end Exp_Util;