aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/gcc/ada/checks.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8/gcc/ada/checks.adb')
-rw-r--r--gcc-4.8/gcc/ada/checks.adb9295
1 files changed, 0 insertions, 9295 deletions
diff --git a/gcc-4.8/gcc/ada/checks.adb b/gcc-4.8/gcc/ada/checks.adb
deleted file mode 100644
index 7afabd1c2..000000000
--- a/gcc-4.8/gcc/ada/checks.adb
+++ /dev/null
@@ -1,9295 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- C H E C K S --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Debug; use Debug;
-with Einfo; use Einfo;
-with Errout; use Errout;
-with Exp_Ch2; use Exp_Ch2;
-with Exp_Ch4; use Exp_Ch4;
-with Exp_Ch11; use Exp_Ch11;
-with Exp_Pakd; use Exp_Pakd;
-with Exp_Tss; use Exp_Tss;
-with Exp_Util; use Exp_Util;
-with Elists; use Elists;
-with Expander; use Expander;
-with Eval_Fat; use Eval_Fat;
-with Freeze; use Freeze;
-with Lib; use Lib;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Output; use Output;
-with Restrict; use Restrict;
-with Rident; use Rident;
-with Rtsfind; use Rtsfind;
-with Sem; use Sem;
-with Sem_Aux; use Sem_Aux;
-with Sem_Eval; use Sem_Eval;
-with Sem_Ch3; use Sem_Ch3;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Res; use Sem_Res;
-with Sem_Util; use Sem_Util;
-with Sem_Warn; use Sem_Warn;
-with Sinfo; use Sinfo;
-with Sinput; use Sinput;
-with Snames; use Snames;
-with Sprint; use Sprint;
-with Stand; use Stand;
-with Targparm; use Targparm;
-with Tbuild; use Tbuild;
-with Ttypes; use Ttypes;
-with Urealp; use Urealp;
-with Validsw; use Validsw;
-
-package body Checks is
-
- -- General note: many of these routines are concerned with generating
- -- checking code to make sure that constraint error is raised at runtime.
- -- Clearly this code is only needed if the expander is active, since
- -- otherwise we will not be generating code or going into the runtime
- -- execution anyway.
-
- -- We therefore disconnect most of these checks if the expander is
- -- inactive. This has the additional benefit that we do not need to
- -- worry about the tree being messed up by previous errors (since errors
- -- turn off expansion anyway).
-
- -- There are a few exceptions to the above rule. For instance routines
- -- such as Apply_Scalar_Range_Check that do not insert any code can be
- -- safely called even when the Expander is inactive (but Errors_Detected
- -- is 0). The benefit of executing this code when expansion is off, is
- -- the ability to emit constraint error warning for static expressions
- -- even when we are not generating code.
-
- -------------------------------------
- -- Suppression of Redundant Checks --
- -------------------------------------
-
- -- This unit implements a limited circuit for removal of redundant
- -- checks. The processing is based on a tracing of simple sequential
- -- flow. For any sequence of statements, we save expressions that are
- -- marked to be checked, and then if the same expression appears later
- -- with the same check, then under certain circumstances, the second
- -- check can be suppressed.
-
- -- Basically, we can suppress the check if we know for certain that
- -- the previous expression has been elaborated (together with its
- -- check), and we know that the exception frame is the same, and that
- -- nothing has happened to change the result of the exception.
-
- -- Let us examine each of these three conditions in turn to describe
- -- how we ensure that this condition is met.
-
- -- First, we need to know for certain that the previous expression has
- -- been executed. This is done principally by the mechanism of calling
- -- Conditional_Statements_Begin at the start of any statement sequence
- -- and Conditional_Statements_End at the end. The End call causes all
- -- checks remembered since the Begin call to be discarded. This does
- -- miss a few cases, notably the case of a nested BEGIN-END block with
- -- no exception handlers. But the important thing is to be conservative.
- -- The other protection is that all checks are discarded if a label
- -- is encountered, since then the assumption of sequential execution
- -- is violated, and we don't know enough about the flow.
-
- -- Second, we need to know that the exception frame is the same. We
- -- do this by killing all remembered checks when we enter a new frame.
- -- Again, that's over-conservative, but generally the cases we can help
- -- with are pretty local anyway (like the body of a loop for example).
-
- -- Third, we must be sure to forget any checks which are no longer valid.
- -- This is done by two mechanisms, first the Kill_Checks_Variable call is
- -- used to note any changes to local variables. We only attempt to deal
- -- with checks involving local variables, so we do not need to worry
- -- about global variables. Second, a call to any non-global procedure
- -- causes us to abandon all stored checks, since such a all may affect
- -- the values of any local variables.
-
- -- The following define the data structures used to deal with remembering
- -- checks so that redundant checks can be eliminated as described above.
-
- -- Right now, the only expressions that we deal with are of the form of
- -- simple local objects (either declared locally, or IN parameters) or
- -- such objects plus/minus a compile time known constant. We can do
- -- more later on if it seems worthwhile, but this catches many simple
- -- cases in practice.
-
- -- The following record type reflects a single saved check. An entry
- -- is made in the stack of saved checks if and only if the expression
- -- has been elaborated with the indicated checks.
-
- type Saved_Check is record
- Killed : Boolean;
- -- Set True if entry is killed by Kill_Checks
-
- Entity : Entity_Id;
- -- The entity involved in the expression that is checked
-
- Offset : Uint;
- -- A compile time value indicating the result of adding or
- -- subtracting a compile time value. This value is to be
- -- added to the value of the Entity. A value of zero is
- -- used for the case of a simple entity reference.
-
- Check_Type : Character;
- -- This is set to 'R' for a range check (in which case Target_Type
- -- is set to the target type for the range check) or to 'O' for an
- -- overflow check (in which case Target_Type is set to Empty).
-
- Target_Type : Entity_Id;
- -- Used only if Do_Range_Check is set. Records the target type for
- -- the check. We need this, because a check is a duplicate only if
- -- it has the same target type (or more accurately one with a
- -- range that is smaller or equal to the stored target type of a
- -- saved check).
- end record;
-
- -- The following table keeps track of saved checks. Rather than use an
- -- extensible table. We just use a table of fixed size, and we discard
- -- any saved checks that do not fit. That's very unlikely to happen and
- -- this is only an optimization in any case.
-
- Saved_Checks : array (Int range 1 .. 200) of Saved_Check;
- -- Array of saved checks
-
- Num_Saved_Checks : Nat := 0;
- -- Number of saved checks
-
- -- The following stack keeps track of statement ranges. It is treated
- -- as a stack. When Conditional_Statements_Begin is called, an entry
- -- is pushed onto this stack containing the value of Num_Saved_Checks
- -- at the time of the call. Then when Conditional_Statements_End is
- -- called, this value is popped off and used to reset Num_Saved_Checks.
-
- -- Note: again, this is a fixed length stack with a size that should
- -- always be fine. If the value of the stack pointer goes above the
- -- limit, then we just forget all saved checks.
-
- Saved_Checks_Stack : array (Int range 1 .. 100) of Nat;
- Saved_Checks_TOS : Nat := 0;
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id);
- -- Used to apply arithmetic overflow checks for all cases except operators
- -- on signed arithmetic types in MINIMIZED/ELIMINATED case (for which we
- -- call Apply_Arithmetic_Overflow_Minimized_Eliminated below). N can be a
- -- signed integer arithmetic operator (but not an if or case expression).
- -- It is also called for types other than signed integers.
-
- procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id);
- -- Used to apply arithmetic overflow checks for the case where the overflow
- -- checking mode is MINIMIZED or ELIMINATED and we have a signed integer
- -- arithmetic op (which includes the case of if and case expressions). Note
- -- that Do_Overflow_Check may or may not be set for node Op. In these modes
- -- we have work to do even if overflow checking is suppressed.
-
- procedure Apply_Division_Check
- (N : Node_Id;
- Rlo : Uint;
- Rhi : Uint;
- ROK : Boolean);
- -- N is an N_Op_Div, N_Op_Rem, or N_Op_Mod node. This routine applies
- -- division checks as required if the Do_Division_Check flag is set.
- -- Rlo and Rhi give the possible range of the right operand, these values
- -- can be referenced and trusted only if ROK is set True.
-
- procedure Apply_Float_Conversion_Check
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id);
- -- The checks on a conversion from a floating-point type to an integer
- -- type are delicate. They have to be performed before conversion, they
- -- have to raise an exception when the operand is a NaN, and rounding must
- -- be taken into account to determine the safe bounds of the operand.
-
- procedure Apply_Selected_Length_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Do_Static : Boolean);
- -- This is the subprogram that does all the work for Apply_Length_Check
- -- and Apply_Static_Length_Check. Expr, Target_Typ and Source_Typ are as
- -- described for the above routines. The Do_Static flag indicates that
- -- only a static check is to be done.
-
- procedure Apply_Selected_Range_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Do_Static : Boolean);
- -- This is the subprogram that does all the work for Apply_Range_Check.
- -- Expr, Target_Typ and Source_Typ are as described for the above
- -- routine. The Do_Static flag indicates that only a static check is
- -- to be done.
-
- type Check_Type is new Check_Id range Access_Check .. Division_Check;
- function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean;
- -- This function is used to see if an access or division by zero check is
- -- needed. The check is to be applied to a single variable appearing in the
- -- source, and N is the node for the reference. If N is not of this form,
- -- True is returned with no further processing. If N is of the right form,
- -- then further processing determines if the given Check is needed.
- --
- -- The particular circuit is to see if we have the case of a check that is
- -- not needed because it appears in the right operand of a short circuited
- -- conditional where the left operand guards the check. For example:
- --
- -- if Var = 0 or else Q / Var > 12 then
- -- ...
- -- end if;
- --
- -- In this example, the division check is not required. At the same time
- -- we can issue warnings for suspicious use of non-short-circuited forms,
- -- such as:
- --
- -- if Var = 0 or Q / Var > 12 then
- -- ...
- -- end if;
-
- procedure Find_Check
- (Expr : Node_Id;
- Check_Type : Character;
- Target_Type : Entity_Id;
- Entry_OK : out Boolean;
- Check_Num : out Nat;
- Ent : out Entity_Id;
- Ofs : out Uint);
- -- This routine is used by Enable_Range_Check and Enable_Overflow_Check
- -- to see if a check is of the form for optimization, and if so, to see
- -- if it has already been performed. Expr is the expression to check,
- -- and Check_Type is 'R' for a range check, 'O' for an overflow check.
- -- Target_Type is the target type for a range check, and Empty for an
- -- overflow check. If the entry is not of the form for optimization,
- -- then Entry_OK is set to False, and the remaining out parameters
- -- are undefined. If the entry is OK, then Ent/Ofs are set to the
- -- entity and offset from the expression. Check_Num is the number of
- -- a matching saved entry in Saved_Checks, or zero if no such entry
- -- is located.
-
- function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id;
- -- If a discriminal is used in constraining a prival, Return reference
- -- to the discriminal of the protected body (which renames the parameter
- -- of the enclosing protected operation). This clumsy transformation is
- -- needed because privals are created too late and their actual subtypes
- -- are not available when analysing the bodies of the protected operations.
- -- This function is called whenever the bound is an entity and the scope
- -- indicates a protected operation. If the bound is an in-parameter of
- -- a protected operation that is not a prival, the function returns the
- -- bound itself.
- -- To be cleaned up???
-
- function Guard_Access
- (Cond : Node_Id;
- Loc : Source_Ptr;
- Ck_Node : Node_Id) return Node_Id;
- -- In the access type case, guard the test with a test to ensure
- -- that the access value is non-null, since the checks do not
- -- not apply to null access values.
-
- procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr);
- -- Called by Apply_{Length,Range}_Checks to rewrite the tree with the
- -- Constraint_Error node.
-
- function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean;
- -- Returns True if node N is for an arithmetic operation with signed
- -- integer operands. This includes unary and binary operators, and also
- -- if and case expression nodes where the dependent expressions are of
- -- a signed integer type. These are the kinds of nodes for which special
- -- handling applies in MINIMIZED or ELIMINATED overflow checking mode.
-
- function Range_Or_Validity_Checks_Suppressed
- (Expr : Node_Id) return Boolean;
- -- Returns True if either range or validity checks or both are suppressed
- -- for the type of the given expression, or, if the expression is the name
- -- of an entity, if these checks are suppressed for the entity.
-
- function Selected_Length_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Warn_Node : Node_Id) return Check_Result;
- -- Like Apply_Selected_Length_Checks, except it doesn't modify
- -- anything, just returns a list of nodes as described in the spec of
- -- this package for the Range_Check function.
-
- function Selected_Range_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Warn_Node : Node_Id) return Check_Result;
- -- Like Apply_Selected_Range_Checks, except it doesn't modify anything,
- -- just returns a list of nodes as described in the spec of this package
- -- for the Range_Check function.
-
- ------------------------------
- -- Access_Checks_Suppressed --
- ------------------------------
-
- function Access_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Access_Check);
- else
- return Scope_Suppress.Suppress (Access_Check);
- end if;
- end Access_Checks_Suppressed;
-
- -------------------------------------
- -- Accessibility_Checks_Suppressed --
- -------------------------------------
-
- function Accessibility_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Accessibility_Check);
- else
- return Scope_Suppress.Suppress (Accessibility_Check);
- end if;
- end Accessibility_Checks_Suppressed;
-
- -----------------------------
- -- Activate_Division_Check --
- -----------------------------
-
- procedure Activate_Division_Check (N : Node_Id) is
- begin
- Set_Do_Division_Check (N, True);
- Possible_Local_Raise (N, Standard_Constraint_Error);
- end Activate_Division_Check;
-
- -----------------------------
- -- Activate_Overflow_Check --
- -----------------------------
-
- procedure Activate_Overflow_Check (N : Node_Id) is
- begin
- if not Nkind_In (N, N_Op_Rem, N_Op_Mod, N_Op_Plus) then
- Set_Do_Overflow_Check (N, True);
- Possible_Local_Raise (N, Standard_Constraint_Error);
- end if;
- end Activate_Overflow_Check;
-
- --------------------------
- -- Activate_Range_Check --
- --------------------------
-
- procedure Activate_Range_Check (N : Node_Id) is
- begin
- Set_Do_Range_Check (N, True);
- Possible_Local_Raise (N, Standard_Constraint_Error);
- end Activate_Range_Check;
-
- ---------------------------------
- -- Alignment_Checks_Suppressed --
- ---------------------------------
-
- function Alignment_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Alignment_Check);
- else
- return Scope_Suppress.Suppress (Alignment_Check);
- end if;
- end Alignment_Checks_Suppressed;
-
- -------------------------
- -- Append_Range_Checks --
- -------------------------
-
- procedure Append_Range_Checks
- (Checks : Check_Result;
- Stmts : List_Id;
- Suppress_Typ : Entity_Id;
- Static_Sloc : Source_Ptr;
- Flag_Node : Node_Id)
- is
- Internal_Flag_Node : constant Node_Id := Flag_Node;
- Internal_Static_Sloc : constant Source_Ptr := Static_Sloc;
-
- Checks_On : constant Boolean :=
- (not Index_Checks_Suppressed (Suppress_Typ))
- or else (not Range_Checks_Suppressed (Suppress_Typ));
-
- begin
- -- For now we just return if Checks_On is false, however this should
- -- be enhanced to check for an always True value in the condition
- -- and to generate a compilation warning???
-
- if not Checks_On then
- return;
- end if;
-
- for J in 1 .. 2 loop
- exit when No (Checks (J));
-
- if Nkind (Checks (J)) = N_Raise_Constraint_Error
- and then Present (Condition (Checks (J)))
- then
- if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
- Append_To (Stmts, Checks (J));
- Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
- end if;
-
- else
- Append_To
- (Stmts,
- Make_Raise_Constraint_Error (Internal_Static_Sloc,
- Reason => CE_Range_Check_Failed));
- end if;
- end loop;
- end Append_Range_Checks;
-
- ------------------------
- -- Apply_Access_Check --
- ------------------------
-
- procedure Apply_Access_Check (N : Node_Id) is
- P : constant Node_Id := Prefix (N);
-
- begin
- -- We do not need checks if we are not generating code (i.e. the
- -- expander is not active). This is not just an optimization, there
- -- are cases (e.g. with pragma Debug) where generating the checks
- -- can cause real trouble).
-
- if not Full_Expander_Active then
- return;
- end if;
-
- -- No check if short circuiting makes check unnecessary
-
- if not Check_Needed (P, Access_Check) then
- return;
- end if;
-
- -- No check if accessing the Offset_To_Top component of a dispatch
- -- table. They are safe by construction.
-
- if Tagged_Type_Expansion
- and then Present (Etype (P))
- and then RTU_Loaded (Ada_Tags)
- and then RTE_Available (RE_Offset_To_Top_Ptr)
- and then Etype (P) = RTE (RE_Offset_To_Top_Ptr)
- then
- return;
- end if;
-
- -- Otherwise go ahead and install the check
-
- Install_Null_Excluding_Check (P);
- end Apply_Access_Check;
-
- -------------------------------
- -- Apply_Accessibility_Check --
- -------------------------------
-
- procedure Apply_Accessibility_Check
- (N : Node_Id;
- Typ : Entity_Id;
- Insert_Node : Node_Id)
- is
- Loc : constant Source_Ptr := Sloc (N);
- Param_Ent : Entity_Id := Param_Entity (N);
- Param_Level : Node_Id;
- Type_Level : Node_Id;
-
- begin
- if Ada_Version >= Ada_2012
- and then not Present (Param_Ent)
- and then Is_Entity_Name (N)
- and then Ekind_In (Entity (N), E_Constant, E_Variable)
- and then Present (Effective_Extra_Accessibility (Entity (N)))
- then
- Param_Ent := Entity (N);
- while Present (Renamed_Object (Param_Ent)) loop
-
- -- Renamed_Object must return an Entity_Name here
- -- because of preceding "Present (E_E_A (...))" test.
-
- Param_Ent := Entity (Renamed_Object (Param_Ent));
- end loop;
- end if;
-
- if Inside_A_Generic then
- return;
-
- -- Only apply the run-time check if the access parameter has an
- -- associated extra access level parameter and when the level of the
- -- type is less deep than the level of the access parameter, and
- -- accessibility checks are not suppressed.
-
- elsif Present (Param_Ent)
- and then Present (Extra_Accessibility (Param_Ent))
- and then UI_Gt (Object_Access_Level (N),
- Deepest_Type_Access_Level (Typ))
- and then not Accessibility_Checks_Suppressed (Param_Ent)
- and then not Accessibility_Checks_Suppressed (Typ)
- then
- Param_Level :=
- New_Occurrence_Of (Extra_Accessibility (Param_Ent), Loc);
-
- Type_Level :=
- Make_Integer_Literal (Loc, Deepest_Type_Access_Level (Typ));
-
- -- Raise Program_Error if the accessibility level of the access
- -- parameter is deeper than the level of the target access type.
-
- Insert_Action (Insert_Node,
- Make_Raise_Program_Error (Loc,
- Condition =>
- Make_Op_Gt (Loc,
- Left_Opnd => Param_Level,
- Right_Opnd => Type_Level),
- Reason => PE_Accessibility_Check_Failed));
-
- Analyze_And_Resolve (N);
- end if;
- end Apply_Accessibility_Check;
-
- --------------------------------
- -- Apply_Address_Clause_Check --
- --------------------------------
-
- procedure Apply_Address_Clause_Check (E : Entity_Id; N : Node_Id) is
- pragma Assert (Nkind (N) = N_Freeze_Entity);
-
- AC : constant Node_Id := Address_Clause (E);
- Loc : constant Source_Ptr := Sloc (AC);
- Typ : constant Entity_Id := Etype (E);
- Aexp : constant Node_Id := Expression (AC);
-
- Expr : Node_Id;
- -- Address expression (not necessarily the same as Aexp, for example
- -- when Aexp is a reference to a constant, in which case Expr gets
- -- reset to reference the value expression of the constant.
-
- procedure Compile_Time_Bad_Alignment;
- -- Post error warnings when alignment is known to be incompatible. Note
- -- that we do not go as far as inserting a raise of Program_Error since
- -- this is an erroneous case, and it may happen that we are lucky and an
- -- underaligned address turns out to be OK after all.
-
- --------------------------------
- -- Compile_Time_Bad_Alignment --
- --------------------------------
-
- procedure Compile_Time_Bad_Alignment is
- begin
- if Address_Clause_Overlay_Warnings then
- Error_Msg_FE
- ("?o?specified address for& may be inconsistent with alignment",
- Aexp, E);
- Error_Msg_FE
- ("\?o?program execution may be erroneous (RM 13.3(27))",
- Aexp, E);
- Set_Address_Warning_Posted (AC);
- end if;
- end Compile_Time_Bad_Alignment;
-
- -- Start of processing for Apply_Address_Clause_Check
-
- begin
- -- See if alignment check needed. Note that we never need a check if the
- -- maximum alignment is one, since the check will always succeed.
-
- -- Note: we do not check for checks suppressed here, since that check
- -- was done in Sem_Ch13 when the address clause was processed. We are
- -- only called if checks were not suppressed. The reason for this is
- -- that we have to delay the call to Apply_Alignment_Check till freeze
- -- time (so that all types etc are elaborated), but we have to check
- -- the status of check suppressing at the point of the address clause.
-
- if No (AC)
- or else not Check_Address_Alignment (AC)
- or else Maximum_Alignment = 1
- then
- return;
- end if;
-
- -- Obtain expression from address clause
-
- Expr := Expression (AC);
-
- -- The following loop digs for the real expression to use in the check
-
- loop
- -- For constant, get constant expression
-
- if Is_Entity_Name (Expr)
- and then Ekind (Entity (Expr)) = E_Constant
- then
- Expr := Constant_Value (Entity (Expr));
-
- -- For unchecked conversion, get result to convert
-
- elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
- Expr := Expression (Expr);
-
- -- For (common case) of To_Address call, get argument
-
- elsif Nkind (Expr) = N_Function_Call
- and then Is_Entity_Name (Name (Expr))
- and then Is_RTE (Entity (Name (Expr)), RE_To_Address)
- then
- Expr := First (Parameter_Associations (Expr));
-
- if Nkind (Expr) = N_Parameter_Association then
- Expr := Explicit_Actual_Parameter (Expr);
- end if;
-
- -- We finally have the real expression
-
- else
- exit;
- end if;
- end loop;
-
- -- See if we know that Expr has a bad alignment at compile time
-
- if Compile_Time_Known_Value (Expr)
- and then (Known_Alignment (E) or else Known_Alignment (Typ))
- then
- declare
- AL : Uint := Alignment (Typ);
-
- begin
- -- The object alignment might be more restrictive than the
- -- type alignment.
-
- if Known_Alignment (E) then
- AL := Alignment (E);
- end if;
-
- if Expr_Value (Expr) mod AL /= 0 then
- Compile_Time_Bad_Alignment;
- else
- return;
- end if;
- end;
-
- -- If the expression has the form X'Address, then we can find out if
- -- the object X has an alignment that is compatible with the object E.
- -- If it hasn't or we don't know, we defer issuing the warning until
- -- the end of the compilation to take into account back end annotations.
-
- elsif Nkind (Expr) = N_Attribute_Reference
- and then Attribute_Name (Expr) = Name_Address
- and then Has_Compatible_Alignment (E, Prefix (Expr)) = Known_Compatible
- then
- return;
- end if;
-
- -- Here we do not know if the value is acceptable. Strictly we don't
- -- have to do anything, since if the alignment is bad, we have an
- -- erroneous program. However we are allowed to check for erroneous
- -- conditions and we decide to do this by default if the check is not
- -- suppressed.
-
- -- However, don't do the check if elaboration code is unwanted
-
- if Restriction_Active (No_Elaboration_Code) then
- return;
-
- -- Generate a check to raise PE if alignment may be inappropriate
-
- else
- -- If the original expression is a non-static constant, use the
- -- name of the constant itself rather than duplicating its
- -- defining expression, which was extracted above.
-
- -- Note: Expr is empty if the address-clause is applied to in-mode
- -- actuals (allowed by 13.1(22)).
-
- if not Present (Expr)
- or else
- (Is_Entity_Name (Expression (AC))
- and then Ekind (Entity (Expression (AC))) = E_Constant
- and then Nkind (Parent (Entity (Expression (AC))))
- = N_Object_Declaration)
- then
- Expr := New_Copy_Tree (Expression (AC));
- else
- Remove_Side_Effects (Expr);
- end if;
-
- if No (Actions (N)) then
- Set_Actions (N, New_List);
- end if;
-
- Prepend_To (Actions (N),
- Make_Raise_Program_Error (Loc,
- Condition =>
- Make_Op_Ne (Loc,
- Left_Opnd =>
- Make_Op_Mod (Loc,
- Left_Opnd =>
- Unchecked_Convert_To
- (RTE (RE_Integer_Address), Expr),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (E, Loc),
- Attribute_Name => Name_Alignment)),
- Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
- Reason => PE_Misaligned_Address_Value));
- Analyze (First (Actions (N)), Suppress => All_Checks);
- return;
- end if;
-
- exception
- -- If we have some missing run time component in configurable run time
- -- mode then just skip the check (it is not required in any case).
-
- when RE_Not_Available =>
- return;
- end Apply_Address_Clause_Check;
-
- -------------------------------------
- -- Apply_Arithmetic_Overflow_Check --
- -------------------------------------
-
- procedure Apply_Arithmetic_Overflow_Check (N : Node_Id) is
- begin
- -- Use old routine in almost all cases (the only case we are treating
- -- specially is the case of a signed integer arithmetic op with the
- -- overflow checking mode set to MINIMIZED or ELIMINATED).
-
- if Overflow_Check_Mode = Strict
- or else not Is_Signed_Integer_Arithmetic_Op (N)
- then
- Apply_Arithmetic_Overflow_Strict (N);
-
- -- Otherwise use the new routine for the case of a signed integer
- -- arithmetic op, with Do_Overflow_Check set to True, and the checking
- -- mode is MINIMIZED or ELIMINATED.
-
- else
- Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
- end if;
- end Apply_Arithmetic_Overflow_Check;
-
- --------------------------------------
- -- Apply_Arithmetic_Overflow_Strict --
- --------------------------------------
-
- -- This routine is called only if the type is an integer type, and a
- -- software arithmetic overflow check may be needed for op (add, subtract,
- -- or multiply). This check is performed only if Software_Overflow_Checking
- -- is enabled and Do_Overflow_Check is set. In this case we expand the
- -- operation into a more complex sequence of tests that ensures that
- -- overflow is properly caught.
-
- -- This is used in CHECKED modes. It is identical to the code for this
- -- cases before the big overflow earthquake, thus ensuring that in this
- -- modes we have compatible behavior (and reliability) to what was there
- -- before. It is also called for types other than signed integers, and if
- -- the Do_Overflow_Check flag is off.
-
- -- Note: we also call this routine if we decide in the MINIMIZED case
- -- to give up and just generate an overflow check without any fuss.
-
- procedure Apply_Arithmetic_Overflow_Strict (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Rtyp : constant Entity_Id := Root_Type (Typ);
-
- begin
- -- Nothing to do if Do_Overflow_Check not set or overflow checks
- -- suppressed.
-
- if not Do_Overflow_Check (N) then
- return;
- end if;
-
- -- An interesting special case. If the arithmetic operation appears as
- -- the operand of a type conversion:
-
- -- type1 (x op y)
-
- -- and all the following conditions apply:
-
- -- arithmetic operation is for a signed integer type
- -- target type type1 is a static integer subtype
- -- range of x and y are both included in the range of type1
- -- range of x op y is included in the range of type1
- -- size of type1 is at least twice the result size of op
-
- -- then we don't do an overflow check in any case, instead we transform
- -- the operation so that we end up with:
-
- -- type1 (type1 (x) op type1 (y))
-
- -- This avoids intermediate overflow before the conversion. It is
- -- explicitly permitted by RM 3.5.4(24):
-
- -- For the execution of a predefined operation of a signed integer
- -- type, the implementation need not raise Constraint_Error if the
- -- result is outside the base range of the type, so long as the
- -- correct result is produced.
-
- -- It's hard to imagine that any programmer counts on the exception
- -- being raised in this case, and in any case it's wrong coding to
- -- have this expectation, given the RM permission. Furthermore, other
- -- Ada compilers do allow such out of range results.
-
- -- Note that we do this transformation even if overflow checking is
- -- off, since this is precisely about giving the "right" result and
- -- avoiding the need for an overflow check.
-
- -- Note: this circuit is partially redundant with respect to the similar
- -- processing in Exp_Ch4.Expand_N_Type_Conversion, but the latter deals
- -- with cases that do not come through here. We still need the following
- -- processing even with the Exp_Ch4 code in place, since we want to be
- -- sure not to generate the arithmetic overflow check in these cases
- -- (Exp_Ch4 would have a hard time removing them once generated).
-
- if Is_Signed_Integer_Type (Typ)
- and then Nkind (Parent (N)) = N_Type_Conversion
- then
- Conversion_Optimization : declare
- Target_Type : constant Entity_Id :=
- Base_Type (Entity (Subtype_Mark (Parent (N))));
-
- Llo, Lhi : Uint;
- Rlo, Rhi : Uint;
- LOK, ROK : Boolean;
-
- Vlo : Uint;
- Vhi : Uint;
- VOK : Boolean;
-
- Tlo : Uint;
- Thi : Uint;
-
- begin
- if Is_Integer_Type (Target_Type)
- and then RM_Size (Root_Type (Target_Type)) >= 2 * RM_Size (Rtyp)
- then
- Tlo := Expr_Value (Type_Low_Bound (Target_Type));
- Thi := Expr_Value (Type_High_Bound (Target_Type));
-
- Determine_Range
- (Left_Opnd (N), LOK, Llo, Lhi, Assume_Valid => True);
- Determine_Range
- (Right_Opnd (N), ROK, Rlo, Rhi, Assume_Valid => True);
-
- if (LOK and ROK)
- and then Tlo <= Llo and then Lhi <= Thi
- and then Tlo <= Rlo and then Rhi <= Thi
- then
- Determine_Range (N, VOK, Vlo, Vhi, Assume_Valid => True);
-
- if VOK and then Tlo <= Vlo and then Vhi <= Thi then
- Rewrite (Left_Opnd (N),
- Make_Type_Conversion (Loc,
- Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
- Expression => Relocate_Node (Left_Opnd (N))));
-
- Rewrite (Right_Opnd (N),
- Make_Type_Conversion (Loc,
- Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
- Expression => Relocate_Node (Right_Opnd (N))));
-
- -- Rewrite the conversion operand so that the original
- -- node is retained, in order to avoid the warning for
- -- redundant conversions in Resolve_Type_Conversion.
-
- Rewrite (N, Relocate_Node (N));
-
- Set_Etype (N, Target_Type);
-
- Analyze_And_Resolve (Left_Opnd (N), Target_Type);
- Analyze_And_Resolve (Right_Opnd (N), Target_Type);
-
- -- Given that the target type is twice the size of the
- -- source type, overflow is now impossible, so we can
- -- safely kill the overflow check and return.
-
- Set_Do_Overflow_Check (N, False);
- return;
- end if;
- end if;
- end if;
- end Conversion_Optimization;
- end if;
-
- -- Now see if an overflow check is required
-
- declare
- Siz : constant Int := UI_To_Int (Esize (Rtyp));
- Dsiz : constant Int := Siz * 2;
- Opnod : Node_Id;
- Ctyp : Entity_Id;
- Opnd : Node_Id;
- Cent : RE_Id;
-
- begin
- -- Skip check if back end does overflow checks, or the overflow flag
- -- is not set anyway, or we are not doing code expansion, or the
- -- parent node is a type conversion whose operand is an arithmetic
- -- operation on signed integers on which the expander can promote
- -- later the operands to type Integer (see Expand_N_Type_Conversion).
-
- -- Special case CLI target, where arithmetic overflow checks can be
- -- performed for integer and long_integer
-
- if Backend_Overflow_Checks_On_Target
- or else not Do_Overflow_Check (N)
- or else not Full_Expander_Active
- or else (Present (Parent (N))
- and then Nkind (Parent (N)) = N_Type_Conversion
- and then Integer_Promotion_Possible (Parent (N)))
- or else
- (VM_Target = CLI_Target and then Siz >= Standard_Integer_Size)
- then
- return;
- end if;
-
- -- Otherwise, generate the full general code for front end overflow
- -- detection, which works by doing arithmetic in a larger type:
-
- -- x op y
-
- -- is expanded into
-
- -- Typ (Checktyp (x) op Checktyp (y));
-
- -- where Typ is the type of the original expression, and Checktyp is
- -- an integer type of sufficient length to hold the largest possible
- -- result.
-
- -- If the size of check type exceeds the size of Long_Long_Integer,
- -- we use a different approach, expanding to:
-
- -- typ (xxx_With_Ovflo_Check (Integer_64 (x), Integer (y)))
-
- -- where xxx is Add, Multiply or Subtract as appropriate
-
- -- Find check type if one exists
-
- if Dsiz <= Standard_Integer_Size then
- Ctyp := Standard_Integer;
-
- elsif Dsiz <= Standard_Long_Long_Integer_Size then
- Ctyp := Standard_Long_Long_Integer;
-
- -- No check type exists, use runtime call
-
- else
- if Nkind (N) = N_Op_Add then
- Cent := RE_Add_With_Ovflo_Check;
-
- elsif Nkind (N) = N_Op_Multiply then
- Cent := RE_Multiply_With_Ovflo_Check;
-
- else
- pragma Assert (Nkind (N) = N_Op_Subtract);
- Cent := RE_Subtract_With_Ovflo_Check;
- end if;
-
- Rewrite (N,
- OK_Convert_To (Typ,
- Make_Function_Call (Loc,
- Name => New_Reference_To (RTE (Cent), Loc),
- Parameter_Associations => New_List (
- OK_Convert_To (RTE (RE_Integer_64), Left_Opnd (N)),
- OK_Convert_To (RTE (RE_Integer_64), Right_Opnd (N))))));
-
- Analyze_And_Resolve (N, Typ);
- return;
- end if;
-
- -- If we fall through, we have the case where we do the arithmetic
- -- in the next higher type and get the check by conversion. In these
- -- cases Ctyp is set to the type to be used as the check type.
-
- Opnod := Relocate_Node (N);
-
- Opnd := OK_Convert_To (Ctyp, Left_Opnd (Opnod));
-
- Analyze (Opnd);
- Set_Etype (Opnd, Ctyp);
- Set_Analyzed (Opnd, True);
- Set_Left_Opnd (Opnod, Opnd);
-
- Opnd := OK_Convert_To (Ctyp, Right_Opnd (Opnod));
-
- Analyze (Opnd);
- Set_Etype (Opnd, Ctyp);
- Set_Analyzed (Opnd, True);
- Set_Right_Opnd (Opnod, Opnd);
-
- -- The type of the operation changes to the base type of the check
- -- type, and we reset the overflow check indication, since clearly no
- -- overflow is possible now that we are using a double length type.
- -- We also set the Analyzed flag to avoid a recursive attempt to
- -- expand the node.
-
- Set_Etype (Opnod, Base_Type (Ctyp));
- Set_Do_Overflow_Check (Opnod, False);
- Set_Analyzed (Opnod, True);
-
- -- Now build the outer conversion
-
- Opnd := OK_Convert_To (Typ, Opnod);
- Analyze (Opnd);
- Set_Etype (Opnd, Typ);
-
- -- In the discrete type case, we directly generate the range check
- -- for the outer operand. This range check will implement the
- -- required overflow check.
-
- if Is_Discrete_Type (Typ) then
- Rewrite (N, Opnd);
- Generate_Range_Check
- (Expression (N), Typ, CE_Overflow_Check_Failed);
-
- -- For other types, we enable overflow checking on the conversion,
- -- after setting the node as analyzed to prevent recursive attempts
- -- to expand the conversion node.
-
- else
- Set_Analyzed (Opnd, True);
- Enable_Overflow_Check (Opnd);
- Rewrite (N, Opnd);
- end if;
-
- exception
- when RE_Not_Available =>
- return;
- end;
- end Apply_Arithmetic_Overflow_Strict;
-
- ----------------------------------------------------
- -- Apply_Arithmetic_Overflow_Minimized_Eliminated --
- ----------------------------------------------------
-
- procedure Apply_Arithmetic_Overflow_Minimized_Eliminated (Op : Node_Id) is
- pragma Assert (Is_Signed_Integer_Arithmetic_Op (Op));
-
- Loc : constant Source_Ptr := Sloc (Op);
- P : constant Node_Id := Parent (Op);
-
- LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
- -- Operands and results are of this type when we convert
-
- Result_Type : constant Entity_Id := Etype (Op);
- -- Original result type
-
- Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
- pragma Assert (Check_Mode in Minimized_Or_Eliminated);
-
- Lo, Hi : Uint;
- -- Ranges of values for result
-
- begin
- -- Nothing to do if our parent is one of the following:
-
- -- Another signed integer arithmetic op
- -- A membership operation
- -- A comparison operation
-
- -- In all these cases, we will process at the higher level (and then
- -- this node will be processed during the downwards recursion that
- -- is part of the processing in Minimize_Eliminate_Overflows).
-
- if Is_Signed_Integer_Arithmetic_Op (P)
- or else Nkind (P) in N_Membership_Test
- or else Nkind (P) in N_Op_Compare
-
- -- This is also true for an alternative in a case expression
-
- or else Nkind (P) = N_Case_Expression_Alternative
-
- -- This is also true for a range operand in a membership test
-
- or else (Nkind (P) = N_Range
- and then Nkind (Parent (P)) in N_Membership_Test)
- then
- return;
- end if;
-
- -- Otherwise, we have a top level arithmetic operation node, and this
- -- is where we commence the special processing for MINIMIZED/ELIMINATED
- -- modes. This is the case where we tell the machinery not to move into
- -- Bignum mode at this top level (of course the top level operation
- -- will still be in Bignum mode if either of its operands are of type
- -- Bignum).
-
- Minimize_Eliminate_Overflows (Op, Lo, Hi, Top_Level => True);
-
- -- That call may but does not necessarily change the result type of Op.
- -- It is the job of this routine to undo such changes, so that at the
- -- top level, we have the proper type. This "undoing" is a point at
- -- which a final overflow check may be applied.
-
- -- If the result type was not fiddled we are all set. We go to base
- -- types here because things may have been rewritten to generate the
- -- base type of the operand types.
-
- if Base_Type (Etype (Op)) = Base_Type (Result_Type) then
- return;
-
- -- Bignum case
-
- elsif Is_RTE (Etype (Op), RE_Bignum) then
-
- -- We need a sequence that looks like:
-
- -- Rnn : Result_Type;
-
- -- declare
- -- M : Mark_Id := SS_Mark;
- -- begin
- -- Rnn := Long_Long_Integer'Base (From_Bignum (Op));
- -- SS_Release (M);
- -- end;
-
- -- This block is inserted (using Insert_Actions), and then the node
- -- is replaced with a reference to Rnn.
-
- -- A special case arises if our parent is a conversion node. In this
- -- case no point in generating a conversion to Result_Type, we will
- -- let the parent handle this. Note that this special case is not
- -- just about optimization. Consider
-
- -- A,B,C : Integer;
- -- ...
- -- X := Long_Long_Integer'Base (A * (B ** C));
-
- -- Now the product may fit in Long_Long_Integer but not in Integer.
- -- In MINIMIZED/ELIMINATED mode, we don't want to introduce an
- -- overflow exception for this intermediate value.
-
- declare
- Blk : constant Node_Id := Make_Bignum_Block (Loc);
- Rnn : constant Entity_Id := Make_Temporary (Loc, 'R', Op);
- RHS : Node_Id;
-
- Rtype : Entity_Id;
-
- begin
- RHS := Convert_From_Bignum (Op);
-
- if Nkind (P) /= N_Type_Conversion then
- Convert_To_And_Rewrite (Result_Type, RHS);
- Rtype := Result_Type;
-
- -- Interesting question, do we need a check on that conversion
- -- operation. Answer, not if we know the result is in range.
- -- At the moment we are not taking advantage of this. To be
- -- looked at later ???
-
- else
- Rtype := LLIB;
- end if;
-
- Insert_Before
- (First (Statements (Handled_Statement_Sequence (Blk))),
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Rnn, Loc),
- Expression => RHS));
-
- Insert_Actions (Op, New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => Rnn,
- Object_Definition => New_Occurrence_Of (Rtype, Loc)),
- Blk));
-
- Rewrite (Op, New_Occurrence_Of (Rnn, Loc));
- Analyze_And_Resolve (Op);
- end;
-
- -- Here we know the result is Long_Long_Integer'Base, of that it has
- -- been rewritten because the parent operation is a conversion. See
- -- Apply_Arithmetic_Overflow_Strict.Conversion_Optimization.
-
- else
- pragma Assert
- (Etype (Op) = LLIB or else Nkind (Parent (Op)) = N_Type_Conversion);
-
- -- All we need to do here is to convert the result to the proper
- -- result type. As explained above for the Bignum case, we can
- -- omit this if our parent is a type conversion.
-
- if Nkind (P) /= N_Type_Conversion then
- Convert_To_And_Rewrite (Result_Type, Op);
- end if;
-
- Analyze_And_Resolve (Op);
- end if;
- end Apply_Arithmetic_Overflow_Minimized_Eliminated;
-
- ----------------------------
- -- Apply_Constraint_Check --
- ----------------------------
-
- procedure Apply_Constraint_Check
- (N : Node_Id;
- Typ : Entity_Id;
- No_Sliding : Boolean := False)
- is
- Desig_Typ : Entity_Id;
-
- begin
- -- No checks inside a generic (check the instantiations)
-
- if Inside_A_Generic then
- return;
- end if;
-
- -- Apply required constraint checks
-
- if Is_Scalar_Type (Typ) then
- Apply_Scalar_Range_Check (N, Typ);
-
- elsif Is_Array_Type (Typ) then
-
- -- A useful optimization: an aggregate with only an others clause
- -- always has the right bounds.
-
- if Nkind (N) = N_Aggregate
- and then No (Expressions (N))
- and then Nkind
- (First (Choices (First (Component_Associations (N)))))
- = N_Others_Choice
- then
- return;
- end if;
-
- if Is_Constrained (Typ) then
- Apply_Length_Check (N, Typ);
-
- if No_Sliding then
- Apply_Range_Check (N, Typ);
- end if;
- else
- Apply_Range_Check (N, Typ);
- end if;
-
- elsif (Is_Record_Type (Typ) or else Is_Private_Type (Typ))
- and then Has_Discriminants (Base_Type (Typ))
- and then Is_Constrained (Typ)
- then
- Apply_Discriminant_Check (N, Typ);
-
- elsif Is_Access_Type (Typ) then
-
- Desig_Typ := Designated_Type (Typ);
-
- -- No checks necessary if expression statically null
-
- if Known_Null (N) then
- if Can_Never_Be_Null (Typ) then
- Install_Null_Excluding_Check (N);
- end if;
-
- -- No sliding possible on access to arrays
-
- elsif Is_Array_Type (Desig_Typ) then
- if Is_Constrained (Desig_Typ) then
- Apply_Length_Check (N, Typ);
- end if;
-
- Apply_Range_Check (N, Typ);
-
- elsif Has_Discriminants (Base_Type (Desig_Typ))
- and then Is_Constrained (Desig_Typ)
- then
- Apply_Discriminant_Check (N, Typ);
- end if;
-
- -- Apply the 2005 Null_Excluding check. Note that we do not apply
- -- this check if the constraint node is illegal, as shown by having
- -- an error posted. This additional guard prevents cascaded errors
- -- and compiler aborts on illegal programs involving Ada 2005 checks.
-
- if Can_Never_Be_Null (Typ)
- and then not Can_Never_Be_Null (Etype (N))
- and then not Error_Posted (N)
- then
- Install_Null_Excluding_Check (N);
- end if;
- end if;
- end Apply_Constraint_Check;
-
- ------------------------------
- -- Apply_Discriminant_Check --
- ------------------------------
-
- procedure Apply_Discriminant_Check
- (N : Node_Id;
- Typ : Entity_Id;
- Lhs : Node_Id := Empty)
- is
- Loc : constant Source_Ptr := Sloc (N);
- Do_Access : constant Boolean := Is_Access_Type (Typ);
- S_Typ : Entity_Id := Etype (N);
- Cond : Node_Id;
- T_Typ : Entity_Id;
-
- function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean;
- -- A heap object with an indefinite subtype is constrained by its
- -- initial value, and assigning to it requires a constraint_check.
- -- The target may be an explicit dereference, or a renaming of one.
-
- function Is_Aliased_Unconstrained_Component return Boolean;
- -- It is possible for an aliased component to have a nominal
- -- unconstrained subtype (through instantiation). If this is a
- -- discriminated component assigned in the expansion of an aggregate
- -- in an initialization, the check must be suppressed. This unusual
- -- situation requires a predicate of its own.
-
- ----------------------------------
- -- Denotes_Explicit_Dereference --
- ----------------------------------
-
- function Denotes_Explicit_Dereference (Obj : Node_Id) return Boolean is
- begin
- return
- Nkind (Obj) = N_Explicit_Dereference
- or else
- (Is_Entity_Name (Obj)
- and then Present (Renamed_Object (Entity (Obj)))
- and then Nkind (Renamed_Object (Entity (Obj))) =
- N_Explicit_Dereference);
- end Denotes_Explicit_Dereference;
-
- ----------------------------------------
- -- Is_Aliased_Unconstrained_Component --
- ----------------------------------------
-
- function Is_Aliased_Unconstrained_Component return Boolean is
- Comp : Entity_Id;
- Pref : Node_Id;
-
- begin
- if Nkind (Lhs) /= N_Selected_Component then
- return False;
- else
- Comp := Entity (Selector_Name (Lhs));
- Pref := Prefix (Lhs);
- end if;
-
- if Ekind (Comp) /= E_Component
- or else not Is_Aliased (Comp)
- then
- return False;
- end if;
-
- return not Comes_From_Source (Pref)
- and then In_Instance
- and then not Is_Constrained (Etype (Comp));
- end Is_Aliased_Unconstrained_Component;
-
- -- Start of processing for Apply_Discriminant_Check
-
- begin
- if Do_Access then
- T_Typ := Designated_Type (Typ);
- else
- T_Typ := Typ;
- end if;
-
- -- Nothing to do if discriminant checks are suppressed or else no code
- -- is to be generated
-
- if not Full_Expander_Active
- or else Discriminant_Checks_Suppressed (T_Typ)
- then
- return;
- end if;
-
- -- No discriminant checks necessary for an access when expression is
- -- statically Null. This is not only an optimization, it is fundamental
- -- because otherwise discriminant checks may be generated in init procs
- -- for types containing an access to a not-yet-frozen record, causing a
- -- deadly forward reference.
-
- -- Also, if the expression is of an access type whose designated type is
- -- incomplete, then the access value must be null and we suppress the
- -- check.
-
- if Known_Null (N) then
- return;
-
- elsif Is_Access_Type (S_Typ) then
- S_Typ := Designated_Type (S_Typ);
-
- if Ekind (S_Typ) = E_Incomplete_Type then
- return;
- end if;
- end if;
-
- -- If an assignment target is present, then we need to generate the
- -- actual subtype if the target is a parameter or aliased object with
- -- an unconstrained nominal subtype.
-
- -- Ada 2005 (AI-363): For Ada 2005, we limit the building of the actual
- -- subtype to the parameter and dereference cases, since other aliased
- -- objects are unconstrained (unless the nominal subtype is explicitly
- -- constrained).
-
- if Present (Lhs)
- and then (Present (Param_Entity (Lhs))
- or else (Ada_Version < Ada_2005
- and then not Is_Constrained (T_Typ)
- and then Is_Aliased_View (Lhs)
- and then not Is_Aliased_Unconstrained_Component)
- or else (Ada_Version >= Ada_2005
- and then not Is_Constrained (T_Typ)
- and then Denotes_Explicit_Dereference (Lhs)
- and then Nkind (Original_Node (Lhs)) /=
- N_Function_Call))
- then
- T_Typ := Get_Actual_Subtype (Lhs);
- end if;
-
- -- Nothing to do if the type is unconstrained (this is the case where
- -- the actual subtype in the RM sense of N is unconstrained and no check
- -- is required).
-
- if not Is_Constrained (T_Typ) then
- return;
-
- -- Ada 2005: nothing to do if the type is one for which there is a
- -- partial view that is constrained.
-
- elsif Ada_Version >= Ada_2005
- and then Effectively_Has_Constrained_Partial_View
- (Typ => Base_Type (T_Typ),
- Scop => Current_Scope)
- then
- return;
- end if;
-
- -- Nothing to do if the type is an Unchecked_Union
-
- if Is_Unchecked_Union (Base_Type (T_Typ)) then
- return;
- end if;
-
- -- Suppress checks if the subtypes are the same. the check must be
- -- preserved in an assignment to a formal, because the constraint is
- -- given by the actual.
-
- if Nkind (Original_Node (N)) /= N_Allocator
- and then (No (Lhs)
- or else not Is_Entity_Name (Lhs)
- or else No (Param_Entity (Lhs)))
- then
- if (Etype (N) = Typ
- or else (Do_Access and then Designated_Type (Typ) = S_Typ))
- and then not Is_Aliased_View (Lhs)
- then
- return;
- end if;
-
- -- We can also eliminate checks on allocators with a subtype mark that
- -- coincides with the context type. The context type may be a subtype
- -- without a constraint (common case, a generic actual).
-
- elsif Nkind (Original_Node (N)) = N_Allocator
- and then Is_Entity_Name (Expression (Original_Node (N)))
- then
- declare
- Alloc_Typ : constant Entity_Id :=
- Entity (Expression (Original_Node (N)));
-
- begin
- if Alloc_Typ = T_Typ
- or else (Nkind (Parent (T_Typ)) = N_Subtype_Declaration
- and then Is_Entity_Name (
- Subtype_Indication (Parent (T_Typ)))
- and then Alloc_Typ = Base_Type (T_Typ))
-
- then
- return;
- end if;
- end;
- end if;
-
- -- See if we have a case where the types are both constrained, and all
- -- the constraints are constants. In this case, we can do the check
- -- successfully at compile time.
-
- -- We skip this check for the case where the node is rewritten`as
- -- an allocator, because it already carries the context subtype,
- -- and extracting the discriminants from the aggregate is messy.
-
- if Is_Constrained (S_Typ)
- and then Nkind (Original_Node (N)) /= N_Allocator
- then
- declare
- DconT : Elmt_Id;
- Discr : Entity_Id;
- DconS : Elmt_Id;
- ItemS : Node_Id;
- ItemT : Node_Id;
-
- begin
- -- S_Typ may not have discriminants in the case where it is a
- -- private type completed by a default discriminated type. In that
- -- case, we need to get the constraints from the underlying_type.
- -- If the underlying type is unconstrained (i.e. has no default
- -- discriminants) no check is needed.
-
- if Has_Discriminants (S_Typ) then
- Discr := First_Discriminant (S_Typ);
- DconS := First_Elmt (Discriminant_Constraint (S_Typ));
-
- else
- Discr := First_Discriminant (Underlying_Type (S_Typ));
- DconS :=
- First_Elmt
- (Discriminant_Constraint (Underlying_Type (S_Typ)));
-
- if No (DconS) then
- return;
- end if;
-
- -- A further optimization: if T_Typ is derived from S_Typ
- -- without imposing a constraint, no check is needed.
-
- if Nkind (Original_Node (Parent (T_Typ))) =
- N_Full_Type_Declaration
- then
- declare
- Type_Def : constant Node_Id :=
- Type_Definition (Original_Node (Parent (T_Typ)));
- begin
- if Nkind (Type_Def) = N_Derived_Type_Definition
- and then Is_Entity_Name (Subtype_Indication (Type_Def))
- and then Entity (Subtype_Indication (Type_Def)) = S_Typ
- then
- return;
- end if;
- end;
- end if;
- end if;
-
- -- Constraint may appear in full view of type
-
- if Ekind (T_Typ) = E_Private_Subtype
- and then Present (Full_View (T_Typ))
- then
- DconT :=
- First_Elmt (Discriminant_Constraint (Full_View (T_Typ)));
- else
- DconT :=
- First_Elmt (Discriminant_Constraint (T_Typ));
- end if;
-
- while Present (Discr) loop
- ItemS := Node (DconS);
- ItemT := Node (DconT);
-
- -- For a discriminated component type constrained by the
- -- current instance of an enclosing type, there is no
- -- applicable discriminant check.
-
- if Nkind (ItemT) = N_Attribute_Reference
- and then Is_Access_Type (Etype (ItemT))
- and then Is_Entity_Name (Prefix (ItemT))
- and then Is_Type (Entity (Prefix (ItemT)))
- then
- return;
- end if;
-
- -- If the expressions for the discriminants are identical
- -- and it is side-effect free (for now just an entity),
- -- this may be a shared constraint, e.g. from a subtype
- -- without a constraint introduced as a generic actual.
- -- Examine other discriminants if any.
-
- if ItemS = ItemT
- and then Is_Entity_Name (ItemS)
- then
- null;
-
- elsif not Is_OK_Static_Expression (ItemS)
- or else not Is_OK_Static_Expression (ItemT)
- then
- exit;
-
- elsif Expr_Value (ItemS) /= Expr_Value (ItemT) then
- if Do_Access then -- needs run-time check.
- exit;
- else
- Apply_Compile_Time_Constraint_Error
- (N, "incorrect value for discriminant&??",
- CE_Discriminant_Check_Failed, Ent => Discr);
- return;
- end if;
- end if;
-
- Next_Elmt (DconS);
- Next_Elmt (DconT);
- Next_Discriminant (Discr);
- end loop;
-
- if No (Discr) then
- return;
- end if;
- end;
- end if;
-
- -- Here we need a discriminant check. First build the expression
- -- for the comparisons of the discriminants:
-
- -- (n.disc1 /= typ.disc1) or else
- -- (n.disc2 /= typ.disc2) or else
- -- ...
- -- (n.discn /= typ.discn)
-
- Cond := Build_Discriminant_Checks (N, T_Typ);
-
- -- If Lhs is set and is a parameter, then the condition is guarded by:
- -- lhs'constrained and then (condition built above)
-
- if Present (Param_Entity (Lhs)) then
- Cond :=
- Make_And_Then (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Param_Entity (Lhs), Loc),
- Attribute_Name => Name_Constrained),
- Right_Opnd => Cond);
- end if;
-
- if Do_Access then
- Cond := Guard_Access (Cond, Loc, N);
- end if;
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Discriminant_Check_Failed));
- end Apply_Discriminant_Check;
-
- -------------------------
- -- Apply_Divide_Checks --
- -------------------------
-
- procedure Apply_Divide_Checks (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
-
- Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
- -- Current overflow checking mode
-
- LLB : Uint;
- Llo : Uint;
- Lhi : Uint;
- LOK : Boolean;
- Rlo : Uint;
- Rhi : Uint;
- ROK : Boolean;
-
- pragma Warnings (Off, Lhi);
- -- Don't actually use this value
-
- begin
- -- If we are operating in MINIMIZED or ELIMINATED mode, and we are
- -- operating on signed integer types, then the only thing this routine
- -- does is to call Apply_Arithmetic_Overflow_Minimized_Eliminated. That
- -- procedure will (possibly later on during recursive downward calls),
- -- ensure that any needed overflow/division checks are properly applied.
-
- if Mode in Minimized_Or_Eliminated
- and then Is_Signed_Integer_Type (Typ)
- then
- Apply_Arithmetic_Overflow_Minimized_Eliminated (N);
- return;
- end if;
-
- -- Proceed here in SUPPRESSED or CHECKED modes
-
- if Full_Expander_Active
- and then not Backend_Divide_Checks_On_Target
- and then Check_Needed (Right, Division_Check)
- then
- Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
-
- -- Deal with division check
-
- if Do_Division_Check (N)
- and then not Division_Checks_Suppressed (Typ)
- then
- Apply_Division_Check (N, Rlo, Rhi, ROK);
- end if;
-
- -- Deal with overflow check
-
- if Do_Overflow_Check (N)
- and then not Overflow_Checks_Suppressed (Etype (N))
- then
-
- -- Test for extremely annoying case of xxx'First divided by -1
- -- for division of signed integer types (only overflow case).
-
- if Nkind (N) = N_Op_Divide
- and then Is_Signed_Integer_Type (Typ)
- then
- Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
- LLB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
-
- if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
- and then
- ((not LOK) or else (Llo = LLB))
- then
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_And_Then (Loc,
- Left_Opnd =>
- Make_Op_Eq (Loc,
- Left_Opnd =>
- Duplicate_Subexpr_Move_Checks (Left),
- Right_Opnd => Make_Integer_Literal (Loc, LLB)),
-
- Right_Opnd =>
- Make_Op_Eq (Loc,
- Left_Opnd => Duplicate_Subexpr (Right),
- Right_Opnd => Make_Integer_Literal (Loc, -1))),
-
- Reason => CE_Overflow_Check_Failed));
- end if;
- end if;
- end if;
- end if;
- end Apply_Divide_Checks;
-
- --------------------------
- -- Apply_Division_Check --
- --------------------------
-
- procedure Apply_Division_Check
- (N : Node_Id;
- Rlo : Uint;
- Rhi : Uint;
- ROK : Boolean)
- is
- pragma Assert (Do_Division_Check (N));
-
- Loc : constant Source_Ptr := Sloc (N);
- Right : constant Node_Id := Right_Opnd (N);
-
- begin
- if Full_Expander_Active
- and then not Backend_Divide_Checks_On_Target
- and then Check_Needed (Right, Division_Check)
- then
- -- See if division by zero possible, and if so generate test. This
- -- part of the test is not controlled by the -gnato switch, since
- -- it is a Division_Check and not an Overflow_Check.
-
- if Do_Division_Check (N) then
- if (not ROK) or else (Rlo <= 0 and then 0 <= Rhi) then
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
- Right_Opnd => Make_Integer_Literal (Loc, 0)),
- Reason => CE_Divide_By_Zero));
- end if;
- end if;
- end if;
- end Apply_Division_Check;
-
- ----------------------------------
- -- Apply_Float_Conversion_Check --
- ----------------------------------
-
- -- Let F and I be the source and target types of the conversion. The RM
- -- specifies that a floating-point value X is rounded to the nearest
- -- integer, with halfway cases being rounded away from zero. The rounded
- -- value of X is checked against I'Range.
-
- -- The catch in the above paragraph is that there is no good way to know
- -- whether the round-to-integer operation resulted in overflow. A remedy is
- -- to perform a range check in the floating-point domain instead, however:
-
- -- (1) The bounds may not be known at compile time
- -- (2) The check must take into account rounding or truncation.
- -- (3) The range of type I may not be exactly representable in F.
- -- (4) For the rounding case, The end-points I'First - 0.5 and
- -- I'Last + 0.5 may or may not be in range, depending on the
- -- sign of I'First and I'Last.
- -- (5) X may be a NaN, which will fail any comparison
-
- -- The following steps correctly convert X with rounding:
-
- -- (1) If either I'First or I'Last is not known at compile time, use
- -- I'Base instead of I in the next three steps and perform a
- -- regular range check against I'Range after conversion.
- -- (2) If I'First - 0.5 is representable in F then let Lo be that
- -- value and define Lo_OK as (I'First > 0). Otherwise, let Lo be
- -- F'Machine (I'First) and let Lo_OK be (Lo >= I'First).
- -- In other words, take one of the closest floating-point numbers
- -- (which is an integer value) to I'First, and see if it is in
- -- range or not.
- -- (3) If I'Last + 0.5 is representable in F then let Hi be that value
- -- and define Hi_OK as (I'Last < 0). Otherwise, let Hi be
- -- F'Machine (I'Last) and let Hi_OK be (Hi <= I'Last).
- -- (4) Raise CE when (Lo_OK and X < Lo) or (not Lo_OK and X <= Lo)
- -- or (Hi_OK and X > Hi) or (not Hi_OK and X >= Hi)
-
- -- For the truncating case, replace steps (2) and (3) as follows:
- -- (2) If I'First > 0, then let Lo be F'Pred (I'First) and let Lo_OK
- -- be False. Otherwise, let Lo be F'Succ (I'First - 1) and let
- -- Lo_OK be True.
- -- (3) If I'Last < 0, then let Hi be F'Succ (I'Last) and let Hi_OK
- -- be False. Otherwise let Hi be F'Pred (I'Last + 1) and let
- -- Hi_OK be True.
-
- procedure Apply_Float_Conversion_Check
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id)
- is
- LB : constant Node_Id := Type_Low_Bound (Target_Typ);
- HB : constant Node_Id := Type_High_Bound (Target_Typ);
- Loc : constant Source_Ptr := Sloc (Ck_Node);
- Expr_Type : constant Entity_Id := Base_Type (Etype (Ck_Node));
- Target_Base : constant Entity_Id :=
- Implementation_Base_Type (Target_Typ);
-
- Par : constant Node_Id := Parent (Ck_Node);
- pragma Assert (Nkind (Par) = N_Type_Conversion);
- -- Parent of check node, must be a type conversion
-
- Truncate : constant Boolean := Float_Truncate (Par);
- Max_Bound : constant Uint :=
- UI_Expon
- (Machine_Radix_Value (Expr_Type),
- Machine_Mantissa_Value (Expr_Type) - 1) - 1;
-
- -- Largest bound, so bound plus or minus half is a machine number of F
-
- Ifirst, Ilast : Uint;
- -- Bounds of integer type
-
- Lo, Hi : Ureal;
- -- Bounds to check in floating-point domain
-
- Lo_OK, Hi_OK : Boolean;
- -- True iff Lo resp. Hi belongs to I'Range
-
- Lo_Chk, Hi_Chk : Node_Id;
- -- Expressions that are False iff check fails
-
- Reason : RT_Exception_Code;
-
- begin
- if not Compile_Time_Known_Value (LB)
- or not Compile_Time_Known_Value (HB)
- then
- declare
- -- First check that the value falls in the range of the base type,
- -- to prevent overflow during conversion and then perform a
- -- regular range check against the (dynamic) bounds.
-
- pragma Assert (Target_Base /= Target_Typ);
-
- Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Par);
-
- begin
- Apply_Float_Conversion_Check (Ck_Node, Target_Base);
- Set_Etype (Temp, Target_Base);
-
- Insert_Action (Parent (Par),
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Object_Definition => New_Occurrence_Of (Target_Typ, Loc),
- Expression => New_Copy_Tree (Par)),
- Suppress => All_Checks);
-
- Insert_Action (Par,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Not_In (Loc,
- Left_Opnd => New_Occurrence_Of (Temp, Loc),
- Right_Opnd => New_Occurrence_Of (Target_Typ, Loc)),
- Reason => CE_Range_Check_Failed));
- Rewrite (Par, New_Occurrence_Of (Temp, Loc));
-
- return;
- end;
- end if;
-
- -- Get the (static) bounds of the target type
-
- Ifirst := Expr_Value (LB);
- Ilast := Expr_Value (HB);
-
- -- A simple optimization: if the expression is a universal literal,
- -- we can do the comparison with the bounds and the conversion to
- -- an integer type statically. The range checks are unchanged.
-
- if Nkind (Ck_Node) = N_Real_Literal
- and then Etype (Ck_Node) = Universal_Real
- and then Is_Integer_Type (Target_Typ)
- and then Nkind (Parent (Ck_Node)) = N_Type_Conversion
- then
- declare
- Int_Val : constant Uint := UR_To_Uint (Realval (Ck_Node));
-
- begin
- if Int_Val <= Ilast and then Int_Val >= Ifirst then
-
- -- Conversion is safe
-
- Rewrite (Parent (Ck_Node),
- Make_Integer_Literal (Loc, UI_To_Int (Int_Val)));
- Analyze_And_Resolve (Parent (Ck_Node), Target_Typ);
- return;
- end if;
- end;
- end if;
-
- -- Check against lower bound
-
- if Truncate and then Ifirst > 0 then
- Lo := Pred (Expr_Type, UR_From_Uint (Ifirst));
- Lo_OK := False;
-
- elsif Truncate then
- Lo := Succ (Expr_Type, UR_From_Uint (Ifirst - 1));
- Lo_OK := True;
-
- elsif abs (Ifirst) < Max_Bound then
- Lo := UR_From_Uint (Ifirst) - Ureal_Half;
- Lo_OK := (Ifirst > 0);
-
- else
- Lo := Machine (Expr_Type, UR_From_Uint (Ifirst), Round_Even, Ck_Node);
- Lo_OK := (Lo >= UR_From_Uint (Ifirst));
- end if;
-
- if Lo_OK then
-
- -- Lo_Chk := (X >= Lo)
-
- Lo_Chk := Make_Op_Ge (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
- Right_Opnd => Make_Real_Literal (Loc, Lo));
-
- else
- -- Lo_Chk := (X > Lo)
-
- Lo_Chk := Make_Op_Gt (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
- Right_Opnd => Make_Real_Literal (Loc, Lo));
- end if;
-
- -- Check against higher bound
-
- if Truncate and then Ilast < 0 then
- Hi := Succ (Expr_Type, UR_From_Uint (Ilast));
- Hi_OK := False;
-
- elsif Truncate then
- Hi := Pred (Expr_Type, UR_From_Uint (Ilast + 1));
- Hi_OK := True;
-
- elsif abs (Ilast) < Max_Bound then
- Hi := UR_From_Uint (Ilast) + Ureal_Half;
- Hi_OK := (Ilast < 0);
- else
- Hi := Machine (Expr_Type, UR_From_Uint (Ilast), Round_Even, Ck_Node);
- Hi_OK := (Hi <= UR_From_Uint (Ilast));
- end if;
-
- if Hi_OK then
-
- -- Hi_Chk := (X <= Hi)
-
- Hi_Chk := Make_Op_Le (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
- Right_Opnd => Make_Real_Literal (Loc, Hi));
-
- else
- -- Hi_Chk := (X < Hi)
-
- Hi_Chk := Make_Op_Lt (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
- Right_Opnd => Make_Real_Literal (Loc, Hi));
- end if;
-
- -- If the bounds of the target type are the same as those of the base
- -- type, the check is an overflow check as a range check is not
- -- performed in these cases.
-
- if Expr_Value (Type_Low_Bound (Target_Base)) = Ifirst
- and then Expr_Value (Type_High_Bound (Target_Base)) = Ilast
- then
- Reason := CE_Overflow_Check_Failed;
- else
- Reason := CE_Range_Check_Failed;
- end if;
-
- -- Raise CE if either conditions does not hold
-
- Insert_Action (Ck_Node,
- Make_Raise_Constraint_Error (Loc,
- Condition => Make_Op_Not (Loc, Make_And_Then (Loc, Lo_Chk, Hi_Chk)),
- Reason => Reason));
- end Apply_Float_Conversion_Check;
-
- ------------------------
- -- Apply_Length_Check --
- ------------------------
-
- procedure Apply_Length_Check
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id := Empty)
- is
- begin
- Apply_Selected_Length_Checks
- (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
- end Apply_Length_Check;
-
- -------------------------------------
- -- Apply_Parameter_Aliasing_Checks --
- -------------------------------------
-
- procedure Apply_Parameter_Aliasing_Checks
- (Call : Node_Id;
- Subp : Entity_Id)
- is
- function May_Cause_Aliasing
- (Formal_1 : Entity_Id;
- Formal_2 : Entity_Id) return Boolean;
- -- Determine whether two formal parameters can alias each other
- -- depending on their modes.
-
- function Original_Actual (N : Node_Id) return Node_Id;
- -- The expander may replace an actual with a temporary for the sake of
- -- side effect removal. The temporary may hide a potential aliasing as
- -- it does not share the address of the actual. This routine attempts
- -- to retrieve the original actual.
-
- ------------------------
- -- May_Cause_Aliasing --
- ------------------------
-
- function May_Cause_Aliasing
- (Formal_1 : Entity_Id;
- Formal_2 : Entity_Id) return Boolean
- is
- begin
- -- The following combination cannot lead to aliasing
-
- -- Formal 1 Formal 2
- -- IN IN
-
- if Ekind (Formal_1) = E_In_Parameter
- and then
- Ekind (Formal_2) = E_In_Parameter
- then
- return False;
-
- -- The following combinations may lead to aliasing
-
- -- Formal 1 Formal 2
- -- IN OUT
- -- IN IN OUT
- -- OUT IN
- -- OUT IN OUT
- -- OUT OUT
-
- else
- return True;
- end if;
- end May_Cause_Aliasing;
-
- ---------------------
- -- Original_Actual --
- ---------------------
-
- function Original_Actual (N : Node_Id) return Node_Id is
- begin
- if Nkind (N) = N_Type_Conversion then
- return Expression (N);
-
- -- The expander created a temporary to capture the result of a type
- -- conversion where the expression is the real actual.
-
- elsif Nkind (N) = N_Identifier
- and then Present (Original_Node (N))
- and then Nkind (Original_Node (N)) = N_Type_Conversion
- then
- return Expression (Original_Node (N));
- end if;
-
- return N;
- end Original_Actual;
-
- -- Local variables
-
- Loc : constant Source_Ptr := Sloc (Call);
- Actual_1 : Node_Id;
- Actual_2 : Node_Id;
- Check : Node_Id;
- Cond : Node_Id;
- Formal_1 : Entity_Id;
- Formal_2 : Entity_Id;
-
- -- Start of processing for Apply_Parameter_Aliasing_Checks
-
- begin
- Cond := Empty;
-
- Actual_1 := First_Actual (Call);
- Formal_1 := First_Formal (Subp);
- while Present (Actual_1) and then Present (Formal_1) loop
-
- -- Ensure that the actual is an object that is not passed by value.
- -- Elementary types are always passed by value, therefore actuals of
- -- such types cannot lead to aliasing.
-
- if Is_Object_Reference (Original_Actual (Actual_1))
- and then not Is_Elementary_Type (Etype (Original_Actual (Actual_1)))
- then
- Actual_2 := Next_Actual (Actual_1);
- Formal_2 := Next_Formal (Formal_1);
- while Present (Actual_2) and then Present (Formal_2) loop
-
- -- The other actual we are testing against must also denote
- -- a non pass-by-value object. Generate the check only when
- -- the mode of the two formals may lead to aliasing.
-
- if Is_Object_Reference (Original_Actual (Actual_2))
- and then not
- Is_Elementary_Type (Etype (Original_Actual (Actual_2)))
- and then May_Cause_Aliasing (Formal_1, Formal_2)
- then
- -- Generate:
- -- Actual_1'Overlaps_Storage (Actual_2)
-
- Check :=
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Copy_Tree (Original_Actual (Actual_1)),
- Attribute_Name => Name_Overlaps_Storage,
- Expressions =>
- New_List (New_Copy_Tree (Original_Actual (Actual_2))));
-
- if No (Cond) then
- Cond := Check;
- else
- Cond :=
- Make_And_Then (Loc,
- Left_Opnd => Cond,
- Right_Opnd => Check);
- end if;
- end if;
-
- Next_Actual (Actual_2);
- Next_Formal (Formal_2);
- end loop;
- end if;
-
- Next_Actual (Actual_1);
- Next_Formal (Formal_1);
- end loop;
-
- -- Place the check right before the call
-
- if Present (Cond) then
- Insert_Action (Call,
- Make_Raise_Program_Error (Loc,
- Condition => Cond,
- Reason => PE_Explicit_Raise));
- end if;
- end Apply_Parameter_Aliasing_Checks;
-
- -------------------------------------
- -- Apply_Parameter_Validity_Checks --
- -------------------------------------
-
- procedure Apply_Parameter_Validity_Checks (Subp : Entity_Id) is
- Subp_Decl : Node_Id;
-
- procedure Add_Validity_Check
- (Context : Entity_Id;
- PPC_Nam : Name_Id;
- For_Result : Boolean := False);
- -- Add a single 'Valid[_Scalar] check which verifies the initialization
- -- of Context. PPC_Nam denotes the pre or post condition pragma name.
- -- Set flag For_Result when to verify the result of a function.
-
- procedure Build_PPC_Pragma (PPC_Nam : Name_Id; Check : Node_Id);
- -- Create a pre or post condition pragma with name PPC_Nam which
- -- tests expression Check.
-
- ------------------------
- -- Add_Validity_Check --
- ------------------------
-
- procedure Add_Validity_Check
- (Context : Entity_Id;
- PPC_Nam : Name_Id;
- For_Result : Boolean := False)
- is
- Loc : constant Source_Ptr := Sloc (Subp);
- Typ : constant Entity_Id := Etype (Context);
- Check : Node_Id;
- Nam : Name_Id;
-
- begin
- -- Pick the proper version of 'Valid depending on the type of the
- -- context. If the context is not eligible for such a check, return.
-
- if Is_Scalar_Type (Typ) then
- Nam := Name_Valid;
- elsif not No_Scalar_Parts (Typ) then
- Nam := Name_Valid_Scalars;
- else
- return;
- end if;
-
- -- Step 1: Create the expression to verify the validity of the
- -- context.
-
- Check := New_Reference_To (Context, Loc);
-
- -- When processing a function result, use 'Result. Generate
- -- Context'Result
-
- if For_Result then
- Check :=
- Make_Attribute_Reference (Loc,
- Prefix => Check,
- Attribute_Name => Name_Result);
- end if;
-
- -- Generate:
- -- Context['Result]'Valid[_Scalars]
-
- Check :=
- Make_Attribute_Reference (Loc,
- Prefix => Check,
- Attribute_Name => Nam);
-
- -- Step 2: Create a pre or post condition pragma
-
- Build_PPC_Pragma (PPC_Nam, Check);
- end Add_Validity_Check;
-
- ----------------------
- -- Build_PPC_Pragma --
- ----------------------
-
- procedure Build_PPC_Pragma (PPC_Nam : Name_Id; Check : Node_Id) is
- Loc : constant Source_Ptr := Sloc (Subp);
- Decls : List_Id;
- Prag : Node_Id;
-
- begin
- Prag :=
- Make_Pragma (Loc,
- Pragma_Identifier => Make_Identifier (Loc, PPC_Nam),
- Pragma_Argument_Associations => New_List (
- Make_Pragma_Argument_Association (Loc,
- Chars => Name_Check,
- Expression => Check)));
-
- -- Add a message unless exception messages are suppressed
-
- if not Exception_Locations_Suppressed then
- Append_To (Pragma_Argument_Associations (Prag),
- Make_Pragma_Argument_Association (Loc,
- Chars => Name_Message,
- Expression =>
- Make_String_Literal (Loc,
- Strval => "failed " & Get_Name_String (PPC_Nam) &
- " from " & Build_Location_String (Loc))));
- end if;
-
- -- Insert the pragma in the tree
-
- if Nkind (Parent (Subp_Decl)) = N_Compilation_Unit then
- Add_Global_Declaration (Prag);
- Analyze (Prag);
-
- -- PPC pragmas associated with subprogram bodies must be inserted in
- -- the declarative part of the body.
-
- elsif Nkind (Subp_Decl) = N_Subprogram_Body then
- Decls := Declarations (Subp_Decl);
-
- if No (Decls) then
- Decls := New_List;
- Set_Declarations (Subp_Decl, Decls);
- end if;
-
- Prepend_To (Decls, Prag);
-
- -- Ensure the proper visibility of the subprogram body and its
- -- parameters.
-
- Push_Scope (Subp);
- Analyze (Prag);
- Pop_Scope;
-
- -- For subprogram declarations insert the PPC pragma right after the
- -- declarative node.
-
- else
- Insert_After_And_Analyze (Subp_Decl, Prag);
- end if;
- end Build_PPC_Pragma;
-
- -- Local variables
-
- Formal : Entity_Id;
- Subp_Spec : Node_Id;
-
- -- Start of processing for Apply_Parameter_Validity_Checks
-
- begin
- -- Extract the subprogram specification and declaration nodes
-
- Subp_Spec := Parent (Subp);
-
- if Nkind (Subp_Spec) = N_Defining_Program_Unit_Name then
- Subp_Spec := Parent (Subp_Spec);
- end if;
-
- Subp_Decl := Parent (Subp_Spec);
-
- if not Comes_From_Source (Subp)
-
- -- Do not process formal subprograms because the corresponding actual
- -- will receive the proper checks when the instance is analyzed.
-
- or else Is_Formal_Subprogram (Subp)
-
- -- Do not process imported subprograms since pre and post conditions
- -- are never verified on routines coming from a different language.
-
- or else Is_Imported (Subp)
- or else Is_Intrinsic_Subprogram (Subp)
-
- -- The PPC pragmas generated by this routine do not correspond to
- -- source aspects, therefore they cannot be applied to abstract
- -- subprograms.
-
- or else Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration
-
- -- Do not consider subprogram renaminds because the renamed entity
- -- already has the proper PPC pragmas.
-
- or else Nkind (Subp_Decl) = N_Subprogram_Renaming_Declaration
-
- -- Do not process null procedures because there is no benefit of
- -- adding the checks to a no action routine.
-
- or else (Nkind (Subp_Spec) = N_Procedure_Specification
- and then Null_Present (Subp_Spec))
- then
- return;
- end if;
-
- -- Inspect all the formals applying aliasing and scalar initialization
- -- checks where applicable.
-
- Formal := First_Formal (Subp);
- while Present (Formal) loop
-
- -- Generate the following scalar initialization checks for each
- -- formal parameter:
-
- -- mode IN - Pre => Formal'Valid[_Scalars]
- -- mode IN OUT - Pre, Post => Formal'Valid[_Scalars]
- -- mode OUT - Post => Formal'Valid[_Scalars]
-
- if Check_Validity_Of_Parameters then
- if Ekind_In (Formal, E_In_Parameter, E_In_Out_Parameter) then
- Add_Validity_Check (Formal, Name_Precondition, False);
- end if;
-
- if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
- Add_Validity_Check (Formal, Name_Postcondition, False);
- end if;
- end if;
-
- Next_Formal (Formal);
- end loop;
-
- -- Generate following scalar initialization check for function result:
-
- -- Post => Subp'Result'Valid[_Scalars]
-
- if Check_Validity_Of_Parameters and then Ekind (Subp) = E_Function then
- Add_Validity_Check (Subp, Name_Postcondition, True);
- end if;
- end Apply_Parameter_Validity_Checks;
-
- ---------------------------
- -- Apply_Predicate_Check --
- ---------------------------
-
- procedure Apply_Predicate_Check (N : Node_Id; Typ : Entity_Id) is
- S : Entity_Id;
-
- begin
- if Present (Predicate_Function (Typ)) then
-
- -- A predicate check does not apply within internally generated
- -- subprograms, such as TSS functions.
-
- S := Current_Scope;
- while Present (S) and then not Is_Subprogram (S) loop
- S := Scope (S);
- end loop;
-
- if Present (S) and then Get_TSS_Name (S) /= TSS_Null then
- return;
-
- -- If the check appears within the predicate function itself, it
- -- means that the user specified a check whose formal is the
- -- predicated subtype itself, rather than some covering type. This
- -- is likely to be a common error, and thus deserves a warning.
-
- elsif S = Predicate_Function (Typ) then
- Error_Msg_N
- ("predicate check includes a function call that "
- & "requires a predicate check??", Parent (N));
- Error_Msg_N
- ("\this will result in infinite recursion??", Parent (N));
- Insert_Action (N,
- Make_Raise_Storage_Error (Sloc (N),
- Reason => SE_Infinite_Recursion));
-
- -- Here for normal case of predicate active.
-
- else
- -- If the predicate is a static predicate and the operand is
- -- static, the predicate must be evaluated statically. If the
- -- evaluation fails this is a static constraint error. This check
- -- is disabled in -gnatc mode, because the compiler is incapable
- -- of evaluating static expressions in that case.
-
- if Is_OK_Static_Expression (N) then
- if Present (Static_Predicate (Typ)) then
- if Operating_Mode < Generate_Code
- or else Eval_Static_Predicate_Check (N, Typ)
- then
- return;
- else
- Error_Msg_NE
- ("static expression fails static predicate check on&",
- N, Typ);
- end if;
- end if;
- end if;
-
- Insert_Action (N,
- Make_Predicate_Check (Typ, Duplicate_Subexpr (N)));
- end if;
- end if;
- end Apply_Predicate_Check;
-
- -----------------------
- -- Apply_Range_Check --
- -----------------------
-
- procedure Apply_Range_Check
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id := Empty)
- is
- begin
- Apply_Selected_Range_Checks
- (Ck_Node, Target_Typ, Source_Typ, Do_Static => False);
- end Apply_Range_Check;
-
- ------------------------------
- -- Apply_Scalar_Range_Check --
- ------------------------------
-
- -- Note that Apply_Scalar_Range_Check never turns the Do_Range_Check flag
- -- off if it is already set on.
-
- procedure Apply_Scalar_Range_Check
- (Expr : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id := Empty;
- Fixed_Int : Boolean := False)
- is
- Parnt : constant Node_Id := Parent (Expr);
- S_Typ : Entity_Id;
- Arr : Node_Id := Empty; -- initialize to prevent warning
- Arr_Typ : Entity_Id := Empty; -- initialize to prevent warning
- OK : Boolean;
-
- Is_Subscr_Ref : Boolean;
- -- Set true if Expr is a subscript
-
- Is_Unconstrained_Subscr_Ref : Boolean;
- -- Set true if Expr is a subscript of an unconstrained array. In this
- -- case we do not attempt to do an analysis of the value against the
- -- range of the subscript, since we don't know the actual subtype.
-
- Int_Real : Boolean;
- -- Set to True if Expr should be regarded as a real value even though
- -- the type of Expr might be discrete.
-
- procedure Bad_Value;
- -- Procedure called if value is determined to be out of range
-
- ---------------
- -- Bad_Value --
- ---------------
-
- procedure Bad_Value is
- begin
- Apply_Compile_Time_Constraint_Error
- (Expr, "value not in range of}??", CE_Range_Check_Failed,
- Ent => Target_Typ,
- Typ => Target_Typ);
- end Bad_Value;
-
- -- Start of processing for Apply_Scalar_Range_Check
-
- begin
- -- Return if check obviously not needed
-
- if
- -- Not needed inside generic
-
- Inside_A_Generic
-
- -- Not needed if previous error
-
- or else Target_Typ = Any_Type
- or else Nkind (Expr) = N_Error
-
- -- Not needed for non-scalar type
-
- or else not Is_Scalar_Type (Target_Typ)
-
- -- Not needed if we know node raises CE already
-
- or else Raises_Constraint_Error (Expr)
- then
- return;
- end if;
-
- -- Now, see if checks are suppressed
-
- Is_Subscr_Ref :=
- Is_List_Member (Expr) and then Nkind (Parnt) = N_Indexed_Component;
-
- if Is_Subscr_Ref then
- Arr := Prefix (Parnt);
- Arr_Typ := Get_Actual_Subtype_If_Available (Arr);
-
- if Is_Access_Type (Arr_Typ) then
- Arr_Typ := Designated_Type (Arr_Typ);
- end if;
- end if;
-
- if not Do_Range_Check (Expr) then
-
- -- Subscript reference. Check for Index_Checks suppressed
-
- if Is_Subscr_Ref then
-
- -- Check array type and its base type
-
- if Index_Checks_Suppressed (Arr_Typ)
- or else Index_Checks_Suppressed (Base_Type (Arr_Typ))
- then
- return;
-
- -- Check array itself if it is an entity name
-
- elsif Is_Entity_Name (Arr)
- and then Index_Checks_Suppressed (Entity (Arr))
- then
- return;
-
- -- Check expression itself if it is an entity name
-
- elsif Is_Entity_Name (Expr)
- and then Index_Checks_Suppressed (Entity (Expr))
- then
- return;
- end if;
-
- -- All other cases, check for Range_Checks suppressed
-
- else
- -- Check target type and its base type
-
- if Range_Checks_Suppressed (Target_Typ)
- or else Range_Checks_Suppressed (Base_Type (Target_Typ))
- then
- return;
-
- -- Check expression itself if it is an entity name
-
- elsif Is_Entity_Name (Expr)
- and then Range_Checks_Suppressed (Entity (Expr))
- then
- return;
-
- -- If Expr is part of an assignment statement, then check left
- -- side of assignment if it is an entity name.
-
- elsif Nkind (Parnt) = N_Assignment_Statement
- and then Is_Entity_Name (Name (Parnt))
- and then Range_Checks_Suppressed (Entity (Name (Parnt)))
- then
- return;
- end if;
- end if;
- end if;
-
- -- Do not set range checks if they are killed
-
- if Nkind (Expr) = N_Unchecked_Type_Conversion
- and then Kill_Range_Check (Expr)
- then
- return;
- end if;
-
- -- Do not set range checks for any values from System.Scalar_Values
- -- since the whole idea of such values is to avoid checking them!
-
- if Is_Entity_Name (Expr)
- and then Is_RTU (Scope (Entity (Expr)), System_Scalar_Values)
- then
- return;
- end if;
-
- -- Now see if we need a check
-
- if No (Source_Typ) then
- S_Typ := Etype (Expr);
- else
- S_Typ := Source_Typ;
- end if;
-
- if not Is_Scalar_Type (S_Typ) or else S_Typ = Any_Type then
- return;
- end if;
-
- Is_Unconstrained_Subscr_Ref :=
- Is_Subscr_Ref and then not Is_Constrained (Arr_Typ);
-
- -- Special checks for floating-point type
-
- if Is_Floating_Point_Type (S_Typ) then
-
- -- Always do a range check if the source type includes infinities and
- -- the target type does not include infinities. We do not do this if
- -- range checks are killed.
-
- if Has_Infinities (S_Typ)
- and then not Has_Infinities (Target_Typ)
- then
- Enable_Range_Check (Expr);
-
- -- Always do a range check for operators if option set
-
- elsif Check_Float_Overflow and then Nkind (Expr) in N_Op then
- Enable_Range_Check (Expr);
- end if;
- end if;
-
- -- Return if we know expression is definitely in the range of the target
- -- type as determined by Determine_Range. Right now we only do this for
- -- discrete types, and not fixed-point or floating-point types.
-
- -- The additional less-precise tests below catch these cases
-
- -- Note: skip this if we are given a source_typ, since the point of
- -- supplying a Source_Typ is to stop us looking at the expression.
- -- We could sharpen this test to be out parameters only ???
-
- if Is_Discrete_Type (Target_Typ)
- and then Is_Discrete_Type (Etype (Expr))
- and then not Is_Unconstrained_Subscr_Ref
- and then No (Source_Typ)
- then
- declare
- Tlo : constant Node_Id := Type_Low_Bound (Target_Typ);
- Thi : constant Node_Id := Type_High_Bound (Target_Typ);
- Lo : Uint;
- Hi : Uint;
-
- begin
- if Compile_Time_Known_Value (Tlo)
- and then Compile_Time_Known_Value (Thi)
- then
- declare
- Lov : constant Uint := Expr_Value (Tlo);
- Hiv : constant Uint := Expr_Value (Thi);
-
- begin
- -- If range is null, we for sure have a constraint error
- -- (we don't even need to look at the value involved,
- -- since all possible values will raise CE).
-
- if Lov > Hiv then
- Bad_Value;
- return;
- end if;
-
- -- Otherwise determine range of value
-
- Determine_Range (Expr, OK, Lo, Hi, Assume_Valid => True);
-
- if OK then
-
- -- If definitely in range, all OK
-
- if Lo >= Lov and then Hi <= Hiv then
- return;
-
- -- If definitely not in range, warn
-
- elsif Lov > Hi or else Hiv < Lo then
- Bad_Value;
- return;
-
- -- Otherwise we don't know
-
- else
- null;
- end if;
- end if;
- end;
- end if;
- end;
- end if;
-
- Int_Real :=
- Is_Floating_Point_Type (S_Typ)
- or else (Is_Fixed_Point_Type (S_Typ) and then not Fixed_Int);
-
- -- Check if we can determine at compile time whether Expr is in the
- -- range of the target type. Note that if S_Typ is within the bounds
- -- of Target_Typ then this must be the case. This check is meaningful
- -- only if this is not a conversion between integer and real types.
-
- if not Is_Unconstrained_Subscr_Ref
- and then Is_Discrete_Type (S_Typ) = Is_Discrete_Type (Target_Typ)
- and then
- (In_Subrange_Of (S_Typ, Target_Typ, Fixed_Int)
- or else
- Is_In_Range (Expr, Target_Typ,
- Assume_Valid => True,
- Fixed_Int => Fixed_Int,
- Int_Real => Int_Real))
- then
- return;
-
- elsif Is_Out_Of_Range (Expr, Target_Typ,
- Assume_Valid => True,
- Fixed_Int => Fixed_Int,
- Int_Real => Int_Real)
- then
- Bad_Value;
- return;
-
- -- Floating-point case
- -- In the floating-point case, we only do range checks if the type is
- -- constrained. We definitely do NOT want range checks for unconstrained
- -- types, since we want to have infinities
-
- elsif Is_Floating_Point_Type (S_Typ) then
-
- -- Normally, we only do range checks if the type is constrained. We do
- -- NOT want range checks for unconstrained types, since we want to have
- -- infinities. Override this decision in Check_Float_Overflow mode.
-
- if Is_Constrained (S_Typ) or else Check_Float_Overflow then
- Enable_Range_Check (Expr);
- end if;
-
- -- For all other cases we enable a range check unconditionally
-
- else
- Enable_Range_Check (Expr);
- return;
- end if;
- end Apply_Scalar_Range_Check;
-
- ----------------------------------
- -- Apply_Selected_Length_Checks --
- ----------------------------------
-
- procedure Apply_Selected_Length_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Do_Static : Boolean)
- is
- Cond : Node_Id;
- R_Result : Check_Result;
- R_Cno : Node_Id;
-
- Loc : constant Source_Ptr := Sloc (Ck_Node);
- Checks_On : constant Boolean :=
- (not Index_Checks_Suppressed (Target_Typ))
- or else (not Length_Checks_Suppressed (Target_Typ));
-
- begin
- if not Full_Expander_Active then
- return;
- end if;
-
- R_Result :=
- Selected_Length_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
-
- for J in 1 .. 2 loop
- R_Cno := R_Result (J);
- exit when No (R_Cno);
-
- -- A length check may mention an Itype which is attached to a
- -- subsequent node. At the top level in a package this can cause
- -- an order-of-elaboration problem, so we make sure that the itype
- -- is referenced now.
-
- if Ekind (Current_Scope) = E_Package
- and then Is_Compilation_Unit (Current_Scope)
- then
- Ensure_Defined (Target_Typ, Ck_Node);
-
- if Present (Source_Typ) then
- Ensure_Defined (Source_Typ, Ck_Node);
-
- elsif Is_Itype (Etype (Ck_Node)) then
- Ensure_Defined (Etype (Ck_Node), Ck_Node);
- end if;
- end if;
-
- -- If the item is a conditional raise of constraint error, then have
- -- a look at what check is being performed and ???
-
- if Nkind (R_Cno) = N_Raise_Constraint_Error
- and then Present (Condition (R_Cno))
- then
- Cond := Condition (R_Cno);
-
- -- Case where node does not now have a dynamic check
-
- if not Has_Dynamic_Length_Check (Ck_Node) then
-
- -- If checks are on, just insert the check
-
- if Checks_On then
- Insert_Action (Ck_Node, R_Cno);
-
- if not Do_Static then
- Set_Has_Dynamic_Length_Check (Ck_Node);
- end if;
-
- -- If checks are off, then analyze the length check after
- -- temporarily attaching it to the tree in case the relevant
- -- condition can be evaluated at compile time. We still want a
- -- compile time warning in this case.
-
- else
- Set_Parent (R_Cno, Ck_Node);
- Analyze (R_Cno);
- end if;
- end if;
-
- -- Output a warning if the condition is known to be True
-
- if Is_Entity_Name (Cond)
- and then Entity (Cond) = Standard_True
- then
- Apply_Compile_Time_Constraint_Error
- (Ck_Node, "wrong length for array of}??",
- CE_Length_Check_Failed,
- Ent => Target_Typ,
- Typ => Target_Typ);
-
- -- If we were only doing a static check, or if checks are not
- -- on, then we want to delete the check, since it is not needed.
- -- We do this by replacing the if statement by a null statement
-
- elsif Do_Static or else not Checks_On then
- Remove_Warning_Messages (R_Cno);
- Rewrite (R_Cno, Make_Null_Statement (Loc));
- end if;
-
- else
- Install_Static_Check (R_Cno, Loc);
- end if;
- end loop;
- end Apply_Selected_Length_Checks;
-
- ---------------------------------
- -- Apply_Selected_Range_Checks --
- ---------------------------------
-
- procedure Apply_Selected_Range_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Do_Static : Boolean)
- is
- Cond : Node_Id;
- R_Result : Check_Result;
- R_Cno : Node_Id;
-
- Loc : constant Source_Ptr := Sloc (Ck_Node);
- Checks_On : constant Boolean :=
- (not Index_Checks_Suppressed (Target_Typ))
- or else (not Range_Checks_Suppressed (Target_Typ));
-
- begin
- if not Full_Expander_Active or else not Checks_On then
- return;
- end if;
-
- R_Result :=
- Selected_Range_Checks (Ck_Node, Target_Typ, Source_Typ, Empty);
-
- for J in 1 .. 2 loop
-
- R_Cno := R_Result (J);
- exit when No (R_Cno);
-
- -- If the item is a conditional raise of constraint error, then have
- -- a look at what check is being performed and ???
-
- if Nkind (R_Cno) = N_Raise_Constraint_Error
- and then Present (Condition (R_Cno))
- then
- Cond := Condition (R_Cno);
-
- if not Has_Dynamic_Range_Check (Ck_Node) then
- Insert_Action (Ck_Node, R_Cno);
-
- if not Do_Static then
- Set_Has_Dynamic_Range_Check (Ck_Node);
- end if;
- end if;
-
- -- Output a warning if the condition is known to be True
-
- if Is_Entity_Name (Cond)
- and then Entity (Cond) = Standard_True
- then
- -- Since an N_Range is technically not an expression, we have
- -- to set one of the bounds to C_E and then just flag the
- -- N_Range. The warning message will point to the lower bound
- -- and complain about a range, which seems OK.
-
- if Nkind (Ck_Node) = N_Range then
- Apply_Compile_Time_Constraint_Error
- (Low_Bound (Ck_Node), "static range out of bounds of}??",
- CE_Range_Check_Failed,
- Ent => Target_Typ,
- Typ => Target_Typ);
-
- Set_Raises_Constraint_Error (Ck_Node);
-
- else
- Apply_Compile_Time_Constraint_Error
- (Ck_Node, "static value out of range of}?",
- CE_Range_Check_Failed,
- Ent => Target_Typ,
- Typ => Target_Typ);
- end if;
-
- -- If we were only doing a static check, or if checks are not
- -- on, then we want to delete the check, since it is not needed.
- -- We do this by replacing the if statement by a null statement
-
- elsif Do_Static or else not Checks_On then
- Remove_Warning_Messages (R_Cno);
- Rewrite (R_Cno, Make_Null_Statement (Loc));
- end if;
-
- else
- Install_Static_Check (R_Cno, Loc);
- end if;
- end loop;
- end Apply_Selected_Range_Checks;
-
- -------------------------------
- -- Apply_Static_Length_Check --
- -------------------------------
-
- procedure Apply_Static_Length_Check
- (Expr : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id := Empty)
- is
- begin
- Apply_Selected_Length_Checks
- (Expr, Target_Typ, Source_Typ, Do_Static => True);
- end Apply_Static_Length_Check;
-
- -------------------------------------
- -- Apply_Subscript_Validity_Checks --
- -------------------------------------
-
- procedure Apply_Subscript_Validity_Checks (Expr : Node_Id) is
- Sub : Node_Id;
-
- begin
- pragma Assert (Nkind (Expr) = N_Indexed_Component);
-
- -- Loop through subscripts
-
- Sub := First (Expressions (Expr));
- while Present (Sub) loop
-
- -- Check one subscript. Note that we do not worry about enumeration
- -- type with holes, since we will convert the value to a Pos value
- -- for the subscript, and that convert will do the necessary validity
- -- check.
-
- Ensure_Valid (Sub, Holes_OK => True);
-
- -- Move to next subscript
-
- Sub := Next (Sub);
- end loop;
- end Apply_Subscript_Validity_Checks;
-
- ----------------------------------
- -- Apply_Type_Conversion_Checks --
- ----------------------------------
-
- procedure Apply_Type_Conversion_Checks (N : Node_Id) is
- Target_Type : constant Entity_Id := Etype (N);
- Target_Base : constant Entity_Id := Base_Type (Target_Type);
- Expr : constant Node_Id := Expression (N);
-
- Expr_Type : constant Entity_Id := Underlying_Type (Etype (Expr));
- -- Note: if Etype (Expr) is a private type without discriminants, its
- -- full view might have discriminants with defaults, so we need the
- -- full view here to retrieve the constraints.
-
- begin
- if Inside_A_Generic then
- return;
-
- -- Skip these checks if serious errors detected, there are some nasty
- -- situations of incomplete trees that blow things up.
-
- elsif Serious_Errors_Detected > 0 then
- return;
-
- -- Scalar type conversions of the form Target_Type (Expr) require a
- -- range check if we cannot be sure that Expr is in the base type of
- -- Target_Typ and also that Expr is in the range of Target_Typ. These
- -- are not quite the same condition from an implementation point of
- -- view, but clearly the second includes the first.
-
- elsif Is_Scalar_Type (Target_Type) then
- declare
- Conv_OK : constant Boolean := Conversion_OK (N);
- -- If the Conversion_OK flag on the type conversion is set and no
- -- floating point type is involved in the type conversion then
- -- fixed point values must be read as integral values.
-
- Float_To_Int : constant Boolean :=
- Is_Floating_Point_Type (Expr_Type)
- and then Is_Integer_Type (Target_Type);
-
- begin
- if not Overflow_Checks_Suppressed (Target_Base)
- and then not Overflow_Checks_Suppressed (Target_Type)
- and then not
- In_Subrange_Of (Expr_Type, Target_Base, Fixed_Int => Conv_OK)
- and then not Float_To_Int
- then
- Activate_Overflow_Check (N);
- end if;
-
- if not Range_Checks_Suppressed (Target_Type)
- and then not Range_Checks_Suppressed (Expr_Type)
- then
- if Float_To_Int then
- Apply_Float_Conversion_Check (Expr, Target_Type);
- else
- Apply_Scalar_Range_Check
- (Expr, Target_Type, Fixed_Int => Conv_OK);
-
- -- If the target type has predicates, we need to indicate
- -- the need for a check, even if Determine_Range finds
- -- that the value is within bounds. This may be the case
- -- e.g for a division with a constant denominator.
-
- if Has_Predicates (Target_Type) then
- Enable_Range_Check (Expr);
- end if;
- end if;
- end if;
- end;
-
- elsif Comes_From_Source (N)
- and then not Discriminant_Checks_Suppressed (Target_Type)
- and then Is_Record_Type (Target_Type)
- and then Is_Derived_Type (Target_Type)
- and then not Is_Tagged_Type (Target_Type)
- and then not Is_Constrained (Target_Type)
- and then Present (Stored_Constraint (Target_Type))
- then
- -- An unconstrained derived type may have inherited discriminant.
- -- Build an actual discriminant constraint list using the stored
- -- constraint, to verify that the expression of the parent type
- -- satisfies the constraints imposed by the (unconstrained!)
- -- derived type. This applies to value conversions, not to view
- -- conversions of tagged types.
-
- declare
- Loc : constant Source_Ptr := Sloc (N);
- Cond : Node_Id;
- Constraint : Elmt_Id;
- Discr_Value : Node_Id;
- Discr : Entity_Id;
-
- New_Constraints : constant Elist_Id := New_Elmt_List;
- Old_Constraints : constant Elist_Id :=
- Discriminant_Constraint (Expr_Type);
-
- begin
- Constraint := First_Elmt (Stored_Constraint (Target_Type));
- while Present (Constraint) loop
- Discr_Value := Node (Constraint);
-
- if Is_Entity_Name (Discr_Value)
- and then Ekind (Entity (Discr_Value)) = E_Discriminant
- then
- Discr := Corresponding_Discriminant (Entity (Discr_Value));
-
- if Present (Discr)
- and then Scope (Discr) = Base_Type (Expr_Type)
- then
- -- Parent is constrained by new discriminant. Obtain
- -- Value of original discriminant in expression. If the
- -- new discriminant has been used to constrain more than
- -- one of the stored discriminants, this will provide the
- -- required consistency check.
-
- Append_Elmt
- (Make_Selected_Component (Loc,
- Prefix =>
- Duplicate_Subexpr_No_Checks
- (Expr, Name_Req => True),
- Selector_Name =>
- Make_Identifier (Loc, Chars (Discr))),
- New_Constraints);
-
- else
- -- Discriminant of more remote ancestor ???
-
- return;
- end if;
-
- -- Derived type definition has an explicit value for this
- -- stored discriminant.
-
- else
- Append_Elmt
- (Duplicate_Subexpr_No_Checks (Discr_Value),
- New_Constraints);
- end if;
-
- Next_Elmt (Constraint);
- end loop;
-
- -- Use the unconstrained expression type to retrieve the
- -- discriminants of the parent, and apply momentarily the
- -- discriminant constraint synthesized above.
-
- Set_Discriminant_Constraint (Expr_Type, New_Constraints);
- Cond := Build_Discriminant_Checks (Expr, Expr_Type);
- Set_Discriminant_Constraint (Expr_Type, Old_Constraints);
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Discriminant_Check_Failed));
- end;
-
- -- For arrays, conversions are applied during expansion, to take into
- -- accounts changes of representation. The checks become range checks on
- -- the base type or length checks on the subtype, depending on whether
- -- the target type is unconstrained or constrained.
-
- else
- null;
- end if;
- end Apply_Type_Conversion_Checks;
-
- ----------------------------------------------
- -- Apply_Universal_Integer_Attribute_Checks --
- ----------------------------------------------
-
- procedure Apply_Universal_Integer_Attribute_Checks (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
-
- begin
- if Inside_A_Generic then
- return;
-
- -- Nothing to do if checks are suppressed
-
- elsif Range_Checks_Suppressed (Typ)
- and then Overflow_Checks_Suppressed (Typ)
- then
- return;
-
- -- Nothing to do if the attribute does not come from source. The
- -- internal attributes we generate of this type do not need checks,
- -- and furthermore the attempt to check them causes some circular
- -- elaboration orders when dealing with packed types.
-
- elsif not Comes_From_Source (N) then
- return;
-
- -- If the prefix is a selected component that depends on a discriminant
- -- the check may improperly expose a discriminant instead of using
- -- the bounds of the object itself. Set the type of the attribute to
- -- the base type of the context, so that a check will be imposed when
- -- needed (e.g. if the node appears as an index).
-
- elsif Nkind (Prefix (N)) = N_Selected_Component
- and then Ekind (Typ) = E_Signed_Integer_Subtype
- and then Depends_On_Discriminant (Scalar_Range (Typ))
- then
- Set_Etype (N, Base_Type (Typ));
-
- -- Otherwise, replace the attribute node with a type conversion node
- -- whose expression is the attribute, retyped to universal integer, and
- -- whose subtype mark is the target type. The call to analyze this
- -- conversion will set range and overflow checks as required for proper
- -- detection of an out of range value.
-
- else
- Set_Etype (N, Universal_Integer);
- Set_Analyzed (N, True);
-
- Rewrite (N,
- Make_Type_Conversion (Loc,
- Subtype_Mark => New_Occurrence_Of (Typ, Loc),
- Expression => Relocate_Node (N)));
-
- Analyze_And_Resolve (N, Typ);
- return;
- end if;
- end Apply_Universal_Integer_Attribute_Checks;
-
- -------------------------------------
- -- Atomic_Synchronization_Disabled --
- -------------------------------------
-
- -- Note: internally Disable/Enable_Atomic_Synchronization is implemented
- -- using a bogus check called Atomic_Synchronization. This is to make it
- -- more convenient to get exactly the same semantics as [Un]Suppress.
-
- function Atomic_Synchronization_Disabled (E : Entity_Id) return Boolean is
- begin
- -- If debug flag d.e is set, always return False, i.e. all atomic sync
- -- looks enabled, since it is never disabled.
-
- if Debug_Flag_Dot_E then
- return False;
-
- -- If debug flag d.d is set then always return True, i.e. all atomic
- -- sync looks disabled, since it always tests True.
-
- elsif Debug_Flag_Dot_D then
- return True;
-
- -- If entity present, then check result for that entity
-
- elsif Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Atomic_Synchronization);
-
- -- Otherwise result depends on current scope setting
-
- else
- return Scope_Suppress.Suppress (Atomic_Synchronization);
- end if;
- end Atomic_Synchronization_Disabled;
-
- -------------------------------
- -- Build_Discriminant_Checks --
- -------------------------------
-
- function Build_Discriminant_Checks
- (N : Node_Id;
- T_Typ : Entity_Id) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (N);
- Cond : Node_Id;
- Disc : Elmt_Id;
- Disc_Ent : Entity_Id;
- Dref : Node_Id;
- Dval : Node_Id;
-
- function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id;
-
- ----------------------------------
- -- Aggregate_Discriminant_Value --
- ----------------------------------
-
- function Aggregate_Discriminant_Val (Disc : Entity_Id) return Node_Id is
- Assoc : Node_Id;
-
- begin
- -- The aggregate has been normalized with named associations. We use
- -- the Chars field to locate the discriminant to take into account
- -- discriminants in derived types, which carry the same name as those
- -- in the parent.
-
- Assoc := First (Component_Associations (N));
- while Present (Assoc) loop
- if Chars (First (Choices (Assoc))) = Chars (Disc) then
- return Expression (Assoc);
- else
- Next (Assoc);
- end if;
- end loop;
-
- -- Discriminant must have been found in the loop above
-
- raise Program_Error;
- end Aggregate_Discriminant_Val;
-
- -- Start of processing for Build_Discriminant_Checks
-
- begin
- -- Loop through discriminants evolving the condition
-
- Cond := Empty;
- Disc := First_Elmt (Discriminant_Constraint (T_Typ));
-
- -- For a fully private type, use the discriminants of the parent type
-
- if Is_Private_Type (T_Typ)
- and then No (Full_View (T_Typ))
- then
- Disc_Ent := First_Discriminant (Etype (Base_Type (T_Typ)));
- else
- Disc_Ent := First_Discriminant (T_Typ);
- end if;
-
- while Present (Disc) loop
- Dval := Node (Disc);
-
- if Nkind (Dval) = N_Identifier
- and then Ekind (Entity (Dval)) = E_Discriminant
- then
- Dval := New_Occurrence_Of (Discriminal (Entity (Dval)), Loc);
- else
- Dval := Duplicate_Subexpr_No_Checks (Dval);
- end if;
-
- -- If we have an Unchecked_Union node, we can infer the discriminants
- -- of the node.
-
- if Is_Unchecked_Union (Base_Type (T_Typ)) then
- Dref := New_Copy (
- Get_Discriminant_Value (
- First_Discriminant (T_Typ),
- T_Typ,
- Stored_Constraint (T_Typ)));
-
- elsif Nkind (N) = N_Aggregate then
- Dref :=
- Duplicate_Subexpr_No_Checks
- (Aggregate_Discriminant_Val (Disc_Ent));
-
- else
- Dref :=
- Make_Selected_Component (Loc,
- Prefix =>
- Duplicate_Subexpr_No_Checks (N, Name_Req => True),
- Selector_Name =>
- Make_Identifier (Loc, Chars (Disc_Ent)));
-
- Set_Is_In_Discriminant_Check (Dref);
- end if;
-
- Evolve_Or_Else (Cond,
- Make_Op_Ne (Loc,
- Left_Opnd => Dref,
- Right_Opnd => Dval));
-
- Next_Elmt (Disc);
- Next_Discriminant (Disc_Ent);
- end loop;
-
- return Cond;
- end Build_Discriminant_Checks;
-
- ------------------
- -- Check_Needed --
- ------------------
-
- function Check_Needed (Nod : Node_Id; Check : Check_Type) return Boolean is
- N : Node_Id;
- P : Node_Id;
- K : Node_Kind;
- L : Node_Id;
- R : Node_Id;
-
- begin
- -- Always check if not simple entity
-
- if Nkind (Nod) not in N_Has_Entity
- or else not Comes_From_Source (Nod)
- then
- return True;
- end if;
-
- -- Look up tree for short circuit
-
- N := Nod;
- loop
- P := Parent (N);
- K := Nkind (P);
-
- -- Done if out of subexpression (note that we allow generated stuff
- -- such as itype declarations in this context, to keep the loop going
- -- since we may well have generated such stuff in complex situations.
- -- Also done if no parent (probably an error condition, but no point
- -- in behaving nasty if we find it!)
-
- if No (P)
- or else (K not in N_Subexpr and then Comes_From_Source (P))
- then
- return True;
-
- -- Or/Or Else case, where test is part of the right operand, or is
- -- part of one of the actions associated with the right operand, and
- -- the left operand is an equality test.
-
- elsif K = N_Op_Or then
- exit when N = Right_Opnd (P)
- and then Nkind (Left_Opnd (P)) = N_Op_Eq;
-
- elsif K = N_Or_Else then
- exit when (N = Right_Opnd (P)
- or else
- (Is_List_Member (N)
- and then List_Containing (N) = Actions (P)))
- and then Nkind (Left_Opnd (P)) = N_Op_Eq;
-
- -- Similar test for the And/And then case, where the left operand
- -- is an inequality test.
-
- elsif K = N_Op_And then
- exit when N = Right_Opnd (P)
- and then Nkind (Left_Opnd (P)) = N_Op_Ne;
-
- elsif K = N_And_Then then
- exit when (N = Right_Opnd (P)
- or else
- (Is_List_Member (N)
- and then List_Containing (N) = Actions (P)))
- and then Nkind (Left_Opnd (P)) = N_Op_Ne;
- end if;
-
- N := P;
- end loop;
-
- -- If we fall through the loop, then we have a conditional with an
- -- appropriate test as its left operand. So test further.
-
- L := Left_Opnd (P);
- R := Right_Opnd (L);
- L := Left_Opnd (L);
-
- -- Left operand of test must match original variable
-
- if Nkind (L) not in N_Has_Entity
- or else Entity (L) /= Entity (Nod)
- then
- return True;
- end if;
-
- -- Right operand of test must be key value (zero or null)
-
- case Check is
- when Access_Check =>
- if not Known_Null (R) then
- return True;
- end if;
-
- when Division_Check =>
- if not Compile_Time_Known_Value (R)
- or else Expr_Value (R) /= Uint_0
- then
- return True;
- end if;
-
- when others =>
- raise Program_Error;
- end case;
-
- -- Here we have the optimizable case, warn if not short-circuited
-
- if K = N_Op_And or else K = N_Op_Or then
- case Check is
- when Access_Check =>
- Error_Msg_N
- ("Constraint_Error may be raised (access check)??",
- Parent (Nod));
- when Division_Check =>
- Error_Msg_N
- ("Constraint_Error may be raised (zero divide)??",
- Parent (Nod));
-
- when others =>
- raise Program_Error;
- end case;
-
- if K = N_Op_And then
- Error_Msg_N -- CODEFIX
- ("use `AND THEN` instead of AND??", P);
- else
- Error_Msg_N -- CODEFIX
- ("use `OR ELSE` instead of OR??", P);
- end if;
-
- -- If not short-circuited, we need the check
-
- return True;
-
- -- If short-circuited, we can omit the check
-
- else
- return False;
- end if;
- end Check_Needed;
-
- -----------------------------------
- -- Check_Valid_Lvalue_Subscripts --
- -----------------------------------
-
- procedure Check_Valid_Lvalue_Subscripts (Expr : Node_Id) is
- begin
- -- Skip this if range checks are suppressed
-
- if Range_Checks_Suppressed (Etype (Expr)) then
- return;
-
- -- Only do this check for expressions that come from source. We assume
- -- that expander generated assignments explicitly include any necessary
- -- checks. Note that this is not just an optimization, it avoids
- -- infinite recursions!
-
- elsif not Comes_From_Source (Expr) then
- return;
-
- -- For a selected component, check the prefix
-
- elsif Nkind (Expr) = N_Selected_Component then
- Check_Valid_Lvalue_Subscripts (Prefix (Expr));
- return;
-
- -- Case of indexed component
-
- elsif Nkind (Expr) = N_Indexed_Component then
- Apply_Subscript_Validity_Checks (Expr);
-
- -- Prefix may itself be or contain an indexed component, and these
- -- subscripts need checking as well.
-
- Check_Valid_Lvalue_Subscripts (Prefix (Expr));
- end if;
- end Check_Valid_Lvalue_Subscripts;
-
- ----------------------------------
- -- Null_Exclusion_Static_Checks --
- ----------------------------------
-
- procedure Null_Exclusion_Static_Checks (N : Node_Id) is
- Error_Node : Node_Id;
- Expr : Node_Id;
- Has_Null : constant Boolean := Has_Null_Exclusion (N);
- K : constant Node_Kind := Nkind (N);
- Typ : Entity_Id;
-
- begin
- pragma Assert
- (K = N_Component_Declaration
- or else K = N_Discriminant_Specification
- or else K = N_Function_Specification
- or else K = N_Object_Declaration
- or else K = N_Parameter_Specification);
-
- if K = N_Function_Specification then
- Typ := Etype (Defining_Entity (N));
- else
- Typ := Etype (Defining_Identifier (N));
- end if;
-
- case K is
- when N_Component_Declaration =>
- if Present (Access_Definition (Component_Definition (N))) then
- Error_Node := Component_Definition (N);
- else
- Error_Node := Subtype_Indication (Component_Definition (N));
- end if;
-
- when N_Discriminant_Specification =>
- Error_Node := Discriminant_Type (N);
-
- when N_Function_Specification =>
- Error_Node := Result_Definition (N);
-
- when N_Object_Declaration =>
- Error_Node := Object_Definition (N);
-
- when N_Parameter_Specification =>
- Error_Node := Parameter_Type (N);
-
- when others =>
- raise Program_Error;
- end case;
-
- if Has_Null then
-
- -- Enforce legality rule 3.10 (13): A null exclusion can only be
- -- applied to an access [sub]type.
-
- if not Is_Access_Type (Typ) then
- Error_Msg_N
- ("`NOT NULL` allowed only for an access type", Error_Node);
-
- -- Enforce legality rule RM 3.10(14/1): A null exclusion can only
- -- be applied to a [sub]type that does not exclude null already.
-
- elsif Can_Never_Be_Null (Typ)
- and then Comes_From_Source (Typ)
- then
- Error_Msg_NE
- ("`NOT NULL` not allowed (& already excludes null)",
- Error_Node, Typ);
- end if;
- end if;
-
- -- Check that null-excluding objects are always initialized, except for
- -- deferred constants, for which the expression will appear in the full
- -- declaration.
-
- if K = N_Object_Declaration
- and then No (Expression (N))
- and then not Constant_Present (N)
- and then not No_Initialization (N)
- then
- -- Add an expression that assigns null. This node is needed by
- -- Apply_Compile_Time_Constraint_Error, which will replace this with
- -- a Constraint_Error node.
-
- Set_Expression (N, Make_Null (Sloc (N)));
- Set_Etype (Expression (N), Etype (Defining_Identifier (N)));
-
- Apply_Compile_Time_Constraint_Error
- (N => Expression (N),
- Msg =>
- "(Ada 2005) null-excluding objects must be initialized??",
- Reason => CE_Null_Not_Allowed);
- end if;
-
- -- Check that a null-excluding component, formal or object is not being
- -- assigned a null value. Otherwise generate a warning message and
- -- replace Expression (N) by an N_Constraint_Error node.
-
- if K /= N_Function_Specification then
- Expr := Expression (N);
-
- if Present (Expr) and then Known_Null (Expr) then
- case K is
- when N_Component_Declaration |
- N_Discriminant_Specification =>
- Apply_Compile_Time_Constraint_Error
- (N => Expr,
- Msg => "(Ada 2005) null not allowed " &
- "in null-excluding components??",
- Reason => CE_Null_Not_Allowed);
-
- when N_Object_Declaration =>
- Apply_Compile_Time_Constraint_Error
- (N => Expr,
- Msg => "(Ada 2005) null not allowed " &
- "in null-excluding objects?",
- Reason => CE_Null_Not_Allowed);
-
- when N_Parameter_Specification =>
- Apply_Compile_Time_Constraint_Error
- (N => Expr,
- Msg => "(Ada 2005) null not allowed " &
- "in null-excluding formals??",
- Reason => CE_Null_Not_Allowed);
-
- when others =>
- null;
- end case;
- end if;
- end if;
- end Null_Exclusion_Static_Checks;
-
- ----------------------------------
- -- Conditional_Statements_Begin --
- ----------------------------------
-
- procedure Conditional_Statements_Begin is
- begin
- Saved_Checks_TOS := Saved_Checks_TOS + 1;
-
- -- If stack overflows, kill all checks, that way we know to simply reset
- -- the number of saved checks to zero on return. This should never occur
- -- in practice.
-
- if Saved_Checks_TOS > Saved_Checks_Stack'Last then
- Kill_All_Checks;
-
- -- In the normal case, we just make a new stack entry saving the current
- -- number of saved checks for a later restore.
-
- else
- Saved_Checks_Stack (Saved_Checks_TOS) := Num_Saved_Checks;
-
- if Debug_Flag_CC then
- w ("Conditional_Statements_Begin: Num_Saved_Checks = ",
- Num_Saved_Checks);
- end if;
- end if;
- end Conditional_Statements_Begin;
-
- --------------------------------
- -- Conditional_Statements_End --
- --------------------------------
-
- procedure Conditional_Statements_End is
- begin
- pragma Assert (Saved_Checks_TOS > 0);
-
- -- If the saved checks stack overflowed, then we killed all checks, so
- -- setting the number of saved checks back to zero is correct. This
- -- should never occur in practice.
-
- if Saved_Checks_TOS > Saved_Checks_Stack'Last then
- Num_Saved_Checks := 0;
-
- -- In the normal case, restore the number of saved checks from the top
- -- stack entry.
-
- else
- Num_Saved_Checks := Saved_Checks_Stack (Saved_Checks_TOS);
- if Debug_Flag_CC then
- w ("Conditional_Statements_End: Num_Saved_Checks = ",
- Num_Saved_Checks);
- end if;
- end if;
-
- Saved_Checks_TOS := Saved_Checks_TOS - 1;
- end Conditional_Statements_End;
-
- -------------------------
- -- Convert_From_Bignum --
- -------------------------
-
- function Convert_From_Bignum (N : Node_Id) return Node_Id is
- Loc : constant Source_Ptr := Sloc (N);
-
- begin
- pragma Assert (Is_RTE (Etype (N), RE_Bignum));
-
- -- Construct call From Bignum
-
- return
- Make_Function_Call (Loc,
- Name =>
- New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
- Parameter_Associations => New_List (Relocate_Node (N)));
- end Convert_From_Bignum;
-
- -----------------------
- -- Convert_To_Bignum --
- -----------------------
-
- function Convert_To_Bignum (N : Node_Id) return Node_Id is
- Loc : constant Source_Ptr := Sloc (N);
-
- begin
- -- Nothing to do if Bignum already except call Relocate_Node
-
- if Is_RTE (Etype (N), RE_Bignum) then
- return Relocate_Node (N);
-
- -- Otherwise construct call to To_Bignum, converting the operand to the
- -- required Long_Long_Integer form.
-
- else
- pragma Assert (Is_Signed_Integer_Type (Etype (N)));
- return
- Make_Function_Call (Loc,
- Name =>
- New_Occurrence_Of (RTE (RE_To_Bignum), Loc),
- Parameter_Associations => New_List (
- Convert_To (Standard_Long_Long_Integer, Relocate_Node (N))));
- end if;
- end Convert_To_Bignum;
-
- ---------------------
- -- Determine_Range --
- ---------------------
-
- Cache_Size : constant := 2 ** 10;
- type Cache_Index is range 0 .. Cache_Size - 1;
- -- Determine size of below cache (power of 2 is more efficient!)
-
- Determine_Range_Cache_N : array (Cache_Index) of Node_Id;
- Determine_Range_Cache_V : array (Cache_Index) of Boolean;
- Determine_Range_Cache_Lo : array (Cache_Index) of Uint;
- Determine_Range_Cache_Hi : array (Cache_Index) of Uint;
- -- The above arrays are used to implement a small direct cache for
- -- Determine_Range calls. Because of the way Determine_Range recursively
- -- traces subexpressions, and because overflow checking calls the routine
- -- on the way up the tree, a quadratic behavior can otherwise be
- -- encountered in large expressions. The cache entry for node N is stored
- -- in the (N mod Cache_Size) entry, and can be validated by checking the
- -- actual node value stored there. The Range_Cache_V array records the
- -- setting of Assume_Valid for the cache entry.
-
- procedure Determine_Range
- (N : Node_Id;
- OK : out Boolean;
- Lo : out Uint;
- Hi : out Uint;
- Assume_Valid : Boolean := False)
- is
- Typ : Entity_Id := Etype (N);
- -- Type to use, may get reset to base type for possibly invalid entity
-
- Lo_Left : Uint;
- Hi_Left : Uint;
- -- Lo and Hi bounds of left operand
-
- Lo_Right : Uint;
- Hi_Right : Uint;
- -- Lo and Hi bounds of right (or only) operand
-
- Bound : Node_Id;
- -- Temp variable used to hold a bound node
-
- Hbound : Uint;
- -- High bound of base type of expression
-
- Lor : Uint;
- Hir : Uint;
- -- Refined values for low and high bounds, after tightening
-
- OK1 : Boolean;
- -- Used in lower level calls to indicate if call succeeded
-
- Cindex : Cache_Index;
- -- Used to search cache
-
- Btyp : Entity_Id;
- -- Base type
-
- function OK_Operands return Boolean;
- -- Used for binary operators. Determines the ranges of the left and
- -- right operands, and if they are both OK, returns True, and puts
- -- the results in Lo_Right, Hi_Right, Lo_Left, Hi_Left.
-
- -----------------
- -- OK_Operands --
- -----------------
-
- function OK_Operands return Boolean is
- begin
- Determine_Range
- (Left_Opnd (N), OK1, Lo_Left, Hi_Left, Assume_Valid);
-
- if not OK1 then
- return False;
- end if;
-
- Determine_Range
- (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
- return OK1;
- end OK_Operands;
-
- -- Start of processing for Determine_Range
-
- begin
- -- For temporary constants internally generated to remove side effects
- -- we must use the corresponding expression to determine the range of
- -- the expression.
-
- if Is_Entity_Name (N)
- and then Nkind (Parent (Entity (N))) = N_Object_Declaration
- and then Ekind (Entity (N)) = E_Constant
- and then Is_Internal_Name (Chars (Entity (N)))
- then
- Determine_Range
- (Expression (Parent (Entity (N))), OK, Lo, Hi, Assume_Valid);
- return;
- end if;
-
- -- Prevent junk warnings by initializing range variables
-
- Lo := No_Uint;
- Hi := No_Uint;
- Lor := No_Uint;
- Hir := No_Uint;
-
- -- If type is not defined, we can't determine its range
-
- if No (Typ)
-
- -- We don't deal with anything except discrete types
-
- or else not Is_Discrete_Type (Typ)
-
- -- Ignore type for which an error has been posted, since range in
- -- this case may well be a bogosity deriving from the error. Also
- -- ignore if error posted on the reference node.
-
- or else Error_Posted (N) or else Error_Posted (Typ)
- then
- OK := False;
- return;
- end if;
-
- -- For all other cases, we can determine the range
-
- OK := True;
-
- -- If value is compile time known, then the possible range is the one
- -- value that we know this expression definitely has!
-
- if Compile_Time_Known_Value (N) then
- Lo := Expr_Value (N);
- Hi := Lo;
- return;
- end if;
-
- -- Return if already in the cache
-
- Cindex := Cache_Index (N mod Cache_Size);
-
- if Determine_Range_Cache_N (Cindex) = N
- and then
- Determine_Range_Cache_V (Cindex) = Assume_Valid
- then
- Lo := Determine_Range_Cache_Lo (Cindex);
- Hi := Determine_Range_Cache_Hi (Cindex);
- return;
- end if;
-
- -- Otherwise, start by finding the bounds of the type of the expression,
- -- the value cannot be outside this range (if it is, then we have an
- -- overflow situation, which is a separate check, we are talking here
- -- only about the expression value).
-
- -- First a check, never try to find the bounds of a generic type, since
- -- these bounds are always junk values, and it is only valid to look at
- -- the bounds in an instance.
-
- if Is_Generic_Type (Typ) then
- OK := False;
- return;
- end if;
-
- -- First step, change to use base type unless we know the value is valid
-
- if (Is_Entity_Name (N) and then Is_Known_Valid (Entity (N)))
- or else Assume_No_Invalid_Values
- or else Assume_Valid
- then
- null;
- else
- Typ := Underlying_Type (Base_Type (Typ));
- end if;
-
- -- Retrieve the base type. Handle the case where the base type is a
- -- private enumeration type.
-
- Btyp := Base_Type (Typ);
-
- if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
- Btyp := Full_View (Btyp);
- end if;
-
- -- We use the actual bound unless it is dynamic, in which case use the
- -- corresponding base type bound if possible. If we can't get a bound
- -- then we figure we can't determine the range (a peculiar case, that
- -- perhaps cannot happen, but there is no point in bombing in this
- -- optimization circuit.
-
- -- First the low bound
-
- Bound := Type_Low_Bound (Typ);
-
- if Compile_Time_Known_Value (Bound) then
- Lo := Expr_Value (Bound);
-
- elsif Compile_Time_Known_Value (Type_Low_Bound (Btyp)) then
- Lo := Expr_Value (Type_Low_Bound (Btyp));
-
- else
- OK := False;
- return;
- end if;
-
- -- Now the high bound
-
- Bound := Type_High_Bound (Typ);
-
- -- We need the high bound of the base type later on, and this should
- -- always be compile time known. Again, it is not clear that this
- -- can ever be false, but no point in bombing.
-
- if Compile_Time_Known_Value (Type_High_Bound (Btyp)) then
- Hbound := Expr_Value (Type_High_Bound (Btyp));
- Hi := Hbound;
-
- else
- OK := False;
- return;
- end if;
-
- -- If we have a static subtype, then that may have a tighter bound so
- -- use the upper bound of the subtype instead in this case.
-
- if Compile_Time_Known_Value (Bound) then
- Hi := Expr_Value (Bound);
- end if;
-
- -- We may be able to refine this value in certain situations. If any
- -- refinement is possible, then Lor and Hir are set to possibly tighter
- -- bounds, and OK1 is set to True.
-
- case Nkind (N) is
-
- -- For unary plus, result is limited by range of operand
-
- when N_Op_Plus =>
- Determine_Range
- (Right_Opnd (N), OK1, Lor, Hir, Assume_Valid);
-
- -- For unary minus, determine range of operand, and negate it
-
- when N_Op_Minus =>
- Determine_Range
- (Right_Opnd (N), OK1, Lo_Right, Hi_Right, Assume_Valid);
-
- if OK1 then
- Lor := -Hi_Right;
- Hir := -Lo_Right;
- end if;
-
- -- For binary addition, get range of each operand and do the
- -- addition to get the result range.
-
- when N_Op_Add =>
- if OK_Operands then
- Lor := Lo_Left + Lo_Right;
- Hir := Hi_Left + Hi_Right;
- end if;
-
- -- Division is tricky. The only case we consider is where the right
- -- operand is a positive constant, and in this case we simply divide
- -- the bounds of the left operand
-
- when N_Op_Divide =>
- if OK_Operands then
- if Lo_Right = Hi_Right
- and then Lo_Right > 0
- then
- Lor := Lo_Left / Lo_Right;
- Hir := Hi_Left / Lo_Right;
-
- else
- OK1 := False;
- end if;
- end if;
-
- -- For binary subtraction, get range of each operand and do the worst
- -- case subtraction to get the result range.
-
- when N_Op_Subtract =>
- if OK_Operands then
- Lor := Lo_Left - Hi_Right;
- Hir := Hi_Left - Lo_Right;
- end if;
-
- -- For MOD, if right operand is a positive constant, then result must
- -- be in the allowable range of mod results.
-
- when N_Op_Mod =>
- if OK_Operands then
- if Lo_Right = Hi_Right
- and then Lo_Right /= 0
- then
- if Lo_Right > 0 then
- Lor := Uint_0;
- Hir := Lo_Right - 1;
-
- else -- Lo_Right < 0
- Lor := Lo_Right + 1;
- Hir := Uint_0;
- end if;
-
- else
- OK1 := False;
- end if;
- end if;
-
- -- For REM, if right operand is a positive constant, then result must
- -- be in the allowable range of mod results.
-
- when N_Op_Rem =>
- if OK_Operands then
- if Lo_Right = Hi_Right
- and then Lo_Right /= 0
- then
- declare
- Dval : constant Uint := (abs Lo_Right) - 1;
-
- begin
- -- The sign of the result depends on the sign of the
- -- dividend (but not on the sign of the divisor, hence
- -- the abs operation above).
-
- if Lo_Left < 0 then
- Lor := -Dval;
- else
- Lor := Uint_0;
- end if;
-
- if Hi_Left < 0 then
- Hir := Uint_0;
- else
- Hir := Dval;
- end if;
- end;
-
- else
- OK1 := False;
- end if;
- end if;
-
- -- Attribute reference cases
-
- when N_Attribute_Reference =>
- case Attribute_Name (N) is
-
- -- For Pos/Val attributes, we can refine the range using the
- -- possible range of values of the attribute expression.
-
- when Name_Pos | Name_Val =>
- Determine_Range
- (First (Expressions (N)), OK1, Lor, Hir, Assume_Valid);
-
- -- For Length attribute, use the bounds of the corresponding
- -- index type to refine the range.
-
- when Name_Length =>
- declare
- Atyp : Entity_Id := Etype (Prefix (N));
- Inum : Nat;
- Indx : Node_Id;
-
- LL, LU : Uint;
- UL, UU : Uint;
-
- begin
- if Is_Access_Type (Atyp) then
- Atyp := Designated_Type (Atyp);
- end if;
-
- -- For string literal, we know exact value
-
- if Ekind (Atyp) = E_String_Literal_Subtype then
- OK := True;
- Lo := String_Literal_Length (Atyp);
- Hi := String_Literal_Length (Atyp);
- return;
- end if;
-
- -- Otherwise check for expression given
-
- if No (Expressions (N)) then
- Inum := 1;
- else
- Inum :=
- UI_To_Int (Expr_Value (First (Expressions (N))));
- end if;
-
- Indx := First_Index (Atyp);
- for J in 2 .. Inum loop
- Indx := Next_Index (Indx);
- end loop;
-
- -- If the index type is a formal type or derived from
- -- one, the bounds are not static.
-
- if Is_Generic_Type (Root_Type (Etype (Indx))) then
- OK := False;
- return;
- end if;
-
- Determine_Range
- (Type_Low_Bound (Etype (Indx)), OK1, LL, LU,
- Assume_Valid);
-
- if OK1 then
- Determine_Range
- (Type_High_Bound (Etype (Indx)), OK1, UL, UU,
- Assume_Valid);
-
- if OK1 then
-
- -- The maximum value for Length is the biggest
- -- possible gap between the values of the bounds.
- -- But of course, this value cannot be negative.
-
- Hir := UI_Max (Uint_0, UU - LL + 1);
-
- -- For constrained arrays, the minimum value for
- -- Length is taken from the actual value of the
- -- bounds, since the index will be exactly of this
- -- subtype.
-
- if Is_Constrained (Atyp) then
- Lor := UI_Max (Uint_0, UL - LU + 1);
-
- -- For an unconstrained array, the minimum value
- -- for length is always zero.
-
- else
- Lor := Uint_0;
- end if;
- end if;
- end if;
- end;
-
- -- No special handling for other attributes
- -- Probably more opportunities exist here???
-
- when others =>
- OK1 := False;
-
- end case;
-
- -- For type conversion from one discrete type to another, we can
- -- refine the range using the converted value.
-
- when N_Type_Conversion =>
- Determine_Range (Expression (N), OK1, Lor, Hir, Assume_Valid);
-
- -- Nothing special to do for all other expression kinds
-
- when others =>
- OK1 := False;
- Lor := No_Uint;
- Hir := No_Uint;
- end case;
-
- -- At this stage, if OK1 is true, then we know that the actual result of
- -- the computed expression is in the range Lor .. Hir. We can use this
- -- to restrict the possible range of results.
-
- if OK1 then
-
- -- If the refined value of the low bound is greater than the type
- -- high bound, then reset it to the more restrictive value. However,
- -- we do NOT do this for the case of a modular type where the
- -- possible upper bound on the value is above the base type high
- -- bound, because that means the result could wrap.
-
- if Lor > Lo
- and then not (Is_Modular_Integer_Type (Typ) and then Hir > Hbound)
- then
- Lo := Lor;
- end if;
-
- -- Similarly, if the refined value of the high bound is less than the
- -- value so far, then reset it to the more restrictive value. Again,
- -- we do not do this if the refined low bound is negative for a
- -- modular type, since this would wrap.
-
- if Hir < Hi
- and then not (Is_Modular_Integer_Type (Typ) and then Lor < Uint_0)
- then
- Hi := Hir;
- end if;
- end if;
-
- -- Set cache entry for future call and we are all done
-
- Determine_Range_Cache_N (Cindex) := N;
- Determine_Range_Cache_V (Cindex) := Assume_Valid;
- Determine_Range_Cache_Lo (Cindex) := Lo;
- Determine_Range_Cache_Hi (Cindex) := Hi;
- return;
-
- -- If any exception occurs, it means that we have some bug in the compiler,
- -- possibly triggered by a previous error, or by some unforeseen peculiar
- -- occurrence. However, this is only an optimization attempt, so there is
- -- really no point in crashing the compiler. Instead we just decide, too
- -- bad, we can't figure out a range in this case after all.
-
- exception
- when others =>
-
- -- Debug flag K disables this behavior (useful for debugging)
-
- if Debug_Flag_K then
- raise;
- else
- OK := False;
- Lo := No_Uint;
- Hi := No_Uint;
- return;
- end if;
- end Determine_Range;
-
- ------------------------------------
- -- Discriminant_Checks_Suppressed --
- ------------------------------------
-
- function Discriminant_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) then
- if Is_Unchecked_Union (E) then
- return True;
- elsif Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Discriminant_Check);
- end if;
- end if;
-
- return Scope_Suppress.Suppress (Discriminant_Check);
- end Discriminant_Checks_Suppressed;
-
- --------------------------------
- -- Division_Checks_Suppressed --
- --------------------------------
-
- function Division_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Division_Check);
- else
- return Scope_Suppress.Suppress (Division_Check);
- end if;
- end Division_Checks_Suppressed;
-
- -----------------------------------
- -- Elaboration_Checks_Suppressed --
- -----------------------------------
-
- function Elaboration_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- -- The complication in this routine is that if we are in the dynamic
- -- model of elaboration, we also check All_Checks, since All_Checks
- -- does not set Elaboration_Check explicitly.
-
- if Present (E) then
- if Kill_Elaboration_Checks (E) then
- return True;
-
- elsif Checks_May_Be_Suppressed (E) then
- if Is_Check_Suppressed (E, Elaboration_Check) then
- return True;
- elsif Dynamic_Elaboration_Checks then
- return Is_Check_Suppressed (E, All_Checks);
- else
- return False;
- end if;
- end if;
- end if;
-
- if Scope_Suppress.Suppress (Elaboration_Check) then
- return True;
- elsif Dynamic_Elaboration_Checks then
- return Scope_Suppress.Suppress (All_Checks);
- else
- return False;
- end if;
- end Elaboration_Checks_Suppressed;
-
- ---------------------------
- -- Enable_Overflow_Check --
- ---------------------------
-
- procedure Enable_Overflow_Check (N : Node_Id) is
- Typ : constant Entity_Id := Base_Type (Etype (N));
- Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
- Chk : Nat;
- OK : Boolean;
- Ent : Entity_Id;
- Ofs : Uint;
- Lo : Uint;
- Hi : Uint;
-
- begin
- if Debug_Flag_CC then
- w ("Enable_Overflow_Check for node ", Int (N));
- Write_Str (" Source location = ");
- wl (Sloc (N));
- pg (Union_Id (N));
- end if;
-
- -- No check if overflow checks suppressed for type of node
-
- if Overflow_Checks_Suppressed (Etype (N)) then
- return;
-
- -- Nothing to do for unsigned integer types, which do not overflow
-
- elsif Is_Modular_Integer_Type (Typ) then
- return;
- end if;
-
- -- This is the point at which processing for STRICT mode diverges
- -- from processing for MINIMIZED/ELIMINATED modes. This divergence is
- -- probably more extreme that it needs to be, but what is going on here
- -- is that when we introduced MINIMIZED/ELIMINATED modes, we wanted
- -- to leave the processing for STRICT mode untouched. There were
- -- two reasons for this. First it avoided any incompatible change of
- -- behavior. Second, it guaranteed that STRICT mode continued to be
- -- legacy reliable.
-
- -- The big difference is that in STRICT mode there is a fair amount of
- -- circuitry to try to avoid setting the Do_Overflow_Check flag if we
- -- know that no check is needed. We skip all that in the two new modes,
- -- since really overflow checking happens over a whole subtree, and we
- -- do the corresponding optimizations later on when applying the checks.
-
- if Mode in Minimized_Or_Eliminated then
- if not (Overflow_Checks_Suppressed (Etype (N)))
- and then not (Is_Entity_Name (N)
- and then Overflow_Checks_Suppressed (Entity (N)))
- then
- Activate_Overflow_Check (N);
- end if;
-
- if Debug_Flag_CC then
- w ("Minimized/Eliminated mode");
- end if;
-
- return;
- end if;
-
- -- Remainder of processing is for STRICT case, and is unchanged from
- -- earlier versions preceding the addition of MINIMIZED/ELIMINATED.
-
- -- Nothing to do if the range of the result is known OK. We skip this
- -- for conversions, since the caller already did the check, and in any
- -- case the condition for deleting the check for a type conversion is
- -- different.
-
- if Nkind (N) /= N_Type_Conversion then
- Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
-
- -- Note in the test below that we assume that the range is not OK
- -- if a bound of the range is equal to that of the type. That's not
- -- quite accurate but we do this for the following reasons:
-
- -- a) The way that Determine_Range works, it will typically report
- -- the bounds of the value as being equal to the bounds of the
- -- type, because it either can't tell anything more precise, or
- -- does not think it is worth the effort to be more precise.
-
- -- b) It is very unusual to have a situation in which this would
- -- generate an unnecessary overflow check (an example would be
- -- a subtype with a range 0 .. Integer'Last - 1 to which the
- -- literal value one is added).
-
- -- c) The alternative is a lot of special casing in this routine
- -- which would partially duplicate Determine_Range processing.
-
- if OK
- and then Lo > Expr_Value (Type_Low_Bound (Typ))
- and then Hi < Expr_Value (Type_High_Bound (Typ))
- then
- if Debug_Flag_CC then
- w ("No overflow check required");
- end if;
-
- return;
- end if;
- end if;
-
- -- If not in optimizing mode, set flag and we are done. We are also done
- -- (and just set the flag) if the type is not a discrete type, since it
- -- is not worth the effort to eliminate checks for other than discrete
- -- types. In addition, we take this same path if we have stored the
- -- maximum number of checks possible already (a very unlikely situation,
- -- but we do not want to blow up!)
-
- if Optimization_Level = 0
- or else not Is_Discrete_Type (Etype (N))
- or else Num_Saved_Checks = Saved_Checks'Last
- then
- Activate_Overflow_Check (N);
-
- if Debug_Flag_CC then
- w ("Optimization off");
- end if;
-
- return;
- end if;
-
- -- Otherwise evaluate and check the expression
-
- Find_Check
- (Expr => N,
- Check_Type => 'O',
- Target_Type => Empty,
- Entry_OK => OK,
- Check_Num => Chk,
- Ent => Ent,
- Ofs => Ofs);
-
- if Debug_Flag_CC then
- w ("Called Find_Check");
- w (" OK = ", OK);
-
- if OK then
- w (" Check_Num = ", Chk);
- w (" Ent = ", Int (Ent));
- Write_Str (" Ofs = ");
- pid (Ofs);
- end if;
- end if;
-
- -- If check is not of form to optimize, then set flag and we are done
-
- if not OK then
- Activate_Overflow_Check (N);
- return;
- end if;
-
- -- If check is already performed, then return without setting flag
-
- if Chk /= 0 then
- if Debug_Flag_CC then
- w ("Check suppressed!");
- end if;
-
- return;
- end if;
-
- -- Here we will make a new entry for the new check
-
- Activate_Overflow_Check (N);
- Num_Saved_Checks := Num_Saved_Checks + 1;
- Saved_Checks (Num_Saved_Checks) :=
- (Killed => False,
- Entity => Ent,
- Offset => Ofs,
- Check_Type => 'O',
- Target_Type => Empty);
-
- if Debug_Flag_CC then
- w ("Make new entry, check number = ", Num_Saved_Checks);
- w (" Entity = ", Int (Ent));
- Write_Str (" Offset = ");
- pid (Ofs);
- w (" Check_Type = O");
- w (" Target_Type = Empty");
- end if;
-
- -- If we get an exception, then something went wrong, probably because of
- -- an error in the structure of the tree due to an incorrect program. Or it
- -- may be a bug in the optimization circuit. In either case the safest
- -- thing is simply to set the check flag unconditionally.
-
- exception
- when others =>
- Activate_Overflow_Check (N);
-
- if Debug_Flag_CC then
- w (" exception occurred, overflow flag set");
- end if;
-
- return;
- end Enable_Overflow_Check;
-
- ------------------------
- -- Enable_Range_Check --
- ------------------------
-
- procedure Enable_Range_Check (N : Node_Id) is
- Chk : Nat;
- OK : Boolean;
- Ent : Entity_Id;
- Ofs : Uint;
- Ttyp : Entity_Id;
- P : Node_Id;
-
- begin
- -- Return if unchecked type conversion with range check killed. In this
- -- case we never set the flag (that's what Kill_Range_Check is about!)
-
- if Nkind (N) = N_Unchecked_Type_Conversion
- and then Kill_Range_Check (N)
- then
- return;
- end if;
-
- -- Do not set range check flag if parent is assignment statement or
- -- object declaration with Suppress_Assignment_Checks flag set
-
- if Nkind_In (Parent (N), N_Assignment_Statement, N_Object_Declaration)
- and then Suppress_Assignment_Checks (Parent (N))
- then
- return;
- end if;
-
- -- Check for various cases where we should suppress the range check
-
- -- No check if range checks suppressed for type of node
-
- if Present (Etype (N))
- and then Range_Checks_Suppressed (Etype (N))
- then
- return;
-
- -- No check if node is an entity name, and range checks are suppressed
- -- for this entity, or for the type of this entity.
-
- elsif Is_Entity_Name (N)
- and then (Range_Checks_Suppressed (Entity (N))
- or else Range_Checks_Suppressed (Etype (Entity (N))))
- then
- return;
-
- -- No checks if index of array, and index checks are suppressed for
- -- the array object or the type of the array.
-
- elsif Nkind (Parent (N)) = N_Indexed_Component then
- declare
- Pref : constant Node_Id := Prefix (Parent (N));
- begin
- if Is_Entity_Name (Pref)
- and then Index_Checks_Suppressed (Entity (Pref))
- then
- return;
- elsif Index_Checks_Suppressed (Etype (Pref)) then
- return;
- end if;
- end;
- end if;
-
- -- Debug trace output
-
- if Debug_Flag_CC then
- w ("Enable_Range_Check for node ", Int (N));
- Write_Str (" Source location = ");
- wl (Sloc (N));
- pg (Union_Id (N));
- end if;
-
- -- If not in optimizing mode, set flag and we are done. We are also done
- -- (and just set the flag) if the type is not a discrete type, since it
- -- is not worth the effort to eliminate checks for other than discrete
- -- types. In addition, we take this same path if we have stored the
- -- maximum number of checks possible already (a very unlikely situation,
- -- but we do not want to blow up!)
-
- if Optimization_Level = 0
- or else No (Etype (N))
- or else not Is_Discrete_Type (Etype (N))
- or else Num_Saved_Checks = Saved_Checks'Last
- then
- Activate_Range_Check (N);
-
- if Debug_Flag_CC then
- w ("Optimization off");
- end if;
-
- return;
- end if;
-
- -- Otherwise find out the target type
-
- P := Parent (N);
-
- -- For assignment, use left side subtype
-
- if Nkind (P) = N_Assignment_Statement
- and then Expression (P) = N
- then
- Ttyp := Etype (Name (P));
-
- -- For indexed component, use subscript subtype
-
- elsif Nkind (P) = N_Indexed_Component then
- declare
- Atyp : Entity_Id;
- Indx : Node_Id;
- Subs : Node_Id;
-
- begin
- Atyp := Etype (Prefix (P));
-
- if Is_Access_Type (Atyp) then
- Atyp := Designated_Type (Atyp);
-
- -- If the prefix is an access to an unconstrained array,
- -- perform check unconditionally: it depends on the bounds of
- -- an object and we cannot currently recognize whether the test
- -- may be redundant.
-
- if not Is_Constrained (Atyp) then
- Activate_Range_Check (N);
- return;
- end if;
-
- -- Ditto if the prefix is an explicit dereference whose designated
- -- type is unconstrained.
-
- elsif Nkind (Prefix (P)) = N_Explicit_Dereference
- and then not Is_Constrained (Atyp)
- then
- Activate_Range_Check (N);
- return;
- end if;
-
- Indx := First_Index (Atyp);
- Subs := First (Expressions (P));
- loop
- if Subs = N then
- Ttyp := Etype (Indx);
- exit;
- end if;
-
- Next_Index (Indx);
- Next (Subs);
- end loop;
- end;
-
- -- For now, ignore all other cases, they are not so interesting
-
- else
- if Debug_Flag_CC then
- w (" target type not found, flag set");
- end if;
-
- Activate_Range_Check (N);
- return;
- end if;
-
- -- Evaluate and check the expression
-
- Find_Check
- (Expr => N,
- Check_Type => 'R',
- Target_Type => Ttyp,
- Entry_OK => OK,
- Check_Num => Chk,
- Ent => Ent,
- Ofs => Ofs);
-
- if Debug_Flag_CC then
- w ("Called Find_Check");
- w ("Target_Typ = ", Int (Ttyp));
- w (" OK = ", OK);
-
- if OK then
- w (" Check_Num = ", Chk);
- w (" Ent = ", Int (Ent));
- Write_Str (" Ofs = ");
- pid (Ofs);
- end if;
- end if;
-
- -- If check is not of form to optimize, then set flag and we are done
-
- if not OK then
- if Debug_Flag_CC then
- w (" expression not of optimizable type, flag set");
- end if;
-
- Activate_Range_Check (N);
- return;
- end if;
-
- -- If check is already performed, then return without setting flag
-
- if Chk /= 0 then
- if Debug_Flag_CC then
- w ("Check suppressed!");
- end if;
-
- return;
- end if;
-
- -- Here we will make a new entry for the new check
-
- Activate_Range_Check (N);
- Num_Saved_Checks := Num_Saved_Checks + 1;
- Saved_Checks (Num_Saved_Checks) :=
- (Killed => False,
- Entity => Ent,
- Offset => Ofs,
- Check_Type => 'R',
- Target_Type => Ttyp);
-
- if Debug_Flag_CC then
- w ("Make new entry, check number = ", Num_Saved_Checks);
- w (" Entity = ", Int (Ent));
- Write_Str (" Offset = ");
- pid (Ofs);
- w (" Check_Type = R");
- w (" Target_Type = ", Int (Ttyp));
- pg (Union_Id (Ttyp));
- end if;
-
- -- If we get an exception, then something went wrong, probably because of
- -- an error in the structure of the tree due to an incorrect program. Or
- -- it may be a bug in the optimization circuit. In either case the safest
- -- thing is simply to set the check flag unconditionally.
-
- exception
- when others =>
- Activate_Range_Check (N);
-
- if Debug_Flag_CC then
- w (" exception occurred, range flag set");
- end if;
-
- return;
- end Enable_Range_Check;
-
- ------------------
- -- Ensure_Valid --
- ------------------
-
- procedure Ensure_Valid (Expr : Node_Id; Holes_OK : Boolean := False) is
- Typ : constant Entity_Id := Etype (Expr);
-
- begin
- -- Ignore call if we are not doing any validity checking
-
- if not Validity_Checks_On then
- return;
-
- -- Ignore call if range or validity checks suppressed on entity or type
-
- elsif Range_Or_Validity_Checks_Suppressed (Expr) then
- return;
-
- -- No check required if expression is from the expander, we assume the
- -- expander will generate whatever checks are needed. Note that this is
- -- not just an optimization, it avoids infinite recursions!
-
- -- Unchecked conversions must be checked, unless they are initialized
- -- scalar values, as in a component assignment in an init proc.
-
- -- In addition, we force a check if Force_Validity_Checks is set
-
- elsif not Comes_From_Source (Expr)
- and then not Force_Validity_Checks
- and then (Nkind (Expr) /= N_Unchecked_Type_Conversion
- or else Kill_Range_Check (Expr))
- then
- return;
-
- -- No check required if expression is known to have valid value
-
- elsif Expr_Known_Valid (Expr) then
- return;
-
- -- Ignore case of enumeration with holes where the flag is set not to
- -- worry about holes, since no special validity check is needed
-
- elsif Is_Enumeration_Type (Typ)
- and then Has_Non_Standard_Rep (Typ)
- and then Holes_OK
- then
- return;
-
- -- No check required on the left-hand side of an assignment
-
- elsif Nkind (Parent (Expr)) = N_Assignment_Statement
- and then Expr = Name (Parent (Expr))
- then
- return;
-
- -- No check on a universal real constant. The context will eventually
- -- convert it to a machine number for some target type, or report an
- -- illegality.
-
- elsif Nkind (Expr) = N_Real_Literal
- and then Etype (Expr) = Universal_Real
- then
- return;
-
- -- If the expression denotes a component of a packed boolean array,
- -- no possible check applies. We ignore the old ACATS chestnuts that
- -- involve Boolean range True..True.
-
- -- Note: validity checks are generated for expressions that yield a
- -- scalar type, when it is possible to create a value that is outside of
- -- the type. If this is a one-bit boolean no such value exists. This is
- -- an optimization, and it also prevents compiler blowing up during the
- -- elaboration of improperly expanded packed array references.
-
- elsif Nkind (Expr) = N_Indexed_Component
- and then Is_Bit_Packed_Array (Etype (Prefix (Expr)))
- and then Root_Type (Etype (Expr)) = Standard_Boolean
- then
- return;
-
- -- An annoying special case. If this is an out parameter of a scalar
- -- type, then the value is not going to be accessed, therefore it is
- -- inappropriate to do any validity check at the call site.
-
- else
- -- Only need to worry about scalar types
-
- if Is_Scalar_Type (Typ) then
- declare
- P : Node_Id;
- N : Node_Id;
- E : Entity_Id;
- F : Entity_Id;
- A : Node_Id;
- L : List_Id;
-
- begin
- -- Find actual argument (which may be a parameter association)
- -- and the parent of the actual argument (the call statement)
-
- N := Expr;
- P := Parent (Expr);
-
- if Nkind (P) = N_Parameter_Association then
- N := P;
- P := Parent (N);
- end if;
-
- -- Only need to worry if we are argument of a procedure call
- -- since functions don't have out parameters. If this is an
- -- indirect or dispatching call, get signature from the
- -- subprogram type.
-
- if Nkind (P) = N_Procedure_Call_Statement then
- L := Parameter_Associations (P);
-
- if Is_Entity_Name (Name (P)) then
- E := Entity (Name (P));
- else
- pragma Assert (Nkind (Name (P)) = N_Explicit_Dereference);
- E := Etype (Name (P));
- end if;
-
- -- Only need to worry if there are indeed actuals, and if
- -- this could be a procedure call, otherwise we cannot get a
- -- match (either we are not an argument, or the mode of the
- -- formal is not OUT). This test also filters out the
- -- generic case.
-
- if Is_Non_Empty_List (L)
- and then Is_Subprogram (E)
- then
- -- This is the loop through parameters, looking for an
- -- OUT parameter for which we are the argument.
-
- F := First_Formal (E);
- A := First (L);
- while Present (F) loop
- if Ekind (F) = E_Out_Parameter and then A = N then
- return;
- end if;
-
- Next_Formal (F);
- Next (A);
- end loop;
- end if;
- end if;
- end;
- end if;
- end if;
-
- -- If this is a boolean expression, only its elementary operands need
- -- checking: if they are valid, a boolean or short-circuit operation
- -- with them will be valid as well.
-
- if Base_Type (Typ) = Standard_Boolean
- and then
- (Nkind (Expr) in N_Op or else Nkind (Expr) in N_Short_Circuit)
- then
- return;
- end if;
-
- -- If we fall through, a validity check is required
-
- Insert_Valid_Check (Expr);
-
- if Is_Entity_Name (Expr)
- and then Safe_To_Capture_Value (Expr, Entity (Expr))
- then
- Set_Is_Known_Valid (Entity (Expr));
- end if;
- end Ensure_Valid;
-
- ----------------------
- -- Expr_Known_Valid --
- ----------------------
-
- function Expr_Known_Valid (Expr : Node_Id) return Boolean is
- Typ : constant Entity_Id := Etype (Expr);
-
- begin
- -- Non-scalar types are always considered valid, since they never give
- -- rise to the issues of erroneous or bounded error behavior that are
- -- the concern. In formal reference manual terms the notion of validity
- -- only applies to scalar types. Note that even when packed arrays are
- -- represented using modular types, they are still arrays semantically,
- -- so they are also always valid (in particular, the unused bits can be
- -- random rubbish without affecting the validity of the array value).
-
- if not Is_Scalar_Type (Typ) or else Is_Packed_Array_Type (Typ) then
- return True;
-
- -- If no validity checking, then everything is considered valid
-
- elsif not Validity_Checks_On then
- return True;
-
- -- Floating-point types are considered valid unless floating-point
- -- validity checks have been specifically turned on.
-
- elsif Is_Floating_Point_Type (Typ)
- and then not Validity_Check_Floating_Point
- then
- return True;
-
- -- If the expression is the value of an object that is known to be
- -- valid, then clearly the expression value itself is valid.
-
- elsif Is_Entity_Name (Expr)
- and then Is_Known_Valid (Entity (Expr))
- then
- return True;
-
- -- References to discriminants are always considered valid. The value
- -- of a discriminant gets checked when the object is built. Within the
- -- record, we consider it valid, and it is important to do so, since
- -- otherwise we can try to generate bogus validity checks which
- -- reference discriminants out of scope. Discriminants of concurrent
- -- types are excluded for the same reason.
-
- elsif Is_Entity_Name (Expr)
- and then Denotes_Discriminant (Expr, Check_Concurrent => True)
- then
- return True;
-
- -- If the type is one for which all values are known valid, then we are
- -- sure that the value is valid except in the slightly odd case where
- -- the expression is a reference to a variable whose size has been
- -- explicitly set to a value greater than the object size.
-
- elsif Is_Known_Valid (Typ) then
- if Is_Entity_Name (Expr)
- and then Ekind (Entity (Expr)) = E_Variable
- and then Esize (Entity (Expr)) > Esize (Typ)
- then
- return False;
- else
- return True;
- end if;
-
- -- Integer and character literals always have valid values, where
- -- appropriate these will be range checked in any case.
-
- elsif Nkind (Expr) = N_Integer_Literal
- or else
- Nkind (Expr) = N_Character_Literal
- then
- return True;
-
- -- Real literals are assumed to be valid in VM targets
-
- elsif VM_Target /= No_VM
- and then Nkind (Expr) = N_Real_Literal
- then
- return True;
-
- -- If we have a type conversion or a qualification of a known valid
- -- value, then the result will always be valid.
-
- elsif Nkind (Expr) = N_Type_Conversion
- or else
- Nkind (Expr) = N_Qualified_Expression
- then
- return Expr_Known_Valid (Expression (Expr));
-
- -- The result of any operator is always considered valid, since we
- -- assume the necessary checks are done by the operator. For operators
- -- on floating-point operations, we must also check when the operation
- -- is the right-hand side of an assignment, or is an actual in a call.
-
- elsif Nkind (Expr) in N_Op then
- if Is_Floating_Point_Type (Typ)
- and then Validity_Check_Floating_Point
- and then
- (Nkind (Parent (Expr)) = N_Assignment_Statement
- or else Nkind (Parent (Expr)) = N_Function_Call
- or else Nkind (Parent (Expr)) = N_Parameter_Association)
- then
- return False;
- else
- return True;
- end if;
-
- -- The result of a membership test is always valid, since it is true or
- -- false, there are no other possibilities.
-
- elsif Nkind (Expr) in N_Membership_Test then
- return True;
-
- -- For all other cases, we do not know the expression is valid
-
- else
- return False;
- end if;
- end Expr_Known_Valid;
-
- ----------------
- -- Find_Check --
- ----------------
-
- procedure Find_Check
- (Expr : Node_Id;
- Check_Type : Character;
- Target_Type : Entity_Id;
- Entry_OK : out Boolean;
- Check_Num : out Nat;
- Ent : out Entity_Id;
- Ofs : out Uint)
- is
- function Within_Range_Of
- (Target_Type : Entity_Id;
- Check_Type : Entity_Id) return Boolean;
- -- Given a requirement for checking a range against Target_Type, and
- -- and a range Check_Type against which a check has already been made,
- -- determines if the check against check type is sufficient to ensure
- -- that no check against Target_Type is required.
-
- ---------------------
- -- Within_Range_Of --
- ---------------------
-
- function Within_Range_Of
- (Target_Type : Entity_Id;
- Check_Type : Entity_Id) return Boolean
- is
- begin
- if Target_Type = Check_Type then
- return True;
-
- else
- declare
- Tlo : constant Node_Id := Type_Low_Bound (Target_Type);
- Thi : constant Node_Id := Type_High_Bound (Target_Type);
- Clo : constant Node_Id := Type_Low_Bound (Check_Type);
- Chi : constant Node_Id := Type_High_Bound (Check_Type);
-
- begin
- if (Tlo = Clo
- or else (Compile_Time_Known_Value (Tlo)
- and then
- Compile_Time_Known_Value (Clo)
- and then
- Expr_Value (Clo) >= Expr_Value (Tlo)))
- and then
- (Thi = Chi
- or else (Compile_Time_Known_Value (Thi)
- and then
- Compile_Time_Known_Value (Chi)
- and then
- Expr_Value (Chi) <= Expr_Value (Clo)))
- then
- return True;
- else
- return False;
- end if;
- end;
- end if;
- end Within_Range_Of;
-
- -- Start of processing for Find_Check
-
- begin
- -- Establish default, in case no entry is found
-
- Check_Num := 0;
-
- -- Case of expression is simple entity reference
-
- if Is_Entity_Name (Expr) then
- Ent := Entity (Expr);
- Ofs := Uint_0;
-
- -- Case of expression is entity + known constant
-
- elsif Nkind (Expr) = N_Op_Add
- and then Compile_Time_Known_Value (Right_Opnd (Expr))
- and then Is_Entity_Name (Left_Opnd (Expr))
- then
- Ent := Entity (Left_Opnd (Expr));
- Ofs := Expr_Value (Right_Opnd (Expr));
-
- -- Case of expression is entity - known constant
-
- elsif Nkind (Expr) = N_Op_Subtract
- and then Compile_Time_Known_Value (Right_Opnd (Expr))
- and then Is_Entity_Name (Left_Opnd (Expr))
- then
- Ent := Entity (Left_Opnd (Expr));
- Ofs := UI_Negate (Expr_Value (Right_Opnd (Expr)));
-
- -- Any other expression is not of the right form
-
- else
- Ent := Empty;
- Ofs := Uint_0;
- Entry_OK := False;
- return;
- end if;
-
- -- Come here with expression of appropriate form, check if entity is an
- -- appropriate one for our purposes.
-
- if (Ekind (Ent) = E_Variable
- or else Is_Constant_Object (Ent))
- and then not Is_Library_Level_Entity (Ent)
- then
- Entry_OK := True;
- else
- Entry_OK := False;
- return;
- end if;
-
- -- See if there is matching check already
-
- for J in reverse 1 .. Num_Saved_Checks loop
- declare
- SC : Saved_Check renames Saved_Checks (J);
-
- begin
- if SC.Killed = False
- and then SC.Entity = Ent
- and then SC.Offset = Ofs
- and then SC.Check_Type = Check_Type
- and then Within_Range_Of (Target_Type, SC.Target_Type)
- then
- Check_Num := J;
- return;
- end if;
- end;
- end loop;
-
- -- If we fall through entry was not found
-
- return;
- end Find_Check;
-
- ---------------------------------
- -- Generate_Discriminant_Check --
- ---------------------------------
-
- -- Note: the code for this procedure is derived from the
- -- Emit_Discriminant_Check Routine in trans.c.
-
- procedure Generate_Discriminant_Check (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Pref : constant Node_Id := Prefix (N);
- Sel : constant Node_Id := Selector_Name (N);
-
- Orig_Comp : constant Entity_Id :=
- Original_Record_Component (Entity (Sel));
- -- The original component to be checked
-
- Discr_Fct : constant Entity_Id :=
- Discriminant_Checking_Func (Orig_Comp);
- -- The discriminant checking function
-
- Discr : Entity_Id;
- -- One discriminant to be checked in the type
-
- Real_Discr : Entity_Id;
- -- Actual discriminant in the call
-
- Pref_Type : Entity_Id;
- -- Type of relevant prefix (ignoring private/access stuff)
-
- Args : List_Id;
- -- List of arguments for function call
-
- Formal : Entity_Id;
- -- Keep track of the formal corresponding to the actual we build for
- -- each discriminant, in order to be able to perform the necessary type
- -- conversions.
-
- Scomp : Node_Id;
- -- Selected component reference for checking function argument
-
- begin
- Pref_Type := Etype (Pref);
-
- -- Force evaluation of the prefix, so that it does not get evaluated
- -- twice (once for the check, once for the actual reference). Such a
- -- double evaluation is always a potential source of inefficiency,
- -- and is functionally incorrect in the volatile case, or when the
- -- prefix may have side-effects. An entity or a component of an
- -- entity requires no evaluation.
-
- if Is_Entity_Name (Pref) then
- if Treat_As_Volatile (Entity (Pref)) then
- Force_Evaluation (Pref, Name_Req => True);
- end if;
-
- elsif Treat_As_Volatile (Etype (Pref)) then
- Force_Evaluation (Pref, Name_Req => True);
-
- elsif Nkind (Pref) = N_Selected_Component
- and then Is_Entity_Name (Prefix (Pref))
- then
- null;
-
- else
- Force_Evaluation (Pref, Name_Req => True);
- end if;
-
- -- For a tagged type, use the scope of the original component to
- -- obtain the type, because ???
-
- if Is_Tagged_Type (Scope (Orig_Comp)) then
- Pref_Type := Scope (Orig_Comp);
-
- -- For an untagged derived type, use the discriminants of the parent
- -- which have been renamed in the derivation, possibly by a one-to-many
- -- discriminant constraint. For non-tagged type, initially get the Etype
- -- of the prefix
-
- else
- if Is_Derived_Type (Pref_Type)
- and then Number_Discriminants (Pref_Type) /=
- Number_Discriminants (Etype (Base_Type (Pref_Type)))
- then
- Pref_Type := Etype (Base_Type (Pref_Type));
- end if;
- end if;
-
- -- We definitely should have a checking function, This routine should
- -- not be called if no discriminant checking function is present.
-
- pragma Assert (Present (Discr_Fct));
-
- -- Create the list of the actual parameters for the call. This list
- -- is the list of the discriminant fields of the record expression to
- -- be discriminant checked.
-
- Args := New_List;
- Formal := First_Formal (Discr_Fct);
- Discr := First_Discriminant (Pref_Type);
- while Present (Discr) loop
-
- -- If we have a corresponding discriminant field, and a parent
- -- subtype is present, then we want to use the corresponding
- -- discriminant since this is the one with the useful value.
-
- if Present (Corresponding_Discriminant (Discr))
- and then Ekind (Pref_Type) = E_Record_Type
- and then Present (Parent_Subtype (Pref_Type))
- then
- Real_Discr := Corresponding_Discriminant (Discr);
- else
- Real_Discr := Discr;
- end if;
-
- -- Construct the reference to the discriminant
-
- Scomp :=
- Make_Selected_Component (Loc,
- Prefix =>
- Unchecked_Convert_To (Pref_Type,
- Duplicate_Subexpr (Pref)),
- Selector_Name => New_Occurrence_Of (Real_Discr, Loc));
-
- -- Manually analyze and resolve this selected component. We really
- -- want it just as it appears above, and do not want the expander
- -- playing discriminal games etc with this reference. Then we append
- -- the argument to the list we are gathering.
-
- Set_Etype (Scomp, Etype (Real_Discr));
- Set_Analyzed (Scomp, True);
- Append_To (Args, Convert_To (Etype (Formal), Scomp));
-
- Next_Formal_With_Extras (Formal);
- Next_Discriminant (Discr);
- end loop;
-
- -- Now build and insert the call
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Function_Call (Loc,
- Name => New_Occurrence_Of (Discr_Fct, Loc),
- Parameter_Associations => Args),
- Reason => CE_Discriminant_Check_Failed));
- end Generate_Discriminant_Check;
-
- ---------------------------
- -- Generate_Index_Checks --
- ---------------------------
-
- procedure Generate_Index_Checks (N : Node_Id) is
-
- function Entity_Of_Prefix return Entity_Id;
- -- Returns the entity of the prefix of N (or Empty if not found)
-
- ----------------------
- -- Entity_Of_Prefix --
- ----------------------
-
- function Entity_Of_Prefix return Entity_Id is
- P : Node_Id;
-
- begin
- P := Prefix (N);
- while not Is_Entity_Name (P) loop
- if not Nkind_In (P, N_Selected_Component,
- N_Indexed_Component)
- then
- return Empty;
- end if;
-
- P := Prefix (P);
- end loop;
-
- return Entity (P);
- end Entity_Of_Prefix;
-
- -- Local variables
-
- Loc : constant Source_Ptr := Sloc (N);
- A : constant Node_Id := Prefix (N);
- A_Ent : constant Entity_Id := Entity_Of_Prefix;
- Sub : Node_Id;
-
- -- Start of processing for Generate_Index_Checks
-
- begin
- -- Ignore call if the prefix is not an array since we have a serious
- -- error in the sources. Ignore it also if index checks are suppressed
- -- for array object or type.
-
- if not Is_Array_Type (Etype (A))
- or else (Present (A_Ent)
- and then Index_Checks_Suppressed (A_Ent))
- or else Index_Checks_Suppressed (Etype (A))
- then
- return;
-
- -- The indexed component we are dealing with contains 'Loop_Entry in its
- -- prefix. This case arises when analysis has determined that constructs
- -- such as
-
- -- Prefix'Loop_Entry (Expr)
- -- Prefix'Loop_Entry (Expr1, Expr2, ... ExprN)
-
- -- require rewriting for error detection purposes. A side effect of this
- -- action is the generation of index checks that mention 'Loop_Entry.
- -- Delay the generation of the check until 'Loop_Entry has been properly
- -- expanded. This is done in Expand_Loop_Entry_Attributes.
-
- elsif Nkind (Prefix (N)) = N_Attribute_Reference
- and then Attribute_Name (Prefix (N)) = Name_Loop_Entry
- then
- return;
- end if;
-
- -- Generate a raise of constraint error with the appropriate reason and
- -- a condition of the form:
-
- -- Base_Type (Sub) not in Array'Range (Subscript)
-
- -- Note that the reason we generate the conversion to the base type here
- -- is that we definitely want the range check to take place, even if it
- -- looks like the subtype is OK. Optimization considerations that allow
- -- us to omit the check have already been taken into account in the
- -- setting of the Do_Range_Check flag earlier on.
-
- Sub := First (Expressions (N));
-
- -- Handle string literals
-
- if Ekind (Etype (A)) = E_String_Literal_Subtype then
- if Do_Range_Check (Sub) then
- Set_Do_Range_Check (Sub, False);
-
- -- For string literals we obtain the bounds of the string from the
- -- associated subtype.
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Not_In (Loc,
- Left_Opnd =>
- Convert_To (Base_Type (Etype (Sub)),
- Duplicate_Subexpr_Move_Checks (Sub)),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Reference_To (Etype (A), Loc),
- Attribute_Name => Name_Range)),
- Reason => CE_Index_Check_Failed));
- end if;
-
- -- General case
-
- else
- declare
- A_Idx : Node_Id := Empty;
- A_Range : Node_Id;
- Ind : Nat;
- Num : List_Id;
- Range_N : Node_Id;
-
- begin
- A_Idx := First_Index (Etype (A));
- Ind := 1;
- while Present (Sub) loop
- if Do_Range_Check (Sub) then
- Set_Do_Range_Check (Sub, False);
-
- -- Force evaluation except for the case of a simple name of
- -- a non-volatile entity.
-
- if not Is_Entity_Name (Sub)
- or else Treat_As_Volatile (Entity (Sub))
- then
- Force_Evaluation (Sub);
- end if;
-
- if Nkind (A_Idx) = N_Range then
- A_Range := A_Idx;
-
- elsif Nkind (A_Idx) = N_Identifier
- or else Nkind (A_Idx) = N_Expanded_Name
- then
- A_Range := Scalar_Range (Entity (A_Idx));
-
- else pragma Assert (Nkind (A_Idx) = N_Subtype_Indication);
- A_Range := Range_Expression (Constraint (A_Idx));
- end if;
-
- -- For array objects with constant bounds we can generate
- -- the index check using the bounds of the type of the index
-
- if Present (A_Ent)
- and then Ekind (A_Ent) = E_Variable
- and then Is_Constant_Bound (Low_Bound (A_Range))
- and then Is_Constant_Bound (High_Bound (A_Range))
- then
- Range_N :=
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Reference_To (Etype (A_Idx), Loc),
- Attribute_Name => Name_Range);
-
- -- For arrays with non-constant bounds we cannot generate
- -- the index check using the bounds of the type of the index
- -- since it may reference discriminants of some enclosing
- -- type. We obtain the bounds directly from the prefix
- -- object.
-
- else
- if Ind = 1 then
- Num := No_List;
- else
- Num := New_List (Make_Integer_Literal (Loc, Ind));
- end if;
-
- Range_N :=
- Make_Attribute_Reference (Loc,
- Prefix =>
- Duplicate_Subexpr_Move_Checks (A, Name_Req => True),
- Attribute_Name => Name_Range,
- Expressions => Num);
- end if;
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Not_In (Loc,
- Left_Opnd =>
- Convert_To (Base_Type (Etype (Sub)),
- Duplicate_Subexpr_Move_Checks (Sub)),
- Right_Opnd => Range_N),
- Reason => CE_Index_Check_Failed));
- end if;
-
- A_Idx := Next_Index (A_Idx);
- Ind := Ind + 1;
- Next (Sub);
- end loop;
- end;
- end if;
- end Generate_Index_Checks;
-
- --------------------------
- -- Generate_Range_Check --
- --------------------------
-
- procedure Generate_Range_Check
- (N : Node_Id;
- Target_Type : Entity_Id;
- Reason : RT_Exception_Code)
- is
- Loc : constant Source_Ptr := Sloc (N);
- Source_Type : constant Entity_Id := Etype (N);
- Source_Base_Type : constant Entity_Id := Base_Type (Source_Type);
- Target_Base_Type : constant Entity_Id := Base_Type (Target_Type);
-
- begin
- -- First special case, if the source type is already within the range
- -- of the target type, then no check is needed (probably we should have
- -- stopped Do_Range_Check from being set in the first place, but better
- -- late than never in preventing junk code!
-
- if In_Subrange_Of (Source_Type, Target_Type)
-
- -- We do NOT apply this if the source node is a literal, since in this
- -- case the literal has already been labeled as having the subtype of
- -- the target.
-
- and then not
- (Nkind_In (N, N_Integer_Literal, N_Real_Literal, N_Character_Literal)
- or else
- (Is_Entity_Name (N)
- and then Ekind (Entity (N)) = E_Enumeration_Literal))
-
- -- Also do not apply this for floating-point if Check_Float_Overflow
-
- and then not
- (Is_Floating_Point_Type (Source_Type) and Check_Float_Overflow)
- then
- return;
- end if;
-
- -- We need a check, so force evaluation of the node, so that it does
- -- not get evaluated twice (once for the check, once for the actual
- -- reference). Such a double evaluation is always a potential source
- -- of inefficiency, and is functionally incorrect in the volatile case.
-
- if not Is_Entity_Name (N) or else Treat_As_Volatile (Entity (N)) then
- Force_Evaluation (N);
- end if;
-
- -- The easiest case is when Source_Base_Type and Target_Base_Type are
- -- the same since in this case we can simply do a direct check of the
- -- value of N against the bounds of Target_Type.
-
- -- [constraint_error when N not in Target_Type]
-
- -- Note: this is by far the most common case, for example all cases of
- -- checks on the RHS of assignments are in this category, but not all
- -- cases are like this. Notably conversions can involve two types.
-
- if Source_Base_Type = Target_Base_Type then
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Not_In (Loc,
- Left_Opnd => Duplicate_Subexpr (N),
- Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
- Reason => Reason));
-
- -- Next test for the case where the target type is within the bounds
- -- of the base type of the source type, since in this case we can
- -- simply convert these bounds to the base type of T to do the test.
-
- -- [constraint_error when N not in
- -- Source_Base_Type (Target_Type'First)
- -- ..
- -- Source_Base_Type(Target_Type'Last))]
-
- -- The conversions will always work and need no check
-
- -- Unchecked_Convert_To is used instead of Convert_To to handle the case
- -- of converting from an enumeration value to an integer type, such as
- -- occurs for the case of generating a range check on Enum'Val(Exp)
- -- (which used to be handled by gigi). This is OK, since the conversion
- -- itself does not require a check.
-
- elsif In_Subrange_Of (Target_Type, Source_Base_Type) then
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Not_In (Loc,
- Left_Opnd => Duplicate_Subexpr (N),
-
- Right_Opnd =>
- Make_Range (Loc,
- Low_Bound =>
- Unchecked_Convert_To (Source_Base_Type,
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Target_Type, Loc),
- Attribute_Name => Name_First)),
-
- High_Bound =>
- Unchecked_Convert_To (Source_Base_Type,
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Target_Type, Loc),
- Attribute_Name => Name_Last)))),
- Reason => Reason));
-
- -- Note that at this stage we now that the Target_Base_Type is not in
- -- the range of the Source_Base_Type (since even the Target_Type itself
- -- is not in this range). It could still be the case that Source_Type is
- -- in range of the target base type since we have not checked that case.
-
- -- If that is the case, we can freely convert the source to the target,
- -- and then test the target result against the bounds.
-
- elsif In_Subrange_Of (Source_Type, Target_Base_Type) then
-
- -- We make a temporary to hold the value of the converted value
- -- (converted to the base type), and then we will do the test against
- -- this temporary.
-
- -- Tnn : constant Target_Base_Type := Target_Base_Type (N);
- -- [constraint_error when Tnn not in Target_Type]
-
- -- Then the conversion itself is replaced by an occurrence of Tnn
-
- declare
- Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
-
- begin
- Insert_Actions (N, New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => Tnn,
- Object_Definition =>
- New_Occurrence_Of (Target_Base_Type, Loc),
- Constant_Present => True,
- Expression =>
- Make_Type_Conversion (Loc,
- Subtype_Mark => New_Occurrence_Of (Target_Base_Type, Loc),
- Expression => Duplicate_Subexpr (N))),
-
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Not_In (Loc,
- Left_Opnd => New_Occurrence_Of (Tnn, Loc),
- Right_Opnd => New_Occurrence_Of (Target_Type, Loc)),
-
- Reason => Reason)));
-
- Rewrite (N, New_Occurrence_Of (Tnn, Loc));
-
- -- Set the type of N, because the declaration for Tnn might not
- -- be analyzed yet, as is the case if N appears within a record
- -- declaration, as a discriminant constraint or expression.
-
- Set_Etype (N, Target_Base_Type);
- end;
-
- -- At this stage, we know that we have two scalar types, which are
- -- directly convertible, and where neither scalar type has a base
- -- range that is in the range of the other scalar type.
-
- -- The only way this can happen is with a signed and unsigned type.
- -- So test for these two cases:
-
- else
- -- Case of the source is unsigned and the target is signed
-
- if Is_Unsigned_Type (Source_Base_Type)
- and then not Is_Unsigned_Type (Target_Base_Type)
- then
- -- If the source is unsigned and the target is signed, then we
- -- know that the source is not shorter than the target (otherwise
- -- the source base type would be in the target base type range).
-
- -- In other words, the unsigned type is either the same size as
- -- the target, or it is larger. It cannot be smaller.
-
- pragma Assert
- (Esize (Source_Base_Type) >= Esize (Target_Base_Type));
-
- -- We only need to check the low bound if the low bound of the
- -- target type is non-negative. If the low bound of the target
- -- type is negative, then we know that we will fit fine.
-
- -- If the high bound of the target type is negative, then we
- -- know we have a constraint error, since we can't possibly
- -- have a negative source.
-
- -- With these two checks out of the way, we can do the check
- -- using the source type safely
-
- -- This is definitely the most annoying case!
-
- -- [constraint_error
- -- when (Target_Type'First >= 0
- -- and then
- -- N < Source_Base_Type (Target_Type'First))
- -- or else Target_Type'Last < 0
- -- or else N > Source_Base_Type (Target_Type'Last)];
-
- -- We turn off all checks since we know that the conversions
- -- will work fine, given the guards for negative values.
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Or_Else (Loc,
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_And_Then (Loc,
- Left_Opnd => Make_Op_Ge (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Target_Type, Loc),
- Attribute_Name => Name_First),
- Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
-
- Right_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd => Duplicate_Subexpr (N),
- Right_Opnd =>
- Convert_To (Source_Base_Type,
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (Target_Type, Loc),
- Attribute_Name => Name_First)))),
-
- Right_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Target_Type, Loc),
- Attribute_Name => Name_Last),
- Right_Opnd => Make_Integer_Literal (Loc, Uint_0))),
-
- Right_Opnd =>
- Make_Op_Gt (Loc,
- Left_Opnd => Duplicate_Subexpr (N),
- Right_Opnd =>
- Convert_To (Source_Base_Type,
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Target_Type, Loc),
- Attribute_Name => Name_Last)))),
-
- Reason => Reason),
- Suppress => All_Checks);
-
- -- Only remaining possibility is that the source is signed and
- -- the target is unsigned.
-
- else
- pragma Assert (not Is_Unsigned_Type (Source_Base_Type)
- and then Is_Unsigned_Type (Target_Base_Type));
-
- -- If the source is signed and the target is unsigned, then we
- -- know that the target is not shorter than the source (otherwise
- -- the target base type would be in the source base type range).
-
- -- In other words, the unsigned type is either the same size as
- -- the target, or it is larger. It cannot be smaller.
-
- -- Clearly we have an error if the source value is negative since
- -- no unsigned type can have negative values. If the source type
- -- is non-negative, then the check can be done using the target
- -- type.
-
- -- Tnn : constant Target_Base_Type (N) := Target_Type;
-
- -- [constraint_error
- -- when N < 0 or else Tnn not in Target_Type];
-
- -- We turn off all checks for the conversion of N to the target
- -- base type, since we generate the explicit check to ensure that
- -- the value is non-negative
-
- declare
- Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
-
- begin
- Insert_Actions (N, New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => Tnn,
- Object_Definition =>
- New_Occurrence_Of (Target_Base_Type, Loc),
- Constant_Present => True,
- Expression =>
- Make_Unchecked_Type_Conversion (Loc,
- Subtype_Mark =>
- New_Occurrence_Of (Target_Base_Type, Loc),
- Expression => Duplicate_Subexpr (N))),
-
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd => Duplicate_Subexpr (N),
- Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
-
- Right_Opnd =>
- Make_Not_In (Loc,
- Left_Opnd => New_Occurrence_Of (Tnn, Loc),
- Right_Opnd =>
- New_Occurrence_Of (Target_Type, Loc))),
-
- Reason => Reason)),
- Suppress => All_Checks);
-
- -- Set the Etype explicitly, because Insert_Actions may have
- -- placed the declaration in the freeze list for an enclosing
- -- construct, and thus it is not analyzed yet.
-
- Set_Etype (Tnn, Target_Base_Type);
- Rewrite (N, New_Occurrence_Of (Tnn, Loc));
- end;
- end if;
- end if;
- end Generate_Range_Check;
-
- ------------------
- -- Get_Check_Id --
- ------------------
-
- function Get_Check_Id (N : Name_Id) return Check_Id is
- begin
- -- For standard check name, we can do a direct computation
-
- if N in First_Check_Name .. Last_Check_Name then
- return Check_Id (N - (First_Check_Name - 1));
-
- -- For non-standard names added by pragma Check_Name, search table
-
- else
- for J in All_Checks + 1 .. Check_Names.Last loop
- if Check_Names.Table (J) = N then
- return J;
- end if;
- end loop;
- end if;
-
- -- No matching name found
-
- return No_Check_Id;
- end Get_Check_Id;
-
- ---------------------
- -- Get_Discriminal --
- ---------------------
-
- function Get_Discriminal (E : Entity_Id; Bound : Node_Id) return Node_Id is
- Loc : constant Source_Ptr := Sloc (E);
- D : Entity_Id;
- Sc : Entity_Id;
-
- begin
- -- The bound can be a bona fide parameter of a protected operation,
- -- rather than a prival encoded as an in-parameter.
-
- if No (Discriminal_Link (Entity (Bound))) then
- return Bound;
- end if;
-
- -- Climb the scope stack looking for an enclosing protected type. If
- -- we run out of scopes, return the bound itself.
-
- Sc := Scope (E);
- while Present (Sc) loop
- if Sc = Standard_Standard then
- return Bound;
-
- elsif Ekind (Sc) = E_Protected_Type then
- exit;
- end if;
-
- Sc := Scope (Sc);
- end loop;
-
- D := First_Discriminant (Sc);
- while Present (D) loop
- if Chars (D) = Chars (Bound) then
- return New_Occurrence_Of (Discriminal (D), Loc);
- end if;
-
- Next_Discriminant (D);
- end loop;
-
- return Bound;
- end Get_Discriminal;
-
- ----------------------
- -- Get_Range_Checks --
- ----------------------
-
- function Get_Range_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id := Empty;
- Warn_Node : Node_Id := Empty) return Check_Result
- is
- begin
- return Selected_Range_Checks
- (Ck_Node, Target_Typ, Source_Typ, Warn_Node);
- end Get_Range_Checks;
-
- ------------------
- -- Guard_Access --
- ------------------
-
- function Guard_Access
- (Cond : Node_Id;
- Loc : Source_Ptr;
- Ck_Node : Node_Id) return Node_Id
- is
- begin
- if Nkind (Cond) = N_Or_Else then
- Set_Paren_Count (Cond, 1);
- end if;
-
- if Nkind (Ck_Node) = N_Allocator then
- return Cond;
- else
- return
- Make_And_Then (Loc,
- Left_Opnd =>
- Make_Op_Ne (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (Ck_Node),
- Right_Opnd => Make_Null (Loc)),
- Right_Opnd => Cond);
- end if;
- end Guard_Access;
-
- -----------------------------
- -- Index_Checks_Suppressed --
- -----------------------------
-
- function Index_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Index_Check);
- else
- return Scope_Suppress.Suppress (Index_Check);
- end if;
- end Index_Checks_Suppressed;
-
- ----------------
- -- Initialize --
- ----------------
-
- procedure Initialize is
- begin
- for J in Determine_Range_Cache_N'Range loop
- Determine_Range_Cache_N (J) := Empty;
- end loop;
-
- Check_Names.Init;
-
- for J in Int range 1 .. All_Checks loop
- Check_Names.Append (Name_Id (Int (First_Check_Name) + J - 1));
- end loop;
- end Initialize;
-
- -------------------------
- -- Insert_Range_Checks --
- -------------------------
-
- procedure Insert_Range_Checks
- (Checks : Check_Result;
- Node : Node_Id;
- Suppress_Typ : Entity_Id;
- Static_Sloc : Source_Ptr := No_Location;
- Flag_Node : Node_Id := Empty;
- Do_Before : Boolean := False)
- is
- Internal_Flag_Node : Node_Id := Flag_Node;
- Internal_Static_Sloc : Source_Ptr := Static_Sloc;
-
- Check_Node : Node_Id;
- Checks_On : constant Boolean :=
- (not Index_Checks_Suppressed (Suppress_Typ))
- or else (not Range_Checks_Suppressed (Suppress_Typ));
-
- begin
- -- For now we just return if Checks_On is false, however this should be
- -- enhanced to check for an always True value in the condition and to
- -- generate a compilation warning???
-
- if not Full_Expander_Active or else not Checks_On then
- return;
- end if;
-
- if Static_Sloc = No_Location then
- Internal_Static_Sloc := Sloc (Node);
- end if;
-
- if No (Flag_Node) then
- Internal_Flag_Node := Node;
- end if;
-
- for J in 1 .. 2 loop
- exit when No (Checks (J));
-
- if Nkind (Checks (J)) = N_Raise_Constraint_Error
- and then Present (Condition (Checks (J)))
- then
- if not Has_Dynamic_Range_Check (Internal_Flag_Node) then
- Check_Node := Checks (J);
- Mark_Rewrite_Insertion (Check_Node);
-
- if Do_Before then
- Insert_Before_And_Analyze (Node, Check_Node);
- else
- Insert_After_And_Analyze (Node, Check_Node);
- end if;
-
- Set_Has_Dynamic_Range_Check (Internal_Flag_Node);
- end if;
-
- else
- Check_Node :=
- Make_Raise_Constraint_Error (Internal_Static_Sloc,
- Reason => CE_Range_Check_Failed);
- Mark_Rewrite_Insertion (Check_Node);
-
- if Do_Before then
- Insert_Before_And_Analyze (Node, Check_Node);
- else
- Insert_After_And_Analyze (Node, Check_Node);
- end if;
- end if;
- end loop;
- end Insert_Range_Checks;
-
- ------------------------
- -- Insert_Valid_Check --
- ------------------------
-
- procedure Insert_Valid_Check (Expr : Node_Id) is
- Loc : constant Source_Ptr := Sloc (Expr);
- Exp : Node_Id;
-
- begin
- -- Do not insert if checks off, or if not checking validity or
- -- if expression is known to be valid
-
- if not Validity_Checks_On
- or else Range_Or_Validity_Checks_Suppressed (Expr)
- or else Expr_Known_Valid (Expr)
- then
- return;
- end if;
-
- -- If we have a checked conversion, then validity check applies to
- -- the expression inside the conversion, not the result, since if
- -- the expression inside is valid, then so is the conversion result.
-
- Exp := Expr;
- while Nkind (Exp) = N_Type_Conversion loop
- Exp := Expression (Exp);
- end loop;
-
- -- We are about to insert the validity check for Exp. We save and
- -- reset the Do_Range_Check flag over this validity check, and then
- -- put it back for the final original reference (Exp may be rewritten).
-
- declare
- DRC : constant Boolean := Do_Range_Check (Exp);
- PV : Node_Id;
- CE : Node_Id;
-
- begin
- Set_Do_Range_Check (Exp, False);
-
- -- Force evaluation to avoid multiple reads for atomic/volatile
-
- if Is_Entity_Name (Exp)
- and then Is_Volatile (Entity (Exp))
- then
- Force_Evaluation (Exp, Name_Req => True);
- end if;
-
- -- Build the prefix for the 'Valid call
-
- PV := Duplicate_Subexpr_No_Checks (Exp, Name_Req => True);
-
- -- A rather specialized kludge. If PV is an analyzed expression
- -- which is an indexed component of a packed array that has not
- -- been properly expanded, turn off its Analyzed flag to make sure
- -- it gets properly reexpanded.
-
- -- The reason this arises is that Duplicate_Subexpr_No_Checks did
- -- an analyze with the old parent pointer. This may point e.g. to
- -- a subprogram call, which deactivates this expansion.
-
- if Analyzed (PV)
- and then Nkind (PV) = N_Indexed_Component
- and then Present (Packed_Array_Type (Etype (Prefix (PV))))
- then
- Set_Analyzed (PV, False);
- end if;
-
- -- Build the raise CE node to check for validity
-
- CE :=
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_Not (Loc,
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => PV,
- Attribute_Name => Name_Valid)),
- Reason => CE_Invalid_Data);
-
- -- Insert the validity check. Note that we do this with validity
- -- checks turned off, to avoid recursion, we do not want validity
- -- checks on the validity checking code itself!
-
- Insert_Action (Expr, CE, Suppress => Validity_Check);
-
- -- If the expression is a reference to an element of a bit-packed
- -- array, then it is rewritten as a renaming declaration. If the
- -- expression is an actual in a call, it has not been expanded,
- -- waiting for the proper point at which to do it. The same happens
- -- with renamings, so that we have to force the expansion now. This
- -- non-local complication is due to code in exp_ch2,adb, exp_ch4.adb
- -- and exp_ch6.adb.
-
- if Is_Entity_Name (Exp)
- and then Nkind (Parent (Entity (Exp))) =
- N_Object_Renaming_Declaration
- then
- declare
- Old_Exp : constant Node_Id := Name (Parent (Entity (Exp)));
- begin
- if Nkind (Old_Exp) = N_Indexed_Component
- and then Is_Bit_Packed_Array (Etype (Prefix (Old_Exp)))
- then
- Expand_Packed_Element_Reference (Old_Exp);
- end if;
- end;
- end if;
-
- -- Put back the Do_Range_Check flag on the resulting (possibly
- -- rewritten) expression.
-
- -- Note: it might be thought that a validity check is not required
- -- when a range check is present, but that's not the case, because
- -- the back end is allowed to assume for the range check that the
- -- operand is within its declared range (an assumption that validity
- -- checking is all about NOT assuming!)
-
- -- Note: no need to worry about Possible_Local_Raise here, it will
- -- already have been called if original node has Do_Range_Check set.
-
- Set_Do_Range_Check (Exp, DRC);
- end;
- end Insert_Valid_Check;
-
- -------------------------------------
- -- Is_Signed_Integer_Arithmetic_Op --
- -------------------------------------
-
- function Is_Signed_Integer_Arithmetic_Op (N : Node_Id) return Boolean is
- begin
- case Nkind (N) is
- when N_Op_Abs | N_Op_Add | N_Op_Divide | N_Op_Expon |
- N_Op_Minus | N_Op_Mod | N_Op_Multiply | N_Op_Plus |
- N_Op_Rem | N_Op_Subtract =>
- return Is_Signed_Integer_Type (Etype (N));
-
- when N_If_Expression | N_Case_Expression =>
- return Is_Signed_Integer_Type (Etype (N));
-
- when others =>
- return False;
- end case;
- end Is_Signed_Integer_Arithmetic_Op;
-
- ----------------------------------
- -- Install_Null_Excluding_Check --
- ----------------------------------
-
- procedure Install_Null_Excluding_Check (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (Parent (N));
- Typ : constant Entity_Id := Etype (N);
-
- function Safe_To_Capture_In_Parameter_Value return Boolean;
- -- Determines if it is safe to capture Known_Non_Null status for an
- -- the entity referenced by node N. The caller ensures that N is indeed
- -- an entity name. It is safe to capture the non-null status for an IN
- -- parameter when the reference occurs within a declaration that is sure
- -- to be executed as part of the declarative region.
-
- procedure Mark_Non_Null;
- -- After installation of check, if the node in question is an entity
- -- name, then mark this entity as non-null if possible.
-
- function Safe_To_Capture_In_Parameter_Value return Boolean is
- E : constant Entity_Id := Entity (N);
- S : constant Entity_Id := Current_Scope;
- S_Par : Node_Id;
-
- begin
- if Ekind (E) /= E_In_Parameter then
- return False;
- end if;
-
- -- Two initial context checks. We must be inside a subprogram body
- -- with declarations and reference must not appear in nested scopes.
-
- if (Ekind (S) /= E_Function and then Ekind (S) /= E_Procedure)
- or else Scope (E) /= S
- then
- return False;
- end if;
-
- S_Par := Parent (Parent (S));
-
- if Nkind (S_Par) /= N_Subprogram_Body
- or else No (Declarations (S_Par))
- then
- return False;
- end if;
-
- declare
- N_Decl : Node_Id;
- P : Node_Id;
-
- begin
- -- Retrieve the declaration node of N (if any). Note that N
- -- may be a part of a complex initialization expression.
-
- P := Parent (N);
- N_Decl := Empty;
- while Present (P) loop
-
- -- If we have a short circuit form, and we are within the right
- -- hand expression, we return false, since the right hand side
- -- is not guaranteed to be elaborated.
-
- if Nkind (P) in N_Short_Circuit
- and then N = Right_Opnd (P)
- then
- return False;
- end if;
-
- -- Similarly, if we are in an if expression and not part of the
- -- condition, then we return False, since neither the THEN or
- -- ELSE dependent expressions will always be elaborated.
-
- if Nkind (P) = N_If_Expression
- and then N /= First (Expressions (P))
- then
- return False;
- end if;
-
- -- If we are in a case expression, and not part of the
- -- expression, then we return False, since a particular
- -- dependent expression may not always be elaborated
-
- if Nkind (P) = N_Case_Expression
- and then N /= Expression (P)
- then
- return False;
- end if;
-
- -- While traversing the parent chain, we find that N
- -- belongs to a statement, thus it may never appear in
- -- a declarative region.
-
- if Nkind (P) in N_Statement_Other_Than_Procedure_Call
- or else Nkind (P) = N_Procedure_Call_Statement
- then
- return False;
- end if;
-
- -- If we are at a declaration, record it and exit
-
- if Nkind (P) in N_Declaration
- and then Nkind (P) not in N_Subprogram_Specification
- then
- N_Decl := P;
- exit;
- end if;
-
- P := Parent (P);
- end loop;
-
- if No (N_Decl) then
- return False;
- end if;
-
- return List_Containing (N_Decl) = Declarations (S_Par);
- end;
- end Safe_To_Capture_In_Parameter_Value;
-
- -------------------
- -- Mark_Non_Null --
- -------------------
-
- procedure Mark_Non_Null is
- begin
- -- Only case of interest is if node N is an entity name
-
- if Is_Entity_Name (N) then
-
- -- For sure, we want to clear an indication that this is known to
- -- be null, since if we get past this check, it definitely is not!
-
- Set_Is_Known_Null (Entity (N), False);
-
- -- We can mark the entity as known to be non-null if either it is
- -- safe to capture the value, or in the case of an IN parameter,
- -- which is a constant, if the check we just installed is in the
- -- declarative region of the subprogram body. In this latter case,
- -- a check is decisive for the rest of the body if the expression
- -- is sure to be elaborated, since we know we have to elaborate
- -- all declarations before executing the body.
-
- -- Couldn't this always be part of Safe_To_Capture_Value ???
-
- if Safe_To_Capture_Value (N, Entity (N))
- or else Safe_To_Capture_In_Parameter_Value
- then
- Set_Is_Known_Non_Null (Entity (N));
- end if;
- end if;
- end Mark_Non_Null;
-
- -- Start of processing for Install_Null_Excluding_Check
-
- begin
- pragma Assert (Is_Access_Type (Typ));
-
- -- No check inside a generic (why not???)
-
- if Inside_A_Generic then
- return;
- end if;
-
- -- No check needed if known to be non-null
-
- if Known_Non_Null (N) then
- return;
- end if;
-
- -- If known to be null, here is where we generate a compile time check
-
- if Known_Null (N) then
-
- -- Avoid generating warning message inside init procs
-
- if not Inside_Init_Proc then
- Apply_Compile_Time_Constraint_Error
- (N,
- "null value not allowed here??",
- CE_Access_Check_Failed);
- else
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Reason => CE_Access_Check_Failed));
- end if;
-
- Mark_Non_Null;
- return;
- end if;
-
- -- If entity is never assigned, for sure a warning is appropriate
-
- if Is_Entity_Name (N) then
- Check_Unset_Reference (N);
- end if;
-
- -- No check needed if checks are suppressed on the range. Note that we
- -- don't set Is_Known_Non_Null in this case (we could legitimately do
- -- so, since the program is erroneous, but we don't like to casually
- -- propagate such conclusions from erroneosity).
-
- if Access_Checks_Suppressed (Typ) then
- return;
- end if;
-
- -- No check needed for access to concurrent record types generated by
- -- the expander. This is not just an optimization (though it does indeed
- -- remove junk checks). It also avoids generation of junk warnings.
-
- if Nkind (N) in N_Has_Chars
- and then Chars (N) = Name_uObject
- and then Is_Concurrent_Record_Type
- (Directly_Designated_Type (Etype (N)))
- then
- return;
- end if;
-
- -- No check needed for the Get_Current_Excep.all.all idiom generated by
- -- the expander within exception handlers, since we know that the value
- -- can never be null.
-
- -- Is this really the right way to do this? Normally we generate such
- -- code in the expander with checks off, and that's how we suppress this
- -- kind of junk check ???
-
- if Nkind (N) = N_Function_Call
- and then Nkind (Name (N)) = N_Explicit_Dereference
- and then Nkind (Prefix (Name (N))) = N_Identifier
- and then Is_RTE (Entity (Prefix (Name (N))), RE_Get_Current_Excep)
- then
- return;
- end if;
-
- -- Otherwise install access check
-
- Insert_Action (N,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_Eq (Loc,
- Left_Opnd => Duplicate_Subexpr_Move_Checks (N),
- Right_Opnd => Make_Null (Loc)),
- Reason => CE_Access_Check_Failed));
-
- Mark_Non_Null;
- end Install_Null_Excluding_Check;
-
- --------------------------
- -- Install_Static_Check --
- --------------------------
-
- procedure Install_Static_Check (R_Cno : Node_Id; Loc : Source_Ptr) is
- Stat : constant Boolean := Is_Static_Expression (R_Cno);
- Typ : constant Entity_Id := Etype (R_Cno);
-
- begin
- Rewrite (R_Cno,
- Make_Raise_Constraint_Error (Loc,
- Reason => CE_Range_Check_Failed));
- Set_Analyzed (R_Cno);
- Set_Etype (R_Cno, Typ);
- Set_Raises_Constraint_Error (R_Cno);
- Set_Is_Static_Expression (R_Cno, Stat);
-
- -- Now deal with possible local raise handling
-
- Possible_Local_Raise (R_Cno, Standard_Constraint_Error);
- end Install_Static_Check;
-
- -------------------------
- -- Is_Check_Suppressed --
- -------------------------
-
- function Is_Check_Suppressed (E : Entity_Id; C : Check_Id) return Boolean is
- Ptr : Suppress_Stack_Entry_Ptr;
-
- begin
- -- First search the local entity suppress stack. We search this from the
- -- top of the stack down so that we get the innermost entry that applies
- -- to this case if there are nested entries.
-
- Ptr := Local_Suppress_Stack_Top;
- while Ptr /= null loop
- if (Ptr.Entity = Empty or else Ptr.Entity = E)
- and then (Ptr.Check = All_Checks or else Ptr.Check = C)
- then
- return Ptr.Suppress;
- end if;
-
- Ptr := Ptr.Prev;
- end loop;
-
- -- Now search the global entity suppress table for a matching entry.
- -- We also search this from the top down so that if there are multiple
- -- pragmas for the same entity, the last one applies (not clear what
- -- or whether the RM specifies this handling, but it seems reasonable).
-
- Ptr := Global_Suppress_Stack_Top;
- while Ptr /= null loop
- if (Ptr.Entity = Empty or else Ptr.Entity = E)
- and then (Ptr.Check = All_Checks or else Ptr.Check = C)
- then
- return Ptr.Suppress;
- end if;
-
- Ptr := Ptr.Prev;
- end loop;
-
- -- If we did not find a matching entry, then use the normal scope
- -- suppress value after all (actually this will be the global setting
- -- since it clearly was not overridden at any point). For a predefined
- -- check, we test the specific flag. For a user defined check, we check
- -- the All_Checks flag. The Overflow flag requires special handling to
- -- deal with the General vs Assertion case
-
- if C = Overflow_Check then
- return Overflow_Checks_Suppressed (Empty);
- elsif C in Predefined_Check_Id then
- return Scope_Suppress.Suppress (C);
- else
- return Scope_Suppress.Suppress (All_Checks);
- end if;
- end Is_Check_Suppressed;
-
- ---------------------
- -- Kill_All_Checks --
- ---------------------
-
- procedure Kill_All_Checks is
- begin
- if Debug_Flag_CC then
- w ("Kill_All_Checks");
- end if;
-
- -- We reset the number of saved checks to zero, and also modify all
- -- stack entries for statement ranges to indicate that the number of
- -- checks at each level is now zero.
-
- Num_Saved_Checks := 0;
-
- -- Note: the Int'Min here avoids any possibility of J being out of
- -- range when called from e.g. Conditional_Statements_Begin.
-
- for J in 1 .. Int'Min (Saved_Checks_TOS, Saved_Checks_Stack'Last) loop
- Saved_Checks_Stack (J) := 0;
- end loop;
- end Kill_All_Checks;
-
- -----------------
- -- Kill_Checks --
- -----------------
-
- procedure Kill_Checks (V : Entity_Id) is
- begin
- if Debug_Flag_CC then
- w ("Kill_Checks for entity", Int (V));
- end if;
-
- for J in 1 .. Num_Saved_Checks loop
- if Saved_Checks (J).Entity = V then
- if Debug_Flag_CC then
- w (" Checks killed for saved check ", J);
- end if;
-
- Saved_Checks (J).Killed := True;
- end if;
- end loop;
- end Kill_Checks;
-
- ------------------------------
- -- Length_Checks_Suppressed --
- ------------------------------
-
- function Length_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Length_Check);
- else
- return Scope_Suppress.Suppress (Length_Check);
- end if;
- end Length_Checks_Suppressed;
-
- -----------------------
- -- Make_Bignum_Block --
- -----------------------
-
- function Make_Bignum_Block (Loc : Source_Ptr) return Node_Id is
- M : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uM);
-
- begin
- return
- Make_Block_Statement (Loc,
- Declarations => New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => M,
- Object_Definition =>
- New_Occurrence_Of (RTE (RE_Mark_Id), Loc),
- Expression =>
- Make_Function_Call (Loc,
- Name => New_Reference_To (RTE (RE_SS_Mark), Loc)))),
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Make_Procedure_Call_Statement (Loc,
- Name => New_Occurrence_Of (RTE (RE_SS_Release), Loc),
- Parameter_Associations => New_List (
- New_Reference_To (M, Loc))))));
- end Make_Bignum_Block;
-
- ----------------------------------
- -- Minimize_Eliminate_Overflows --
- ----------------------------------
-
- -- This is a recursive routine that is called at the top of an expression
- -- tree to properly process overflow checking for a whole subtree by making
- -- recursive calls to process operands. This processing may involve the use
- -- of bignum or long long integer arithmetic, which will change the types
- -- of operands and results. That's why we can't do this bottom up (since
- -- it would interfere with semantic analysis).
-
- -- What happens is that if MINIMIZED/ELIMINATED mode is in effect then
- -- the operator expansion routines, as well as the expansion routines for
- -- if/case expression, do nothing (for the moment) except call the routine
- -- to apply the overflow check (Apply_Arithmetic_Overflow_Check). That
- -- routine does nothing for non top-level nodes, so at the point where the
- -- call is made for the top level node, the entire expression subtree has
- -- not been expanded, or processed for overflow. All that has to happen as
- -- a result of the top level call to this routine.
-
- -- As noted above, the overflow processing works by making recursive calls
- -- for the operands, and figuring out what to do, based on the processing
- -- of these operands (e.g. if a bignum operand appears, the parent op has
- -- to be done in bignum mode), and the determined ranges of the operands.
-
- -- After possible rewriting of a constituent subexpression node, a call is
- -- made to either reexpand the node (if nothing has changed) or reanalyze
- -- the node (if it has been modified by the overflow check processing). The
- -- Analyzed_Flag is set to False before the reexpand/reanalyze. To avoid
- -- a recursive call into the whole overflow apparatus, an important rule
- -- for this call is that the overflow handling mode must be temporarily set
- -- to STRICT.
-
- procedure Minimize_Eliminate_Overflows
- (N : Node_Id;
- Lo : out Uint;
- Hi : out Uint;
- Top_Level : Boolean)
- is
- Rtyp : constant Entity_Id := Etype (N);
- pragma Assert (Is_Signed_Integer_Type (Rtyp));
- -- Result type, must be a signed integer type
-
- Check_Mode : constant Overflow_Mode_Type := Overflow_Check_Mode;
- pragma Assert (Check_Mode in Minimized_Or_Eliminated);
-
- Loc : constant Source_Ptr := Sloc (N);
-
- Rlo, Rhi : Uint;
- -- Ranges of values for right operand (operator case)
-
- Llo, Lhi : Uint;
- -- Ranges of values for left operand (operator case)
-
- LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
- -- Operands and results are of this type when we convert
-
- LLLo : constant Uint := Intval (Type_Low_Bound (LLIB));
- LLHi : constant Uint := Intval (Type_High_Bound (LLIB));
- -- Bounds of Long_Long_Integer
-
- Binary : constant Boolean := Nkind (N) in N_Binary_Op;
- -- Indicates binary operator case
-
- OK : Boolean;
- -- Used in call to Determine_Range
-
- Bignum_Operands : Boolean;
- -- Set True if one or more operands is already of type Bignum, meaning
- -- that for sure (regardless of Top_Level setting) we are committed to
- -- doing the operation in Bignum mode (or in the case of a case or if
- -- expression, converting all the dependent expressions to Bignum).
-
- Long_Long_Integer_Operands : Boolean;
- -- Set True if one or more operands is already of type Long_Long_Integer
- -- which means that if the result is known to be in the result type
- -- range, then we must convert such operands back to the result type.
-
- procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False);
- -- This is called when we have modified the node and we therefore need
- -- to reanalyze it. It is important that we reset the mode to STRICT for
- -- this reanalysis, since if we leave it in MINIMIZED or ELIMINATED mode
- -- we would reenter this routine recursively which would not be good!
- -- The argument Suppress is set True if we also want to suppress
- -- overflow checking for the reexpansion (this is set when we know
- -- overflow is not possible). Typ is the type for the reanalysis.
-
- procedure Reexpand (Suppress : Boolean := False);
- -- This is like Reanalyze, but does not do the Analyze step, it only
- -- does a reexpansion. We do this reexpansion in STRICT mode, so that
- -- instead of reentering the MINIMIZED/ELIMINATED mode processing, we
- -- follow the normal expansion path (e.g. converting A**4 to A**2**2).
- -- Note that skipping reanalysis is not just an optimization, testing
- -- has showed up several complex cases in which reanalyzing an already
- -- analyzed node causes incorrect behavior.
-
- function In_Result_Range return Boolean;
- -- Returns True iff Lo .. Hi are within range of the result type
-
- procedure Max (A : in out Uint; B : Uint);
- -- If A is No_Uint, sets A to B, else to UI_Max (A, B)
-
- procedure Min (A : in out Uint; B : Uint);
- -- If A is No_Uint, sets A to B, else to UI_Min (A, B)
-
- ---------------------
- -- In_Result_Range --
- ---------------------
-
- function In_Result_Range return Boolean is
- begin
- if Lo = No_Uint or else Hi = No_Uint then
- return False;
-
- elsif Is_Static_Subtype (Etype (N)) then
- return Lo >= Expr_Value (Type_Low_Bound (Rtyp))
- and then
- Hi <= Expr_Value (Type_High_Bound (Rtyp));
-
- else
- return Lo >= Expr_Value (Type_Low_Bound (Base_Type (Rtyp)))
- and then
- Hi <= Expr_Value (Type_High_Bound (Base_Type (Rtyp)));
- end if;
- end In_Result_Range;
-
- ---------
- -- Max --
- ---------
-
- procedure Max (A : in out Uint; B : Uint) is
- begin
- if A = No_Uint or else B > A then
- A := B;
- end if;
- end Max;
-
- ---------
- -- Min --
- ---------
-
- procedure Min (A : in out Uint; B : Uint) is
- begin
- if A = No_Uint or else B < A then
- A := B;
- end if;
- end Min;
-
- ---------------
- -- Reanalyze --
- ---------------
-
- procedure Reanalyze (Typ : Entity_Id; Suppress : Boolean := False) is
- Svg : constant Overflow_Mode_Type :=
- Scope_Suppress.Overflow_Mode_General;
- Sva : constant Overflow_Mode_Type :=
- Scope_Suppress.Overflow_Mode_Assertions;
- Svo : constant Boolean :=
- Scope_Suppress.Suppress (Overflow_Check);
-
- begin
- Scope_Suppress.Overflow_Mode_General := Strict;
- Scope_Suppress.Overflow_Mode_Assertions := Strict;
-
- if Suppress then
- Scope_Suppress.Suppress (Overflow_Check) := True;
- end if;
-
- Analyze_And_Resolve (N, Typ);
-
- Scope_Suppress.Suppress (Overflow_Check) := Svo;
- Scope_Suppress.Overflow_Mode_General := Svg;
- Scope_Suppress.Overflow_Mode_Assertions := Sva;
- end Reanalyze;
-
- --------------
- -- Reexpand --
- --------------
-
- procedure Reexpand (Suppress : Boolean := False) is
- Svg : constant Overflow_Mode_Type :=
- Scope_Suppress.Overflow_Mode_General;
- Sva : constant Overflow_Mode_Type :=
- Scope_Suppress.Overflow_Mode_Assertions;
- Svo : constant Boolean :=
- Scope_Suppress.Suppress (Overflow_Check);
-
- begin
- Scope_Suppress.Overflow_Mode_General := Strict;
- Scope_Suppress.Overflow_Mode_Assertions := Strict;
- Set_Analyzed (N, False);
-
- if Suppress then
- Scope_Suppress.Suppress (Overflow_Check) := True;
- end if;
-
- Expand (N);
-
- Scope_Suppress.Suppress (Overflow_Check) := Svo;
- Scope_Suppress.Overflow_Mode_General := Svg;
- Scope_Suppress.Overflow_Mode_Assertions := Sva;
- end Reexpand;
-
- -- Start of processing for Minimize_Eliminate_Overflows
-
- begin
- -- Case where we do not have a signed integer arithmetic operation
-
- if not Is_Signed_Integer_Arithmetic_Op (N) then
-
- -- Use the normal Determine_Range routine to get the range. We
- -- don't require operands to be valid, invalid values may result in
- -- rubbish results where the result has not been properly checked for
- -- overflow, that's fine!
-
- Determine_Range (N, OK, Lo, Hi, Assume_Valid => False);
-
- -- If Determine_Range did not work (can this in fact happen? Not
- -- clear but might as well protect), use type bounds.
-
- if not OK then
- Lo := Intval (Type_Low_Bound (Base_Type (Etype (N))));
- Hi := Intval (Type_High_Bound (Base_Type (Etype (N))));
- end if;
-
- -- If we don't have a binary operator, all we have to do is to set
- -- the Hi/Lo range, so we are done
-
- return;
-
- -- Processing for if expression
-
- elsif Nkind (N) = N_If_Expression then
- declare
- Then_DE : constant Node_Id := Next (First (Expressions (N)));
- Else_DE : constant Node_Id := Next (Then_DE);
-
- begin
- Bignum_Operands := False;
-
- Minimize_Eliminate_Overflows
- (Then_DE, Lo, Hi, Top_Level => False);
-
- if Lo = No_Uint then
- Bignum_Operands := True;
- end if;
-
- Minimize_Eliminate_Overflows
- (Else_DE, Rlo, Rhi, Top_Level => False);
-
- if Rlo = No_Uint then
- Bignum_Operands := True;
- else
- Long_Long_Integer_Operands :=
- Etype (Then_DE) = LLIB or else Etype (Else_DE) = LLIB;
-
- Min (Lo, Rlo);
- Max (Hi, Rhi);
- end if;
-
- -- If at least one of our operands is now Bignum, we must rebuild
- -- the if expression to use Bignum operands. We will analyze the
- -- rebuilt if expression with overflow checks off, since once we
- -- are in bignum mode, we are all done with overflow checks!
-
- if Bignum_Operands then
- Rewrite (N,
- Make_If_Expression (Loc,
- Expressions => New_List (
- Remove_Head (Expressions (N)),
- Convert_To_Bignum (Then_DE),
- Convert_To_Bignum (Else_DE)),
- Is_Elsif => Is_Elsif (N)));
-
- Reanalyze (RTE (RE_Bignum), Suppress => True);
-
- -- If we have no Long_Long_Integer operands, then we are in result
- -- range, since it means that none of our operands felt the need
- -- to worry about overflow (otherwise it would have already been
- -- converted to long long integer or bignum). We reexpand to
- -- complete the expansion of the if expression (but we do not
- -- need to reanalyze).
-
- elsif not Long_Long_Integer_Operands then
- Set_Do_Overflow_Check (N, False);
- Reexpand;
-
- -- Otherwise convert us to long long integer mode. Note that we
- -- don't need any further overflow checking at this level.
-
- else
- Convert_To_And_Rewrite (LLIB, Then_DE);
- Convert_To_And_Rewrite (LLIB, Else_DE);
- Set_Etype (N, LLIB);
-
- -- Now reanalyze with overflow checks off
-
- Set_Do_Overflow_Check (N, False);
- Reanalyze (LLIB, Suppress => True);
- end if;
- end;
-
- return;
-
- -- Here for case expression
-
- elsif Nkind (N) = N_Case_Expression then
- Bignum_Operands := False;
- Long_Long_Integer_Operands := False;
-
- declare
- Alt : Node_Id;
-
- begin
- -- Loop through expressions applying recursive call
-
- Alt := First (Alternatives (N));
- while Present (Alt) loop
- declare
- Aexp : constant Node_Id := Expression (Alt);
-
- begin
- Minimize_Eliminate_Overflows
- (Aexp, Lo, Hi, Top_Level => False);
-
- if Lo = No_Uint then
- Bignum_Operands := True;
- elsif Etype (Aexp) = LLIB then
- Long_Long_Integer_Operands := True;
- end if;
- end;
-
- Next (Alt);
- end loop;
-
- -- If we have no bignum or long long integer operands, it means
- -- that none of our dependent expressions could raise overflow.
- -- In this case, we simply return with no changes except for
- -- resetting the overflow flag, since we are done with overflow
- -- checks for this node. We will reexpand to get the needed
- -- expansion for the case expression, but we do not need to
- -- reanalyze, since nothing has changed.
-
- if not (Bignum_Operands or Long_Long_Integer_Operands) then
- Set_Do_Overflow_Check (N, False);
- Reexpand (Suppress => True);
-
- -- Otherwise we are going to rebuild the case expression using
- -- either bignum or long long integer operands throughout.
-
- else
- declare
- Rtype : Entity_Id;
- New_Alts : List_Id;
- New_Exp : Node_Id;
-
- begin
- New_Alts := New_List;
- Alt := First (Alternatives (N));
- while Present (Alt) loop
- if Bignum_Operands then
- New_Exp := Convert_To_Bignum (Expression (Alt));
- Rtype := RTE (RE_Bignum);
- else
- New_Exp := Convert_To (LLIB, Expression (Alt));
- Rtype := LLIB;
- end if;
-
- Append_To (New_Alts,
- Make_Case_Expression_Alternative (Sloc (Alt),
- Actions => No_List,
- Discrete_Choices => Discrete_Choices (Alt),
- Expression => New_Exp));
-
- Next (Alt);
- end loop;
-
- Rewrite (N,
- Make_Case_Expression (Loc,
- Expression => Expression (N),
- Alternatives => New_Alts));
-
- Reanalyze (Rtype, Suppress => True);
- end;
- end if;
- end;
-
- return;
- end if;
-
- -- If we have an arithmetic operator we make recursive calls on the
- -- operands to get the ranges (and to properly process the subtree
- -- that lies below us!)
-
- Minimize_Eliminate_Overflows
- (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
-
- if Binary then
- Minimize_Eliminate_Overflows
- (Left_Opnd (N), Llo, Lhi, Top_Level => False);
- end if;
-
- -- Record if we have Long_Long_Integer operands
-
- Long_Long_Integer_Operands :=
- Etype (Right_Opnd (N)) = LLIB
- or else (Binary and then Etype (Left_Opnd (N)) = LLIB);
-
- -- If either operand is a bignum, then result will be a bignum and we
- -- don't need to do any range analysis. As previously discussed we could
- -- do range analysis in such cases, but it could mean working with giant
- -- numbers at compile time for very little gain (the number of cases
- -- in which we could slip back from bignum mode is small).
-
- if Rlo = No_Uint or else (Binary and then Llo = No_Uint) then
- Lo := No_Uint;
- Hi := No_Uint;
- Bignum_Operands := True;
-
- -- Otherwise compute result range
-
- else
- Bignum_Operands := False;
-
- case Nkind (N) is
-
- -- Absolute value
-
- when N_Op_Abs =>
- Lo := Uint_0;
- Hi := UI_Max (abs Rlo, abs Rhi);
-
- -- Addition
-
- when N_Op_Add =>
- Lo := Llo + Rlo;
- Hi := Lhi + Rhi;
-
- -- Division
-
- when N_Op_Divide =>
-
- -- If the right operand can only be zero, set 0..0
-
- if Rlo = 0 and then Rhi = 0 then
- Lo := Uint_0;
- Hi := Uint_0;
-
- -- Possible bounds of division must come from dividing end
- -- values of the input ranges (four possibilities), provided
- -- zero is not included in the possible values of the right
- -- operand.
-
- -- Otherwise, we just consider two intervals of values for
- -- the right operand: the interval of negative values (up to
- -- -1) and the interval of positive values (starting at 1).
- -- Since division by 1 is the identity, and division by -1
- -- is negation, we get all possible bounds of division in that
- -- case by considering:
- -- - all values from the division of end values of input
- -- ranges;
- -- - the end values of the left operand;
- -- - the negation of the end values of the left operand.
-
- else
- declare
- Mrk : constant Uintp.Save_Mark := Mark;
- -- Mark so we can release the RR and Ev values
-
- Ev1 : Uint;
- Ev2 : Uint;
- Ev3 : Uint;
- Ev4 : Uint;
-
- begin
- -- Discard extreme values of zero for the divisor, since
- -- they will simply result in an exception in any case.
-
- if Rlo = 0 then
- Rlo := Uint_1;
- elsif Rhi = 0 then
- Rhi := -Uint_1;
- end if;
-
- -- Compute possible bounds coming from dividing end
- -- values of the input ranges.
-
- Ev1 := Llo / Rlo;
- Ev2 := Llo / Rhi;
- Ev3 := Lhi / Rlo;
- Ev4 := Lhi / Rhi;
-
- Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
- Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
-
- -- If the right operand can be both negative or positive,
- -- include the end values of the left operand in the
- -- extreme values, as well as their negation.
-
- if Rlo < 0 and then Rhi > 0 then
- Ev1 := Llo;
- Ev2 := -Llo;
- Ev3 := Lhi;
- Ev4 := -Lhi;
-
- Min (Lo,
- UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4)));
- Max (Hi,
- UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4)));
- end if;
-
- -- Release the RR and Ev values
-
- Release_And_Save (Mrk, Lo, Hi);
- end;
- end if;
-
- -- Exponentiation
-
- when N_Op_Expon =>
-
- -- Discard negative values for the exponent, since they will
- -- simply result in an exception in any case.
-
- if Rhi < 0 then
- Rhi := Uint_0;
- elsif Rlo < 0 then
- Rlo := Uint_0;
- end if;
-
- -- Estimate number of bits in result before we go computing
- -- giant useless bounds. Basically the number of bits in the
- -- result is the number of bits in the base multiplied by the
- -- value of the exponent. If this is big enough that the result
- -- definitely won't fit in Long_Long_Integer, switch to bignum
- -- mode immediately, and avoid computing giant bounds.
-
- -- The comparison here is approximate, but conservative, it
- -- only clicks on cases that are sure to exceed the bounds.
-
- if Num_Bits (UI_Max (abs Llo, abs Lhi)) * Rhi + 1 > 100 then
- Lo := No_Uint;
- Hi := No_Uint;
-
- -- If right operand is zero then result is 1
-
- elsif Rhi = 0 then
- Lo := Uint_1;
- Hi := Uint_1;
-
- else
- -- High bound comes either from exponentiation of largest
- -- positive value to largest exponent value, or from
- -- the exponentiation of most negative value to an
- -- even exponent.
-
- declare
- Hi1, Hi2 : Uint;
-
- begin
- if Lhi > 0 then
- Hi1 := Lhi ** Rhi;
- else
- Hi1 := Uint_0;
- end if;
-
- if Llo < 0 then
- if Rhi mod 2 = 0 then
- Hi2 := Llo ** Rhi;
- else
- Hi2 := Llo ** (Rhi - 1);
- end if;
- else
- Hi2 := Uint_0;
- end if;
-
- Hi := UI_Max (Hi1, Hi2);
- end;
-
- -- Result can only be negative if base can be negative
-
- if Llo < 0 then
- if Rhi mod 2 = 0 then
- Lo := Llo ** (Rhi - 1);
- else
- Lo := Llo ** Rhi;
- end if;
-
- -- Otherwise low bound is minimum ** minimum
-
- else
- Lo := Llo ** Rlo;
- end if;
- end if;
-
- -- Negation
-
- when N_Op_Minus =>
- Lo := -Rhi;
- Hi := -Rlo;
-
- -- Mod
-
- when N_Op_Mod =>
- declare
- Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
- -- This is the maximum absolute value of the result
-
- begin
- Lo := Uint_0;
- Hi := Uint_0;
-
- -- The result depends only on the sign and magnitude of
- -- the right operand, it does not depend on the sign or
- -- magnitude of the left operand.
-
- if Rlo < 0 then
- Lo := -Maxabs;
- end if;
-
- if Rhi > 0 then
- Hi := Maxabs;
- end if;
- end;
-
- -- Multiplication
-
- when N_Op_Multiply =>
-
- -- Possible bounds of multiplication must come from multiplying
- -- end values of the input ranges (four possibilities).
-
- declare
- Mrk : constant Uintp.Save_Mark := Mark;
- -- Mark so we can release the Ev values
-
- Ev1 : constant Uint := Llo * Rlo;
- Ev2 : constant Uint := Llo * Rhi;
- Ev3 : constant Uint := Lhi * Rlo;
- Ev4 : constant Uint := Lhi * Rhi;
-
- begin
- Lo := UI_Min (UI_Min (Ev1, Ev2), UI_Min (Ev3, Ev4));
- Hi := UI_Max (UI_Max (Ev1, Ev2), UI_Max (Ev3, Ev4));
-
- -- Release the Ev values
-
- Release_And_Save (Mrk, Lo, Hi);
- end;
-
- -- Plus operator (affirmation)
-
- when N_Op_Plus =>
- Lo := Rlo;
- Hi := Rhi;
-
- -- Remainder
-
- when N_Op_Rem =>
- declare
- Maxabs : constant Uint := UI_Max (abs Rlo, abs Rhi) - 1;
- -- This is the maximum absolute value of the result. Note
- -- that the result range does not depend on the sign of the
- -- right operand.
-
- begin
- Lo := Uint_0;
- Hi := Uint_0;
-
- -- Case of left operand negative, which results in a range
- -- of -Maxabs .. 0 for those negative values. If there are
- -- no negative values then Lo value of result is always 0.
-
- if Llo < 0 then
- Lo := -Maxabs;
- end if;
-
- -- Case of left operand positive
-
- if Lhi > 0 then
- Hi := Maxabs;
- end if;
- end;
-
- -- Subtract
-
- when N_Op_Subtract =>
- Lo := Llo - Rhi;
- Hi := Lhi - Rlo;
-
- -- Nothing else should be possible
-
- when others =>
- raise Program_Error;
- end case;
- end if;
-
- -- Here for the case where we have not rewritten anything (no bignum
- -- operands or long long integer operands), and we know the result.
- -- If we know we are in the result range, and we do not have Bignum
- -- operands or Long_Long_Integer operands, we can just reexpand with
- -- overflow checks turned off (since we know we cannot have overflow).
- -- As always the reexpansion is required to complete expansion of the
- -- operator, but we do not need to reanalyze, and we prevent recursion
- -- by suppressing the check.
-
- if not (Bignum_Operands or Long_Long_Integer_Operands)
- and then In_Result_Range
- then
- Set_Do_Overflow_Check (N, False);
- Reexpand (Suppress => True);
- return;
-
- -- Here we know that we are not in the result range, and in the general
- -- case we will move into either the Bignum or Long_Long_Integer domain
- -- to compute the result. However, there is one exception. If we are
- -- at the top level, and we do not have Bignum or Long_Long_Integer
- -- operands, we will have to immediately convert the result back to
- -- the result type, so there is no point in Bignum/Long_Long_Integer
- -- fiddling.
-
- elsif Top_Level
- and then not (Bignum_Operands or Long_Long_Integer_Operands)
-
- -- One further refinement. If we are at the top level, but our parent
- -- is a type conversion, then go into bignum or long long integer node
- -- since the result will be converted to that type directly without
- -- going through the result type, and we may avoid an overflow. This
- -- is the case for example of Long_Long_Integer (A ** 4), where A is
- -- of type Integer, and the result A ** 4 fits in Long_Long_Integer
- -- but does not fit in Integer.
-
- and then Nkind (Parent (N)) /= N_Type_Conversion
- then
- -- Here keep original types, but we need to complete analysis
-
- -- One subtlety. We can't just go ahead and do an analyze operation
- -- here because it will cause recursion into the whole MINIMIZED/
- -- ELIMINATED overflow processing which is not what we want. Here
- -- we are at the top level, and we need a check against the result
- -- mode (i.e. we want to use STRICT mode). So do exactly that!
- -- Also, we have not modified the node, so this is a case where
- -- we need to reexpand, but not reanalyze.
-
- Reexpand;
- return;
-
- -- Cases where we do the operation in Bignum mode. This happens either
- -- because one of our operands is in Bignum mode already, or because
- -- the computed bounds are outside the bounds of Long_Long_Integer,
- -- which in some cases can be indicated by Hi and Lo being No_Uint.
-
- -- Note: we could do better here and in some cases switch back from
- -- Bignum mode to normal mode, e.g. big mod 2 must be in the range
- -- 0 .. 1, but the cases are rare and it is not worth the effort.
- -- Failing to do this switching back is only an efficiency issue.
-
- elsif Lo = No_Uint or else Lo < LLLo or else Hi > LLHi then
-
- -- OK, we are definitely outside the range of Long_Long_Integer. The
- -- question is whether to move to Bignum mode, or stay in the domain
- -- of Long_Long_Integer, signalling that an overflow check is needed.
-
- -- Obviously in MINIMIZED mode we stay with LLI, since we are not in
- -- the Bignum business. In ELIMINATED mode, we will normally move
- -- into Bignum mode, but there is an exception if neither of our
- -- operands is Bignum now, and we are at the top level (Top_Level
- -- set True). In this case, there is no point in moving into Bignum
- -- mode to prevent overflow if the caller will immediately convert
- -- the Bignum value back to LLI with an overflow check. It's more
- -- efficient to stay in LLI mode with an overflow check (if needed)
-
- if Check_Mode = Minimized
- or else (Top_Level and not Bignum_Operands)
- then
- if Do_Overflow_Check (N) then
- Enable_Overflow_Check (N);
- end if;
-
- -- The result now has to be in Long_Long_Integer mode, so adjust
- -- the possible range to reflect this. Note these calls also
- -- change No_Uint values from the top level case to LLI bounds.
-
- Max (Lo, LLLo);
- Min (Hi, LLHi);
-
- -- Otherwise we are in ELIMINATED mode and we switch to Bignum mode
-
- else
- pragma Assert (Check_Mode = Eliminated);
-
- declare
- Fent : Entity_Id;
- Args : List_Id;
-
- begin
- case Nkind (N) is
- when N_Op_Abs =>
- Fent := RTE (RE_Big_Abs);
-
- when N_Op_Add =>
- Fent := RTE (RE_Big_Add);
-
- when N_Op_Divide =>
- Fent := RTE (RE_Big_Div);
-
- when N_Op_Expon =>
- Fent := RTE (RE_Big_Exp);
-
- when N_Op_Minus =>
- Fent := RTE (RE_Big_Neg);
-
- when N_Op_Mod =>
- Fent := RTE (RE_Big_Mod);
-
- when N_Op_Multiply =>
- Fent := RTE (RE_Big_Mul);
-
- when N_Op_Rem =>
- Fent := RTE (RE_Big_Rem);
-
- when N_Op_Subtract =>
- Fent := RTE (RE_Big_Sub);
-
- -- Anything else is an internal error, this includes the
- -- N_Op_Plus case, since how can plus cause the result
- -- to be out of range if the operand is in range?
-
- when others =>
- raise Program_Error;
- end case;
-
- -- Construct argument list for Bignum call, converting our
- -- operands to Bignum form if they are not already there.
-
- Args := New_List;
-
- if Binary then
- Append_To (Args, Convert_To_Bignum (Left_Opnd (N)));
- end if;
-
- Append_To (Args, Convert_To_Bignum (Right_Opnd (N)));
-
- -- Now rewrite the arithmetic operator with a call to the
- -- corresponding bignum function.
-
- Rewrite (N,
- Make_Function_Call (Loc,
- Name => New_Occurrence_Of (Fent, Loc),
- Parameter_Associations => Args));
- Reanalyze (RTE (RE_Bignum), Suppress => True);
-
- -- Indicate result is Bignum mode
-
- Lo := No_Uint;
- Hi := No_Uint;
- return;
- end;
- end if;
-
- -- Otherwise we are in range of Long_Long_Integer, so no overflow
- -- check is required, at least not yet.
-
- else
- Set_Do_Overflow_Check (N, False);
- end if;
-
- -- Here we are not in Bignum territory, but we may have long long
- -- integer operands that need special handling. First a special check:
- -- If an exponentiation operator exponent is of type Long_Long_Integer,
- -- it means we converted it to prevent overflow, but exponentiation
- -- requires a Natural right operand, so convert it back to Natural.
- -- This conversion may raise an exception which is fine.
-
- if Nkind (N) = N_Op_Expon and then Etype (Right_Opnd (N)) = LLIB then
- Convert_To_And_Rewrite (Standard_Natural, Right_Opnd (N));
- end if;
-
- -- Here we will do the operation in Long_Long_Integer. We do this even
- -- if we know an overflow check is required, better to do this in long
- -- long integer mode, since we are less likely to overflow!
-
- -- Convert right or only operand to Long_Long_Integer, except that
- -- we do not touch the exponentiation right operand.
-
- if Nkind (N) /= N_Op_Expon then
- Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
- end if;
-
- -- Convert left operand to Long_Long_Integer for binary case
-
- if Binary then
- Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
- end if;
-
- -- Reset node to unanalyzed
-
- Set_Analyzed (N, False);
- Set_Etype (N, Empty);
- Set_Entity (N, Empty);
-
- -- Now analyze this new node. This reanalysis will complete processing
- -- for the node. In particular we will complete the expansion of an
- -- exponentiation operator (e.g. changing A ** 2 to A * A), and also
- -- we will complete any division checks (since we have not changed the
- -- setting of the Do_Division_Check flag).
-
- -- We do this reanalysis in STRICT mode to avoid recursion into the
- -- MINIMIZED/ELIMINATED handling, since we are now done with that!
-
- declare
- SG : constant Overflow_Mode_Type :=
- Scope_Suppress.Overflow_Mode_General;
- SA : constant Overflow_Mode_Type :=
- Scope_Suppress.Overflow_Mode_Assertions;
-
- begin
- Scope_Suppress.Overflow_Mode_General := Strict;
- Scope_Suppress.Overflow_Mode_Assertions := Strict;
-
- if not Do_Overflow_Check (N) then
- Reanalyze (LLIB, Suppress => True);
- else
- Reanalyze (LLIB);
- end if;
-
- Scope_Suppress.Overflow_Mode_General := SG;
- Scope_Suppress.Overflow_Mode_Assertions := SA;
- end;
- end Minimize_Eliminate_Overflows;
-
- -------------------------
- -- Overflow_Check_Mode --
- -------------------------
-
- function Overflow_Check_Mode return Overflow_Mode_Type is
- begin
- if In_Assertion_Expr = 0 then
- return Scope_Suppress.Overflow_Mode_General;
- else
- return Scope_Suppress.Overflow_Mode_Assertions;
- end if;
- end Overflow_Check_Mode;
-
- --------------------------------
- -- Overflow_Checks_Suppressed --
- --------------------------------
-
- function Overflow_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Overflow_Check);
- else
- return Scope_Suppress.Suppress (Overflow_Check);
- end if;
- end Overflow_Checks_Suppressed;
-
- -----------------------------
- -- Range_Checks_Suppressed --
- -----------------------------
-
- function Range_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) then
-
- -- Note: for now we always suppress range checks on Vax float types,
- -- since Gigi does not know how to generate these checks.
-
- if Vax_Float (E) then
- return True;
- elsif Kill_Range_Checks (E) then
- return True;
- elsif Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Range_Check);
- end if;
- end if;
-
- return Scope_Suppress.Suppress (Range_Check);
- end Range_Checks_Suppressed;
-
- -----------------------------------------
- -- Range_Or_Validity_Checks_Suppressed --
- -----------------------------------------
-
- -- Note: the coding would be simpler here if we simply made appropriate
- -- calls to Range/Validity_Checks_Suppressed, but that would result in
- -- duplicated checks which we prefer to avoid.
-
- function Range_Or_Validity_Checks_Suppressed
- (Expr : Node_Id) return Boolean
- is
- begin
- -- Immediate return if scope checks suppressed for either check
-
- if Scope_Suppress.Suppress (Range_Check)
- or
- Scope_Suppress.Suppress (Validity_Check)
- then
- return True;
- end if;
-
- -- If no expression, that's odd, decide that checks are suppressed,
- -- since we don't want anyone trying to do checks in this case, which
- -- is most likely the result of some other error.
-
- if No (Expr) then
- return True;
- end if;
-
- -- Expression is present, so perform suppress checks on type
-
- declare
- Typ : constant Entity_Id := Etype (Expr);
- begin
- if Vax_Float (Typ) then
- return True;
- elsif Checks_May_Be_Suppressed (Typ)
- and then (Is_Check_Suppressed (Typ, Range_Check)
- or else
- Is_Check_Suppressed (Typ, Validity_Check))
- then
- return True;
- end if;
- end;
-
- -- If expression is an entity name, perform checks on this entity
-
- if Is_Entity_Name (Expr) then
- declare
- Ent : constant Entity_Id := Entity (Expr);
- begin
- if Checks_May_Be_Suppressed (Ent) then
- return Is_Check_Suppressed (Ent, Range_Check)
- or else Is_Check_Suppressed (Ent, Validity_Check);
- end if;
- end;
- end if;
-
- -- If we fall through, no checks suppressed
-
- return False;
- end Range_Or_Validity_Checks_Suppressed;
-
- -------------------
- -- Remove_Checks --
- -------------------
-
- procedure Remove_Checks (Expr : Node_Id) is
- function Process (N : Node_Id) return Traverse_Result;
- -- Process a single node during the traversal
-
- procedure Traverse is new Traverse_Proc (Process);
- -- The traversal procedure itself
-
- -------------
- -- Process --
- -------------
-
- function Process (N : Node_Id) return Traverse_Result is
- begin
- if Nkind (N) not in N_Subexpr then
- return Skip;
- end if;
-
- Set_Do_Range_Check (N, False);
-
- case Nkind (N) is
- when N_And_Then =>
- Traverse (Left_Opnd (N));
- return Skip;
-
- when N_Attribute_Reference =>
- Set_Do_Overflow_Check (N, False);
-
- when N_Function_Call =>
- Set_Do_Tag_Check (N, False);
-
- when N_Op =>
- Set_Do_Overflow_Check (N, False);
-
- case Nkind (N) is
- when N_Op_Divide =>
- Set_Do_Division_Check (N, False);
-
- when N_Op_And =>
- Set_Do_Length_Check (N, False);
-
- when N_Op_Mod =>
- Set_Do_Division_Check (N, False);
-
- when N_Op_Or =>
- Set_Do_Length_Check (N, False);
-
- when N_Op_Rem =>
- Set_Do_Division_Check (N, False);
-
- when N_Op_Xor =>
- Set_Do_Length_Check (N, False);
-
- when others =>
- null;
- end case;
-
- when N_Or_Else =>
- Traverse (Left_Opnd (N));
- return Skip;
-
- when N_Selected_Component =>
- Set_Do_Discriminant_Check (N, False);
-
- when N_Type_Conversion =>
- Set_Do_Length_Check (N, False);
- Set_Do_Tag_Check (N, False);
- Set_Do_Overflow_Check (N, False);
-
- when others =>
- null;
- end case;
-
- return OK;
- end Process;
-
- -- Start of processing for Remove_Checks
-
- begin
- Traverse (Expr);
- end Remove_Checks;
-
- ----------------------------
- -- Selected_Length_Checks --
- ----------------------------
-
- function Selected_Length_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Warn_Node : Node_Id) return Check_Result
- is
- Loc : constant Source_Ptr := Sloc (Ck_Node);
- S_Typ : Entity_Id;
- T_Typ : Entity_Id;
- Expr_Actual : Node_Id;
- Exptyp : Entity_Id;
- Cond : Node_Id := Empty;
- Do_Access : Boolean := False;
- Wnode : Node_Id := Warn_Node;
- Ret_Result : Check_Result := (Empty, Empty);
- Num_Checks : Natural := 0;
-
- procedure Add_Check (N : Node_Id);
- -- Adds the action given to Ret_Result if N is non-Empty
-
- function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id;
- function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id;
- -- Comments required ???
-
- function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean;
- -- True for equal literals and for nodes that denote the same constant
- -- entity, even if its value is not a static constant. This includes the
- -- case of a discriminal reference within an init proc. Removes some
- -- obviously superfluous checks.
-
- function Length_E_Cond
- (Exptyp : Entity_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id;
- -- Returns expression to compute:
- -- Typ'Length /= Exptyp'Length
-
- function Length_N_Cond
- (Expr : Node_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id;
- -- Returns expression to compute:
- -- Typ'Length /= Expr'Length
-
- ---------------
- -- Add_Check --
- ---------------
-
- procedure Add_Check (N : Node_Id) is
- begin
- if Present (N) then
-
- -- For now, ignore attempt to place more than 2 checks ???
-
- if Num_Checks = 2 then
- return;
- end if;
-
- pragma Assert (Num_Checks <= 1);
- Num_Checks := Num_Checks + 1;
- Ret_Result (Num_Checks) := N;
- end if;
- end Add_Check;
-
- ------------------
- -- Get_E_Length --
- ------------------
-
- function Get_E_Length (E : Entity_Id; Indx : Nat) return Node_Id is
- SE : constant Entity_Id := Scope (E);
- N : Node_Id;
- E1 : Entity_Id := E;
-
- begin
- if Ekind (Scope (E)) = E_Record_Type
- and then Has_Discriminants (Scope (E))
- then
- N := Build_Discriminal_Subtype_Of_Component (E);
-
- if Present (N) then
- Insert_Action (Ck_Node, N);
- E1 := Defining_Identifier (N);
- end if;
- end if;
-
- if Ekind (E1) = E_String_Literal_Subtype then
- return
- Make_Integer_Literal (Loc,
- Intval => String_Literal_Length (E1));
-
- elsif SE /= Standard_Standard
- and then Ekind (Scope (SE)) = E_Protected_Type
- and then Has_Discriminants (Scope (SE))
- and then Has_Completion (Scope (SE))
- and then not Inside_Init_Proc
- then
- -- If the type whose length is needed is a private component
- -- constrained by a discriminant, we must expand the 'Length
- -- attribute into an explicit computation, using the discriminal
- -- of the current protected operation. This is because the actual
- -- type of the prival is constructed after the protected opera-
- -- tion has been fully expanded.
-
- declare
- Indx_Type : Node_Id;
- Lo : Node_Id;
- Hi : Node_Id;
- Do_Expand : Boolean := False;
-
- begin
- Indx_Type := First_Index (E);
-
- for J in 1 .. Indx - 1 loop
- Next_Index (Indx_Type);
- end loop;
-
- Get_Index_Bounds (Indx_Type, Lo, Hi);
-
- if Nkind (Lo) = N_Identifier
- and then Ekind (Entity (Lo)) = E_In_Parameter
- then
- Lo := Get_Discriminal (E, Lo);
- Do_Expand := True;
- end if;
-
- if Nkind (Hi) = N_Identifier
- and then Ekind (Entity (Hi)) = E_In_Parameter
- then
- Hi := Get_Discriminal (E, Hi);
- Do_Expand := True;
- end if;
-
- if Do_Expand then
- if not Is_Entity_Name (Lo) then
- Lo := Duplicate_Subexpr_No_Checks (Lo);
- end if;
-
- if not Is_Entity_Name (Hi) then
- Lo := Duplicate_Subexpr_No_Checks (Hi);
- end if;
-
- N :=
- Make_Op_Add (Loc,
- Left_Opnd =>
- Make_Op_Subtract (Loc,
- Left_Opnd => Hi,
- Right_Opnd => Lo),
-
- Right_Opnd => Make_Integer_Literal (Loc, 1));
- return N;
-
- else
- N :=
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix =>
- New_Occurrence_Of (E1, Loc));
-
- if Indx > 1 then
- Set_Expressions (N, New_List (
- Make_Integer_Literal (Loc, Indx)));
- end if;
-
- return N;
- end if;
- end;
-
- else
- N :=
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix =>
- New_Occurrence_Of (E1, Loc));
-
- if Indx > 1 then
- Set_Expressions (N, New_List (
- Make_Integer_Literal (Loc, Indx)));
- end if;
-
- return N;
- end if;
- end Get_E_Length;
-
- ------------------
- -- Get_N_Length --
- ------------------
-
- function Get_N_Length (N : Node_Id; Indx : Nat) return Node_Id is
- begin
- return
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Length,
- Prefix =>
- Duplicate_Subexpr_No_Checks (N, Name_Req => True),
- Expressions => New_List (
- Make_Integer_Literal (Loc, Indx)));
- end Get_N_Length;
-
- -------------------
- -- Length_E_Cond --
- -------------------
-
- function Length_E_Cond
- (Exptyp : Entity_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id
- is
- begin
- return
- Make_Op_Ne (Loc,
- Left_Opnd => Get_E_Length (Typ, Indx),
- Right_Opnd => Get_E_Length (Exptyp, Indx));
- end Length_E_Cond;
-
- -------------------
- -- Length_N_Cond --
- -------------------
-
- function Length_N_Cond
- (Expr : Node_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id
- is
- begin
- return
- Make_Op_Ne (Loc,
- Left_Opnd => Get_E_Length (Typ, Indx),
- Right_Opnd => Get_N_Length (Expr, Indx));
- end Length_N_Cond;
-
- -----------------
- -- Same_Bounds --
- -----------------
-
- function Same_Bounds (L : Node_Id; R : Node_Id) return Boolean is
- begin
- return
- (Nkind (L) = N_Integer_Literal
- and then Nkind (R) = N_Integer_Literal
- and then Intval (L) = Intval (R))
-
- or else
- (Is_Entity_Name (L)
- and then Ekind (Entity (L)) = E_Constant
- and then ((Is_Entity_Name (R)
- and then Entity (L) = Entity (R))
- or else
- (Nkind (R) = N_Type_Conversion
- and then Is_Entity_Name (Expression (R))
- and then Entity (L) = Entity (Expression (R)))))
-
- or else
- (Is_Entity_Name (R)
- and then Ekind (Entity (R)) = E_Constant
- and then Nkind (L) = N_Type_Conversion
- and then Is_Entity_Name (Expression (L))
- and then Entity (R) = Entity (Expression (L)))
-
- or else
- (Is_Entity_Name (L)
- and then Is_Entity_Name (R)
- and then Entity (L) = Entity (R)
- and then Ekind (Entity (L)) = E_In_Parameter
- and then Inside_Init_Proc);
- end Same_Bounds;
-
- -- Start of processing for Selected_Length_Checks
-
- begin
- if not Full_Expander_Active then
- return Ret_Result;
- end if;
-
- if Target_Typ = Any_Type
- or else Target_Typ = Any_Composite
- or else Raises_Constraint_Error (Ck_Node)
- then
- return Ret_Result;
- end if;
-
- if No (Wnode) then
- Wnode := Ck_Node;
- end if;
-
- T_Typ := Target_Typ;
-
- if No (Source_Typ) then
- S_Typ := Etype (Ck_Node);
- else
- S_Typ := Source_Typ;
- end if;
-
- if S_Typ = Any_Type or else S_Typ = Any_Composite then
- return Ret_Result;
- end if;
-
- if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
- S_Typ := Designated_Type (S_Typ);
- T_Typ := Designated_Type (T_Typ);
- Do_Access := True;
-
- -- A simple optimization for the null case
-
- if Known_Null (Ck_Node) then
- return Ret_Result;
- end if;
- end if;
-
- if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
- if Is_Constrained (T_Typ) then
-
- -- The checking code to be generated will freeze the corresponding
- -- array type. However, we must freeze the type now, so that the
- -- freeze node does not appear within the generated if expression,
- -- but ahead of it.
-
- Freeze_Before (Ck_Node, T_Typ);
-
- Expr_Actual := Get_Referenced_Object (Ck_Node);
- Exptyp := Get_Actual_Subtype (Ck_Node);
-
- if Is_Access_Type (Exptyp) then
- Exptyp := Designated_Type (Exptyp);
- end if;
-
- -- String_Literal case. This needs to be handled specially be-
- -- cause no index types are available for string literals. The
- -- condition is simply:
-
- -- T_Typ'Length = string-literal-length
-
- if Nkind (Expr_Actual) = N_String_Literal
- and then Ekind (Etype (Expr_Actual)) = E_String_Literal_Subtype
- then
- Cond :=
- Make_Op_Ne (Loc,
- Left_Opnd => Get_E_Length (T_Typ, 1),
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- Intval =>
- String_Literal_Length (Etype (Expr_Actual))));
-
- -- General array case. Here we have a usable actual subtype for
- -- the expression, and the condition is built from the two types
- -- (Do_Length):
-
- -- T_Typ'Length /= Exptyp'Length or else
- -- T_Typ'Length (2) /= Exptyp'Length (2) or else
- -- T_Typ'Length (3) /= Exptyp'Length (3) or else
- -- ...
-
- elsif Is_Constrained (Exptyp) then
- declare
- Ndims : constant Nat := Number_Dimensions (T_Typ);
-
- L_Index : Node_Id;
- R_Index : Node_Id;
- L_Low : Node_Id;
- L_High : Node_Id;
- R_Low : Node_Id;
- R_High : Node_Id;
- L_Length : Uint;
- R_Length : Uint;
- Ref_Node : Node_Id;
-
- begin
- -- At the library level, we need to ensure that the type of
- -- the object is elaborated before the check itself is
- -- emitted. This is only done if the object is in the
- -- current compilation unit, otherwise the type is frozen
- -- and elaborated in its unit.
-
- if Is_Itype (Exptyp)
- and then
- Ekind (Cunit_Entity (Current_Sem_Unit)) = E_Package
- and then
- not In_Package_Body (Cunit_Entity (Current_Sem_Unit))
- and then In_Open_Scopes (Scope (Exptyp))
- then
- Ref_Node := Make_Itype_Reference (Sloc (Ck_Node));
- Set_Itype (Ref_Node, Exptyp);
- Insert_Action (Ck_Node, Ref_Node);
- end if;
-
- L_Index := First_Index (T_Typ);
- R_Index := First_Index (Exptyp);
-
- for Indx in 1 .. Ndims loop
- if not (Nkind (L_Index) = N_Raise_Constraint_Error
- or else
- Nkind (R_Index) = N_Raise_Constraint_Error)
- then
- Get_Index_Bounds (L_Index, L_Low, L_High);
- Get_Index_Bounds (R_Index, R_Low, R_High);
-
- -- Deal with compile time length check. Note that we
- -- skip this in the access case, because the access
- -- value may be null, so we cannot know statically.
-
- if not Do_Access
- and then Compile_Time_Known_Value (L_Low)
- and then Compile_Time_Known_Value (L_High)
- and then Compile_Time_Known_Value (R_Low)
- and then Compile_Time_Known_Value (R_High)
- then
- if Expr_Value (L_High) >= Expr_Value (L_Low) then
- L_Length := Expr_Value (L_High) -
- Expr_Value (L_Low) + 1;
- else
- L_Length := UI_From_Int (0);
- end if;
-
- if Expr_Value (R_High) >= Expr_Value (R_Low) then
- R_Length := Expr_Value (R_High) -
- Expr_Value (R_Low) + 1;
- else
- R_Length := UI_From_Int (0);
- end if;
-
- if L_Length > R_Length then
- Add_Check
- (Compile_Time_Constraint_Error
- (Wnode, "too few elements for}??", T_Typ));
-
- elsif L_Length < R_Length then
- Add_Check
- (Compile_Time_Constraint_Error
- (Wnode, "too many elements for}??", T_Typ));
- end if;
-
- -- The comparison for an individual index subtype
- -- is omitted if the corresponding index subtypes
- -- statically match, since the result is known to
- -- be true. Note that this test is worth while even
- -- though we do static evaluation, because non-static
- -- subtypes can statically match.
-
- elsif not
- Subtypes_Statically_Match
- (Etype (L_Index), Etype (R_Index))
-
- and then not
- (Same_Bounds (L_Low, R_Low)
- and then Same_Bounds (L_High, R_High))
- then
- Evolve_Or_Else
- (Cond, Length_E_Cond (Exptyp, T_Typ, Indx));
- end if;
-
- Next (L_Index);
- Next (R_Index);
- end if;
- end loop;
- end;
-
- -- Handle cases where we do not get a usable actual subtype that
- -- is constrained. This happens for example in the function call
- -- and explicit dereference cases. In these cases, we have to get
- -- the length or range from the expression itself, making sure we
- -- do not evaluate it more than once.
-
- -- Here Ck_Node is the original expression, or more properly the
- -- result of applying Duplicate_Expr to the original tree, forcing
- -- the result to be a name.
-
- else
- declare
- Ndims : constant Nat := Number_Dimensions (T_Typ);
-
- begin
- -- Build the condition for the explicit dereference case
-
- for Indx in 1 .. Ndims loop
- Evolve_Or_Else
- (Cond, Length_N_Cond (Ck_Node, T_Typ, Indx));
- end loop;
- end;
- end if;
- end if;
- end if;
-
- -- Construct the test and insert into the tree
-
- if Present (Cond) then
- if Do_Access then
- Cond := Guard_Access (Cond, Loc, Ck_Node);
- end if;
-
- Add_Check
- (Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Length_Check_Failed));
- end if;
-
- return Ret_Result;
- end Selected_Length_Checks;
-
- ---------------------------
- -- Selected_Range_Checks --
- ---------------------------
-
- function Selected_Range_Checks
- (Ck_Node : Node_Id;
- Target_Typ : Entity_Id;
- Source_Typ : Entity_Id;
- Warn_Node : Node_Id) return Check_Result
- is
- Loc : constant Source_Ptr := Sloc (Ck_Node);
- S_Typ : Entity_Id;
- T_Typ : Entity_Id;
- Expr_Actual : Node_Id;
- Exptyp : Entity_Id;
- Cond : Node_Id := Empty;
- Do_Access : Boolean := False;
- Wnode : Node_Id := Warn_Node;
- Ret_Result : Check_Result := (Empty, Empty);
- Num_Checks : Integer := 0;
-
- procedure Add_Check (N : Node_Id);
- -- Adds the action given to Ret_Result if N is non-Empty
-
- function Discrete_Range_Cond
- (Expr : Node_Id;
- Typ : Entity_Id) return Node_Id;
- -- Returns expression to compute:
- -- Low_Bound (Expr) < Typ'First
- -- or else
- -- High_Bound (Expr) > Typ'Last
-
- function Discrete_Expr_Cond
- (Expr : Node_Id;
- Typ : Entity_Id) return Node_Id;
- -- Returns expression to compute:
- -- Expr < Typ'First
- -- or else
- -- Expr > Typ'Last
-
- function Get_E_First_Or_Last
- (Loc : Source_Ptr;
- E : Entity_Id;
- Indx : Nat;
- Nam : Name_Id) return Node_Id;
- -- Returns an attribute reference
- -- E'First or E'Last
- -- with a source location of Loc.
- --
- -- Nam is Name_First or Name_Last, according to which attribute is
- -- desired. If Indx is non-zero, it is passed as a literal in the
- -- Expressions of the attribute reference (identifying the desired
- -- array dimension).
-
- function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id;
- function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id;
- -- Returns expression to compute:
- -- N'First or N'Last using Duplicate_Subexpr_No_Checks
-
- function Range_E_Cond
- (Exptyp : Entity_Id;
- Typ : Entity_Id;
- Indx : Nat)
- return Node_Id;
- -- Returns expression to compute:
- -- Exptyp'First < Typ'First or else Exptyp'Last > Typ'Last
-
- function Range_Equal_E_Cond
- (Exptyp : Entity_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id;
- -- Returns expression to compute:
- -- Exptyp'First /= Typ'First or else Exptyp'Last /= Typ'Last
-
- function Range_N_Cond
- (Expr : Node_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id;
- -- Return expression to compute:
- -- Expr'First < Typ'First or else Expr'Last > Typ'Last
-
- ---------------
- -- Add_Check --
- ---------------
-
- procedure Add_Check (N : Node_Id) is
- begin
- if Present (N) then
-
- -- For now, ignore attempt to place more than 2 checks ???
-
- if Num_Checks = 2 then
- return;
- end if;
-
- pragma Assert (Num_Checks <= 1);
- Num_Checks := Num_Checks + 1;
- Ret_Result (Num_Checks) := N;
- end if;
- end Add_Check;
-
- -------------------------
- -- Discrete_Expr_Cond --
- -------------------------
-
- function Discrete_Expr_Cond
- (Expr : Node_Id;
- Typ : Entity_Id) return Node_Id
- is
- begin
- return
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd =>
- Convert_To (Base_Type (Typ),
- Duplicate_Subexpr_No_Checks (Expr)),
- Right_Opnd =>
- Convert_To (Base_Type (Typ),
- Get_E_First_Or_Last (Loc, Typ, 0, Name_First))),
-
- Right_Opnd =>
- Make_Op_Gt (Loc,
- Left_Opnd =>
- Convert_To (Base_Type (Typ),
- Duplicate_Subexpr_No_Checks (Expr)),
- Right_Opnd =>
- Convert_To
- (Base_Type (Typ),
- Get_E_First_Or_Last (Loc, Typ, 0, Name_Last))));
- end Discrete_Expr_Cond;
-
- -------------------------
- -- Discrete_Range_Cond --
- -------------------------
-
- function Discrete_Range_Cond
- (Expr : Node_Id;
- Typ : Entity_Id) return Node_Id
- is
- LB : Node_Id := Low_Bound (Expr);
- HB : Node_Id := High_Bound (Expr);
-
- Left_Opnd : Node_Id;
- Right_Opnd : Node_Id;
-
- begin
- if Nkind (LB) = N_Identifier
- and then Ekind (Entity (LB)) = E_Discriminant
- then
- LB := New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
- end if;
-
- Left_Opnd :=
- Make_Op_Lt (Loc,
- Left_Opnd =>
- Convert_To
- (Base_Type (Typ), Duplicate_Subexpr_No_Checks (LB)),
-
- Right_Opnd =>
- Convert_To
- (Base_Type (Typ),
- Get_E_First_Or_Last (Loc, Typ, 0, Name_First)));
-
- if Nkind (HB) = N_Identifier
- and then Ekind (Entity (HB)) = E_Discriminant
- then
- HB := New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
- end if;
-
- Right_Opnd :=
- Make_Op_Gt (Loc,
- Left_Opnd =>
- Convert_To
- (Base_Type (Typ), Duplicate_Subexpr_No_Checks (HB)),
-
- Right_Opnd =>
- Convert_To
- (Base_Type (Typ),
- Get_E_First_Or_Last (Loc, Typ, 0, Name_Last)));
-
- return Make_Or_Else (Loc, Left_Opnd, Right_Opnd);
- end Discrete_Range_Cond;
-
- -------------------------
- -- Get_E_First_Or_Last --
- -------------------------
-
- function Get_E_First_Or_Last
- (Loc : Source_Ptr;
- E : Entity_Id;
- Indx : Nat;
- Nam : Name_Id) return Node_Id
- is
- Exprs : List_Id;
- begin
- if Indx > 0 then
- Exprs := New_List (Make_Integer_Literal (Loc, UI_From_Int (Indx)));
- else
- Exprs := No_List;
- end if;
-
- return Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (E, Loc),
- Attribute_Name => Nam,
- Expressions => Exprs);
- end Get_E_First_Or_Last;
-
- -----------------
- -- Get_N_First --
- -----------------
-
- function Get_N_First (N : Node_Id; Indx : Nat) return Node_Id is
- begin
- return
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_First,
- Prefix =>
- Duplicate_Subexpr_No_Checks (N, Name_Req => True),
- Expressions => New_List (
- Make_Integer_Literal (Loc, Indx)));
- end Get_N_First;
-
- ----------------
- -- Get_N_Last --
- ----------------
-
- function Get_N_Last (N : Node_Id; Indx : Nat) return Node_Id is
- begin
- return
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Last,
- Prefix =>
- Duplicate_Subexpr_No_Checks (N, Name_Req => True),
- Expressions => New_List (
- Make_Integer_Literal (Loc, Indx)));
- end Get_N_Last;
-
- ------------------
- -- Range_E_Cond --
- ------------------
-
- function Range_E_Cond
- (Exptyp : Entity_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id
- is
- begin
- return
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd =>
- Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
- Right_Opnd =>
- Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
-
- Right_Opnd =>
- Make_Op_Gt (Loc,
- Left_Opnd =>
- Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
- Right_Opnd =>
- Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
- end Range_E_Cond;
-
- ------------------------
- -- Range_Equal_E_Cond --
- ------------------------
-
- function Range_Equal_E_Cond
- (Exptyp : Entity_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id
- is
- begin
- return
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Ne (Loc,
- Left_Opnd =>
- Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_First),
- Right_Opnd =>
- Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
-
- Right_Opnd =>
- Make_Op_Ne (Loc,
- Left_Opnd =>
- Get_E_First_Or_Last (Loc, Exptyp, Indx, Name_Last),
- Right_Opnd =>
- Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
- end Range_Equal_E_Cond;
-
- ------------------
- -- Range_N_Cond --
- ------------------
-
- function Range_N_Cond
- (Expr : Node_Id;
- Typ : Entity_Id;
- Indx : Nat) return Node_Id
- is
- begin
- return
- Make_Or_Else (Loc,
- Left_Opnd =>
- Make_Op_Lt (Loc,
- Left_Opnd =>
- Get_N_First (Expr, Indx),
- Right_Opnd =>
- Get_E_First_Or_Last (Loc, Typ, Indx, Name_First)),
-
- Right_Opnd =>
- Make_Op_Gt (Loc,
- Left_Opnd =>
- Get_N_Last (Expr, Indx),
- Right_Opnd =>
- Get_E_First_Or_Last (Loc, Typ, Indx, Name_Last)));
- end Range_N_Cond;
-
- -- Start of processing for Selected_Range_Checks
-
- begin
- if not Full_Expander_Active then
- return Ret_Result;
- end if;
-
- if Target_Typ = Any_Type
- or else Target_Typ = Any_Composite
- or else Raises_Constraint_Error (Ck_Node)
- then
- return Ret_Result;
- end if;
-
- if No (Wnode) then
- Wnode := Ck_Node;
- end if;
-
- T_Typ := Target_Typ;
-
- if No (Source_Typ) then
- S_Typ := Etype (Ck_Node);
- else
- S_Typ := Source_Typ;
- end if;
-
- if S_Typ = Any_Type or else S_Typ = Any_Composite then
- return Ret_Result;
- end if;
-
- -- The order of evaluating T_Typ before S_Typ seems to be critical
- -- because S_Typ can be derived from Etype (Ck_Node), if it's not passed
- -- in, and since Node can be an N_Range node, it might be invalid.
- -- Should there be an assert check somewhere for taking the Etype of
- -- an N_Range node ???
-
- if Is_Access_Type (T_Typ) and then Is_Access_Type (S_Typ) then
- S_Typ := Designated_Type (S_Typ);
- T_Typ := Designated_Type (T_Typ);
- Do_Access := True;
-
- -- A simple optimization for the null case
-
- if Known_Null (Ck_Node) then
- return Ret_Result;
- end if;
- end if;
-
- -- For an N_Range Node, check for a null range and then if not
- -- null generate a range check action.
-
- if Nkind (Ck_Node) = N_Range then
-
- -- There's no point in checking a range against itself
-
- if Ck_Node = Scalar_Range (T_Typ) then
- return Ret_Result;
- end if;
-
- declare
- T_LB : constant Node_Id := Type_Low_Bound (T_Typ);
- T_HB : constant Node_Id := Type_High_Bound (T_Typ);
- Known_T_LB : constant Boolean := Compile_Time_Known_Value (T_LB);
- Known_T_HB : constant Boolean := Compile_Time_Known_Value (T_HB);
-
- LB : Node_Id := Low_Bound (Ck_Node);
- HB : Node_Id := High_Bound (Ck_Node);
- Known_LB : Boolean;
- Known_HB : Boolean;
-
- Null_Range : Boolean;
- Out_Of_Range_L : Boolean;
- Out_Of_Range_H : Boolean;
-
- begin
- -- Compute what is known at compile time
-
- if Known_T_LB and Known_T_HB then
- if Compile_Time_Known_Value (LB) then
- Known_LB := True;
-
- -- There's no point in checking that a bound is within its
- -- own range so pretend that it is known in this case. First
- -- deal with low bound.
-
- elsif Ekind (Etype (LB)) = E_Signed_Integer_Subtype
- and then Scalar_Range (Etype (LB)) = Scalar_Range (T_Typ)
- then
- LB := T_LB;
- Known_LB := True;
-
- else
- Known_LB := False;
- end if;
-
- -- Likewise for the high bound
-
- if Compile_Time_Known_Value (HB) then
- Known_HB := True;
-
- elsif Ekind (Etype (HB)) = E_Signed_Integer_Subtype
- and then Scalar_Range (Etype (HB)) = Scalar_Range (T_Typ)
- then
- HB := T_HB;
- Known_HB := True;
-
- else
- Known_HB := False;
- end if;
- end if;
-
- -- Check for case where everything is static and we can do the
- -- check at compile time. This is skipped if we have an access
- -- type, since the access value may be null.
-
- -- ??? This code can be improved since you only need to know that
- -- the two respective bounds (LB & T_LB or HB & T_HB) are known at
- -- compile time to emit pertinent messages.
-
- if Known_T_LB and Known_T_HB and Known_LB and Known_HB
- and not Do_Access
- then
- -- Floating-point case
-
- if Is_Floating_Point_Type (S_Typ) then
- Null_Range := Expr_Value_R (HB) < Expr_Value_R (LB);
- Out_Of_Range_L :=
- (Expr_Value_R (LB) < Expr_Value_R (T_LB))
- or else
- (Expr_Value_R (LB) > Expr_Value_R (T_HB));
-
- Out_Of_Range_H :=
- (Expr_Value_R (HB) > Expr_Value_R (T_HB))
- or else
- (Expr_Value_R (HB) < Expr_Value_R (T_LB));
-
- -- Fixed or discrete type case
-
- else
- Null_Range := Expr_Value (HB) < Expr_Value (LB);
- Out_Of_Range_L :=
- (Expr_Value (LB) < Expr_Value (T_LB))
- or else
- (Expr_Value (LB) > Expr_Value (T_HB));
-
- Out_Of_Range_H :=
- (Expr_Value (HB) > Expr_Value (T_HB))
- or else
- (Expr_Value (HB) < Expr_Value (T_LB));
- end if;
-
- if not Null_Range then
- if Out_Of_Range_L then
- if No (Warn_Node) then
- Add_Check
- (Compile_Time_Constraint_Error
- (Low_Bound (Ck_Node),
- "static value out of range of}??", T_Typ));
-
- else
- Add_Check
- (Compile_Time_Constraint_Error
- (Wnode,
- "static range out of bounds of}??", T_Typ));
- end if;
- end if;
-
- if Out_Of_Range_H then
- if No (Warn_Node) then
- Add_Check
- (Compile_Time_Constraint_Error
- (High_Bound (Ck_Node),
- "static value out of range of}??", T_Typ));
-
- else
- Add_Check
- (Compile_Time_Constraint_Error
- (Wnode,
- "static range out of bounds of}??", T_Typ));
- end if;
- end if;
- end if;
-
- else
- declare
- LB : Node_Id := Low_Bound (Ck_Node);
- HB : Node_Id := High_Bound (Ck_Node);
-
- begin
- -- If either bound is a discriminant and we are within the
- -- record declaration, it is a use of the discriminant in a
- -- constraint of a component, and nothing can be checked
- -- here. The check will be emitted within the init proc.
- -- Before then, the discriminal has no real meaning.
- -- Similarly, if the entity is a discriminal, there is no
- -- check to perform yet.
-
- -- The same holds within a discriminated synchronized type,
- -- where the discriminant may constrain a component or an
- -- entry family.
-
- if Nkind (LB) = N_Identifier
- and then Denotes_Discriminant (LB, True)
- then
- if Current_Scope = Scope (Entity (LB))
- or else Is_Concurrent_Type (Current_Scope)
- or else Ekind (Entity (LB)) /= E_Discriminant
- then
- return Ret_Result;
- else
- LB :=
- New_Occurrence_Of (Discriminal (Entity (LB)), Loc);
- end if;
- end if;
-
- if Nkind (HB) = N_Identifier
- and then Denotes_Discriminant (HB, True)
- then
- if Current_Scope = Scope (Entity (HB))
- or else Is_Concurrent_Type (Current_Scope)
- or else Ekind (Entity (HB)) /= E_Discriminant
- then
- return Ret_Result;
- else
- HB :=
- New_Occurrence_Of (Discriminal (Entity (HB)), Loc);
- end if;
- end if;
-
- Cond := Discrete_Range_Cond (Ck_Node, T_Typ);
- Set_Paren_Count (Cond, 1);
-
- Cond :=
- Make_And_Then (Loc,
- Left_Opnd =>
- Make_Op_Ge (Loc,
- Left_Opnd => Duplicate_Subexpr_No_Checks (HB),
- Right_Opnd => Duplicate_Subexpr_No_Checks (LB)),
- Right_Opnd => Cond);
- end;
- end if;
- end;
-
- elsif Is_Scalar_Type (S_Typ) then
-
- -- This somewhat duplicates what Apply_Scalar_Range_Check does,
- -- except the above simply sets a flag in the node and lets
- -- gigi generate the check base on the Etype of the expression.
- -- Sometimes, however we want to do a dynamic check against an
- -- arbitrary target type, so we do that here.
-
- if Ekind (Base_Type (S_Typ)) /= Ekind (Base_Type (T_Typ)) then
- Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
-
- -- For literals, we can tell if the constraint error will be
- -- raised at compile time, so we never need a dynamic check, but
- -- if the exception will be raised, then post the usual warning,
- -- and replace the literal with a raise constraint error
- -- expression. As usual, skip this for access types
-
- elsif Compile_Time_Known_Value (Ck_Node)
- and then not Do_Access
- then
- declare
- LB : constant Node_Id := Type_Low_Bound (T_Typ);
- UB : constant Node_Id := Type_High_Bound (T_Typ);
-
- Out_Of_Range : Boolean;
- Static_Bounds : constant Boolean :=
- Compile_Time_Known_Value (LB)
- and Compile_Time_Known_Value (UB);
-
- begin
- -- Following range tests should use Sem_Eval routine ???
-
- if Static_Bounds then
- if Is_Floating_Point_Type (S_Typ) then
- Out_Of_Range :=
- (Expr_Value_R (Ck_Node) < Expr_Value_R (LB))
- or else
- (Expr_Value_R (Ck_Node) > Expr_Value_R (UB));
-
- -- Fixed or discrete type
-
- else
- Out_Of_Range :=
- Expr_Value (Ck_Node) < Expr_Value (LB)
- or else
- Expr_Value (Ck_Node) > Expr_Value (UB);
- end if;
-
- -- Bounds of the type are static and the literal is out of
- -- range so output a warning message.
-
- if Out_Of_Range then
- if No (Warn_Node) then
- Add_Check
- (Compile_Time_Constraint_Error
- (Ck_Node,
- "static value out of range of}??", T_Typ));
-
- else
- Add_Check
- (Compile_Time_Constraint_Error
- (Wnode,
- "static value out of range of}??", T_Typ));
- end if;
- end if;
-
- else
- Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
- end if;
- end;
-
- -- Here for the case of a non-static expression, we need a runtime
- -- check unless the source type range is guaranteed to be in the
- -- range of the target type.
-
- else
- if not In_Subrange_Of (S_Typ, T_Typ) then
- Cond := Discrete_Expr_Cond (Ck_Node, T_Typ);
- end if;
- end if;
- end if;
-
- if Is_Array_Type (T_Typ) and then Is_Array_Type (S_Typ) then
- if Is_Constrained (T_Typ) then
-
- Expr_Actual := Get_Referenced_Object (Ck_Node);
- Exptyp := Get_Actual_Subtype (Expr_Actual);
-
- if Is_Access_Type (Exptyp) then
- Exptyp := Designated_Type (Exptyp);
- end if;
-
- -- String_Literal case. This needs to be handled specially be-
- -- cause no index types are available for string literals. The
- -- condition is simply:
-
- -- T_Typ'Length = string-literal-length
-
- if Nkind (Expr_Actual) = N_String_Literal then
- null;
-
- -- General array case. Here we have a usable actual subtype for
- -- the expression, and the condition is built from the two types
-
- -- T_Typ'First < Exptyp'First or else
- -- T_Typ'Last > Exptyp'Last or else
- -- T_Typ'First(1) < Exptyp'First(1) or else
- -- T_Typ'Last(1) > Exptyp'Last(1) or else
- -- ...
-
- elsif Is_Constrained (Exptyp) then
- declare
- Ndims : constant Nat := Number_Dimensions (T_Typ);
-
- L_Index : Node_Id;
- R_Index : Node_Id;
-
- begin
- L_Index := First_Index (T_Typ);
- R_Index := First_Index (Exptyp);
-
- for Indx in 1 .. Ndims loop
- if not (Nkind (L_Index) = N_Raise_Constraint_Error
- or else
- Nkind (R_Index) = N_Raise_Constraint_Error)
- then
- -- Deal with compile time length check. Note that we
- -- skip this in the access case, because the access
- -- value may be null, so we cannot know statically.
-
- if not
- Subtypes_Statically_Match
- (Etype (L_Index), Etype (R_Index))
- then
- -- If the target type is constrained then we
- -- have to check for exact equality of bounds
- -- (required for qualified expressions).
-
- if Is_Constrained (T_Typ) then
- Evolve_Or_Else
- (Cond,
- Range_Equal_E_Cond (Exptyp, T_Typ, Indx));
- else
- Evolve_Or_Else
- (Cond, Range_E_Cond (Exptyp, T_Typ, Indx));
- end if;
- end if;
-
- Next (L_Index);
- Next (R_Index);
- end if;
- end loop;
- end;
-
- -- Handle cases where we do not get a usable actual subtype that
- -- is constrained. This happens for example in the function call
- -- and explicit dereference cases. In these cases, we have to get
- -- the length or range from the expression itself, making sure we
- -- do not evaluate it more than once.
-
- -- Here Ck_Node is the original expression, or more properly the
- -- result of applying Duplicate_Expr to the original tree,
- -- forcing the result to be a name.
-
- else
- declare
- Ndims : constant Nat := Number_Dimensions (T_Typ);
-
- begin
- -- Build the condition for the explicit dereference case
-
- for Indx in 1 .. Ndims loop
- Evolve_Or_Else
- (Cond, Range_N_Cond (Ck_Node, T_Typ, Indx));
- end loop;
- end;
- end if;
-
- else
- -- For a conversion to an unconstrained array type, generate an
- -- Action to check that the bounds of the source value are within
- -- the constraints imposed by the target type (RM 4.6(38)). No
- -- check is needed for a conversion to an access to unconstrained
- -- array type, as 4.6(24.15/2) requires the designated subtypes
- -- of the two access types to statically match.
-
- if Nkind (Parent (Ck_Node)) = N_Type_Conversion
- and then not Do_Access
- then
- declare
- Opnd_Index : Node_Id;
- Targ_Index : Node_Id;
- Opnd_Range : Node_Id;
-
- begin
- Opnd_Index := First_Index (Get_Actual_Subtype (Ck_Node));
- Targ_Index := First_Index (T_Typ);
- while Present (Opnd_Index) loop
-
- -- If the index is a range, use its bounds. If it is an
- -- entity (as will be the case if it is a named subtype
- -- or an itype created for a slice) retrieve its range.
-
- if Is_Entity_Name (Opnd_Index)
- and then Is_Type (Entity (Opnd_Index))
- then
- Opnd_Range := Scalar_Range (Entity (Opnd_Index));
- else
- Opnd_Range := Opnd_Index;
- end if;
-
- if Nkind (Opnd_Range) = N_Range then
- if Is_In_Range
- (Low_Bound (Opnd_Range), Etype (Targ_Index),
- Assume_Valid => True)
- and then
- Is_In_Range
- (High_Bound (Opnd_Range), Etype (Targ_Index),
- Assume_Valid => True)
- then
- null;
-
- -- If null range, no check needed
-
- elsif
- Compile_Time_Known_Value (High_Bound (Opnd_Range))
- and then
- Compile_Time_Known_Value (Low_Bound (Opnd_Range))
- and then
- Expr_Value (High_Bound (Opnd_Range)) <
- Expr_Value (Low_Bound (Opnd_Range))
- then
- null;
-
- elsif Is_Out_Of_Range
- (Low_Bound (Opnd_Range), Etype (Targ_Index),
- Assume_Valid => True)
- or else
- Is_Out_Of_Range
- (High_Bound (Opnd_Range), Etype (Targ_Index),
- Assume_Valid => True)
- then
- Add_Check
- (Compile_Time_Constraint_Error
- (Wnode, "value out of range of}??", T_Typ));
-
- else
- Evolve_Or_Else
- (Cond,
- Discrete_Range_Cond
- (Opnd_Range, Etype (Targ_Index)));
- end if;
- end if;
-
- Next_Index (Opnd_Index);
- Next_Index (Targ_Index);
- end loop;
- end;
- end if;
- end if;
- end if;
-
- -- Construct the test and insert into the tree
-
- if Present (Cond) then
- if Do_Access then
- Cond := Guard_Access (Cond, Loc, Ck_Node);
- end if;
-
- Add_Check
- (Make_Raise_Constraint_Error (Loc,
- Condition => Cond,
- Reason => CE_Range_Check_Failed));
- end if;
-
- return Ret_Result;
- end Selected_Range_Checks;
-
- -------------------------------
- -- Storage_Checks_Suppressed --
- -------------------------------
-
- function Storage_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Storage_Check);
- else
- return Scope_Suppress.Suppress (Storage_Check);
- end if;
- end Storage_Checks_Suppressed;
-
- ---------------------------
- -- Tag_Checks_Suppressed --
- ---------------------------
-
- function Tag_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E)
- and then Checks_May_Be_Suppressed (E)
- then
- return Is_Check_Suppressed (E, Tag_Check);
- end if;
-
- return Scope_Suppress.Suppress (Tag_Check);
- end Tag_Checks_Suppressed;
-
- --------------------------
- -- Validity_Check_Range --
- --------------------------
-
- procedure Validity_Check_Range (N : Node_Id) is
- begin
- if Validity_Checks_On and Validity_Check_Operands then
- if Nkind (N) = N_Range then
- Ensure_Valid (Low_Bound (N));
- Ensure_Valid (High_Bound (N));
- end if;
- end if;
- end Validity_Check_Range;
-
- --------------------------------
- -- Validity_Checks_Suppressed --
- --------------------------------
-
- function Validity_Checks_Suppressed (E : Entity_Id) return Boolean is
- begin
- if Present (E) and then Checks_May_Be_Suppressed (E) then
- return Is_Check_Suppressed (E, Validity_Check);
- else
- return Scope_Suppress.Suppress (Validity_Check);
- end if;
- end Validity_Checks_Suppressed;
-
-end Checks;