aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8/gcc/ada/a-convec.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8/gcc/ada/a-convec.adb')
-rw-r--r--gcc-4.8/gcc/ada/a-convec.adb3567
1 files changed, 0 insertions, 3567 deletions
diff --git a/gcc-4.8/gcc/ada/a-convec.adb b/gcc-4.8/gcc/ada/a-convec.adb
deleted file mode 100644
index a67c156c2..000000000
--- a/gcc-4.8/gcc/ada/a-convec.adb
+++ /dev/null
@@ -1,3567 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT LIBRARY COMPONENTS --
--- --
--- A D A . C O N T A I N E R S . V E C T O R S --
--- --
--- B o d y --
--- --
--- Copyright (C) 2004-2013, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- This unit was originally developed by Matthew J Heaney. --
-------------------------------------------------------------------------------
-
-with Ada.Containers.Generic_Array_Sort;
-with Ada.Unchecked_Deallocation;
-
-with System; use type System.Address;
-
-package body Ada.Containers.Vectors is
-
- procedure Free is
- new Ada.Unchecked_Deallocation (Elements_Type, Elements_Access);
-
- type Iterator is new Limited_Controlled and
- Vector_Iterator_Interfaces.Reversible_Iterator with
- record
- Container : Vector_Access;
- Index : Index_Type'Base;
- end record;
-
- overriding procedure Finalize (Object : in out Iterator);
-
- overriding function First (Object : Iterator) return Cursor;
- overriding function Last (Object : Iterator) return Cursor;
-
- overriding function Next
- (Object : Iterator;
- Position : Cursor) return Cursor;
-
- overriding function Previous
- (Object : Iterator;
- Position : Cursor) return Cursor;
-
- ---------
- -- "&" --
- ---------
-
- function "&" (Left, Right : Vector) return Vector is
- LN : constant Count_Type := Length (Left);
- RN : constant Count_Type := Length (Right);
- N : Count_Type'Base; -- length of result
- J : Count_Type'Base; -- for computing intermediate index values
- Last : Index_Type'Base; -- Last index of result
-
- begin
- -- We decide that the capacity of the result is the sum of the lengths
- -- of the vector parameters. We could decide to make it larger, but we
- -- have no basis for knowing how much larger, so we just allocate the
- -- minimum amount of storage.
-
- -- Here we handle the easy cases first, when one of the vector
- -- parameters is empty. (We say "easy" because there's nothing to
- -- compute, that can potentially overflow.)
-
- if LN = 0 then
- if RN = 0 then
- return Empty_Vector;
- end if;
-
- declare
- RE : Elements_Array renames
- Right.Elements.EA (Index_Type'First .. Right.Last);
-
- Elements : constant Elements_Access :=
- new Elements_Type'(Right.Last, RE);
-
- begin
- return (Controlled with Elements, Right.Last, 0, 0);
- end;
- end if;
-
- if RN = 0 then
- declare
- LE : Elements_Array renames
- Left.Elements.EA (Index_Type'First .. Left.Last);
-
- Elements : constant Elements_Access :=
- new Elements_Type'(Left.Last, LE);
-
- begin
- return (Controlled with Elements, Left.Last, 0, 0);
- end;
-
- end if;
-
- -- Neither of the vector parameters is empty, so must compute the length
- -- of the result vector and its last index. (This is the harder case,
- -- because our computations must avoid overflow.)
-
- -- There are two constraints we need to satisfy. The first constraint is
- -- that a container cannot have more than Count_Type'Last elements, so
- -- we must check the sum of the combined lengths. Note that we cannot
- -- simply add the lengths, because of the possibility of overflow.
-
- if LN > Count_Type'Last - RN then
- raise Constraint_Error with "new length is out of range";
- end if;
-
- -- It is now safe compute the length of the new vector, without fear of
- -- overflow.
-
- N := LN + RN;
-
- -- The second constraint is that the new Last index value cannot
- -- exceed Index_Type'Last. We use the wider of Index_Type'Base and
- -- Count_Type'Base as the type for intermediate values.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-
- -- We perform a two-part test. First we determine whether the
- -- computed Last value lies in the base range of the type, and then
- -- determine whether it lies in the range of the index (sub)type.
-
- -- Last must satisfy this relation:
- -- First + Length - 1 <= Last
- -- We regroup terms:
- -- First - 1 <= Last - Length
- -- Which can rewrite as:
- -- No_Index <= Last - Length
-
- if Index_Type'Base'Last - Index_Type'Base (N) < No_Index then
- raise Constraint_Error with "new length is out of range";
- end if;
-
- -- We now know that the computed value of Last is within the base
- -- range of the type, so it is safe to compute its value:
-
- Last := No_Index + Index_Type'Base (N);
-
- -- Finally we test whether the value is within the range of the
- -- generic actual index subtype:
-
- if Last > Index_Type'Last then
- raise Constraint_Error with "new length is out of range";
- end if;
-
- elsif Index_Type'First <= 0 then
-
- -- Here we can compute Last directly, in the normal way. We know that
- -- No_Index is less than 0, so there is no danger of overflow when
- -- adding the (positive) value of length.
-
- J := Count_Type'Base (No_Index) + N; -- Last
-
- if J > Count_Type'Base (Index_Type'Last) then
- raise Constraint_Error with "new length is out of range";
- end if;
-
- -- We know that the computed value (having type Count_Type) of Last
- -- is within the range of the generic actual index subtype, so it is
- -- safe to convert to Index_Type:
-
- Last := Index_Type'Base (J);
-
- else
- -- Here Index_Type'First (and Index_Type'Last) is positive, so we
- -- must test the length indirectly (by working backwards from the
- -- largest possible value of Last), in order to prevent overflow.
-
- J := Count_Type'Base (Index_Type'Last) - N; -- No_Index
-
- if J < Count_Type'Base (No_Index) then
- raise Constraint_Error with "new length is out of range";
- end if;
-
- -- We have determined that the result length would not create a Last
- -- index value outside of the range of Index_Type, so we can now
- -- safely compute its value.
-
- Last := Index_Type'Base (Count_Type'Base (No_Index) + N);
- end if;
-
- declare
- LE : Elements_Array renames
- Left.Elements.EA (Index_Type'First .. Left.Last);
-
- RE : Elements_Array renames
- Right.Elements.EA (Index_Type'First .. Right.Last);
-
- Elements : constant Elements_Access :=
- new Elements_Type'(Last, LE & RE);
-
- begin
- return (Controlled with Elements, Last, 0, 0);
- end;
- end "&";
-
- function "&" (Left : Vector; Right : Element_Type) return Vector is
- begin
- -- We decide that the capacity of the result is the sum of the lengths
- -- of the parameters. We could decide to make it larger, but we have no
- -- basis for knowing how much larger, so we just allocate the minimum
- -- amount of storage.
-
- -- Handle easy case first, when the vector parameter (Left) is empty
-
- if Left.Is_Empty then
- declare
- Elements : constant Elements_Access :=
- new Elements_Type'
- (Last => Index_Type'First,
- EA => (others => Right));
-
- begin
- return (Controlled with Elements, Index_Type'First, 0, 0);
- end;
- end if;
-
- -- The vector parameter is not empty, so we must compute the length of
- -- the result vector and its last index, but in such a way that overflow
- -- is avoided. We must satisfy two constraints: the new length cannot
- -- exceed Count_Type'Last, and the new Last index cannot exceed
- -- Index_Type'Last.
-
- if Left.Length = Count_Type'Last then
- raise Constraint_Error with "new length is out of range";
- end if;
-
- if Left.Last >= Index_Type'Last then
- raise Constraint_Error with "new length is out of range";
- end if;
-
- declare
- Last : constant Index_Type := Left.Last + 1;
-
- LE : Elements_Array renames
- Left.Elements.EA (Index_Type'First .. Left.Last);
-
- Elements : constant Elements_Access :=
- new Elements_Type'(Last => Last, EA => LE & Right);
-
- begin
- return (Controlled with Elements, Last, 0, 0);
- end;
- end "&";
-
- function "&" (Left : Element_Type; Right : Vector) return Vector is
- begin
- -- We decide that the capacity of the result is the sum of the lengths
- -- of the parameters. We could decide to make it larger, but we have no
- -- basis for knowing how much larger, so we just allocate the minimum
- -- amount of storage.
-
- -- Handle easy case first, when the vector parameter (Right) is empty
-
- if Right.Is_Empty then
- declare
- Elements : constant Elements_Access :=
- new Elements_Type'
- (Last => Index_Type'First,
- EA => (others => Left));
-
- begin
- return (Controlled with Elements, Index_Type'First, 0, 0);
- end;
- end if;
-
- -- The vector parameter is not empty, so we must compute the length of
- -- the result vector and its last index, but in such a way that overflow
- -- is avoided. We must satisfy two constraints: the new length cannot
- -- exceed Count_Type'Last, and the new Last index cannot exceed
- -- Index_Type'Last.
-
- if Right.Length = Count_Type'Last then
- raise Constraint_Error with "new length is out of range";
- end if;
-
- if Right.Last >= Index_Type'Last then
- raise Constraint_Error with "new length is out of range";
- end if;
-
- declare
- Last : constant Index_Type := Right.Last + 1;
-
- RE : Elements_Array renames
- Right.Elements.EA (Index_Type'First .. Right.Last);
-
- Elements : constant Elements_Access :=
- new Elements_Type'
- (Last => Last,
- EA => Left & RE);
-
- begin
- return (Controlled with Elements, Last, 0, 0);
- end;
- end "&";
-
- function "&" (Left, Right : Element_Type) return Vector is
- begin
- -- We decide that the capacity of the result is the sum of the lengths
- -- of the parameters. We could decide to make it larger, but we have no
- -- basis for knowing how much larger, so we just allocate the minimum
- -- amount of storage.
-
- -- We must compute the length of the result vector and its last index,
- -- but in such a way that overflow is avoided. We must satisfy two
- -- constraints: the new length cannot exceed Count_Type'Last (here, we
- -- know that that condition is satisfied), and the new Last index cannot
- -- exceed Index_Type'Last.
-
- if Index_Type'First >= Index_Type'Last then
- raise Constraint_Error with "new length is out of range";
- end if;
-
- declare
- Last : constant Index_Type := Index_Type'First + 1;
-
- Elements : constant Elements_Access :=
- new Elements_Type'
- (Last => Last,
- EA => (Left, Right));
-
- begin
- return (Controlled with Elements, Last, 0, 0);
- end;
- end "&";
-
- ---------
- -- "=" --
- ---------
-
- overriding function "=" (Left, Right : Vector) return Boolean is
- begin
- if Left'Address = Right'Address then
- return True;
- end if;
-
- if Left.Last /= Right.Last then
- return False;
- end if;
-
- for J in Index_Type range Index_Type'First .. Left.Last loop
- if Left.Elements.EA (J) /= Right.Elements.EA (J) then
- return False;
- end if;
- end loop;
-
- return True;
- end "=";
-
- ------------
- -- Adjust --
- ------------
-
- procedure Adjust (Container : in out Vector) is
- begin
- if Container.Last = No_Index then
- Container.Elements := null;
- return;
- end if;
-
- declare
- L : constant Index_Type := Container.Last;
- EA : Elements_Array renames
- Container.Elements.EA (Index_Type'First .. L);
-
- begin
- Container.Elements := null;
- Container.Busy := 0;
- Container.Lock := 0;
-
- -- Note: it may seem that the following assignment to Container.Last
- -- is useless, since we assign it to L below. However this code is
- -- used in case 'new Elements_Type' below raises an exception, to
- -- keep Container in a consistent state.
-
- Container.Last := No_Index;
- Container.Elements := new Elements_Type'(L, EA);
- Container.Last := L;
- end;
- end Adjust;
-
- procedure Adjust (Control : in out Reference_Control_Type) is
- begin
- if Control.Container /= null then
- declare
- C : Vector renames Control.Container.all;
- B : Natural renames C.Busy;
- L : Natural renames C.Lock;
- begin
- B := B + 1;
- L := L + 1;
- end;
- end if;
- end Adjust;
-
- ------------
- -- Append --
- ------------
-
- procedure Append (Container : in out Vector; New_Item : Vector) is
- begin
- if Is_Empty (New_Item) then
- return;
- end if;
-
- if Container.Last = Index_Type'Last then
- raise Constraint_Error with "vector is already at its maximum length";
- end if;
-
- Insert
- (Container,
- Container.Last + 1,
- New_Item);
- end Append;
-
- procedure Append
- (Container : in out Vector;
- New_Item : Element_Type;
- Count : Count_Type := 1)
- is
- begin
- if Count = 0 then
- return;
- end if;
-
- if Container.Last = Index_Type'Last then
- raise Constraint_Error with "vector is already at its maximum length";
- end if;
-
- Insert
- (Container,
- Container.Last + 1,
- New_Item,
- Count);
- end Append;
-
- ------------
- -- Assign --
- ------------
-
- procedure Assign (Target : in out Vector; Source : Vector) is
- begin
- if Target'Address = Source'Address then
- return;
- end if;
-
- Target.Clear;
- Target.Append (Source);
- end Assign;
-
- --------------
- -- Capacity --
- --------------
-
- function Capacity (Container : Vector) return Count_Type is
- begin
- if Container.Elements = null then
- return 0;
- else
- return Container.Elements.EA'Length;
- end if;
- end Capacity;
-
- -----------
- -- Clear --
- -----------
-
- procedure Clear (Container : in out Vector) is
- begin
- if Container.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (vector is busy)";
- else
- Container.Last := No_Index;
- end if;
- end Clear;
-
- ------------------------
- -- Constant_Reference --
- ------------------------
-
- function Constant_Reference
- (Container : aliased Vector;
- Position : Cursor) return Constant_Reference_Type
- is
- begin
- if Position.Container = null then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Position.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Position cursor denotes wrong container";
- end if;
-
- if Position.Index > Position.Container.Last then
- raise Constraint_Error with "Position cursor is out of range";
- end if;
-
- declare
- C : Vector renames Position.Container.all;
- B : Natural renames C.Busy;
- L : Natural renames C.Lock;
- begin
- return R : constant Constant_Reference_Type :=
- (Element => Container.Elements.EA (Position.Index)'Access,
- Control => (Controlled with Container'Unrestricted_Access))
- do
- B := B + 1;
- L := L + 1;
- end return;
- end;
- end Constant_Reference;
-
- function Constant_Reference
- (Container : aliased Vector;
- Index : Index_Type) return Constant_Reference_Type
- is
- begin
- if Index > Container.Last then
- raise Constraint_Error with "Index is out of range";
- else
- declare
- C : Vector renames Container'Unrestricted_Access.all;
- B : Natural renames C.Busy;
- L : Natural renames C.Lock;
- begin
- return R : constant Constant_Reference_Type :=
- (Element => Container.Elements.EA (Index)'Access,
- Control => (Controlled with Container'Unrestricted_Access))
- do
- B := B + 1;
- L := L + 1;
- end return;
- end;
- end if;
- end Constant_Reference;
-
- --------------
- -- Contains --
- --------------
-
- function Contains
- (Container : Vector;
- Item : Element_Type) return Boolean
- is
- begin
- return Find_Index (Container, Item) /= No_Index;
- end Contains;
-
- ----------
- -- Copy --
- ----------
-
- function Copy
- (Source : Vector;
- Capacity : Count_Type := 0) return Vector
- is
- C : Count_Type;
-
- begin
- if Capacity = 0 then
- C := Source.Length;
-
- elsif Capacity >= Source.Length then
- C := Capacity;
-
- else
- raise Capacity_Error with
- "Requested capacity is less than Source length";
- end if;
-
- return Target : Vector do
- Target.Reserve_Capacity (C);
- Target.Assign (Source);
- end return;
- end Copy;
-
- ------------
- -- Delete --
- ------------
-
- procedure Delete
- (Container : in out Vector;
- Index : Extended_Index;
- Count : Count_Type := 1)
- is
- Old_Last : constant Index_Type'Base := Container.Last;
- New_Last : Index_Type'Base;
- Count2 : Count_Type'Base; -- count of items from Index to Old_Last
- J : Index_Type'Base; -- first index of items that slide down
-
- begin
- -- Delete removes items from the vector, the number of which is the
- -- minimum of the specified Count and the items (if any) that exist from
- -- Index to Container.Last. There are no constraints on the specified
- -- value of Count (it can be larger than what's available at this
- -- position in the vector, for example), but there are constraints on
- -- the allowed values of the Index.
-
- -- As a precondition on the generic actual Index_Type, the base type
- -- must include Index_Type'Pred (Index_Type'First); this is the value
- -- that Container.Last assumes when the vector is empty. However, we do
- -- not allow that as the value for Index when specifying which items
- -- should be deleted, so we must manually check. (That the user is
- -- allowed to specify the value at all here is a consequence of the
- -- declaration of the Extended_Index subtype, which includes the values
- -- in the base range that immediately precede and immediately follow the
- -- values in the Index_Type.)
-
- if Index < Index_Type'First then
- raise Constraint_Error with "Index is out of range (too small)";
- end if;
-
- -- We do allow a value greater than Container.Last to be specified as
- -- the Index, but only if it's immediately greater. This allows the
- -- corner case of deleting no items from the back end of the vector to
- -- be treated as a no-op. (It is assumed that specifying an index value
- -- greater than Last + 1 indicates some deeper flaw in the caller's
- -- algorithm, so that case is treated as a proper error.)
-
- if Index > Old_Last then
- if Index > Old_Last + 1 then
- raise Constraint_Error with "Index is out of range (too large)";
- end if;
-
- return;
- end if;
-
- -- Here and elsewhere we treat deleting 0 items from the container as a
- -- no-op, even when the container is busy, so we simply return.
-
- if Count = 0 then
- return;
- end if;
-
- -- The tampering bits exist to prevent an item from being deleted (or
- -- otherwise harmfully manipulated) while it is being visited. Query,
- -- Update, and Iterate increment the busy count on entry, and decrement
- -- the count on exit. Delete checks the count to determine whether it is
- -- being called while the associated callback procedure is executing.
-
- if Container.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (vector is busy)";
- end if;
-
- -- We first calculate what's available for deletion starting at
- -- Index. Here and elsewhere we use the wider of Index_Type'Base and
- -- Count_Type'Base as the type for intermediate values. (See function
- -- Length for more information.)
-
- if Count_Type'Base'Last >= Index_Type'Pos (Index_Type'Base'Last) then
- Count2 := Count_Type'Base (Old_Last) - Count_Type'Base (Index) + 1;
-
- else
- Count2 := Count_Type'Base (Old_Last - Index + 1);
- end if;
-
- -- If more elements are requested (Count) for deletion than are
- -- available (Count2) for deletion beginning at Index, then everything
- -- from Index is deleted. There are no elements to slide down, and so
- -- all we need to do is set the value of Container.Last.
-
- if Count >= Count2 then
- Container.Last := Index - 1;
- return;
- end if;
-
- -- There are some elements aren't being deleted (the requested count was
- -- less than the available count), so we must slide them down to
- -- Index. We first calculate the index values of the respective array
- -- slices, using the wider of Index_Type'Base and Count_Type'Base as the
- -- type for intermediate calculations. For the elements that slide down,
- -- index value New_Last is the last index value of their new home, and
- -- index value J is the first index of their old home.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
- New_Last := Old_Last - Index_Type'Base (Count);
- J := Index + Index_Type'Base (Count);
-
- else
- New_Last := Index_Type'Base (Count_Type'Base (Old_Last) - Count);
- J := Index_Type'Base (Count_Type'Base (Index) + Count);
- end if;
-
- -- The internal elements array isn't guaranteed to exist unless we have
- -- elements, but we have that guarantee here because we know we have
- -- elements to slide. The array index values for each slice have
- -- already been determined, so we just slide down to Index the elements
- -- that weren't deleted.
-
- declare
- EA : Elements_Array renames Container.Elements.EA;
-
- begin
- EA (Index .. New_Last) := EA (J .. Old_Last);
- Container.Last := New_Last;
- end;
- end Delete;
-
- procedure Delete
- (Container : in out Vector;
- Position : in out Cursor;
- Count : Count_Type := 1)
- is
- pragma Warnings (Off, Position);
-
- begin
- if Position.Container = null then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Position.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Position cursor denotes wrong container";
- end if;
-
- if Position.Index > Container.Last then
- raise Program_Error with "Position index is out of range";
- end if;
-
- Delete (Container, Position.Index, Count);
- Position := No_Element;
- end Delete;
-
- ------------------
- -- Delete_First --
- ------------------
-
- procedure Delete_First
- (Container : in out Vector;
- Count : Count_Type := 1)
- is
- begin
- if Count = 0 then
- return;
- end if;
-
- if Count >= Length (Container) then
- Clear (Container);
- return;
- end if;
-
- Delete (Container, Index_Type'First, Count);
- end Delete_First;
-
- -----------------
- -- Delete_Last --
- -----------------
-
- procedure Delete_Last
- (Container : in out Vector;
- Count : Count_Type := 1)
- is
- begin
- -- It is not permitted to delete items while the container is busy (for
- -- example, we're in the middle of a passive iteration). However, we
- -- always treat deleting 0 items as a no-op, even when we're busy, so we
- -- simply return without checking.
-
- if Count = 0 then
- return;
- end if;
-
- -- The tampering bits exist to prevent an item from being deleted (or
- -- otherwise harmfully manipulated) while it is being visited. Query,
- -- Update, and Iterate increment the busy count on entry, and decrement
- -- the count on exit. Delete_Last checks the count to determine whether
- -- it is being called while the associated callback procedure is
- -- executing.
-
- if Container.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (vector is busy)";
- end if;
-
- -- There is no restriction on how large Count can be when deleting
- -- items. If it is equal or greater than the current length, then this
- -- is equivalent to clearing the vector. (In particular, there's no need
- -- for us to actually calculate the new value for Last.)
-
- -- If the requested count is less than the current length, then we must
- -- calculate the new value for Last. For the type we use the widest of
- -- Index_Type'Base and Count_Type'Base for the intermediate values of
- -- our calculation. (See the comments in Length for more information.)
-
- if Count >= Container.Length then
- Container.Last := No_Index;
-
- elsif Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
- Container.Last := Container.Last - Index_Type'Base (Count);
-
- else
- Container.Last :=
- Index_Type'Base (Count_Type'Base (Container.Last) - Count);
- end if;
- end Delete_Last;
-
- -------------
- -- Element --
- -------------
-
- function Element
- (Container : Vector;
- Index : Index_Type) return Element_Type
- is
- begin
- if Index > Container.Last then
- raise Constraint_Error with "Index is out of range";
- end if;
-
- return Container.Elements.EA (Index);
- end Element;
-
- function Element (Position : Cursor) return Element_Type is
- begin
- if Position.Container = null then
- raise Constraint_Error with "Position cursor has no element";
- elsif Position.Index > Position.Container.Last then
- raise Constraint_Error with "Position cursor is out of range";
- else
- return Position.Container.Elements.EA (Position.Index);
- end if;
- end Element;
-
- --------------
- -- Finalize --
- --------------
-
- procedure Finalize (Container : in out Vector) is
- X : Elements_Access := Container.Elements;
-
- begin
- if Container.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (vector is busy)";
- end if;
-
- Container.Elements := null;
- Container.Last := No_Index;
- Free (X);
- end Finalize;
-
- procedure Finalize (Object : in out Iterator) is
- B : Natural renames Object.Container.Busy;
- begin
- B := B - 1;
- end Finalize;
-
- procedure Finalize (Control : in out Reference_Control_Type) is
- begin
- if Control.Container /= null then
- declare
- C : Vector renames Control.Container.all;
- B : Natural renames C.Busy;
- L : Natural renames C.Lock;
- begin
- B := B - 1;
- L := L - 1;
- end;
-
- Control.Container := null;
- end if;
- end Finalize;
-
- ----------
- -- Find --
- ----------
-
- function Find
- (Container : Vector;
- Item : Element_Type;
- Position : Cursor := No_Element) return Cursor
- is
- begin
- if Position.Container /= null then
- if Position.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Position cursor denotes wrong container";
- end if;
-
- if Position.Index > Container.Last then
- raise Program_Error with "Position index is out of range";
- end if;
- end if;
-
- for J in Position.Index .. Container.Last loop
- if Container.Elements.EA (J) = Item then
- return (Container'Unrestricted_Access, J);
- end if;
- end loop;
-
- return No_Element;
- end Find;
-
- ----------------
- -- Find_Index --
- ----------------
-
- function Find_Index
- (Container : Vector;
- Item : Element_Type;
- Index : Index_Type := Index_Type'First) return Extended_Index
- is
- begin
- for Indx in Index .. Container.Last loop
- if Container.Elements.EA (Indx) = Item then
- return Indx;
- end if;
- end loop;
-
- return No_Index;
- end Find_Index;
-
- -----------
- -- First --
- -----------
-
- function First (Container : Vector) return Cursor is
- begin
- if Is_Empty (Container) then
- return No_Element;
- else
- return (Container'Unrestricted_Access, Index_Type'First);
- end if;
- end First;
-
- function First (Object : Iterator) return Cursor is
- begin
- -- The value of the iterator object's Index component influences the
- -- behavior of the First (and Last) selector function.
-
- -- When the Index component is No_Index, this means the iterator
- -- object was constructed without a start expression, in which case the
- -- (forward) iteration starts from the (logical) beginning of the entire
- -- sequence of items (corresponding to Container.First, for a forward
- -- iterator).
-
- -- Otherwise, this is iteration over a partial sequence of items.
- -- When the Index component isn't No_Index, the iterator object was
- -- constructed with a start expression, that specifies the position
- -- from which the (forward) partial iteration begins.
-
- if Object.Index = No_Index then
- return First (Object.Container.all);
- else
- return Cursor'(Object.Container, Object.Index);
- end if;
- end First;
-
- -------------------
- -- First_Element --
- -------------------
-
- function First_Element (Container : Vector) return Element_Type is
- begin
- if Container.Last = No_Index then
- raise Constraint_Error with "Container is empty";
- else
- return Container.Elements.EA (Index_Type'First);
- end if;
- end First_Element;
-
- -----------------
- -- First_Index --
- -----------------
-
- function First_Index (Container : Vector) return Index_Type is
- pragma Unreferenced (Container);
- begin
- return Index_Type'First;
- end First_Index;
-
- ---------------------
- -- Generic_Sorting --
- ---------------------
-
- package body Generic_Sorting is
-
- ---------------
- -- Is_Sorted --
- ---------------
-
- function Is_Sorted (Container : Vector) return Boolean is
- begin
- if Container.Last <= Index_Type'First then
- return True;
- end if;
-
- declare
- EA : Elements_Array renames Container.Elements.EA;
- begin
- for J in Index_Type'First .. Container.Last - 1 loop
- if EA (J + 1) < EA (J) then
- return False;
- end if;
- end loop;
- end;
-
- return True;
- end Is_Sorted;
-
- -----------
- -- Merge --
- -----------
-
- procedure Merge (Target, Source : in out Vector) is
- I : Index_Type'Base := Target.Last;
- J : Index_Type'Base;
-
- begin
- -- The semantics of Merge changed slightly per AI05-0021. It was
- -- originally the case that if Target and Source denoted the same
- -- container object, then the GNAT implementation of Merge did
- -- nothing. However, it was argued that RM05 did not precisely
- -- specify the semantics for this corner case. The decision of the
- -- ARG was that if Target and Source denote the same non-empty
- -- container object, then Program_Error is raised.
-
- if Source.Last < Index_Type'First then -- Source is empty
- return;
- end if;
-
- if Target'Address = Source'Address then
- raise Program_Error with
- "Target and Source denote same non-empty container";
- end if;
-
- if Target.Last < Index_Type'First then -- Target is empty
- Move (Target => Target, Source => Source);
- return;
- end if;
-
- if Source.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (vector is busy)";
- end if;
-
- Target.Set_Length (Length (Target) + Length (Source));
-
- declare
- TA : Elements_Array renames Target.Elements.EA;
- SA : Elements_Array renames Source.Elements.EA;
-
- begin
- J := Target.Last;
- while Source.Last >= Index_Type'First loop
- pragma Assert (Source.Last <= Index_Type'First
- or else not (SA (Source.Last) <
- SA (Source.Last - 1)));
-
- if I < Index_Type'First then
- TA (Index_Type'First .. J) :=
- SA (Index_Type'First .. Source.Last);
-
- Source.Last := No_Index;
- return;
- end if;
-
- pragma Assert (I <= Index_Type'First
- or else not (TA (I) < TA (I - 1)));
-
- if SA (Source.Last) < TA (I) then
- TA (J) := TA (I);
- I := I - 1;
-
- else
- TA (J) := SA (Source.Last);
- Source.Last := Source.Last - 1;
- end if;
-
- J := J - 1;
- end loop;
- end;
- end Merge;
-
- ----------
- -- Sort --
- ----------
-
- procedure Sort (Container : in out Vector) is
- procedure Sort is
- new Generic_Array_Sort
- (Index_Type => Index_Type,
- Element_Type => Element_Type,
- Array_Type => Elements_Array,
- "<" => "<");
-
- begin
- if Container.Last <= Index_Type'First then
- return;
- end if;
-
- -- The exception behavior for the vector container must match that
- -- for the list container, so we check for cursor tampering here
- -- (which will catch more things) instead of for element tampering
- -- (which will catch fewer things). It's true that the elements of
- -- this vector container could be safely moved around while (say) an
- -- iteration is taking place (iteration only increments the busy
- -- counter), and so technically all we would need here is a test for
- -- element tampering (indicated by the lock counter), that's simply
- -- an artifact of our array-based implementation. Logically Sort
- -- requires a check for cursor tampering.
-
- if Container.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (vector is busy)";
- end if;
-
- Sort (Container.Elements.EA (Index_Type'First .. Container.Last));
- end Sort;
-
- end Generic_Sorting;
-
- -----------------
- -- Has_Element --
- -----------------
-
- function Has_Element (Position : Cursor) return Boolean is
- begin
- return Position /= No_Element;
- end Has_Element;
-
- ------------
- -- Insert --
- ------------
-
- procedure Insert
- (Container : in out Vector;
- Before : Extended_Index;
- New_Item : Element_Type;
- Count : Count_Type := 1)
- is
- Old_Length : constant Count_Type := Container.Length;
-
- Max_Length : Count_Type'Base; -- determined from range of Index_Type
- New_Length : Count_Type'Base; -- sum of current length and Count
- New_Last : Index_Type'Base; -- last index of vector after insertion
-
- Index : Index_Type'Base; -- scratch for intermediate values
- J : Count_Type'Base; -- scratch
-
- New_Capacity : Count_Type'Base; -- length of new, expanded array
- Dst_Last : Index_Type'Base; -- last index of new, expanded array
- Dst : Elements_Access; -- new, expanded internal array
-
- begin
- -- As a precondition on the generic actual Index_Type, the base type
- -- must include Index_Type'Pred (Index_Type'First); this is the value
- -- that Container.Last assumes when the vector is empty. However, we do
- -- not allow that as the value for Index when specifying where the new
- -- items should be inserted, so we must manually check. (That the user
- -- is allowed to specify the value at all here is a consequence of the
- -- declaration of the Extended_Index subtype, which includes the values
- -- in the base range that immediately precede and immediately follow the
- -- values in the Index_Type.)
-
- if Before < Index_Type'First then
- raise Constraint_Error with
- "Before index is out of range (too small)";
- end if;
-
- -- We do allow a value greater than Container.Last to be specified as
- -- the Index, but only if it's immediately greater. This allows for the
- -- case of appending items to the back end of the vector. (It is assumed
- -- that specifying an index value greater than Last + 1 indicates some
- -- deeper flaw in the caller's algorithm, so that case is treated as a
- -- proper error.)
-
- if Before > Container.Last
- and then Before > Container.Last + 1
- then
- raise Constraint_Error with
- "Before index is out of range (too large)";
- end if;
-
- -- We treat inserting 0 items into the container as a no-op, even when
- -- the container is busy, so we simply return.
-
- if Count = 0 then
- return;
- end if;
-
- -- There are two constraints we need to satisfy. The first constraint is
- -- that a container cannot have more than Count_Type'Last elements, so
- -- we must check the sum of the current length and the insertion count.
- -- Note: we cannot simply add these values, because of the possibility
- -- of overflow.
-
- if Old_Length > Count_Type'Last - Count then
- raise Constraint_Error with "Count is out of range";
- end if;
-
- -- It is now safe compute the length of the new vector, without fear of
- -- overflow.
-
- New_Length := Old_Length + Count;
-
- -- The second constraint is that the new Last index value cannot exceed
- -- Index_Type'Last. In each branch below, we calculate the maximum
- -- length (computed from the range of values in Index_Type), and then
- -- compare the new length to the maximum length. If the new length is
- -- acceptable, then we compute the new last index from that.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-
- -- We have to handle the case when there might be more values in the
- -- range of Index_Type than in the range of Count_Type.
-
- if Index_Type'First <= 0 then
-
- -- We know that No_Index (the same as Index_Type'First - 1) is
- -- less than 0, so it is safe to compute the following sum without
- -- fear of overflow.
-
- Index := No_Index + Index_Type'Base (Count_Type'Last);
-
- if Index <= Index_Type'Last then
-
- -- We have determined that range of Index_Type has at least as
- -- many values as in Count_Type, so Count_Type'Last is the
- -- maximum number of items that are allowed.
-
- Max_Length := Count_Type'Last;
-
- else
- -- The range of Index_Type has fewer values than in Count_Type,
- -- so the maximum number of items is computed from the range of
- -- the Index_Type.
-
- Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
- end if;
-
- else
- -- No_Index is equal or greater than 0, so we can safely compute
- -- the difference without fear of overflow (which we would have to
- -- worry about if No_Index were less than 0, but that case is
- -- handled above).
-
- Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
- end if;
-
- elsif Index_Type'First <= 0 then
-
- -- We know that No_Index (the same as Index_Type'First - 1) is less
- -- than 0, so it is safe to compute the following sum without fear of
- -- overflow.
-
- J := Count_Type'Base (No_Index) + Count_Type'Last;
-
- if J <= Count_Type'Base (Index_Type'Last) then
-
- -- We have determined that range of Index_Type has at least as
- -- many values as in Count_Type, so Count_Type'Last is the maximum
- -- number of items that are allowed.
-
- Max_Length := Count_Type'Last;
-
- else
- -- The range of Index_Type has fewer values than Count_Type does,
- -- so the maximum number of items is computed from the range of
- -- the Index_Type.
-
- Max_Length :=
- Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
- end if;
-
- else
- -- No_Index is equal or greater than 0, so we can safely compute the
- -- difference without fear of overflow (which we would have to worry
- -- about if No_Index were less than 0, but that case is handled
- -- above).
-
- Max_Length :=
- Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
- end if;
-
- -- We have just computed the maximum length (number of items). We must
- -- now compare the requested length to the maximum length, as we do not
- -- allow a vector expand beyond the maximum (because that would create
- -- an internal array with a last index value greater than
- -- Index_Type'Last, with no way to index those elements).
-
- if New_Length > Max_Length then
- raise Constraint_Error with "Count is out of range";
- end if;
-
- -- New_Last is the last index value of the items in the container after
- -- insertion. Use the wider of Index_Type'Base and Count_Type'Base to
- -- compute its value from the New_Length.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
- New_Last := No_Index + Index_Type'Base (New_Length);
- else
- New_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Length);
- end if;
-
- if Container.Elements = null then
- pragma Assert (Container.Last = No_Index);
-
- -- This is the simplest case, with which we must always begin: we're
- -- inserting items into an empty vector that hasn't allocated an
- -- internal array yet. Note that we don't need to check the busy bit
- -- here, because an empty container cannot be busy.
-
- -- In order to preserve container invariants, we allocate the new
- -- internal array first, before setting the Last index value, in case
- -- the allocation fails (which can happen either because there is no
- -- storage available, or because element initialization fails).
-
- Container.Elements := new Elements_Type'
- (Last => New_Last,
- EA => (others => New_Item));
-
- -- The allocation of the new, internal array succeeded, so it is now
- -- safe to update the Last index, restoring container invariants.
-
- Container.Last := New_Last;
-
- return;
- end if;
-
- -- The tampering bits exist to prevent an item from being harmfully
- -- manipulated while it is being visited. Query, Update, and Iterate
- -- increment the busy count on entry, and decrement the count on
- -- exit. Insert checks the count to determine whether it is being called
- -- while the associated callback procedure is executing.
-
- if Container.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (vector is busy)";
- end if;
-
- -- An internal array has already been allocated, so we must determine
- -- whether there is enough unused storage for the new items.
-
- if New_Length <= Container.Elements.EA'Length then
-
- -- In this case, we're inserting elements into a vector that has
- -- already allocated an internal array, and the existing array has
- -- enough unused storage for the new items.
-
- declare
- EA : Elements_Array renames Container.Elements.EA;
-
- begin
- if Before > Container.Last then
-
- -- The new items are being appended to the vector, so no
- -- sliding of existing elements is required.
-
- EA (Before .. New_Last) := (others => New_Item);
-
- else
- -- The new items are being inserted before some existing
- -- elements, so we must slide the existing elements up to their
- -- new home. We use the wider of Index_Type'Base and
- -- Count_Type'Base as the type for intermediate index values.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
- Index := Before + Index_Type'Base (Count);
-
- else
- Index := Index_Type'Base (Count_Type'Base (Before) + Count);
- end if;
-
- EA (Index .. New_Last) := EA (Before .. Container.Last);
- EA (Before .. Index - 1) := (others => New_Item);
- end if;
- end;
-
- Container.Last := New_Last;
- return;
- end if;
-
- -- In this case, we're inserting elements into a vector that has already
- -- allocated an internal array, but the existing array does not have
- -- enough storage, so we must allocate a new, longer array. In order to
- -- guarantee that the amortized insertion cost is O(1), we always
- -- allocate an array whose length is some power-of-two factor of the
- -- current array length. (The new array cannot have a length less than
- -- the New_Length of the container, but its last index value cannot be
- -- greater than Index_Type'Last.)
-
- New_Capacity := Count_Type'Max (1, Container.Elements.EA'Length);
- while New_Capacity < New_Length loop
- if New_Capacity > Count_Type'Last / 2 then
- New_Capacity := Count_Type'Last;
- exit;
- end if;
-
- New_Capacity := 2 * New_Capacity;
- end loop;
-
- if New_Capacity > Max_Length then
-
- -- We have reached the limit of capacity, so no further expansion
- -- will occur. (This is not a problem, as there is never a need to
- -- have more capacity than the maximum container length.)
-
- New_Capacity := Max_Length;
- end if;
-
- -- We have computed the length of the new internal array (and this is
- -- what "vector capacity" means), so use that to compute its last index.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
- Dst_Last := No_Index + Index_Type'Base (New_Capacity);
-
- else
- Dst_Last :=
- Index_Type'Base (Count_Type'Base (No_Index) + New_Capacity);
- end if;
-
- -- Now we allocate the new, longer internal array. If the allocation
- -- fails, we have not changed any container state, so no side-effect
- -- will occur as a result of propagating the exception.
-
- Dst := new Elements_Type (Dst_Last);
-
- -- We have our new internal array. All that needs to be done now is to
- -- copy the existing items (if any) from the old array (the "source"
- -- array, object SA below) to the new array (the "destination" array,
- -- object DA below), and then deallocate the old array.
-
- declare
- SA : Elements_Array renames Container.Elements.EA; -- source
- DA : Elements_Array renames Dst.EA; -- destination
-
- begin
- DA (Index_Type'First .. Before - 1) :=
- SA (Index_Type'First .. Before - 1);
-
- if Before > Container.Last then
- DA (Before .. New_Last) := (others => New_Item);
-
- else
- -- The new items are being inserted before some existing elements,
- -- so we must slide the existing elements up to their new home.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
- Index := Before + Index_Type'Base (Count);
-
- else
- Index := Index_Type'Base (Count_Type'Base (Before) + Count);
- end if;
-
- DA (Before .. Index - 1) := (others => New_Item);
- DA (Index .. New_Last) := SA (Before .. Container.Last);
- end if;
-
- exception
- when others =>
- Free (Dst);
- raise;
- end;
-
- -- We have successfully copied the items onto the new array, so the
- -- final thing to do is deallocate the old array.
-
- declare
- X : Elements_Access := Container.Elements;
- begin
- -- We first isolate the old internal array, removing it from the
- -- container and replacing it with the new internal array, before we
- -- deallocate the old array (which can fail if finalization of
- -- elements propagates an exception).
-
- Container.Elements := Dst;
- Container.Last := New_Last;
-
- -- The container invariants have been restored, so it is now safe to
- -- attempt to deallocate the old array.
-
- Free (X);
- end;
- end Insert;
-
- procedure Insert
- (Container : in out Vector;
- Before : Extended_Index;
- New_Item : Vector)
- is
- N : constant Count_Type := Length (New_Item);
- J : Index_Type'Base;
-
- begin
- -- Use Insert_Space to create the "hole" (the destination slice) into
- -- which we copy the source items.
-
- Insert_Space (Container, Before, Count => N);
-
- if N = 0 then
-
- -- There's nothing else to do here (vetting of parameters was
- -- performed already in Insert_Space), so we simply return.
-
- return;
- end if;
-
- -- We calculate the last index value of the destination slice using the
- -- wider of Index_Type'Base and count_Type'Base.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
- J := (Before - 1) + Index_Type'Base (N);
-
- else
- J := Index_Type'Base (Count_Type'Base (Before - 1) + N);
- end if;
-
- if Container'Address /= New_Item'Address then
-
- -- This is the simple case. New_Item denotes an object different
- -- from Container, so there's nothing special we need to do to copy
- -- the source items to their destination, because all of the source
- -- items are contiguous.
-
- Container.Elements.EA (Before .. J) :=
- New_Item.Elements.EA (Index_Type'First .. New_Item.Last);
-
- return;
- end if;
-
- -- New_Item denotes the same object as Container, so an insertion has
- -- potentially split the source items. The destination is always the
- -- range [Before, J], but the source is [Index_Type'First, Before) and
- -- (J, Container.Last]. We perform the copy in two steps, using each of
- -- the two slices of the source items.
-
- declare
- L : constant Index_Type'Base := Before - 1;
-
- subtype Src_Index_Subtype is Index_Type'Base range
- Index_Type'First .. L;
-
- Src : Elements_Array renames
- Container.Elements.EA (Src_Index_Subtype);
-
- K : Index_Type'Base;
-
- begin
- -- We first copy the source items that precede the space we
- -- inserted. Index value K is the last index of that portion
- -- destination that receives this slice of the source. (If Before
- -- equals Index_Type'First, then this first source slice will be
- -- empty, which is harmless.)
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
- K := L + Index_Type'Base (Src'Length);
-
- else
- K := Index_Type'Base (Count_Type'Base (L) + Src'Length);
- end if;
-
- Container.Elements.EA (Before .. K) := Src;
-
- if Src'Length = N then
-
- -- The new items were effectively appended to the container, so we
- -- have already copied all of the items that need to be copied.
- -- We return early here, even though the source slice below is
- -- empty (so the assignment would be harmless), because we want to
- -- avoid computing J + 1, which will overflow if J equals
- -- Index_Type'Base'Last.
-
- return;
- end if;
- end;
-
- declare
- -- Note that we want to avoid computing J + 1 here, in case J equals
- -- Index_Type'Base'Last. We prevent that by returning early above,
- -- immediately after copying the first slice of the source, and
- -- determining that this second slice of the source is empty.
-
- F : constant Index_Type'Base := J + 1;
-
- subtype Src_Index_Subtype is Index_Type'Base range
- F .. Container.Last;
-
- Src : Elements_Array renames
- Container.Elements.EA (Src_Index_Subtype);
-
- K : Index_Type'Base;
-
- begin
- -- We next copy the source items that follow the space we inserted.
- -- Index value K is the first index of that portion of the
- -- destination that receives this slice of the source. (For the
- -- reasons given above, this slice is guaranteed to be non-empty.)
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
- K := F - Index_Type'Base (Src'Length);
-
- else
- K := Index_Type'Base (Count_Type'Base (F) - Src'Length);
- end if;
-
- Container.Elements.EA (K .. J) := Src;
- end;
- end Insert;
-
- procedure Insert
- (Container : in out Vector;
- Before : Cursor;
- New_Item : Vector)
- is
- Index : Index_Type'Base;
-
- begin
- if Before.Container /= null
- and then Before.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Before cursor denotes wrong container";
- end if;
-
- if Is_Empty (New_Item) then
- return;
- end if;
-
- if Before.Container = null
- or else Before.Index > Container.Last
- then
- if Container.Last = Index_Type'Last then
- raise Constraint_Error with
- "vector is already at its maximum length";
- end if;
-
- Index := Container.Last + 1;
-
- else
- Index := Before.Index;
- end if;
-
- Insert (Container, Index, New_Item);
- end Insert;
-
- procedure Insert
- (Container : in out Vector;
- Before : Cursor;
- New_Item : Vector;
- Position : out Cursor)
- is
- Index : Index_Type'Base;
-
- begin
- if Before.Container /= null
- and then Before.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Before cursor denotes wrong container";
- end if;
-
- if Is_Empty (New_Item) then
- if Before.Container = null
- or else Before.Index > Container.Last
- then
- Position := No_Element;
- else
- Position := (Container'Unrestricted_Access, Before.Index);
- end if;
-
- return;
- end if;
-
- if Before.Container = null
- or else Before.Index > Container.Last
- then
- if Container.Last = Index_Type'Last then
- raise Constraint_Error with
- "vector is already at its maximum length";
- end if;
-
- Index := Container.Last + 1;
-
- else
- Index := Before.Index;
- end if;
-
- Insert (Container, Index, New_Item);
-
- Position := (Container'Unrestricted_Access, Index);
- end Insert;
-
- procedure Insert
- (Container : in out Vector;
- Before : Cursor;
- New_Item : Element_Type;
- Count : Count_Type := 1)
- is
- Index : Index_Type'Base;
-
- begin
- if Before.Container /= null
- and then Before.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Before cursor denotes wrong container";
- end if;
-
- if Count = 0 then
- return;
- end if;
-
- if Before.Container = null
- or else Before.Index > Container.Last
- then
- if Container.Last = Index_Type'Last then
- raise Constraint_Error with
- "vector is already at its maximum length";
- else
- Index := Container.Last + 1;
- end if;
-
- else
- Index := Before.Index;
- end if;
-
- Insert (Container, Index, New_Item, Count);
- end Insert;
-
- procedure Insert
- (Container : in out Vector;
- Before : Cursor;
- New_Item : Element_Type;
- Position : out Cursor;
- Count : Count_Type := 1)
- is
- Index : Index_Type'Base;
-
- begin
- if Before.Container /= null
- and then Before.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Before cursor denotes wrong container";
- end if;
-
- if Count = 0 then
- if Before.Container = null
- or else Before.Index > Container.Last
- then
- Position := No_Element;
- else
- Position := (Container'Unrestricted_Access, Before.Index);
- end if;
-
- return;
- end if;
-
- if Before.Container = null
- or else Before.Index > Container.Last
- then
- if Container.Last = Index_Type'Last then
- raise Constraint_Error with
- "vector is already at its maximum length";
- end if;
-
- Index := Container.Last + 1;
-
- else
- Index := Before.Index;
- end if;
-
- Insert (Container, Index, New_Item, Count);
-
- Position := (Container'Unrestricted_Access, Index);
- end Insert;
-
- procedure Insert
- (Container : in out Vector;
- Before : Extended_Index;
- Count : Count_Type := 1)
- is
- New_Item : Element_Type; -- Default-initialized value
- pragma Warnings (Off, New_Item);
-
- begin
- Insert (Container, Before, New_Item, Count);
- end Insert;
-
- procedure Insert
- (Container : in out Vector;
- Before : Cursor;
- Position : out Cursor;
- Count : Count_Type := 1)
- is
- New_Item : Element_Type; -- Default-initialized value
- pragma Warnings (Off, New_Item);
-
- begin
- Insert (Container, Before, New_Item, Position, Count);
- end Insert;
-
- ------------------
- -- Insert_Space --
- ------------------
-
- procedure Insert_Space
- (Container : in out Vector;
- Before : Extended_Index;
- Count : Count_Type := 1)
- is
- Old_Length : constant Count_Type := Container.Length;
-
- Max_Length : Count_Type'Base; -- determined from range of Index_Type
- New_Length : Count_Type'Base; -- sum of current length and Count
- New_Last : Index_Type'Base; -- last index of vector after insertion
-
- Index : Index_Type'Base; -- scratch for intermediate values
- J : Count_Type'Base; -- scratch
-
- New_Capacity : Count_Type'Base; -- length of new, expanded array
- Dst_Last : Index_Type'Base; -- last index of new, expanded array
- Dst : Elements_Access; -- new, expanded internal array
-
- begin
- -- As a precondition on the generic actual Index_Type, the base type
- -- must include Index_Type'Pred (Index_Type'First); this is the value
- -- that Container.Last assumes when the vector is empty. However, we do
- -- not allow that as the value for Index when specifying where the new
- -- items should be inserted, so we must manually check. (That the user
- -- is allowed to specify the value at all here is a consequence of the
- -- declaration of the Extended_Index subtype, which includes the values
- -- in the base range that immediately precede and immediately follow the
- -- values in the Index_Type.)
-
- if Before < Index_Type'First then
- raise Constraint_Error with
- "Before index is out of range (too small)";
- end if;
-
- -- We do allow a value greater than Container.Last to be specified as
- -- the Index, but only if it's immediately greater. This allows for the
- -- case of appending items to the back end of the vector. (It is assumed
- -- that specifying an index value greater than Last + 1 indicates some
- -- deeper flaw in the caller's algorithm, so that case is treated as a
- -- proper error.)
-
- if Before > Container.Last
- and then Before > Container.Last + 1
- then
- raise Constraint_Error with
- "Before index is out of range (too large)";
- end if;
-
- -- We treat inserting 0 items into the container as a no-op, even when
- -- the container is busy, so we simply return.
-
- if Count = 0 then
- return;
- end if;
-
- -- There are two constraints we need to satisfy. The first constraint is
- -- that a container cannot have more than Count_Type'Last elements, so
- -- we must check the sum of the current length and the insertion count.
- -- Note: we cannot simply add these values, because of the possibility
- -- of overflow.
-
- if Old_Length > Count_Type'Last - Count then
- raise Constraint_Error with "Count is out of range";
- end if;
-
- -- It is now safe compute the length of the new vector, without fear of
- -- overflow.
-
- New_Length := Old_Length + Count;
-
- -- The second constraint is that the new Last index value cannot exceed
- -- Index_Type'Last. In each branch below, we calculate the maximum
- -- length (computed from the range of values in Index_Type), and then
- -- compare the new length to the maximum length. If the new length is
- -- acceptable, then we compute the new last index from that.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-
- -- We have to handle the case when there might be more values in the
- -- range of Index_Type than in the range of Count_Type.
-
- if Index_Type'First <= 0 then
-
- -- We know that No_Index (the same as Index_Type'First - 1) is
- -- less than 0, so it is safe to compute the following sum without
- -- fear of overflow.
-
- Index := No_Index + Index_Type'Base (Count_Type'Last);
-
- if Index <= Index_Type'Last then
-
- -- We have determined that range of Index_Type has at least as
- -- many values as in Count_Type, so Count_Type'Last is the
- -- maximum number of items that are allowed.
-
- Max_Length := Count_Type'Last;
-
- else
- -- The range of Index_Type has fewer values than in Count_Type,
- -- so the maximum number of items is computed from the range of
- -- the Index_Type.
-
- Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
- end if;
-
- else
- -- No_Index is equal or greater than 0, so we can safely compute
- -- the difference without fear of overflow (which we would have to
- -- worry about if No_Index were less than 0, but that case is
- -- handled above).
-
- Max_Length := Count_Type'Base (Index_Type'Last - No_Index);
- end if;
-
- elsif Index_Type'First <= 0 then
-
- -- We know that No_Index (the same as Index_Type'First - 1) is less
- -- than 0, so it is safe to compute the following sum without fear of
- -- overflow.
-
- J := Count_Type'Base (No_Index) + Count_Type'Last;
-
- if J <= Count_Type'Base (Index_Type'Last) then
-
- -- We have determined that range of Index_Type has at least as
- -- many values as in Count_Type, so Count_Type'Last is the maximum
- -- number of items that are allowed.
-
- Max_Length := Count_Type'Last;
-
- else
- -- The range of Index_Type has fewer values than Count_Type does,
- -- so the maximum number of items is computed from the range of
- -- the Index_Type.
-
- Max_Length :=
- Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
- end if;
-
- else
- -- No_Index is equal or greater than 0, so we can safely compute the
- -- difference without fear of overflow (which we would have to worry
- -- about if No_Index were less than 0, but that case is handled
- -- above).
-
- Max_Length :=
- Count_Type'Base (Index_Type'Last) - Count_Type'Base (No_Index);
- end if;
-
- -- We have just computed the maximum length (number of items). We must
- -- now compare the requested length to the maximum length, as we do not
- -- allow a vector expand beyond the maximum (because that would create
- -- an internal array with a last index value greater than
- -- Index_Type'Last, with no way to index those elements).
-
- if New_Length > Max_Length then
- raise Constraint_Error with "Count is out of range";
- end if;
-
- -- New_Last is the last index value of the items in the container after
- -- insertion. Use the wider of Index_Type'Base and Count_Type'Base to
- -- compute its value from the New_Length.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
- New_Last := No_Index + Index_Type'Base (New_Length);
-
- else
- New_Last := Index_Type'Base (Count_Type'Base (No_Index) + New_Length);
- end if;
-
- if Container.Elements = null then
- pragma Assert (Container.Last = No_Index);
-
- -- This is the simplest case, with which we must always begin: we're
- -- inserting items into an empty vector that hasn't allocated an
- -- internal array yet. Note that we don't need to check the busy bit
- -- here, because an empty container cannot be busy.
-
- -- In order to preserve container invariants, we allocate the new
- -- internal array first, before setting the Last index value, in case
- -- the allocation fails (which can happen either because there is no
- -- storage available, or because default-valued element
- -- initialization fails).
-
- Container.Elements := new Elements_Type (New_Last);
-
- -- The allocation of the new, internal array succeeded, so it is now
- -- safe to update the Last index, restoring container invariants.
-
- Container.Last := New_Last;
-
- return;
- end if;
-
- -- The tampering bits exist to prevent an item from being harmfully
- -- manipulated while it is being visited. Query, Update, and Iterate
- -- increment the busy count on entry, and decrement the count on
- -- exit. Insert checks the count to determine whether it is being called
- -- while the associated callback procedure is executing.
-
- if Container.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (vector is busy)";
- end if;
-
- -- An internal array has already been allocated, so we must determine
- -- whether there is enough unused storage for the new items.
-
- if New_Last <= Container.Elements.Last then
-
- -- In this case, we're inserting space into a vector that has already
- -- allocated an internal array, and the existing array has enough
- -- unused storage for the new items.
-
- declare
- EA : Elements_Array renames Container.Elements.EA;
-
- begin
- if Before <= Container.Last then
-
- -- The space is being inserted before some existing elements,
- -- so we must slide the existing elements up to their new
- -- home. We use the wider of Index_Type'Base and
- -- Count_Type'Base as the type for intermediate index values.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
- Index := Before + Index_Type'Base (Count);
-
- else
- Index := Index_Type'Base (Count_Type'Base (Before) + Count);
- end if;
-
- EA (Index .. New_Last) := EA (Before .. Container.Last);
- end if;
- end;
-
- Container.Last := New_Last;
- return;
- end if;
-
- -- In this case, we're inserting space into a vector that has already
- -- allocated an internal array, but the existing array does not have
- -- enough storage, so we must allocate a new, longer array. In order to
- -- guarantee that the amortized insertion cost is O(1), we always
- -- allocate an array whose length is some power-of-two factor of the
- -- current array length. (The new array cannot have a length less than
- -- the New_Length of the container, but its last index value cannot be
- -- greater than Index_Type'Last.)
-
- New_Capacity := Count_Type'Max (1, Container.Elements.EA'Length);
- while New_Capacity < New_Length loop
- if New_Capacity > Count_Type'Last / 2 then
- New_Capacity := Count_Type'Last;
- exit;
- end if;
-
- New_Capacity := 2 * New_Capacity;
- end loop;
-
- if New_Capacity > Max_Length then
-
- -- We have reached the limit of capacity, so no further expansion
- -- will occur. (This is not a problem, as there is never a need to
- -- have more capacity than the maximum container length.)
-
- New_Capacity := Max_Length;
- end if;
-
- -- We have computed the length of the new internal array (and this is
- -- what "vector capacity" means), so use that to compute its last index.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
- Dst_Last := No_Index + Index_Type'Base (New_Capacity);
-
- else
- Dst_Last :=
- Index_Type'Base (Count_Type'Base (No_Index) + New_Capacity);
- end if;
-
- -- Now we allocate the new, longer internal array. If the allocation
- -- fails, we have not changed any container state, so no side-effect
- -- will occur as a result of propagating the exception.
-
- Dst := new Elements_Type (Dst_Last);
-
- -- We have our new internal array. All that needs to be done now is to
- -- copy the existing items (if any) from the old array (the "source"
- -- array, object SA below) to the new array (the "destination" array,
- -- object DA below), and then deallocate the old array.
-
- declare
- SA : Elements_Array renames Container.Elements.EA; -- source
- DA : Elements_Array renames Dst.EA; -- destination
-
- begin
- DA (Index_Type'First .. Before - 1) :=
- SA (Index_Type'First .. Before - 1);
-
- if Before <= Container.Last then
-
- -- The space is being inserted before some existing elements, so
- -- we must slide the existing elements up to their new home.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
- Index := Before + Index_Type'Base (Count);
-
- else
- Index := Index_Type'Base (Count_Type'Base (Before) + Count);
- end if;
-
- DA (Index .. New_Last) := SA (Before .. Container.Last);
- end if;
-
- exception
- when others =>
- Free (Dst);
- raise;
- end;
-
- -- We have successfully copied the items onto the new array, so the
- -- final thing to do is restore invariants, and deallocate the old
- -- array.
-
- declare
- X : Elements_Access := Container.Elements;
-
- begin
- -- We first isolate the old internal array, removing it from the
- -- container and replacing it with the new internal array, before we
- -- deallocate the old array (which can fail if finalization of
- -- elements propagates an exception).
-
- Container.Elements := Dst;
- Container.Last := New_Last;
-
- -- The container invariants have been restored, so it is now safe to
- -- attempt to deallocate the old array.
-
- Free (X);
- end;
- end Insert_Space;
-
- procedure Insert_Space
- (Container : in out Vector;
- Before : Cursor;
- Position : out Cursor;
- Count : Count_Type := 1)
- is
- Index : Index_Type'Base;
-
- begin
- if Before.Container /= null
- and then Before.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Before cursor denotes wrong container";
- end if;
-
- if Count = 0 then
- if Before.Container = null
- or else Before.Index > Container.Last
- then
- Position := No_Element;
- else
- Position := (Container'Unrestricted_Access, Before.Index);
- end if;
-
- return;
- end if;
-
- if Before.Container = null
- or else Before.Index > Container.Last
- then
- if Container.Last = Index_Type'Last then
- raise Constraint_Error with
- "vector is already at its maximum length";
- else
- Index := Container.Last + 1;
- end if;
-
- else
- Index := Before.Index;
- end if;
-
- Insert_Space (Container, Index, Count => Count);
-
- Position := (Container'Unrestricted_Access, Index);
- end Insert_Space;
-
- --------------
- -- Is_Empty --
- --------------
-
- function Is_Empty (Container : Vector) return Boolean is
- begin
- return Container.Last < Index_Type'First;
- end Is_Empty;
-
- -------------
- -- Iterate --
- -------------
-
- procedure Iterate
- (Container : Vector;
- Process : not null access procedure (Position : Cursor))
- is
- B : Natural renames Container'Unrestricted_Access.all.Busy;
-
- begin
- B := B + 1;
-
- begin
- for Indx in Index_Type'First .. Container.Last loop
- Process (Cursor'(Container'Unrestricted_Access, Indx));
- end loop;
- exception
- when others =>
- B := B - 1;
- raise;
- end;
-
- B := B - 1;
- end Iterate;
-
- function Iterate
- (Container : Vector)
- return Vector_Iterator_Interfaces.Reversible_Iterator'Class
- is
- V : constant Vector_Access := Container'Unrestricted_Access;
- B : Natural renames V.Busy;
-
- begin
- -- The value of its Index component influences the behavior of the First
- -- and Last selector functions of the iterator object. When the Index
- -- component is No_Index (as is the case here), this means the iterator
- -- object was constructed without a start expression. This is a complete
- -- iterator, meaning that the iteration starts from the (logical)
- -- beginning of the sequence of items.
-
- -- Note: For a forward iterator, Container.First is the beginning, and
- -- for a reverse iterator, Container.Last is the beginning.
-
- return It : constant Iterator :=
- (Limited_Controlled with
- Container => V,
- Index => No_Index)
- do
- B := B + 1;
- end return;
- end Iterate;
-
- function Iterate
- (Container : Vector;
- Start : Cursor)
- return Vector_Iterator_Interfaces.Reversible_Iterator'class
- is
- V : constant Vector_Access := Container'Unrestricted_Access;
- B : Natural renames V.Busy;
-
- begin
- -- It was formerly the case that when Start = No_Element, the partial
- -- iterator was defined to behave the same as for a complete iterator,
- -- and iterate over the entire sequence of items. However, those
- -- semantics were unintuitive and arguably error-prone (it is too easy
- -- to accidentally create an endless loop), and so they were changed,
- -- per the ARG meeting in Denver on 2011/11. However, there was no
- -- consensus about what positive meaning this corner case should have,
- -- and so it was decided to simply raise an exception. This does imply,
- -- however, that it is not possible to use a partial iterator to specify
- -- an empty sequence of items.
-
- if Start.Container = null then
- raise Constraint_Error with
- "Start position for iterator equals No_Element";
- end if;
-
- if Start.Container /= V then
- raise Program_Error with
- "Start cursor of Iterate designates wrong vector";
- end if;
-
- if Start.Index > V.Last then
- raise Constraint_Error with
- "Start position for iterator equals No_Element";
- end if;
-
- -- The value of its Index component influences the behavior of the First
- -- and Last selector functions of the iterator object. When the Index
- -- component is not No_Index (as is the case here), it means that this
- -- is a partial iteration, over a subset of the complete sequence of
- -- items. The iterator object was constructed with a start expression,
- -- indicating the position from which the iteration begins. Note that
- -- the start position has the same value irrespective of whether this
- -- is a forward or reverse iteration.
-
- return It : constant Iterator :=
- (Limited_Controlled with
- Container => V,
- Index => Start.Index)
- do
- B := B + 1;
- end return;
- end Iterate;
-
- ----------
- -- Last --
- ----------
-
- function Last (Container : Vector) return Cursor is
- begin
- if Is_Empty (Container) then
- return No_Element;
- else
- return (Container'Unrestricted_Access, Container.Last);
- end if;
- end Last;
-
- function Last (Object : Iterator) return Cursor is
- begin
- -- The value of the iterator object's Index component influences the
- -- behavior of the Last (and First) selector function.
-
- -- When the Index component is No_Index, this means the iterator
- -- object was constructed without a start expression, in which case the
- -- (reverse) iteration starts from the (logical) beginning of the entire
- -- sequence (corresponding to Container.Last, for a reverse iterator).
-
- -- Otherwise, this is iteration over a partial sequence of items.
- -- When the Index component is not No_Index, the iterator object was
- -- constructed with a start expression, that specifies the position
- -- from which the (reverse) partial iteration begins.
-
- if Object.Index = No_Index then
- return Last (Object.Container.all);
- else
- return Cursor'(Object.Container, Object.Index);
- end if;
- end Last;
-
- ------------------
- -- Last_Element --
- ------------------
-
- function Last_Element (Container : Vector) return Element_Type is
- begin
- if Container.Last = No_Index then
- raise Constraint_Error with "Container is empty";
- else
- return Container.Elements.EA (Container.Last);
- end if;
- end Last_Element;
-
- ----------------
- -- Last_Index --
- ----------------
-
- function Last_Index (Container : Vector) return Extended_Index is
- begin
- return Container.Last;
- end Last_Index;
-
- ------------
- -- Length --
- ------------
-
- function Length (Container : Vector) return Count_Type is
- L : constant Index_Type'Base := Container.Last;
- F : constant Index_Type := Index_Type'First;
-
- begin
- -- The base range of the index type (Index_Type'Base) might not include
- -- all values for length (Count_Type). Contrariwise, the index type
- -- might include values outside the range of length. Hence we use
- -- whatever type is wider for intermediate values when calculating
- -- length. Note that no matter what the index type is, the maximum
- -- length to which a vector is allowed to grow is always the minimum
- -- of Count_Type'Last and (IT'Last - IT'First + 1).
-
- -- For example, an Index_Type with range -127 .. 127 is only guaranteed
- -- to have a base range of -128 .. 127, but the corresponding vector
- -- would have lengths in the range 0 .. 255. In this case we would need
- -- to use Count_Type'Base for intermediate values.
-
- -- Another case would be the index range -2**63 + 1 .. -2**63 + 10. The
- -- vector would have a maximum length of 10, but the index values lie
- -- outside the range of Count_Type (which is only 32 bits). In this
- -- case we would need to use Index_Type'Base for intermediate values.
-
- if Count_Type'Base'Last >= Index_Type'Pos (Index_Type'Base'Last) then
- return Count_Type'Base (L) - Count_Type'Base (F) + 1;
- else
- return Count_Type (L - F + 1);
- end if;
- end Length;
-
- ----------
- -- Move --
- ----------
-
- procedure Move
- (Target : in out Vector;
- Source : in out Vector)
- is
- begin
- if Target'Address = Source'Address then
- return;
- end if;
-
- if Target.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (Target is busy)";
- end if;
-
- if Source.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (Source is busy)";
- end if;
-
- declare
- Target_Elements : constant Elements_Access := Target.Elements;
- begin
- Target.Elements := Source.Elements;
- Source.Elements := Target_Elements;
- end;
-
- Target.Last := Source.Last;
- Source.Last := No_Index;
- end Move;
-
- ----------
- -- Next --
- ----------
-
- function Next (Position : Cursor) return Cursor is
- begin
- if Position.Container = null then
- return No_Element;
- elsif Position.Index < Position.Container.Last then
- return (Position.Container, Position.Index + 1);
- else
- return No_Element;
- end if;
- end Next;
-
- function Next (Object : Iterator; Position : Cursor) return Cursor is
- begin
- if Position.Container = null then
- return No_Element;
- end if;
-
- if Position.Container /= Object.Container then
- raise Program_Error with
- "Position cursor of Next designates wrong vector";
- end if;
-
- return Next (Position);
- end Next;
-
- procedure Next (Position : in out Cursor) is
- begin
- if Position.Container = null then
- return;
- elsif Position.Index < Position.Container.Last then
- Position.Index := Position.Index + 1;
- else
- Position := No_Element;
- end if;
- end Next;
-
- -------------
- -- Prepend --
- -------------
-
- procedure Prepend (Container : in out Vector; New_Item : Vector) is
- begin
- Insert (Container, Index_Type'First, New_Item);
- end Prepend;
-
- procedure Prepend
- (Container : in out Vector;
- New_Item : Element_Type;
- Count : Count_Type := 1)
- is
- begin
- Insert (Container,
- Index_Type'First,
- New_Item,
- Count);
- end Prepend;
-
- --------------
- -- Previous --
- --------------
-
- function Previous (Position : Cursor) return Cursor is
- begin
- if Position.Container = null then
- return No_Element;
- elsif Position.Index > Index_Type'First then
- return (Position.Container, Position.Index - 1);
- else
- return No_Element;
- end if;
- end Previous;
-
- function Previous (Object : Iterator; Position : Cursor) return Cursor is
- begin
- if Position.Container = null then
- return No_Element;
- end if;
-
- if Position.Container /= Object.Container then
- raise Program_Error with
- "Position cursor of Previous designates wrong vector";
- end if;
-
- return Previous (Position);
- end Previous;
-
- procedure Previous (Position : in out Cursor) is
- begin
- if Position.Container = null then
- return;
- elsif Position.Index > Index_Type'First then
- Position.Index := Position.Index - 1;
- else
- Position := No_Element;
- end if;
- end Previous;
-
- -------------------
- -- Query_Element --
- -------------------
-
- procedure Query_Element
- (Container : Vector;
- Index : Index_Type;
- Process : not null access procedure (Element : Element_Type))
- is
- V : Vector renames Container'Unrestricted_Access.all;
- B : Natural renames V.Busy;
- L : Natural renames V.Lock;
-
- begin
- if Index > Container.Last then
- raise Constraint_Error with "Index is out of range";
- end if;
-
- B := B + 1;
- L := L + 1;
-
- begin
- Process (V.Elements.EA (Index));
- exception
- when others =>
- L := L - 1;
- B := B - 1;
- raise;
- end;
-
- L := L - 1;
- B := B - 1;
- end Query_Element;
-
- procedure Query_Element
- (Position : Cursor;
- Process : not null access procedure (Element : Element_Type))
- is
- begin
- if Position.Container = null then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- Query_Element (Position.Container.all, Position.Index, Process);
- end Query_Element;
-
- ----------
- -- Read --
- ----------
-
- procedure Read
- (Stream : not null access Root_Stream_Type'Class;
- Container : out Vector)
- is
- Length : Count_Type'Base;
- Last : Index_Type'Base := No_Index;
-
- begin
- Clear (Container);
-
- Count_Type'Base'Read (Stream, Length);
-
- if Length > Capacity (Container) then
- Reserve_Capacity (Container, Capacity => Length);
- end if;
-
- for J in Count_Type range 1 .. Length loop
- Last := Last + 1;
- Element_Type'Read (Stream, Container.Elements.EA (Last));
- Container.Last := Last;
- end loop;
- end Read;
-
- procedure Read
- (Stream : not null access Root_Stream_Type'Class;
- Position : out Cursor)
- is
- begin
- raise Program_Error with "attempt to stream vector cursor";
- end Read;
-
- procedure Read
- (Stream : not null access Root_Stream_Type'Class;
- Item : out Reference_Type)
- is
- begin
- raise Program_Error with "attempt to stream reference";
- end Read;
-
- procedure Read
- (Stream : not null access Root_Stream_Type'Class;
- Item : out Constant_Reference_Type)
- is
- begin
- raise Program_Error with "attempt to stream reference";
- end Read;
-
- ---------------
- -- Reference --
- ---------------
-
- function Reference
- (Container : aliased in out Vector;
- Position : Cursor) return Reference_Type
- is
- begin
- if Position.Container = null then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Position.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Position cursor denotes wrong container";
- end if;
-
- if Position.Index > Position.Container.Last then
- raise Constraint_Error with "Position cursor is out of range";
- end if;
-
- declare
- C : Vector renames Position.Container.all;
- B : Natural renames C.Busy;
- L : Natural renames C.Lock;
- begin
- return R : constant Reference_Type :=
- (Element => Container.Elements.EA (Position.Index)'Access,
- Control => (Controlled with Position.Container))
- do
- B := B + 1;
- L := L + 1;
- end return;
- end;
- end Reference;
-
- function Reference
- (Container : aliased in out Vector;
- Index : Index_Type) return Reference_Type
- is
- begin
- if Index > Container.Last then
- raise Constraint_Error with "Index is out of range";
- else
- declare
- C : Vector renames Container'Unrestricted_Access.all;
- B : Natural renames C.Busy;
- L : Natural renames C.Lock;
- begin
- return R : constant Reference_Type :=
- (Element => Container.Elements.EA (Index)'Access,
- Control => (Controlled with Container'Unrestricted_Access))
- do
- B := B + 1;
- L := L + 1;
- end return;
- end;
- end if;
- end Reference;
-
- ---------------------
- -- Replace_Element --
- ---------------------
-
- procedure Replace_Element
- (Container : in out Vector;
- Index : Index_Type;
- New_Item : Element_Type)
- is
- begin
- if Index > Container.Last then
- raise Constraint_Error with "Index is out of range";
- end if;
-
- if Container.Lock > 0 then
- raise Program_Error with
- "attempt to tamper with elements (vector is locked)";
- end if;
-
- Container.Elements.EA (Index) := New_Item;
- end Replace_Element;
-
- procedure Replace_Element
- (Container : in out Vector;
- Position : Cursor;
- New_Item : Element_Type)
- is
- begin
- if Position.Container = null then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Position.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Position cursor denotes wrong container";
- end if;
-
- if Position.Index > Container.Last then
- raise Constraint_Error with "Position cursor is out of range";
- end if;
-
- if Container.Lock > 0 then
- raise Program_Error with
- "attempt to tamper with elements (vector is locked)";
- end if;
-
- Container.Elements.EA (Position.Index) := New_Item;
- end Replace_Element;
-
- ----------------------
- -- Reserve_Capacity --
- ----------------------
-
- procedure Reserve_Capacity
- (Container : in out Vector;
- Capacity : Count_Type)
- is
- N : constant Count_Type := Length (Container);
-
- Index : Count_Type'Base;
- Last : Index_Type'Base;
-
- begin
- -- Reserve_Capacity can be used to either expand the storage available
- -- for elements (this would be its typical use, in anticipation of
- -- future insertion), or to trim back storage. In the latter case,
- -- storage can only be trimmed back to the limit of the container
- -- length. Note that Reserve_Capacity neither deletes (active) elements
- -- nor inserts elements; it only affects container capacity, never
- -- container length.
-
- if Capacity = 0 then
-
- -- This is a request to trim back storage, to the minimum amount
- -- possible given the current state of the container.
-
- if N = 0 then
-
- -- The container is empty, so in this unique case we can
- -- deallocate the entire internal array. Note that an empty
- -- container can never be busy, so there's no need to check the
- -- tampering bits.
-
- declare
- X : Elements_Access := Container.Elements;
-
- begin
- -- First we remove the internal array from the container, to
- -- handle the case when the deallocation raises an exception.
-
- Container.Elements := null;
-
- -- Container invariants have been restored, so it is now safe
- -- to attempt to deallocate the internal array.
-
- Free (X);
- end;
-
- elsif N < Container.Elements.EA'Length then
-
- -- The container is not empty, and the current length is less than
- -- the current capacity, so there's storage available to trim. In
- -- this case, we allocate a new internal array having a length
- -- that exactly matches the number of items in the
- -- container. (Reserve_Capacity does not delete active elements,
- -- so this is the best we can do with respect to minimizing
- -- storage).
-
- if Container.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (vector is busy)";
- end if;
-
- declare
- subtype Src_Index_Subtype is Index_Type'Base range
- Index_Type'First .. Container.Last;
-
- Src : Elements_Array renames
- Container.Elements.EA (Src_Index_Subtype);
-
- X : Elements_Access := Container.Elements;
-
- begin
- -- Although we have isolated the old internal array that we're
- -- going to deallocate, we don't deallocate it until we have
- -- successfully allocated a new one. If there is an exception
- -- during allocation (either because there is not enough
- -- storage, or because initialization of the elements fails),
- -- we let it propagate without causing any side-effect.
-
- Container.Elements := new Elements_Type'(Container.Last, Src);
-
- -- We have successfully allocated a new internal array (with a
- -- smaller length than the old one, and containing a copy of
- -- just the active elements in the container), so it is now
- -- safe to attempt to deallocate the old array. The old array
- -- has been isolated, and container invariants have been
- -- restored, so if the deallocation fails (because finalization
- -- of the elements fails), we simply let it propagate.
-
- Free (X);
- end;
- end if;
-
- return;
- end if;
-
- -- Reserve_Capacity can be used to expand the storage available for
- -- elements, but we do not let the capacity grow beyond the number of
- -- values in Index_Type'Range. (Were it otherwise, there would be no way
- -- to refer to the elements with an index value greater than
- -- Index_Type'Last, so that storage would be wasted.) Here we compute
- -- the Last index value of the new internal array, in a way that avoids
- -- any possibility of overflow.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-
- -- We perform a two-part test. First we determine whether the
- -- computed Last value lies in the base range of the type, and then
- -- determine whether it lies in the range of the index (sub)type.
-
- -- Last must satisfy this relation:
- -- First + Length - 1 <= Last
- -- We regroup terms:
- -- First - 1 <= Last - Length
- -- Which can rewrite as:
- -- No_Index <= Last - Length
-
- if Index_Type'Base'Last - Index_Type'Base (Capacity) < No_Index then
- raise Constraint_Error with "Capacity is out of range";
- end if;
-
- -- We now know that the computed value of Last is within the base
- -- range of the type, so it is safe to compute its value:
-
- Last := No_Index + Index_Type'Base (Capacity);
-
- -- Finally we test whether the value is within the range of the
- -- generic actual index subtype:
-
- if Last > Index_Type'Last then
- raise Constraint_Error with "Capacity is out of range";
- end if;
-
- elsif Index_Type'First <= 0 then
-
- -- Here we can compute Last directly, in the normal way. We know that
- -- No_Index is less than 0, so there is no danger of overflow when
- -- adding the (positive) value of Capacity.
-
- Index := Count_Type'Base (No_Index) + Capacity; -- Last
-
- if Index > Count_Type'Base (Index_Type'Last) then
- raise Constraint_Error with "Capacity is out of range";
- end if;
-
- -- We know that the computed value (having type Count_Type) of Last
- -- is within the range of the generic actual index subtype, so it is
- -- safe to convert to Index_Type:
-
- Last := Index_Type'Base (Index);
-
- else
- -- Here Index_Type'First (and Index_Type'Last) is positive, so we
- -- must test the length indirectly (by working backwards from the
- -- largest possible value of Last), in order to prevent overflow.
-
- Index := Count_Type'Base (Index_Type'Last) - Capacity; -- No_Index
-
- if Index < Count_Type'Base (No_Index) then
- raise Constraint_Error with "Capacity is out of range";
- end if;
-
- -- We have determined that the value of Capacity would not create a
- -- Last index value outside of the range of Index_Type, so we can now
- -- safely compute its value.
-
- Last := Index_Type'Base (Count_Type'Base (No_Index) + Capacity);
- end if;
-
- -- The requested capacity is non-zero, but we don't know yet whether
- -- this is a request for expansion or contraction of storage.
-
- if Container.Elements = null then
-
- -- The container is empty (it doesn't even have an internal array),
- -- so this represents a request to allocate (expand) storage having
- -- the given capacity.
-
- Container.Elements := new Elements_Type (Last);
- return;
- end if;
-
- if Capacity <= N then
-
- -- This is a request to trim back storage, but only to the limit of
- -- what's already in the container. (Reserve_Capacity never deletes
- -- active elements, it only reclaims excess storage.)
-
- if N < Container.Elements.EA'Length then
-
- -- The container is not empty (because the requested capacity is
- -- positive, and less than or equal to the container length), and
- -- the current length is less than the current capacity, so
- -- there's storage available to trim. In this case, we allocate a
- -- new internal array having a length that exactly matches the
- -- number of items in the container.
-
- if Container.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (vector is busy)";
- end if;
-
- declare
- subtype Src_Index_Subtype is Index_Type'Base range
- Index_Type'First .. Container.Last;
-
- Src : Elements_Array renames
- Container.Elements.EA (Src_Index_Subtype);
-
- X : Elements_Access := Container.Elements;
-
- begin
- -- Although we have isolated the old internal array that we're
- -- going to deallocate, we don't deallocate it until we have
- -- successfully allocated a new one. If there is an exception
- -- during allocation (either because there is not enough
- -- storage, or because initialization of the elements fails),
- -- we let it propagate without causing any side-effect.
-
- Container.Elements := new Elements_Type'(Container.Last, Src);
-
- -- We have successfully allocated a new internal array (with a
- -- smaller length than the old one, and containing a copy of
- -- just the active elements in the container), so it is now
- -- safe to attempt to deallocate the old array. The old array
- -- has been isolated, and container invariants have been
- -- restored, so if the deallocation fails (because finalization
- -- of the elements fails), we simply let it propagate.
-
- Free (X);
- end;
- end if;
-
- return;
- end if;
-
- -- The requested capacity is larger than the container length (the
- -- number of active elements). Whether this represents a request for
- -- expansion or contraction of the current capacity depends on what the
- -- current capacity is.
-
- if Capacity = Container.Elements.EA'Length then
-
- -- The requested capacity matches the existing capacity, so there's
- -- nothing to do here. We treat this case as a no-op, and simply
- -- return without checking the busy bit.
-
- return;
- end if;
-
- -- There is a change in the capacity of a non-empty container, so a new
- -- internal array will be allocated. (The length of the new internal
- -- array could be less or greater than the old internal array. We know
- -- only that the length of the new internal array is greater than the
- -- number of active elements in the container.) We must check whether
- -- the container is busy before doing anything else.
-
- if Container.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (vector is busy)";
- end if;
-
- -- We now allocate a new internal array, having a length different from
- -- its current value.
-
- declare
- E : Elements_Access := new Elements_Type (Last);
-
- begin
- -- We have successfully allocated the new internal array. We first
- -- attempt to copy the existing elements from the old internal array
- -- ("src" elements) onto the new internal array ("tgt" elements).
-
- declare
- subtype Index_Subtype is Index_Type'Base range
- Index_Type'First .. Container.Last;
-
- Src : Elements_Array renames
- Container.Elements.EA (Index_Subtype);
-
- Tgt : Elements_Array renames E.EA (Index_Subtype);
-
- begin
- Tgt := Src;
-
- exception
- when others =>
- Free (E);
- raise;
- end;
-
- -- We have successfully copied the existing elements onto the new
- -- internal array, so now we can attempt to deallocate the old one.
-
- declare
- X : Elements_Access := Container.Elements;
-
- begin
- -- First we isolate the old internal array, and replace it in the
- -- container with the new internal array.
-
- Container.Elements := E;
-
- -- Container invariants have been restored, so it is now safe to
- -- attempt to deallocate the old internal array.
-
- Free (X);
- end;
- end;
- end Reserve_Capacity;
-
- ----------------------
- -- Reverse_Elements --
- ----------------------
-
- procedure Reverse_Elements (Container : in out Vector) is
- begin
- if Container.Length <= 1 then
- return;
- end if;
-
- -- The exception behavior for the vector container must match that for
- -- the list container, so we check for cursor tampering here (which will
- -- catch more things) instead of for element tampering (which will catch
- -- fewer things). It's true that the elements of this vector container
- -- could be safely moved around while (say) an iteration is taking place
- -- (iteration only increments the busy counter), and so technically
- -- all we would need here is a test for element tampering (indicated
- -- by the lock counter), that's simply an artifact of our array-based
- -- implementation. Logically Reverse_Elements requires a check for
- -- cursor tampering.
-
- if Container.Busy > 0 then
- raise Program_Error with
- "attempt to tamper with cursors (vector is busy)";
- end if;
-
- declare
- K : Index_Type;
- J : Index_Type;
- E : Elements_Type renames Container.Elements.all;
-
- begin
- K := Index_Type'First;
- J := Container.Last;
- while K < J loop
- declare
- EK : constant Element_Type := E.EA (K);
- begin
- E.EA (K) := E.EA (J);
- E.EA (J) := EK;
- end;
-
- K := K + 1;
- J := J - 1;
- end loop;
- end;
- end Reverse_Elements;
-
- ------------------
- -- Reverse_Find --
- ------------------
-
- function Reverse_Find
- (Container : Vector;
- Item : Element_Type;
- Position : Cursor := No_Element) return Cursor
- is
- Last : Index_Type'Base;
-
- begin
- if Position.Container /= null
- and then Position.Container /= Container'Unrestricted_Access
- then
- raise Program_Error with "Position cursor denotes wrong container";
- end if;
-
- Last :=
- (if Position.Container = null or else Position.Index > Container.Last
- then Container.Last
- else Position.Index);
-
- for Indx in reverse Index_Type'First .. Last loop
- if Container.Elements.EA (Indx) = Item then
- return (Container'Unrestricted_Access, Indx);
- end if;
- end loop;
-
- return No_Element;
- end Reverse_Find;
-
- ------------------------
- -- Reverse_Find_Index --
- ------------------------
-
- function Reverse_Find_Index
- (Container : Vector;
- Item : Element_Type;
- Index : Index_Type := Index_Type'Last) return Extended_Index
- is
- Last : constant Index_Type'Base :=
- Index_Type'Min (Container.Last, Index);
-
- begin
- for Indx in reverse Index_Type'First .. Last loop
- if Container.Elements.EA (Indx) = Item then
- return Indx;
- end if;
- end loop;
-
- return No_Index;
- end Reverse_Find_Index;
-
- ---------------------
- -- Reverse_Iterate --
- ---------------------
-
- procedure Reverse_Iterate
- (Container : Vector;
- Process : not null access procedure (Position : Cursor))
- is
- V : Vector renames Container'Unrestricted_Access.all;
- B : Natural renames V.Busy;
-
- begin
- B := B + 1;
-
- begin
- for Indx in reverse Index_Type'First .. Container.Last loop
- Process (Cursor'(Container'Unrestricted_Access, Indx));
- end loop;
- exception
- when others =>
- B := B - 1;
- raise;
- end;
-
- B := B - 1;
- end Reverse_Iterate;
-
- ----------------
- -- Set_Length --
- ----------------
-
- procedure Set_Length (Container : in out Vector; Length : Count_Type) is
- Count : constant Count_Type'Base := Container.Length - Length;
-
- begin
- -- Set_Length allows the user to set the length explicitly, instead
- -- of implicitly as a side-effect of deletion or insertion. If the
- -- requested length is less than the current length, this is equivalent
- -- to deleting items from the back end of the vector. If the requested
- -- length is greater than the current length, then this is equivalent
- -- to inserting "space" (nonce items) at the end.
-
- if Count >= 0 then
- Container.Delete_Last (Count);
-
- elsif Container.Last >= Index_Type'Last then
- raise Constraint_Error with "vector is already at its maximum length";
-
- else
- Container.Insert_Space (Container.Last + 1, -Count);
- end if;
- end Set_Length;
-
- ----------
- -- Swap --
- ----------
-
- procedure Swap (Container : in out Vector; I, J : Index_Type) is
- begin
- if I > Container.Last then
- raise Constraint_Error with "I index is out of range";
- end if;
-
- if J > Container.Last then
- raise Constraint_Error with "J index is out of range";
- end if;
-
- if I = J then
- return;
- end if;
-
- if Container.Lock > 0 then
- raise Program_Error with
- "attempt to tamper with elements (vector is locked)";
- end if;
-
- declare
- EI_Copy : constant Element_Type := Container.Elements.EA (I);
- begin
- Container.Elements.EA (I) := Container.Elements.EA (J);
- Container.Elements.EA (J) := EI_Copy;
- end;
- end Swap;
-
- procedure Swap (Container : in out Vector; I, J : Cursor) is
- begin
- if I.Container = null then
- raise Constraint_Error with "I cursor has no element";
- end if;
-
- if J.Container = null then
- raise Constraint_Error with "J cursor has no element";
- end if;
-
- if I.Container /= Container'Unrestricted_Access then
- raise Program_Error with "I cursor denotes wrong container";
- end if;
-
- if J.Container /= Container'Unrestricted_Access then
- raise Program_Error with "J cursor denotes wrong container";
- end if;
-
- Swap (Container, I.Index, J.Index);
- end Swap;
-
- ---------------
- -- To_Cursor --
- ---------------
-
- function To_Cursor
- (Container : Vector;
- Index : Extended_Index) return Cursor
- is
- begin
- if Index not in Index_Type'First .. Container.Last then
- return No_Element;
- else
- return (Container'Unrestricted_Access, Index);
- end if;
- end To_Cursor;
-
- --------------
- -- To_Index --
- --------------
-
- function To_Index (Position : Cursor) return Extended_Index is
- begin
- if Position.Container = null then
- return No_Index;
- end if;
-
- if Position.Index <= Position.Container.Last then
- return Position.Index;
- end if;
-
- return No_Index;
- end To_Index;
-
- ---------------
- -- To_Vector --
- ---------------
-
- function To_Vector (Length : Count_Type) return Vector is
- Index : Count_Type'Base;
- Last : Index_Type'Base;
- Elements : Elements_Access;
-
- begin
- if Length = 0 then
- return Empty_Vector;
- end if;
-
- -- We create a vector object with a capacity that matches the specified
- -- Length, but we do not allow the vector capacity (the length of the
- -- internal array) to exceed the number of values in Index_Type'Range
- -- (otherwise, there would be no way to refer to those components via an
- -- index). We must therefore check whether the specified Length would
- -- create a Last index value greater than Index_Type'Last.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-
- -- We perform a two-part test. First we determine whether the
- -- computed Last value lies in the base range of the type, and then
- -- determine whether it lies in the range of the index (sub)type.
-
- -- Last must satisfy this relation:
- -- First + Length - 1 <= Last
- -- We regroup terms:
- -- First - 1 <= Last - Length
- -- Which can rewrite as:
- -- No_Index <= Last - Length
-
- if Index_Type'Base'Last - Index_Type'Base (Length) < No_Index then
- raise Constraint_Error with "Length is out of range";
- end if;
-
- -- We now know that the computed value of Last is within the base
- -- range of the type, so it is safe to compute its value:
-
- Last := No_Index + Index_Type'Base (Length);
-
- -- Finally we test whether the value is within the range of the
- -- generic actual index subtype:
-
- if Last > Index_Type'Last then
- raise Constraint_Error with "Length is out of range";
- end if;
-
- elsif Index_Type'First <= 0 then
-
- -- Here we can compute Last directly, in the normal way. We know that
- -- No_Index is less than 0, so there is no danger of overflow when
- -- adding the (positive) value of Length.
-
- Index := Count_Type'Base (No_Index) + Length; -- Last
-
- if Index > Count_Type'Base (Index_Type'Last) then
- raise Constraint_Error with "Length is out of range";
- end if;
-
- -- We know that the computed value (having type Count_Type) of Last
- -- is within the range of the generic actual index subtype, so it is
- -- safe to convert to Index_Type:
-
- Last := Index_Type'Base (Index);
-
- else
- -- Here Index_Type'First (and Index_Type'Last) is positive, so we
- -- must test the length indirectly (by working backwards from the
- -- largest possible value of Last), in order to prevent overflow.
-
- Index := Count_Type'Base (Index_Type'Last) - Length; -- No_Index
-
- if Index < Count_Type'Base (No_Index) then
- raise Constraint_Error with "Length is out of range";
- end if;
-
- -- We have determined that the value of Length would not create a
- -- Last index value outside of the range of Index_Type, so we can now
- -- safely compute its value.
-
- Last := Index_Type'Base (Count_Type'Base (No_Index) + Length);
- end if;
-
- Elements := new Elements_Type (Last);
-
- return Vector'(Controlled with Elements, Last, 0, 0);
- end To_Vector;
-
- function To_Vector
- (New_Item : Element_Type;
- Length : Count_Type) return Vector
- is
- Index : Count_Type'Base;
- Last : Index_Type'Base;
- Elements : Elements_Access;
-
- begin
- if Length = 0 then
- return Empty_Vector;
- end if;
-
- -- We create a vector object with a capacity that matches the specified
- -- Length, but we do not allow the vector capacity (the length of the
- -- internal array) to exceed the number of values in Index_Type'Range
- -- (otherwise, there would be no way to refer to those components via an
- -- index). We must therefore check whether the specified Length would
- -- create a Last index value greater than Index_Type'Last.
-
- if Index_Type'Base'Last >= Count_Type'Pos (Count_Type'Last) then
-
- -- We perform a two-part test. First we determine whether the
- -- computed Last value lies in the base range of the type, and then
- -- determine whether it lies in the range of the index (sub)type.
-
- -- Last must satisfy this relation:
- -- First + Length - 1 <= Last
- -- We regroup terms:
- -- First - 1 <= Last - Length
- -- Which can rewrite as:
- -- No_Index <= Last - Length
-
- if Index_Type'Base'Last - Index_Type'Base (Length) < No_Index then
- raise Constraint_Error with "Length is out of range";
- end if;
-
- -- We now know that the computed value of Last is within the base
- -- range of the type, so it is safe to compute its value:
-
- Last := No_Index + Index_Type'Base (Length);
-
- -- Finally we test whether the value is within the range of the
- -- generic actual index subtype:
-
- if Last > Index_Type'Last then
- raise Constraint_Error with "Length is out of range";
- end if;
-
- elsif Index_Type'First <= 0 then
-
- -- Here we can compute Last directly, in the normal way. We know that
- -- No_Index is less than 0, so there is no danger of overflow when
- -- adding the (positive) value of Length.
-
- Index := Count_Type'Base (No_Index) + Length; -- same value as V.Last
-
- if Index > Count_Type'Base (Index_Type'Last) then
- raise Constraint_Error with "Length is out of range";
- end if;
-
- -- We know that the computed value (having type Count_Type) of Last
- -- is within the range of the generic actual index subtype, so it is
- -- safe to convert to Index_Type:
-
- Last := Index_Type'Base (Index);
-
- else
- -- Here Index_Type'First (and Index_Type'Last) is positive, so we
- -- must test the length indirectly (by working backwards from the
- -- largest possible value of Last), in order to prevent overflow.
-
- Index := Count_Type'Base (Index_Type'Last) - Length; -- No_Index
-
- if Index < Count_Type'Base (No_Index) then
- raise Constraint_Error with "Length is out of range";
- end if;
-
- -- We have determined that the value of Length would not create a
- -- Last index value outside of the range of Index_Type, so we can now
- -- safely compute its value.
-
- Last := Index_Type'Base (Count_Type'Base (No_Index) + Length);
- end if;
-
- Elements := new Elements_Type'(Last, EA => (others => New_Item));
-
- return Vector'(Controlled with Elements, Last, 0, 0);
- end To_Vector;
-
- --------------------
- -- Update_Element --
- --------------------
-
- procedure Update_Element
- (Container : in out Vector;
- Index : Index_Type;
- Process : not null access procedure (Element : in out Element_Type))
- is
- B : Natural renames Container.Busy;
- L : Natural renames Container.Lock;
-
- begin
- if Index > Container.Last then
- raise Constraint_Error with "Index is out of range";
- end if;
-
- B := B + 1;
- L := L + 1;
-
- begin
- Process (Container.Elements.EA (Index));
- exception
- when others =>
- L := L - 1;
- B := B - 1;
- raise;
- end;
-
- L := L - 1;
- B := B - 1;
- end Update_Element;
-
- procedure Update_Element
- (Container : in out Vector;
- Position : Cursor;
- Process : not null access procedure (Element : in out Element_Type))
- is
- begin
- if Position.Container = null then
- raise Constraint_Error with "Position cursor has no element";
- elsif Position.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Position cursor denotes wrong container";
- else
- Update_Element (Container, Position.Index, Process);
- end if;
- end Update_Element;
-
- -----------
- -- Write --
- -----------
-
- procedure Write
- (Stream : not null access Root_Stream_Type'Class;
- Container : Vector)
- is
- begin
- Count_Type'Base'Write (Stream, Length (Container));
-
- for J in Index_Type'First .. Container.Last loop
- Element_Type'Write (Stream, Container.Elements.EA (J));
- end loop;
- end Write;
-
- procedure Write
- (Stream : not null access Root_Stream_Type'Class;
- Position : Cursor)
- is
- begin
- raise Program_Error with "attempt to stream vector cursor";
- end Write;
-
- procedure Write
- (Stream : not null access Root_Stream_Type'Class;
- Item : Reference_Type)
- is
- begin
- raise Program_Error with "attempt to stream reference";
- end Write;
-
- procedure Write
- (Stream : not null access Root_Stream_Type'Class;
- Item : Constant_Reference_Type)
- is
- begin
- raise Program_Error with "attempt to stream reference";
- end Write;
-
-end Ada.Containers.Vectors;