aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.3/gcc/tree.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.3/gcc/tree.c')
-rw-r--r--gcc-4.8.3/gcc/tree.c11698
1 files changed, 11698 insertions, 0 deletions
diff --git a/gcc-4.8.3/gcc/tree.c b/gcc-4.8.3/gcc/tree.c
new file mode 100644
index 000000000..006c48134
--- /dev/null
+++ b/gcc-4.8.3/gcc/tree.c
@@ -0,0 +1,11698 @@
+/* Language-independent node constructors for parse phase of GNU compiler.
+ Copyright (C) 1987-2013 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+/* This file contains the low level primitives for operating on tree nodes,
+ including allocation, list operations, interning of identifiers,
+ construction of data type nodes and statement nodes,
+ and construction of type conversion nodes. It also contains
+ tables index by tree code that describe how to take apart
+ nodes of that code.
+
+ It is intended to be language-independent, but occasionally
+ calls language-dependent routines defined (for C) in typecheck.c. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "flags.h"
+#include "tree.h"
+#include "tm_p.h"
+#include "function.h"
+#include "obstack.h"
+#include "toplev.h" /* get_random_seed */
+#include "ggc.h"
+#include "hashtab.h"
+#include "filenames.h"
+#include "output.h"
+#include "target.h"
+#include "common/common-target.h"
+#include "langhooks.h"
+#include "tree-inline.h"
+#include "tree-iterator.h"
+#include "basic-block.h"
+#include "tree-flow.h"
+#include "params.h"
+#include "pointer-set.h"
+#include "tree-pass.h"
+#include "langhooks-def.h"
+#include "diagnostic.h"
+#include "tree-diagnostic.h"
+#include "tree-pretty-print.h"
+#include "cgraph.h"
+#include "except.h"
+#include "debug.h"
+#include "intl.h"
+
+/* Tree code classes. */
+
+#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
+#define END_OF_BASE_TREE_CODES tcc_exceptional,
+
+const enum tree_code_class tree_code_type[] = {
+#include "all-tree.def"
+};
+
+#undef DEFTREECODE
+#undef END_OF_BASE_TREE_CODES
+
+/* Table indexed by tree code giving number of expression
+ operands beyond the fixed part of the node structure.
+ Not used for types or decls. */
+
+#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
+#define END_OF_BASE_TREE_CODES 0,
+
+const unsigned char tree_code_length[] = {
+#include "all-tree.def"
+};
+
+#undef DEFTREECODE
+#undef END_OF_BASE_TREE_CODES
+
+/* Names of tree components.
+ Used for printing out the tree and error messages. */
+#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
+#define END_OF_BASE_TREE_CODES "@dummy",
+
+const char *const tree_code_name[] = {
+#include "all-tree.def"
+};
+
+#undef DEFTREECODE
+#undef END_OF_BASE_TREE_CODES
+
+/* Each tree code class has an associated string representation.
+ These must correspond to the tree_code_class entries. */
+
+const char *const tree_code_class_strings[] =
+{
+ "exceptional",
+ "constant",
+ "type",
+ "declaration",
+ "reference",
+ "comparison",
+ "unary",
+ "binary",
+ "statement",
+ "vl_exp",
+ "expression"
+};
+
+/* obstack.[ch] explicitly declined to prototype this. */
+extern int _obstack_allocated_p (struct obstack *h, void *obj);
+
+/* Statistics-gathering stuff. */
+
+static int tree_code_counts[MAX_TREE_CODES];
+int tree_node_counts[(int) all_kinds];
+int tree_node_sizes[(int) all_kinds];
+
+/* Keep in sync with tree.h:enum tree_node_kind. */
+static const char * const tree_node_kind_names[] = {
+ "decls",
+ "types",
+ "blocks",
+ "stmts",
+ "refs",
+ "exprs",
+ "constants",
+ "identifiers",
+ "vecs",
+ "binfos",
+ "ssa names",
+ "constructors",
+ "random kinds",
+ "lang_decl kinds",
+ "lang_type kinds",
+ "omp clauses",
+};
+
+/* Unique id for next decl created. */
+static GTY(()) int next_decl_uid;
+/* Unique id for next type created. */
+static GTY(()) int next_type_uid = 1;
+/* Unique id for next debug decl created. Use negative numbers,
+ to catch erroneous uses. */
+static GTY(()) int next_debug_decl_uid;
+
+/* Since we cannot rehash a type after it is in the table, we have to
+ keep the hash code. */
+
+struct GTY(()) type_hash {
+ unsigned long hash;
+ tree type;
+};
+
+/* Initial size of the hash table (rounded to next prime). */
+#define TYPE_HASH_INITIAL_SIZE 1000
+
+/* Now here is the hash table. When recording a type, it is added to
+ the slot whose index is the hash code. Note that the hash table is
+ used for several kinds of types (function types, array types and
+ array index range types, for now). While all these live in the
+ same table, they are completely independent, and the hash code is
+ computed differently for each of these. */
+
+static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
+ htab_t type_hash_table;
+
+/* Hash table and temporary node for larger integer const values. */
+static GTY (()) tree int_cst_node;
+static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
+ htab_t int_cst_hash_table;
+
+/* Hash table for optimization flags and target option flags. Use the same
+ hash table for both sets of options. Nodes for building the current
+ optimization and target option nodes. The assumption is most of the time
+ the options created will already be in the hash table, so we avoid
+ allocating and freeing up a node repeatably. */
+static GTY (()) tree cl_optimization_node;
+static GTY (()) tree cl_target_option_node;
+static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
+ htab_t cl_option_hash_table;
+
+/* General tree->tree mapping structure for use in hash tables. */
+
+
+static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
+ htab_t debug_expr_for_decl;
+
+static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
+ htab_t value_expr_for_decl;
+
+static GTY ((if_marked ("tree_vec_map_marked_p"), param_is (struct tree_vec_map)))
+ htab_t debug_args_for_decl;
+
+static GTY ((if_marked ("tree_priority_map_marked_p"),
+ param_is (struct tree_priority_map)))
+ htab_t init_priority_for_decl;
+
+static void set_type_quals (tree, int);
+static int type_hash_eq (const void *, const void *);
+static hashval_t type_hash_hash (const void *);
+static hashval_t int_cst_hash_hash (const void *);
+static int int_cst_hash_eq (const void *, const void *);
+static hashval_t cl_option_hash_hash (const void *);
+static int cl_option_hash_eq (const void *, const void *);
+static void print_type_hash_statistics (void);
+static void print_debug_expr_statistics (void);
+static void print_value_expr_statistics (void);
+static int type_hash_marked_p (const void *);
+static unsigned int type_hash_list (const_tree, hashval_t);
+static unsigned int attribute_hash_list (const_tree, hashval_t);
+
+tree global_trees[TI_MAX];
+tree integer_types[itk_none];
+
+unsigned char tree_contains_struct[MAX_TREE_CODES][64];
+
+/* Number of operands for each OpenMP clause. */
+unsigned const char omp_clause_num_ops[] =
+{
+ 0, /* OMP_CLAUSE_ERROR */
+ 1, /* OMP_CLAUSE_PRIVATE */
+ 1, /* OMP_CLAUSE_SHARED */
+ 1, /* OMP_CLAUSE_FIRSTPRIVATE */
+ 2, /* OMP_CLAUSE_LASTPRIVATE */
+ 4, /* OMP_CLAUSE_REDUCTION */
+ 1, /* OMP_CLAUSE_COPYIN */
+ 1, /* OMP_CLAUSE_COPYPRIVATE */
+ 1, /* OMP_CLAUSE_IF */
+ 1, /* OMP_CLAUSE_NUM_THREADS */
+ 1, /* OMP_CLAUSE_SCHEDULE */
+ 0, /* OMP_CLAUSE_NOWAIT */
+ 0, /* OMP_CLAUSE_ORDERED */
+ 0, /* OMP_CLAUSE_DEFAULT */
+ 3, /* OMP_CLAUSE_COLLAPSE */
+ 0, /* OMP_CLAUSE_UNTIED */
+ 1, /* OMP_CLAUSE_FINAL */
+ 0 /* OMP_CLAUSE_MERGEABLE */
+};
+
+const char * const omp_clause_code_name[] =
+{
+ "error_clause",
+ "private",
+ "shared",
+ "firstprivate",
+ "lastprivate",
+ "reduction",
+ "copyin",
+ "copyprivate",
+ "if",
+ "num_threads",
+ "schedule",
+ "nowait",
+ "ordered",
+ "default",
+ "collapse",
+ "untied",
+ "final",
+ "mergeable"
+};
+
+
+/* Return the tree node structure used by tree code CODE. */
+
+static inline enum tree_node_structure_enum
+tree_node_structure_for_code (enum tree_code code)
+{
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_declaration:
+ {
+ switch (code)
+ {
+ case FIELD_DECL:
+ return TS_FIELD_DECL;
+ case PARM_DECL:
+ return TS_PARM_DECL;
+ case VAR_DECL:
+ return TS_VAR_DECL;
+ case LABEL_DECL:
+ return TS_LABEL_DECL;
+ case RESULT_DECL:
+ return TS_RESULT_DECL;
+ case DEBUG_EXPR_DECL:
+ return TS_DECL_WRTL;
+ case CONST_DECL:
+ return TS_CONST_DECL;
+ case TYPE_DECL:
+ return TS_TYPE_DECL;
+ case FUNCTION_DECL:
+ return TS_FUNCTION_DECL;
+ case TRANSLATION_UNIT_DECL:
+ return TS_TRANSLATION_UNIT_DECL;
+ default:
+ return TS_DECL_NON_COMMON;
+ }
+ }
+ case tcc_type:
+ return TS_TYPE_NON_COMMON;
+ case tcc_reference:
+ case tcc_comparison:
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_expression:
+ case tcc_statement:
+ case tcc_vl_exp:
+ return TS_EXP;
+ default: /* tcc_constant and tcc_exceptional */
+ break;
+ }
+ switch (code)
+ {
+ /* tcc_constant cases. */
+ case INTEGER_CST: return TS_INT_CST;
+ case REAL_CST: return TS_REAL_CST;
+ case FIXED_CST: return TS_FIXED_CST;
+ case COMPLEX_CST: return TS_COMPLEX;
+ case VECTOR_CST: return TS_VECTOR;
+ case STRING_CST: return TS_STRING;
+ /* tcc_exceptional cases. */
+ case ERROR_MARK: return TS_COMMON;
+ case IDENTIFIER_NODE: return TS_IDENTIFIER;
+ case TREE_LIST: return TS_LIST;
+ case TREE_VEC: return TS_VEC;
+ case SSA_NAME: return TS_SSA_NAME;
+ case PLACEHOLDER_EXPR: return TS_COMMON;
+ case STATEMENT_LIST: return TS_STATEMENT_LIST;
+ case BLOCK: return TS_BLOCK;
+ case CONSTRUCTOR: return TS_CONSTRUCTOR;
+ case TREE_BINFO: return TS_BINFO;
+ case OMP_CLAUSE: return TS_OMP_CLAUSE;
+ case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
+ case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+
+/* Initialize tree_contains_struct to describe the hierarchy of tree
+ nodes. */
+
+static void
+initialize_tree_contains_struct (void)
+{
+ unsigned i;
+
+ for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
+ {
+ enum tree_code code;
+ enum tree_node_structure_enum ts_code;
+
+ code = (enum tree_code) i;
+ ts_code = tree_node_structure_for_code (code);
+
+ /* Mark the TS structure itself. */
+ tree_contains_struct[code][ts_code] = 1;
+
+ /* Mark all the structures that TS is derived from. */
+ switch (ts_code)
+ {
+ case TS_TYPED:
+ case TS_BLOCK:
+ MARK_TS_BASE (code);
+ break;
+
+ case TS_COMMON:
+ case TS_INT_CST:
+ case TS_REAL_CST:
+ case TS_FIXED_CST:
+ case TS_VECTOR:
+ case TS_STRING:
+ case TS_COMPLEX:
+ case TS_SSA_NAME:
+ case TS_CONSTRUCTOR:
+ case TS_EXP:
+ case TS_STATEMENT_LIST:
+ MARK_TS_TYPED (code);
+ break;
+
+ case TS_IDENTIFIER:
+ case TS_DECL_MINIMAL:
+ case TS_TYPE_COMMON:
+ case TS_LIST:
+ case TS_VEC:
+ case TS_BINFO:
+ case TS_OMP_CLAUSE:
+ case TS_OPTIMIZATION:
+ case TS_TARGET_OPTION:
+ MARK_TS_COMMON (code);
+ break;
+
+ case TS_TYPE_WITH_LANG_SPECIFIC:
+ MARK_TS_TYPE_COMMON (code);
+ break;
+
+ case TS_TYPE_NON_COMMON:
+ MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
+ break;
+
+ case TS_DECL_COMMON:
+ MARK_TS_DECL_MINIMAL (code);
+ break;
+
+ case TS_DECL_WRTL:
+ case TS_CONST_DECL:
+ MARK_TS_DECL_COMMON (code);
+ break;
+
+ case TS_DECL_NON_COMMON:
+ MARK_TS_DECL_WITH_VIS (code);
+ break;
+
+ case TS_DECL_WITH_VIS:
+ case TS_PARM_DECL:
+ case TS_LABEL_DECL:
+ case TS_RESULT_DECL:
+ MARK_TS_DECL_WRTL (code);
+ break;
+
+ case TS_FIELD_DECL:
+ MARK_TS_DECL_COMMON (code);
+ break;
+
+ case TS_VAR_DECL:
+ MARK_TS_DECL_WITH_VIS (code);
+ break;
+
+ case TS_TYPE_DECL:
+ case TS_FUNCTION_DECL:
+ MARK_TS_DECL_NON_COMMON (code);
+ break;
+
+ case TS_TRANSLATION_UNIT_DECL:
+ MARK_TS_DECL_COMMON (code);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ }
+
+ /* Basic consistency checks for attributes used in fold. */
+ gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
+ gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
+ gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
+ gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
+ gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
+ gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
+ gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
+ gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
+ gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
+ gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
+ gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
+ gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
+ gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
+ gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
+ gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
+ gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
+ gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
+ gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
+ gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
+ gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
+ gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
+}
+
+
+/* Init tree.c. */
+
+void
+init_ttree (void)
+{
+ /* Initialize the hash table of types. */
+ type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
+ type_hash_eq, 0);
+
+ debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
+ tree_decl_map_eq, 0);
+
+ value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
+ tree_decl_map_eq, 0);
+ init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
+ tree_priority_map_eq, 0);
+
+ int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
+ int_cst_hash_eq, NULL);
+
+ int_cst_node = make_node (INTEGER_CST);
+
+ cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
+ cl_option_hash_eq, NULL);
+
+ cl_optimization_node = make_node (OPTIMIZATION_NODE);
+ cl_target_option_node = make_node (TARGET_OPTION_NODE);
+
+ /* Initialize the tree_contains_struct array. */
+ initialize_tree_contains_struct ();
+ lang_hooks.init_ts ();
+}
+
+
+/* The name of the object as the assembler will see it (but before any
+ translations made by ASM_OUTPUT_LABELREF). Often this is the same
+ as DECL_NAME. It is an IDENTIFIER_NODE. */
+tree
+decl_assembler_name (tree decl)
+{
+ if (!DECL_ASSEMBLER_NAME_SET_P (decl))
+ lang_hooks.set_decl_assembler_name (decl);
+ return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
+}
+
+/* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
+
+bool
+decl_assembler_name_equal (tree decl, const_tree asmname)
+{
+ tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
+ const char *decl_str;
+ const char *asmname_str;
+ bool test = false;
+
+ if (decl_asmname == asmname)
+ return true;
+
+ decl_str = IDENTIFIER_POINTER (decl_asmname);
+ asmname_str = IDENTIFIER_POINTER (asmname);
+
+
+ /* If the target assembler name was set by the user, things are trickier.
+ We have a leading '*' to begin with. After that, it's arguable what
+ is the correct thing to do with -fleading-underscore. Arguably, we've
+ historically been doing the wrong thing in assemble_alias by always
+ printing the leading underscore. Since we're not changing that, make
+ sure user_label_prefix follows the '*' before matching. */
+ if (decl_str[0] == '*')
+ {
+ size_t ulp_len = strlen (user_label_prefix);
+
+ decl_str ++;
+
+ if (ulp_len == 0)
+ test = true;
+ else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
+ decl_str += ulp_len, test=true;
+ else
+ decl_str --;
+ }
+ if (asmname_str[0] == '*')
+ {
+ size_t ulp_len = strlen (user_label_prefix);
+
+ asmname_str ++;
+
+ if (ulp_len == 0)
+ test = true;
+ else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
+ asmname_str += ulp_len, test=true;
+ else
+ asmname_str --;
+ }
+
+ if (!test)
+ return false;
+ return strcmp (decl_str, asmname_str) == 0;
+}
+
+/* Hash asmnames ignoring the user specified marks. */
+
+hashval_t
+decl_assembler_name_hash (const_tree asmname)
+{
+ if (IDENTIFIER_POINTER (asmname)[0] == '*')
+ {
+ const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
+ size_t ulp_len = strlen (user_label_prefix);
+
+ if (ulp_len == 0)
+ ;
+ else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
+ decl_str += ulp_len;
+
+ return htab_hash_string (decl_str);
+ }
+
+ return htab_hash_string (IDENTIFIER_POINTER (asmname));
+}
+
+/* Compute the number of bytes occupied by a tree with code CODE.
+ This function cannot be used for nodes that have variable sizes,
+ including TREE_VEC, STRING_CST, and CALL_EXPR. */
+size_t
+tree_code_size (enum tree_code code)
+{
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_declaration: /* A decl node */
+ {
+ switch (code)
+ {
+ case FIELD_DECL:
+ return sizeof (struct tree_field_decl);
+ case PARM_DECL:
+ return sizeof (struct tree_parm_decl);
+ case VAR_DECL:
+ return sizeof (struct tree_var_decl);
+ case LABEL_DECL:
+ return sizeof (struct tree_label_decl);
+ case RESULT_DECL:
+ return sizeof (struct tree_result_decl);
+ case CONST_DECL:
+ return sizeof (struct tree_const_decl);
+ case TYPE_DECL:
+ return sizeof (struct tree_type_decl);
+ case FUNCTION_DECL:
+ return sizeof (struct tree_function_decl);
+ case DEBUG_EXPR_DECL:
+ return sizeof (struct tree_decl_with_rtl);
+ default:
+ return sizeof (struct tree_decl_non_common);
+ }
+ }
+
+ case tcc_type: /* a type node */
+ return sizeof (struct tree_type_non_common);
+
+ case tcc_reference: /* a reference */
+ case tcc_expression: /* an expression */
+ case tcc_statement: /* an expression with side effects */
+ case tcc_comparison: /* a comparison expression */
+ case tcc_unary: /* a unary arithmetic expression */
+ case tcc_binary: /* a binary arithmetic expression */
+ return (sizeof (struct tree_exp)
+ + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
+
+ case tcc_constant: /* a constant */
+ switch (code)
+ {
+ case INTEGER_CST: return sizeof (struct tree_int_cst);
+ case REAL_CST: return sizeof (struct tree_real_cst);
+ case FIXED_CST: return sizeof (struct tree_fixed_cst);
+ case COMPLEX_CST: return sizeof (struct tree_complex);
+ case VECTOR_CST: return sizeof (struct tree_vector);
+ case STRING_CST: gcc_unreachable ();
+ default:
+ return lang_hooks.tree_size (code);
+ }
+
+ case tcc_exceptional: /* something random, like an identifier. */
+ switch (code)
+ {
+ case IDENTIFIER_NODE: return lang_hooks.identifier_size;
+ case TREE_LIST: return sizeof (struct tree_list);
+
+ case ERROR_MARK:
+ case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
+
+ case TREE_VEC:
+ case OMP_CLAUSE: gcc_unreachable ();
+
+ case SSA_NAME: return sizeof (struct tree_ssa_name);
+
+ case STATEMENT_LIST: return sizeof (struct tree_statement_list);
+ case BLOCK: return sizeof (struct tree_block);
+ case CONSTRUCTOR: return sizeof (struct tree_constructor);
+ case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
+ case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
+
+ default:
+ return lang_hooks.tree_size (code);
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Compute the number of bytes occupied by NODE. This routine only
+ looks at TREE_CODE, except for those nodes that have variable sizes. */
+size_t
+tree_size (const_tree node)
+{
+ const enum tree_code code = TREE_CODE (node);
+ switch (code)
+ {
+ case TREE_BINFO:
+ return (offsetof (struct tree_binfo, base_binfos)
+ + vec<tree, va_gc>
+ ::embedded_size (BINFO_N_BASE_BINFOS (node)));
+
+ case TREE_VEC:
+ return (sizeof (struct tree_vec)
+ + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
+
+ case VECTOR_CST:
+ return (sizeof (struct tree_vector)
+ + (TYPE_VECTOR_SUBPARTS (TREE_TYPE (node)) - 1) * sizeof (tree));
+
+ case STRING_CST:
+ return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
+
+ case OMP_CLAUSE:
+ return (sizeof (struct tree_omp_clause)
+ + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
+ * sizeof (tree));
+
+ default:
+ if (TREE_CODE_CLASS (code) == tcc_vl_exp)
+ return (sizeof (struct tree_exp)
+ + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
+ else
+ return tree_code_size (code);
+ }
+}
+
+/* Record interesting allocation statistics for a tree node with CODE
+ and LENGTH. */
+
+static void
+record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED,
+ size_t length ATTRIBUTE_UNUSED)
+{
+ enum tree_code_class type = TREE_CODE_CLASS (code);
+ tree_node_kind kind;
+
+ if (!GATHER_STATISTICS)
+ return;
+
+ switch (type)
+ {
+ case tcc_declaration: /* A decl node */
+ kind = d_kind;
+ break;
+
+ case tcc_type: /* a type node */
+ kind = t_kind;
+ break;
+
+ case tcc_statement: /* an expression with side effects */
+ kind = s_kind;
+ break;
+
+ case tcc_reference: /* a reference */
+ kind = r_kind;
+ break;
+
+ case tcc_expression: /* an expression */
+ case tcc_comparison: /* a comparison expression */
+ case tcc_unary: /* a unary arithmetic expression */
+ case tcc_binary: /* a binary arithmetic expression */
+ kind = e_kind;
+ break;
+
+ case tcc_constant: /* a constant */
+ kind = c_kind;
+ break;
+
+ case tcc_exceptional: /* something random, like an identifier. */
+ switch (code)
+ {
+ case IDENTIFIER_NODE:
+ kind = id_kind;
+ break;
+
+ case TREE_VEC:
+ kind = vec_kind;
+ break;
+
+ case TREE_BINFO:
+ kind = binfo_kind;
+ break;
+
+ case SSA_NAME:
+ kind = ssa_name_kind;
+ break;
+
+ case BLOCK:
+ kind = b_kind;
+ break;
+
+ case CONSTRUCTOR:
+ kind = constr_kind;
+ break;
+
+ case OMP_CLAUSE:
+ kind = omp_clause_kind;
+ break;
+
+ default:
+ kind = x_kind;
+ break;
+ }
+ break;
+
+ case tcc_vl_exp:
+ kind = e_kind;
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ tree_code_counts[(int) code]++;
+ tree_node_counts[(int) kind]++;
+ tree_node_sizes[(int) kind] += length;
+}
+
+/* Allocate and return a new UID from the DECL_UID namespace. */
+
+int
+allocate_decl_uid (void)
+{
+ return next_decl_uid++;
+}
+
+/* Return a newly allocated node of code CODE. For decl and type
+ nodes, some other fields are initialized. The rest of the node is
+ initialized to zero. This function cannot be used for TREE_VEC or
+ OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
+
+ Achoo! I got a code in the node. */
+
+tree
+make_node_stat (enum tree_code code MEM_STAT_DECL)
+{
+ tree t;
+ enum tree_code_class type = TREE_CODE_CLASS (code);
+ size_t length = tree_code_size (code);
+
+ record_node_allocation_statistics (code, length);
+
+ t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
+ TREE_SET_CODE (t, code);
+
+ switch (type)
+ {
+ case tcc_statement:
+ TREE_SIDE_EFFECTS (t) = 1;
+ break;
+
+ case tcc_declaration:
+ if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
+ {
+ if (code == FUNCTION_DECL)
+ {
+ DECL_ALIGN (t) = FUNCTION_BOUNDARY;
+ DECL_MODE (t) = FUNCTION_MODE;
+ }
+ else
+ DECL_ALIGN (t) = 1;
+ }
+ DECL_SOURCE_LOCATION (t) = input_location;
+ if (TREE_CODE (t) == DEBUG_EXPR_DECL)
+ DECL_UID (t) = --next_debug_decl_uid;
+ else
+ {
+ DECL_UID (t) = allocate_decl_uid ();
+ SET_DECL_PT_UID (t, -1);
+ }
+ if (TREE_CODE (t) == LABEL_DECL)
+ LABEL_DECL_UID (t) = -1;
+
+ break;
+
+ case tcc_type:
+ TYPE_UID (t) = next_type_uid++;
+ TYPE_ALIGN (t) = BITS_PER_UNIT;
+ TYPE_USER_ALIGN (t) = 0;
+ TYPE_MAIN_VARIANT (t) = t;
+ TYPE_CANONICAL (t) = t;
+
+ /* Default to no attributes for type, but let target change that. */
+ TYPE_ATTRIBUTES (t) = NULL_TREE;
+ targetm.set_default_type_attributes (t);
+
+ /* We have not yet computed the alias set for this type. */
+ TYPE_ALIAS_SET (t) = -1;
+ break;
+
+ case tcc_constant:
+ TREE_CONSTANT (t) = 1;
+ break;
+
+ case tcc_expression:
+ switch (code)
+ {
+ case INIT_EXPR:
+ case MODIFY_EXPR:
+ case VA_ARG_EXPR:
+ case PREDECREMENT_EXPR:
+ case PREINCREMENT_EXPR:
+ case POSTDECREMENT_EXPR:
+ case POSTINCREMENT_EXPR:
+ /* All of these have side-effects, no matter what their
+ operands are. */
+ TREE_SIDE_EFFECTS (t) = 1;
+ break;
+
+ default:
+ break;
+ }
+ break;
+
+ default:
+ /* Other classes need no special treatment. */
+ break;
+ }
+
+ return t;
+}
+
+/* Return a new node with the same contents as NODE except that its
+ TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
+
+tree
+copy_node_stat (tree node MEM_STAT_DECL)
+{
+ tree t;
+ enum tree_code code = TREE_CODE (node);
+ size_t length;
+
+ gcc_assert (code != STATEMENT_LIST);
+
+ length = tree_size (node);
+ record_node_allocation_statistics (code, length);
+ t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
+ memcpy (t, node, length);
+
+ if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
+ TREE_CHAIN (t) = 0;
+ TREE_ASM_WRITTEN (t) = 0;
+ TREE_VISITED (t) = 0;
+
+ if (TREE_CODE_CLASS (code) == tcc_declaration)
+ {
+ if (code == DEBUG_EXPR_DECL)
+ DECL_UID (t) = --next_debug_decl_uid;
+ else
+ {
+ DECL_UID (t) = allocate_decl_uid ();
+ if (DECL_PT_UID_SET_P (node))
+ SET_DECL_PT_UID (t, DECL_PT_UID (node));
+ }
+ if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
+ && DECL_HAS_VALUE_EXPR_P (node))
+ {
+ SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
+ DECL_HAS_VALUE_EXPR_P (t) = 1;
+ }
+ if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
+ {
+ SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
+ DECL_HAS_INIT_PRIORITY_P (t) = 1;
+ }
+ if (TREE_CODE (node) == FUNCTION_DECL)
+ DECL_STRUCT_FUNCTION (t) = NULL;
+ }
+ else if (TREE_CODE_CLASS (code) == tcc_type)
+ {
+ TYPE_UID (t) = next_type_uid++;
+ /* The following is so that the debug code for
+ the copy is different from the original type.
+ The two statements usually duplicate each other
+ (because they clear fields of the same union),
+ but the optimizer should catch that. */
+ TYPE_SYMTAB_POINTER (t) = 0;
+ TYPE_SYMTAB_ADDRESS (t) = 0;
+
+ /* Do not copy the values cache. */
+ if (TYPE_CACHED_VALUES_P(t))
+ {
+ TYPE_CACHED_VALUES_P (t) = 0;
+ TYPE_CACHED_VALUES (t) = NULL_TREE;
+ }
+ }
+
+ return t;
+}
+
+/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
+ For example, this can copy a list made of TREE_LIST nodes. */
+
+tree
+copy_list (tree list)
+{
+ tree head;
+ tree prev, next;
+
+ if (list == 0)
+ return 0;
+
+ head = prev = copy_node (list);
+ next = TREE_CHAIN (list);
+ while (next)
+ {
+ TREE_CHAIN (prev) = copy_node (next);
+ prev = TREE_CHAIN (prev);
+ next = TREE_CHAIN (next);
+ }
+ return head;
+}
+
+
+/* Create an INT_CST node with a LOW value sign extended to TYPE. */
+
+tree
+build_int_cst (tree type, HOST_WIDE_INT low)
+{
+ /* Support legacy code. */
+ if (!type)
+ type = integer_type_node;
+
+ return double_int_to_tree (type, double_int::from_shwi (low));
+}
+
+/* Create an INT_CST node with a LOW value sign extended to TYPE. */
+
+tree
+build_int_cst_type (tree type, HOST_WIDE_INT low)
+{
+ gcc_assert (type);
+
+ return double_int_to_tree (type, double_int::from_shwi (low));
+}
+
+/* Constructs tree in type TYPE from with value given by CST. Signedness
+ of CST is assumed to be the same as the signedness of TYPE. */
+
+tree
+double_int_to_tree (tree type, double_int cst)
+{
+ bool sign_extended_type = !TYPE_UNSIGNED (type);
+
+ cst = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
+
+ return build_int_cst_wide (type, cst.low, cst.high);
+}
+
+/* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
+ to be the same as the signedness of TYPE. */
+
+bool
+double_int_fits_to_tree_p (const_tree type, double_int cst)
+{
+ bool sign_extended_type = !TYPE_UNSIGNED (type);
+
+ double_int ext
+ = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
+
+ return cst == ext;
+}
+
+/* We force the double_int CST to the range of the type TYPE by sign or
+ zero extending it. OVERFLOWABLE indicates if we are interested in
+ overflow of the value, when >0 we are only interested in signed
+ overflow, for <0 we are interested in any overflow. OVERFLOWED
+ indicates whether overflow has already occurred. CONST_OVERFLOWED
+ indicates whether constant overflow has already occurred. We force
+ T's value to be within range of T's type (by setting to 0 or 1 all
+ the bits outside the type's range). We set TREE_OVERFLOWED if,
+ OVERFLOWED is nonzero,
+ or OVERFLOWABLE is >0 and signed overflow occurs
+ or OVERFLOWABLE is <0 and any overflow occurs
+ We return a new tree node for the extended double_int. The node
+ is shared if no overflow flags are set. */
+
+
+tree
+force_fit_type_double (tree type, double_int cst, int overflowable,
+ bool overflowed)
+{
+ bool sign_extended_type = !TYPE_UNSIGNED (type);
+
+ /* If we need to set overflow flags, return a new unshared node. */
+ if (overflowed || !double_int_fits_to_tree_p(type, cst))
+ {
+ if (overflowed
+ || overflowable < 0
+ || (overflowable > 0 && sign_extended_type))
+ {
+ tree t = make_node (INTEGER_CST);
+ TREE_INT_CST (t)
+ = cst.ext (TYPE_PRECISION (type), !sign_extended_type);
+ TREE_TYPE (t) = type;
+ TREE_OVERFLOW (t) = 1;
+ return t;
+ }
+ }
+
+ /* Else build a shared node. */
+ return double_int_to_tree (type, cst);
+}
+
+/* These are the hash table functions for the hash table of INTEGER_CST
+ nodes of a sizetype. */
+
+/* Return the hash code code X, an INTEGER_CST. */
+
+static hashval_t
+int_cst_hash_hash (const void *x)
+{
+ const_tree const t = (const_tree) x;
+
+ return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
+ ^ htab_hash_pointer (TREE_TYPE (t)));
+}
+
+/* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
+ is the same as that given by *Y, which is the same. */
+
+static int
+int_cst_hash_eq (const void *x, const void *y)
+{
+ const_tree const xt = (const_tree) x;
+ const_tree const yt = (const_tree) y;
+
+ return (TREE_TYPE (xt) == TREE_TYPE (yt)
+ && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
+ && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
+}
+
+/* Create an INT_CST node of TYPE and value HI:LOW.
+ The returned node is always shared. For small integers we use a
+ per-type vector cache, for larger ones we use a single hash table. */
+
+tree
+build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
+{
+ tree t;
+ int ix = -1;
+ int limit = 0;
+
+ gcc_assert (type);
+
+ switch (TREE_CODE (type))
+ {
+ case NULLPTR_TYPE:
+ gcc_assert (hi == 0 && low == 0);
+ /* Fallthru. */
+
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ /* Cache NULL pointer. */
+ if (!hi && !low)
+ {
+ limit = 1;
+ ix = 0;
+ }
+ break;
+
+ case BOOLEAN_TYPE:
+ /* Cache false or true. */
+ limit = 2;
+ if (!hi && low < 2)
+ ix = low;
+ break;
+
+ case INTEGER_TYPE:
+ case OFFSET_TYPE:
+ if (TYPE_UNSIGNED (type))
+ {
+ /* Cache 0..N */
+ limit = INTEGER_SHARE_LIMIT;
+ if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
+ ix = low;
+ }
+ else
+ {
+ /* Cache -1..N */
+ limit = INTEGER_SHARE_LIMIT + 1;
+ if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
+ ix = low + 1;
+ else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
+ ix = 0;
+ }
+ break;
+
+ case ENUMERAL_TYPE:
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ if (ix >= 0)
+ {
+ /* Look for it in the type's vector of small shared ints. */
+ if (!TYPE_CACHED_VALUES_P (type))
+ {
+ TYPE_CACHED_VALUES_P (type) = 1;
+ TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
+ }
+
+ t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
+ if (t)
+ {
+ /* Make sure no one is clobbering the shared constant. */
+ gcc_assert (TREE_TYPE (t) == type);
+ gcc_assert (TREE_INT_CST_LOW (t) == low);
+ gcc_assert (TREE_INT_CST_HIGH (t) == hi);
+ }
+ else
+ {
+ /* Create a new shared int. */
+ t = make_node (INTEGER_CST);
+
+ TREE_INT_CST_LOW (t) = low;
+ TREE_INT_CST_HIGH (t) = hi;
+ TREE_TYPE (t) = type;
+
+ TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
+ }
+ }
+ else
+ {
+ /* Use the cache of larger shared ints. */
+ void **slot;
+
+ TREE_INT_CST_LOW (int_cst_node) = low;
+ TREE_INT_CST_HIGH (int_cst_node) = hi;
+ TREE_TYPE (int_cst_node) = type;
+
+ slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
+ t = (tree) *slot;
+ if (!t)
+ {
+ /* Insert this one into the hash table. */
+ t = int_cst_node;
+ *slot = t;
+ /* Make a new node for next time round. */
+ int_cst_node = make_node (INTEGER_CST);
+ }
+ }
+
+ return t;
+}
+
+/* Builds an integer constant in TYPE such that lowest BITS bits are ones
+ and the rest are zeros. */
+
+tree
+build_low_bits_mask (tree type, unsigned bits)
+{
+ double_int mask;
+
+ gcc_assert (bits <= TYPE_PRECISION (type));
+
+ if (bits == TYPE_PRECISION (type)
+ && !TYPE_UNSIGNED (type))
+ /* Sign extended all-ones mask. */
+ mask = double_int_minus_one;
+ else
+ mask = double_int::mask (bits);
+
+ return build_int_cst_wide (type, mask.low, mask.high);
+}
+
+/* Checks that X is integer constant that can be expressed in (unsigned)
+ HOST_WIDE_INT without loss of precision. */
+
+bool
+cst_and_fits_in_hwi (const_tree x)
+{
+ if (TREE_CODE (x) != INTEGER_CST)
+ return false;
+
+ if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
+ return false;
+
+ return (TREE_INT_CST_HIGH (x) == 0
+ || TREE_INT_CST_HIGH (x) == -1);
+}
+
+/* Build a newly constructed TREE_VEC node of length LEN. */
+
+tree
+make_vector_stat (unsigned len MEM_STAT_DECL)
+{
+ tree t;
+ unsigned length = (len - 1) * sizeof (tree) + sizeof (struct tree_vector);
+
+ record_node_allocation_statistics (VECTOR_CST, length);
+
+ t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
+
+ TREE_SET_CODE (t, VECTOR_CST);
+ TREE_CONSTANT (t) = 1;
+
+ return t;
+}
+
+/* Return a new VECTOR_CST node whose type is TYPE and whose values
+ are in a list pointed to by VALS. */
+
+tree
+build_vector_stat (tree type, tree *vals MEM_STAT_DECL)
+{
+ int over = 0;
+ unsigned cnt = 0;
+ tree v = make_vector (TYPE_VECTOR_SUBPARTS (type));
+ TREE_TYPE (v) = type;
+
+ /* Iterate through elements and check for overflow. */
+ for (cnt = 0; cnt < TYPE_VECTOR_SUBPARTS (type); ++cnt)
+ {
+ tree value = vals[cnt];
+
+ VECTOR_CST_ELT (v, cnt) = value;
+
+ /* Don't crash if we get an address constant. */
+ if (!CONSTANT_CLASS_P (value))
+ continue;
+
+ over |= TREE_OVERFLOW (value);
+ }
+
+ TREE_OVERFLOW (v) = over;
+ return v;
+}
+
+/* Return a new VECTOR_CST node whose type is TYPE and whose values
+ are extracted from V, a vector of CONSTRUCTOR_ELT. */
+
+tree
+build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
+{
+ tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
+ unsigned HOST_WIDE_INT idx;
+ tree value;
+
+ FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
+ vec[idx] = value;
+ for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
+ vec[idx] = build_zero_cst (TREE_TYPE (type));
+
+ return build_vector (type, vec);
+}
+
+/* Build a vector of type VECTYPE where all the elements are SCs. */
+tree
+build_vector_from_val (tree vectype, tree sc)
+{
+ int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
+
+ if (sc == error_mark_node)
+ return sc;
+
+ /* Verify that the vector type is suitable for SC. Note that there
+ is some inconsistency in the type-system with respect to restrict
+ qualifications of pointers. Vector types always have a main-variant
+ element type and the qualification is applied to the vector-type.
+ So TREE_TYPE (vector-type) does not return a properly qualified
+ vector element-type. */
+ gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
+ TREE_TYPE (vectype)));
+
+ if (CONSTANT_CLASS_P (sc))
+ {
+ tree *v = XALLOCAVEC (tree, nunits);
+ for (i = 0; i < nunits; ++i)
+ v[i] = sc;
+ return build_vector (vectype, v);
+ }
+ else
+ {
+ vec<constructor_elt, va_gc> *v;
+ vec_alloc (v, nunits);
+ for (i = 0; i < nunits; ++i)
+ CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
+ return build_constructor (vectype, v);
+ }
+}
+
+/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
+ are in the vec pointed to by VALS. */
+tree
+build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
+{
+ tree c = make_node (CONSTRUCTOR);
+ unsigned int i;
+ constructor_elt *elt;
+ bool constant_p = true;
+ bool side_effects_p = false;
+
+ TREE_TYPE (c) = type;
+ CONSTRUCTOR_ELTS (c) = vals;
+
+ FOR_EACH_VEC_SAFE_ELT (vals, i, elt)
+ {
+ /* Mostly ctors will have elts that don't have side-effects, so
+ the usual case is to scan all the elements. Hence a single
+ loop for both const and side effects, rather than one loop
+ each (with early outs). */
+ if (!TREE_CONSTANT (elt->value))
+ constant_p = false;
+ if (TREE_SIDE_EFFECTS (elt->value))
+ side_effects_p = true;
+ }
+
+ TREE_SIDE_EFFECTS (c) = side_effects_p;
+ TREE_CONSTANT (c) = constant_p;
+
+ return c;
+}
+
+/* Build a CONSTRUCTOR node made of a single initializer, with the specified
+ INDEX and VALUE. */
+tree
+build_constructor_single (tree type, tree index, tree value)
+{
+ vec<constructor_elt, va_gc> *v;
+ constructor_elt elt = {index, value};
+
+ vec_alloc (v, 1);
+ v->quick_push (elt);
+
+ return build_constructor (type, v);
+}
+
+
+/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
+ are in a list pointed to by VALS. */
+tree
+build_constructor_from_list (tree type, tree vals)
+{
+ tree t;
+ vec<constructor_elt, va_gc> *v = NULL;
+
+ if (vals)
+ {
+ vec_alloc (v, list_length (vals));
+ for (t = vals; t; t = TREE_CHAIN (t))
+ CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
+ }
+
+ return build_constructor (type, v);
+}
+
+/* Return a new FIXED_CST node whose type is TYPE and value is F. */
+
+tree
+build_fixed (tree type, FIXED_VALUE_TYPE f)
+{
+ tree v;
+ FIXED_VALUE_TYPE *fp;
+
+ v = make_node (FIXED_CST);
+ fp = ggc_alloc_fixed_value ();
+ memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
+
+ TREE_TYPE (v) = type;
+ TREE_FIXED_CST_PTR (v) = fp;
+ return v;
+}
+
+/* Return a new REAL_CST node whose type is TYPE and value is D. */
+
+tree
+build_real (tree type, REAL_VALUE_TYPE d)
+{
+ tree v;
+ REAL_VALUE_TYPE *dp;
+ int overflow = 0;
+
+ /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
+ Consider doing it via real_convert now. */
+
+ v = make_node (REAL_CST);
+ dp = ggc_alloc_real_value ();
+ memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
+
+ TREE_TYPE (v) = type;
+ TREE_REAL_CST_PTR (v) = dp;
+ TREE_OVERFLOW (v) = overflow;
+ return v;
+}
+
+/* Return a new REAL_CST node whose type is TYPE
+ and whose value is the integer value of the INTEGER_CST node I. */
+
+REAL_VALUE_TYPE
+real_value_from_int_cst (const_tree type, const_tree i)
+{
+ REAL_VALUE_TYPE d;
+
+ /* Clear all bits of the real value type so that we can later do
+ bitwise comparisons to see if two values are the same. */
+ memset (&d, 0, sizeof d);
+
+ real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
+ TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
+ TYPE_UNSIGNED (TREE_TYPE (i)));
+ return d;
+}
+
+/* Given a tree representing an integer constant I, return a tree
+ representing the same value as a floating-point constant of type TYPE. */
+
+tree
+build_real_from_int_cst (tree type, const_tree i)
+{
+ tree v;
+ int overflow = TREE_OVERFLOW (i);
+
+ v = build_real (type, real_value_from_int_cst (type, i));
+
+ TREE_OVERFLOW (v) |= overflow;
+ return v;
+}
+
+/* Return a newly constructed STRING_CST node whose value is
+ the LEN characters at STR.
+ Note that for a C string literal, LEN should include the trailing NUL.
+ The TREE_TYPE is not initialized. */
+
+tree
+build_string (int len, const char *str)
+{
+ tree s;
+ size_t length;
+
+ /* Do not waste bytes provided by padding of struct tree_string. */
+ length = len + offsetof (struct tree_string, str) + 1;
+
+ record_node_allocation_statistics (STRING_CST, length);
+
+ s = ggc_alloc_tree_node (length);
+
+ memset (s, 0, sizeof (struct tree_typed));
+ TREE_SET_CODE (s, STRING_CST);
+ TREE_CONSTANT (s) = 1;
+ TREE_STRING_LENGTH (s) = len;
+ memcpy (s->string.str, str, len);
+ s->string.str[len] = '\0';
+
+ return s;
+}
+
+/* Return a newly constructed COMPLEX_CST node whose value is
+ specified by the real and imaginary parts REAL and IMAG.
+ Both REAL and IMAG should be constant nodes. TYPE, if specified,
+ will be the type of the COMPLEX_CST; otherwise a new type will be made. */
+
+tree
+build_complex (tree type, tree real, tree imag)
+{
+ tree t = make_node (COMPLEX_CST);
+
+ TREE_REALPART (t) = real;
+ TREE_IMAGPART (t) = imag;
+ TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
+ TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
+ return t;
+}
+
+/* Return a constant of arithmetic type TYPE which is the
+ multiplicative identity of the set TYPE. */
+
+tree
+build_one_cst (tree type)
+{
+ switch (TREE_CODE (type))
+ {
+ case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
+ case POINTER_TYPE: case REFERENCE_TYPE:
+ case OFFSET_TYPE:
+ return build_int_cst (type, 1);
+
+ case REAL_TYPE:
+ return build_real (type, dconst1);
+
+ case FIXED_POINT_TYPE:
+ /* We can only generate 1 for accum types. */
+ gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
+ return build_fixed (type, FCONST1(TYPE_MODE (type)));
+
+ case VECTOR_TYPE:
+ {
+ tree scalar = build_one_cst (TREE_TYPE (type));
+
+ return build_vector_from_val (type, scalar);
+ }
+
+ case COMPLEX_TYPE:
+ return build_complex (type,
+ build_one_cst (TREE_TYPE (type)),
+ build_zero_cst (TREE_TYPE (type)));
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Return an integer of type TYPE containing all 1's in as much precision as
+ it contains, or a complex or vector whose subparts are such integers. */
+
+tree
+build_all_ones_cst (tree type)
+{
+ if (TREE_CODE (type) == COMPLEX_TYPE)
+ {
+ tree scalar = build_all_ones_cst (TREE_TYPE (type));
+ return build_complex (type, scalar, scalar);
+ }
+ else
+ return build_minus_one_cst (type);
+}
+
+/* Return a constant of arithmetic type TYPE which is the
+ opposite of the multiplicative identity of the set TYPE. */
+
+tree
+build_minus_one_cst (tree type)
+{
+ switch (TREE_CODE (type))
+ {
+ case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
+ case POINTER_TYPE: case REFERENCE_TYPE:
+ case OFFSET_TYPE:
+ return build_int_cst (type, -1);
+
+ case REAL_TYPE:
+ return build_real (type, dconstm1);
+
+ case FIXED_POINT_TYPE:
+ /* We can only generate 1 for accum types. */
+ gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
+ return build_fixed (type, fixed_from_double_int (double_int_minus_one,
+ TYPE_MODE (type)));
+
+ case VECTOR_TYPE:
+ {
+ tree scalar = build_minus_one_cst (TREE_TYPE (type));
+
+ return build_vector_from_val (type, scalar);
+ }
+
+ case COMPLEX_TYPE:
+ return build_complex (type,
+ build_minus_one_cst (TREE_TYPE (type)),
+ build_zero_cst (TREE_TYPE (type)));
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Build 0 constant of type TYPE. This is used by constructor folding
+ and thus the constant should be represented in memory by
+ zero(es). */
+
+tree
+build_zero_cst (tree type)
+{
+ switch (TREE_CODE (type))
+ {
+ case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
+ case POINTER_TYPE: case REFERENCE_TYPE:
+ case OFFSET_TYPE: case NULLPTR_TYPE:
+ return build_int_cst (type, 0);
+
+ case REAL_TYPE:
+ return build_real (type, dconst0);
+
+ case FIXED_POINT_TYPE:
+ return build_fixed (type, FCONST0 (TYPE_MODE (type)));
+
+ case VECTOR_TYPE:
+ {
+ tree scalar = build_zero_cst (TREE_TYPE (type));
+
+ return build_vector_from_val (type, scalar);
+ }
+
+ case COMPLEX_TYPE:
+ {
+ tree zero = build_zero_cst (TREE_TYPE (type));
+
+ return build_complex (type, zero, zero);
+ }
+
+ default:
+ if (!AGGREGATE_TYPE_P (type))
+ return fold_convert (type, integer_zero_node);
+ return build_constructor (type, NULL);
+ }
+}
+
+
+/* Build a BINFO with LEN language slots. */
+
+tree
+make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
+{
+ tree t;
+ size_t length = (offsetof (struct tree_binfo, base_binfos)
+ + vec<tree, va_gc>::embedded_size (base_binfos));
+
+ record_node_allocation_statistics (TREE_BINFO, length);
+
+ t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
+
+ memset (t, 0, offsetof (struct tree_binfo, base_binfos));
+
+ TREE_SET_CODE (t, TREE_BINFO);
+
+ BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
+
+ return t;
+}
+
+/* Create a CASE_LABEL_EXPR tree node and return it. */
+
+tree
+build_case_label (tree low_value, tree high_value, tree label_decl)
+{
+ tree t = make_node (CASE_LABEL_EXPR);
+
+ TREE_TYPE (t) = void_type_node;
+ SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
+
+ CASE_LOW (t) = low_value;
+ CASE_HIGH (t) = high_value;
+ CASE_LABEL (t) = label_decl;
+ CASE_CHAIN (t) = NULL_TREE;
+
+ return t;
+}
+
+/* Build a newly constructed TREE_VEC node of length LEN. */
+
+tree
+make_tree_vec_stat (int len MEM_STAT_DECL)
+{
+ tree t;
+ int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
+
+ record_node_allocation_statistics (TREE_VEC, length);
+
+ t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
+
+ TREE_SET_CODE (t, TREE_VEC);
+ TREE_VEC_LENGTH (t) = len;
+
+ return t;
+}
+
+/* Return 1 if EXPR is the integer constant zero or a complex constant
+ of zero. */
+
+int
+integer_zerop (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ switch (TREE_CODE (expr))
+ {
+ case INTEGER_CST:
+ return (TREE_INT_CST_LOW (expr) == 0
+ && TREE_INT_CST_HIGH (expr) == 0);
+ case COMPLEX_CST:
+ return (integer_zerop (TREE_REALPART (expr))
+ && integer_zerop (TREE_IMAGPART (expr)));
+ case VECTOR_CST:
+ {
+ unsigned i;
+ for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
+ if (!integer_zerop (VECTOR_CST_ELT (expr, i)))
+ return false;
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+/* Return 1 if EXPR is the integer constant one or the corresponding
+ complex constant. */
+
+int
+integer_onep (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ switch (TREE_CODE (expr))
+ {
+ case INTEGER_CST:
+ return (TREE_INT_CST_LOW (expr) == 1
+ && TREE_INT_CST_HIGH (expr) == 0);
+ case COMPLEX_CST:
+ return (integer_onep (TREE_REALPART (expr))
+ && integer_zerop (TREE_IMAGPART (expr)));
+ case VECTOR_CST:
+ {
+ unsigned i;
+ for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
+ if (!integer_onep (VECTOR_CST_ELT (expr, i)))
+ return false;
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+/* Return 1 if EXPR is an integer containing all 1's in as much precision as
+ it contains. Likewise for the corresponding complex constant. */
+
+int
+integer_all_onesp (const_tree expr)
+{
+ int prec;
+ int uns;
+
+ STRIP_NOPS (expr);
+
+ if (TREE_CODE (expr) == COMPLEX_CST
+ && integer_all_onesp (TREE_REALPART (expr))
+ && integer_zerop (TREE_IMAGPART (expr)))
+ return 1;
+
+ else if (TREE_CODE (expr) == VECTOR_CST)
+ {
+ unsigned i;
+ for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
+ if (!integer_all_onesp (VECTOR_CST_ELT (expr, i)))
+ return 0;
+ return 1;
+ }
+
+ else if (TREE_CODE (expr) != INTEGER_CST)
+ return 0;
+
+ uns = TYPE_UNSIGNED (TREE_TYPE (expr));
+ if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
+ && TREE_INT_CST_HIGH (expr) == -1)
+ return 1;
+ if (!uns)
+ return 0;
+
+ prec = TYPE_PRECISION (TREE_TYPE (expr));
+ if (prec >= HOST_BITS_PER_WIDE_INT)
+ {
+ HOST_WIDE_INT high_value;
+ int shift_amount;
+
+ shift_amount = prec - HOST_BITS_PER_WIDE_INT;
+
+ /* Can not handle precisions greater than twice the host int size. */
+ gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
+ if (shift_amount == HOST_BITS_PER_WIDE_INT)
+ /* Shifting by the host word size is undefined according to the ANSI
+ standard, so we must handle this as a special case. */
+ high_value = -1;
+ else
+ high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
+
+ return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
+ && TREE_INT_CST_HIGH (expr) == high_value);
+ }
+ else
+ return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
+}
+
+/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
+ one bit on). */
+
+int
+integer_pow2p (const_tree expr)
+{
+ int prec;
+ unsigned HOST_WIDE_INT high, low;
+
+ STRIP_NOPS (expr);
+
+ if (TREE_CODE (expr) == COMPLEX_CST
+ && integer_pow2p (TREE_REALPART (expr))
+ && integer_zerop (TREE_IMAGPART (expr)))
+ return 1;
+
+ if (TREE_CODE (expr) != INTEGER_CST)
+ return 0;
+
+ prec = TYPE_PRECISION (TREE_TYPE (expr));
+ high = TREE_INT_CST_HIGH (expr);
+ low = TREE_INT_CST_LOW (expr);
+
+ /* First clear all bits that are beyond the type's precision in case
+ we've been sign extended. */
+
+ if (prec == HOST_BITS_PER_DOUBLE_INT)
+ ;
+ else if (prec > HOST_BITS_PER_WIDE_INT)
+ high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
+ else
+ {
+ high = 0;
+ if (prec < HOST_BITS_PER_WIDE_INT)
+ low &= ~((HOST_WIDE_INT) (-1) << prec);
+ }
+
+ if (high == 0 && low == 0)
+ return 0;
+
+ return ((high == 0 && (low & (low - 1)) == 0)
+ || (low == 0 && (high & (high - 1)) == 0));
+}
+
+/* Return 1 if EXPR is an integer constant other than zero or a
+ complex constant other than zero. */
+
+int
+integer_nonzerop (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ return ((TREE_CODE (expr) == INTEGER_CST
+ && (TREE_INT_CST_LOW (expr) != 0
+ || TREE_INT_CST_HIGH (expr) != 0))
+ || (TREE_CODE (expr) == COMPLEX_CST
+ && (integer_nonzerop (TREE_REALPART (expr))
+ || integer_nonzerop (TREE_IMAGPART (expr)))));
+}
+
+/* Return 1 if EXPR is the fixed-point constant zero. */
+
+int
+fixed_zerop (const_tree expr)
+{
+ return (TREE_CODE (expr) == FIXED_CST
+ && TREE_FIXED_CST (expr).data.is_zero ());
+}
+
+/* Return the power of two represented by a tree node known to be a
+ power of two. */
+
+int
+tree_log2 (const_tree expr)
+{
+ int prec;
+ HOST_WIDE_INT high, low;
+
+ STRIP_NOPS (expr);
+
+ if (TREE_CODE (expr) == COMPLEX_CST)
+ return tree_log2 (TREE_REALPART (expr));
+
+ prec = TYPE_PRECISION (TREE_TYPE (expr));
+ high = TREE_INT_CST_HIGH (expr);
+ low = TREE_INT_CST_LOW (expr);
+
+ /* First clear all bits that are beyond the type's precision in case
+ we've been sign extended. */
+
+ if (prec == HOST_BITS_PER_DOUBLE_INT)
+ ;
+ else if (prec > HOST_BITS_PER_WIDE_INT)
+ high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
+ else
+ {
+ high = 0;
+ if (prec < HOST_BITS_PER_WIDE_INT)
+ low &= ~((HOST_WIDE_INT) (-1) << prec);
+ }
+
+ return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
+ : exact_log2 (low));
+}
+
+/* Similar, but return the largest integer Y such that 2 ** Y is less
+ than or equal to EXPR. */
+
+int
+tree_floor_log2 (const_tree expr)
+{
+ int prec;
+ HOST_WIDE_INT high, low;
+
+ STRIP_NOPS (expr);
+
+ if (TREE_CODE (expr) == COMPLEX_CST)
+ return tree_log2 (TREE_REALPART (expr));
+
+ prec = TYPE_PRECISION (TREE_TYPE (expr));
+ high = TREE_INT_CST_HIGH (expr);
+ low = TREE_INT_CST_LOW (expr);
+
+ /* First clear all bits that are beyond the type's precision in case
+ we've been sign extended. Ignore if type's precision hasn't been set
+ since what we are doing is setting it. */
+
+ if (prec == HOST_BITS_PER_DOUBLE_INT || prec == 0)
+ ;
+ else if (prec > HOST_BITS_PER_WIDE_INT)
+ high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
+ else
+ {
+ high = 0;
+ if (prec < HOST_BITS_PER_WIDE_INT)
+ low &= ~((HOST_WIDE_INT) (-1) << prec);
+ }
+
+ return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
+ : floor_log2 (low));
+}
+
+/* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
+ decimal float constants, so don't return 1 for them. */
+
+int
+real_zerop (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ switch (TREE_CODE (expr))
+ {
+ case REAL_CST:
+ return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
+ && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
+ case COMPLEX_CST:
+ return real_zerop (TREE_REALPART (expr))
+ && real_zerop (TREE_IMAGPART (expr));
+ case VECTOR_CST:
+ {
+ unsigned i;
+ for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
+ if (!real_zerop (VECTOR_CST_ELT (expr, i)))
+ return false;
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+/* Return 1 if EXPR is the real constant one in real or complex form.
+ Trailing zeroes matter for decimal float constants, so don't return
+ 1 for them. */
+
+int
+real_onep (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ switch (TREE_CODE (expr))
+ {
+ case REAL_CST:
+ return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
+ && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
+ case COMPLEX_CST:
+ return real_onep (TREE_REALPART (expr))
+ && real_zerop (TREE_IMAGPART (expr));
+ case VECTOR_CST:
+ {
+ unsigned i;
+ for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
+ if (!real_onep (VECTOR_CST_ELT (expr, i)))
+ return false;
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+/* Return 1 if EXPR is the real constant two. Trailing zeroes matter
+ for decimal float constants, so don't return 1 for them. */
+
+int
+real_twop (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ switch (TREE_CODE (expr))
+ {
+ case REAL_CST:
+ return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
+ && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
+ case COMPLEX_CST:
+ return real_twop (TREE_REALPART (expr))
+ && real_zerop (TREE_IMAGPART (expr));
+ case VECTOR_CST:
+ {
+ unsigned i;
+ for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
+ if (!real_twop (VECTOR_CST_ELT (expr, i)))
+ return false;
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+/* Return 1 if EXPR is the real constant minus one. Trailing zeroes
+ matter for decimal float constants, so don't return 1 for them. */
+
+int
+real_minus_onep (const_tree expr)
+{
+ STRIP_NOPS (expr);
+
+ switch (TREE_CODE (expr))
+ {
+ case REAL_CST:
+ return REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
+ && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
+ case COMPLEX_CST:
+ return real_minus_onep (TREE_REALPART (expr))
+ && real_zerop (TREE_IMAGPART (expr));
+ case VECTOR_CST:
+ {
+ unsigned i;
+ for (i = 0; i < VECTOR_CST_NELTS (expr); ++i)
+ if (!real_minus_onep (VECTOR_CST_ELT (expr, i)))
+ return false;
+ return true;
+ }
+ default:
+ return false;
+ }
+}
+
+/* Nonzero if EXP is a constant or a cast of a constant. */
+
+int
+really_constant_p (const_tree exp)
+{
+ /* This is not quite the same as STRIP_NOPS. It does more. */
+ while (CONVERT_EXPR_P (exp)
+ || TREE_CODE (exp) == NON_LVALUE_EXPR)
+ exp = TREE_OPERAND (exp, 0);
+ return TREE_CONSTANT (exp);
+}
+
+/* Return first list element whose TREE_VALUE is ELEM.
+ Return 0 if ELEM is not in LIST. */
+
+tree
+value_member (tree elem, tree list)
+{
+ while (list)
+ {
+ if (elem == TREE_VALUE (list))
+ return list;
+ list = TREE_CHAIN (list);
+ }
+ return NULL_TREE;
+}
+
+/* Return first list element whose TREE_PURPOSE is ELEM.
+ Return 0 if ELEM is not in LIST. */
+
+tree
+purpose_member (const_tree elem, tree list)
+{
+ while (list)
+ {
+ if (elem == TREE_PURPOSE (list))
+ return list;
+ list = TREE_CHAIN (list);
+ }
+ return NULL_TREE;
+}
+
+/* Return true if ELEM is in V. */
+
+bool
+vec_member (const_tree elem, vec<tree, va_gc> *v)
+{
+ unsigned ix;
+ tree t;
+ FOR_EACH_VEC_SAFE_ELT (v, ix, t)
+ if (elem == t)
+ return true;
+ return false;
+}
+
+/* Returns element number IDX (zero-origin) of chain CHAIN, or
+ NULL_TREE. */
+
+tree
+chain_index (int idx, tree chain)
+{
+ for (; chain && idx > 0; --idx)
+ chain = TREE_CHAIN (chain);
+ return chain;
+}
+
+/* Return nonzero if ELEM is part of the chain CHAIN. */
+
+int
+chain_member (const_tree elem, const_tree chain)
+{
+ while (chain)
+ {
+ if (elem == chain)
+ return 1;
+ chain = DECL_CHAIN (chain);
+ }
+
+ return 0;
+}
+
+/* Return the length of a chain of nodes chained through TREE_CHAIN.
+ We expect a null pointer to mark the end of the chain.
+ This is the Lisp primitive `length'. */
+
+int
+list_length (const_tree t)
+{
+ const_tree p = t;
+#ifdef ENABLE_TREE_CHECKING
+ const_tree q = t;
+#endif
+ int len = 0;
+
+ while (p)
+ {
+ p = TREE_CHAIN (p);
+#ifdef ENABLE_TREE_CHECKING
+ if (len % 2)
+ q = TREE_CHAIN (q);
+ gcc_assert (p != q);
+#endif
+ len++;
+ }
+
+ return len;
+}
+
+/* Returns the number of FIELD_DECLs in TYPE. */
+
+int
+fields_length (const_tree type)
+{
+ tree t = TYPE_FIELDS (type);
+ int count = 0;
+
+ for (; t; t = DECL_CHAIN (t))
+ if (TREE_CODE (t) == FIELD_DECL)
+ ++count;
+
+ return count;
+}
+
+/* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
+ UNION_TYPE TYPE, or NULL_TREE if none. */
+
+tree
+first_field (const_tree type)
+{
+ tree t = TYPE_FIELDS (type);
+ while (t && TREE_CODE (t) != FIELD_DECL)
+ t = TREE_CHAIN (t);
+ return t;
+}
+
+/* Concatenate two chains of nodes (chained through TREE_CHAIN)
+ by modifying the last node in chain 1 to point to chain 2.
+ This is the Lisp primitive `nconc'. */
+
+tree
+chainon (tree op1, tree op2)
+{
+ tree t1;
+
+ if (!op1)
+ return op2;
+ if (!op2)
+ return op1;
+
+ for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
+ continue;
+ TREE_CHAIN (t1) = op2;
+
+#ifdef ENABLE_TREE_CHECKING
+ {
+ tree t2;
+ for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
+ gcc_assert (t2 != t1);
+ }
+#endif
+
+ return op1;
+}
+
+/* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
+
+tree
+tree_last (tree chain)
+{
+ tree next;
+ if (chain)
+ while ((next = TREE_CHAIN (chain)))
+ chain = next;
+ return chain;
+}
+
+/* Reverse the order of elements in the chain T,
+ and return the new head of the chain (old last element). */
+
+tree
+nreverse (tree t)
+{
+ tree prev = 0, decl, next;
+ for (decl = t; decl; decl = next)
+ {
+ /* We shouldn't be using this function to reverse BLOCK chains; we
+ have blocks_nreverse for that. */
+ gcc_checking_assert (TREE_CODE (decl) != BLOCK);
+ next = TREE_CHAIN (decl);
+ TREE_CHAIN (decl) = prev;
+ prev = decl;
+ }
+ return prev;
+}
+
+/* Return a newly created TREE_LIST node whose
+ purpose and value fields are PARM and VALUE. */
+
+tree
+build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
+{
+ tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
+ TREE_PURPOSE (t) = parm;
+ TREE_VALUE (t) = value;
+ return t;
+}
+
+/* Build a chain of TREE_LIST nodes from a vector. */
+
+tree
+build_tree_list_vec_stat (const vec<tree, va_gc> *vec MEM_STAT_DECL)
+{
+ tree ret = NULL_TREE;
+ tree *pp = &ret;
+ unsigned int i;
+ tree t;
+ FOR_EACH_VEC_SAFE_ELT (vec, i, t)
+ {
+ *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
+ pp = &TREE_CHAIN (*pp);
+ }
+ return ret;
+}
+
+/* Return a newly created TREE_LIST node whose
+ purpose and value fields are PURPOSE and VALUE
+ and whose TREE_CHAIN is CHAIN. */
+
+tree
+tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
+{
+ tree node;
+
+ node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
+ memset (node, 0, sizeof (struct tree_common));
+
+ record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
+
+ TREE_SET_CODE (node, TREE_LIST);
+ TREE_CHAIN (node) = chain;
+ TREE_PURPOSE (node) = purpose;
+ TREE_VALUE (node) = value;
+ return node;
+}
+
+/* Return the values of the elements of a CONSTRUCTOR as a vector of
+ trees. */
+
+vec<tree, va_gc> *
+ctor_to_vec (tree ctor)
+{
+ vec<tree, va_gc> *vec;
+ vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
+ unsigned int ix;
+ tree val;
+
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
+ vec->quick_push (val);
+
+ return vec;
+}
+
+/* Return the size nominally occupied by an object of type TYPE
+ when it resides in memory. The value is measured in units of bytes,
+ and its data type is that normally used for type sizes
+ (which is the first type created by make_signed_type or
+ make_unsigned_type). */
+
+tree
+size_in_bytes (const_tree type)
+{
+ tree t;
+
+ if (type == error_mark_node)
+ return integer_zero_node;
+
+ type = TYPE_MAIN_VARIANT (type);
+ t = TYPE_SIZE_UNIT (type);
+
+ if (t == 0)
+ {
+ lang_hooks.types.incomplete_type_error (NULL_TREE, type);
+ return size_zero_node;
+ }
+
+ return t;
+}
+
+/* Return the size of TYPE (in bytes) as a wide integer
+ or return -1 if the size can vary or is larger than an integer. */
+
+HOST_WIDE_INT
+int_size_in_bytes (const_tree type)
+{
+ tree t;
+
+ if (type == error_mark_node)
+ return 0;
+
+ type = TYPE_MAIN_VARIANT (type);
+ t = TYPE_SIZE_UNIT (type);
+ if (t == 0
+ || TREE_CODE (t) != INTEGER_CST
+ || TREE_INT_CST_HIGH (t) != 0
+ /* If the result would appear negative, it's too big to represent. */
+ || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
+ return -1;
+
+ return TREE_INT_CST_LOW (t);
+}
+
+/* Return the maximum size of TYPE (in bytes) as a wide integer
+ or return -1 if the size can vary or is larger than an integer. */
+
+HOST_WIDE_INT
+max_int_size_in_bytes (const_tree type)
+{
+ HOST_WIDE_INT size = -1;
+ tree size_tree;
+
+ /* If this is an array type, check for a possible MAX_SIZE attached. */
+
+ if (TREE_CODE (type) == ARRAY_TYPE)
+ {
+ size_tree = TYPE_ARRAY_MAX_SIZE (type);
+
+ if (size_tree && host_integerp (size_tree, 1))
+ size = tree_low_cst (size_tree, 1);
+ }
+
+ /* If we still haven't been able to get a size, see if the language
+ can compute a maximum size. */
+
+ if (size == -1)
+ {
+ size_tree = lang_hooks.types.max_size (type);
+
+ if (size_tree && host_integerp (size_tree, 1))
+ size = tree_low_cst (size_tree, 1);
+ }
+
+ return size;
+}
+
+/* Returns a tree for the size of EXP in bytes. */
+
+tree
+tree_expr_size (const_tree exp)
+{
+ if (DECL_P (exp)
+ && DECL_SIZE_UNIT (exp) != 0)
+ return DECL_SIZE_UNIT (exp);
+ else
+ return size_in_bytes (TREE_TYPE (exp));
+}
+
+/* Return the bit position of FIELD, in bits from the start of the record.
+ This is a tree of type bitsizetype. */
+
+tree
+bit_position (const_tree field)
+{
+ return bit_from_pos (DECL_FIELD_OFFSET (field),
+ DECL_FIELD_BIT_OFFSET (field));
+}
+
+/* Likewise, but return as an integer. It must be representable in
+ that way (since it could be a signed value, we don't have the
+ option of returning -1 like int_size_in_byte can. */
+
+HOST_WIDE_INT
+int_bit_position (const_tree field)
+{
+ return tree_low_cst (bit_position (field), 0);
+}
+
+/* Return the byte position of FIELD, in bytes from the start of the record.
+ This is a tree of type sizetype. */
+
+tree
+byte_position (const_tree field)
+{
+ return byte_from_pos (DECL_FIELD_OFFSET (field),
+ DECL_FIELD_BIT_OFFSET (field));
+}
+
+/* Likewise, but return as an integer. It must be representable in
+ that way (since it could be a signed value, we don't have the
+ option of returning -1 like int_size_in_byte can. */
+
+HOST_WIDE_INT
+int_byte_position (const_tree field)
+{
+ return tree_low_cst (byte_position (field), 0);
+}
+
+/* Return the strictest alignment, in bits, that T is known to have. */
+
+unsigned int
+expr_align (const_tree t)
+{
+ unsigned int align0, align1;
+
+ switch (TREE_CODE (t))
+ {
+ CASE_CONVERT: case NON_LVALUE_EXPR:
+ /* If we have conversions, we know that the alignment of the
+ object must meet each of the alignments of the types. */
+ align0 = expr_align (TREE_OPERAND (t, 0));
+ align1 = TYPE_ALIGN (TREE_TYPE (t));
+ return MAX (align0, align1);
+
+ case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
+ case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
+ case CLEANUP_POINT_EXPR:
+ /* These don't change the alignment of an object. */
+ return expr_align (TREE_OPERAND (t, 0));
+
+ case COND_EXPR:
+ /* The best we can do is say that the alignment is the least aligned
+ of the two arms. */
+ align0 = expr_align (TREE_OPERAND (t, 1));
+ align1 = expr_align (TREE_OPERAND (t, 2));
+ return MIN (align0, align1);
+
+ /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
+ meaningfully, it's always 1. */
+ case LABEL_DECL: case CONST_DECL:
+ case VAR_DECL: case PARM_DECL: case RESULT_DECL:
+ case FUNCTION_DECL:
+ gcc_assert (DECL_ALIGN (t) != 0);
+ return DECL_ALIGN (t);
+
+ default:
+ break;
+ }
+
+ /* Otherwise take the alignment from that of the type. */
+ return TYPE_ALIGN (TREE_TYPE (t));
+}
+
+/* Return, as a tree node, the number of elements for TYPE (which is an
+ ARRAY_TYPE) minus one. This counts only elements of the top array. */
+
+tree
+array_type_nelts (const_tree type)
+{
+ tree index_type, min, max;
+
+ /* If they did it with unspecified bounds, then we should have already
+ given an error about it before we got here. */
+ if (! TYPE_DOMAIN (type))
+ return error_mark_node;
+
+ index_type = TYPE_DOMAIN (type);
+ min = TYPE_MIN_VALUE (index_type);
+ max = TYPE_MAX_VALUE (index_type);
+
+ /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
+ if (!max)
+ return error_mark_node;
+
+ return (integer_zerop (min)
+ ? max
+ : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
+}
+
+/* If arg is static -- a reference to an object in static storage -- then
+ return the object. This is not the same as the C meaning of `static'.
+ If arg isn't static, return NULL. */
+
+tree
+staticp (tree arg)
+{
+ switch (TREE_CODE (arg))
+ {
+ case FUNCTION_DECL:
+ /* Nested functions are static, even though taking their address will
+ involve a trampoline as we unnest the nested function and create
+ the trampoline on the tree level. */
+ return arg;
+
+ case VAR_DECL:
+ return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
+ && ! DECL_THREAD_LOCAL_P (arg)
+ && ! DECL_DLLIMPORT_P (arg)
+ ? arg : NULL);
+
+ case CONST_DECL:
+ return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
+ ? arg : NULL);
+
+ case CONSTRUCTOR:
+ return TREE_STATIC (arg) ? arg : NULL;
+
+ case LABEL_DECL:
+ case STRING_CST:
+ return arg;
+
+ case COMPONENT_REF:
+ /* If the thing being referenced is not a field, then it is
+ something language specific. */
+ gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
+
+ /* If we are referencing a bitfield, we can't evaluate an
+ ADDR_EXPR at compile time and so it isn't a constant. */
+ if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
+ return NULL;
+
+ return staticp (TREE_OPERAND (arg, 0));
+
+ case BIT_FIELD_REF:
+ return NULL;
+
+ case INDIRECT_REF:
+ return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
+
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
+ && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
+ return staticp (TREE_OPERAND (arg, 0));
+ else
+ return NULL;
+
+ case COMPOUND_LITERAL_EXPR:
+ return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
+
+ default:
+ return NULL;
+ }
+}
+
+
+
+
+/* Return whether OP is a DECL whose address is function-invariant. */
+
+bool
+decl_address_invariant_p (const_tree op)
+{
+ /* The conditions below are slightly less strict than the one in
+ staticp. */
+
+ switch (TREE_CODE (op))
+ {
+ case PARM_DECL:
+ case RESULT_DECL:
+ case LABEL_DECL:
+ case FUNCTION_DECL:
+ return true;
+
+ case VAR_DECL:
+ if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
+ || DECL_THREAD_LOCAL_P (op)
+ || DECL_CONTEXT (op) == current_function_decl
+ || decl_function_context (op) == current_function_decl)
+ return true;
+ break;
+
+ case CONST_DECL:
+ if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
+ || decl_function_context (op) == current_function_decl)
+ return true;
+ break;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/* Return whether OP is a DECL whose address is interprocedural-invariant. */
+
+bool
+decl_address_ip_invariant_p (const_tree op)
+{
+ /* The conditions below are slightly less strict than the one in
+ staticp. */
+
+ switch (TREE_CODE (op))
+ {
+ case LABEL_DECL:
+ case FUNCTION_DECL:
+ case STRING_CST:
+ return true;
+
+ case VAR_DECL:
+ if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
+ && !DECL_DLLIMPORT_P (op))
+ || DECL_THREAD_LOCAL_P (op))
+ return true;
+ break;
+
+ case CONST_DECL:
+ if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
+ return true;
+ break;
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+
+/* Return true if T is function-invariant (internal function, does
+ not handle arithmetic; that's handled in skip_simple_arithmetic and
+ tree_invariant_p). */
+
+static bool tree_invariant_p (tree t);
+
+static bool
+tree_invariant_p_1 (tree t)
+{
+ tree op;
+
+ if (TREE_CONSTANT (t)
+ || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
+ return true;
+
+ switch (TREE_CODE (t))
+ {
+ case SAVE_EXPR:
+ return true;
+
+ case ADDR_EXPR:
+ op = TREE_OPERAND (t, 0);
+ while (handled_component_p (op))
+ {
+ switch (TREE_CODE (op))
+ {
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ if (!tree_invariant_p (TREE_OPERAND (op, 1))
+ || TREE_OPERAND (op, 2) != NULL_TREE
+ || TREE_OPERAND (op, 3) != NULL_TREE)
+ return false;
+ break;
+
+ case COMPONENT_REF:
+ if (TREE_OPERAND (op, 2) != NULL_TREE)
+ return false;
+ break;
+
+ default:;
+ }
+ op = TREE_OPERAND (op, 0);
+ }
+
+ return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
+
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/* Return true if T is function-invariant. */
+
+static bool
+tree_invariant_p (tree t)
+{
+ tree inner = skip_simple_arithmetic (t);
+ return tree_invariant_p_1 (inner);
+}
+
+/* Wrap a SAVE_EXPR around EXPR, if appropriate.
+ Do this to any expression which may be used in more than one place,
+ but must be evaluated only once.
+
+ Normally, expand_expr would reevaluate the expression each time.
+ Calling save_expr produces something that is evaluated and recorded
+ the first time expand_expr is called on it. Subsequent calls to
+ expand_expr just reuse the recorded value.
+
+ The call to expand_expr that generates code that actually computes
+ the value is the first call *at compile time*. Subsequent calls
+ *at compile time* generate code to use the saved value.
+ This produces correct result provided that *at run time* control
+ always flows through the insns made by the first expand_expr
+ before reaching the other places where the save_expr was evaluated.
+ You, the caller of save_expr, must make sure this is so.
+
+ Constants, and certain read-only nodes, are returned with no
+ SAVE_EXPR because that is safe. Expressions containing placeholders
+ are not touched; see tree.def for an explanation of what these
+ are used for. */
+
+tree
+save_expr (tree expr)
+{
+ tree t = fold (expr);
+ tree inner;
+
+ /* If the tree evaluates to a constant, then we don't want to hide that
+ fact (i.e. this allows further folding, and direct checks for constants).
+ However, a read-only object that has side effects cannot be bypassed.
+ Since it is no problem to reevaluate literals, we just return the
+ literal node. */
+ inner = skip_simple_arithmetic (t);
+ if (TREE_CODE (inner) == ERROR_MARK)
+ return inner;
+
+ if (tree_invariant_p_1 (inner))
+ return t;
+
+ /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
+ it means that the size or offset of some field of an object depends on
+ the value within another field.
+
+ Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
+ and some variable since it would then need to be both evaluated once and
+ evaluated more than once. Front-ends must assure this case cannot
+ happen by surrounding any such subexpressions in their own SAVE_EXPR
+ and forcing evaluation at the proper time. */
+ if (contains_placeholder_p (inner))
+ return t;
+
+ t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
+ SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
+
+ /* This expression might be placed ahead of a jump to ensure that the
+ value was computed on both sides of the jump. So make sure it isn't
+ eliminated as dead. */
+ TREE_SIDE_EFFECTS (t) = 1;
+ return t;
+}
+
+/* Look inside EXPR and into any simple arithmetic operations. Return
+ the innermost non-arithmetic node. */
+
+tree
+skip_simple_arithmetic (tree expr)
+{
+ tree inner;
+
+ /* We don't care about whether this can be used as an lvalue in this
+ context. */
+ while (TREE_CODE (expr) == NON_LVALUE_EXPR)
+ expr = TREE_OPERAND (expr, 0);
+
+ /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
+ a constant, it will be more efficient to not make another SAVE_EXPR since
+ it will allow better simplification and GCSE will be able to merge the
+ computations if they actually occur. */
+ inner = expr;
+ while (1)
+ {
+ if (UNARY_CLASS_P (inner))
+ inner = TREE_OPERAND (inner, 0);
+ else if (BINARY_CLASS_P (inner))
+ {
+ if (tree_invariant_p (TREE_OPERAND (inner, 1)))
+ inner = TREE_OPERAND (inner, 0);
+ else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
+ inner = TREE_OPERAND (inner, 1);
+ else
+ break;
+ }
+ else
+ break;
+ }
+
+ return inner;
+}
+
+
+/* Return which tree structure is used by T. */
+
+enum tree_node_structure_enum
+tree_node_structure (const_tree t)
+{
+ const enum tree_code code = TREE_CODE (t);
+ return tree_node_structure_for_code (code);
+}
+
+/* Set various status flags when building a CALL_EXPR object T. */
+
+static void
+process_call_operands (tree t)
+{
+ bool side_effects = TREE_SIDE_EFFECTS (t);
+ bool read_only = false;
+ int i = call_expr_flags (t);
+
+ /* Calls have side-effects, except those to const or pure functions. */
+ if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
+ side_effects = true;
+ /* Propagate TREE_READONLY of arguments for const functions. */
+ if (i & ECF_CONST)
+ read_only = true;
+
+ if (!side_effects || read_only)
+ for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
+ {
+ tree op = TREE_OPERAND (t, i);
+ if (op && TREE_SIDE_EFFECTS (op))
+ side_effects = true;
+ if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
+ read_only = false;
+ }
+
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ TREE_READONLY (t) = read_only;
+}
+
+/* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
+ size or offset that depends on a field within a record. */
+
+bool
+contains_placeholder_p (const_tree exp)
+{
+ enum tree_code code;
+
+ if (!exp)
+ return 0;
+
+ code = TREE_CODE (exp);
+ if (code == PLACEHOLDER_EXPR)
+ return 1;
+
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_reference:
+ /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
+ position computations since they will be converted into a
+ WITH_RECORD_EXPR involving the reference, which will assume
+ here will be valid. */
+ return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
+
+ case tcc_exceptional:
+ if (code == TREE_LIST)
+ return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
+ || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
+ break;
+
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_expression:
+ switch (code)
+ {
+ case COMPOUND_EXPR:
+ /* Ignoring the first operand isn't quite right, but works best. */
+ return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
+
+ case COND_EXPR:
+ return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
+ || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
+ || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
+
+ case SAVE_EXPR:
+ /* The save_expr function never wraps anything containing
+ a PLACEHOLDER_EXPR. */
+ return 0;
+
+ default:
+ break;
+ }
+
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 1:
+ return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
+ case 2:
+ return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
+ || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
+ default:
+ return 0;
+ }
+
+ case tcc_vl_exp:
+ switch (code)
+ {
+ case CALL_EXPR:
+ {
+ const_tree arg;
+ const_call_expr_arg_iterator iter;
+ FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
+ if (CONTAINS_PLACEHOLDER_P (arg))
+ return 1;
+ return 0;
+ }
+ default:
+ return 0;
+ }
+
+ default:
+ return 0;
+ }
+ return 0;
+}
+
+/* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
+ directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
+ field positions. */
+
+static bool
+type_contains_placeholder_1 (const_tree type)
+{
+ /* If the size contains a placeholder or the parent type (component type in
+ the case of arrays) type involves a placeholder, this type does. */
+ if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
+ || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
+ || (!POINTER_TYPE_P (type)
+ && TREE_TYPE (type)
+ && type_contains_placeholder_p (TREE_TYPE (type))))
+ return true;
+
+ /* Now do type-specific checks. Note that the last part of the check above
+ greatly limits what we have to do below. */
+ switch (TREE_CODE (type))
+ {
+ case VOID_TYPE:
+ case COMPLEX_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ case POINTER_TYPE:
+ case OFFSET_TYPE:
+ case REFERENCE_TYPE:
+ case METHOD_TYPE:
+ case FUNCTION_TYPE:
+ case VECTOR_TYPE:
+ case NULLPTR_TYPE:
+ return false;
+
+ case INTEGER_TYPE:
+ case REAL_TYPE:
+ case FIXED_POINT_TYPE:
+ /* Here we just check the bounds. */
+ return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
+ || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
+
+ case ARRAY_TYPE:
+ /* We have already checked the component type above, so just check the
+ domain type. */
+ return type_contains_placeholder_p (TYPE_DOMAIN (type));
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ {
+ tree field;
+
+ for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
+ if (TREE_CODE (field) == FIELD_DECL
+ && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
+ || (TREE_CODE (type) == QUAL_UNION_TYPE
+ && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
+ || type_contains_placeholder_p (TREE_TYPE (field))))
+ return true;
+
+ return false;
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Wrapper around above function used to cache its result. */
+
+bool
+type_contains_placeholder_p (tree type)
+{
+ bool result;
+
+ /* If the contains_placeholder_bits field has been initialized,
+ then we know the answer. */
+ if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
+ return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
+
+ /* Indicate that we've seen this type node, and the answer is false.
+ This is what we want to return if we run into recursion via fields. */
+ TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
+
+ /* Compute the real value. */
+ result = type_contains_placeholder_1 (type);
+
+ /* Store the real value. */
+ TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
+
+ return result;
+}
+
+/* Push tree EXP onto vector QUEUE if it is not already present. */
+
+static void
+push_without_duplicates (tree exp, vec<tree> *queue)
+{
+ unsigned int i;
+ tree iter;
+
+ FOR_EACH_VEC_ELT (*queue, i, iter)
+ if (simple_cst_equal (iter, exp) == 1)
+ break;
+
+ if (!iter)
+ queue->safe_push (exp);
+}
+
+/* Given a tree EXP, find all occurrences of references to fields
+ in a PLACEHOLDER_EXPR and place them in vector REFS without
+ duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
+ we assume here that EXP contains only arithmetic expressions
+ or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
+ argument list. */
+
+void
+find_placeholder_in_expr (tree exp, vec<tree> *refs)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree inner;
+ int i;
+
+ /* We handle TREE_LIST and COMPONENT_REF separately. */
+ if (code == TREE_LIST)
+ {
+ FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
+ FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
+ }
+ else if (code == COMPONENT_REF)
+ {
+ for (inner = TREE_OPERAND (exp, 0);
+ REFERENCE_CLASS_P (inner);
+ inner = TREE_OPERAND (inner, 0))
+ ;
+
+ if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
+ push_without_duplicates (exp, refs);
+ else
+ FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
+ }
+ else
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_constant:
+ break;
+
+ case tcc_declaration:
+ /* Variables allocated to static storage can stay. */
+ if (!TREE_STATIC (exp))
+ push_without_duplicates (exp, refs);
+ break;
+
+ case tcc_expression:
+ /* This is the pattern built in ada/make_aligning_type. */
+ if (code == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
+ {
+ push_without_duplicates (exp, refs);
+ break;
+ }
+
+ /* Fall through... */
+
+ case tcc_exceptional:
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_reference:
+ for (i = 0; i < TREE_CODE_LENGTH (code); i++)
+ FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
+ break;
+
+ case tcc_vl_exp:
+ for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
+ FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
+ return a tree with all occurrences of references to F in a
+ PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
+ CONST_DECLs. Note that we assume here that EXP contains only
+ arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
+ occurring only in their argument list. */
+
+tree
+substitute_in_expr (tree exp, tree f, tree r)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree op0, op1, op2, op3;
+ tree new_tree;
+
+ /* We handle TREE_LIST and COMPONENT_REF separately. */
+ if (code == TREE_LIST)
+ {
+ op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
+ op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
+ if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
+ return exp;
+
+ return tree_cons (TREE_PURPOSE (exp), op1, op0);
+ }
+ else if (code == COMPONENT_REF)
+ {
+ tree inner;
+
+ /* If this expression is getting a value from a PLACEHOLDER_EXPR
+ and it is the right field, replace it with R. */
+ for (inner = TREE_OPERAND (exp, 0);
+ REFERENCE_CLASS_P (inner);
+ inner = TREE_OPERAND (inner, 0))
+ ;
+
+ /* The field. */
+ op1 = TREE_OPERAND (exp, 1);
+
+ if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
+ return r;
+
+ /* If this expression hasn't been completed let, leave it alone. */
+ if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
+ return exp;
+
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ if (op0 == TREE_OPERAND (exp, 0))
+ return exp;
+
+ new_tree
+ = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
+ }
+ else
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_constant:
+ return exp;
+
+ case tcc_declaration:
+ if (exp == f)
+ return r;
+ else
+ return exp;
+
+ case tcc_expression:
+ if (exp == f)
+ return r;
+
+ /* Fall through... */
+
+ case tcc_exceptional:
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_reference:
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 0:
+ return exp;
+
+ case 1:
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ if (op0 == TREE_OPERAND (exp, 0))
+ return exp;
+
+ new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
+ break;
+
+ case 2:
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
+ return exp;
+
+ new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
+ break;
+
+ case 3:
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
+ op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2))
+ return exp;
+
+ new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
+ break;
+
+ case 4:
+ op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
+ op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
+ op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
+ op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2)
+ && op3 == TREE_OPERAND (exp, 3))
+ return exp;
+
+ new_tree
+ = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case tcc_vl_exp:
+ {
+ int i;
+
+ new_tree = NULL_TREE;
+
+ /* If we are trying to replace F with a constant, inline back
+ functions which do nothing else than computing a value from
+ the arguments they are passed. This makes it possible to
+ fold partially or entirely the replacement expression. */
+ if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
+ {
+ tree t = maybe_inline_call_in_expr (exp);
+ if (t)
+ return SUBSTITUTE_IN_EXPR (t, f, r);
+ }
+
+ for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
+ {
+ tree op = TREE_OPERAND (exp, i);
+ tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
+ if (new_op != op)
+ {
+ if (!new_tree)
+ new_tree = copy_node (exp);
+ TREE_OPERAND (new_tree, i) = new_op;
+ }
+ }
+
+ if (new_tree)
+ {
+ new_tree = fold (new_tree);
+ if (TREE_CODE (new_tree) == CALL_EXPR)
+ process_call_operands (new_tree);
+ }
+ else
+ return exp;
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ TREE_READONLY (new_tree) |= TREE_READONLY (exp);
+
+ if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
+ TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
+
+ return new_tree;
+}
+
+/* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
+ for it within OBJ, a tree that is an object or a chain of references. */
+
+tree
+substitute_placeholder_in_expr (tree exp, tree obj)
+{
+ enum tree_code code = TREE_CODE (exp);
+ tree op0, op1, op2, op3;
+ tree new_tree;
+
+ /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
+ in the chain of OBJ. */
+ if (code == PLACEHOLDER_EXPR)
+ {
+ tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
+ tree elt;
+
+ for (elt = obj; elt != 0;
+ elt = ((TREE_CODE (elt) == COMPOUND_EXPR
+ || TREE_CODE (elt) == COND_EXPR)
+ ? TREE_OPERAND (elt, 1)
+ : (REFERENCE_CLASS_P (elt)
+ || UNARY_CLASS_P (elt)
+ || BINARY_CLASS_P (elt)
+ || VL_EXP_CLASS_P (elt)
+ || EXPRESSION_CLASS_P (elt))
+ ? TREE_OPERAND (elt, 0) : 0))
+ if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
+ return elt;
+
+ for (elt = obj; elt != 0;
+ elt = ((TREE_CODE (elt) == COMPOUND_EXPR
+ || TREE_CODE (elt) == COND_EXPR)
+ ? TREE_OPERAND (elt, 1)
+ : (REFERENCE_CLASS_P (elt)
+ || UNARY_CLASS_P (elt)
+ || BINARY_CLASS_P (elt)
+ || VL_EXP_CLASS_P (elt)
+ || EXPRESSION_CLASS_P (elt))
+ ? TREE_OPERAND (elt, 0) : 0))
+ if (POINTER_TYPE_P (TREE_TYPE (elt))
+ && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
+ == need_type))
+ return fold_build1 (INDIRECT_REF, need_type, elt);
+
+ /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
+ survives until RTL generation, there will be an error. */
+ return exp;
+ }
+
+ /* TREE_LIST is special because we need to look at TREE_VALUE
+ and TREE_CHAIN, not TREE_OPERANDS. */
+ else if (code == TREE_LIST)
+ {
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
+ op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
+ if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
+ return exp;
+
+ return tree_cons (TREE_PURPOSE (exp), op1, op0);
+ }
+ else
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_constant:
+ case tcc_declaration:
+ return exp;
+
+ case tcc_exceptional:
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_expression:
+ case tcc_reference:
+ case tcc_statement:
+ switch (TREE_CODE_LENGTH (code))
+ {
+ case 0:
+ return exp;
+
+ case 1:
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
+ if (op0 == TREE_OPERAND (exp, 0))
+ return exp;
+
+ new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
+ break;
+
+ case 2:
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
+ op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
+ return exp;
+
+ new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
+ break;
+
+ case 3:
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
+ op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
+ op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2))
+ return exp;
+
+ new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
+ break;
+
+ case 4:
+ op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
+ op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
+ op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
+ op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
+
+ if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
+ && op2 == TREE_OPERAND (exp, 2)
+ && op3 == TREE_OPERAND (exp, 3))
+ return exp;
+
+ new_tree
+ = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case tcc_vl_exp:
+ {
+ int i;
+
+ new_tree = NULL_TREE;
+
+ for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
+ {
+ tree op = TREE_OPERAND (exp, i);
+ tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
+ if (new_op != op)
+ {
+ if (!new_tree)
+ new_tree = copy_node (exp);
+ TREE_OPERAND (new_tree, i) = new_op;
+ }
+ }
+
+ if (new_tree)
+ {
+ new_tree = fold (new_tree);
+ if (TREE_CODE (new_tree) == CALL_EXPR)
+ process_call_operands (new_tree);
+ }
+ else
+ return exp;
+ }
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ TREE_READONLY (new_tree) |= TREE_READONLY (exp);
+
+ if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
+ TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
+
+ return new_tree;
+}
+
+/* Stabilize a reference so that we can use it any number of times
+ without causing its operands to be evaluated more than once.
+ Returns the stabilized reference. This works by means of save_expr,
+ so see the caveats in the comments about save_expr.
+
+ Also allows conversion expressions whose operands are references.
+ Any other kind of expression is returned unchanged. */
+
+tree
+stabilize_reference (tree ref)
+{
+ tree result;
+ enum tree_code code = TREE_CODE (ref);
+
+ switch (code)
+ {
+ case VAR_DECL:
+ case PARM_DECL:
+ case RESULT_DECL:
+ /* No action is needed in this case. */
+ return ref;
+
+ CASE_CONVERT:
+ case FLOAT_EXPR:
+ case FIX_TRUNC_EXPR:
+ result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
+ break;
+
+ case INDIRECT_REF:
+ result = build_nt (INDIRECT_REF,
+ stabilize_reference_1 (TREE_OPERAND (ref, 0)));
+ break;
+
+ case COMPONENT_REF:
+ result = build_nt (COMPONENT_REF,
+ stabilize_reference (TREE_OPERAND (ref, 0)),
+ TREE_OPERAND (ref, 1), NULL_TREE);
+ break;
+
+ case BIT_FIELD_REF:
+ result = build_nt (BIT_FIELD_REF,
+ stabilize_reference (TREE_OPERAND (ref, 0)),
+ TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
+ break;
+
+ case ARRAY_REF:
+ result = build_nt (ARRAY_REF,
+ stabilize_reference (TREE_OPERAND (ref, 0)),
+ stabilize_reference_1 (TREE_OPERAND (ref, 1)),
+ TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
+ break;
+
+ case ARRAY_RANGE_REF:
+ result = build_nt (ARRAY_RANGE_REF,
+ stabilize_reference (TREE_OPERAND (ref, 0)),
+ stabilize_reference_1 (TREE_OPERAND (ref, 1)),
+ TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
+ break;
+
+ case COMPOUND_EXPR:
+ /* We cannot wrap the first expression in a SAVE_EXPR, as then
+ it wouldn't be ignored. This matters when dealing with
+ volatiles. */
+ return stabilize_reference_1 (ref);
+
+ /* If arg isn't a kind of lvalue we recognize, make no change.
+ Caller should recognize the error for an invalid lvalue. */
+ default:
+ return ref;
+
+ case ERROR_MARK:
+ return error_mark_node;
+ }
+
+ TREE_TYPE (result) = TREE_TYPE (ref);
+ TREE_READONLY (result) = TREE_READONLY (ref);
+ TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
+ TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
+
+ return result;
+}
+
+/* Subroutine of stabilize_reference; this is called for subtrees of
+ references. Any expression with side-effects must be put in a SAVE_EXPR
+ to ensure that it is only evaluated once.
+
+ We don't put SAVE_EXPR nodes around everything, because assigning very
+ simple expressions to temporaries causes us to miss good opportunities
+ for optimizations. Among other things, the opportunity to fold in the
+ addition of a constant into an addressing mode often gets lost, e.g.
+ "y[i+1] += x;". In general, we take the approach that we should not make
+ an assignment unless we are forced into it - i.e., that any non-side effect
+ operator should be allowed, and that cse should take care of coalescing
+ multiple utterances of the same expression should that prove fruitful. */
+
+tree
+stabilize_reference_1 (tree e)
+{
+ tree result;
+ enum tree_code code = TREE_CODE (e);
+
+ /* We cannot ignore const expressions because it might be a reference
+ to a const array but whose index contains side-effects. But we can
+ ignore things that are actual constant or that already have been
+ handled by this function. */
+
+ if (tree_invariant_p (e))
+ return e;
+
+ switch (TREE_CODE_CLASS (code))
+ {
+ case tcc_exceptional:
+ case tcc_type:
+ case tcc_declaration:
+ case tcc_comparison:
+ case tcc_statement:
+ case tcc_expression:
+ case tcc_reference:
+ case tcc_vl_exp:
+ /* If the expression has side-effects, then encase it in a SAVE_EXPR
+ so that it will only be evaluated once. */
+ /* The reference (r) and comparison (<) classes could be handled as
+ below, but it is generally faster to only evaluate them once. */
+ if (TREE_SIDE_EFFECTS (e))
+ return save_expr (e);
+ return e;
+
+ case tcc_constant:
+ /* Constants need no processing. In fact, we should never reach
+ here. */
+ return e;
+
+ case tcc_binary:
+ /* Division is slow and tends to be compiled with jumps,
+ especially the division by powers of 2 that is often
+ found inside of an array reference. So do it just once. */
+ if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
+ || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
+ || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
+ || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
+ return save_expr (e);
+ /* Recursively stabilize each operand. */
+ result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
+ stabilize_reference_1 (TREE_OPERAND (e, 1)));
+ break;
+
+ case tcc_unary:
+ /* Recursively stabilize each operand. */
+ result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ TREE_TYPE (result) = TREE_TYPE (e);
+ TREE_READONLY (result) = TREE_READONLY (e);
+ TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
+ TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
+
+ return result;
+}
+
+/* Low-level constructors for expressions. */
+
+/* A helper function for build1 and constant folders. Set TREE_CONSTANT,
+ and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
+
+void
+recompute_tree_invariant_for_addr_expr (tree t)
+{
+ tree node;
+ bool tc = true, se = false;
+
+ /* We started out assuming this address is both invariant and constant, but
+ does not have side effects. Now go down any handled components and see if
+ any of them involve offsets that are either non-constant or non-invariant.
+ Also check for side-effects.
+
+ ??? Note that this code makes no attempt to deal with the case where
+ taking the address of something causes a copy due to misalignment. */
+
+#define UPDATE_FLAGS(NODE) \
+do { tree _node = (NODE); \
+ if (_node && !TREE_CONSTANT (_node)) tc = false; \
+ if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
+
+ for (node = TREE_OPERAND (t, 0); handled_component_p (node);
+ node = TREE_OPERAND (node, 0))
+ {
+ /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
+ array reference (probably made temporarily by the G++ front end),
+ so ignore all the operands. */
+ if ((TREE_CODE (node) == ARRAY_REF
+ || TREE_CODE (node) == ARRAY_RANGE_REF)
+ && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
+ {
+ UPDATE_FLAGS (TREE_OPERAND (node, 1));
+ if (TREE_OPERAND (node, 2))
+ UPDATE_FLAGS (TREE_OPERAND (node, 2));
+ if (TREE_OPERAND (node, 3))
+ UPDATE_FLAGS (TREE_OPERAND (node, 3));
+ }
+ /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
+ FIELD_DECL, apparently. The G++ front end can put something else
+ there, at least temporarily. */
+ else if (TREE_CODE (node) == COMPONENT_REF
+ && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
+ {
+ if (TREE_OPERAND (node, 2))
+ UPDATE_FLAGS (TREE_OPERAND (node, 2));
+ }
+ }
+
+ node = lang_hooks.expr_to_decl (node, &tc, &se);
+
+ /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
+ the address, since &(*a)->b is a form of addition. If it's a constant, the
+ address is constant too. If it's a decl, its address is constant if the
+ decl is static. Everything else is not constant and, furthermore,
+ taking the address of a volatile variable is not volatile. */
+ if (TREE_CODE (node) == INDIRECT_REF
+ || TREE_CODE (node) == MEM_REF)
+ UPDATE_FLAGS (TREE_OPERAND (node, 0));
+ else if (CONSTANT_CLASS_P (node))
+ ;
+ else if (DECL_P (node))
+ tc &= (staticp (node) != NULL_TREE);
+ else
+ {
+ tc = false;
+ se |= TREE_SIDE_EFFECTS (node);
+ }
+
+
+ TREE_CONSTANT (t) = tc;
+ TREE_SIDE_EFFECTS (t) = se;
+#undef UPDATE_FLAGS
+}
+
+/* Build an expression of code CODE, data type TYPE, and operands as
+ specified. Expressions and reference nodes can be created this way.
+ Constants, decls, types and misc nodes cannot be.
+
+ We define 5 non-variadic functions, from 0 to 4 arguments. This is
+ enough for all extant tree codes. */
+
+tree
+build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
+{
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 0);
+
+ t = make_node_stat (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ return t;
+}
+
+tree
+build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
+{
+ int length = sizeof (struct tree_exp);
+ tree t;
+
+ record_node_allocation_statistics (code, length);
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 1);
+
+ t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
+
+ memset (t, 0, sizeof (struct tree_common));
+
+ TREE_SET_CODE (t, code);
+
+ TREE_TYPE (t) = type;
+ SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
+ TREE_OPERAND (t, 0) = node;
+ if (node && !TYPE_P (node))
+ {
+ TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
+ TREE_READONLY (t) = TREE_READONLY (node);
+ }
+
+ if (TREE_CODE_CLASS (code) == tcc_statement)
+ TREE_SIDE_EFFECTS (t) = 1;
+ else switch (code)
+ {
+ case VA_ARG_EXPR:
+ /* All of these have side-effects, no matter what their
+ operands are. */
+ TREE_SIDE_EFFECTS (t) = 1;
+ TREE_READONLY (t) = 0;
+ break;
+
+ case INDIRECT_REF:
+ /* Whether a dereference is readonly has nothing to do with whether
+ its operand is readonly. */
+ TREE_READONLY (t) = 0;
+ break;
+
+ case ADDR_EXPR:
+ if (node)
+ recompute_tree_invariant_for_addr_expr (t);
+ break;
+
+ default:
+ if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
+ && node && !TYPE_P (node)
+ && TREE_CONSTANT (node))
+ TREE_CONSTANT (t) = 1;
+ if (TREE_CODE_CLASS (code) == tcc_reference
+ && node && TREE_THIS_VOLATILE (node))
+ TREE_THIS_VOLATILE (t) = 1;
+ break;
+ }
+
+ return t;
+}
+
+#define PROCESS_ARG(N) \
+ do { \
+ TREE_OPERAND (t, N) = arg##N; \
+ if (arg##N &&!TYPE_P (arg##N)) \
+ { \
+ if (TREE_SIDE_EFFECTS (arg##N)) \
+ side_effects = 1; \
+ if (!TREE_READONLY (arg##N) \
+ && !CONSTANT_CLASS_P (arg##N)) \
+ (void) (read_only = 0); \
+ if (!TREE_CONSTANT (arg##N)) \
+ (void) (constant = 0); \
+ } \
+ } while (0)
+
+tree
+build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
+{
+ bool constant, read_only, side_effects;
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 2);
+
+ if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
+ && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
+ /* When sizetype precision doesn't match that of pointers
+ we need to be able to build explicit extensions or truncations
+ of the offset argument. */
+ && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
+ gcc_assert (TREE_CODE (arg0) == INTEGER_CST
+ && TREE_CODE (arg1) == INTEGER_CST);
+
+ if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
+ gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
+ && ptrofftype_p (TREE_TYPE (arg1)));
+
+ t = make_node_stat (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
+ result based on those same flags for the arguments. But if the
+ arguments aren't really even `tree' expressions, we shouldn't be trying
+ to do this. */
+
+ /* Expressions without side effects may be constant if their
+ arguments are as well. */
+ constant = (TREE_CODE_CLASS (code) == tcc_comparison
+ || TREE_CODE_CLASS (code) == tcc_binary);
+ read_only = 1;
+ side_effects = TREE_SIDE_EFFECTS (t);
+
+ PROCESS_ARG(0);
+ PROCESS_ARG(1);
+
+ TREE_READONLY (t) = read_only;
+ TREE_CONSTANT (t) = constant;
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ TREE_THIS_VOLATILE (t)
+ = (TREE_CODE_CLASS (code) == tcc_reference
+ && arg0 && TREE_THIS_VOLATILE (arg0));
+
+ return t;
+}
+
+
+tree
+build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
+ tree arg2 MEM_STAT_DECL)
+{
+ bool constant, read_only, side_effects;
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 3);
+ gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
+
+ t = make_node_stat (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ read_only = 1;
+
+ /* As a special exception, if COND_EXPR has NULL branches, we
+ assume that it is a gimple statement and always consider
+ it to have side effects. */
+ if (code == COND_EXPR
+ && tt == void_type_node
+ && arg1 == NULL_TREE
+ && arg2 == NULL_TREE)
+ side_effects = true;
+ else
+ side_effects = TREE_SIDE_EFFECTS (t);
+
+ PROCESS_ARG(0);
+ PROCESS_ARG(1);
+ PROCESS_ARG(2);
+
+ if (code == COND_EXPR)
+ TREE_READONLY (t) = read_only;
+
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ TREE_THIS_VOLATILE (t)
+ = (TREE_CODE_CLASS (code) == tcc_reference
+ && arg0 && TREE_THIS_VOLATILE (arg0));
+
+ return t;
+}
+
+tree
+build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
+ tree arg2, tree arg3 MEM_STAT_DECL)
+{
+ bool constant, read_only, side_effects;
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 4);
+
+ t = make_node_stat (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ side_effects = TREE_SIDE_EFFECTS (t);
+
+ PROCESS_ARG(0);
+ PROCESS_ARG(1);
+ PROCESS_ARG(2);
+ PROCESS_ARG(3);
+
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ TREE_THIS_VOLATILE (t)
+ = (TREE_CODE_CLASS (code) == tcc_reference
+ && arg0 && TREE_THIS_VOLATILE (arg0));
+
+ return t;
+}
+
+tree
+build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
+ tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
+{
+ bool constant, read_only, side_effects;
+ tree t;
+
+ gcc_assert (TREE_CODE_LENGTH (code) == 5);
+
+ t = make_node_stat (code PASS_MEM_STAT);
+ TREE_TYPE (t) = tt;
+
+ side_effects = TREE_SIDE_EFFECTS (t);
+
+ PROCESS_ARG(0);
+ PROCESS_ARG(1);
+ PROCESS_ARG(2);
+ PROCESS_ARG(3);
+ PROCESS_ARG(4);
+
+ TREE_SIDE_EFFECTS (t) = side_effects;
+ TREE_THIS_VOLATILE (t)
+ = (TREE_CODE_CLASS (code) == tcc_reference
+ && arg0 && TREE_THIS_VOLATILE (arg0));
+
+ return t;
+}
+
+/* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
+ on the pointer PTR. */
+
+tree
+build_simple_mem_ref_loc (location_t loc, tree ptr)
+{
+ HOST_WIDE_INT offset = 0;
+ tree ptype = TREE_TYPE (ptr);
+ tree tem;
+ /* For convenience allow addresses that collapse to a simple base
+ and offset. */
+ if (TREE_CODE (ptr) == ADDR_EXPR
+ && (handled_component_p (TREE_OPERAND (ptr, 0))
+ || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
+ {
+ ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
+ gcc_assert (ptr);
+ ptr = build_fold_addr_expr (ptr);
+ gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
+ }
+ tem = build2 (MEM_REF, TREE_TYPE (ptype),
+ ptr, build_int_cst (ptype, offset));
+ SET_EXPR_LOCATION (tem, loc);
+ return tem;
+}
+
+/* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
+
+double_int
+mem_ref_offset (const_tree t)
+{
+ tree toff = TREE_OPERAND (t, 1);
+ return tree_to_double_int (toff).sext (TYPE_PRECISION (TREE_TYPE (toff)));
+}
+
+/* Return the pointer-type relevant for TBAA purposes from the
+ gimple memory reference tree T. This is the type to be used for
+ the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
+
+tree
+reference_alias_ptr_type (const_tree t)
+{
+ const_tree base = t;
+ while (handled_component_p (base))
+ base = TREE_OPERAND (base, 0);
+ if (TREE_CODE (base) == MEM_REF)
+ return TREE_TYPE (TREE_OPERAND (base, 1));
+ else if (TREE_CODE (base) == TARGET_MEM_REF)
+ return TREE_TYPE (TMR_OFFSET (base));
+ else
+ return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
+}
+
+/* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
+ offsetted by OFFSET units. */
+
+tree
+build_invariant_address (tree type, tree base, HOST_WIDE_INT offset)
+{
+ tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
+ build_fold_addr_expr (base),
+ build_int_cst (ptr_type_node, offset));
+ tree addr = build1 (ADDR_EXPR, type, ref);
+ recompute_tree_invariant_for_addr_expr (addr);
+ return addr;
+}
+
+/* Similar except don't specify the TREE_TYPE
+ and leave the TREE_SIDE_EFFECTS as 0.
+ It is permissible for arguments to be null,
+ or even garbage if their values do not matter. */
+
+tree
+build_nt (enum tree_code code, ...)
+{
+ tree t;
+ int length;
+ int i;
+ va_list p;
+
+ gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
+
+ va_start (p, code);
+
+ t = make_node (code);
+ length = TREE_CODE_LENGTH (code);
+
+ for (i = 0; i < length; i++)
+ TREE_OPERAND (t, i) = va_arg (p, tree);
+
+ va_end (p);
+ return t;
+}
+
+/* Similar to build_nt, but for creating a CALL_EXPR object with a
+ tree vec. */
+
+tree
+build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
+{
+ tree ret, t;
+ unsigned int ix;
+
+ ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
+ CALL_EXPR_FN (ret) = fn;
+ CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
+ FOR_EACH_VEC_SAFE_ELT (args, ix, t)
+ CALL_EXPR_ARG (ret, ix) = t;
+ return ret;
+}
+
+/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
+ We do NOT enter this node in any sort of symbol table.
+
+ LOC is the location of the decl.
+
+ layout_decl is used to set up the decl's storage layout.
+ Other slots are initialized to 0 or null pointers. */
+
+tree
+build_decl_stat (location_t loc, enum tree_code code, tree name,
+ tree type MEM_STAT_DECL)
+{
+ tree t;
+
+ t = make_node_stat (code PASS_MEM_STAT);
+ DECL_SOURCE_LOCATION (t) = loc;
+
+/* if (type == error_mark_node)
+ type = integer_type_node; */
+/* That is not done, deliberately, so that having error_mark_node
+ as the type can suppress useless errors in the use of this variable. */
+
+ DECL_NAME (t) = name;
+ TREE_TYPE (t) = type;
+
+ if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
+ layout_decl (t, 0);
+
+ return t;
+}
+
+/* Builds and returns function declaration with NAME and TYPE. */
+
+tree
+build_fn_decl (const char *name, tree type)
+{
+ tree id = get_identifier (name);
+ tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
+
+ DECL_EXTERNAL (decl) = 1;
+ TREE_PUBLIC (decl) = 1;
+ DECL_ARTIFICIAL (decl) = 1;
+ TREE_NOTHROW (decl) = 1;
+
+ return decl;
+}
+
+vec<tree, va_gc> *all_translation_units;
+
+/* Builds a new translation-unit decl with name NAME, queues it in the
+ global list of translation-unit decls and returns it. */
+
+tree
+build_translation_unit_decl (tree name)
+{
+ tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
+ name, NULL_TREE);
+ TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
+ vec_safe_push (all_translation_units, tu);
+ return tu;
+}
+
+
+/* BLOCK nodes are used to represent the structure of binding contours
+ and declarations, once those contours have been exited and their contents
+ compiled. This information is used for outputting debugging info. */
+
+tree
+build_block (tree vars, tree subblocks, tree supercontext, tree chain)
+{
+ tree block = make_node (BLOCK);
+
+ BLOCK_VARS (block) = vars;
+ BLOCK_SUBBLOCKS (block) = subblocks;
+ BLOCK_SUPERCONTEXT (block) = supercontext;
+ BLOCK_CHAIN (block) = chain;
+ return block;
+}
+
+
+/* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
+
+ LOC is the location to use in tree T. */
+
+void
+protected_set_expr_location (tree t, location_t loc)
+{
+ if (t && CAN_HAVE_LOCATION_P (t))
+ SET_EXPR_LOCATION (t, loc);
+}
+
+/* Return a declaration like DDECL except that its DECL_ATTRIBUTES
+ is ATTRIBUTE. */
+
+tree
+build_decl_attribute_variant (tree ddecl, tree attribute)
+{
+ DECL_ATTRIBUTES (ddecl) = attribute;
+ return ddecl;
+}
+
+/* Borrowed from hashtab.c iterative_hash implementation. */
+#define mix(a,b,c) \
+{ \
+ a -= b; a -= c; a ^= (c>>13); \
+ b -= c; b -= a; b ^= (a<< 8); \
+ c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
+ a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
+ b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
+ c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
+ a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
+ b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
+ c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
+}
+
+
+/* Produce good hash value combining VAL and VAL2. */
+hashval_t
+iterative_hash_hashval_t (hashval_t val, hashval_t val2)
+{
+ /* the golden ratio; an arbitrary value. */
+ hashval_t a = 0x9e3779b9;
+
+ mix (a, val, val2);
+ return val2;
+}
+
+/* Produce good hash value combining VAL and VAL2. */
+hashval_t
+iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
+{
+ if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
+ return iterative_hash_hashval_t (val, val2);
+ else
+ {
+ hashval_t a = (hashval_t) val;
+ /* Avoid warnings about shifting of more than the width of the type on
+ hosts that won't execute this path. */
+ int zero = 0;
+ hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
+ mix (a, b, val2);
+ if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
+ {
+ hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
+ hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
+ mix (a, b, val2);
+ }
+ return val2;
+ }
+}
+
+/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
+ is ATTRIBUTE and its qualifiers are QUALS.
+
+ Record such modified types already made so we don't make duplicates. */
+
+tree
+build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
+{
+ if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
+ {
+ hashval_t hashcode = 0;
+ tree ntype;
+ enum tree_code code = TREE_CODE (ttype);
+
+ /* Building a distinct copy of a tagged type is inappropriate; it
+ causes breakage in code that expects there to be a one-to-one
+ relationship between a struct and its fields.
+ build_duplicate_type is another solution (as used in
+ handle_transparent_union_attribute), but that doesn't play well
+ with the stronger C++ type identity model. */
+ if (TREE_CODE (ttype) == RECORD_TYPE
+ || TREE_CODE (ttype) == UNION_TYPE
+ || TREE_CODE (ttype) == QUAL_UNION_TYPE
+ || TREE_CODE (ttype) == ENUMERAL_TYPE)
+ {
+ warning (OPT_Wattributes,
+ "ignoring attributes applied to %qT after definition",
+ TYPE_MAIN_VARIANT (ttype));
+ return build_qualified_type (ttype, quals);
+ }
+
+ ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
+ ntype = build_distinct_type_copy (ttype);
+
+ TYPE_ATTRIBUTES (ntype) = attribute;
+
+ hashcode = iterative_hash_object (code, hashcode);
+ if (TREE_TYPE (ntype))
+ hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
+ hashcode);
+ hashcode = attribute_hash_list (attribute, hashcode);
+
+ switch (TREE_CODE (ntype))
+ {
+ case FUNCTION_TYPE:
+ hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
+ break;
+ case ARRAY_TYPE:
+ if (TYPE_DOMAIN (ntype))
+ hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
+ hashcode);
+ break;
+ case INTEGER_TYPE:
+ hashcode = iterative_hash_object
+ (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
+ hashcode = iterative_hash_object
+ (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
+ break;
+ case REAL_TYPE:
+ case FIXED_POINT_TYPE:
+ {
+ unsigned int precision = TYPE_PRECISION (ntype);
+ hashcode = iterative_hash_object (precision, hashcode);
+ }
+ break;
+ default:
+ break;
+ }
+
+ ntype = type_hash_canon (hashcode, ntype);
+
+ /* If the target-dependent attributes make NTYPE different from
+ its canonical type, we will need to use structural equality
+ checks for this type. */
+ if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
+ || !comp_type_attributes (ntype, ttype))
+ SET_TYPE_STRUCTURAL_EQUALITY (ntype);
+ else if (TYPE_CANONICAL (ntype) == ntype)
+ TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
+
+ ttype = build_qualified_type (ntype, quals);
+ }
+ else if (TYPE_QUALS (ttype) != quals)
+ ttype = build_qualified_type (ttype, quals);
+
+ return ttype;
+}
+
+/* Compare two attributes for their value identity. Return true if the
+ attribute values are known to be equal; otherwise return false.
+*/
+
+static bool
+attribute_value_equal (const_tree attr1, const_tree attr2)
+{
+ if (TREE_VALUE (attr1) == TREE_VALUE (attr2))
+ return true;
+
+ if (TREE_VALUE (attr1) != NULL_TREE
+ && TREE_CODE (TREE_VALUE (attr1)) == TREE_LIST
+ && TREE_VALUE (attr2) != NULL
+ && TREE_CODE (TREE_VALUE (attr2)) == TREE_LIST)
+ return (simple_cst_list_equal (TREE_VALUE (attr1),
+ TREE_VALUE (attr2)) == 1);
+
+ return (simple_cst_equal (TREE_VALUE (attr1), TREE_VALUE (attr2)) == 1);
+}
+
+/* Return 0 if the attributes for two types are incompatible, 1 if they
+ are compatible, and 2 if they are nearly compatible (which causes a
+ warning to be generated). */
+int
+comp_type_attributes (const_tree type1, const_tree type2)
+{
+ const_tree a1 = TYPE_ATTRIBUTES (type1);
+ const_tree a2 = TYPE_ATTRIBUTES (type2);
+ const_tree a;
+
+ if (a1 == a2)
+ return 1;
+ for (a = a1; a != NULL_TREE; a = TREE_CHAIN (a))
+ {
+ const struct attribute_spec *as;
+ const_tree attr;
+
+ as = lookup_attribute_spec (get_attribute_name (a));
+ if (!as || as->affects_type_identity == false)
+ continue;
+
+ attr = lookup_attribute (as->name, CONST_CAST_TREE (a2));
+ if (!attr || !attribute_value_equal (a, attr))
+ break;
+ }
+ if (!a)
+ {
+ for (a = a2; a != NULL_TREE; a = TREE_CHAIN (a))
+ {
+ const struct attribute_spec *as;
+
+ as = lookup_attribute_spec (get_attribute_name (a));
+ if (!as || as->affects_type_identity == false)
+ continue;
+
+ if (!lookup_attribute (as->name, CONST_CAST_TREE (a1)))
+ break;
+ /* We don't need to compare trees again, as we did this
+ already in first loop. */
+ }
+ /* All types - affecting identity - are equal, so
+ there is no need to call target hook for comparison. */
+ if (!a)
+ return 1;
+ }
+ /* As some type combinations - like default calling-convention - might
+ be compatible, we have to call the target hook to get the final result. */
+ return targetm.comp_type_attributes (type1, type2);
+}
+
+/* Return a type like TTYPE except that its TYPE_ATTRIBUTE
+ is ATTRIBUTE.
+
+ Record such modified types already made so we don't make duplicates. */
+
+tree
+build_type_attribute_variant (tree ttype, tree attribute)
+{
+ return build_type_attribute_qual_variant (ttype, attribute,
+ TYPE_QUALS (ttype));
+}
+
+
+/* Reset the expression *EXPR_P, a size or position.
+
+ ??? We could reset all non-constant sizes or positions. But it's cheap
+ enough to not do so and refrain from adding workarounds to dwarf2out.c.
+
+ We need to reset self-referential sizes or positions because they cannot
+ be gimplified and thus can contain a CALL_EXPR after the gimplification
+ is finished, which will run afoul of LTO streaming. And they need to be
+ reset to something essentially dummy but not constant, so as to preserve
+ the properties of the object they are attached to. */
+
+static inline void
+free_lang_data_in_one_sizepos (tree *expr_p)
+{
+ tree expr = *expr_p;
+ if (CONTAINS_PLACEHOLDER_P (expr))
+ *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
+}
+
+
+/* Reset all the fields in a binfo node BINFO. We only keep
+ BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
+
+static void
+free_lang_data_in_binfo (tree binfo)
+{
+ unsigned i;
+ tree t;
+
+ gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
+
+ BINFO_VIRTUALS (binfo) = NULL_TREE;
+ BINFO_BASE_ACCESSES (binfo) = NULL;
+ BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
+ BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
+
+ FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
+ free_lang_data_in_binfo (t);
+}
+
+
+/* Reset all language specific information still present in TYPE. */
+
+static void
+free_lang_data_in_type (tree type)
+{
+ gcc_assert (TYPE_P (type));
+
+ /* Give the FE a chance to remove its own data first. */
+ lang_hooks.free_lang_data (type);
+
+ TREE_LANG_FLAG_0 (type) = 0;
+ TREE_LANG_FLAG_1 (type) = 0;
+ TREE_LANG_FLAG_2 (type) = 0;
+ TREE_LANG_FLAG_3 (type) = 0;
+ TREE_LANG_FLAG_4 (type) = 0;
+ TREE_LANG_FLAG_5 (type) = 0;
+ TREE_LANG_FLAG_6 (type) = 0;
+
+ if (TREE_CODE (type) == FUNCTION_TYPE)
+ {
+ /* Remove the const and volatile qualifiers from arguments. The
+ C++ front end removes them, but the C front end does not,
+ leading to false ODR violation errors when merging two
+ instances of the same function signature compiled by
+ different front ends. */
+ tree p;
+
+ for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
+ {
+ tree arg_type = TREE_VALUE (p);
+
+ if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
+ {
+ int quals = TYPE_QUALS (arg_type)
+ & ~TYPE_QUAL_CONST
+ & ~TYPE_QUAL_VOLATILE;
+ TREE_VALUE (p) = build_qualified_type (arg_type, quals);
+ free_lang_data_in_type (TREE_VALUE (p));
+ }
+ }
+ }
+
+ /* Remove members that are not actually FIELD_DECLs from the field
+ list of an aggregate. These occur in C++. */
+ if (RECORD_OR_UNION_TYPE_P (type))
+ {
+ tree prev, member;
+
+ /* Note that TYPE_FIELDS can be shared across distinct
+ TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
+ to be removed, we cannot set its TREE_CHAIN to NULL.
+ Otherwise, we would not be able to find all the other fields
+ in the other instances of this TREE_TYPE.
+
+ This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
+ prev = NULL_TREE;
+ member = TYPE_FIELDS (type);
+ while (member)
+ {
+ if (TREE_CODE (member) == FIELD_DECL
+ || TREE_CODE (member) == TYPE_DECL)
+ {
+ if (prev)
+ TREE_CHAIN (prev) = member;
+ else
+ TYPE_FIELDS (type) = member;
+ prev = member;
+ }
+
+ member = TREE_CHAIN (member);
+ }
+
+ if (prev)
+ TREE_CHAIN (prev) = NULL_TREE;
+ else
+ TYPE_FIELDS (type) = NULL_TREE;
+
+ TYPE_METHODS (type) = NULL_TREE;
+ if (TYPE_BINFO (type))
+ free_lang_data_in_binfo (TYPE_BINFO (type));
+ }
+ else
+ {
+ /* For non-aggregate types, clear out the language slot (which
+ overloads TYPE_BINFO). */
+ TYPE_LANG_SLOT_1 (type) = NULL_TREE;
+
+ if (INTEGRAL_TYPE_P (type)
+ || SCALAR_FLOAT_TYPE_P (type)
+ || FIXED_POINT_TYPE_P (type))
+ {
+ free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
+ free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
+ }
+ }
+
+ free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
+ free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
+
+ if (TYPE_CONTEXT (type)
+ && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
+ {
+ tree ctx = TYPE_CONTEXT (type);
+ do
+ {
+ ctx = BLOCK_SUPERCONTEXT (ctx);
+ }
+ while (ctx && TREE_CODE (ctx) == BLOCK);
+ TYPE_CONTEXT (type) = ctx;
+ }
+}
+
+
+/* Return true if DECL may need an assembler name to be set. */
+
+static inline bool
+need_assembler_name_p (tree decl)
+{
+ /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
+ if (TREE_CODE (decl) != FUNCTION_DECL
+ && TREE_CODE (decl) != VAR_DECL)
+ return false;
+
+ /* If DECL already has its assembler name set, it does not need a
+ new one. */
+ if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
+ || DECL_ASSEMBLER_NAME_SET_P (decl))
+ return false;
+
+ /* Abstract decls do not need an assembler name. */
+ if (DECL_ABSTRACT (decl))
+ return false;
+
+ /* For VAR_DECLs, only static, public and external symbols need an
+ assembler name. */
+ if (TREE_CODE (decl) == VAR_DECL
+ && !TREE_STATIC (decl)
+ && !TREE_PUBLIC (decl)
+ && !DECL_EXTERNAL (decl))
+ return false;
+
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ {
+ /* Do not set assembler name on builtins. Allow RTL expansion to
+ decide whether to expand inline or via a regular call. */
+ if (DECL_BUILT_IN (decl)
+ && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
+ return false;
+
+ /* Functions represented in the callgraph need an assembler name. */
+ if (cgraph_get_node (decl) != NULL)
+ return true;
+
+ /* Unused and not public functions don't need an assembler name. */
+ if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
+ return false;
+ }
+
+ return true;
+}
+
+
+/* Reset all language specific information still present in symbol
+ DECL. */
+
+static void
+free_lang_data_in_decl (tree decl)
+{
+ gcc_assert (DECL_P (decl));
+
+ /* Give the FE a chance to remove its own data first. */
+ lang_hooks.free_lang_data (decl);
+
+ TREE_LANG_FLAG_0 (decl) = 0;
+ TREE_LANG_FLAG_1 (decl) = 0;
+ TREE_LANG_FLAG_2 (decl) = 0;
+ TREE_LANG_FLAG_3 (decl) = 0;
+ TREE_LANG_FLAG_4 (decl) = 0;
+ TREE_LANG_FLAG_5 (decl) = 0;
+ TREE_LANG_FLAG_6 (decl) = 0;
+
+ free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
+ free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
+ if (TREE_CODE (decl) == FIELD_DECL)
+ {
+ free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
+ if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
+ DECL_QUALIFIER (decl) = NULL_TREE;
+ }
+
+ if (TREE_CODE (decl) == FUNCTION_DECL)
+ {
+ if (gimple_has_body_p (decl))
+ {
+ tree t;
+
+ /* If DECL has a gimple body, then the context for its
+ arguments must be DECL. Otherwise, it doesn't really
+ matter, as we will not be emitting any code for DECL. In
+ general, there may be other instances of DECL created by
+ the front end and since PARM_DECLs are generally shared,
+ their DECL_CONTEXT changes as the replicas of DECL are
+ created. The only time where DECL_CONTEXT is important
+ is for the FUNCTION_DECLs that have a gimple body (since
+ the PARM_DECL will be used in the function's body). */
+ for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
+ DECL_CONTEXT (t) = decl;
+ }
+
+ /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
+ At this point, it is not needed anymore. */
+ DECL_SAVED_TREE (decl) = NULL_TREE;
+
+ /* Clear the abstract origin if it refers to a method. Otherwise
+ dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
+ origin will not be output correctly. */
+ if (DECL_ABSTRACT_ORIGIN (decl)
+ && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
+ && RECORD_OR_UNION_TYPE_P
+ (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
+ DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
+
+ /* Sometimes the C++ frontend doesn't manage to transform a temporary
+ DECL_VINDEX referring to itself into a vtable slot number as it
+ should. Happens with functions that are copied and then forgotten
+ about. Just clear it, it won't matter anymore. */
+ if (DECL_VINDEX (decl) && !host_integerp (DECL_VINDEX (decl), 0))
+ DECL_VINDEX (decl) = NULL_TREE;
+ }
+ else if (TREE_CODE (decl) == VAR_DECL)
+ {
+ if ((DECL_EXTERNAL (decl)
+ && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
+ || (decl_function_context (decl) && !TREE_STATIC (decl)))
+ DECL_INITIAL (decl) = NULL_TREE;
+ }
+ else if (TREE_CODE (decl) == TYPE_DECL
+ || TREE_CODE (decl) == FIELD_DECL)
+ DECL_INITIAL (decl) = NULL_TREE;
+ else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
+ && DECL_INITIAL (decl)
+ && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
+ {
+ /* Strip builtins from the translation-unit BLOCK. We still have targets
+ without builtin_decl_explicit support and also builtins are shared
+ nodes and thus we can't use TREE_CHAIN in multiple lists. */
+ tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
+ while (*nextp)
+ {
+ tree var = *nextp;
+ if (TREE_CODE (var) == FUNCTION_DECL
+ && DECL_BUILT_IN (var))
+ *nextp = TREE_CHAIN (var);
+ else
+ nextp = &TREE_CHAIN (var);
+ }
+ }
+}
+
+
+/* Data used when collecting DECLs and TYPEs for language data removal. */
+
+struct free_lang_data_d
+{
+ /* Worklist to avoid excessive recursion. */
+ vec<tree> worklist;
+
+ /* Set of traversed objects. Used to avoid duplicate visits. */
+ struct pointer_set_t *pset;
+
+ /* Array of symbols to process with free_lang_data_in_decl. */
+ vec<tree> decls;
+
+ /* Array of types to process with free_lang_data_in_type. */
+ vec<tree> types;
+};
+
+
+/* Save all language fields needed to generate proper debug information
+ for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
+
+static void
+save_debug_info_for_decl (tree t)
+{
+ /*struct saved_debug_info_d *sdi;*/
+
+ gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
+
+ /* FIXME. Partial implementation for saving debug info removed. */
+}
+
+
+/* Save all language fields needed to generate proper debug information
+ for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
+
+static void
+save_debug_info_for_type (tree t)
+{
+ /*struct saved_debug_info_d *sdi;*/
+
+ gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
+
+ /* FIXME. Partial implementation for saving debug info removed. */
+}
+
+
+/* Add type or decl T to one of the list of tree nodes that need their
+ language data removed. The lists are held inside FLD. */
+
+static void
+add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
+{
+ if (DECL_P (t))
+ {
+ fld->decls.safe_push (t);
+ if (debug_info_level > DINFO_LEVEL_TERSE)
+ save_debug_info_for_decl (t);
+ }
+ else if (TYPE_P (t))
+ {
+ fld->types.safe_push (t);
+ if (debug_info_level > DINFO_LEVEL_TERSE)
+ save_debug_info_for_type (t);
+ }
+ else
+ gcc_unreachable ();
+}
+
+/* Push tree node T into FLD->WORKLIST. */
+
+static inline void
+fld_worklist_push (tree t, struct free_lang_data_d *fld)
+{
+ if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
+ fld->worklist.safe_push ((t));
+}
+
+
+/* Operand callback helper for free_lang_data_in_node. *TP is the
+ subtree operand being considered. */
+
+static tree
+find_decls_types_r (tree *tp, int *ws, void *data)
+{
+ tree t = *tp;
+ struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
+
+ if (TREE_CODE (t) == TREE_LIST)
+ return NULL_TREE;
+
+ /* Language specific nodes will be removed, so there is no need
+ to gather anything under them. */
+ if (is_lang_specific (t))
+ {
+ *ws = 0;
+ return NULL_TREE;
+ }
+
+ if (DECL_P (t))
+ {
+ /* Note that walk_tree does not traverse every possible field in
+ decls, so we have to do our own traversals here. */
+ add_tree_to_fld_list (t, fld);
+
+ fld_worklist_push (DECL_NAME (t), fld);
+ fld_worklist_push (DECL_CONTEXT (t), fld);
+ fld_worklist_push (DECL_SIZE (t), fld);
+ fld_worklist_push (DECL_SIZE_UNIT (t), fld);
+
+ /* We are going to remove everything under DECL_INITIAL for
+ TYPE_DECLs. No point walking them. */
+ if (TREE_CODE (t) != TYPE_DECL)
+ fld_worklist_push (DECL_INITIAL (t), fld);
+
+ fld_worklist_push (DECL_ATTRIBUTES (t), fld);
+ fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
+
+ if (TREE_CODE (t) == FUNCTION_DECL)
+ {
+ fld_worklist_push (DECL_ARGUMENTS (t), fld);
+ fld_worklist_push (DECL_RESULT (t), fld);
+ }
+ else if (TREE_CODE (t) == TYPE_DECL)
+ {
+ fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
+ fld_worklist_push (DECL_VINDEX (t), fld);
+ fld_worklist_push (DECL_ORIGINAL_TYPE (t), fld);
+ }
+ else if (TREE_CODE (t) == FIELD_DECL)
+ {
+ fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
+ fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
+ fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
+ fld_worklist_push (DECL_FCONTEXT (t), fld);
+ }
+ else if (TREE_CODE (t) == VAR_DECL)
+ {
+ fld_worklist_push (DECL_SECTION_NAME (t), fld);
+ fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
+ }
+
+ if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
+ && DECL_HAS_VALUE_EXPR_P (t))
+ fld_worklist_push (DECL_VALUE_EXPR (t), fld);
+
+ if (TREE_CODE (t) != FIELD_DECL
+ && TREE_CODE (t) != TYPE_DECL)
+ fld_worklist_push (TREE_CHAIN (t), fld);
+ *ws = 0;
+ }
+ else if (TYPE_P (t))
+ {
+ /* Note that walk_tree does not traverse every possible field in
+ types, so we have to do our own traversals here. */
+ add_tree_to_fld_list (t, fld);
+
+ if (!RECORD_OR_UNION_TYPE_P (t))
+ fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
+ fld_worklist_push (TYPE_SIZE (t), fld);
+ fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
+ fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
+ fld_worklist_push (TYPE_POINTER_TO (t), fld);
+ fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
+ fld_worklist_push (TYPE_NAME (t), fld);
+ /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
+ them and thus do not and want not to reach unused pointer types
+ this way. */
+ if (!POINTER_TYPE_P (t))
+ fld_worklist_push (TYPE_MINVAL (t), fld);
+ if (!RECORD_OR_UNION_TYPE_P (t))
+ fld_worklist_push (TYPE_MAXVAL (t), fld);
+ fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
+ /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
+ do not and want not to reach unused variants this way. */
+ if (TYPE_CONTEXT (t))
+ {
+ tree ctx = TYPE_CONTEXT (t);
+ /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
+ So push that instead. */
+ while (ctx && TREE_CODE (ctx) == BLOCK)
+ ctx = BLOCK_SUPERCONTEXT (ctx);
+ fld_worklist_push (ctx, fld);
+ }
+ /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
+ and want not to reach unused types this way. */
+
+ if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
+ {
+ unsigned i;
+ tree tem;
+ FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
+ fld_worklist_push (TREE_TYPE (tem), fld);
+ tem = BINFO_VIRTUALS (TYPE_BINFO (t));
+ if (tem
+ /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
+ && TREE_CODE (tem) == TREE_LIST)
+ do
+ {
+ fld_worklist_push (TREE_VALUE (tem), fld);
+ tem = TREE_CHAIN (tem);
+ }
+ while (tem);
+ }
+ if (RECORD_OR_UNION_TYPE_P (t))
+ {
+ tree tem;
+ /* Push all TYPE_FIELDS - there can be interleaving interesting
+ and non-interesting things. */
+ tem = TYPE_FIELDS (t);
+ while (tem)
+ {
+ if (TREE_CODE (tem) == FIELD_DECL
+ || TREE_CODE (tem) == TYPE_DECL)
+ fld_worklist_push (tem, fld);
+ tem = TREE_CHAIN (tem);
+ }
+ }
+
+ fld_worklist_push (TYPE_STUB_DECL (t), fld);
+ *ws = 0;
+ }
+ else if (TREE_CODE (t) == BLOCK)
+ {
+ tree tem;
+ for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
+ fld_worklist_push (tem, fld);
+ for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
+ fld_worklist_push (tem, fld);
+ fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
+ }
+
+ if (TREE_CODE (t) != IDENTIFIER_NODE
+ && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
+ fld_worklist_push (TREE_TYPE (t), fld);
+
+ return NULL_TREE;
+}
+
+
+/* Find decls and types in T. */
+
+static void
+find_decls_types (tree t, struct free_lang_data_d *fld)
+{
+ while (1)
+ {
+ if (!pointer_set_contains (fld->pset, t))
+ walk_tree (&t, find_decls_types_r, fld, fld->pset);
+ if (fld->worklist.is_empty ())
+ break;
+ t = fld->worklist.pop ();
+ }
+}
+
+/* Translate all the types in LIST with the corresponding runtime
+ types. */
+
+static tree
+get_eh_types_for_runtime (tree list)
+{
+ tree head, prev;
+
+ if (list == NULL_TREE)
+ return NULL_TREE;
+
+ head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
+ prev = head;
+ list = TREE_CHAIN (list);
+ while (list)
+ {
+ tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
+ TREE_CHAIN (prev) = n;
+ prev = TREE_CHAIN (prev);
+ list = TREE_CHAIN (list);
+ }
+
+ return head;
+}
+
+
+/* Find decls and types referenced in EH region R and store them in
+ FLD->DECLS and FLD->TYPES. */
+
+static void
+find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
+{
+ switch (r->type)
+ {
+ case ERT_CLEANUP:
+ break;
+
+ case ERT_TRY:
+ {
+ eh_catch c;
+
+ /* The types referenced in each catch must first be changed to the
+ EH types used at runtime. This removes references to FE types
+ in the region. */
+ for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
+ {
+ c->type_list = get_eh_types_for_runtime (c->type_list);
+ walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
+ }
+ }
+ break;
+
+ case ERT_ALLOWED_EXCEPTIONS:
+ r->u.allowed.type_list
+ = get_eh_types_for_runtime (r->u.allowed.type_list);
+ walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
+ break;
+
+ case ERT_MUST_NOT_THROW:
+ walk_tree (&r->u.must_not_throw.failure_decl,
+ find_decls_types_r, fld, fld->pset);
+ break;
+ }
+}
+
+
+/* Find decls and types referenced in cgraph node N and store them in
+ FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
+ look for *every* kind of DECL and TYPE node reachable from N,
+ including those embedded inside types and decls (i.e,, TYPE_DECLs,
+ NAMESPACE_DECLs, etc). */
+
+static void
+find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
+{
+ basic_block bb;
+ struct function *fn;
+ unsigned ix;
+ tree t;
+
+ find_decls_types (n->symbol.decl, fld);
+
+ if (!gimple_has_body_p (n->symbol.decl))
+ return;
+
+ gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
+
+ fn = DECL_STRUCT_FUNCTION (n->symbol.decl);
+
+ /* Traverse locals. */
+ FOR_EACH_LOCAL_DECL (fn, ix, t)
+ find_decls_types (t, fld);
+
+ /* Traverse EH regions in FN. */
+ {
+ eh_region r;
+ FOR_ALL_EH_REGION_FN (r, fn)
+ find_decls_types_in_eh_region (r, fld);
+ }
+
+ /* Traverse every statement in FN. */
+ FOR_EACH_BB_FN (bb, fn)
+ {
+ gimple_stmt_iterator si;
+ unsigned i;
+
+ for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple phi = gsi_stmt (si);
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ {
+ tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
+ find_decls_types (*arg_p, fld);
+ }
+ }
+
+ for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
+ {
+ gimple stmt = gsi_stmt (si);
+
+ if (is_gimple_call (stmt))
+ find_decls_types (gimple_call_fntype (stmt), fld);
+
+ for (i = 0; i < gimple_num_ops (stmt); i++)
+ {
+ tree arg = gimple_op (stmt, i);
+ find_decls_types (arg, fld);
+ }
+ }
+ }
+}
+
+
+/* Find decls and types referenced in varpool node N and store them in
+ FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
+ look for *every* kind of DECL and TYPE node reachable from N,
+ including those embedded inside types and decls (i.e,, TYPE_DECLs,
+ NAMESPACE_DECLs, etc). */
+
+static void
+find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
+{
+ find_decls_types (v->symbol.decl, fld);
+}
+
+/* If T needs an assembler name, have one created for it. */
+
+void
+assign_assembler_name_if_neeeded (tree t)
+{
+ if (need_assembler_name_p (t))
+ {
+ /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
+ diagnostics that use input_location to show locus
+ information. The problem here is that, at this point,
+ input_location is generally anchored to the end of the file
+ (since the parser is long gone), so we don't have a good
+ position to pin it to.
+
+ To alleviate this problem, this uses the location of T's
+ declaration. Examples of this are
+ testsuite/g++.dg/template/cond2.C and
+ testsuite/g++.dg/template/pr35240.C. */
+ location_t saved_location = input_location;
+ input_location = DECL_SOURCE_LOCATION (t);
+
+ decl_assembler_name (t);
+
+ input_location = saved_location;
+ }
+}
+
+
+/* Free language specific information for every operand and expression
+ in every node of the call graph. This process operates in three stages:
+
+ 1- Every callgraph node and varpool node is traversed looking for
+ decls and types embedded in them. This is a more exhaustive
+ search than that done by find_referenced_vars, because it will
+ also collect individual fields, decls embedded in types, etc.
+
+ 2- All the decls found are sent to free_lang_data_in_decl.
+
+ 3- All the types found are sent to free_lang_data_in_type.
+
+ The ordering between decls and types is important because
+ free_lang_data_in_decl sets assembler names, which includes
+ mangling. So types cannot be freed up until assembler names have
+ been set up. */
+
+static void
+free_lang_data_in_cgraph (void)
+{
+ struct cgraph_node *n;
+ struct varpool_node *v;
+ struct free_lang_data_d fld;
+ tree t;
+ unsigned i;
+ alias_pair *p;
+
+ /* Initialize sets and arrays to store referenced decls and types. */
+ fld.pset = pointer_set_create ();
+ fld.worklist.create (0);
+ fld.decls.create (100);
+ fld.types.create (100);
+
+ /* Find decls and types in the body of every function in the callgraph. */
+ FOR_EACH_FUNCTION (n)
+ find_decls_types_in_node (n, &fld);
+
+ FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
+ find_decls_types (p->decl, &fld);
+
+ /* Find decls and types in every varpool symbol. */
+ FOR_EACH_VARIABLE (v)
+ find_decls_types_in_var (v, &fld);
+
+ /* Set the assembler name on every decl found. We need to do this
+ now because free_lang_data_in_decl will invalidate data needed
+ for mangling. This breaks mangling on interdependent decls. */
+ FOR_EACH_VEC_ELT (fld.decls, i, t)
+ assign_assembler_name_if_neeeded (t);
+
+ /* Traverse every decl found freeing its language data. */
+ FOR_EACH_VEC_ELT (fld.decls, i, t)
+ free_lang_data_in_decl (t);
+
+ /* Traverse every type found freeing its language data. */
+ FOR_EACH_VEC_ELT (fld.types, i, t)
+ free_lang_data_in_type (t);
+
+ pointer_set_destroy (fld.pset);
+ fld.worklist.release ();
+ fld.decls.release ();
+ fld.types.release ();
+}
+
+
+/* Free resources that are used by FE but are not needed once they are done. */
+
+static unsigned
+free_lang_data (void)
+{
+ unsigned i;
+
+ /* If we are the LTO frontend we have freed lang-specific data already. */
+ if (in_lto_p
+ || !flag_generate_lto)
+ return 0;
+
+ /* Allocate and assign alias sets to the standard integer types
+ while the slots are still in the way the frontends generated them. */
+ for (i = 0; i < itk_none; ++i)
+ if (integer_types[i])
+ TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
+
+ /* Traverse the IL resetting language specific information for
+ operands, expressions, etc. */
+ free_lang_data_in_cgraph ();
+
+ /* Create gimple variants for common types. */
+ ptrdiff_type_node = integer_type_node;
+ fileptr_type_node = ptr_type_node;
+
+ /* Reset some langhooks. Do not reset types_compatible_p, it may
+ still be used indirectly via the get_alias_set langhook. */
+ lang_hooks.dwarf_name = lhd_dwarf_name;
+ lang_hooks.decl_printable_name = gimple_decl_printable_name;
+ /* We do not want the default decl_assembler_name implementation,
+ rather if we have fixed everything we want a wrapper around it
+ asserting that all non-local symbols already got their assembler
+ name and only produce assembler names for local symbols. Or rather
+ make sure we never call decl_assembler_name on local symbols and
+ devise a separate, middle-end private scheme for it. */
+
+ /* Reset diagnostic machinery. */
+ tree_diagnostics_defaults (global_dc);
+
+ return 0;
+}
+
+
+struct simple_ipa_opt_pass pass_ipa_free_lang_data =
+{
+ {
+ SIMPLE_IPA_PASS,
+ "*free_lang_data", /* name */
+ OPTGROUP_NONE, /* optinfo_flags */
+ NULL, /* gate */
+ free_lang_data, /* execute */
+ NULL, /* sub */
+ NULL, /* next */
+ 0, /* static_pass_number */
+ TV_IPA_FREE_LANG_DATA, /* tv_id */
+ 0, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ TODO_ggc_collect /* todo_flags_finish */
+ }
+};
+
+/* The backbone of is_attribute_p(). ATTR_LEN is the string length of
+ ATTR_NAME. Also used internally by remove_attribute(). */
+bool
+private_is_attribute_p (const char *attr_name, size_t attr_len, const_tree ident)
+{
+ size_t ident_len = IDENTIFIER_LENGTH (ident);
+
+ if (ident_len == attr_len)
+ {
+ if (strcmp (attr_name, IDENTIFIER_POINTER (ident)) == 0)
+ return true;
+ }
+ else if (ident_len == attr_len + 4)
+ {
+ /* There is the possibility that ATTR is 'text' and IDENT is
+ '__text__'. */
+ const char *p = IDENTIFIER_POINTER (ident);
+ if (p[0] == '_' && p[1] == '_'
+ && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
+ && strncmp (attr_name, p + 2, attr_len) == 0)
+ return true;
+ }
+
+ return false;
+}
+
+/* The backbone of lookup_attribute(). ATTR_LEN is the string length
+ of ATTR_NAME, and LIST is not NULL_TREE. */
+tree
+private_lookup_attribute (const char *attr_name, size_t attr_len, tree list)
+{
+ while (list)
+ {
+ size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
+
+ if (ident_len == attr_len)
+ {
+ if (!strcmp (attr_name,
+ IDENTIFIER_POINTER (get_attribute_name (list))))
+ break;
+ }
+ /* TODO: If we made sure that attributes were stored in the
+ canonical form without '__...__' (ie, as in 'text' as opposed
+ to '__text__') then we could avoid the following case. */
+ else if (ident_len == attr_len + 4)
+ {
+ const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
+ if (p[0] == '_' && p[1] == '_'
+ && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
+ && strncmp (attr_name, p + 2, attr_len) == 0)
+ break;
+ }
+ list = TREE_CHAIN (list);
+ }
+
+ return list;
+}
+
+/* A variant of lookup_attribute() that can be used with an identifier
+ as the first argument, and where the identifier can be either
+ 'text' or '__text__'.
+
+ Given an attribute ATTR_IDENTIFIER, and a list of attributes LIST,
+ return a pointer to the attribute's list element if the attribute
+ is part of the list, or NULL_TREE if not found. If the attribute
+ appears more than once, this only returns the first occurrence; the
+ TREE_CHAIN of the return value should be passed back in if further
+ occurrences are wanted. ATTR_IDENTIFIER must be an identifier but
+ can be in the form 'text' or '__text__'. */
+static tree
+lookup_ident_attribute (tree attr_identifier, tree list)
+{
+ gcc_checking_assert (TREE_CODE (attr_identifier) == IDENTIFIER_NODE);
+
+ while (list)
+ {
+ gcc_checking_assert (TREE_CODE (get_attribute_name (list))
+ == IDENTIFIER_NODE);
+
+ /* Identifiers can be compared directly for equality. */
+ if (attr_identifier == get_attribute_name (list))
+ break;
+
+ /* If they are not equal, they may still be one in the form
+ 'text' while the other one is in the form '__text__'. TODO:
+ If we were storing attributes in normalized 'text' form, then
+ this could all go away and we could take full advantage of
+ the fact that we're comparing identifiers. :-) */
+ {
+ size_t attr_len = IDENTIFIER_LENGTH (attr_identifier);
+ size_t ident_len = IDENTIFIER_LENGTH (get_attribute_name (list));
+
+ if (ident_len == attr_len + 4)
+ {
+ const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
+ const char *q = IDENTIFIER_POINTER (attr_identifier);
+ if (p[0] == '_' && p[1] == '_'
+ && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
+ && strncmp (q, p + 2, attr_len) == 0)
+ break;
+ }
+ else if (ident_len + 4 == attr_len)
+ {
+ const char *p = IDENTIFIER_POINTER (get_attribute_name (list));
+ const char *q = IDENTIFIER_POINTER (attr_identifier);
+ if (q[0] == '_' && q[1] == '_'
+ && q[attr_len - 2] == '_' && q[attr_len - 1] == '_'
+ && strncmp (q + 2, p, ident_len) == 0)
+ break;
+ }
+ }
+ list = TREE_CHAIN (list);
+ }
+
+ return list;
+}
+
+/* Remove any instances of attribute ATTR_NAME in LIST and return the
+ modified list. */
+
+tree
+remove_attribute (const char *attr_name, tree list)
+{
+ tree *p;
+ size_t attr_len = strlen (attr_name);
+
+ gcc_checking_assert (attr_name[0] != '_');
+
+ for (p = &list; *p; )
+ {
+ tree l = *p;
+ /* TODO: If we were storing attributes in normalized form, here
+ we could use a simple strcmp(). */
+ if (private_is_attribute_p (attr_name, attr_len, get_attribute_name (l)))
+ *p = TREE_CHAIN (l);
+ else
+ p = &TREE_CHAIN (l);
+ }
+
+ return list;
+}
+
+/* Return an attribute list that is the union of a1 and a2. */
+
+tree
+merge_attributes (tree a1, tree a2)
+{
+ tree attributes;
+
+ /* Either one unset? Take the set one. */
+
+ if ((attributes = a1) == 0)
+ attributes = a2;
+
+ /* One that completely contains the other? Take it. */
+
+ else if (a2 != 0 && ! attribute_list_contained (a1, a2))
+ {
+ if (attribute_list_contained (a2, a1))
+ attributes = a2;
+ else
+ {
+ /* Pick the longest list, and hang on the other list. */
+
+ if (list_length (a1) < list_length (a2))
+ attributes = a2, a2 = a1;
+
+ for (; a2 != 0; a2 = TREE_CHAIN (a2))
+ {
+ tree a;
+ for (a = lookup_ident_attribute (get_attribute_name (a2),
+ attributes);
+ a != NULL_TREE && !attribute_value_equal (a, a2);
+ a = lookup_ident_attribute (get_attribute_name (a2),
+ TREE_CHAIN (a)))
+ ;
+ if (a == NULL_TREE)
+ {
+ a1 = copy_node (a2);
+ TREE_CHAIN (a1) = attributes;
+ attributes = a1;
+ }
+ }
+ }
+ }
+ return attributes;
+}
+
+/* Given types T1 and T2, merge their attributes and return
+ the result. */
+
+tree
+merge_type_attributes (tree t1, tree t2)
+{
+ return merge_attributes (TYPE_ATTRIBUTES (t1),
+ TYPE_ATTRIBUTES (t2));
+}
+
+/* Given decls OLDDECL and NEWDECL, merge their attributes and return
+ the result. */
+
+tree
+merge_decl_attributes (tree olddecl, tree newdecl)
+{
+ return merge_attributes (DECL_ATTRIBUTES (olddecl),
+ DECL_ATTRIBUTES (newdecl));
+}
+
+#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
+
+/* Specialization of merge_decl_attributes for various Windows targets.
+
+ This handles the following situation:
+
+ __declspec (dllimport) int foo;
+ int foo;
+
+ The second instance of `foo' nullifies the dllimport. */
+
+tree
+merge_dllimport_decl_attributes (tree old, tree new_tree)
+{
+ tree a;
+ int delete_dllimport_p = 1;
+
+ /* What we need to do here is remove from `old' dllimport if it doesn't
+ appear in `new'. dllimport behaves like extern: if a declaration is
+ marked dllimport and a definition appears later, then the object
+ is not dllimport'd. We also remove a `new' dllimport if the old list
+ contains dllexport: dllexport always overrides dllimport, regardless
+ of the order of declaration. */
+ if (!VAR_OR_FUNCTION_DECL_P (new_tree))
+ delete_dllimport_p = 0;
+ else if (DECL_DLLIMPORT_P (new_tree)
+ && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
+ {
+ DECL_DLLIMPORT_P (new_tree) = 0;
+ warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
+ "dllimport ignored", new_tree);
+ }
+ else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
+ {
+ /* Warn about overriding a symbol that has already been used, e.g.:
+ extern int __attribute__ ((dllimport)) foo;
+ int* bar () {return &foo;}
+ int foo;
+ */
+ if (TREE_USED (old))
+ {
+ warning (0, "%q+D redeclared without dllimport attribute "
+ "after being referenced with dll linkage", new_tree);
+ /* If we have used a variable's address with dllimport linkage,
+ keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
+ decl may already have had TREE_CONSTANT computed.
+ We still remove the attribute so that assembler code refers
+ to '&foo rather than '_imp__foo'. */
+ if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
+ DECL_DLLIMPORT_P (new_tree) = 1;
+ }
+
+ /* Let an inline definition silently override the external reference,
+ but otherwise warn about attribute inconsistency. */
+ else if (TREE_CODE (new_tree) == VAR_DECL
+ || !DECL_DECLARED_INLINE_P (new_tree))
+ warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
+ "previous dllimport ignored", new_tree);
+ }
+ else
+ delete_dllimport_p = 0;
+
+ a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
+
+ if (delete_dllimport_p)
+ a = remove_attribute ("dllimport", a);
+
+ return a;
+}
+
+/* Handle a "dllimport" or "dllexport" attribute; arguments as in
+ struct attribute_spec.handler. */
+
+tree
+handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
+ bool *no_add_attrs)
+{
+ tree node = *pnode;
+ bool is_dllimport;
+
+ /* These attributes may apply to structure and union types being created,
+ but otherwise should pass to the declaration involved. */
+ if (!DECL_P (node))
+ {
+ if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
+ | (int) ATTR_FLAG_ARRAY_NEXT))
+ {
+ *no_add_attrs = true;
+ return tree_cons (name, args, NULL_TREE);
+ }
+ if (TREE_CODE (node) == RECORD_TYPE
+ || TREE_CODE (node) == UNION_TYPE)
+ {
+ node = TYPE_NAME (node);
+ if (!node)
+ return NULL_TREE;
+ }
+ else
+ {
+ warning (OPT_Wattributes, "%qE attribute ignored",
+ name);
+ *no_add_attrs = true;
+ return NULL_TREE;
+ }
+ }
+
+ if (TREE_CODE (node) != FUNCTION_DECL
+ && TREE_CODE (node) != VAR_DECL
+ && TREE_CODE (node) != TYPE_DECL)
+ {
+ *no_add_attrs = true;
+ warning (OPT_Wattributes, "%qE attribute ignored",
+ name);
+ return NULL_TREE;
+ }
+
+ if (TREE_CODE (node) == TYPE_DECL
+ && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
+ && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
+ {
+ *no_add_attrs = true;
+ warning (OPT_Wattributes, "%qE attribute ignored",
+ name);
+ return NULL_TREE;
+ }
+
+ is_dllimport = is_attribute_p ("dllimport", name);
+
+ /* Report error on dllimport ambiguities seen now before they cause
+ any damage. */
+ if (is_dllimport)
+ {
+ /* Honor any target-specific overrides. */
+ if (!targetm.valid_dllimport_attribute_p (node))
+ *no_add_attrs = true;
+
+ else if (TREE_CODE (node) == FUNCTION_DECL
+ && DECL_DECLARED_INLINE_P (node))
+ {
+ warning (OPT_Wattributes, "inline function %q+D declared as "
+ " dllimport: attribute ignored", node);
+ *no_add_attrs = true;
+ }
+ /* Like MS, treat definition of dllimported variables and
+ non-inlined functions on declaration as syntax errors. */
+ else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
+ {
+ error ("function %q+D definition is marked dllimport", node);
+ *no_add_attrs = true;
+ }
+
+ else if (TREE_CODE (node) == VAR_DECL)
+ {
+ if (DECL_INITIAL (node))
+ {
+ error ("variable %q+D definition is marked dllimport",
+ node);
+ *no_add_attrs = true;
+ }
+
+ /* `extern' needn't be specified with dllimport.
+ Specify `extern' now and hope for the best. Sigh. */
+ DECL_EXTERNAL (node) = 1;
+ /* Also, implicitly give dllimport'd variables declared within
+ a function global scope, unless declared static. */
+ if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
+ TREE_PUBLIC (node) = 1;
+ }
+
+ if (*no_add_attrs == false)
+ DECL_DLLIMPORT_P (node) = 1;
+ }
+ else if (TREE_CODE (node) == FUNCTION_DECL
+ && DECL_DECLARED_INLINE_P (node)
+ && flag_keep_inline_dllexport)
+ /* An exported function, even if inline, must be emitted. */
+ DECL_EXTERNAL (node) = 0;
+
+ /* Report error if symbol is not accessible at global scope. */
+ if (!TREE_PUBLIC (node)
+ && (TREE_CODE (node) == VAR_DECL
+ || TREE_CODE (node) == FUNCTION_DECL))
+ {
+ error ("external linkage required for symbol %q+D because of "
+ "%qE attribute", node, name);
+ *no_add_attrs = true;
+ }
+
+ /* A dllexport'd entity must have default visibility so that other
+ program units (shared libraries or the main executable) can see
+ it. A dllimport'd entity must have default visibility so that
+ the linker knows that undefined references within this program
+ unit can be resolved by the dynamic linker. */
+ if (!*no_add_attrs)
+ {
+ if (DECL_VISIBILITY_SPECIFIED (node)
+ && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
+ error ("%qE implies default visibility, but %qD has already "
+ "been declared with a different visibility",
+ name, node);
+ DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
+ DECL_VISIBILITY_SPECIFIED (node) = 1;
+ }
+
+ return NULL_TREE;
+}
+
+#endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
+
+/* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
+ of the various TYPE_QUAL values. */
+
+static void
+set_type_quals (tree type, int type_quals)
+{
+ TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
+ TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
+ TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
+ TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
+}
+
+/* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
+
+bool
+check_qualified_type (const_tree cand, const_tree base, int type_quals)
+{
+ return (TYPE_QUALS (cand) == type_quals
+ && TYPE_NAME (cand) == TYPE_NAME (base)
+ /* Apparently this is needed for Objective-C. */
+ && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
+ /* Check alignment. */
+ && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
+ && attribute_list_equal (TYPE_ATTRIBUTES (cand),
+ TYPE_ATTRIBUTES (base)));
+}
+
+/* Returns true iff CAND is equivalent to BASE with ALIGN. */
+
+static bool
+check_aligned_type (const_tree cand, const_tree base, unsigned int align)
+{
+ return (TYPE_QUALS (cand) == TYPE_QUALS (base)
+ && TYPE_NAME (cand) == TYPE_NAME (base)
+ /* Apparently this is needed for Objective-C. */
+ && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
+ /* Check alignment. */
+ && TYPE_ALIGN (cand) == align
+ && attribute_list_equal (TYPE_ATTRIBUTES (cand),
+ TYPE_ATTRIBUTES (base)));
+}
+
+/* Return a version of the TYPE, qualified as indicated by the
+ TYPE_QUALS, if one exists. If no qualified version exists yet,
+ return NULL_TREE. */
+
+tree
+get_qualified_type (tree type, int type_quals)
+{
+ tree t;
+
+ if (TYPE_QUALS (type) == type_quals)
+ return type;
+
+ /* Search the chain of variants to see if there is already one there just
+ like the one we need to have. If so, use that existing one. We must
+ preserve the TYPE_NAME, since there is code that depends on this. */
+ for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
+ if (check_qualified_type (t, type, type_quals))
+ return t;
+
+ return NULL_TREE;
+}
+
+/* Like get_qualified_type, but creates the type if it does not
+ exist. This function never returns NULL_TREE. */
+
+tree
+build_qualified_type (tree type, int type_quals)
+{
+ tree t;
+
+ /* See if we already have the appropriate qualified variant. */
+ t = get_qualified_type (type, type_quals);
+
+ /* If not, build it. */
+ if (!t)
+ {
+ t = build_variant_type_copy (type);
+ set_type_quals (t, type_quals);
+
+ if (TYPE_STRUCTURAL_EQUALITY_P (type))
+ /* Propagate structural equality. */
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (type) != type)
+ /* Build the underlying canonical type, since it is different
+ from TYPE. */
+ TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
+ type_quals);
+ else
+ /* T is its own canonical type. */
+ TYPE_CANONICAL (t) = t;
+
+ }
+
+ return t;
+}
+
+/* Create a variant of type T with alignment ALIGN. */
+
+tree
+build_aligned_type (tree type, unsigned int align)
+{
+ tree t;
+
+ if (TYPE_PACKED (type)
+ || TYPE_ALIGN (type) == align)
+ return type;
+
+ for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
+ if (check_aligned_type (t, type, align))
+ return t;
+
+ t = build_variant_type_copy (type);
+ TYPE_ALIGN (t) = align;
+
+ return t;
+}
+
+/* Create a new distinct copy of TYPE. The new type is made its own
+ MAIN_VARIANT. If TYPE requires structural equality checks, the
+ resulting type requires structural equality checks; otherwise, its
+ TYPE_CANONICAL points to itself. */
+
+tree
+build_distinct_type_copy (tree type)
+{
+ tree t = copy_node (type);
+
+ TYPE_POINTER_TO (t) = 0;
+ TYPE_REFERENCE_TO (t) = 0;
+
+ /* Set the canonical type either to a new equivalence class, or
+ propagate the need for structural equality checks. */
+ if (TYPE_STRUCTURAL_EQUALITY_P (type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else
+ TYPE_CANONICAL (t) = t;
+
+ /* Make it its own variant. */
+ TYPE_MAIN_VARIANT (t) = t;
+ TYPE_NEXT_VARIANT (t) = 0;
+
+ /* Note that it is now possible for TYPE_MIN_VALUE to be a value
+ whose TREE_TYPE is not t. This can also happen in the Ada
+ frontend when using subtypes. */
+
+ return t;
+}
+
+/* Create a new variant of TYPE, equivalent but distinct. This is so
+ the caller can modify it. TYPE_CANONICAL for the return type will
+ be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
+ are considered equal by the language itself (or that both types
+ require structural equality checks). */
+
+tree
+build_variant_type_copy (tree type)
+{
+ tree t, m = TYPE_MAIN_VARIANT (type);
+
+ t = build_distinct_type_copy (type);
+
+ /* Since we're building a variant, assume that it is a non-semantic
+ variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
+ TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
+
+ /* Add the new type to the chain of variants of TYPE. */
+ TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
+ TYPE_NEXT_VARIANT (m) = t;
+ TYPE_MAIN_VARIANT (t) = m;
+
+ return t;
+}
+
+/* Return true if the from tree in both tree maps are equal. */
+
+int
+tree_map_base_eq (const void *va, const void *vb)
+{
+ const struct tree_map_base *const a = (const struct tree_map_base *) va,
+ *const b = (const struct tree_map_base *) vb;
+ return (a->from == b->from);
+}
+
+/* Hash a from tree in a tree_base_map. */
+
+unsigned int
+tree_map_base_hash (const void *item)
+{
+ return htab_hash_pointer (((const struct tree_map_base *)item)->from);
+}
+
+/* Return true if this tree map structure is marked for garbage collection
+ purposes. We simply return true if the from tree is marked, so that this
+ structure goes away when the from tree goes away. */
+
+int
+tree_map_base_marked_p (const void *p)
+{
+ return ggc_marked_p (((const struct tree_map_base *) p)->from);
+}
+
+/* Hash a from tree in a tree_map. */
+
+unsigned int
+tree_map_hash (const void *item)
+{
+ return (((const struct tree_map *) item)->hash);
+}
+
+/* Hash a from tree in a tree_decl_map. */
+
+unsigned int
+tree_decl_map_hash (const void *item)
+{
+ return DECL_UID (((const struct tree_decl_map *) item)->base.from);
+}
+
+/* Return the initialization priority for DECL. */
+
+priority_type
+decl_init_priority_lookup (tree decl)
+{
+ struct tree_priority_map *h;
+ struct tree_map_base in;
+
+ gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
+ in.from = decl;
+ h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
+ return h ? h->init : DEFAULT_INIT_PRIORITY;
+}
+
+/* Return the finalization priority for DECL. */
+
+priority_type
+decl_fini_priority_lookup (tree decl)
+{
+ struct tree_priority_map *h;
+ struct tree_map_base in;
+
+ gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
+ in.from = decl;
+ h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
+ return h ? h->fini : DEFAULT_INIT_PRIORITY;
+}
+
+/* Return the initialization and finalization priority information for
+ DECL. If there is no previous priority information, a freshly
+ allocated structure is returned. */
+
+static struct tree_priority_map *
+decl_priority_info (tree decl)
+{
+ struct tree_priority_map in;
+ struct tree_priority_map *h;
+ void **loc;
+
+ in.base.from = decl;
+ loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
+ h = (struct tree_priority_map *) *loc;
+ if (!h)
+ {
+ h = ggc_alloc_cleared_tree_priority_map ();
+ *loc = h;
+ h->base.from = decl;
+ h->init = DEFAULT_INIT_PRIORITY;
+ h->fini = DEFAULT_INIT_PRIORITY;
+ }
+
+ return h;
+}
+
+/* Set the initialization priority for DECL to PRIORITY. */
+
+void
+decl_init_priority_insert (tree decl, priority_type priority)
+{
+ struct tree_priority_map *h;
+
+ gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
+ if (priority == DEFAULT_INIT_PRIORITY)
+ return;
+ h = decl_priority_info (decl);
+ h->init = priority;
+}
+
+/* Set the finalization priority for DECL to PRIORITY. */
+
+void
+decl_fini_priority_insert (tree decl, priority_type priority)
+{
+ struct tree_priority_map *h;
+
+ gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
+ if (priority == DEFAULT_INIT_PRIORITY)
+ return;
+ h = decl_priority_info (decl);
+ h->fini = priority;
+}
+
+/* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
+
+static void
+print_debug_expr_statistics (void)
+{
+ fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
+ (long) htab_size (debug_expr_for_decl),
+ (long) htab_elements (debug_expr_for_decl),
+ htab_collisions (debug_expr_for_decl));
+}
+
+/* Print out the statistics for the DECL_VALUE_EXPR hash table. */
+
+static void
+print_value_expr_statistics (void)
+{
+ fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
+ (long) htab_size (value_expr_for_decl),
+ (long) htab_elements (value_expr_for_decl),
+ htab_collisions (value_expr_for_decl));
+}
+
+/* Lookup a debug expression for FROM, and return it if we find one. */
+
+tree
+decl_debug_expr_lookup (tree from)
+{
+ struct tree_decl_map *h, in;
+ in.base.from = from;
+
+ h = (struct tree_decl_map *)
+ htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
+ if (h)
+ return h->to;
+ return NULL_TREE;
+}
+
+/* Insert a mapping FROM->TO in the debug expression hashtable. */
+
+void
+decl_debug_expr_insert (tree from, tree to)
+{
+ struct tree_decl_map *h;
+ void **loc;
+
+ h = ggc_alloc_tree_decl_map ();
+ h->base.from = from;
+ h->to = to;
+ loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
+ INSERT);
+ *(struct tree_decl_map **) loc = h;
+}
+
+/* Lookup a value expression for FROM, and return it if we find one. */
+
+tree
+decl_value_expr_lookup (tree from)
+{
+ struct tree_decl_map *h, in;
+ in.base.from = from;
+
+ h = (struct tree_decl_map *)
+ htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
+ if (h)
+ return h->to;
+ return NULL_TREE;
+}
+
+/* Insert a mapping FROM->TO in the value expression hashtable. */
+
+void
+decl_value_expr_insert (tree from, tree to)
+{
+ struct tree_decl_map *h;
+ void **loc;
+
+ h = ggc_alloc_tree_decl_map ();
+ h->base.from = from;
+ h->to = to;
+ loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
+ INSERT);
+ *(struct tree_decl_map **) loc = h;
+}
+
+/* Lookup a vector of debug arguments for FROM, and return it if we
+ find one. */
+
+vec<tree, va_gc> **
+decl_debug_args_lookup (tree from)
+{
+ struct tree_vec_map *h, in;
+
+ if (!DECL_HAS_DEBUG_ARGS_P (from))
+ return NULL;
+ gcc_checking_assert (debug_args_for_decl != NULL);
+ in.base.from = from;
+ h = (struct tree_vec_map *)
+ htab_find_with_hash (debug_args_for_decl, &in, DECL_UID (from));
+ if (h)
+ return &h->to;
+ return NULL;
+}
+
+/* Insert a mapping FROM->empty vector of debug arguments in the value
+ expression hashtable. */
+
+vec<tree, va_gc> **
+decl_debug_args_insert (tree from)
+{
+ struct tree_vec_map *h;
+ void **loc;
+
+ if (DECL_HAS_DEBUG_ARGS_P (from))
+ return decl_debug_args_lookup (from);
+ if (debug_args_for_decl == NULL)
+ debug_args_for_decl = htab_create_ggc (64, tree_vec_map_hash,
+ tree_vec_map_eq, 0);
+ h = ggc_alloc_tree_vec_map ();
+ h->base.from = from;
+ h->to = NULL;
+ loc = htab_find_slot_with_hash (debug_args_for_decl, h, DECL_UID (from),
+ INSERT);
+ *(struct tree_vec_map **) loc = h;
+ DECL_HAS_DEBUG_ARGS_P (from) = 1;
+ return &h->to;
+}
+
+/* Hashing of types so that we don't make duplicates.
+ The entry point is `type_hash_canon'. */
+
+/* Compute a hash code for a list of types (chain of TREE_LIST nodes
+ with types in the TREE_VALUE slots), by adding the hash codes
+ of the individual types. */
+
+static unsigned int
+type_hash_list (const_tree list, hashval_t hashcode)
+{
+ const_tree tail;
+
+ for (tail = list; tail; tail = TREE_CHAIN (tail))
+ if (TREE_VALUE (tail) != error_mark_node)
+ hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
+ hashcode);
+
+ return hashcode;
+}
+
+/* These are the Hashtable callback functions. */
+
+/* Returns true iff the types are equivalent. */
+
+static int
+type_hash_eq (const void *va, const void *vb)
+{
+ const struct type_hash *const a = (const struct type_hash *) va,
+ *const b = (const struct type_hash *) vb;
+
+ /* First test the things that are the same for all types. */
+ if (a->hash != b->hash
+ || TREE_CODE (a->type) != TREE_CODE (b->type)
+ || TREE_TYPE (a->type) != TREE_TYPE (b->type)
+ || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
+ TYPE_ATTRIBUTES (b->type))
+ || (TREE_CODE (a->type) != COMPLEX_TYPE
+ && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
+ return 0;
+
+ /* Be careful about comparing arrays before and after the element type
+ has been completed; don't compare TYPE_ALIGN unless both types are
+ complete. */
+ if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
+ && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
+ || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
+ return 0;
+
+ switch (TREE_CODE (a->type))
+ {
+ case VOID_TYPE:
+ case COMPLEX_TYPE:
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ case NULLPTR_TYPE:
+ return 1;
+
+ case VECTOR_TYPE:
+ return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
+
+ case ENUMERAL_TYPE:
+ if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
+ && !(TYPE_VALUES (a->type)
+ && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
+ && TYPE_VALUES (b->type)
+ && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
+ && type_list_equal (TYPE_VALUES (a->type),
+ TYPE_VALUES (b->type))))
+ return 0;
+
+ /* ... fall through ... */
+
+ case INTEGER_TYPE:
+ case REAL_TYPE:
+ case BOOLEAN_TYPE:
+ return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
+ || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
+ TYPE_MAX_VALUE (b->type)))
+ && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
+ || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
+ TYPE_MIN_VALUE (b->type))));
+
+ case FIXED_POINT_TYPE:
+ return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
+
+ case OFFSET_TYPE:
+ return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
+
+ case METHOD_TYPE:
+ if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
+ && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
+ || (TYPE_ARG_TYPES (a->type)
+ && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
+ && TYPE_ARG_TYPES (b->type)
+ && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
+ && type_list_equal (TYPE_ARG_TYPES (a->type),
+ TYPE_ARG_TYPES (b->type)))))
+ break;
+ return 0;
+ case ARRAY_TYPE:
+ return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
+ || (TYPE_FIELDS (a->type)
+ && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
+ && TYPE_FIELDS (b->type)
+ && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
+ && type_list_equal (TYPE_FIELDS (a->type),
+ TYPE_FIELDS (b->type))));
+
+ case FUNCTION_TYPE:
+ if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
+ || (TYPE_ARG_TYPES (a->type)
+ && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
+ && TYPE_ARG_TYPES (b->type)
+ && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
+ && type_list_equal (TYPE_ARG_TYPES (a->type),
+ TYPE_ARG_TYPES (b->type))))
+ break;
+ return 0;
+
+ default:
+ return 0;
+ }
+
+ if (lang_hooks.types.type_hash_eq != NULL)
+ return lang_hooks.types.type_hash_eq (a->type, b->type);
+
+ return 1;
+}
+
+/* Return the cached hash value. */
+
+static hashval_t
+type_hash_hash (const void *item)
+{
+ return ((const struct type_hash *) item)->hash;
+}
+
+/* Look in the type hash table for a type isomorphic to TYPE.
+ If one is found, return it. Otherwise return 0. */
+
+tree
+type_hash_lookup (hashval_t hashcode, tree type)
+{
+ struct type_hash *h, in;
+
+ /* The TYPE_ALIGN field of a type is set by layout_type(), so we
+ must call that routine before comparing TYPE_ALIGNs. */
+ layout_type (type);
+
+ in.hash = hashcode;
+ in.type = type;
+
+ h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
+ hashcode);
+ if (h)
+ return h->type;
+ return NULL_TREE;
+}
+
+/* Add an entry to the type-hash-table
+ for a type TYPE whose hash code is HASHCODE. */
+
+void
+type_hash_add (hashval_t hashcode, tree type)
+{
+ struct type_hash *h;
+ void **loc;
+
+ h = ggc_alloc_type_hash ();
+ h->hash = hashcode;
+ h->type = type;
+ loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
+ *loc = (void *)h;
+}
+
+/* Given TYPE, and HASHCODE its hash code, return the canonical
+ object for an identical type if one already exists.
+ Otherwise, return TYPE, and record it as the canonical object.
+
+ To use this function, first create a type of the sort you want.
+ Then compute its hash code from the fields of the type that
+ make it different from other similar types.
+ Then call this function and use the value. */
+
+tree
+type_hash_canon (unsigned int hashcode, tree type)
+{
+ tree t1;
+
+ /* The hash table only contains main variants, so ensure that's what we're
+ being passed. */
+ gcc_assert (TYPE_MAIN_VARIANT (type) == type);
+
+ /* See if the type is in the hash table already. If so, return it.
+ Otherwise, add the type. */
+ t1 = type_hash_lookup (hashcode, type);
+ if (t1 != 0)
+ {
+ if (GATHER_STATISTICS)
+ {
+ tree_code_counts[(int) TREE_CODE (type)]--;
+ tree_node_counts[(int) t_kind]--;
+ tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type_non_common);
+ }
+ return t1;
+ }
+ else
+ {
+ type_hash_add (hashcode, type);
+ return type;
+ }
+}
+
+/* See if the data pointed to by the type hash table is marked. We consider
+ it marked if the type is marked or if a debug type number or symbol
+ table entry has been made for the type. */
+
+static int
+type_hash_marked_p (const void *p)
+{
+ const_tree const type = ((const struct type_hash *) p)->type;
+
+ return ggc_marked_p (type);
+}
+
+static void
+print_type_hash_statistics (void)
+{
+ fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
+ (long) htab_size (type_hash_table),
+ (long) htab_elements (type_hash_table),
+ htab_collisions (type_hash_table));
+}
+
+/* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
+ with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
+ by adding the hash codes of the individual attributes. */
+
+static unsigned int
+attribute_hash_list (const_tree list, hashval_t hashcode)
+{
+ const_tree tail;
+
+ for (tail = list; tail; tail = TREE_CHAIN (tail))
+ /* ??? Do we want to add in TREE_VALUE too? */
+ hashcode = iterative_hash_object
+ (IDENTIFIER_HASH_VALUE (get_attribute_name (tail)), hashcode);
+ return hashcode;
+}
+
+/* Given two lists of attributes, return true if list l2 is
+ equivalent to l1. */
+
+int
+attribute_list_equal (const_tree l1, const_tree l2)
+{
+ if (l1 == l2)
+ return 1;
+
+ return attribute_list_contained (l1, l2)
+ && attribute_list_contained (l2, l1);
+}
+
+/* Given two lists of attributes, return true if list L2 is
+ completely contained within L1. */
+/* ??? This would be faster if attribute names were stored in a canonicalized
+ form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
+ must be used to show these elements are equivalent (which they are). */
+/* ??? It's not clear that attributes with arguments will always be handled
+ correctly. */
+
+int
+attribute_list_contained (const_tree l1, const_tree l2)
+{
+ const_tree t1, t2;
+
+ /* First check the obvious, maybe the lists are identical. */
+ if (l1 == l2)
+ return 1;
+
+ /* Maybe the lists are similar. */
+ for (t1 = l1, t2 = l2;
+ t1 != 0 && t2 != 0
+ && get_attribute_name (t1) == get_attribute_name (t2)
+ && TREE_VALUE (t1) == TREE_VALUE (t2);
+ t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
+ ;
+
+ /* Maybe the lists are equal. */
+ if (t1 == 0 && t2 == 0)
+ return 1;
+
+ for (; t2 != 0; t2 = TREE_CHAIN (t2))
+ {
+ const_tree attr;
+ /* This CONST_CAST is okay because lookup_attribute does not
+ modify its argument and the return value is assigned to a
+ const_tree. */
+ for (attr = lookup_ident_attribute (get_attribute_name (t2), CONST_CAST_TREE(l1));
+ attr != NULL_TREE && !attribute_value_equal (t2, attr);
+ attr = lookup_ident_attribute (get_attribute_name (t2), TREE_CHAIN (attr)))
+ ;
+
+ if (attr == NULL_TREE)
+ return 0;
+ }
+
+ return 1;
+}
+
+/* Given two lists of types
+ (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
+ return 1 if the lists contain the same types in the same order.
+ Also, the TREE_PURPOSEs must match. */
+
+int
+type_list_equal (const_tree l1, const_tree l2)
+{
+ const_tree t1, t2;
+
+ for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
+ if (TREE_VALUE (t1) != TREE_VALUE (t2)
+ || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
+ && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
+ && (TREE_TYPE (TREE_PURPOSE (t1))
+ == TREE_TYPE (TREE_PURPOSE (t2))))))
+ return 0;
+
+ return t1 == t2;
+}
+
+/* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
+ given by TYPE. If the argument list accepts variable arguments,
+ then this function counts only the ordinary arguments. */
+
+int
+type_num_arguments (const_tree type)
+{
+ int i = 0;
+ tree t;
+
+ for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
+ /* If the function does not take a variable number of arguments,
+ the last element in the list will have type `void'. */
+ if (VOID_TYPE_P (TREE_VALUE (t)))
+ break;
+ else
+ ++i;
+
+ return i;
+}
+
+/* Nonzero if integer constants T1 and T2
+ represent the same constant value. */
+
+int
+tree_int_cst_equal (const_tree t1, const_tree t2)
+{
+ if (t1 == t2)
+ return 1;
+
+ if (t1 == 0 || t2 == 0)
+ return 0;
+
+ if (TREE_CODE (t1) == INTEGER_CST
+ && TREE_CODE (t2) == INTEGER_CST
+ && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
+ && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
+ return 1;
+
+ return 0;
+}
+
+/* Nonzero if integer constants T1 and T2 represent values that satisfy <.
+ The precise way of comparison depends on their data type. */
+
+int
+tree_int_cst_lt (const_tree t1, const_tree t2)
+{
+ if (t1 == t2)
+ return 0;
+
+ if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
+ {
+ int t1_sgn = tree_int_cst_sgn (t1);
+ int t2_sgn = tree_int_cst_sgn (t2);
+
+ if (t1_sgn < t2_sgn)
+ return 1;
+ else if (t1_sgn > t2_sgn)
+ return 0;
+ /* Otherwise, both are non-negative, so we compare them as
+ unsigned just in case one of them would overflow a signed
+ type. */
+ }
+ else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
+ return INT_CST_LT (t1, t2);
+
+ return INT_CST_LT_UNSIGNED (t1, t2);
+}
+
+/* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
+
+int
+tree_int_cst_compare (const_tree t1, const_tree t2)
+{
+ if (tree_int_cst_lt (t1, t2))
+ return -1;
+ else if (tree_int_cst_lt (t2, t1))
+ return 1;
+ else
+ return 0;
+}
+
+/* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
+ the host. If POS is zero, the value can be represented in a single
+ HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
+ be represented in a single unsigned HOST_WIDE_INT. */
+
+int
+host_integerp (const_tree t, int pos)
+{
+ if (t == NULL_TREE)
+ return 0;
+
+ return (TREE_CODE (t) == INTEGER_CST
+ && ((TREE_INT_CST_HIGH (t) == 0
+ && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
+ || (! pos && TREE_INT_CST_HIGH (t) == -1
+ && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
+ && !TYPE_UNSIGNED (TREE_TYPE (t)))
+ || (pos && TREE_INT_CST_HIGH (t) == 0)));
+}
+
+/* Return the HOST_WIDE_INT least significant bits of T if it is an
+ INTEGER_CST and there is no overflow. POS is nonzero if the result must
+ be non-negative. We must be able to satisfy the above conditions. */
+
+HOST_WIDE_INT
+tree_low_cst (const_tree t, int pos)
+{
+ gcc_assert (host_integerp (t, pos));
+ return TREE_INT_CST_LOW (t);
+}
+
+/* Return the HOST_WIDE_INT least significant bits of T, a sizetype
+ kind INTEGER_CST. This makes sure to properly sign-extend the
+ constant. */
+
+HOST_WIDE_INT
+size_low_cst (const_tree t)
+{
+ double_int d = tree_to_double_int (t);
+ return d.sext (TYPE_PRECISION (TREE_TYPE (t))).low;
+}
+
+/* Return the most significant (sign) bit of T. */
+
+int
+tree_int_cst_sign_bit (const_tree t)
+{
+ unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
+ unsigned HOST_WIDE_INT w;
+
+ if (bitno < HOST_BITS_PER_WIDE_INT)
+ w = TREE_INT_CST_LOW (t);
+ else
+ {
+ w = TREE_INT_CST_HIGH (t);
+ bitno -= HOST_BITS_PER_WIDE_INT;
+ }
+
+ return (w >> bitno) & 1;
+}
+
+/* Return an indication of the sign of the integer constant T.
+ The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
+ Note that -1 will never be returned if T's type is unsigned. */
+
+int
+tree_int_cst_sgn (const_tree t)
+{
+ if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
+ return 0;
+ else if (TYPE_UNSIGNED (TREE_TYPE (t)))
+ return 1;
+ else if (TREE_INT_CST_HIGH (t) < 0)
+ return -1;
+ else
+ return 1;
+}
+
+/* Return the minimum number of bits needed to represent VALUE in a
+ signed or unsigned type, UNSIGNEDP says which. */
+
+unsigned int
+tree_int_cst_min_precision (tree value, bool unsignedp)
+{
+ int log;
+
+ /* If the value is negative, compute its negative minus 1. The latter
+ adjustment is because the absolute value of the largest negative value
+ is one larger than the largest positive value. This is equivalent to
+ a bit-wise negation, so use that operation instead. */
+
+ if (tree_int_cst_sgn (value) < 0)
+ value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
+
+ /* Return the number of bits needed, taking into account the fact
+ that we need one more bit for a signed than unsigned type. */
+
+ if (integer_zerop (value))
+ log = 0;
+ else
+ log = tree_floor_log2 (value);
+
+ return log + 1 + !unsignedp;
+}
+
+/* Compare two constructor-element-type constants. Return 1 if the lists
+ are known to be equal; otherwise return 0. */
+
+int
+simple_cst_list_equal (const_tree l1, const_tree l2)
+{
+ while (l1 != NULL_TREE && l2 != NULL_TREE)
+ {
+ if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
+ return 0;
+
+ l1 = TREE_CHAIN (l1);
+ l2 = TREE_CHAIN (l2);
+ }
+
+ return l1 == l2;
+}
+
+/* Return truthvalue of whether T1 is the same tree structure as T2.
+ Return 1 if they are the same.
+ Return 0 if they are understandably different.
+ Return -1 if either contains tree structure not understood by
+ this function. */
+
+int
+simple_cst_equal (const_tree t1, const_tree t2)
+{
+ enum tree_code code1, code2;
+ int cmp;
+ int i;
+
+ if (t1 == t2)
+ return 1;
+ if (t1 == 0 || t2 == 0)
+ return 0;
+
+ code1 = TREE_CODE (t1);
+ code2 = TREE_CODE (t2);
+
+ if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
+ {
+ if (CONVERT_EXPR_CODE_P (code2)
+ || code2 == NON_LVALUE_EXPR)
+ return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+ else
+ return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
+ }
+
+ else if (CONVERT_EXPR_CODE_P (code2)
+ || code2 == NON_LVALUE_EXPR)
+ return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
+
+ if (code1 != code2)
+ return 0;
+
+ switch (code1)
+ {
+ case INTEGER_CST:
+ return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
+ && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
+
+ case REAL_CST:
+ return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
+
+ case FIXED_CST:
+ return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
+
+ case STRING_CST:
+ return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
+ && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
+ TREE_STRING_LENGTH (t1)));
+
+ case CONSTRUCTOR:
+ {
+ unsigned HOST_WIDE_INT idx;
+ vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
+ vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
+
+ if (vec_safe_length (v1) != vec_safe_length (v2))
+ return false;
+
+ for (idx = 0; idx < vec_safe_length (v1); ++idx)
+ /* ??? Should we handle also fields here? */
+ if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
+ return false;
+ return true;
+ }
+
+ case SAVE_EXPR:
+ return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+
+ case CALL_EXPR:
+ cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
+ if (cmp <= 0)
+ return cmp;
+ if (call_expr_nargs (t1) != call_expr_nargs (t2))
+ return 0;
+ {
+ const_tree arg1, arg2;
+ const_call_expr_arg_iterator iter1, iter2;
+ for (arg1 = first_const_call_expr_arg (t1, &iter1),
+ arg2 = first_const_call_expr_arg (t2, &iter2);
+ arg1 && arg2;
+ arg1 = next_const_call_expr_arg (&iter1),
+ arg2 = next_const_call_expr_arg (&iter2))
+ {
+ cmp = simple_cst_equal (arg1, arg2);
+ if (cmp <= 0)
+ return cmp;
+ }
+ return arg1 == arg2;
+ }
+
+ case TARGET_EXPR:
+ /* Special case: if either target is an unallocated VAR_DECL,
+ it means that it's going to be unified with whatever the
+ TARGET_EXPR is really supposed to initialize, so treat it
+ as being equivalent to anything. */
+ if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
+ && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
+ && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
+ || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
+ && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
+ && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
+ cmp = 1;
+ else
+ cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+
+ if (cmp <= 0)
+ return cmp;
+
+ return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
+
+ case WITH_CLEANUP_EXPR:
+ cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+ if (cmp <= 0)
+ return cmp;
+
+ return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
+
+ case COMPONENT_REF:
+ if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
+ return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
+
+ return 0;
+
+ case VAR_DECL:
+ case PARM_DECL:
+ case CONST_DECL:
+ case FUNCTION_DECL:
+ return 0;
+
+ default:
+ break;
+ }
+
+ /* This general rule works for most tree codes. All exceptions should be
+ handled above. If this is a language-specific tree code, we can't
+ trust what might be in the operand, so say we don't know
+ the situation. */
+ if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
+ return -1;
+
+ switch (TREE_CODE_CLASS (code1))
+ {
+ case tcc_unary:
+ case tcc_binary:
+ case tcc_comparison:
+ case tcc_expression:
+ case tcc_reference:
+ case tcc_statement:
+ cmp = 1;
+ for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
+ {
+ cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
+ if (cmp <= 0)
+ return cmp;
+ }
+
+ return cmp;
+
+ default:
+ return -1;
+ }
+}
+
+/* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
+ Return -1, 0, or 1 if the value of T is less than, equal to, or greater
+ than U, respectively. */
+
+int
+compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
+{
+ if (tree_int_cst_sgn (t) < 0)
+ return -1;
+ else if (TREE_INT_CST_HIGH (t) != 0)
+ return 1;
+ else if (TREE_INT_CST_LOW (t) == u)
+ return 0;
+ else if (TREE_INT_CST_LOW (t) < u)
+ return -1;
+ else
+ return 1;
+}
+
+/* Return true if SIZE represents a constant size that is in bounds of
+ what the middle-end and the backend accepts (covering not more than
+ half of the address-space). */
+
+bool
+valid_constant_size_p (const_tree size)
+{
+ if (! host_integerp (size, 1)
+ || TREE_OVERFLOW (size)
+ || tree_int_cst_sign_bit (size) != 0)
+ return false;
+ return true;
+}
+
+/* Return true if CODE represents an associative tree code. Otherwise
+ return false. */
+bool
+associative_tree_code (enum tree_code code)
+{
+ switch (code)
+ {
+ case BIT_IOR_EXPR:
+ case BIT_AND_EXPR:
+ case BIT_XOR_EXPR:
+ case PLUS_EXPR:
+ case MULT_EXPR:
+ case MIN_EXPR:
+ case MAX_EXPR:
+ return true;
+
+ default:
+ break;
+ }
+ return false;
+}
+
+/* Return true if CODE represents a commutative tree code. Otherwise
+ return false. */
+bool
+commutative_tree_code (enum tree_code code)
+{
+ switch (code)
+ {
+ case PLUS_EXPR:
+ case MULT_EXPR:
+ case MULT_HIGHPART_EXPR:
+ case MIN_EXPR:
+ case MAX_EXPR:
+ case BIT_IOR_EXPR:
+ case BIT_XOR_EXPR:
+ case BIT_AND_EXPR:
+ case NE_EXPR:
+ case EQ_EXPR:
+ case UNORDERED_EXPR:
+ case ORDERED_EXPR:
+ case UNEQ_EXPR:
+ case LTGT_EXPR:
+ case TRUTH_AND_EXPR:
+ case TRUTH_XOR_EXPR:
+ case TRUTH_OR_EXPR:
+ case WIDEN_MULT_EXPR:
+ case VEC_WIDEN_MULT_HI_EXPR:
+ case VEC_WIDEN_MULT_LO_EXPR:
+ case VEC_WIDEN_MULT_EVEN_EXPR:
+ case VEC_WIDEN_MULT_ODD_EXPR:
+ return true;
+
+ default:
+ break;
+ }
+ return false;
+}
+
+/* Return true if CODE represents a ternary tree code for which the
+ first two operands are commutative. Otherwise return false. */
+bool
+commutative_ternary_tree_code (enum tree_code code)
+{
+ switch (code)
+ {
+ case WIDEN_MULT_PLUS_EXPR:
+ case WIDEN_MULT_MINUS_EXPR:
+ return true;
+
+ default:
+ break;
+ }
+ return false;
+}
+
+/* Generate a hash value for an expression. This can be used iteratively
+ by passing a previous result as the VAL argument.
+
+ This function is intended to produce the same hash for expressions which
+ would compare equal using operand_equal_p. */
+
+hashval_t
+iterative_hash_expr (const_tree t, hashval_t val)
+{
+ int i;
+ enum tree_code code;
+ char tclass;
+
+ if (t == NULL_TREE)
+ return iterative_hash_hashval_t (0, val);
+
+ code = TREE_CODE (t);
+
+ switch (code)
+ {
+ /* Alas, constants aren't shared, so we can't rely on pointer
+ identity. */
+ case INTEGER_CST:
+ val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
+ return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
+ case REAL_CST:
+ {
+ unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
+
+ return iterative_hash_hashval_t (val2, val);
+ }
+ case FIXED_CST:
+ {
+ unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
+
+ return iterative_hash_hashval_t (val2, val);
+ }
+ case STRING_CST:
+ return iterative_hash (TREE_STRING_POINTER (t),
+ TREE_STRING_LENGTH (t), val);
+ case COMPLEX_CST:
+ val = iterative_hash_expr (TREE_REALPART (t), val);
+ return iterative_hash_expr (TREE_IMAGPART (t), val);
+ case VECTOR_CST:
+ {
+ unsigned i;
+ for (i = 0; i < VECTOR_CST_NELTS (t); ++i)
+ val = iterative_hash_expr (VECTOR_CST_ELT (t, i), val);
+ return val;
+ }
+ case SSA_NAME:
+ /* We can just compare by pointer. */
+ return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
+ case PLACEHOLDER_EXPR:
+ /* The node itself doesn't matter. */
+ return val;
+ case TREE_LIST:
+ /* A list of expressions, for a CALL_EXPR or as the elements of a
+ VECTOR_CST. */
+ for (; t; t = TREE_CHAIN (t))
+ val = iterative_hash_expr (TREE_VALUE (t), val);
+ return val;
+ case CONSTRUCTOR:
+ {
+ unsigned HOST_WIDE_INT idx;
+ tree field, value;
+ FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
+ {
+ val = iterative_hash_expr (field, val);
+ val = iterative_hash_expr (value, val);
+ }
+ return val;
+ }
+ case MEM_REF:
+ {
+ /* The type of the second operand is relevant, except for
+ its top-level qualifiers. */
+ tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
+
+ val = iterative_hash_object (TYPE_HASH (type), val);
+
+ /* We could use the standard hash computation from this point
+ on. */
+ val = iterative_hash_object (code, val);
+ val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
+ val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
+ return val;
+ }
+ case FUNCTION_DECL:
+ /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
+ Otherwise nodes that compare equal according to operand_equal_p might
+ get different hash codes. However, don't do this for machine specific
+ or front end builtins, since the function code is overloaded in those
+ cases. */
+ if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
+ && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
+ {
+ t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
+ code = TREE_CODE (t);
+ }
+ /* FALL THROUGH */
+ default:
+ tclass = TREE_CODE_CLASS (code);
+
+ if (tclass == tcc_declaration)
+ {
+ /* DECL's have a unique ID */
+ val = iterative_hash_host_wide_int (DECL_UID (t), val);
+ }
+ else
+ {
+ gcc_assert (IS_EXPR_CODE_CLASS (tclass));
+
+ val = iterative_hash_object (code, val);
+
+ /* Don't hash the type, that can lead to having nodes which
+ compare equal according to operand_equal_p, but which
+ have different hash codes. */
+ if (CONVERT_EXPR_CODE_P (code)
+ || code == NON_LVALUE_EXPR)
+ {
+ /* Make sure to include signness in the hash computation. */
+ val += TYPE_UNSIGNED (TREE_TYPE (t));
+ val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
+ }
+
+ else if (commutative_tree_code (code))
+ {
+ /* It's a commutative expression. We want to hash it the same
+ however it appears. We do this by first hashing both operands
+ and then rehashing based on the order of their independent
+ hashes. */
+ hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
+ hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
+ hashval_t t;
+
+ if (one > two)
+ t = one, one = two, two = t;
+
+ val = iterative_hash_hashval_t (one, val);
+ val = iterative_hash_hashval_t (two, val);
+ }
+ else
+ for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
+ val = iterative_hash_expr (TREE_OPERAND (t, i), val);
+ }
+ return val;
+ }
+}
+
+/* Generate a hash value for a pair of expressions. This can be used
+ iteratively by passing a previous result as the VAL argument.
+
+ The same hash value is always returned for a given pair of expressions,
+ regardless of the order in which they are presented. This is useful in
+ hashing the operands of commutative functions. */
+
+hashval_t
+iterative_hash_exprs_commutative (const_tree t1,
+ const_tree t2, hashval_t val)
+{
+ hashval_t one = iterative_hash_expr (t1, 0);
+ hashval_t two = iterative_hash_expr (t2, 0);
+ hashval_t t;
+
+ if (one > two)
+ t = one, one = two, two = t;
+ val = iterative_hash_hashval_t (one, val);
+ val = iterative_hash_hashval_t (two, val);
+
+ return val;
+}
+
+/* Constructors for pointer, array and function types.
+ (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
+ constructed by language-dependent code, not here.) */
+
+/* Construct, lay out and return the type of pointers to TO_TYPE with
+ mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
+ reference all of memory. If such a type has already been
+ constructed, reuse it. */
+
+tree
+build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
+ bool can_alias_all)
+{
+ tree t;
+
+ if (to_type == error_mark_node)
+ return error_mark_node;
+
+ /* If the pointed-to type has the may_alias attribute set, force
+ a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
+ if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
+ can_alias_all = true;
+
+ /* In some cases, languages will have things that aren't a POINTER_TYPE
+ (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
+ In that case, return that type without regard to the rest of our
+ operands.
+
+ ??? This is a kludge, but consistent with the way this function has
+ always operated and there doesn't seem to be a good way to avoid this
+ at the moment. */
+ if (TYPE_POINTER_TO (to_type) != 0
+ && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
+ return TYPE_POINTER_TO (to_type);
+
+ /* First, if we already have a type for pointers to TO_TYPE and it's
+ the proper mode, use it. */
+ for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
+ if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
+ return t;
+
+ t = make_node (POINTER_TYPE);
+
+ TREE_TYPE (t) = to_type;
+ SET_TYPE_MODE (t, mode);
+ TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
+ TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
+ TYPE_POINTER_TO (to_type) = t;
+
+ if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (to_type) != to_type)
+ TYPE_CANONICAL (t)
+ = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
+ mode, can_alias_all);
+
+ /* Lay out the type. This function has many callers that are concerned
+ with expression-construction, and this simplifies them all. */
+ layout_type (t);
+
+ return t;
+}
+
+/* By default build pointers in ptr_mode. */
+
+tree
+build_pointer_type (tree to_type)
+{
+ addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
+ : TYPE_ADDR_SPACE (to_type);
+ enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
+ return build_pointer_type_for_mode (to_type, pointer_mode, false);
+}
+
+/* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
+
+tree
+build_reference_type_for_mode (tree to_type, enum machine_mode mode,
+ bool can_alias_all)
+{
+ tree t;
+
+ if (to_type == error_mark_node)
+ return error_mark_node;
+
+ /* If the pointed-to type has the may_alias attribute set, force
+ a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
+ if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
+ can_alias_all = true;
+
+ /* In some cases, languages will have things that aren't a REFERENCE_TYPE
+ (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
+ In that case, return that type without regard to the rest of our
+ operands.
+
+ ??? This is a kludge, but consistent with the way this function has
+ always operated and there doesn't seem to be a good way to avoid this
+ at the moment. */
+ if (TYPE_REFERENCE_TO (to_type) != 0
+ && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
+ return TYPE_REFERENCE_TO (to_type);
+
+ /* First, if we already have a type for pointers to TO_TYPE and it's
+ the proper mode, use it. */
+ for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
+ if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
+ return t;
+
+ t = make_node (REFERENCE_TYPE);
+
+ TREE_TYPE (t) = to_type;
+ SET_TYPE_MODE (t, mode);
+ TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
+ TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
+ TYPE_REFERENCE_TO (to_type) = t;
+
+ if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (to_type) != to_type)
+ TYPE_CANONICAL (t)
+ = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
+ mode, can_alias_all);
+
+ layout_type (t);
+
+ return t;
+}
+
+
+/* Build the node for the type of references-to-TO_TYPE by default
+ in ptr_mode. */
+
+tree
+build_reference_type (tree to_type)
+{
+ addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
+ : TYPE_ADDR_SPACE (to_type);
+ enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
+ return build_reference_type_for_mode (to_type, pointer_mode, false);
+}
+
+/* Build a type that is compatible with t but has no cv quals anywhere
+ in its type, thus
+
+ const char *const *const * -> char ***. */
+
+tree
+build_type_no_quals (tree t)
+{
+ switch (TREE_CODE (t))
+ {
+ case POINTER_TYPE:
+ return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
+ TYPE_MODE (t),
+ TYPE_REF_CAN_ALIAS_ALL (t));
+ case REFERENCE_TYPE:
+ return
+ build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
+ TYPE_MODE (t),
+ TYPE_REF_CAN_ALIAS_ALL (t));
+ default:
+ return TYPE_MAIN_VARIANT (t);
+ }
+}
+
+#define MAX_INT_CACHED_PREC \
+ (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
+static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
+
+/* Builds a signed or unsigned integer type of precision PRECISION.
+ Used for C bitfields whose precision does not match that of
+ built-in target types. */
+tree
+build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
+ int unsignedp)
+{
+ tree itype, ret;
+
+ if (unsignedp)
+ unsignedp = MAX_INT_CACHED_PREC + 1;
+
+ if (precision <= MAX_INT_CACHED_PREC)
+ {
+ itype = nonstandard_integer_type_cache[precision + unsignedp];
+ if (itype)
+ return itype;
+ }
+
+ itype = make_node (INTEGER_TYPE);
+ TYPE_PRECISION (itype) = precision;
+
+ if (unsignedp)
+ fixup_unsigned_type (itype);
+ else
+ fixup_signed_type (itype);
+
+ ret = itype;
+ if (host_integerp (TYPE_MAX_VALUE (itype), 1))
+ ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
+ if (precision <= MAX_INT_CACHED_PREC)
+ nonstandard_integer_type_cache[precision + unsignedp] = ret;
+
+ return ret;
+}
+
+/* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
+ or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
+ is true, reuse such a type that has already been constructed. */
+
+static tree
+build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
+{
+ tree itype = make_node (INTEGER_TYPE);
+ hashval_t hashcode = 0;
+
+ TREE_TYPE (itype) = type;
+
+ TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
+ TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
+
+ TYPE_PRECISION (itype) = TYPE_PRECISION (type);
+ SET_TYPE_MODE (itype, TYPE_MODE (type));
+ TYPE_SIZE (itype) = TYPE_SIZE (type);
+ TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
+ TYPE_ALIGN (itype) = TYPE_ALIGN (type);
+ TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
+
+ if (!shared)
+ return itype;
+
+ if ((TYPE_MIN_VALUE (itype)
+ && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
+ || (TYPE_MAX_VALUE (itype)
+ && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
+ {
+ /* Since we cannot reliably merge this type, we need to compare it using
+ structural equality checks. */
+ SET_TYPE_STRUCTURAL_EQUALITY (itype);
+ return itype;
+ }
+
+ hashcode = iterative_hash_expr (TYPE_MIN_VALUE (itype), hashcode);
+ hashcode = iterative_hash_expr (TYPE_MAX_VALUE (itype), hashcode);
+ hashcode = iterative_hash_hashval_t (TYPE_HASH (type), hashcode);
+ itype = type_hash_canon (hashcode, itype);
+
+ return itype;
+}
+
+/* Wrapper around build_range_type_1 with SHARED set to true. */
+
+tree
+build_range_type (tree type, tree lowval, tree highval)
+{
+ return build_range_type_1 (type, lowval, highval, true);
+}
+
+/* Wrapper around build_range_type_1 with SHARED set to false. */
+
+tree
+build_nonshared_range_type (tree type, tree lowval, tree highval)
+{
+ return build_range_type_1 (type, lowval, highval, false);
+}
+
+/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
+ MAXVAL should be the maximum value in the domain
+ (one less than the length of the array).
+
+ The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
+ We don't enforce this limit, that is up to caller (e.g. language front end).
+ The limit exists because the result is a signed type and we don't handle
+ sizes that use more than one HOST_WIDE_INT. */
+
+tree
+build_index_type (tree maxval)
+{
+ return build_range_type (sizetype, size_zero_node, maxval);
+}
+
+/* Return true if the debug information for TYPE, a subtype, should be emitted
+ as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
+ high bound, respectively. Sometimes doing so unnecessarily obfuscates the
+ debug info and doesn't reflect the source code. */
+
+bool
+subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
+{
+ tree base_type = TREE_TYPE (type), low, high;
+
+ /* Subrange types have a base type which is an integral type. */
+ if (!INTEGRAL_TYPE_P (base_type))
+ return false;
+
+ /* Get the real bounds of the subtype. */
+ if (lang_hooks.types.get_subrange_bounds)
+ lang_hooks.types.get_subrange_bounds (type, &low, &high);
+ else
+ {
+ low = TYPE_MIN_VALUE (type);
+ high = TYPE_MAX_VALUE (type);
+ }
+
+ /* If the type and its base type have the same representation and the same
+ name, then the type is not a subrange but a copy of the base type. */
+ if ((TREE_CODE (base_type) == INTEGER_TYPE
+ || TREE_CODE (base_type) == BOOLEAN_TYPE)
+ && int_size_in_bytes (type) == int_size_in_bytes (base_type)
+ && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
+ && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
+ {
+ tree type_name = TYPE_NAME (type);
+ tree base_type_name = TYPE_NAME (base_type);
+
+ if (type_name && TREE_CODE (type_name) == TYPE_DECL)
+ type_name = DECL_NAME (type_name);
+
+ if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
+ base_type_name = DECL_NAME (base_type_name);
+
+ if (type_name == base_type_name)
+ return false;
+ }
+
+ if (lowval)
+ *lowval = low;
+ if (highval)
+ *highval = high;
+ return true;
+}
+
+/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
+ and number of elements specified by the range of values of INDEX_TYPE.
+ If SHARED is true, reuse such a type that has already been constructed. */
+
+static tree
+build_array_type_1 (tree elt_type, tree index_type, bool shared)
+{
+ tree t;
+
+ if (TREE_CODE (elt_type) == FUNCTION_TYPE)
+ {
+ error ("arrays of functions are not meaningful");
+ elt_type = integer_type_node;
+ }
+
+ t = make_node (ARRAY_TYPE);
+ TREE_TYPE (t) = elt_type;
+ TYPE_DOMAIN (t) = index_type;
+ TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
+ layout_type (t);
+
+ /* If the element type is incomplete at this point we get marked for
+ structural equality. Do not record these types in the canonical
+ type hashtable. */
+ if (TYPE_STRUCTURAL_EQUALITY_P (t))
+ return t;
+
+ if (shared)
+ {
+ hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
+ if (index_type)
+ hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
+ t = type_hash_canon (hashcode, t);
+ }
+
+ if (TYPE_CANONICAL (t) == t)
+ {
+ if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
+ || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (elt_type) != elt_type
+ || (index_type && TYPE_CANONICAL (index_type) != index_type))
+ TYPE_CANONICAL (t)
+ = build_array_type_1 (TYPE_CANONICAL (elt_type),
+ index_type
+ ? TYPE_CANONICAL (index_type) : NULL_TREE,
+ shared);
+ }
+
+ return t;
+}
+
+/* Wrapper around build_array_type_1 with SHARED set to true. */
+
+tree
+build_array_type (tree elt_type, tree index_type)
+{
+ return build_array_type_1 (elt_type, index_type, true);
+}
+
+/* Wrapper around build_array_type_1 with SHARED set to false. */
+
+tree
+build_nonshared_array_type (tree elt_type, tree index_type)
+{
+ return build_array_type_1 (elt_type, index_type, false);
+}
+
+/* Return a representation of ELT_TYPE[NELTS], using indices of type
+ sizetype. */
+
+tree
+build_array_type_nelts (tree elt_type, unsigned HOST_WIDE_INT nelts)
+{
+ return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
+}
+
+/* Recursively examines the array elements of TYPE, until a non-array
+ element type is found. */
+
+tree
+strip_array_types (tree type)
+{
+ while (TREE_CODE (type) == ARRAY_TYPE)
+ type = TREE_TYPE (type);
+
+ return type;
+}
+
+/* Computes the canonical argument types from the argument type list
+ ARGTYPES.
+
+ Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
+ on entry to this function, or if any of the ARGTYPES are
+ structural.
+
+ Upon return, *ANY_NONCANONICAL_P will be true iff either it was
+ true on entry to this function, or if any of the ARGTYPES are
+ non-canonical.
+
+ Returns a canonical argument list, which may be ARGTYPES when the
+ canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
+ true) or would not differ from ARGTYPES. */
+
+static tree
+maybe_canonicalize_argtypes(tree argtypes,
+ bool *any_structural_p,
+ bool *any_noncanonical_p)
+{
+ tree arg;
+ bool any_noncanonical_argtypes_p = false;
+
+ for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
+ {
+ if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
+ /* Fail gracefully by stating that the type is structural. */
+ *any_structural_p = true;
+ else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
+ *any_structural_p = true;
+ else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
+ || TREE_PURPOSE (arg))
+ /* If the argument has a default argument, we consider it
+ non-canonical even though the type itself is canonical.
+ That way, different variants of function and method types
+ with default arguments will all point to the variant with
+ no defaults as their canonical type. */
+ any_noncanonical_argtypes_p = true;
+ }
+
+ if (*any_structural_p)
+ return argtypes;
+
+ if (any_noncanonical_argtypes_p)
+ {
+ /* Build the canonical list of argument types. */
+ tree canon_argtypes = NULL_TREE;
+ bool is_void = false;
+
+ for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
+ {
+ if (arg == void_list_node)
+ is_void = true;
+ else
+ canon_argtypes = tree_cons (NULL_TREE,
+ TYPE_CANONICAL (TREE_VALUE (arg)),
+ canon_argtypes);
+ }
+
+ canon_argtypes = nreverse (canon_argtypes);
+ if (is_void)
+ canon_argtypes = chainon (canon_argtypes, void_list_node);
+
+ /* There is a non-canonical type. */
+ *any_noncanonical_p = true;
+ return canon_argtypes;
+ }
+
+ /* The canonical argument types are the same as ARGTYPES. */
+ return argtypes;
+}
+
+/* Construct, lay out and return
+ the type of functions returning type VALUE_TYPE
+ given arguments of types ARG_TYPES.
+ ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
+ are data type nodes for the arguments of the function.
+ If such a type has already been constructed, reuse it. */
+
+tree
+build_function_type (tree value_type, tree arg_types)
+{
+ tree t;
+ hashval_t hashcode = 0;
+ bool any_structural_p, any_noncanonical_p;
+ tree canon_argtypes;
+
+ if (TREE_CODE (value_type) == FUNCTION_TYPE)
+ {
+ error ("function return type cannot be function");
+ value_type = integer_type_node;
+ }
+
+ /* Make a node of the sort we want. */
+ t = make_node (FUNCTION_TYPE);
+ TREE_TYPE (t) = value_type;
+ TYPE_ARG_TYPES (t) = arg_types;
+
+ /* If we already have such a type, use the old one. */
+ hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
+ hashcode = type_hash_list (arg_types, hashcode);
+ t = type_hash_canon (hashcode, t);
+
+ /* Set up the canonical type. */
+ any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
+ any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
+ canon_argtypes = maybe_canonicalize_argtypes (arg_types,
+ &any_structural_p,
+ &any_noncanonical_p);
+ if (any_structural_p)
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (any_noncanonical_p)
+ TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
+ canon_argtypes);
+
+ if (!COMPLETE_TYPE_P (t))
+ layout_type (t);
+ return t;
+}
+
+/* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP and the
+ return value if SKIP_RETURN is true. */
+
+static tree
+build_function_type_skip_args (tree orig_type, bitmap args_to_skip,
+ bool skip_return)
+{
+ tree new_type = NULL;
+ tree args, new_args = NULL, t;
+ tree new_reversed;
+ int i = 0;
+
+ for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
+ args = TREE_CHAIN (args), i++)
+ if (!args_to_skip || !bitmap_bit_p (args_to_skip, i))
+ new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
+
+ new_reversed = nreverse (new_args);
+ if (args)
+ {
+ if (new_reversed)
+ TREE_CHAIN (new_args) = void_list_node;
+ else
+ new_reversed = void_list_node;
+ }
+
+ /* Use copy_node to preserve as much as possible from original type
+ (debug info, attribute lists etc.)
+ Exception is METHOD_TYPEs must have THIS argument.
+ When we are asked to remove it, we need to build new FUNCTION_TYPE
+ instead. */
+ if (TREE_CODE (orig_type) != METHOD_TYPE
+ || !args_to_skip
+ || !bitmap_bit_p (args_to_skip, 0))
+ {
+ new_type = build_distinct_type_copy (orig_type);
+ TYPE_ARG_TYPES (new_type) = new_reversed;
+ }
+ else
+ {
+ new_type
+ = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
+ new_reversed));
+ TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
+ }
+
+ if (skip_return)
+ TREE_TYPE (new_type) = void_type_node;
+
+ /* This is a new type, not a copy of an old type. Need to reassociate
+ variants. We can handle everything except the main variant lazily. */
+ t = TYPE_MAIN_VARIANT (orig_type);
+ if (t != orig_type)
+ {
+ t = build_function_type_skip_args (t, args_to_skip, skip_return);
+ TYPE_MAIN_VARIANT (new_type) = t;
+ TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
+ TYPE_NEXT_VARIANT (t) = new_type;
+ }
+ else
+ {
+ TYPE_MAIN_VARIANT (new_type) = new_type;
+ TYPE_NEXT_VARIANT (new_type) = NULL;
+ }
+
+ return new_type;
+}
+
+/* Build variant of function decl ORIG_DECL skipping ARGS_TO_SKIP and the
+ return value if SKIP_RETURN is true.
+
+ Arguments from DECL_ARGUMENTS list can't be removed now, since they are
+ linked by TREE_CHAIN directly. The caller is responsible for eliminating
+ them when they are being duplicated (i.e. copy_arguments_for_versioning). */
+
+tree
+build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip,
+ bool skip_return)
+{
+ tree new_decl = copy_node (orig_decl);
+ tree new_type;
+
+ new_type = TREE_TYPE (orig_decl);
+ if (prototype_p (new_type)
+ || (skip_return && !VOID_TYPE_P (TREE_TYPE (new_type))))
+ new_type
+ = build_function_type_skip_args (new_type, args_to_skip, skip_return);
+ TREE_TYPE (new_decl) = new_type;
+
+ /* For declarations setting DECL_VINDEX (i.e. methods)
+ we expect first argument to be THIS pointer. */
+ if (args_to_skip && bitmap_bit_p (args_to_skip, 0))
+ DECL_VINDEX (new_decl) = NULL_TREE;
+
+ /* When signature changes, we need to clear builtin info. */
+ if (DECL_BUILT_IN (new_decl)
+ && args_to_skip
+ && !bitmap_empty_p (args_to_skip))
+ {
+ DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
+ DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
+ }
+ return new_decl;
+}
+
+/* Build a function type. The RETURN_TYPE is the type returned by the
+ function. If VAARGS is set, no void_type_node is appended to the
+ the list. ARGP must be always be terminated be a NULL_TREE. */
+
+static tree
+build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
+{
+ tree t, args, last;
+
+ t = va_arg (argp, tree);
+ for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
+ args = tree_cons (NULL_TREE, t, args);
+
+ if (vaargs)
+ {
+ last = args;
+ if (args != NULL_TREE)
+ args = nreverse (args);
+ gcc_assert (last != void_list_node);
+ }
+ else if (args == NULL_TREE)
+ args = void_list_node;
+ else
+ {
+ last = args;
+ args = nreverse (args);
+ TREE_CHAIN (last) = void_list_node;
+ }
+ args = build_function_type (return_type, args);
+
+ return args;
+}
+
+/* Build a function type. The RETURN_TYPE is the type returned by the
+ function. If additional arguments are provided, they are
+ additional argument types. The list of argument types must always
+ be terminated by NULL_TREE. */
+
+tree
+build_function_type_list (tree return_type, ...)
+{
+ tree args;
+ va_list p;
+
+ va_start (p, return_type);
+ args = build_function_type_list_1 (false, return_type, p);
+ va_end (p);
+ return args;
+}
+
+/* Build a variable argument function type. The RETURN_TYPE is the
+ type returned by the function. If additional arguments are provided,
+ they are additional argument types. The list of argument types must
+ always be terminated by NULL_TREE. */
+
+tree
+build_varargs_function_type_list (tree return_type, ...)
+{
+ tree args;
+ va_list p;
+
+ va_start (p, return_type);
+ args = build_function_type_list_1 (true, return_type, p);
+ va_end (p);
+
+ return args;
+}
+
+/* Build a function type. RETURN_TYPE is the type returned by the
+ function; VAARGS indicates whether the function takes varargs. The
+ function takes N named arguments, the types of which are provided in
+ ARG_TYPES. */
+
+static tree
+build_function_type_array_1 (bool vaargs, tree return_type, int n,
+ tree *arg_types)
+{
+ int i;
+ tree t = vaargs ? NULL_TREE : void_list_node;
+
+ for (i = n - 1; i >= 0; i--)
+ t = tree_cons (NULL_TREE, arg_types[i], t);
+
+ return build_function_type (return_type, t);
+}
+
+/* Build a function type. RETURN_TYPE is the type returned by the
+ function. The function takes N named arguments, the types of which
+ are provided in ARG_TYPES. */
+
+tree
+build_function_type_array (tree return_type, int n, tree *arg_types)
+{
+ return build_function_type_array_1 (false, return_type, n, arg_types);
+}
+
+/* Build a variable argument function type. RETURN_TYPE is the type
+ returned by the function. The function takes N named arguments, the
+ types of which are provided in ARG_TYPES. */
+
+tree
+build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
+{
+ return build_function_type_array_1 (true, return_type, n, arg_types);
+}
+
+/* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
+ and ARGTYPES (a TREE_LIST) are the return type and arguments types
+ for the method. An implicit additional parameter (of type
+ pointer-to-BASETYPE) is added to the ARGTYPES. */
+
+tree
+build_method_type_directly (tree basetype,
+ tree rettype,
+ tree argtypes)
+{
+ tree t;
+ tree ptype;
+ int hashcode = 0;
+ bool any_structural_p, any_noncanonical_p;
+ tree canon_argtypes;
+
+ /* Make a node of the sort we want. */
+ t = make_node (METHOD_TYPE);
+
+ TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
+ TREE_TYPE (t) = rettype;
+ ptype = build_pointer_type (basetype);
+
+ /* The actual arglist for this function includes a "hidden" argument
+ which is "this". Put it into the list of argument types. */
+ argtypes = tree_cons (NULL_TREE, ptype, argtypes);
+ TYPE_ARG_TYPES (t) = argtypes;
+
+ /* If we already have such a type, use the old one. */
+ hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
+ hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
+ hashcode = type_hash_list (argtypes, hashcode);
+ t = type_hash_canon (hashcode, t);
+
+ /* Set up the canonical type. */
+ any_structural_p
+ = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
+ || TYPE_STRUCTURAL_EQUALITY_P (rettype));
+ any_noncanonical_p
+ = (TYPE_CANONICAL (basetype) != basetype
+ || TYPE_CANONICAL (rettype) != rettype);
+ canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
+ &any_structural_p,
+ &any_noncanonical_p);
+ if (any_structural_p)
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (any_noncanonical_p)
+ TYPE_CANONICAL (t)
+ = build_method_type_directly (TYPE_CANONICAL (basetype),
+ TYPE_CANONICAL (rettype),
+ canon_argtypes);
+ if (!COMPLETE_TYPE_P (t))
+ layout_type (t);
+
+ return t;
+}
+
+/* Construct, lay out and return the type of methods belonging to class
+ BASETYPE and whose arguments and values are described by TYPE.
+ If that type exists already, reuse it.
+ TYPE must be a FUNCTION_TYPE node. */
+
+tree
+build_method_type (tree basetype, tree type)
+{
+ gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
+
+ return build_method_type_directly (basetype,
+ TREE_TYPE (type),
+ TYPE_ARG_TYPES (type));
+}
+
+/* Construct, lay out and return the type of offsets to a value
+ of type TYPE, within an object of type BASETYPE.
+ If a suitable offset type exists already, reuse it. */
+
+tree
+build_offset_type (tree basetype, tree type)
+{
+ tree t;
+ hashval_t hashcode = 0;
+
+ /* Make a node of the sort we want. */
+ t = make_node (OFFSET_TYPE);
+
+ TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
+ TREE_TYPE (t) = type;
+
+ /* If we already have such a type, use the old one. */
+ hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
+ hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
+ t = type_hash_canon (hashcode, t);
+
+ if (!COMPLETE_TYPE_P (t))
+ layout_type (t);
+
+ if (TYPE_CANONICAL (t) == t)
+ {
+ if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
+ || TYPE_STRUCTURAL_EQUALITY_P (type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
+ || TYPE_CANONICAL (type) != type)
+ TYPE_CANONICAL (t)
+ = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
+ TYPE_CANONICAL (type));
+ }
+
+ return t;
+}
+
+/* Create a complex type whose components are COMPONENT_TYPE. */
+
+tree
+build_complex_type (tree component_type)
+{
+ tree t;
+ hashval_t hashcode;
+
+ gcc_assert (INTEGRAL_TYPE_P (component_type)
+ || SCALAR_FLOAT_TYPE_P (component_type)
+ || FIXED_POINT_TYPE_P (component_type));
+
+ /* Make a node of the sort we want. */
+ t = make_node (COMPLEX_TYPE);
+
+ TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
+
+ /* If we already have such a type, use the old one. */
+ hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
+ t = type_hash_canon (hashcode, t);
+
+ if (!COMPLETE_TYPE_P (t))
+ layout_type (t);
+
+ if (TYPE_CANONICAL (t) == t)
+ {
+ if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (component_type) != component_type)
+ TYPE_CANONICAL (t)
+ = build_complex_type (TYPE_CANONICAL (component_type));
+ }
+
+ /* We need to create a name, since complex is a fundamental type. */
+ if (! TYPE_NAME (t))
+ {
+ const char *name;
+ if (component_type == char_type_node)
+ name = "complex char";
+ else if (component_type == signed_char_type_node)
+ name = "complex signed char";
+ else if (component_type == unsigned_char_type_node)
+ name = "complex unsigned char";
+ else if (component_type == short_integer_type_node)
+ name = "complex short int";
+ else if (component_type == short_unsigned_type_node)
+ name = "complex short unsigned int";
+ else if (component_type == integer_type_node)
+ name = "complex int";
+ else if (component_type == unsigned_type_node)
+ name = "complex unsigned int";
+ else if (component_type == long_integer_type_node)
+ name = "complex long int";
+ else if (component_type == long_unsigned_type_node)
+ name = "complex long unsigned int";
+ else if (component_type == long_long_integer_type_node)
+ name = "complex long long int";
+ else if (component_type == long_long_unsigned_type_node)
+ name = "complex long long unsigned int";
+ else
+ name = 0;
+
+ if (name != 0)
+ TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
+ get_identifier (name), t);
+ }
+
+ return build_qualified_type (t, TYPE_QUALS (component_type));
+}
+
+/* If TYPE is a real or complex floating-point type and the target
+ does not directly support arithmetic on TYPE then return the wider
+ type to be used for arithmetic on TYPE. Otherwise, return
+ NULL_TREE. */
+
+tree
+excess_precision_type (tree type)
+{
+ if (flag_excess_precision != EXCESS_PRECISION_FAST)
+ {
+ int flt_eval_method = TARGET_FLT_EVAL_METHOD;
+ switch (TREE_CODE (type))
+ {
+ case REAL_TYPE:
+ switch (flt_eval_method)
+ {
+ case 1:
+ if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
+ return double_type_node;
+ break;
+ case 2:
+ if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
+ || TYPE_MODE (type) == TYPE_MODE (double_type_node))
+ return long_double_type_node;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ break;
+ case COMPLEX_TYPE:
+ if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
+ return NULL_TREE;
+ switch (flt_eval_method)
+ {
+ case 1:
+ if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
+ return complex_double_type_node;
+ break;
+ case 2:
+ if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
+ || (TYPE_MODE (TREE_TYPE (type))
+ == TYPE_MODE (double_type_node)))
+ return complex_long_double_type_node;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ return NULL_TREE;
+}
+
+/* Return OP, stripped of any conversions to wider types as much as is safe.
+ Converting the value back to OP's type makes a value equivalent to OP.
+
+ If FOR_TYPE is nonzero, we return a value which, if converted to
+ type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
+
+ OP must have integer, real or enumeral type. Pointers are not allowed!
+
+ There are some cases where the obvious value we could return
+ would regenerate to OP if converted to OP's type,
+ but would not extend like OP to wider types.
+ If FOR_TYPE indicates such extension is contemplated, we eschew such values.
+ For example, if OP is (unsigned short)(signed char)-1,
+ we avoid returning (signed char)-1 if FOR_TYPE is int,
+ even though extending that to an unsigned short would regenerate OP,
+ since the result of extending (signed char)-1 to (int)
+ is different from (int) OP. */
+
+tree
+get_unwidened (tree op, tree for_type)
+{
+ /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
+ tree type = TREE_TYPE (op);
+ unsigned final_prec
+ = TYPE_PRECISION (for_type != 0 ? for_type : type);
+ int uns
+ = (for_type != 0 && for_type != type
+ && final_prec > TYPE_PRECISION (type)
+ && TYPE_UNSIGNED (type));
+ tree win = op;
+
+ while (CONVERT_EXPR_P (op))
+ {
+ int bitschange;
+
+ /* TYPE_PRECISION on vector types has different meaning
+ (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
+ so avoid them here. */
+ if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
+ break;
+
+ bitschange = TYPE_PRECISION (TREE_TYPE (op))
+ - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
+
+ /* Truncations are many-one so cannot be removed.
+ Unless we are later going to truncate down even farther. */
+ if (bitschange < 0
+ && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
+ break;
+
+ /* See what's inside this conversion. If we decide to strip it,
+ we will set WIN. */
+ op = TREE_OPERAND (op, 0);
+
+ /* If we have not stripped any zero-extensions (uns is 0),
+ we can strip any kind of extension.
+ If we have previously stripped a zero-extension,
+ only zero-extensions can safely be stripped.
+ Any extension can be stripped if the bits it would produce
+ are all going to be discarded later by truncating to FOR_TYPE. */
+
+ if (bitschange > 0)
+ {
+ if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
+ win = op;
+ /* TYPE_UNSIGNED says whether this is a zero-extension.
+ Let's avoid computing it if it does not affect WIN
+ and if UNS will not be needed again. */
+ if ((uns
+ || CONVERT_EXPR_P (op))
+ && TYPE_UNSIGNED (TREE_TYPE (op)))
+ {
+ uns = 1;
+ win = op;
+ }
+ }
+ }
+
+ /* If we finally reach a constant see if it fits in for_type and
+ in that case convert it. */
+ if (for_type
+ && TREE_CODE (win) == INTEGER_CST
+ && TREE_TYPE (win) != for_type
+ && int_fits_type_p (win, for_type))
+ win = fold_convert (for_type, win);
+
+ return win;
+}
+
+/* Return OP or a simpler expression for a narrower value
+ which can be sign-extended or zero-extended to give back OP.
+ Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
+ or 0 if the value should be sign-extended. */
+
+tree
+get_narrower (tree op, int *unsignedp_ptr)
+{
+ int uns = 0;
+ int first = 1;
+ tree win = op;
+ bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
+
+ while (TREE_CODE (op) == NOP_EXPR)
+ {
+ int bitschange
+ = (TYPE_PRECISION (TREE_TYPE (op))
+ - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
+
+ /* Truncations are many-one so cannot be removed. */
+ if (bitschange < 0)
+ break;
+
+ /* See what's inside this conversion. If we decide to strip it,
+ we will set WIN. */
+
+ if (bitschange > 0)
+ {
+ op = TREE_OPERAND (op, 0);
+ /* An extension: the outermost one can be stripped,
+ but remember whether it is zero or sign extension. */
+ if (first)
+ uns = TYPE_UNSIGNED (TREE_TYPE (op));
+ /* Otherwise, if a sign extension has been stripped,
+ only sign extensions can now be stripped;
+ if a zero extension has been stripped, only zero-extensions. */
+ else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
+ break;
+ first = 0;
+ }
+ else /* bitschange == 0 */
+ {
+ /* A change in nominal type can always be stripped, but we must
+ preserve the unsignedness. */
+ if (first)
+ uns = TYPE_UNSIGNED (TREE_TYPE (op));
+ first = 0;
+ op = TREE_OPERAND (op, 0);
+ /* Keep trying to narrow, but don't assign op to win if it
+ would turn an integral type into something else. */
+ if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
+ continue;
+ }
+
+ win = op;
+ }
+
+ if (TREE_CODE (op) == COMPONENT_REF
+ /* Since type_for_size always gives an integer type. */
+ && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
+ && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
+ /* Ensure field is laid out already. */
+ && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
+ && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
+ {
+ unsigned HOST_WIDE_INT innerprec
+ = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
+ int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
+ || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
+ tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
+
+ /* We can get this structure field in a narrower type that fits it,
+ but the resulting extension to its nominal type (a fullword type)
+ must satisfy the same conditions as for other extensions.
+
+ Do this only for fields that are aligned (not bit-fields),
+ because when bit-field insns will be used there is no
+ advantage in doing this. */
+
+ if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
+ && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
+ && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
+ && type != 0)
+ {
+ if (first)
+ uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
+ win = fold_convert (type, op);
+ }
+ }
+
+ *unsignedp_ptr = uns;
+ return win;
+}
+
+/* Returns true if integer constant C has a value that is permissible
+ for type TYPE (an INTEGER_TYPE). */
+
+bool
+int_fits_type_p (const_tree c, const_tree type)
+{
+ tree type_low_bound, type_high_bound;
+ bool ok_for_low_bound, ok_for_high_bound, unsc;
+ double_int dc, dd;
+
+ dc = tree_to_double_int (c);
+ unsc = TYPE_UNSIGNED (TREE_TYPE (c));
+
+retry:
+ type_low_bound = TYPE_MIN_VALUE (type);
+ type_high_bound = TYPE_MAX_VALUE (type);
+
+ /* If at least one bound of the type is a constant integer, we can check
+ ourselves and maybe make a decision. If no such decision is possible, but
+ this type is a subtype, try checking against that. Otherwise, use
+ double_int_fits_to_tree_p, which checks against the precision.
+
+ Compute the status for each possibly constant bound, and return if we see
+ one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
+ for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
+ for "constant known to fit". */
+
+ /* Check if c >= type_low_bound. */
+ if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
+ {
+ dd = tree_to_double_int (type_low_bound);
+ if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
+ {
+ int c_neg = (!unsc && dc.is_negative ());
+ int t_neg = (unsc && dd.is_negative ());
+
+ if (c_neg && !t_neg)
+ return false;
+ if ((c_neg || !t_neg) && dc.ult (dd))
+ return false;
+ }
+ else if (dc.cmp (dd, unsc) < 0)
+ return false;
+ ok_for_low_bound = true;
+ }
+ else
+ ok_for_low_bound = false;
+
+ /* Check if c <= type_high_bound. */
+ if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
+ {
+ dd = tree_to_double_int (type_high_bound);
+ if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
+ {
+ int c_neg = (!unsc && dc.is_negative ());
+ int t_neg = (unsc && dd.is_negative ());
+
+ if (t_neg && !c_neg)
+ return false;
+ if ((t_neg || !c_neg) && dc.ugt (dd))
+ return false;
+ }
+ else if (dc.cmp (dd, unsc) > 0)
+ return false;
+ ok_for_high_bound = true;
+ }
+ else
+ ok_for_high_bound = false;
+
+ /* If the constant fits both bounds, the result is known. */
+ if (ok_for_low_bound && ok_for_high_bound)
+ return true;
+
+ /* Perform some generic filtering which may allow making a decision
+ even if the bounds are not constant. First, negative integers
+ never fit in unsigned types, */
+ if (TYPE_UNSIGNED (type) && !unsc && dc.is_negative ())
+ return false;
+
+ /* Second, narrower types always fit in wider ones. */
+ if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
+ return true;
+
+ /* Third, unsigned integers with top bit set never fit signed types. */
+ if (! TYPE_UNSIGNED (type) && unsc)
+ {
+ int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
+ if (prec < HOST_BITS_PER_WIDE_INT)
+ {
+ if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
+ return false;
+ }
+ else if (((((unsigned HOST_WIDE_INT) 1)
+ << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
+ return false;
+ }
+
+ /* If we haven't been able to decide at this point, there nothing more we
+ can check ourselves here. Look at the base type if we have one and it
+ has the same precision. */
+ if (TREE_CODE (type) == INTEGER_TYPE
+ && TREE_TYPE (type) != 0
+ && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
+ {
+ type = TREE_TYPE (type);
+ goto retry;
+ }
+
+ /* Or to double_int_fits_to_tree_p, if nothing else. */
+ return double_int_fits_to_tree_p (type, dc);
+}
+
+/* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
+ bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
+ represented (assuming two's-complement arithmetic) within the bit
+ precision of the type are returned instead. */
+
+void
+get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
+{
+ if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
+ && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
+ mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
+ TYPE_UNSIGNED (type));
+ else
+ {
+ if (TYPE_UNSIGNED (type))
+ mpz_set_ui (min, 0);
+ else
+ {
+ double_int mn;
+ mn = double_int::mask (TYPE_PRECISION (type) - 1);
+ mn = (mn + double_int_one).sext (TYPE_PRECISION (type));
+ mpz_set_double_int (min, mn, false);
+ }
+ }
+
+ if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
+ && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
+ mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
+ TYPE_UNSIGNED (type));
+ else
+ {
+ if (TYPE_UNSIGNED (type))
+ mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)),
+ true);
+ else
+ mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type) - 1),
+ true);
+ }
+}
+
+/* Return true if VAR is an automatic variable defined in function FN. */
+
+bool
+auto_var_in_fn_p (const_tree var, const_tree fn)
+{
+ return (DECL_P (var) && DECL_CONTEXT (var) == fn
+ && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
+ || TREE_CODE (var) == PARM_DECL)
+ && ! TREE_STATIC (var))
+ || TREE_CODE (var) == LABEL_DECL
+ || TREE_CODE (var) == RESULT_DECL));
+}
+
+/* Subprogram of following function. Called by walk_tree.
+
+ Return *TP if it is an automatic variable or parameter of the
+ function passed in as DATA. */
+
+static tree
+find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
+{
+ tree fn = (tree) data;
+
+ if (TYPE_P (*tp))
+ *walk_subtrees = 0;
+
+ else if (DECL_P (*tp)
+ && auto_var_in_fn_p (*tp, fn))
+ return *tp;
+
+ return NULL_TREE;
+}
+
+/* Returns true if T is, contains, or refers to a type with variable
+ size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
+ arguments, but not the return type. If FN is nonzero, only return
+ true if a modifier of the type or position of FN is a variable or
+ parameter inside FN.
+
+ This concept is more general than that of C99 'variably modified types':
+ in C99, a struct type is never variably modified because a VLA may not
+ appear as a structure member. However, in GNU C code like:
+
+ struct S { int i[f()]; };
+
+ is valid, and other languages may define similar constructs. */
+
+bool
+variably_modified_type_p (tree type, tree fn)
+{
+ tree t;
+
+/* Test if T is either variable (if FN is zero) or an expression containing
+ a variable in FN. If TYPE isn't gimplified, return true also if
+ gimplify_one_sizepos would gimplify the expression into a local
+ variable. */
+#define RETURN_TRUE_IF_VAR(T) \
+ do { tree _t = (T); \
+ if (_t != NULL_TREE \
+ && _t != error_mark_node \
+ && TREE_CODE (_t) != INTEGER_CST \
+ && TREE_CODE (_t) != PLACEHOLDER_EXPR \
+ && (!fn \
+ || (!TYPE_SIZES_GIMPLIFIED (type) \
+ && !is_gimple_sizepos (_t)) \
+ || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
+ return true; } while (0)
+
+ if (type == error_mark_node)
+ return false;
+
+ /* If TYPE itself has variable size, it is variably modified. */
+ RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
+ RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
+
+ switch (TREE_CODE (type))
+ {
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ case VECTOR_TYPE:
+ if (variably_modified_type_p (TREE_TYPE (type), fn))
+ return true;
+ break;
+
+ case FUNCTION_TYPE:
+ case METHOD_TYPE:
+ /* If TYPE is a function type, it is variably modified if the
+ return type is variably modified. */
+ if (variably_modified_type_p (TREE_TYPE (type), fn))
+ return true;
+ break;
+
+ case INTEGER_TYPE:
+ case REAL_TYPE:
+ case FIXED_POINT_TYPE:
+ case ENUMERAL_TYPE:
+ case BOOLEAN_TYPE:
+ /* Scalar types are variably modified if their end points
+ aren't constant. */
+ RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
+ RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
+ break;
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ /* We can't see if any of the fields are variably-modified by the
+ definition we normally use, since that would produce infinite
+ recursion via pointers. */
+ /* This is variably modified if some field's type is. */
+ for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
+ if (TREE_CODE (t) == FIELD_DECL)
+ {
+ RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
+ RETURN_TRUE_IF_VAR (DECL_SIZE (t));
+ RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
+
+ if (TREE_CODE (type) == QUAL_UNION_TYPE)
+ RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
+ }
+ break;
+
+ case ARRAY_TYPE:
+ /* Do not call ourselves to avoid infinite recursion. This is
+ variably modified if the element type is. */
+ RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
+ RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
+ break;
+
+ default:
+ break;
+ }
+
+ /* The current language may have other cases to check, but in general,
+ all other types are not variably modified. */
+ return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
+
+#undef RETURN_TRUE_IF_VAR
+}
+
+/* Given a DECL or TYPE, return the scope in which it was declared, or
+ NULL_TREE if there is no containing scope. */
+
+tree
+get_containing_scope (const_tree t)
+{
+ return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
+}
+
+/* Return the innermost context enclosing DECL that is
+ a FUNCTION_DECL, or zero if none. */
+
+tree
+decl_function_context (const_tree decl)
+{
+ tree context;
+
+ if (TREE_CODE (decl) == ERROR_MARK)
+ return 0;
+
+ /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
+ where we look up the function at runtime. Such functions always take
+ a first argument of type 'pointer to real context'.
+
+ C++ should really be fixed to use DECL_CONTEXT for the real context,
+ and use something else for the "virtual context". */
+ else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
+ context
+ = TYPE_MAIN_VARIANT
+ (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
+ else
+ context = DECL_CONTEXT (decl);
+
+ while (context && TREE_CODE (context) != FUNCTION_DECL)
+ {
+ if (TREE_CODE (context) == BLOCK)
+ context = BLOCK_SUPERCONTEXT (context);
+ else
+ context = get_containing_scope (context);
+ }
+
+ return context;
+}
+
+/* Return the innermost context enclosing DECL that is
+ a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
+ TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
+
+tree
+decl_type_context (const_tree decl)
+{
+ tree context = DECL_CONTEXT (decl);
+
+ while (context)
+ switch (TREE_CODE (context))
+ {
+ case NAMESPACE_DECL:
+ case TRANSLATION_UNIT_DECL:
+ return NULL_TREE;
+
+ case RECORD_TYPE:
+ case UNION_TYPE:
+ case QUAL_UNION_TYPE:
+ return context;
+
+ case TYPE_DECL:
+ case FUNCTION_DECL:
+ context = DECL_CONTEXT (context);
+ break;
+
+ case BLOCK:
+ context = BLOCK_SUPERCONTEXT (context);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return NULL_TREE;
+}
+
+/* CALL is a CALL_EXPR. Return the declaration for the function
+ called, or NULL_TREE if the called function cannot be
+ determined. */
+
+tree
+get_callee_fndecl (const_tree call)
+{
+ tree addr;
+
+ if (call == error_mark_node)
+ return error_mark_node;
+
+ /* It's invalid to call this function with anything but a
+ CALL_EXPR. */
+ gcc_assert (TREE_CODE (call) == CALL_EXPR);
+
+ /* The first operand to the CALL is the address of the function
+ called. */
+ addr = CALL_EXPR_FN (call);
+
+ STRIP_NOPS (addr);
+
+ /* If this is a readonly function pointer, extract its initial value. */
+ if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
+ && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
+ && DECL_INITIAL (addr))
+ addr = DECL_INITIAL (addr);
+
+ /* If the address is just `&f' for some function `f', then we know
+ that `f' is being called. */
+ if (TREE_CODE (addr) == ADDR_EXPR
+ && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
+ return TREE_OPERAND (addr, 0);
+
+ /* We couldn't figure out what was being called. */
+ return NULL_TREE;
+}
+
+/* Print debugging information about tree nodes generated during the compile,
+ and any language-specific information. */
+
+void
+dump_tree_statistics (void)
+{
+ if (GATHER_STATISTICS)
+ {
+ int i;
+ int total_nodes, total_bytes;
+ fprintf (stderr, "Kind Nodes Bytes\n");
+ fprintf (stderr, "---------------------------------------\n");
+ total_nodes = total_bytes = 0;
+ for (i = 0; i < (int) all_kinds; i++)
+ {
+ fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
+ tree_node_counts[i], tree_node_sizes[i]);
+ total_nodes += tree_node_counts[i];
+ total_bytes += tree_node_sizes[i];
+ }
+ fprintf (stderr, "---------------------------------------\n");
+ fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
+ fprintf (stderr, "---------------------------------------\n");
+ fprintf (stderr, "Code Nodes\n");
+ fprintf (stderr, "----------------------------\n");
+ for (i = 0; i < (int) MAX_TREE_CODES; i++)
+ fprintf (stderr, "%-20s %7d\n", tree_code_name[i], tree_code_counts[i]);
+ fprintf (stderr, "----------------------------\n");
+ ssanames_print_statistics ();
+ phinodes_print_statistics ();
+ }
+ else
+ fprintf (stderr, "(No per-node statistics)\n");
+
+ print_type_hash_statistics ();
+ print_debug_expr_statistics ();
+ print_value_expr_statistics ();
+ lang_hooks.print_statistics ();
+}
+
+#define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
+
+/* Generate a crc32 of a byte. */
+
+static unsigned
+crc32_unsigned_bits (unsigned chksum, unsigned value, unsigned bits)
+{
+ unsigned ix;
+
+ for (ix = bits; ix--; value <<= 1)
+ {
+ unsigned feedback;
+
+ feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
+ chksum <<= 1;
+ chksum ^= feedback;
+ }
+ return chksum;
+}
+
+/* Generate a crc32 of a 32-bit unsigned. */
+
+unsigned
+crc32_unsigned (unsigned chksum, unsigned value)
+{
+ return crc32_unsigned_bits (chksum, value, 32);
+}
+
+/* Generate a crc32 of a byte. */
+
+unsigned
+crc32_byte (unsigned chksum, char byte)
+{
+ return crc32_unsigned_bits (chksum, (unsigned) byte << 24, 8);
+}
+
+/* Generate a crc32 of a string. */
+
+unsigned
+crc32_string (unsigned chksum, const char *string)
+{
+ do
+ {
+ chksum = crc32_byte (chksum, *string);
+ }
+ while (*string++);
+ return chksum;
+}
+
+/* P is a string that will be used in a symbol. Mask out any characters
+ that are not valid in that context. */
+
+void
+clean_symbol_name (char *p)
+{
+ for (; *p; p++)
+ if (! (ISALNUM (*p)
+#ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
+ || *p == '$'
+#endif
+#ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
+ || *p == '.'
+#endif
+ ))
+ *p = '_';
+}
+
+/* Generate a name for a special-purpose function.
+ The generated name may need to be unique across the whole link.
+ Changes to this function may also require corresponding changes to
+ xstrdup_mask_random.
+ TYPE is some string to identify the purpose of this function to the
+ linker or collect2; it must start with an uppercase letter,
+ one of:
+ I - for constructors
+ D - for destructors
+ N - for C++ anonymous namespaces
+ F - for DWARF unwind frame information. */
+
+tree
+get_file_function_name (const char *type)
+{
+ char *buf;
+ const char *p;
+ char *q;
+
+ /* If we already have a name we know to be unique, just use that. */
+ if (first_global_object_name)
+ p = q = ASTRDUP (first_global_object_name);
+ /* If the target is handling the constructors/destructors, they
+ will be local to this file and the name is only necessary for
+ debugging purposes.
+ We also assign sub_I and sub_D sufixes to constructors called from
+ the global static constructors. These are always local. */
+ else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
+ || (strncmp (type, "sub_", 4) == 0
+ && (type[4] == 'I' || type[4] == 'D')))
+ {
+ const char *file = main_input_filename;
+ if (! file)
+ file = input_filename;
+ /* Just use the file's basename, because the full pathname
+ might be quite long. */
+ p = q = ASTRDUP (lbasename (file));
+ }
+ else
+ {
+ /* Otherwise, the name must be unique across the entire link.
+ We don't have anything that we know to be unique to this translation
+ unit, so use what we do have and throw in some randomness. */
+ unsigned len;
+ const char *name = weak_global_object_name;
+ const char *file = main_input_filename;
+
+ if (! name)
+ name = "";
+ if (! file)
+ file = input_filename;
+
+ len = strlen (file);
+ q = (char *) alloca (9 + 17 + len + 1);
+ memcpy (q, file, len + 1);
+
+ snprintf (q + len, 9 + 17 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
+ crc32_string (0, name), get_random_seed (false));
+
+ p = q;
+ }
+
+ clean_symbol_name (q);
+ buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
+ + strlen (type));
+
+ /* Set up the name of the file-level functions we may need.
+ Use a global object (which is already required to be unique over
+ the program) rather than the file name (which imposes extra
+ constraints). */
+ sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
+
+ return get_identifier (buf);
+}
+
+#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
+
+/* Complain that the tree code of NODE does not match the expected 0
+ terminated list of trailing codes. The trailing code list can be
+ empty, for a more vague error message. FILE, LINE, and FUNCTION
+ are of the caller. */
+
+void
+tree_check_failed (const_tree node, const char *file,
+ int line, const char *function, ...)
+{
+ va_list args;
+ const char *buffer;
+ unsigned length = 0;
+ int code;
+
+ va_start (args, function);
+ while ((code = va_arg (args, int)))
+ length += 4 + strlen (tree_code_name[code]);
+ va_end (args);
+ if (length)
+ {
+ char *tmp;
+ va_start (args, function);
+ length += strlen ("expected ");
+ buffer = tmp = (char *) alloca (length);
+ length = 0;
+ while ((code = va_arg (args, int)))
+ {
+ const char *prefix = length ? " or " : "expected ";
+
+ strcpy (tmp + length, prefix);
+ length += strlen (prefix);
+ strcpy (tmp + length, tree_code_name[code]);
+ length += strlen (tree_code_name[code]);
+ }
+ va_end (args);
+ }
+ else
+ buffer = "unexpected node";
+
+ internal_error ("tree check: %s, have %s in %s, at %s:%d",
+ buffer, tree_code_name[TREE_CODE (node)],
+ function, trim_filename (file), line);
+}
+
+/* Complain that the tree code of NODE does match the expected 0
+ terminated list of trailing codes. FILE, LINE, and FUNCTION are of
+ the caller. */
+
+void
+tree_not_check_failed (const_tree node, const char *file,
+ int line, const char *function, ...)
+{
+ va_list args;
+ char *buffer;
+ unsigned length = 0;
+ int code;
+
+ va_start (args, function);
+ while ((code = va_arg (args, int)))
+ length += 4 + strlen (tree_code_name[code]);
+ va_end (args);
+ va_start (args, function);
+ buffer = (char *) alloca (length);
+ length = 0;
+ while ((code = va_arg (args, int)))
+ {
+ if (length)
+ {
+ strcpy (buffer + length, " or ");
+ length += 4;
+ }
+ strcpy (buffer + length, tree_code_name[code]);
+ length += strlen (tree_code_name[code]);
+ }
+ va_end (args);
+
+ internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
+ buffer, tree_code_name[TREE_CODE (node)],
+ function, trim_filename (file), line);
+}
+
+/* Similar to tree_check_failed, except that we check for a class of tree
+ code, given in CL. */
+
+void
+tree_class_check_failed (const_tree node, const enum tree_code_class cl,
+ const char *file, int line, const char *function)
+{
+ internal_error
+ ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
+ TREE_CODE_CLASS_STRING (cl),
+ TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
+ tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
+}
+
+/* Similar to tree_check_failed, except that instead of specifying a
+ dozen codes, use the knowledge that they're all sequential. */
+
+void
+tree_range_check_failed (const_tree node, const char *file, int line,
+ const char *function, enum tree_code c1,
+ enum tree_code c2)
+{
+ char *buffer;
+ unsigned length = 0;
+ unsigned int c;
+
+ for (c = c1; c <= c2; ++c)
+ length += 4 + strlen (tree_code_name[c]);
+
+ length += strlen ("expected ");
+ buffer = (char *) alloca (length);
+ length = 0;
+
+ for (c = c1; c <= c2; ++c)
+ {
+ const char *prefix = length ? " or " : "expected ";
+
+ strcpy (buffer + length, prefix);
+ length += strlen (prefix);
+ strcpy (buffer + length, tree_code_name[c]);
+ length += strlen (tree_code_name[c]);
+ }
+
+ internal_error ("tree check: %s, have %s in %s, at %s:%d",
+ buffer, tree_code_name[TREE_CODE (node)],
+ function, trim_filename (file), line);
+}
+
+
+/* Similar to tree_check_failed, except that we check that a tree does
+ not have the specified code, given in CL. */
+
+void
+tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
+ const char *file, int line, const char *function)
+{
+ internal_error
+ ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
+ TREE_CODE_CLASS_STRING (cl),
+ TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
+ tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
+}
+
+
+/* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
+
+void
+omp_clause_check_failed (const_tree node, const char *file, int line,
+ const char *function, enum omp_clause_code code)
+{
+ internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
+ omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
+ function, trim_filename (file), line);
+}
+
+
+/* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
+
+void
+omp_clause_range_check_failed (const_tree node, const char *file, int line,
+ const char *function, enum omp_clause_code c1,
+ enum omp_clause_code c2)
+{
+ char *buffer;
+ unsigned length = 0;
+ unsigned int c;
+
+ for (c = c1; c <= c2; ++c)
+ length += 4 + strlen (omp_clause_code_name[c]);
+
+ length += strlen ("expected ");
+ buffer = (char *) alloca (length);
+ length = 0;
+
+ for (c = c1; c <= c2; ++c)
+ {
+ const char *prefix = length ? " or " : "expected ";
+
+ strcpy (buffer + length, prefix);
+ length += strlen (prefix);
+ strcpy (buffer + length, omp_clause_code_name[c]);
+ length += strlen (omp_clause_code_name[c]);
+ }
+
+ internal_error ("tree check: %s, have %s in %s, at %s:%d",
+ buffer, omp_clause_code_name[TREE_CODE (node)],
+ function, trim_filename (file), line);
+}
+
+
+#undef DEFTREESTRUCT
+#define DEFTREESTRUCT(VAL, NAME) NAME,
+
+static const char *ts_enum_names[] = {
+#include "treestruct.def"
+};
+#undef DEFTREESTRUCT
+
+#define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
+
+/* Similar to tree_class_check_failed, except that we check for
+ whether CODE contains the tree structure identified by EN. */
+
+void
+tree_contains_struct_check_failed (const_tree node,
+ const enum tree_node_structure_enum en,
+ const char *file, int line,
+ const char *function)
+{
+ internal_error
+ ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
+ TS_ENUM_NAME(en),
+ tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
+}
+
+
+/* Similar to above, except that the check is for the bounds of a TREE_VEC's
+ (dynamically sized) vector. */
+
+void
+tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
+ const char *function)
+{
+ internal_error
+ ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
+ idx + 1, len, function, trim_filename (file), line);
+}
+
+/* Similar to above, except that the check is for the bounds of the operand
+ vector of an expression node EXP. */
+
+void
+tree_operand_check_failed (int idx, const_tree exp, const char *file,
+ int line, const char *function)
+{
+ int code = TREE_CODE (exp);
+ internal_error
+ ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
+ idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
+ function, trim_filename (file), line);
+}
+
+/* Similar to above, except that the check is for the number of
+ operands of an OMP_CLAUSE node. */
+
+void
+omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
+ int line, const char *function)
+{
+ internal_error
+ ("tree check: accessed operand %d of omp_clause %s with %d operands "
+ "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
+ omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
+ trim_filename (file), line);
+}
+#endif /* ENABLE_TREE_CHECKING */
+
+/* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
+ and mapped to the machine mode MODE. Initialize its fields and build
+ the information necessary for debugging output. */
+
+static tree
+make_vector_type (tree innertype, int nunits, enum machine_mode mode)
+{
+ tree t;
+ hashval_t hashcode = 0;
+
+ t = make_node (VECTOR_TYPE);
+ TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
+ SET_TYPE_VECTOR_SUBPARTS (t, nunits);
+ SET_TYPE_MODE (t, mode);
+
+ if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
+ SET_TYPE_STRUCTURAL_EQUALITY (t);
+ else if (TYPE_CANONICAL (innertype) != innertype
+ || mode != VOIDmode)
+ TYPE_CANONICAL (t)
+ = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
+
+ layout_type (t);
+
+ hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
+ hashcode = iterative_hash_host_wide_int (nunits, hashcode);
+ hashcode = iterative_hash_host_wide_int (mode, hashcode);
+ hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
+ t = type_hash_canon (hashcode, t);
+
+ /* We have built a main variant, based on the main variant of the
+ inner type. Use it to build the variant we return. */
+ if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
+ && TREE_TYPE (t) != innertype)
+ return build_type_attribute_qual_variant (t,
+ TYPE_ATTRIBUTES (innertype),
+ TYPE_QUALS (innertype));
+
+ return t;
+}
+
+static tree
+make_or_reuse_type (unsigned size, int unsignedp)
+{
+ if (size == INT_TYPE_SIZE)
+ return unsignedp ? unsigned_type_node : integer_type_node;
+ if (size == CHAR_TYPE_SIZE)
+ return unsignedp ? unsigned_char_type_node : signed_char_type_node;
+ if (size == SHORT_TYPE_SIZE)
+ return unsignedp ? short_unsigned_type_node : short_integer_type_node;
+ if (size == LONG_TYPE_SIZE)
+ return unsignedp ? long_unsigned_type_node : long_integer_type_node;
+ if (size == LONG_LONG_TYPE_SIZE)
+ return (unsignedp ? long_long_unsigned_type_node
+ : long_long_integer_type_node);
+ if (size == 128 && int128_integer_type_node)
+ return (unsignedp ? int128_unsigned_type_node
+ : int128_integer_type_node);
+
+ if (unsignedp)
+ return make_unsigned_type (size);
+ else
+ return make_signed_type (size);
+}
+
+/* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
+
+static tree
+make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
+{
+ if (satp)
+ {
+ if (size == SHORT_FRACT_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_short_fract_type_node
+ : sat_short_fract_type_node;
+ if (size == FRACT_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
+ if (size == LONG_FRACT_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_long_fract_type_node
+ : sat_long_fract_type_node;
+ if (size == LONG_LONG_FRACT_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_long_long_fract_type_node
+ : sat_long_long_fract_type_node;
+ }
+ else
+ {
+ if (size == SHORT_FRACT_TYPE_SIZE)
+ return unsignedp ? unsigned_short_fract_type_node
+ : short_fract_type_node;
+ if (size == FRACT_TYPE_SIZE)
+ return unsignedp ? unsigned_fract_type_node : fract_type_node;
+ if (size == LONG_FRACT_TYPE_SIZE)
+ return unsignedp ? unsigned_long_fract_type_node
+ : long_fract_type_node;
+ if (size == LONG_LONG_FRACT_TYPE_SIZE)
+ return unsignedp ? unsigned_long_long_fract_type_node
+ : long_long_fract_type_node;
+ }
+
+ return make_fract_type (size, unsignedp, satp);
+}
+
+/* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
+
+static tree
+make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
+{
+ if (satp)
+ {
+ if (size == SHORT_ACCUM_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_short_accum_type_node
+ : sat_short_accum_type_node;
+ if (size == ACCUM_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
+ if (size == LONG_ACCUM_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_long_accum_type_node
+ : sat_long_accum_type_node;
+ if (size == LONG_LONG_ACCUM_TYPE_SIZE)
+ return unsignedp ? sat_unsigned_long_long_accum_type_node
+ : sat_long_long_accum_type_node;
+ }
+ else
+ {
+ if (size == SHORT_ACCUM_TYPE_SIZE)
+ return unsignedp ? unsigned_short_accum_type_node
+ : short_accum_type_node;
+ if (size == ACCUM_TYPE_SIZE)
+ return unsignedp ? unsigned_accum_type_node : accum_type_node;
+ if (size == LONG_ACCUM_TYPE_SIZE)
+ return unsignedp ? unsigned_long_accum_type_node
+ : long_accum_type_node;
+ if (size == LONG_LONG_ACCUM_TYPE_SIZE)
+ return unsignedp ? unsigned_long_long_accum_type_node
+ : long_long_accum_type_node;
+ }
+
+ return make_accum_type (size, unsignedp, satp);
+}
+
+/* Create nodes for all integer types (and error_mark_node) using the sizes
+ of C datatypes. SIGNED_CHAR specifies whether char is signed,
+ SHORT_DOUBLE specifies whether double should be of the same precision
+ as float. */
+
+void
+build_common_tree_nodes (bool signed_char, bool short_double)
+{
+ error_mark_node = make_node (ERROR_MARK);
+ TREE_TYPE (error_mark_node) = error_mark_node;
+
+ initialize_sizetypes ();
+
+ /* Define both `signed char' and `unsigned char'. */
+ signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
+ TYPE_STRING_FLAG (signed_char_type_node) = 1;
+ unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
+ TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
+
+ /* Define `char', which is like either `signed char' or `unsigned char'
+ but not the same as either. */
+ char_type_node
+ = (signed_char
+ ? make_signed_type (CHAR_TYPE_SIZE)
+ : make_unsigned_type (CHAR_TYPE_SIZE));
+ TYPE_STRING_FLAG (char_type_node) = 1;
+
+ short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
+ short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
+ integer_type_node = make_signed_type (INT_TYPE_SIZE);
+ unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
+ long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
+ long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
+ long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
+ long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
+#if HOST_BITS_PER_WIDE_INT >= 64
+ /* TODO: This isn't correct, but as logic depends at the moment on
+ host's instead of target's wide-integer.
+ If there is a target not supporting TImode, but has an 128-bit
+ integer-scalar register, this target check needs to be adjusted. */
+ if (targetm.scalar_mode_supported_p (TImode))
+ {
+ int128_integer_type_node = make_signed_type (128);
+ int128_unsigned_type_node = make_unsigned_type (128);
+ }
+#endif
+
+ /* Define a boolean type. This type only represents boolean values but
+ may be larger than char depending on the value of BOOL_TYPE_SIZE.
+ Front ends which want to override this size (i.e. Java) can redefine
+ boolean_type_node before calling build_common_tree_nodes_2. */
+ boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
+ TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
+ TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
+ TYPE_PRECISION (boolean_type_node) = 1;
+
+ /* Define what type to use for size_t. */
+ if (strcmp (SIZE_TYPE, "unsigned int") == 0)
+ size_type_node = unsigned_type_node;
+ else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
+ size_type_node = long_unsigned_type_node;
+ else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
+ size_type_node = long_long_unsigned_type_node;
+ else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
+ size_type_node = short_unsigned_type_node;
+ else
+ gcc_unreachable ();
+
+ /* Fill in the rest of the sized types. Reuse existing type nodes
+ when possible. */
+ intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
+ intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
+ intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
+ intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
+ intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
+
+ unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
+ unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
+ unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
+ unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
+ unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
+
+ access_public_node = get_identifier ("public");
+ access_protected_node = get_identifier ("protected");
+ access_private_node = get_identifier ("private");
+
+ /* Define these next since types below may used them. */
+ integer_zero_node = build_int_cst (integer_type_node, 0);
+ integer_one_node = build_int_cst (integer_type_node, 1);
+ integer_three_node = build_int_cst (integer_type_node, 3);
+ integer_minus_one_node = build_int_cst (integer_type_node, -1);
+
+ size_zero_node = size_int (0);
+ size_one_node = size_int (1);
+ bitsize_zero_node = bitsize_int (0);
+ bitsize_one_node = bitsize_int (1);
+ bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
+
+ boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
+ boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
+
+ void_type_node = make_node (VOID_TYPE);
+ layout_type (void_type_node);
+
+ /* We are not going to have real types in C with less than byte alignment,
+ so we might as well not have any types that claim to have it. */
+ TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
+ TYPE_USER_ALIGN (void_type_node) = 0;
+
+ null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
+ layout_type (TREE_TYPE (null_pointer_node));
+
+ ptr_type_node = build_pointer_type (void_type_node);
+ const_ptr_type_node
+ = build_pointer_type (build_type_variant (void_type_node, 1, 0));
+ fileptr_type_node = ptr_type_node;
+
+ float_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
+ layout_type (float_type_node);
+
+ double_type_node = make_node (REAL_TYPE);
+ if (short_double)
+ TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
+ else
+ TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
+ layout_type (double_type_node);
+
+ long_double_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
+ layout_type (long_double_type_node);
+
+ float_ptr_type_node = build_pointer_type (float_type_node);
+ double_ptr_type_node = build_pointer_type (double_type_node);
+ long_double_ptr_type_node = build_pointer_type (long_double_type_node);
+ integer_ptr_type_node = build_pointer_type (integer_type_node);
+
+ /* Fixed size integer types. */
+ uint16_type_node = build_nonstandard_integer_type (16, true);
+ uint32_type_node = build_nonstandard_integer_type (32, true);
+ uint64_type_node = build_nonstandard_integer_type (64, true);
+
+ /* Decimal float types. */
+ dfloat32_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
+ layout_type (dfloat32_type_node);
+ SET_TYPE_MODE (dfloat32_type_node, SDmode);
+ dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
+
+ dfloat64_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
+ layout_type (dfloat64_type_node);
+ SET_TYPE_MODE (dfloat64_type_node, DDmode);
+ dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
+
+ dfloat128_type_node = make_node (REAL_TYPE);
+ TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
+ layout_type (dfloat128_type_node);
+ SET_TYPE_MODE (dfloat128_type_node, TDmode);
+ dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
+
+ complex_integer_type_node = build_complex_type (integer_type_node);
+ complex_float_type_node = build_complex_type (float_type_node);
+ complex_double_type_node = build_complex_type (double_type_node);
+ complex_long_double_type_node = build_complex_type (long_double_type_node);
+
+/* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
+#define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
+ sat_ ## KIND ## _type_node = \
+ make_sat_signed_ ## KIND ## _type (SIZE); \
+ sat_unsigned_ ## KIND ## _type_node = \
+ make_sat_unsigned_ ## KIND ## _type (SIZE); \
+ KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
+ unsigned_ ## KIND ## _type_node = \
+ make_unsigned_ ## KIND ## _type (SIZE);
+
+#define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
+ sat_ ## WIDTH ## KIND ## _type_node = \
+ make_sat_signed_ ## KIND ## _type (SIZE); \
+ sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
+ make_sat_unsigned_ ## KIND ## _type (SIZE); \
+ WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
+ unsigned_ ## WIDTH ## KIND ## _type_node = \
+ make_unsigned_ ## KIND ## _type (SIZE);
+
+/* Make fixed-point type nodes based on four different widths. */
+#define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
+ MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
+ MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
+ MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
+ MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
+
+/* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
+#define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
+ NAME ## _type_node = \
+ make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
+ u ## NAME ## _type_node = \
+ make_or_reuse_unsigned_ ## KIND ## _type \
+ (GET_MODE_BITSIZE (U ## MODE ## mode)); \
+ sat_ ## NAME ## _type_node = \
+ make_or_reuse_sat_signed_ ## KIND ## _type \
+ (GET_MODE_BITSIZE (MODE ## mode)); \
+ sat_u ## NAME ## _type_node = \
+ make_or_reuse_sat_unsigned_ ## KIND ## _type \
+ (GET_MODE_BITSIZE (U ## MODE ## mode));
+
+ /* Fixed-point type and mode nodes. */
+ MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
+ MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
+ MAKE_FIXED_MODE_NODE (fract, qq, QQ)
+ MAKE_FIXED_MODE_NODE (fract, hq, HQ)
+ MAKE_FIXED_MODE_NODE (fract, sq, SQ)
+ MAKE_FIXED_MODE_NODE (fract, dq, DQ)
+ MAKE_FIXED_MODE_NODE (fract, tq, TQ)
+ MAKE_FIXED_MODE_NODE (accum, ha, HA)
+ MAKE_FIXED_MODE_NODE (accum, sa, SA)
+ MAKE_FIXED_MODE_NODE (accum, da, DA)
+ MAKE_FIXED_MODE_NODE (accum, ta, TA)
+
+ {
+ tree t = targetm.build_builtin_va_list ();
+
+ /* Many back-ends define record types without setting TYPE_NAME.
+ If we copied the record type here, we'd keep the original
+ record type without a name. This breaks name mangling. So,
+ don't copy record types and let c_common_nodes_and_builtins()
+ declare the type to be __builtin_va_list. */
+ if (TREE_CODE (t) != RECORD_TYPE)
+ t = build_variant_type_copy (t);
+
+ va_list_type_node = t;
+ }
+}
+
+/* Modify DECL for given flags. */
+void
+set_call_expr_flags (tree decl, int flags)
+{
+ if (flags & ECF_NOTHROW)
+ TREE_NOTHROW (decl) = 1;
+ if (flags & ECF_CONST)
+ TREE_READONLY (decl) = 1;
+ if (flags & ECF_PURE)
+ DECL_PURE_P (decl) = 1;
+ if (flags & ECF_LOOPING_CONST_OR_PURE)
+ DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
+ if (flags & ECF_NOVOPS)
+ DECL_IS_NOVOPS (decl) = 1;
+ if (flags & ECF_NORETURN)
+ TREE_THIS_VOLATILE (decl) = 1;
+ if (flags & ECF_MALLOC)
+ DECL_IS_MALLOC (decl) = 1;
+ if (flags & ECF_RETURNS_TWICE)
+ DECL_IS_RETURNS_TWICE (decl) = 1;
+ if (flags & ECF_LEAF)
+ DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
+ NULL, DECL_ATTRIBUTES (decl));
+ if ((flags & ECF_TM_PURE) && flag_tm)
+ DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("transaction_pure"),
+ NULL, DECL_ATTRIBUTES (decl));
+ /* Looping const or pure is implied by noreturn.
+ There is currently no way to declare looping const or looping pure alone. */
+ gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
+ || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
+}
+
+
+/* A subroutine of build_common_builtin_nodes. Define a builtin function. */
+
+static void
+local_define_builtin (const char *name, tree type, enum built_in_function code,
+ const char *library_name, int ecf_flags)
+{
+ tree decl;
+
+ decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
+ library_name, NULL_TREE);
+ set_call_expr_flags (decl, ecf_flags);
+
+ set_builtin_decl (code, decl, true);
+}
+
+/* Call this function after instantiating all builtins that the language
+ front end cares about. This will build the rest of the builtins that
+ are relied upon by the tree optimizers and the middle-end. */
+
+void
+build_common_builtin_nodes (void)
+{
+ tree tmp, ftype;
+ int ecf_flags;
+
+ if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
+ {
+ ftype = build_function_type (void_type_node, void_list_node);
+ local_define_builtin ("__builtin_unreachable", ftype, BUILT_IN_UNREACHABLE,
+ "__builtin_unreachable",
+ ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
+ | ECF_CONST | ECF_LEAF);
+ }
+
+ if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
+ || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
+ {
+ ftype = build_function_type_list (ptr_type_node,
+ ptr_type_node, const_ptr_type_node,
+ size_type_node, NULL_TREE);
+
+ if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
+ local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
+ "memcpy", ECF_NOTHROW | ECF_LEAF);
+ if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
+ local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
+ "memmove", ECF_NOTHROW | ECF_LEAF);
+ }
+
+ if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
+ {
+ ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
+ const_ptr_type_node, size_type_node,
+ NULL_TREE);
+ local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
+ "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
+ }
+
+ if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
+ {
+ ftype = build_function_type_list (ptr_type_node,
+ ptr_type_node, integer_type_node,
+ size_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
+ "memset", ECF_NOTHROW | ECF_LEAF);
+ }
+
+ if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
+ {
+ ftype = build_function_type_list (ptr_type_node,
+ size_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
+ "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
+ }
+
+ ftype = build_function_type_list (ptr_type_node, size_type_node,
+ size_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_alloca_with_align", ftype,
+ BUILT_IN_ALLOCA_WITH_ALIGN, "alloca",
+ ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
+
+ /* If we're checking the stack, `alloca' can throw. */
+ if (flag_stack_check)
+ {
+ TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA)) = 0;
+ TREE_NOTHROW (builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN)) = 0;
+ }
+
+ ftype = build_function_type_list (void_type_node,
+ ptr_type_node, ptr_type_node,
+ ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_init_trampoline", ftype,
+ BUILT_IN_INIT_TRAMPOLINE,
+ "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
+ local_define_builtin ("__builtin_init_heap_trampoline", ftype,
+ BUILT_IN_INIT_HEAP_TRAMPOLINE,
+ "__builtin_init_heap_trampoline",
+ ECF_NOTHROW | ECF_LEAF);
+
+ ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_adjust_trampoline", ftype,
+ BUILT_IN_ADJUST_TRAMPOLINE,
+ "__builtin_adjust_trampoline",
+ ECF_CONST | ECF_NOTHROW);
+
+ ftype = build_function_type_list (void_type_node,
+ ptr_type_node, ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_nonlocal_goto", ftype,
+ BUILT_IN_NONLOCAL_GOTO,
+ "__builtin_nonlocal_goto",
+ ECF_NORETURN | ECF_NOTHROW);
+
+ ftype = build_function_type_list (void_type_node,
+ ptr_type_node, ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_setjmp_setup", ftype,
+ BUILT_IN_SETJMP_SETUP,
+ "__builtin_setjmp_setup", ECF_NOTHROW);
+
+ ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
+ BUILT_IN_SETJMP_DISPATCHER,
+ "__builtin_setjmp_dispatcher",
+ ECF_PURE | ECF_NOTHROW);
+
+ ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_setjmp_receiver", ftype,
+ BUILT_IN_SETJMP_RECEIVER,
+ "__builtin_setjmp_receiver", ECF_NOTHROW);
+
+ ftype = build_function_type_list (ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
+ "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
+
+ ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_stack_restore", ftype,
+ BUILT_IN_STACK_RESTORE,
+ "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
+
+ /* If there's a possibility that we might use the ARM EABI, build the
+ alternate __cxa_end_cleanup node used to resume from C++ and Java. */
+ if (targetm.arm_eabi_unwinder)
+ {
+ ftype = build_function_type_list (void_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
+ BUILT_IN_CXA_END_CLEANUP,
+ "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
+ }
+
+ ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_unwind_resume", ftype,
+ BUILT_IN_UNWIND_RESUME,
+ ((targetm_common.except_unwind_info (&global_options)
+ == UI_SJLJ)
+ ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
+ ECF_NORETURN);
+
+ if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
+ {
+ ftype = build_function_type_list (ptr_type_node, integer_type_node,
+ NULL_TREE);
+ local_define_builtin ("__builtin_return_address", ftype,
+ BUILT_IN_RETURN_ADDRESS,
+ "__builtin_return_address",
+ ECF_NOTHROW);
+ }
+
+ if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
+ || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
+ {
+ ftype = build_function_type_list (void_type_node, ptr_type_node,
+ ptr_type_node, NULL_TREE);
+ if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
+ local_define_builtin ("__cyg_profile_func_enter", ftype,
+ BUILT_IN_PROFILE_FUNC_ENTER,
+ "__cyg_profile_func_enter", 0);
+ if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
+ local_define_builtin ("__cyg_profile_func_exit", ftype,
+ BUILT_IN_PROFILE_FUNC_EXIT,
+ "__cyg_profile_func_exit", 0);
+ }
+
+ /* The exception object and filter values from the runtime. The argument
+ must be zero before exception lowering, i.e. from the front end. After
+ exception lowering, it will be the region number for the exception
+ landing pad. These functions are PURE instead of CONST to prevent
+ them from being hoisted past the exception edge that will initialize
+ its value in the landing pad. */
+ ftype = build_function_type_list (ptr_type_node,
+ integer_type_node, NULL_TREE);
+ ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
+ /* Only use TM_PURE if we we have TM language support. */
+ if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
+ ecf_flags |= ECF_TM_PURE;
+ local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
+ "__builtin_eh_pointer", ecf_flags);
+
+ tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
+ ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
+ local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
+ "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
+
+ ftype = build_function_type_list (void_type_node,
+ integer_type_node, integer_type_node,
+ NULL_TREE);
+ local_define_builtin ("__builtin_eh_copy_values", ftype,
+ BUILT_IN_EH_COPY_VALUES,
+ "__builtin_eh_copy_values", ECF_NOTHROW);
+
+ /* Complex multiplication and division. These are handled as builtins
+ rather than optabs because emit_library_call_value doesn't support
+ complex. Further, we can do slightly better with folding these
+ beasties if the real and complex parts of the arguments are separate. */
+ {
+ int mode;
+
+ for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
+ {
+ char mode_name_buf[4], *q;
+ const char *p;
+ enum built_in_function mcode, dcode;
+ tree type, inner_type;
+ const char *prefix = "__";
+
+ if (targetm.libfunc_gnu_prefix)
+ prefix = "__gnu_";
+
+ type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
+ if (type == NULL)
+ continue;
+ inner_type = TREE_TYPE (type);
+
+ ftype = build_function_type_list (type, inner_type, inner_type,
+ inner_type, inner_type, NULL_TREE);
+
+ mcode = ((enum built_in_function)
+ (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
+ dcode = ((enum built_in_function)
+ (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
+
+ for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
+ *q = TOLOWER (*p);
+ *q = '\0';
+
+ built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
+ NULL);
+ local_define_builtin (built_in_names[mcode], ftype, mcode,
+ built_in_names[mcode],
+ ECF_CONST | ECF_NOTHROW | ECF_LEAF);
+
+ built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
+ NULL);
+ local_define_builtin (built_in_names[dcode], ftype, dcode,
+ built_in_names[dcode],
+ ECF_CONST | ECF_NOTHROW | ECF_LEAF);
+ }
+ }
+}
+
+/* HACK. GROSS. This is absolutely disgusting. I wish there was a
+ better way.
+
+ If we requested a pointer to a vector, build up the pointers that
+ we stripped off while looking for the inner type. Similarly for
+ return values from functions.
+
+ The argument TYPE is the top of the chain, and BOTTOM is the
+ new type which we will point to. */
+
+tree
+reconstruct_complex_type (tree type, tree bottom)
+{
+ tree inner, outer;
+
+ if (TREE_CODE (type) == POINTER_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
+ TYPE_REF_CAN_ALIAS_ALL (type));
+ }
+ else if (TREE_CODE (type) == REFERENCE_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
+ TYPE_REF_CAN_ALIAS_ALL (type));
+ }
+ else if (TREE_CODE (type) == ARRAY_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_array_type (inner, TYPE_DOMAIN (type));
+ }
+ else if (TREE_CODE (type) == FUNCTION_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_function_type (inner, TYPE_ARG_TYPES (type));
+ }
+ else if (TREE_CODE (type) == METHOD_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ /* The build_method_type_directly() routine prepends 'this' to argument list,
+ so we must compensate by getting rid of it. */
+ outer
+ = build_method_type_directly
+ (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
+ inner,
+ TREE_CHAIN (TYPE_ARG_TYPES (type)));
+ }
+ else if (TREE_CODE (type) == OFFSET_TYPE)
+ {
+ inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
+ outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
+ }
+ else
+ return bottom;
+
+ return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
+ TYPE_QUALS (type));
+}
+
+/* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
+ the inner type. */
+tree
+build_vector_type_for_mode (tree innertype, enum machine_mode mode)
+{
+ int nunits;
+
+ switch (GET_MODE_CLASS (mode))
+ {
+ case MODE_VECTOR_INT:
+ case MODE_VECTOR_FLOAT:
+ case MODE_VECTOR_FRACT:
+ case MODE_VECTOR_UFRACT:
+ case MODE_VECTOR_ACCUM:
+ case MODE_VECTOR_UACCUM:
+ nunits = GET_MODE_NUNITS (mode);
+ break;
+
+ case MODE_INT:
+ /* Check that there are no leftover bits. */
+ gcc_assert (GET_MODE_BITSIZE (mode)
+ % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
+
+ nunits = GET_MODE_BITSIZE (mode)
+ / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+
+ return make_vector_type (innertype, nunits, mode);
+}
+
+/* Similarly, but takes the inner type and number of units, which must be
+ a power of two. */
+
+tree
+build_vector_type (tree innertype, int nunits)
+{
+ return make_vector_type (innertype, nunits, VOIDmode);
+}
+
+/* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
+
+tree
+build_opaque_vector_type (tree innertype, int nunits)
+{
+ tree t = make_vector_type (innertype, nunits, VOIDmode);
+ tree cand;
+ /* We always build the non-opaque variant before the opaque one,
+ so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
+ cand = TYPE_NEXT_VARIANT (t);
+ if (cand
+ && TYPE_VECTOR_OPAQUE (cand)
+ && check_qualified_type (cand, t, TYPE_QUALS (t)))
+ return cand;
+ /* Othewise build a variant type and make sure to queue it after
+ the non-opaque type. */
+ cand = build_distinct_type_copy (t);
+ TYPE_VECTOR_OPAQUE (cand) = true;
+ TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
+ TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
+ TYPE_NEXT_VARIANT (t) = cand;
+ TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
+ return cand;
+}
+
+
+/* Given an initializer INIT, return TRUE if INIT is zero or some
+ aggregate of zeros. Otherwise return FALSE. */
+bool
+initializer_zerop (const_tree init)
+{
+ tree elt;
+
+ STRIP_NOPS (init);
+
+ switch (TREE_CODE (init))
+ {
+ case INTEGER_CST:
+ return integer_zerop (init);
+
+ case REAL_CST:
+ /* ??? Note that this is not correct for C4X float formats. There,
+ a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
+ negative exponent. */
+ return real_zerop (init)
+ && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
+
+ case FIXED_CST:
+ return fixed_zerop (init);
+
+ case COMPLEX_CST:
+ return integer_zerop (init)
+ || (real_zerop (init)
+ && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
+ && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
+
+ case VECTOR_CST:
+ {
+ unsigned i;
+ for (i = 0; i < VECTOR_CST_NELTS (init); ++i)
+ if (!initializer_zerop (VECTOR_CST_ELT (init, i)))
+ return false;
+ return true;
+ }
+
+ case CONSTRUCTOR:
+ {
+ unsigned HOST_WIDE_INT idx;
+
+ FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
+ if (!initializer_zerop (elt))
+ return false;
+ return true;
+ }
+
+ case STRING_CST:
+ {
+ int i;
+
+ /* We need to loop through all elements to handle cases like
+ "\0" and "\0foobar". */
+ for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
+ if (TREE_STRING_POINTER (init)[i] != '\0')
+ return false;
+
+ return true;
+ }
+
+ default:
+ return false;
+ }
+}
+
+/* Build an empty statement at location LOC. */
+
+tree
+build_empty_stmt (location_t loc)
+{
+ tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
+ SET_EXPR_LOCATION (t, loc);
+ return t;
+}
+
+
+/* Build an OpenMP clause with code CODE. LOC is the location of the
+ clause. */
+
+tree
+build_omp_clause (location_t loc, enum omp_clause_code code)
+{
+ tree t;
+ int size, length;
+
+ length = omp_clause_num_ops[code];
+ size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
+
+ record_node_allocation_statistics (OMP_CLAUSE, size);
+
+ t = ggc_alloc_tree_node (size);
+ memset (t, 0, size);
+ TREE_SET_CODE (t, OMP_CLAUSE);
+ OMP_CLAUSE_SET_CODE (t, code);
+ OMP_CLAUSE_LOCATION (t) = loc;
+
+ return t;
+}
+
+/* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
+ includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
+ Except for the CODE and operand count field, other storage for the
+ object is initialized to zeros. */
+
+tree
+build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
+{
+ tree t;
+ int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
+
+ gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
+ gcc_assert (len >= 1);
+
+ record_node_allocation_statistics (code, length);
+
+ t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
+
+ TREE_SET_CODE (t, code);
+
+ /* Can't use TREE_OPERAND to store the length because if checking is
+ enabled, it will try to check the length before we store it. :-P */
+ t->exp.operands[0] = build_int_cst (sizetype, len);
+
+ return t;
+}
+
+/* Helper function for build_call_* functions; build a CALL_EXPR with
+ indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
+ the argument slots. */
+
+static tree
+build_call_1 (tree return_type, tree fn, int nargs)
+{
+ tree t;
+
+ t = build_vl_exp (CALL_EXPR, nargs + 3);
+ TREE_TYPE (t) = return_type;
+ CALL_EXPR_FN (t) = fn;
+ CALL_EXPR_STATIC_CHAIN (t) = NULL;
+
+ return t;
+}
+
+/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
+ FN and a null static chain slot. NARGS is the number of call arguments
+ which are specified as "..." arguments. */
+
+tree
+build_call_nary (tree return_type, tree fn, int nargs, ...)
+{
+ tree ret;
+ va_list args;
+ va_start (args, nargs);
+ ret = build_call_valist (return_type, fn, nargs, args);
+ va_end (args);
+ return ret;
+}
+
+/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
+ FN and a null static chain slot. NARGS is the number of call arguments
+ which are specified as a va_list ARGS. */
+
+tree
+build_call_valist (tree return_type, tree fn, int nargs, va_list args)
+{
+ tree t;
+ int i;
+
+ t = build_call_1 (return_type, fn, nargs);
+ for (i = 0; i < nargs; i++)
+ CALL_EXPR_ARG (t, i) = va_arg (args, tree);
+ process_call_operands (t);
+ return t;
+}
+
+/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
+ FN and a null static chain slot. NARGS is the number of call arguments
+ which are specified as a tree array ARGS. */
+
+tree
+build_call_array_loc (location_t loc, tree return_type, tree fn,
+ int nargs, const tree *args)
+{
+ tree t;
+ int i;
+
+ t = build_call_1 (return_type, fn, nargs);
+ for (i = 0; i < nargs; i++)
+ CALL_EXPR_ARG (t, i) = args[i];
+ process_call_operands (t);
+ SET_EXPR_LOCATION (t, loc);
+ return t;
+}
+
+/* Like build_call_array, but takes a vec. */
+
+tree
+build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
+{
+ tree ret, t;
+ unsigned int ix;
+
+ ret = build_call_1 (return_type, fn, vec_safe_length (args));
+ FOR_EACH_VEC_SAFE_ELT (args, ix, t)
+ CALL_EXPR_ARG (ret, ix) = t;
+ process_call_operands (ret);
+ return ret;
+}
+
+
+/* Returns true if it is possible to prove that the index of
+ an array access REF (an ARRAY_REF expression) falls into the
+ array bounds. */
+
+bool
+in_array_bounds_p (tree ref)
+{
+ tree idx = TREE_OPERAND (ref, 1);
+ tree min, max;
+
+ if (TREE_CODE (idx) != INTEGER_CST)
+ return false;
+
+ min = array_ref_low_bound (ref);
+ max = array_ref_up_bound (ref);
+ if (!min
+ || !max
+ || TREE_CODE (min) != INTEGER_CST
+ || TREE_CODE (max) != INTEGER_CST)
+ return false;
+
+ if (tree_int_cst_lt (idx, min)
+ || tree_int_cst_lt (max, idx))
+ return false;
+
+ return true;
+}
+
+/* Returns true if it is possible to prove that the range of
+ an array access REF (an ARRAY_RANGE_REF expression) falls
+ into the array bounds. */
+
+bool
+range_in_array_bounds_p (tree ref)
+{
+ tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
+ tree range_min, range_max, min, max;
+
+ range_min = TYPE_MIN_VALUE (domain_type);
+ range_max = TYPE_MAX_VALUE (domain_type);
+ if (!range_min
+ || !range_max
+ || TREE_CODE (range_min) != INTEGER_CST
+ || TREE_CODE (range_max) != INTEGER_CST)
+ return false;
+
+ min = array_ref_low_bound (ref);
+ max = array_ref_up_bound (ref);
+ if (!min
+ || !max
+ || TREE_CODE (min) != INTEGER_CST
+ || TREE_CODE (max) != INTEGER_CST)
+ return false;
+
+ if (tree_int_cst_lt (range_min, min)
+ || tree_int_cst_lt (max, range_max))
+ return false;
+
+ return true;
+}
+
+/* Return true if T (assumed to be a DECL) must be assigned a memory
+ location. */
+
+bool
+needs_to_live_in_memory (const_tree t)
+{
+ return (TREE_ADDRESSABLE (t)
+ || is_global_var (t)
+ || (TREE_CODE (t) == RESULT_DECL
+ && !DECL_BY_REFERENCE (t)
+ && aggregate_value_p (t, current_function_decl)));
+}
+
+/* Return value of a constant X and sign-extend it. */
+
+HOST_WIDE_INT
+int_cst_value (const_tree x)
+{
+ unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
+ unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
+
+ /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
+ gcc_assert (TREE_INT_CST_HIGH (x) == 0
+ || TREE_INT_CST_HIGH (x) == -1);
+
+ if (bits < HOST_BITS_PER_WIDE_INT)
+ {
+ bool negative = ((val >> (bits - 1)) & 1) != 0;
+ if (negative)
+ val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
+ else
+ val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
+ }
+
+ return val;
+}
+
+/* Return value of a constant X and sign-extend it. */
+
+HOST_WIDEST_INT
+widest_int_cst_value (const_tree x)
+{
+ unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
+ unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
+
+#if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
+ gcc_assert (HOST_BITS_PER_WIDEST_INT >= HOST_BITS_PER_DOUBLE_INT);
+ val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
+ << HOST_BITS_PER_WIDE_INT);
+#else
+ /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
+ gcc_assert (TREE_INT_CST_HIGH (x) == 0
+ || TREE_INT_CST_HIGH (x) == -1);
+#endif
+
+ if (bits < HOST_BITS_PER_WIDEST_INT)
+ {
+ bool negative = ((val >> (bits - 1)) & 1) != 0;
+ if (negative)
+ val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
+ else
+ val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
+ }
+
+ return val;
+}
+
+/* If TYPE is an integral or pointer type, return an integer type with
+ the same precision which is unsigned iff UNSIGNEDP is true, or itself
+ if TYPE is already an integer type of signedness UNSIGNEDP. */
+
+tree
+signed_or_unsigned_type_for (int unsignedp, tree type)
+{
+ if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
+ return type;
+
+ if (TREE_CODE (type) == VECTOR_TYPE)
+ {
+ tree inner = TREE_TYPE (type);
+ tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
+ if (!inner2)
+ return NULL_TREE;
+ if (inner == inner2)
+ return type;
+ return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
+ }
+
+ if (!INTEGRAL_TYPE_P (type)
+ && !POINTER_TYPE_P (type))
+ return NULL_TREE;
+
+ return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
+}
+
+/* If TYPE is an integral or pointer type, return an integer type with
+ the same precision which is unsigned, or itself if TYPE is already an
+ unsigned integer type. */
+
+tree
+unsigned_type_for (tree type)
+{
+ return signed_or_unsigned_type_for (1, type);
+}
+
+/* If TYPE is an integral or pointer type, return an integer type with
+ the same precision which is signed, or itself if TYPE is already a
+ signed integer type. */
+
+tree
+signed_type_for (tree type)
+{
+ return signed_or_unsigned_type_for (0, type);
+}
+
+/* If TYPE is a vector type, return a signed integer vector type with the
+ same width and number of subparts. Otherwise return boolean_type_node. */
+
+tree
+truth_type_for (tree type)
+{
+ if (TREE_CODE (type) == VECTOR_TYPE)
+ {
+ tree elem = lang_hooks.types.type_for_size
+ (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))), 0);
+ return build_opaque_vector_type (elem, TYPE_VECTOR_SUBPARTS (type));
+ }
+ else
+ return boolean_type_node;
+}
+
+/* Returns the largest value obtainable by casting something in INNER type to
+ OUTER type. */
+
+tree
+upper_bound_in_type (tree outer, tree inner)
+{
+ double_int high;
+ unsigned int det = 0;
+ unsigned oprec = TYPE_PRECISION (outer);
+ unsigned iprec = TYPE_PRECISION (inner);
+ unsigned prec;
+
+ /* Compute a unique number for every combination. */
+ det |= (oprec > iprec) ? 4 : 0;
+ det |= TYPE_UNSIGNED (outer) ? 2 : 0;
+ det |= TYPE_UNSIGNED (inner) ? 1 : 0;
+
+ /* Determine the exponent to use. */
+ switch (det)
+ {
+ case 0:
+ case 1:
+ /* oprec <= iprec, outer: signed, inner: don't care. */
+ prec = oprec - 1;
+ break;
+ case 2:
+ case 3:
+ /* oprec <= iprec, outer: unsigned, inner: don't care. */
+ prec = oprec;
+ break;
+ case 4:
+ /* oprec > iprec, outer: signed, inner: signed. */
+ prec = iprec - 1;
+ break;
+ case 5:
+ /* oprec > iprec, outer: signed, inner: unsigned. */
+ prec = iprec;
+ break;
+ case 6:
+ /* oprec > iprec, outer: unsigned, inner: signed. */
+ prec = oprec;
+ break;
+ case 7:
+ /* oprec > iprec, outer: unsigned, inner: unsigned. */
+ prec = iprec;
+ break;
+ default:
+ gcc_unreachable ();
+ }
+
+ /* Compute 2^^prec - 1. */
+ if (prec <= HOST_BITS_PER_WIDE_INT)
+ {
+ high.high = 0;
+ high.low = ((~(unsigned HOST_WIDE_INT) 0)
+ >> (HOST_BITS_PER_WIDE_INT - prec));
+ }
+ else
+ {
+ high.high = ((~(unsigned HOST_WIDE_INT) 0)
+ >> (HOST_BITS_PER_DOUBLE_INT - prec));
+ high.low = ~(unsigned HOST_WIDE_INT) 0;
+ }
+
+ return double_int_to_tree (outer, high);
+}
+
+/* Returns the smallest value obtainable by casting something in INNER type to
+ OUTER type. */
+
+tree
+lower_bound_in_type (tree outer, tree inner)
+{
+ double_int low;
+ unsigned oprec = TYPE_PRECISION (outer);
+ unsigned iprec = TYPE_PRECISION (inner);
+
+ /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
+ and obtain 0. */
+ if (TYPE_UNSIGNED (outer)
+ /* If we are widening something of an unsigned type, OUTER type
+ contains all values of INNER type. In particular, both INNER
+ and OUTER types have zero in common. */
+ || (oprec > iprec && TYPE_UNSIGNED (inner)))
+ low.low = low.high = 0;
+ else
+ {
+ /* If we are widening a signed type to another signed type, we
+ want to obtain -2^^(iprec-1). If we are keeping the
+ precision or narrowing to a signed type, we want to obtain
+ -2^(oprec-1). */
+ unsigned prec = oprec > iprec ? iprec : oprec;
+
+ if (prec <= HOST_BITS_PER_WIDE_INT)
+ {
+ low.high = ~(unsigned HOST_WIDE_INT) 0;
+ low.low = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
+ }
+ else
+ {
+ low.high = ((~(unsigned HOST_WIDE_INT) 0)
+ << (prec - HOST_BITS_PER_WIDE_INT - 1));
+ low.low = 0;
+ }
+ }
+
+ return double_int_to_tree (outer, low);
+}
+
+/* Return nonzero if two operands that are suitable for PHI nodes are
+ necessarily equal. Specifically, both ARG0 and ARG1 must be either
+ SSA_NAME or invariant. Note that this is strictly an optimization.
+ That is, callers of this function can directly call operand_equal_p
+ and get the same result, only slower. */
+
+int
+operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
+{
+ if (arg0 == arg1)
+ return 1;
+ if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
+ return 0;
+ return operand_equal_p (arg0, arg1, 0);
+}
+
+/* Returns number of zeros at the end of binary representation of X.
+
+ ??? Use ffs if available? */
+
+tree
+num_ending_zeros (const_tree x)
+{
+ unsigned HOST_WIDE_INT fr, nfr;
+ unsigned num, abits;
+ tree type = TREE_TYPE (x);
+
+ if (TREE_INT_CST_LOW (x) == 0)
+ {
+ num = HOST_BITS_PER_WIDE_INT;
+ fr = TREE_INT_CST_HIGH (x);
+ }
+ else
+ {
+ num = 0;
+ fr = TREE_INT_CST_LOW (x);
+ }
+
+ for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
+ {
+ nfr = fr >> abits;
+ if (nfr << abits == fr)
+ {
+ num += abits;
+ fr = nfr;
+ }
+ }
+
+ if (num > TYPE_PRECISION (type))
+ num = TYPE_PRECISION (type);
+
+ return build_int_cst_type (type, num);
+}
+
+
+#define WALK_SUBTREE(NODE) \
+ do \
+ { \
+ result = walk_tree_1 (&(NODE), func, data, pset, lh); \
+ if (result) \
+ return result; \
+ } \
+ while (0)
+
+/* This is a subroutine of walk_tree that walks field of TYPE that are to
+ be walked whenever a type is seen in the tree. Rest of operands and return
+ value are as for walk_tree. */
+
+static tree
+walk_type_fields (tree type, walk_tree_fn func, void *data,
+ struct pointer_set_t *pset, walk_tree_lh lh)
+{
+ tree result = NULL_TREE;
+
+ switch (TREE_CODE (type))
+ {
+ case POINTER_TYPE:
+ case REFERENCE_TYPE:
+ /* We have to worry about mutually recursive pointers. These can't
+ be written in C. They can in Ada. It's pathological, but
+ there's an ACATS test (c38102a) that checks it. Deal with this
+ by checking if we're pointing to another pointer, that one
+ points to another pointer, that one does too, and we have no htab.
+ If so, get a hash table. We check three levels deep to avoid
+ the cost of the hash table if we don't need one. */
+ if (POINTER_TYPE_P (TREE_TYPE (type))
+ && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
+ && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
+ && !pset)
+ {
+ result = walk_tree_without_duplicates (&TREE_TYPE (type),
+ func, data);
+ if (result)
+ return result;
+
+ break;
+ }
+
+ /* ... fall through ... */
+
+ case COMPLEX_TYPE:
+ WALK_SUBTREE (TREE_TYPE (type));
+ break;
+
+ case METHOD_TYPE:
+ WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
+
+ /* Fall through. */
+
+ case FUNCTION_TYPE:
+ WALK_SUBTREE (TREE_TYPE (type));
+ {
+ tree arg;
+
+ /* We never want to walk into default arguments. */
+ for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
+ WALK_SUBTREE (TREE_VALUE (arg));
+ }
+ break;
+
+ case ARRAY_TYPE:
+ /* Don't follow this nodes's type if a pointer for fear that
+ we'll have infinite recursion. If we have a PSET, then we
+ need not fear. */
+ if (pset
+ || (!POINTER_TYPE_P (TREE_TYPE (type))
+ && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
+ WALK_SUBTREE (TREE_TYPE (type));
+ WALK_SUBTREE (TYPE_DOMAIN (type));
+ break;
+
+ case OFFSET_TYPE:
+ WALK_SUBTREE (TREE_TYPE (type));
+ WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
+ break;
+
+ default:
+ break;
+ }
+
+ return NULL_TREE;
+}
+
+/* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
+ called with the DATA and the address of each sub-tree. If FUNC returns a
+ non-NULL value, the traversal is stopped, and the value returned by FUNC
+ is returned. If PSET is non-NULL it is used to record the nodes visited,
+ and to avoid visiting a node more than once. */
+
+tree
+walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
+ struct pointer_set_t *pset, walk_tree_lh lh)
+{
+ enum tree_code code;
+ int walk_subtrees;
+ tree result;
+
+#define WALK_SUBTREE_TAIL(NODE) \
+ do \
+ { \
+ tp = & (NODE); \
+ goto tail_recurse; \
+ } \
+ while (0)
+
+ tail_recurse:
+ /* Skip empty subtrees. */
+ if (!*tp)
+ return NULL_TREE;
+
+ /* Don't walk the same tree twice, if the user has requested
+ that we avoid doing so. */
+ if (pset && pointer_set_insert (pset, *tp))
+ return NULL_TREE;
+
+ /* Call the function. */
+ walk_subtrees = 1;
+ result = (*func) (tp, &walk_subtrees, data);
+
+ /* If we found something, return it. */
+ if (result)
+ return result;
+
+ code = TREE_CODE (*tp);
+
+ /* Even if we didn't, FUNC may have decided that there was nothing
+ interesting below this point in the tree. */
+ if (!walk_subtrees)
+ {
+ /* But we still need to check our siblings. */
+ if (code == TREE_LIST)
+ WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
+ else if (code == OMP_CLAUSE)
+ WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
+ else
+ return NULL_TREE;
+ }
+
+ if (lh)
+ {
+ result = (*lh) (tp, &walk_subtrees, func, data, pset);
+ if (result || !walk_subtrees)
+ return result;
+ }
+
+ switch (code)
+ {
+ case ERROR_MARK:
+ case IDENTIFIER_NODE:
+ case INTEGER_CST:
+ case REAL_CST:
+ case FIXED_CST:
+ case VECTOR_CST:
+ case STRING_CST:
+ case BLOCK:
+ case PLACEHOLDER_EXPR:
+ case SSA_NAME:
+ case FIELD_DECL:
+ case RESULT_DECL:
+ /* None of these have subtrees other than those already walked
+ above. */
+ break;
+
+ case TREE_LIST:
+ WALK_SUBTREE (TREE_VALUE (*tp));
+ WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
+ break;
+
+ case TREE_VEC:
+ {
+ int len = TREE_VEC_LENGTH (*tp);
+
+ if (len == 0)
+ break;
+
+ /* Walk all elements but the first. */
+ while (--len)
+ WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
+
+ /* Now walk the first one as a tail call. */
+ WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
+ }
+
+ case COMPLEX_CST:
+ WALK_SUBTREE (TREE_REALPART (*tp));
+ WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
+
+ case CONSTRUCTOR:
+ {
+ unsigned HOST_WIDE_INT idx;
+ constructor_elt *ce;
+
+ for (idx = 0; vec_safe_iterate(CONSTRUCTOR_ELTS (*tp), idx, &ce); idx++)
+ WALK_SUBTREE (ce->value);
+ }
+ break;
+
+ case SAVE_EXPR:
+ WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
+
+ case BIND_EXPR:
+ {
+ tree decl;
+ for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
+ {
+ /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
+ into declarations that are just mentioned, rather than
+ declared; they don't really belong to this part of the tree.
+ And, we can see cycles: the initializer for a declaration
+ can refer to the declaration itself. */
+ WALK_SUBTREE (DECL_INITIAL (decl));
+ WALK_SUBTREE (DECL_SIZE (decl));
+ WALK_SUBTREE (DECL_SIZE_UNIT (decl));
+ }
+ WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
+ }
+
+ case STATEMENT_LIST:
+ {
+ tree_stmt_iterator i;
+ for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
+ WALK_SUBTREE (*tsi_stmt_ptr (i));
+ }
+ break;
+
+ case OMP_CLAUSE:
+ switch (OMP_CLAUSE_CODE (*tp))
+ {
+ case OMP_CLAUSE_PRIVATE:
+ case OMP_CLAUSE_SHARED:
+ case OMP_CLAUSE_FIRSTPRIVATE:
+ case OMP_CLAUSE_COPYIN:
+ case OMP_CLAUSE_COPYPRIVATE:
+ case OMP_CLAUSE_FINAL:
+ case OMP_CLAUSE_IF:
+ case OMP_CLAUSE_NUM_THREADS:
+ case OMP_CLAUSE_SCHEDULE:
+ WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
+ /* FALLTHRU */
+
+ case OMP_CLAUSE_NOWAIT:
+ case OMP_CLAUSE_ORDERED:
+ case OMP_CLAUSE_DEFAULT:
+ case OMP_CLAUSE_UNTIED:
+ case OMP_CLAUSE_MERGEABLE:
+ WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
+
+ case OMP_CLAUSE_LASTPRIVATE:
+ WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
+ WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
+ WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
+
+ case OMP_CLAUSE_COLLAPSE:
+ {
+ int i;
+ for (i = 0; i < 3; i++)
+ WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
+ WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
+ }
+
+ case OMP_CLAUSE_REDUCTION:
+ {
+ int i;
+ for (i = 0; i < 4; i++)
+ WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
+ WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
+ }
+
+ default:
+ gcc_unreachable ();
+ }
+ break;
+
+ case TARGET_EXPR:
+ {
+ int i, len;
+
+ /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
+ But, we only want to walk once. */
+ len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
+ for (i = 0; i < len; ++i)
+ WALK_SUBTREE (TREE_OPERAND (*tp, i));
+ WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
+ }
+
+ case DECL_EXPR:
+ /* If this is a TYPE_DECL, walk into the fields of the type that it's
+ defining. We only want to walk into these fields of a type in this
+ case and not in the general case of a mere reference to the type.
+
+ The criterion is as follows: if the field can be an expression, it
+ must be walked only here. This should be in keeping with the fields
+ that are directly gimplified in gimplify_type_sizes in order for the
+ mark/copy-if-shared/unmark machinery of the gimplifier to work with
+ variable-sized types.
+
+ Note that DECLs get walked as part of processing the BIND_EXPR. */
+ if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
+ {
+ tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
+ if (TREE_CODE (*type_p) == ERROR_MARK)
+ return NULL_TREE;
+
+ /* Call the function for the type. See if it returns anything or
+ doesn't want us to continue. If we are to continue, walk both
+ the normal fields and those for the declaration case. */
+ result = (*func) (type_p, &walk_subtrees, data);
+ if (result || !walk_subtrees)
+ return result;
+
+ /* But do not walk a pointed-to type since it may itself need to
+ be walked in the declaration case if it isn't anonymous. */
+ if (!POINTER_TYPE_P (*type_p))
+ {
+ result = walk_type_fields (*type_p, func, data, pset, lh);
+ if (result)
+ return result;
+ }
+
+ /* If this is a record type, also walk the fields. */
+ if (RECORD_OR_UNION_TYPE_P (*type_p))
+ {
+ tree field;
+
+ for (field = TYPE_FIELDS (*type_p); field;
+ field = DECL_CHAIN (field))
+ {
+ /* We'd like to look at the type of the field, but we can
+ easily get infinite recursion. So assume it's pointed
+ to elsewhere in the tree. Also, ignore things that
+ aren't fields. */
+ if (TREE_CODE (field) != FIELD_DECL)
+ continue;
+
+ WALK_SUBTREE (DECL_FIELD_OFFSET (field));
+ WALK_SUBTREE (DECL_SIZE (field));
+ WALK_SUBTREE (DECL_SIZE_UNIT (field));
+ if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
+ WALK_SUBTREE (DECL_QUALIFIER (field));
+ }
+ }
+
+ /* Same for scalar types. */
+ else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
+ || TREE_CODE (*type_p) == ENUMERAL_TYPE
+ || TREE_CODE (*type_p) == INTEGER_TYPE
+ || TREE_CODE (*type_p) == FIXED_POINT_TYPE
+ || TREE_CODE (*type_p) == REAL_TYPE)
+ {
+ WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
+ WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
+ }
+
+ WALK_SUBTREE (TYPE_SIZE (*type_p));
+ WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
+ }
+ /* FALLTHRU */
+
+ default:
+ if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
+ {
+ int i, len;
+
+ /* Walk over all the sub-trees of this operand. */
+ len = TREE_OPERAND_LENGTH (*tp);
+
+ /* Go through the subtrees. We need to do this in forward order so
+ that the scope of a FOR_EXPR is handled properly. */
+ if (len)
+ {
+ for (i = 0; i < len - 1; ++i)
+ WALK_SUBTREE (TREE_OPERAND (*tp, i));
+ WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
+ }
+ }
+ /* If this is a type, walk the needed fields in the type. */
+ else if (TYPE_P (*tp))
+ return walk_type_fields (*tp, func, data, pset, lh);
+ break;
+ }
+
+ /* We didn't find what we were looking for. */
+ return NULL_TREE;
+
+#undef WALK_SUBTREE_TAIL
+}
+#undef WALK_SUBTREE
+
+/* Like walk_tree, but does not walk duplicate nodes more than once. */
+
+tree
+walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
+ walk_tree_lh lh)
+{
+ tree result;
+ struct pointer_set_t *pset;
+
+ pset = pointer_set_create ();
+ result = walk_tree_1 (tp, func, data, pset, lh);
+ pointer_set_destroy (pset);
+ return result;
+}
+
+
+tree
+tree_block (tree t)
+{
+ char const c = TREE_CODE_CLASS (TREE_CODE (t));
+
+ if (IS_EXPR_CODE_CLASS (c))
+ return LOCATION_BLOCK (t->exp.locus);
+ gcc_unreachable ();
+ return NULL;
+}
+
+void
+tree_set_block (tree t, tree b)
+{
+ char const c = TREE_CODE_CLASS (TREE_CODE (t));
+
+ if (IS_EXPR_CODE_CLASS (c))
+ {
+ if (b)
+ t->exp.locus = COMBINE_LOCATION_DATA (line_table, t->exp.locus, b);
+ else
+ t->exp.locus = LOCATION_LOCUS (t->exp.locus);
+ }
+ else
+ gcc_unreachable ();
+}
+
+/* Create a nameless artificial label and put it in the current
+ function context. The label has a location of LOC. Returns the
+ newly created label. */
+
+tree
+create_artificial_label (location_t loc)
+{
+ tree lab = build_decl (loc,
+ LABEL_DECL, NULL_TREE, void_type_node);
+
+ DECL_ARTIFICIAL (lab) = 1;
+ DECL_IGNORED_P (lab) = 1;
+ DECL_CONTEXT (lab) = current_function_decl;
+ return lab;
+}
+
+/* Given a tree, try to return a useful variable name that we can use
+ to prefix a temporary that is being assigned the value of the tree.
+ I.E. given <temp> = &A, return A. */
+
+const char *
+get_name (tree t)
+{
+ tree stripped_decl;
+
+ stripped_decl = t;
+ STRIP_NOPS (stripped_decl);
+ if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
+ return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
+ else if (TREE_CODE (stripped_decl) == SSA_NAME)
+ {
+ tree name = SSA_NAME_IDENTIFIER (stripped_decl);
+ if (!name)
+ return NULL;
+ return IDENTIFIER_POINTER (name);
+ }
+ else
+ {
+ switch (TREE_CODE (stripped_decl))
+ {
+ case ADDR_EXPR:
+ return get_name (TREE_OPERAND (stripped_decl, 0));
+ default:
+ return NULL;
+ }
+ }
+}
+
+/* Return true if TYPE has a variable argument list. */
+
+bool
+stdarg_p (const_tree fntype)
+{
+ function_args_iterator args_iter;
+ tree n = NULL_TREE, t;
+
+ if (!fntype)
+ return false;
+
+ FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
+ {
+ n = t;
+ }
+
+ return n != NULL_TREE && n != void_type_node;
+}
+
+/* Return true if TYPE has a prototype. */
+
+bool
+prototype_p (tree fntype)
+{
+ tree t;
+
+ gcc_assert (fntype != NULL_TREE);
+
+ t = TYPE_ARG_TYPES (fntype);
+ return (t != NULL_TREE);
+}
+
+/* If BLOCK is inlined from an __attribute__((__artificial__))
+ routine, return pointer to location from where it has been
+ called. */
+location_t *
+block_nonartificial_location (tree block)
+{
+ location_t *ret = NULL;
+
+ while (block && TREE_CODE (block) == BLOCK
+ && BLOCK_ABSTRACT_ORIGIN (block))
+ {
+ tree ao = BLOCK_ABSTRACT_ORIGIN (block);
+
+ while (TREE_CODE (ao) == BLOCK
+ && BLOCK_ABSTRACT_ORIGIN (ao)
+ && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
+ ao = BLOCK_ABSTRACT_ORIGIN (ao);
+
+ if (TREE_CODE (ao) == FUNCTION_DECL)
+ {
+ /* If AO is an artificial inline, point RET to the
+ call site locus at which it has been inlined and continue
+ the loop, in case AO's caller is also an artificial
+ inline. */
+ if (DECL_DECLARED_INLINE_P (ao)
+ && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
+ ret = &BLOCK_SOURCE_LOCATION (block);
+ else
+ break;
+ }
+ else if (TREE_CODE (ao) != BLOCK)
+ break;
+
+ block = BLOCK_SUPERCONTEXT (block);
+ }
+ return ret;
+}
+
+
+/* If EXP is inlined from an __attribute__((__artificial__))
+ function, return the location of the original call expression. */
+
+location_t
+tree_nonartificial_location (tree exp)
+{
+ location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
+
+ if (loc)
+ return *loc;
+ else
+ return EXPR_LOCATION (exp);
+}
+
+
+/* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
+ nodes. */
+
+/* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
+
+static hashval_t
+cl_option_hash_hash (const void *x)
+{
+ const_tree const t = (const_tree) x;
+ const char *p;
+ size_t i;
+ size_t len = 0;
+ hashval_t hash = 0;
+
+ if (TREE_CODE (t) == OPTIMIZATION_NODE)
+ {
+ p = (const char *)TREE_OPTIMIZATION (t);
+ len = sizeof (struct cl_optimization);
+ }
+
+ else if (TREE_CODE (t) == TARGET_OPTION_NODE)
+ {
+ p = (const char *)TREE_TARGET_OPTION (t);
+ len = sizeof (struct cl_target_option);
+ }
+
+ else
+ gcc_unreachable ();
+
+ /* assume most opt flags are just 0/1, some are 2-3, and a few might be
+ something else. */
+ for (i = 0; i < len; i++)
+ if (p[i])
+ hash = (hash << 4) ^ ((i << 2) | p[i]);
+
+ return hash;
+}
+
+/* Return nonzero if the value represented by *X (an OPTIMIZATION or
+ TARGET_OPTION tree node) is the same as that given by *Y, which is the
+ same. */
+
+static int
+cl_option_hash_eq (const void *x, const void *y)
+{
+ const_tree const xt = (const_tree) x;
+ const_tree const yt = (const_tree) y;
+ const char *xp;
+ const char *yp;
+ size_t len;
+
+ if (TREE_CODE (xt) != TREE_CODE (yt))
+ return 0;
+
+ if (TREE_CODE (xt) == OPTIMIZATION_NODE)
+ {
+ xp = (const char *)TREE_OPTIMIZATION (xt);
+ yp = (const char *)TREE_OPTIMIZATION (yt);
+ len = sizeof (struct cl_optimization);
+ }
+
+ else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
+ {
+ xp = (const char *)TREE_TARGET_OPTION (xt);
+ yp = (const char *)TREE_TARGET_OPTION (yt);
+ len = sizeof (struct cl_target_option);
+ }
+
+ else
+ gcc_unreachable ();
+
+ return (memcmp (xp, yp, len) == 0);
+}
+
+/* Build an OPTIMIZATION_NODE based on the current options. */
+
+tree
+build_optimization_node (void)
+{
+ tree t;
+ void **slot;
+
+ /* Use the cache of optimization nodes. */
+
+ cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
+ &global_options);
+
+ slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
+ t = (tree) *slot;
+ if (!t)
+ {
+ /* Insert this one into the hash table. */
+ t = cl_optimization_node;
+ *slot = t;
+
+ /* Make a new node for next time round. */
+ cl_optimization_node = make_node (OPTIMIZATION_NODE);
+ }
+
+ return t;
+}
+
+/* Build a TARGET_OPTION_NODE based on the current options. */
+
+tree
+build_target_option_node (void)
+{
+ tree t;
+ void **slot;
+
+ /* Use the cache of optimization nodes. */
+
+ cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
+ &global_options);
+
+ slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
+ t = (tree) *slot;
+ if (!t)
+ {
+ /* Insert this one into the hash table. */
+ t = cl_target_option_node;
+ *slot = t;
+
+ /* Make a new node for next time round. */
+ cl_target_option_node = make_node (TARGET_OPTION_NODE);
+ }
+
+ return t;
+}
+
+/* Determine the "ultimate origin" of a block. The block may be an inlined
+ instance of an inlined instance of a block which is local to an inline
+ function, so we have to trace all of the way back through the origin chain
+ to find out what sort of node actually served as the original seed for the
+ given block. */
+
+tree
+block_ultimate_origin (const_tree block)
+{
+ tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
+
+ /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
+ nodes in the function to point to themselves; ignore that if
+ we're trying to output the abstract instance of this function. */
+ if (BLOCK_ABSTRACT (block) && immediate_origin == block)
+ return NULL_TREE;
+
+ if (immediate_origin == NULL_TREE)
+ return NULL_TREE;
+ else
+ {
+ tree ret_val;
+ tree lookahead = immediate_origin;
+
+ do
+ {
+ ret_val = lookahead;
+ lookahead = (TREE_CODE (ret_val) == BLOCK
+ ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
+ }
+ while (lookahead != NULL && lookahead != ret_val);
+
+ /* The block's abstract origin chain may not be the *ultimate* origin of
+ the block. It could lead to a DECL that has an abstract origin set.
+ If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
+ will give us if it has one). Note that DECL's abstract origins are
+ supposed to be the most distant ancestor (or so decl_ultimate_origin
+ claims), so we don't need to loop following the DECL origins. */
+ if (DECL_P (ret_val))
+ return DECL_ORIGIN (ret_val);
+
+ return ret_val;
+ }
+}
+
+/* Return true if T1 and T2 are equivalent lists. */
+
+bool
+list_equal_p (const_tree t1, const_tree t2)
+{
+ for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
+ if (TREE_VALUE (t1) != TREE_VALUE (t2))
+ return false;
+ return !t1 && !t2;
+}
+
+/* Return true iff conversion in EXP generates no instruction. Mark
+ it inline so that we fully inline into the stripping functions even
+ though we have two uses of this function. */
+
+static inline bool
+tree_nop_conversion (const_tree exp)
+{
+ tree outer_type, inner_type;
+
+ if (!CONVERT_EXPR_P (exp)
+ && TREE_CODE (exp) != NON_LVALUE_EXPR)
+ return false;
+ if (TREE_OPERAND (exp, 0) == error_mark_node)
+ return false;
+
+ outer_type = TREE_TYPE (exp);
+ inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
+
+ if (!inner_type)
+ return false;
+
+ /* Use precision rather then machine mode when we can, which gives
+ the correct answer even for submode (bit-field) types. */
+ if ((INTEGRAL_TYPE_P (outer_type)
+ || POINTER_TYPE_P (outer_type)
+ || TREE_CODE (outer_type) == OFFSET_TYPE)
+ && (INTEGRAL_TYPE_P (inner_type)
+ || POINTER_TYPE_P (inner_type)
+ || TREE_CODE (inner_type) == OFFSET_TYPE))
+ return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
+
+ /* Otherwise fall back on comparing machine modes (e.g. for
+ aggregate types, floats). */
+ return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
+}
+
+/* Return true iff conversion in EXP generates no instruction. Don't
+ consider conversions changing the signedness. */
+
+static bool
+tree_sign_nop_conversion (const_tree exp)
+{
+ tree outer_type, inner_type;
+
+ if (!tree_nop_conversion (exp))
+ return false;
+
+ outer_type = TREE_TYPE (exp);
+ inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
+
+ return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
+ && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
+}
+
+/* Strip conversions from EXP according to tree_nop_conversion and
+ return the resulting expression. */
+
+tree
+tree_strip_nop_conversions (tree exp)
+{
+ while (tree_nop_conversion (exp))
+ exp = TREE_OPERAND (exp, 0);
+ return exp;
+}
+
+/* Strip conversions from EXP according to tree_sign_nop_conversion
+ and return the resulting expression. */
+
+tree
+tree_strip_sign_nop_conversions (tree exp)
+{
+ while (tree_sign_nop_conversion (exp))
+ exp = TREE_OPERAND (exp, 0);
+ return exp;
+}
+
+/* Avoid any floating point extensions from EXP. */
+tree
+strip_float_extensions (tree exp)
+{
+ tree sub, expt, subt;
+
+ /* For floating point constant look up the narrowest type that can hold
+ it properly and handle it like (type)(narrowest_type)constant.
+ This way we can optimize for instance a=a*2.0 where "a" is float
+ but 2.0 is double constant. */
+ if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
+ {
+ REAL_VALUE_TYPE orig;
+ tree type = NULL;
+
+ orig = TREE_REAL_CST (exp);
+ if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
+ && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
+ type = float_type_node;
+ else if (TYPE_PRECISION (TREE_TYPE (exp))
+ > TYPE_PRECISION (double_type_node)
+ && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
+ type = double_type_node;
+ if (type)
+ return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
+ }
+
+ if (!CONVERT_EXPR_P (exp))
+ return exp;
+
+ sub = TREE_OPERAND (exp, 0);
+ subt = TREE_TYPE (sub);
+ expt = TREE_TYPE (exp);
+
+ if (!FLOAT_TYPE_P (subt))
+ return exp;
+
+ if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
+ return exp;
+
+ if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
+ return exp;
+
+ return strip_float_extensions (sub);
+}
+
+/* Strip out all handled components that produce invariant
+ offsets. */
+
+const_tree
+strip_invariant_refs (const_tree op)
+{
+ while (handled_component_p (op))
+ {
+ switch (TREE_CODE (op))
+ {
+ case ARRAY_REF:
+ case ARRAY_RANGE_REF:
+ if (!is_gimple_constant (TREE_OPERAND (op, 1))
+ || TREE_OPERAND (op, 2) != NULL_TREE
+ || TREE_OPERAND (op, 3) != NULL_TREE)
+ return NULL;
+ break;
+
+ case COMPONENT_REF:
+ if (TREE_OPERAND (op, 2) != NULL_TREE)
+ return NULL;
+ break;
+
+ default:;
+ }
+ op = TREE_OPERAND (op, 0);
+ }
+
+ return op;
+}
+
+static GTY(()) tree gcc_eh_personality_decl;
+
+/* Return the GCC personality function decl. */
+
+tree
+lhd_gcc_personality (void)
+{
+ if (!gcc_eh_personality_decl)
+ gcc_eh_personality_decl = build_personality_function ("gcc");
+ return gcc_eh_personality_decl;
+}
+
+/* Try to find a base info of BINFO that would have its field decl at offset
+ OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
+ found, return, otherwise return NULL_TREE. */
+
+tree
+get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
+{
+ tree type = BINFO_TYPE (binfo);
+
+ while (true)
+ {
+ HOST_WIDE_INT pos, size;
+ tree fld;
+ int i;
+
+ if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
+ return binfo;
+ if (offset < 0)
+ return NULL_TREE;
+
+ for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
+ {
+ if (TREE_CODE (fld) != FIELD_DECL)
+ continue;
+
+ pos = int_bit_position (fld);
+ size = tree_low_cst (DECL_SIZE (fld), 1);
+ if (pos <= offset && (pos + size) > offset)
+ break;
+ }
+ if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
+ return NULL_TREE;
+
+ if (!DECL_ARTIFICIAL (fld))
+ {
+ binfo = TYPE_BINFO (TREE_TYPE (fld));
+ if (!binfo)
+ return NULL_TREE;
+ }
+ /* Offset 0 indicates the primary base, whose vtable contents are
+ represented in the binfo for the derived class. */
+ else if (offset != 0)
+ {
+ tree base_binfo, found_binfo = NULL_TREE;
+ for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
+ if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
+ {
+ found_binfo = base_binfo;
+ break;
+ }
+ if (!found_binfo)
+ return NULL_TREE;
+ binfo = found_binfo;
+ }
+
+ type = TREE_TYPE (fld);
+ offset -= pos;
+ }
+}
+
+/* Returns true if X is a typedef decl. */
+
+bool
+is_typedef_decl (tree x)
+{
+ return (x && TREE_CODE (x) == TYPE_DECL
+ && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
+}
+
+/* Returns true iff TYPE is a type variant created for a typedef. */
+
+bool
+typedef_variant_p (tree type)
+{
+ return is_typedef_decl (TYPE_NAME (type));
+}
+
+/* Warn about a use of an identifier which was marked deprecated. */
+void
+warn_deprecated_use (tree node, tree attr)
+{
+ const char *msg;
+
+ if (node == 0 || !warn_deprecated_decl)
+ return;
+
+ if (!attr)
+ {
+ if (DECL_P (node))
+ attr = DECL_ATTRIBUTES (node);
+ else if (TYPE_P (node))
+ {
+ tree decl = TYPE_STUB_DECL (node);
+ if (decl)
+ attr = lookup_attribute ("deprecated",
+ TYPE_ATTRIBUTES (TREE_TYPE (decl)));
+ }
+ }
+
+ if (attr)
+ attr = lookup_attribute ("deprecated", attr);
+
+ if (attr)
+ msg = TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr)));
+ else
+ msg = NULL;
+
+ if (DECL_P (node))
+ {
+ expanded_location xloc = expand_location (DECL_SOURCE_LOCATION (node));
+ if (msg)
+ warning (OPT_Wdeprecated_declarations,
+ "%qD is deprecated (declared at %s:%d): %s",
+ node, xloc.file, xloc.line, msg);
+ else
+ warning (OPT_Wdeprecated_declarations,
+ "%qD is deprecated (declared at %s:%d)",
+ node, xloc.file, xloc.line);
+ }
+ else if (TYPE_P (node))
+ {
+ tree what = NULL_TREE;
+ tree decl = TYPE_STUB_DECL (node);
+
+ if (TYPE_NAME (node))
+ {
+ if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
+ what = TYPE_NAME (node);
+ else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
+ && DECL_NAME (TYPE_NAME (node)))
+ what = DECL_NAME (TYPE_NAME (node));
+ }
+
+ if (decl)
+ {
+ expanded_location xloc
+ = expand_location (DECL_SOURCE_LOCATION (decl));
+ if (what)
+ {
+ if (msg)
+ warning (OPT_Wdeprecated_declarations,
+ "%qE is deprecated (declared at %s:%d): %s",
+ what, xloc.file, xloc.line, msg);
+ else
+ warning (OPT_Wdeprecated_declarations,
+ "%qE is deprecated (declared at %s:%d)", what,
+ xloc.file, xloc.line);
+ }
+ else
+ {
+ if (msg)
+ warning (OPT_Wdeprecated_declarations,
+ "type is deprecated (declared at %s:%d): %s",
+ xloc.file, xloc.line, msg);
+ else
+ warning (OPT_Wdeprecated_declarations,
+ "type is deprecated (declared at %s:%d)",
+ xloc.file, xloc.line);
+ }
+ }
+ else
+ {
+ if (what)
+ {
+ if (msg)
+ warning (OPT_Wdeprecated_declarations, "%qE is deprecated: %s",
+ what, msg);
+ else
+ warning (OPT_Wdeprecated_declarations, "%qE is deprecated", what);
+ }
+ else
+ {
+ if (msg)
+ warning (OPT_Wdeprecated_declarations, "type is deprecated: %s",
+ msg);
+ else
+ warning (OPT_Wdeprecated_declarations, "type is deprecated");
+ }
+ }
+ }
+}
+
+/* Return true if REF has a COMPONENT_REF with a bit-field field declaration
+ somewhere in it. */
+
+bool
+contains_bitfld_component_ref_p (const_tree ref)
+{
+ while (handled_component_p (ref))
+ {
+ if (TREE_CODE (ref) == COMPONENT_REF
+ && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
+ return true;
+ ref = TREE_OPERAND (ref, 0);
+ }
+
+ return false;
+}
+
+#include "gt-tree.h"