aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.3/gcc/cfgloop.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.3/gcc/cfgloop.c')
-rw-r--r--gcc-4.8.3/gcc/cfgloop.c1766
1 files changed, 1766 insertions, 0 deletions
diff --git a/gcc-4.8.3/gcc/cfgloop.c b/gcc-4.8.3/gcc/cfgloop.c
new file mode 100644
index 000000000..751da5a2c
--- /dev/null
+++ b/gcc-4.8.3/gcc/cfgloop.c
@@ -0,0 +1,1766 @@
+/* Natural loop discovery code for GNU compiler.
+ Copyright (C) 2000-2013 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "function.h"
+#include "basic-block.h"
+#include "cfgloop.h"
+#include "diagnostic-core.h"
+#include "flags.h"
+#include "tree.h"
+#include "tree-flow.h"
+#include "pointer-set.h"
+#include "ggc.h"
+#include "dumpfile.h"
+
+static void flow_loops_cfg_dump (FILE *);
+
+/* Dump loop related CFG information. */
+
+static void
+flow_loops_cfg_dump (FILE *file)
+{
+ basic_block bb;
+
+ if (!file)
+ return;
+
+ FOR_EACH_BB (bb)
+ {
+ edge succ;
+ edge_iterator ei;
+
+ fprintf (file, ";; %d succs { ", bb->index);
+ FOR_EACH_EDGE (succ, ei, bb->succs)
+ fprintf (file, "%d ", succ->dest->index);
+ fprintf (file, "}\n");
+ }
+}
+
+/* Return nonzero if the nodes of LOOP are a subset of OUTER. */
+
+bool
+flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
+{
+ unsigned odepth = loop_depth (outer);
+
+ return (loop_depth (loop) > odepth
+ && (*loop->superloops)[odepth] == outer);
+}
+
+/* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
+ loops within LOOP. */
+
+struct loop *
+superloop_at_depth (struct loop *loop, unsigned depth)
+{
+ unsigned ldepth = loop_depth (loop);
+
+ gcc_assert (depth <= ldepth);
+
+ if (depth == ldepth)
+ return loop;
+
+ return (*loop->superloops)[depth];
+}
+
+/* Returns the list of the latch edges of LOOP. */
+
+static vec<edge>
+get_loop_latch_edges (const struct loop *loop)
+{
+ edge_iterator ei;
+ edge e;
+ vec<edge> ret = vNULL;
+
+ FOR_EACH_EDGE (e, ei, loop->header->preds)
+ {
+ if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
+ ret.safe_push (e);
+ }
+
+ return ret;
+}
+
+/* Dump the loop information specified by LOOP to the stream FILE
+ using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
+
+void
+flow_loop_dump (const struct loop *loop, FILE *file,
+ void (*loop_dump_aux) (const struct loop *, FILE *, int),
+ int verbose)
+{
+ basic_block *bbs;
+ unsigned i;
+ vec<edge> latches;
+ edge e;
+
+ if (! loop || ! loop->header)
+ return;
+
+ fprintf (file, ";;\n;; Loop %d\n", loop->num);
+
+ fprintf (file, ";; header %d, ", loop->header->index);
+ if (loop->latch)
+ fprintf (file, "latch %d\n", loop->latch->index);
+ else
+ {
+ fprintf (file, "multiple latches:");
+ latches = get_loop_latch_edges (loop);
+ FOR_EACH_VEC_ELT (latches, i, e)
+ fprintf (file, " %d", e->src->index);
+ latches.release ();
+ fprintf (file, "\n");
+ }
+
+ fprintf (file, ";; depth %d, outer %ld\n",
+ loop_depth (loop), (long) (loop_outer (loop)
+ ? loop_outer (loop)->num : -1));
+
+ fprintf (file, ";; nodes:");
+ bbs = get_loop_body (loop);
+ for (i = 0; i < loop->num_nodes; i++)
+ fprintf (file, " %d", bbs[i]->index);
+ free (bbs);
+ fprintf (file, "\n");
+
+ if (loop_dump_aux)
+ loop_dump_aux (loop, file, verbose);
+}
+
+/* Dump the loop information about loops to the stream FILE,
+ using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
+
+void
+flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
+{
+ loop_iterator li;
+ struct loop *loop;
+
+ if (!current_loops || ! file)
+ return;
+
+ fprintf (file, ";; %d loops found\n", number_of_loops ());
+
+ FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
+ {
+ flow_loop_dump (loop, file, loop_dump_aux, verbose);
+ }
+
+ if (verbose)
+ flow_loops_cfg_dump (file);
+}
+
+/* Free data allocated for LOOP. */
+
+void
+flow_loop_free (struct loop *loop)
+{
+ struct loop_exit *exit, *next;
+
+ vec_free (loop->superloops);
+
+ /* Break the list of the loop exit records. They will be freed when the
+ corresponding edge is rescanned or removed, and this avoids
+ accessing the (already released) head of the list stored in the
+ loop structure. */
+ for (exit = loop->exits->next; exit != loop->exits; exit = next)
+ {
+ next = exit->next;
+ exit->next = exit;
+ exit->prev = exit;
+ }
+
+ ggc_free (loop->exits);
+ ggc_free (loop);
+}
+
+/* Free all the memory allocated for LOOPS. */
+
+void
+flow_loops_free (struct loops *loops)
+{
+ if (loops->larray)
+ {
+ unsigned i;
+ loop_p loop;
+
+ /* Free the loop descriptors. */
+ FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
+ {
+ if (!loop)
+ continue;
+
+ flow_loop_free (loop);
+ }
+
+ vec_free (loops->larray);
+ }
+}
+
+/* Find the nodes contained within the LOOP with header HEADER.
+ Return the number of nodes within the loop. */
+
+int
+flow_loop_nodes_find (basic_block header, struct loop *loop)
+{
+ vec<basic_block> stack = vNULL;
+ int num_nodes = 1;
+ edge latch;
+ edge_iterator latch_ei;
+
+ header->loop_father = loop;
+
+ FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
+ {
+ if (latch->src->loop_father == loop
+ || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
+ continue;
+
+ num_nodes++;
+ stack.safe_push (latch->src);
+ latch->src->loop_father = loop;
+
+ while (!stack.is_empty ())
+ {
+ basic_block node;
+ edge e;
+ edge_iterator ei;
+
+ node = stack.pop ();
+
+ FOR_EACH_EDGE (e, ei, node->preds)
+ {
+ basic_block ancestor = e->src;
+
+ if (ancestor->loop_father != loop)
+ {
+ ancestor->loop_father = loop;
+ num_nodes++;
+ stack.safe_push (ancestor);
+ }
+ }
+ }
+ }
+ stack.release ();
+
+ return num_nodes;
+}
+
+/* Records the vector of superloops of the loop LOOP, whose immediate
+ superloop is FATHER. */
+
+static void
+establish_preds (struct loop *loop, struct loop *father)
+{
+ loop_p ploop;
+ unsigned depth = loop_depth (father) + 1;
+ unsigned i;
+
+ loop->superloops = 0;
+ vec_alloc (loop->superloops, depth);
+ FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
+ loop->superloops->quick_push (ploop);
+ loop->superloops->quick_push (father);
+
+ for (ploop = loop->inner; ploop; ploop = ploop->next)
+ establish_preds (ploop, loop);
+}
+
+/* Add LOOP to the loop hierarchy tree where FATHER is father of the
+ added loop. If LOOP has some children, take care of that their
+ pred field will be initialized correctly. */
+
+void
+flow_loop_tree_node_add (struct loop *father, struct loop *loop)
+{
+ loop->next = father->inner;
+ father->inner = loop;
+
+ establish_preds (loop, father);
+}
+
+/* Remove LOOP from the loop hierarchy tree. */
+
+void
+flow_loop_tree_node_remove (struct loop *loop)
+{
+ struct loop *prev, *father;
+
+ father = loop_outer (loop);
+
+ /* Remove loop from the list of sons. */
+ if (father->inner == loop)
+ father->inner = loop->next;
+ else
+ {
+ for (prev = father->inner; prev->next != loop; prev = prev->next)
+ continue;
+ prev->next = loop->next;
+ }
+
+ loop->superloops = NULL;
+}
+
+/* Allocates and returns new loop structure. */
+
+struct loop *
+alloc_loop (void)
+{
+ struct loop *loop = ggc_alloc_cleared_loop ();
+
+ loop->exits = ggc_alloc_cleared_loop_exit ();
+ loop->exits->next = loop->exits->prev = loop->exits;
+ loop->can_be_parallel = false;
+
+ return loop;
+}
+
+/* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
+ (including the root of the loop tree). */
+
+static void
+init_loops_structure (struct loops *loops, unsigned num_loops)
+{
+ struct loop *root;
+
+ memset (loops, 0, sizeof *loops);
+ vec_alloc (loops->larray, num_loops);
+
+ /* Dummy loop containing whole function. */
+ root = alloc_loop ();
+ root->num_nodes = n_basic_blocks;
+ root->latch = EXIT_BLOCK_PTR;
+ root->header = ENTRY_BLOCK_PTR;
+ ENTRY_BLOCK_PTR->loop_father = root;
+ EXIT_BLOCK_PTR->loop_father = root;
+
+ loops->larray->quick_push (root);
+ loops->tree_root = root;
+}
+
+/* Returns whether HEADER is a loop header. */
+
+bool
+bb_loop_header_p (basic_block header)
+{
+ edge_iterator ei;
+ edge e;
+
+ /* If we have an abnormal predecessor, do not consider the
+ loop (not worth the problems). */
+ if (bb_has_abnormal_pred (header))
+ return false;
+
+ /* Look for back edges where a predecessor is dominated
+ by this block. A natural loop has a single entry
+ node (header) that dominates all the nodes in the
+ loop. It also has single back edge to the header
+ from a latch node. */
+ FOR_EACH_EDGE (e, ei, header->preds)
+ {
+ basic_block latch = e->src;
+ if (latch != ENTRY_BLOCK_PTR
+ && dominated_by_p (CDI_DOMINATORS, latch, header))
+ return true;
+ }
+
+ return false;
+}
+
+/* Find all the natural loops in the function and save in LOOPS structure and
+ recalculate loop_father information in basic block structures.
+ If LOOPS is non-NULL then the loop structures for already recorded loops
+ will be re-used and their number will not change. We assume that no
+ stale loops exist in LOOPS.
+ When LOOPS is NULL it is allocated and re-built from scratch.
+ Return the built LOOPS structure. */
+
+struct loops *
+flow_loops_find (struct loops *loops)
+{
+ bool from_scratch = (loops == NULL);
+ int *rc_order;
+ int b;
+ unsigned i;
+ vec<loop_p> larray;
+
+ /* Ensure that the dominators are computed. */
+ calculate_dominance_info (CDI_DOMINATORS);
+
+ if (!loops)
+ {
+ loops = ggc_alloc_cleared_loops ();
+ init_loops_structure (loops, 1);
+ }
+
+ /* Ensure that loop exits were released. */
+ gcc_assert (loops->exits == NULL);
+
+ /* Taking care of this degenerate case makes the rest of
+ this code simpler. */
+ if (n_basic_blocks == NUM_FIXED_BLOCKS)
+ return loops;
+
+ /* The root loop node contains all basic-blocks. */
+ loops->tree_root->num_nodes = n_basic_blocks;
+
+ /* Compute depth first search order of the CFG so that outer
+ natural loops will be found before inner natural loops. */
+ rc_order = XNEWVEC (int, n_basic_blocks);
+ pre_and_rev_post_order_compute (NULL, rc_order, false);
+
+ /* Gather all loop headers in reverse completion order and allocate
+ loop structures for loops that are not already present. */
+ larray.create (loops->larray->length());
+ for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
+ {
+ basic_block header = BASIC_BLOCK (rc_order[b]);
+ if (bb_loop_header_p (header))
+ {
+ struct loop *loop;
+
+ /* The current active loop tree has valid loop-fathers for
+ header blocks. */
+ if (!from_scratch
+ && header->loop_father->header == header)
+ {
+ loop = header->loop_father;
+ /* If we found an existing loop remove it from the
+ loop tree. It is going to be inserted again
+ below. */
+ flow_loop_tree_node_remove (loop);
+ }
+ else
+ {
+ /* Otherwise allocate a new loop structure for the loop. */
+ loop = alloc_loop ();
+ /* ??? We could re-use unused loop slots here. */
+ loop->num = loops->larray->length ();
+ vec_safe_push (loops->larray, loop);
+ loop->header = header;
+
+ if (!from_scratch
+ && dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "flow_loops_find: discovered new "
+ "loop %d with header %d\n",
+ loop->num, header->index);
+ }
+ /* Reset latch, we recompute it below. */
+ loop->latch = NULL;
+ larray.safe_push (loop);
+ }
+
+ /* Make blocks part of the loop root node at start. */
+ header->loop_father = loops->tree_root;
+ }
+
+ free (rc_order);
+
+ /* Now iterate over the loops found, insert them into the loop tree
+ and assign basic-block ownership. */
+ for (i = 0; i < larray.length (); ++i)
+ {
+ struct loop *loop = larray[i];
+ basic_block header = loop->header;
+ edge_iterator ei;
+ edge e;
+
+ flow_loop_tree_node_add (header->loop_father, loop);
+ loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
+
+ /* Look for the latch for this header block, if it has just a
+ single one. */
+ FOR_EACH_EDGE (e, ei, header->preds)
+ {
+ basic_block latch = e->src;
+
+ if (flow_bb_inside_loop_p (loop, latch))
+ {
+ if (loop->latch != NULL)
+ {
+ /* More than one latch edge. */
+ loop->latch = NULL;
+ break;
+ }
+ loop->latch = latch;
+ }
+ }
+ }
+
+ larray.release();
+
+ return loops;
+}
+
+/* Ratio of frequencies of edges so that one of more latch edges is
+ considered to belong to inner loop with same header. */
+#define HEAVY_EDGE_RATIO 8
+
+/* Minimum number of samples for that we apply
+ find_subloop_latch_edge_by_profile heuristics. */
+#define HEAVY_EDGE_MIN_SAMPLES 10
+
+/* If the profile info is available, finds an edge in LATCHES that much more
+ frequent than the remaining edges. Returns such an edge, or NULL if we do
+ not find one.
+
+ We do not use guessed profile here, only the measured one. The guessed
+ profile is usually too flat and unreliable for this (and it is mostly based
+ on the loop structure of the program, so it does not make much sense to
+ derive the loop structure from it). */
+
+static edge
+find_subloop_latch_edge_by_profile (vec<edge> latches)
+{
+ unsigned i;
+ edge e, me = NULL;
+ gcov_type mcount = 0, tcount = 0;
+
+ FOR_EACH_VEC_ELT (latches, i, e)
+ {
+ if (e->count > mcount)
+ {
+ me = e;
+ mcount = e->count;
+ }
+ tcount += e->count;
+ }
+
+ if (tcount < HEAVY_EDGE_MIN_SAMPLES
+ || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
+ return NULL;
+
+ if (dump_file)
+ fprintf (dump_file,
+ "Found latch edge %d -> %d using profile information.\n",
+ me->src->index, me->dest->index);
+ return me;
+}
+
+/* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
+ on the structure of induction variables. Returns this edge, or NULL if we
+ do not find any.
+
+ We are quite conservative, and look just for an obvious simple innermost
+ loop (which is the case where we would lose the most performance by not
+ disambiguating the loop). More precisely, we look for the following
+ situation: The source of the chosen latch edge dominates sources of all
+ the other latch edges. Additionally, the header does not contain a phi node
+ such that the argument from the chosen edge is equal to the argument from
+ another edge. */
+
+static edge
+find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
+{
+ edge e, latch = latches[0];
+ unsigned i;
+ gimple phi;
+ gimple_stmt_iterator psi;
+ tree lop;
+ basic_block bb;
+
+ /* Find the candidate for the latch edge. */
+ for (i = 1; latches.iterate (i, &e); i++)
+ if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
+ latch = e;
+
+ /* Verify that it dominates all the latch edges. */
+ FOR_EACH_VEC_ELT (latches, i, e)
+ if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
+ return NULL;
+
+ /* Check for a phi node that would deny that this is a latch edge of
+ a subloop. */
+ for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
+ {
+ phi = gsi_stmt (psi);
+ lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
+
+ /* Ignore the values that are not changed inside the subloop. */
+ if (TREE_CODE (lop) != SSA_NAME
+ || SSA_NAME_DEF_STMT (lop) == phi)
+ continue;
+ bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
+ if (!bb || !flow_bb_inside_loop_p (loop, bb))
+ continue;
+
+ FOR_EACH_VEC_ELT (latches, i, e)
+ if (e != latch
+ && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
+ return NULL;
+ }
+
+ if (dump_file)
+ fprintf (dump_file,
+ "Found latch edge %d -> %d using iv structure.\n",
+ latch->src->index, latch->dest->index);
+ return latch;
+}
+
+/* If we can determine that one of the several latch edges of LOOP behaves
+ as a latch edge of a separate subloop, returns this edge. Otherwise
+ returns NULL. */
+
+static edge
+find_subloop_latch_edge (struct loop *loop)
+{
+ vec<edge> latches = get_loop_latch_edges (loop);
+ edge latch = NULL;
+
+ if (latches.length () > 1)
+ {
+ latch = find_subloop_latch_edge_by_profile (latches);
+
+ if (!latch
+ /* We consider ivs to guess the latch edge only in SSA. Perhaps we
+ should use cfghook for this, but it is hard to imagine it would
+ be useful elsewhere. */
+ && current_ir_type () == IR_GIMPLE)
+ latch = find_subloop_latch_edge_by_ivs (loop, latches);
+ }
+
+ latches.release ();
+ return latch;
+}
+
+/* Callback for make_forwarder_block. Returns true if the edge E is marked
+ in the set MFB_REIS_SET. */
+
+static struct pointer_set_t *mfb_reis_set;
+static bool
+mfb_redirect_edges_in_set (edge e)
+{
+ return pointer_set_contains (mfb_reis_set, e);
+}
+
+/* Creates a subloop of LOOP with latch edge LATCH. */
+
+static void
+form_subloop (struct loop *loop, edge latch)
+{
+ edge_iterator ei;
+ edge e, new_entry;
+ struct loop *new_loop;
+
+ mfb_reis_set = pointer_set_create ();
+ FOR_EACH_EDGE (e, ei, loop->header->preds)
+ {
+ if (e != latch)
+ pointer_set_insert (mfb_reis_set, e);
+ }
+ new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
+ NULL);
+ pointer_set_destroy (mfb_reis_set);
+
+ loop->header = new_entry->src;
+
+ /* Find the blocks and subloops that belong to the new loop, and add it to
+ the appropriate place in the loop tree. */
+ new_loop = alloc_loop ();
+ new_loop->header = new_entry->dest;
+ new_loop->latch = latch->src;
+ add_loop (new_loop, loop);
+}
+
+/* Make all the latch edges of LOOP to go to a single forwarder block --
+ a new latch of LOOP. */
+
+static void
+merge_latch_edges (struct loop *loop)
+{
+ vec<edge> latches = get_loop_latch_edges (loop);
+ edge latch, e;
+ unsigned i;
+
+ gcc_assert (latches.length () > 0);
+
+ if (latches.length () == 1)
+ loop->latch = latches[0]->src;
+ else
+ {
+ if (dump_file)
+ fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
+
+ mfb_reis_set = pointer_set_create ();
+ FOR_EACH_VEC_ELT (latches, i, e)
+ pointer_set_insert (mfb_reis_set, e);
+ latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
+ NULL);
+ pointer_set_destroy (mfb_reis_set);
+
+ loop->header = latch->dest;
+ loop->latch = latch->src;
+ }
+
+ latches.release ();
+}
+
+/* LOOP may have several latch edges. Transform it into (possibly several)
+ loops with single latch edge. */
+
+static void
+disambiguate_multiple_latches (struct loop *loop)
+{
+ edge e;
+
+ /* We eliminate the multiple latches by splitting the header to the forwarder
+ block F and the rest R, and redirecting the edges. There are two cases:
+
+ 1) If there is a latch edge E that corresponds to a subloop (we guess
+ that based on profile -- if it is taken much more often than the
+ remaining edges; and on trees, using the information about induction
+ variables of the loops), we redirect E to R, all the remaining edges to
+ F, then rescan the loops and try again for the outer loop.
+ 2) If there is no such edge, we redirect all latch edges to F, and the
+ entry edges to R, thus making F the single latch of the loop. */
+
+ if (dump_file)
+ fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
+ loop->num);
+
+ /* During latch merging, we may need to redirect the entry edges to a new
+ block. This would cause problems if the entry edge was the one from the
+ entry block. To avoid having to handle this case specially, split
+ such entry edge. */
+ e = find_edge (ENTRY_BLOCK_PTR, loop->header);
+ if (e)
+ split_edge (e);
+
+ while (1)
+ {
+ e = find_subloop_latch_edge (loop);
+ if (!e)
+ break;
+
+ form_subloop (loop, e);
+ }
+
+ merge_latch_edges (loop);
+}
+
+/* Split loops with multiple latch edges. */
+
+void
+disambiguate_loops_with_multiple_latches (void)
+{
+ loop_iterator li;
+ struct loop *loop;
+
+ FOR_EACH_LOOP (li, loop, 0)
+ {
+ if (!loop->latch)
+ disambiguate_multiple_latches (loop);
+ }
+}
+
+/* Return nonzero if basic block BB belongs to LOOP. */
+bool
+flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
+{
+ struct loop *source_loop;
+
+ if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
+ return 0;
+
+ source_loop = bb->loop_father;
+ return loop == source_loop || flow_loop_nested_p (loop, source_loop);
+}
+
+/* Enumeration predicate for get_loop_body_with_size. */
+static bool
+glb_enum_p (const_basic_block bb, const void *glb_loop)
+{
+ const struct loop *const loop = (const struct loop *) glb_loop;
+ return (bb != loop->header
+ && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
+}
+
+/* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
+ order against direction of edges from latch. Specially, if
+ header != latch, latch is the 1-st block. LOOP cannot be the fake
+ loop tree root, and its size must be at most MAX_SIZE. The blocks
+ in the LOOP body are stored to BODY, and the size of the LOOP is
+ returned. */
+
+unsigned
+get_loop_body_with_size (const struct loop *loop, basic_block *body,
+ unsigned max_size)
+{
+ return dfs_enumerate_from (loop->header, 1, glb_enum_p,
+ body, max_size, loop);
+}
+
+/* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
+ order against direction of edges from latch. Specially, if
+ header != latch, latch is the 1-st block. */
+
+basic_block *
+get_loop_body (const struct loop *loop)
+{
+ basic_block *body, bb;
+ unsigned tv = 0;
+
+ gcc_assert (loop->num_nodes);
+
+ body = XNEWVEC (basic_block, loop->num_nodes);
+
+ if (loop->latch == EXIT_BLOCK_PTR)
+ {
+ /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
+ special-case the fake loop that contains the whole function. */
+ gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
+ body[tv++] = loop->header;
+ body[tv++] = EXIT_BLOCK_PTR;
+ FOR_EACH_BB (bb)
+ body[tv++] = bb;
+ }
+ else
+ tv = get_loop_body_with_size (loop, body, loop->num_nodes);
+
+ gcc_assert (tv == loop->num_nodes);
+ return body;
+}
+
+/* Fills dominance descendants inside LOOP of the basic block BB into
+ array TOVISIT from index *TV. */
+
+static void
+fill_sons_in_loop (const struct loop *loop, basic_block bb,
+ basic_block *tovisit, int *tv)
+{
+ basic_block son, postpone = NULL;
+
+ tovisit[(*tv)++] = bb;
+ for (son = first_dom_son (CDI_DOMINATORS, bb);
+ son;
+ son = next_dom_son (CDI_DOMINATORS, son))
+ {
+ if (!flow_bb_inside_loop_p (loop, son))
+ continue;
+
+ if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
+ {
+ postpone = son;
+ continue;
+ }
+ fill_sons_in_loop (loop, son, tovisit, tv);
+ }
+
+ if (postpone)
+ fill_sons_in_loop (loop, postpone, tovisit, tv);
+}
+
+/* Gets body of a LOOP (that must be different from the outermost loop)
+ sorted by dominance relation. Additionally, if a basic block s dominates
+ the latch, then only blocks dominated by s are be after it. */
+
+basic_block *
+get_loop_body_in_dom_order (const struct loop *loop)
+{
+ basic_block *tovisit;
+ int tv;
+
+ gcc_assert (loop->num_nodes);
+
+ tovisit = XNEWVEC (basic_block, loop->num_nodes);
+
+ gcc_assert (loop->latch != EXIT_BLOCK_PTR);
+
+ tv = 0;
+ fill_sons_in_loop (loop, loop->header, tovisit, &tv);
+
+ gcc_assert (tv == (int) loop->num_nodes);
+
+ return tovisit;
+}
+
+/* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
+
+basic_block *
+get_loop_body_in_custom_order (const struct loop *loop,
+ int (*bb_comparator) (const void *, const void *))
+{
+ basic_block *bbs = get_loop_body (loop);
+
+ qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
+
+ return bbs;
+}
+
+/* Get body of a LOOP in breadth first sort order. */
+
+basic_block *
+get_loop_body_in_bfs_order (const struct loop *loop)
+{
+ basic_block *blocks;
+ basic_block bb;
+ bitmap visited;
+ unsigned int i = 0;
+ unsigned int vc = 1;
+
+ gcc_assert (loop->num_nodes);
+ gcc_assert (loop->latch != EXIT_BLOCK_PTR);
+
+ blocks = XNEWVEC (basic_block, loop->num_nodes);
+ visited = BITMAP_ALLOC (NULL);
+
+ bb = loop->header;
+ while (i < loop->num_nodes)
+ {
+ edge e;
+ edge_iterator ei;
+
+ if (bitmap_set_bit (visited, bb->index))
+ /* This basic block is now visited */
+ blocks[i++] = bb;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ if (flow_bb_inside_loop_p (loop, e->dest))
+ {
+ if (bitmap_set_bit (visited, e->dest->index))
+ blocks[i++] = e->dest;
+ }
+ }
+
+ gcc_assert (i >= vc);
+
+ bb = blocks[vc++];
+ }
+
+ BITMAP_FREE (visited);
+ return blocks;
+}
+
+/* Hash function for struct loop_exit. */
+
+static hashval_t
+loop_exit_hash (const void *ex)
+{
+ const struct loop_exit *const exit = (const struct loop_exit *) ex;
+
+ return htab_hash_pointer (exit->e);
+}
+
+/* Equality function for struct loop_exit. Compares with edge. */
+
+static int
+loop_exit_eq (const void *ex, const void *e)
+{
+ const struct loop_exit *const exit = (const struct loop_exit *) ex;
+
+ return exit->e == e;
+}
+
+/* Frees the list of loop exit descriptions EX. */
+
+static void
+loop_exit_free (void *ex)
+{
+ struct loop_exit *exit = (struct loop_exit *) ex, *next;
+
+ for (; exit; exit = next)
+ {
+ next = exit->next_e;
+
+ exit->next->prev = exit->prev;
+ exit->prev->next = exit->next;
+
+ ggc_free (exit);
+ }
+}
+
+/* Returns the list of records for E as an exit of a loop. */
+
+static struct loop_exit *
+get_exit_descriptions (edge e)
+{
+ return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
+ htab_hash_pointer (e));
+}
+
+/* Updates the lists of loop exits in that E appears.
+ If REMOVED is true, E is being removed, and we
+ just remove it from the lists of exits.
+ If NEW_EDGE is true and E is not a loop exit, we
+ do not try to remove it from loop exit lists. */
+
+void
+rescan_loop_exit (edge e, bool new_edge, bool removed)
+{
+ void **slot;
+ struct loop_exit *exits = NULL, *exit;
+ struct loop *aloop, *cloop;
+
+ if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
+ return;
+
+ if (!removed
+ && e->src->loop_father != NULL
+ && e->dest->loop_father != NULL
+ && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
+ {
+ cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
+ for (aloop = e->src->loop_father;
+ aloop != cloop;
+ aloop = loop_outer (aloop))
+ {
+ exit = ggc_alloc_loop_exit ();
+ exit->e = e;
+
+ exit->next = aloop->exits->next;
+ exit->prev = aloop->exits;
+ exit->next->prev = exit;
+ exit->prev->next = exit;
+
+ exit->next_e = exits;
+ exits = exit;
+ }
+ }
+
+ if (!exits && new_edge)
+ return;
+
+ slot = htab_find_slot_with_hash (current_loops->exits, e,
+ htab_hash_pointer (e),
+ exits ? INSERT : NO_INSERT);
+ if (!slot)
+ return;
+
+ if (exits)
+ {
+ if (*slot)
+ loop_exit_free (*slot);
+ *slot = exits;
+ }
+ else
+ htab_clear_slot (current_loops->exits, slot);
+}
+
+/* For each loop, record list of exit edges, and start maintaining these
+ lists. */
+
+void
+record_loop_exits (void)
+{
+ basic_block bb;
+ edge_iterator ei;
+ edge e;
+
+ if (!current_loops)
+ return;
+
+ if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
+ return;
+ loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
+
+ gcc_assert (current_loops->exits == NULL);
+ current_loops->exits = htab_create_ggc (2 * number_of_loops (),
+ loop_exit_hash, loop_exit_eq,
+ loop_exit_free);
+
+ FOR_EACH_BB (bb)
+ {
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ rescan_loop_exit (e, true, false);
+ }
+ }
+}
+
+/* Dumps information about the exit in *SLOT to FILE.
+ Callback for htab_traverse. */
+
+static int
+dump_recorded_exit (void **slot, void *file)
+{
+ struct loop_exit *exit = (struct loop_exit *) *slot;
+ unsigned n = 0;
+ edge e = exit->e;
+
+ for (; exit != NULL; exit = exit->next_e)
+ n++;
+
+ fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
+ e->src->index, e->dest->index, n);
+
+ return 1;
+}
+
+/* Dumps the recorded exits of loops to FILE. */
+
+extern void dump_recorded_exits (FILE *);
+void
+dump_recorded_exits (FILE *file)
+{
+ if (!current_loops->exits)
+ return;
+ htab_traverse (current_loops->exits, dump_recorded_exit, file);
+}
+
+/* Releases lists of loop exits. */
+
+void
+release_recorded_exits (void)
+{
+ gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
+ htab_delete (current_loops->exits);
+ current_loops->exits = NULL;
+ loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
+}
+
+/* Returns the list of the exit edges of a LOOP. */
+
+vec<edge>
+get_loop_exit_edges (const struct loop *loop)
+{
+ vec<edge> edges = vNULL;
+ edge e;
+ unsigned i;
+ basic_block *body;
+ edge_iterator ei;
+ struct loop_exit *exit;
+
+ gcc_assert (loop->latch != EXIT_BLOCK_PTR);
+
+ /* If we maintain the lists of exits, use them. Otherwise we must
+ scan the body of the loop. */
+ if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
+ {
+ for (exit = loop->exits->next; exit->e; exit = exit->next)
+ edges.safe_push (exit->e);
+ }
+ else
+ {
+ body = get_loop_body (loop);
+ for (i = 0; i < loop->num_nodes; i++)
+ FOR_EACH_EDGE (e, ei, body[i]->succs)
+ {
+ if (!flow_bb_inside_loop_p (loop, e->dest))
+ edges.safe_push (e);
+ }
+ free (body);
+ }
+
+ return edges;
+}
+
+/* Counts the number of conditional branches inside LOOP. */
+
+unsigned
+num_loop_branches (const struct loop *loop)
+{
+ unsigned i, n;
+ basic_block * body;
+
+ gcc_assert (loop->latch != EXIT_BLOCK_PTR);
+
+ body = get_loop_body (loop);
+ n = 0;
+ for (i = 0; i < loop->num_nodes; i++)
+ if (EDGE_COUNT (body[i]->succs) >= 2)
+ n++;
+ free (body);
+
+ return n;
+}
+
+/* Adds basic block BB to LOOP. */
+void
+add_bb_to_loop (basic_block bb, struct loop *loop)
+{
+ unsigned i;
+ loop_p ploop;
+ edge_iterator ei;
+ edge e;
+
+ gcc_assert (bb->loop_father == NULL);
+ bb->loop_father = loop;
+ loop->num_nodes++;
+ FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
+ ploop->num_nodes++;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ rescan_loop_exit (e, true, false);
+ }
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ rescan_loop_exit (e, true, false);
+ }
+}
+
+/* Remove basic block BB from loops. */
+void
+remove_bb_from_loops (basic_block bb)
+{
+ unsigned i;
+ struct loop *loop = bb->loop_father;
+ loop_p ploop;
+ edge_iterator ei;
+ edge e;
+
+ gcc_assert (loop != NULL);
+ loop->num_nodes--;
+ FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
+ ploop->num_nodes--;
+ bb->loop_father = NULL;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ rescan_loop_exit (e, false, true);
+ }
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ {
+ rescan_loop_exit (e, false, true);
+ }
+}
+
+/* Finds nearest common ancestor in loop tree for given loops. */
+struct loop *
+find_common_loop (struct loop *loop_s, struct loop *loop_d)
+{
+ unsigned sdepth, ddepth;
+
+ if (!loop_s) return loop_d;
+ if (!loop_d) return loop_s;
+
+ sdepth = loop_depth (loop_s);
+ ddepth = loop_depth (loop_d);
+
+ if (sdepth < ddepth)
+ loop_d = (*loop_d->superloops)[sdepth];
+ else if (sdepth > ddepth)
+ loop_s = (*loop_s->superloops)[ddepth];
+
+ while (loop_s != loop_d)
+ {
+ loop_s = loop_outer (loop_s);
+ loop_d = loop_outer (loop_d);
+ }
+ return loop_s;
+}
+
+/* Removes LOOP from structures and frees its data. */
+
+void
+delete_loop (struct loop *loop)
+{
+ /* Remove the loop from structure. */
+ flow_loop_tree_node_remove (loop);
+
+ /* Remove loop from loops array. */
+ (*current_loops->larray)[loop->num] = NULL;
+
+ /* Free loop data. */
+ flow_loop_free (loop);
+}
+
+/* Cancels the LOOP; it must be innermost one. */
+
+static void
+cancel_loop (struct loop *loop)
+{
+ basic_block *bbs;
+ unsigned i;
+ struct loop *outer = loop_outer (loop);
+
+ gcc_assert (!loop->inner);
+
+ /* Move blocks up one level (they should be removed as soon as possible). */
+ bbs = get_loop_body (loop);
+ for (i = 0; i < loop->num_nodes; i++)
+ bbs[i]->loop_father = outer;
+
+ free (bbs);
+ delete_loop (loop);
+}
+
+/* Cancels LOOP and all its subloops. */
+void
+cancel_loop_tree (struct loop *loop)
+{
+ while (loop->inner)
+ cancel_loop_tree (loop->inner);
+ cancel_loop (loop);
+}
+
+/* Checks that information about loops is correct
+ -- sizes of loops are all right
+ -- results of get_loop_body really belong to the loop
+ -- loop header have just single entry edge and single latch edge
+ -- loop latches have only single successor that is header of their loop
+ -- irreducible loops are correctly marked
+ -- the cached loop depth and loop father of each bb is correct
+ */
+DEBUG_FUNCTION void
+verify_loop_structure (void)
+{
+ unsigned *sizes, i, j;
+ sbitmap irreds;
+ basic_block bb;
+ struct loop *loop;
+ int err = 0;
+ edge e;
+ unsigned num = number_of_loops ();
+ loop_iterator li;
+ struct loop_exit *exit, *mexit;
+ bool dom_available = dom_info_available_p (CDI_DOMINATORS);
+ sbitmap visited;
+
+ /* We need up-to-date dominators, compute or verify them. */
+ if (!dom_available)
+ calculate_dominance_info (CDI_DOMINATORS);
+ else
+ verify_dominators (CDI_DOMINATORS);
+
+ /* Check sizes. */
+ sizes = XCNEWVEC (unsigned, num);
+ sizes[0] = 2;
+
+ FOR_EACH_BB (bb)
+ for (loop = bb->loop_father; loop; loop = loop_outer (loop))
+ sizes[loop->num]++;
+
+ FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
+ {
+ i = loop->num;
+
+ if (loop->num_nodes != sizes[i])
+ {
+ error ("size of loop %d should be %d, not %d",
+ i, sizes[i], loop->num_nodes);
+ err = 1;
+ }
+ }
+
+ /* Check the headers. */
+ FOR_EACH_BB (bb)
+ if (bb_loop_header_p (bb)
+ && bb->loop_father->header != bb)
+ {
+ error ("loop with header %d not in loop tree", bb->index);
+ err = 1;
+ }
+
+ /* Check get_loop_body. */
+ visited = sbitmap_alloc (last_basic_block);
+ bitmap_clear (visited);
+ FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
+ {
+ basic_block *bbs = get_loop_body (loop);
+
+ for (j = 0; j < loop->num_nodes; j++)
+ {
+ bb = bbs[j];
+
+ if (!flow_bb_inside_loop_p (loop, bb))
+ {
+ error ("bb %d does not belong to loop %d",
+ bb->index, loop->num);
+ err = 1;
+ }
+
+ /* Ignore this block if it is in an inner loop. */
+ if (bitmap_bit_p (visited, bb->index))
+ continue;
+ bitmap_set_bit (visited, bb->index);
+
+ if (bb->loop_father != loop)
+ {
+ error ("bb %d has father loop %d, should be loop %d",
+ bb->index, bb->loop_father->num, loop->num);
+ err = 1;
+ }
+ }
+
+ free (bbs);
+ }
+ sbitmap_free (visited);
+
+ /* Check headers and latches. */
+ FOR_EACH_LOOP (li, loop, 0)
+ {
+ i = loop->num;
+
+ if (!bb_loop_header_p (loop->header))
+ {
+ error ("loop %d%'s header is not a loop header", i);
+ err = 1;
+ }
+ if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
+ && EDGE_COUNT (loop->header->preds) != 2)
+ {
+ error ("loop %d%'s header does not have exactly 2 entries", i);
+ err = 1;
+ }
+ if (loop->latch)
+ {
+ if (!find_edge (loop->latch, loop->header))
+ {
+ error ("loop %d%'s latch does not have an edge to its header", i);
+ err = 1;
+ }
+ if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
+ {
+ error ("loop %d%'s latch is not dominated by its header", i);
+ err = 1;
+ }
+ }
+ if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
+ {
+ if (!single_succ_p (loop->latch))
+ {
+ error ("loop %d%'s latch does not have exactly 1 successor", i);
+ err = 1;
+ }
+ if (single_succ (loop->latch) != loop->header)
+ {
+ error ("loop %d%'s latch does not have header as successor", i);
+ err = 1;
+ }
+ if (loop->latch->loop_father != loop)
+ {
+ error ("loop %d%'s latch does not belong directly to it", i);
+ err = 1;
+ }
+ }
+ if (loop->header->loop_father != loop)
+ {
+ error ("loop %d%'s header does not belong directly to it", i);
+ err = 1;
+ }
+ if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
+ && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
+ {
+ error ("loop %d%'s latch is marked as part of irreducible region", i);
+ err = 1;
+ }
+ }
+
+ /* Check irreducible loops. */
+ if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
+ {
+ /* Record old info. */
+ irreds = sbitmap_alloc (last_basic_block);
+ FOR_EACH_BB (bb)
+ {
+ edge_iterator ei;
+ if (bb->flags & BB_IRREDUCIBLE_LOOP)
+ bitmap_set_bit (irreds, bb->index);
+ else
+ bitmap_clear_bit (irreds, bb->index);
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (e->flags & EDGE_IRREDUCIBLE_LOOP)
+ e->flags |= EDGE_ALL_FLAGS + 1;
+ }
+
+ /* Recount it. */
+ mark_irreducible_loops ();
+
+ /* Compare. */
+ FOR_EACH_BB (bb)
+ {
+ edge_iterator ei;
+
+ if ((bb->flags & BB_IRREDUCIBLE_LOOP)
+ && !bitmap_bit_p (irreds, bb->index))
+ {
+ error ("basic block %d should be marked irreducible", bb->index);
+ err = 1;
+ }
+ else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
+ && bitmap_bit_p (irreds, bb->index))
+ {
+ error ("basic block %d should not be marked irreducible", bb->index);
+ err = 1;
+ }
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
+ && !(e->flags & (EDGE_ALL_FLAGS + 1)))
+ {
+ error ("edge from %d to %d should be marked irreducible",
+ e->src->index, e->dest->index);
+ err = 1;
+ }
+ else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
+ && (e->flags & (EDGE_ALL_FLAGS + 1)))
+ {
+ error ("edge from %d to %d should not be marked irreducible",
+ e->src->index, e->dest->index);
+ err = 1;
+ }
+ e->flags &= ~(EDGE_ALL_FLAGS + 1);
+ }
+ }
+ free (irreds);
+ }
+
+ /* Check the recorded loop exits. */
+ FOR_EACH_LOOP (li, loop, 0)
+ {
+ if (!loop->exits || loop->exits->e != NULL)
+ {
+ error ("corrupted head of the exits list of loop %d",
+ loop->num);
+ err = 1;
+ }
+ else
+ {
+ /* Check that the list forms a cycle, and all elements except
+ for the head are nonnull. */
+ for (mexit = loop->exits, exit = mexit->next, i = 0;
+ exit->e && exit != mexit;
+ exit = exit->next)
+ {
+ if (i++ & 1)
+ mexit = mexit->next;
+ }
+
+ if (exit != loop->exits)
+ {
+ error ("corrupted exits list of loop %d", loop->num);
+ err = 1;
+ }
+ }
+
+ if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
+ {
+ if (loop->exits->next != loop->exits)
+ {
+ error ("nonempty exits list of loop %d, but exits are not recorded",
+ loop->num);
+ err = 1;
+ }
+ }
+ }
+
+ if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
+ {
+ unsigned n_exits = 0, eloops;
+
+ memset (sizes, 0, sizeof (unsigned) * num);
+ FOR_EACH_BB (bb)
+ {
+ edge_iterator ei;
+ if (bb->loop_father == current_loops->tree_root)
+ continue;
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ {
+ if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
+ continue;
+
+ n_exits++;
+ exit = get_exit_descriptions (e);
+ if (!exit)
+ {
+ error ("exit %d->%d not recorded",
+ e->src->index, e->dest->index);
+ err = 1;
+ }
+ eloops = 0;
+ for (; exit; exit = exit->next_e)
+ eloops++;
+
+ for (loop = bb->loop_father;
+ loop != e->dest->loop_father
+ /* When a loop exit is also an entry edge which
+ can happen when avoiding CFG manipulations
+ then the last loop exited is the outer loop
+ of the loop entered. */
+ && loop != loop_outer (e->dest->loop_father);
+ loop = loop_outer (loop))
+ {
+ eloops--;
+ sizes[loop->num]++;
+ }
+
+ if (eloops != 0)
+ {
+ error ("wrong list of exited loops for edge %d->%d",
+ e->src->index, e->dest->index);
+ err = 1;
+ }
+ }
+ }
+
+ if (n_exits != htab_elements (current_loops->exits))
+ {
+ error ("too many loop exits recorded");
+ err = 1;
+ }
+
+ FOR_EACH_LOOP (li, loop, 0)
+ {
+ eloops = 0;
+ for (exit = loop->exits->next; exit->e; exit = exit->next)
+ eloops++;
+ if (eloops != sizes[loop->num])
+ {
+ error ("%d exits recorded for loop %d (having %d exits)",
+ eloops, loop->num, sizes[loop->num]);
+ err = 1;
+ }
+ }
+ }
+
+ gcc_assert (!err);
+
+ free (sizes);
+ if (!dom_available)
+ free_dominance_info (CDI_DOMINATORS);
+}
+
+/* Returns latch edge of LOOP. */
+edge
+loop_latch_edge (const struct loop *loop)
+{
+ return find_edge (loop->latch, loop->header);
+}
+
+/* Returns preheader edge of LOOP. */
+edge
+loop_preheader_edge (const struct loop *loop)
+{
+ edge e;
+ edge_iterator ei;
+
+ gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
+
+ FOR_EACH_EDGE (e, ei, loop->header->preds)
+ if (e->src != loop->latch)
+ break;
+
+ return e;
+}
+
+/* Returns true if E is an exit of LOOP. */
+
+bool
+loop_exit_edge_p (const struct loop *loop, const_edge e)
+{
+ return (flow_bb_inside_loop_p (loop, e->src)
+ && !flow_bb_inside_loop_p (loop, e->dest));
+}
+
+/* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
+ or more than one exit. If loops do not have the exits recorded, NULL
+ is returned always. */
+
+edge
+single_exit (const struct loop *loop)
+{
+ struct loop_exit *exit = loop->exits->next;
+
+ if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
+ return NULL;
+
+ if (exit->e && exit->next == loop->exits)
+ return exit->e;
+ else
+ return NULL;
+}
+
+/* Returns true when BB has an incoming edge exiting LOOP. */
+
+bool
+loop_exits_to_bb_p (struct loop *loop, basic_block bb)
+{
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->preds)
+ if (loop_exit_edge_p (loop, e))
+ return true;
+
+ return false;
+}
+
+/* Returns true when BB has an outgoing edge exiting LOOP. */
+
+bool
+loop_exits_from_bb_p (struct loop *loop, basic_block bb)
+{
+ edge e;
+ edge_iterator ei;
+
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (loop_exit_edge_p (loop, e))
+ return true;
+
+ return false;
+}
+
+/* Return location corresponding to the loop control condition if possible. */
+
+location_t
+get_loop_location (struct loop *loop)
+{
+ rtx insn = NULL;
+ struct niter_desc *desc = NULL;
+ edge exit;
+
+ /* For a for or while loop, we would like to return the location
+ of the for or while statement, if possible. To do this, look
+ for the branch guarding the loop back-edge. */
+
+ /* If this is a simple loop with an in_edge, then the loop control
+ branch is typically at the end of its source. */
+ desc = get_simple_loop_desc (loop);
+ if (desc->in_edge)
+ {
+ FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
+ {
+ if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
+ return INSN_LOCATION (insn);
+ }
+ }
+ /* If loop has a single exit, then the loop control branch
+ must be at the end of its source. */
+ if ((exit = single_exit (loop)))
+ {
+ FOR_BB_INSNS_REVERSE (exit->src, insn)
+ {
+ if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
+ return INSN_LOCATION (insn);
+ }
+ }
+ /* Next check the latch, to see if it is non-empty. */
+ FOR_BB_INSNS_REVERSE (loop->latch, insn)
+ {
+ if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
+ return INSN_LOCATION (insn);
+ }
+ /* Finally, if none of the above identifies the loop control branch,
+ return the first location in the loop header. */
+ FOR_BB_INSNS (loop->header, insn)
+ {
+ if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
+ return INSN_LOCATION (insn);
+ }
+ /* If all else fails, simply return the current function location. */
+ return DECL_SOURCE_LOCATION (current_function_decl);
+}
+