aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.3/gcc/ada/sem_util.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.3/gcc/ada/sem_util.adb')
-rw-r--r--gcc-4.8.3/gcc/ada/sem_util.adb14660
1 files changed, 14660 insertions, 0 deletions
diff --git a/gcc-4.8.3/gcc/ada/sem_util.adb b/gcc-4.8.3/gcc/ada/sem_util.adb
new file mode 100644
index 000000000..ae6fe607c
--- /dev/null
+++ b/gcc-4.8.3/gcc/ada/sem_util.adb
@@ -0,0 +1,14660 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ U T I L --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Casing; use Casing;
+with Checks; use Checks;
+with Debug; use Debug;
+with Errout; use Errout;
+with Elists; use Elists;
+with Exp_Ch11; use Exp_Ch11;
+with Exp_Disp; use Exp_Disp;
+with Exp_Util; use Exp_Util;
+with Fname; use Fname;
+with Freeze; use Freeze;
+with Lib; use Lib;
+with Lib.Xref; use Lib.Xref;
+with Namet.Sp; use Namet.Sp;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Output; use Output;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Aux; use Sem_Aux;
+with Sem_Attr; use Sem_Attr;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Disp; use Sem_Disp;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Type; use Sem_Type;
+with Sinfo; use Sinfo;
+with Sinput; use Sinput;
+with Stand; use Stand;
+with Style;
+with Stringt; use Stringt;
+with Targparm; use Targparm;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Uname; use Uname;
+
+with GNAT.HTable; use GNAT.HTable;
+
+package body Sem_Util is
+
+ ----------------------------------------
+ -- Global_Variables for New_Copy_Tree --
+ ----------------------------------------
+
+ -- These global variables are used by New_Copy_Tree. See description
+ -- of the body of this subprogram for details. Global variables can be
+ -- safely used by New_Copy_Tree, since there is no case of a recursive
+ -- call from the processing inside New_Copy_Tree.
+
+ NCT_Hash_Threshold : constant := 20;
+ -- If there are more than this number of pairs of entries in the
+ -- map, then Hash_Tables_Used will be set, and the hash tables will
+ -- be initialized and used for the searches.
+
+ NCT_Hash_Tables_Used : Boolean := False;
+ -- Set to True if hash tables are in use
+
+ NCT_Table_Entries : Nat;
+ -- Count entries in table to see if threshold is reached
+
+ NCT_Hash_Table_Setup : Boolean := False;
+ -- Set to True if hash table contains data. We set this True if we
+ -- setup the hash table with data, and leave it set permanently
+ -- from then on, this is a signal that second and subsequent users
+ -- of the hash table must clear the old entries before reuse.
+
+ subtype NCT_Header_Num is Int range 0 .. 511;
+ -- Defines range of headers in hash tables (512 headers)
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ function Build_Component_Subtype
+ (C : List_Id;
+ Loc : Source_Ptr;
+ T : Entity_Id) return Node_Id;
+ -- This function builds the subtype for Build_Actual_Subtype_Of_Component
+ -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
+ -- Loc is the source location, T is the original subtype.
+
+ function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
+ -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
+ -- with discriminants whose default values are static, examine only the
+ -- components in the selected variant to determine whether all of them
+ -- have a default.
+
+ function Has_Null_Extension (T : Entity_Id) return Boolean;
+ -- T is a derived tagged type. Check whether the type extension is null.
+ -- If the parent type is fully initialized, T can be treated as such.
+
+ ------------------------------
+ -- Abstract_Interface_List --
+ ------------------------------
+
+ function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
+ Nod : Node_Id;
+
+ begin
+ if Is_Concurrent_Type (Typ) then
+
+ -- If we are dealing with a synchronized subtype, go to the base
+ -- type, whose declaration has the interface list.
+
+ -- Shouldn't this be Declaration_Node???
+
+ Nod := Parent (Base_Type (Typ));
+
+ if Nkind (Nod) = N_Full_Type_Declaration then
+ return Empty_List;
+ end if;
+
+ elsif Ekind (Typ) = E_Record_Type_With_Private then
+ if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
+ Nod := Type_Definition (Parent (Typ));
+
+ elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
+ if Present (Full_View (Typ))
+ and then Nkind (Parent (Full_View (Typ)))
+ = N_Full_Type_Declaration
+ then
+ Nod := Type_Definition (Parent (Full_View (Typ)));
+
+ -- If the full-view is not available we cannot do anything else
+ -- here (the source has errors).
+
+ else
+ return Empty_List;
+ end if;
+
+ -- Support for generic formals with interfaces is still missing ???
+
+ elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
+ return Empty_List;
+
+ else
+ pragma Assert
+ (Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
+ Nod := Parent (Typ);
+ end if;
+
+ elsif Ekind (Typ) = E_Record_Subtype then
+ Nod := Type_Definition (Parent (Etype (Typ)));
+
+ elsif Ekind (Typ) = E_Record_Subtype_With_Private then
+
+ -- Recurse, because parent may still be a private extension. Also
+ -- note that the full view of the subtype or the full view of its
+ -- base type may (both) be unavailable.
+
+ return Abstract_Interface_List (Etype (Typ));
+
+ else pragma Assert ((Ekind (Typ)) = E_Record_Type);
+ if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
+ Nod := Formal_Type_Definition (Parent (Typ));
+ else
+ Nod := Type_Definition (Parent (Typ));
+ end if;
+ end if;
+
+ return Interface_List (Nod);
+ end Abstract_Interface_List;
+
+ --------------------------------
+ -- Add_Access_Type_To_Process --
+ --------------------------------
+
+ procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
+ L : Elist_Id;
+
+ begin
+ Ensure_Freeze_Node (E);
+ L := Access_Types_To_Process (Freeze_Node (E));
+
+ if No (L) then
+ L := New_Elmt_List;
+ Set_Access_Types_To_Process (Freeze_Node (E), L);
+ end if;
+
+ Append_Elmt (A, L);
+ end Add_Access_Type_To_Process;
+
+ ----------------------------
+ -- Add_Global_Declaration --
+ ----------------------------
+
+ procedure Add_Global_Declaration (N : Node_Id) is
+ Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
+
+ begin
+ if No (Declarations (Aux_Node)) then
+ Set_Declarations (Aux_Node, New_List);
+ end if;
+
+ Append_To (Declarations (Aux_Node), N);
+ Analyze (N);
+ end Add_Global_Declaration;
+
+ -----------------
+ -- Addressable --
+ -----------------
+
+ -- For now, just 8/16/32/64. but analyze later if AAMP is special???
+
+ function Addressable (V : Uint) return Boolean is
+ begin
+ return V = Uint_8 or else
+ V = Uint_16 or else
+ V = Uint_32 or else
+ V = Uint_64;
+ end Addressable;
+
+ function Addressable (V : Int) return Boolean is
+ begin
+ return V = 8 or else
+ V = 16 or else
+ V = 32 or else
+ V = 64;
+ end Addressable;
+
+ -----------------------
+ -- Alignment_In_Bits --
+ -----------------------
+
+ function Alignment_In_Bits (E : Entity_Id) return Uint is
+ begin
+ return Alignment (E) * System_Storage_Unit;
+ end Alignment_In_Bits;
+
+ ---------------------------------
+ -- Append_Inherited_Subprogram --
+ ---------------------------------
+
+ procedure Append_Inherited_Subprogram (S : Entity_Id) is
+ Par : constant Entity_Id := Alias (S);
+ -- The parent subprogram
+
+ Scop : constant Entity_Id := Scope (Par);
+ -- The scope of definition of the parent subprogram
+
+ Typ : constant Entity_Id := Defining_Entity (Parent (S));
+ -- The derived type of which S is a primitive operation
+
+ Decl : Node_Id;
+ Next_E : Entity_Id;
+
+ begin
+ if Ekind (Current_Scope) = E_Package
+ and then In_Private_Part (Current_Scope)
+ and then Has_Private_Declaration (Typ)
+ and then Is_Tagged_Type (Typ)
+ and then Scop = Current_Scope
+ then
+ -- The inherited operation is available at the earliest place after
+ -- the derived type declaration ( RM 7.3.1 (6/1)). This is only
+ -- relevant for type extensions. If the parent operation appears
+ -- after the type extension, the operation is not visible.
+
+ Decl := First
+ (Visible_Declarations
+ (Specification (Unit_Declaration_Node (Current_Scope))));
+ while Present (Decl) loop
+ if Nkind (Decl) = N_Private_Extension_Declaration
+ and then Defining_Entity (Decl) = Typ
+ then
+ if Sloc (Decl) > Sloc (Par) then
+ Next_E := Next_Entity (Par);
+ Set_Next_Entity (Par, S);
+ Set_Next_Entity (S, Next_E);
+ return;
+
+ else
+ exit;
+ end if;
+ end if;
+
+ Next (Decl);
+ end loop;
+ end if;
+
+ -- If partial view is not a type extension, or it appears before the
+ -- subprogram declaration, insert normally at end of entity list.
+
+ Append_Entity (S, Current_Scope);
+ end Append_Inherited_Subprogram;
+
+ -----------------------------------------
+ -- Apply_Compile_Time_Constraint_Error --
+ -----------------------------------------
+
+ procedure Apply_Compile_Time_Constraint_Error
+ (N : Node_Id;
+ Msg : String;
+ Reason : RT_Exception_Code;
+ Ent : Entity_Id := Empty;
+ Typ : Entity_Id := Empty;
+ Loc : Source_Ptr := No_Location;
+ Rep : Boolean := True;
+ Warn : Boolean := False)
+ is
+ Stat : constant Boolean := Is_Static_Expression (N);
+ R_Stat : constant Node_Id :=
+ Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
+ Rtyp : Entity_Id;
+
+ begin
+ if No (Typ) then
+ Rtyp := Etype (N);
+ else
+ Rtyp := Typ;
+ end if;
+
+ Discard_Node
+ (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
+
+ if not Rep then
+ return;
+ end if;
+
+ -- Now we replace the node by an N_Raise_Constraint_Error node
+ -- This does not need reanalyzing, so set it as analyzed now.
+
+ Rewrite (N, R_Stat);
+ Set_Analyzed (N, True);
+
+ Set_Etype (N, Rtyp);
+ Set_Raises_Constraint_Error (N);
+
+ -- Now deal with possible local raise handling
+
+ Possible_Local_Raise (N, Standard_Constraint_Error);
+
+ -- If the original expression was marked as static, the result is
+ -- still marked as static, but the Raises_Constraint_Error flag is
+ -- always set so that further static evaluation is not attempted.
+
+ if Stat then
+ Set_Is_Static_Expression (N);
+ end if;
+ end Apply_Compile_Time_Constraint_Error;
+
+ --------------------------------------
+ -- Available_Full_View_Of_Component --
+ --------------------------------------
+
+ function Available_Full_View_Of_Component (T : Entity_Id) return Boolean is
+ ST : constant Entity_Id := Scope (T);
+ SCT : constant Entity_Id := Scope (Component_Type (T));
+ begin
+ return In_Open_Scopes (ST)
+ and then In_Open_Scopes (SCT)
+ and then Scope_Depth (ST) >= Scope_Depth (SCT);
+ end Available_Full_View_Of_Component;
+
+ -------------------
+ -- Bad_Attribute --
+ -------------------
+
+ procedure Bad_Attribute
+ (N : Node_Id;
+ Nam : Name_Id;
+ Warn : Boolean := False)
+ is
+ begin
+ Error_Msg_Warn := Warn;
+ Error_Msg_N ("unrecognized attribute&<", N);
+
+ -- Check for possible misspelling
+
+ Error_Msg_Name_1 := First_Attribute_Name;
+ while Error_Msg_Name_1 <= Last_Attribute_Name loop
+ if Is_Bad_Spelling_Of (Nam, Error_Msg_Name_1) then
+ Error_Msg_N -- CODEFIX
+ ("\possible misspelling of %<", N);
+ exit;
+ end if;
+
+ Error_Msg_Name_1 := Error_Msg_Name_1 + 1;
+ end loop;
+ end Bad_Attribute;
+
+ --------------------------------
+ -- Bad_Predicated_Subtype_Use --
+ --------------------------------
+
+ procedure Bad_Predicated_Subtype_Use
+ (Msg : String;
+ N : Node_Id;
+ Typ : Entity_Id)
+ is
+ begin
+ if Has_Predicates (Typ) then
+ if Is_Generic_Actual_Type (Typ) then
+ Error_Msg_FE (Msg & "??", N, Typ);
+ Error_Msg_F ("\Program_Error will be raised at run time??", N);
+ Insert_Action (N,
+ Make_Raise_Program_Error (Sloc (N),
+ Reason => PE_Bad_Predicated_Generic_Type));
+
+ else
+ Error_Msg_FE (Msg, N, Typ);
+ end if;
+ end if;
+ end Bad_Predicated_Subtype_Use;
+
+ --------------------------
+ -- Build_Actual_Subtype --
+ --------------------------
+
+ function Build_Actual_Subtype
+ (T : Entity_Id;
+ N : Node_Or_Entity_Id) return Node_Id
+ is
+ Loc : Source_Ptr;
+ -- Normally Sloc (N), but may point to corresponding body in some cases
+
+ Constraints : List_Id;
+ Decl : Node_Id;
+ Discr : Entity_Id;
+ Hi : Node_Id;
+ Lo : Node_Id;
+ Subt : Entity_Id;
+ Disc_Type : Entity_Id;
+ Obj : Node_Id;
+
+ begin
+ Loc := Sloc (N);
+
+ if Nkind (N) = N_Defining_Identifier then
+ Obj := New_Reference_To (N, Loc);
+
+ -- If this is a formal parameter of a subprogram declaration, and
+ -- we are compiling the body, we want the declaration for the
+ -- actual subtype to carry the source position of the body, to
+ -- prevent anomalies in gdb when stepping through the code.
+
+ if Is_Formal (N) then
+ declare
+ Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
+ begin
+ if Nkind (Decl) = N_Subprogram_Declaration
+ and then Present (Corresponding_Body (Decl))
+ then
+ Loc := Sloc (Corresponding_Body (Decl));
+ end if;
+ end;
+ end if;
+
+ else
+ Obj := N;
+ end if;
+
+ if Is_Array_Type (T) then
+ Constraints := New_List;
+ for J in 1 .. Number_Dimensions (T) loop
+
+ -- Build an array subtype declaration with the nominal subtype and
+ -- the bounds of the actual. Add the declaration in front of the
+ -- local declarations for the subprogram, for analysis before any
+ -- reference to the formal in the body.
+
+ Lo :=
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
+ Attribute_Name => Name_First,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J)));
+
+ Hi :=
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
+ Attribute_Name => Name_Last,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J)));
+
+ Append (Make_Range (Loc, Lo, Hi), Constraints);
+ end loop;
+
+ -- If the type has unknown discriminants there is no constrained
+ -- subtype to build. This is never called for a formal or for a
+ -- lhs, so returning the type is ok ???
+
+ elsif Has_Unknown_Discriminants (T) then
+ return T;
+
+ else
+ Constraints := New_List;
+
+ -- Type T is a generic derived type, inherit the discriminants from
+ -- the parent type.
+
+ if Is_Private_Type (T)
+ and then No (Full_View (T))
+
+ -- T was flagged as an error if it was declared as a formal
+ -- derived type with known discriminants. In this case there
+ -- is no need to look at the parent type since T already carries
+ -- its own discriminants.
+
+ and then not Error_Posted (T)
+ then
+ Disc_Type := Etype (Base_Type (T));
+ else
+ Disc_Type := T;
+ end if;
+
+ Discr := First_Discriminant (Disc_Type);
+ while Present (Discr) loop
+ Append_To (Constraints,
+ Make_Selected_Component (Loc,
+ Prefix =>
+ Duplicate_Subexpr_No_Checks (Obj),
+ Selector_Name => New_Occurrence_Of (Discr, Loc)));
+ Next_Discriminant (Discr);
+ end loop;
+ end if;
+
+ Subt := Make_Temporary (Loc, 'S', Related_Node => N);
+ Set_Is_Internal (Subt);
+
+ Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Subt,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (T, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => Constraints)));
+
+ Mark_Rewrite_Insertion (Decl);
+ return Decl;
+ end Build_Actual_Subtype;
+
+ ---------------------------------------
+ -- Build_Actual_Subtype_Of_Component --
+ ---------------------------------------
+
+ function Build_Actual_Subtype_Of_Component
+ (T : Entity_Id;
+ N : Node_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ P : constant Node_Id := Prefix (N);
+ D : Elmt_Id;
+ Id : Node_Id;
+ Index_Typ : Entity_Id;
+
+ Desig_Typ : Entity_Id;
+ -- This is either a copy of T, or if T is an access type, then it is
+ -- the directly designated type of this access type.
+
+ function Build_Actual_Array_Constraint return List_Id;
+ -- If one or more of the bounds of the component depends on
+ -- discriminants, build actual constraint using the discriminants
+ -- of the prefix.
+
+ function Build_Actual_Record_Constraint return List_Id;
+ -- Similar to previous one, for discriminated components constrained
+ -- by the discriminant of the enclosing object.
+
+ -----------------------------------
+ -- Build_Actual_Array_Constraint --
+ -----------------------------------
+
+ function Build_Actual_Array_Constraint return List_Id is
+ Constraints : constant List_Id := New_List;
+ Indx : Node_Id;
+ Hi : Node_Id;
+ Lo : Node_Id;
+ Old_Hi : Node_Id;
+ Old_Lo : Node_Id;
+
+ begin
+ Indx := First_Index (Desig_Typ);
+ while Present (Indx) loop
+ Old_Lo := Type_Low_Bound (Etype (Indx));
+ Old_Hi := Type_High_Bound (Etype (Indx));
+
+ if Denotes_Discriminant (Old_Lo) then
+ Lo :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (P),
+ Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
+
+ else
+ Lo := New_Copy_Tree (Old_Lo);
+
+ -- The new bound will be reanalyzed in the enclosing
+ -- declaration. For literal bounds that come from a type
+ -- declaration, the type of the context must be imposed, so
+ -- insure that analysis will take place. For non-universal
+ -- types this is not strictly necessary.
+
+ Set_Analyzed (Lo, False);
+ end if;
+
+ if Denotes_Discriminant (Old_Hi) then
+ Hi :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (P),
+ Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
+
+ else
+ Hi := New_Copy_Tree (Old_Hi);
+ Set_Analyzed (Hi, False);
+ end if;
+
+ Append (Make_Range (Loc, Lo, Hi), Constraints);
+ Next_Index (Indx);
+ end loop;
+
+ return Constraints;
+ end Build_Actual_Array_Constraint;
+
+ ------------------------------------
+ -- Build_Actual_Record_Constraint --
+ ------------------------------------
+
+ function Build_Actual_Record_Constraint return List_Id is
+ Constraints : constant List_Id := New_List;
+ D : Elmt_Id;
+ D_Val : Node_Id;
+
+ begin
+ D := First_Elmt (Discriminant_Constraint (Desig_Typ));
+ while Present (D) loop
+ if Denotes_Discriminant (Node (D)) then
+ D_Val := Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (P),
+ Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
+
+ else
+ D_Val := New_Copy_Tree (Node (D));
+ end if;
+
+ Append (D_Val, Constraints);
+ Next_Elmt (D);
+ end loop;
+
+ return Constraints;
+ end Build_Actual_Record_Constraint;
+
+ -- Start of processing for Build_Actual_Subtype_Of_Component
+
+ begin
+ -- Why the test for Spec_Expression mode here???
+
+ if In_Spec_Expression then
+ return Empty;
+
+ -- More comments for the rest of this body would be good ???
+
+ elsif Nkind (N) = N_Explicit_Dereference then
+ if Is_Composite_Type (T)
+ and then not Is_Constrained (T)
+ and then not (Is_Class_Wide_Type (T)
+ and then Is_Constrained (Root_Type (T)))
+ and then not Has_Unknown_Discriminants (T)
+ then
+ -- If the type of the dereference is already constrained, it is an
+ -- actual subtype.
+
+ if Is_Array_Type (Etype (N))
+ and then Is_Constrained (Etype (N))
+ then
+ return Empty;
+ else
+ Remove_Side_Effects (P);
+ return Build_Actual_Subtype (T, N);
+ end if;
+ else
+ return Empty;
+ end if;
+ end if;
+
+ if Ekind (T) = E_Access_Subtype then
+ Desig_Typ := Designated_Type (T);
+ else
+ Desig_Typ := T;
+ end if;
+
+ if Ekind (Desig_Typ) = E_Array_Subtype then
+ Id := First_Index (Desig_Typ);
+ while Present (Id) loop
+ Index_Typ := Underlying_Type (Etype (Id));
+
+ if Denotes_Discriminant (Type_Low_Bound (Index_Typ))
+ or else
+ Denotes_Discriminant (Type_High_Bound (Index_Typ))
+ then
+ Remove_Side_Effects (P);
+ return
+ Build_Component_Subtype
+ (Build_Actual_Array_Constraint, Loc, Base_Type (T));
+ end if;
+
+ Next_Index (Id);
+ end loop;
+
+ elsif Is_Composite_Type (Desig_Typ)
+ and then Has_Discriminants (Desig_Typ)
+ and then not Has_Unknown_Discriminants (Desig_Typ)
+ then
+ if Is_Private_Type (Desig_Typ)
+ and then No (Discriminant_Constraint (Desig_Typ))
+ then
+ Desig_Typ := Full_View (Desig_Typ);
+ end if;
+
+ D := First_Elmt (Discriminant_Constraint (Desig_Typ));
+ while Present (D) loop
+ if Denotes_Discriminant (Node (D)) then
+ Remove_Side_Effects (P);
+ return
+ Build_Component_Subtype (
+ Build_Actual_Record_Constraint, Loc, Base_Type (T));
+ end if;
+
+ Next_Elmt (D);
+ end loop;
+ end if;
+
+ -- If none of the above, the actual and nominal subtypes are the same
+
+ return Empty;
+ end Build_Actual_Subtype_Of_Component;
+
+ -----------------------------
+ -- Build_Component_Subtype --
+ -----------------------------
+
+ function Build_Component_Subtype
+ (C : List_Id;
+ Loc : Source_Ptr;
+ T : Entity_Id) return Node_Id
+ is
+ Subt : Entity_Id;
+ Decl : Node_Id;
+
+ begin
+ -- Unchecked_Union components do not require component subtypes
+
+ if Is_Unchecked_Union (T) then
+ return Empty;
+ end if;
+
+ Subt := Make_Temporary (Loc, 'S');
+ Set_Is_Internal (Subt);
+
+ Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Subt,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (Base_Type (T), Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => C)));
+
+ Mark_Rewrite_Insertion (Decl);
+ return Decl;
+ end Build_Component_Subtype;
+
+ ---------------------------
+ -- Build_Default_Subtype --
+ ---------------------------
+
+ function Build_Default_Subtype
+ (T : Entity_Id;
+ N : Node_Id) return Entity_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Disc : Entity_Id;
+
+ Bas : Entity_Id;
+ -- The base type that is to be constrained by the defaults
+
+ begin
+ if not Has_Discriminants (T) or else Is_Constrained (T) then
+ return T;
+ end if;
+
+ Bas := Base_Type (T);
+
+ -- If T is non-private but its base type is private, this is the
+ -- completion of a subtype declaration whose parent type is private
+ -- (see Complete_Private_Subtype in Sem_Ch3). The proper discriminants
+ -- are to be found in the full view of the base.
+
+ if Is_Private_Type (Bas) and then Present (Full_View (Bas)) then
+ Bas := Full_View (Bas);
+ end if;
+
+ Disc := First_Discriminant (T);
+
+ if No (Discriminant_Default_Value (Disc)) then
+ return T;
+ end if;
+
+ declare
+ Act : constant Entity_Id := Make_Temporary (Loc, 'S');
+ Constraints : constant List_Id := New_List;
+ Decl : Node_Id;
+
+ begin
+ while Present (Disc) loop
+ Append_To (Constraints,
+ New_Copy_Tree (Discriminant_Default_Value (Disc)));
+ Next_Discriminant (Disc);
+ end loop;
+
+ Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Act,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (Bas, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => Constraints)));
+
+ Insert_Action (N, Decl);
+ Analyze (Decl);
+ return Act;
+ end;
+ end Build_Default_Subtype;
+
+ --------------------------------------------
+ -- Build_Discriminal_Subtype_Of_Component --
+ --------------------------------------------
+
+ function Build_Discriminal_Subtype_Of_Component
+ (T : Entity_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (T);
+ D : Elmt_Id;
+ Id : Node_Id;
+
+ function Build_Discriminal_Array_Constraint return List_Id;
+ -- If one or more of the bounds of the component depends on
+ -- discriminants, build actual constraint using the discriminants
+ -- of the prefix.
+
+ function Build_Discriminal_Record_Constraint return List_Id;
+ -- Similar to previous one, for discriminated components constrained by
+ -- the discriminant of the enclosing object.
+
+ ----------------------------------------
+ -- Build_Discriminal_Array_Constraint --
+ ----------------------------------------
+
+ function Build_Discriminal_Array_Constraint return List_Id is
+ Constraints : constant List_Id := New_List;
+ Indx : Node_Id;
+ Hi : Node_Id;
+ Lo : Node_Id;
+ Old_Hi : Node_Id;
+ Old_Lo : Node_Id;
+
+ begin
+ Indx := First_Index (T);
+ while Present (Indx) loop
+ Old_Lo := Type_Low_Bound (Etype (Indx));
+ Old_Hi := Type_High_Bound (Etype (Indx));
+
+ if Denotes_Discriminant (Old_Lo) then
+ Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
+
+ else
+ Lo := New_Copy_Tree (Old_Lo);
+ end if;
+
+ if Denotes_Discriminant (Old_Hi) then
+ Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
+
+ else
+ Hi := New_Copy_Tree (Old_Hi);
+ end if;
+
+ Append (Make_Range (Loc, Lo, Hi), Constraints);
+ Next_Index (Indx);
+ end loop;
+
+ return Constraints;
+ end Build_Discriminal_Array_Constraint;
+
+ -----------------------------------------
+ -- Build_Discriminal_Record_Constraint --
+ -----------------------------------------
+
+ function Build_Discriminal_Record_Constraint return List_Id is
+ Constraints : constant List_Id := New_List;
+ D : Elmt_Id;
+ D_Val : Node_Id;
+
+ begin
+ D := First_Elmt (Discriminant_Constraint (T));
+ while Present (D) loop
+ if Denotes_Discriminant (Node (D)) then
+ D_Val :=
+ New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
+
+ else
+ D_Val := New_Copy_Tree (Node (D));
+ end if;
+
+ Append (D_Val, Constraints);
+ Next_Elmt (D);
+ end loop;
+
+ return Constraints;
+ end Build_Discriminal_Record_Constraint;
+
+ -- Start of processing for Build_Discriminal_Subtype_Of_Component
+
+ begin
+ if Ekind (T) = E_Array_Subtype then
+ Id := First_Index (T);
+ while Present (Id) loop
+ if Denotes_Discriminant (Type_Low_Bound (Etype (Id))) or else
+ Denotes_Discriminant (Type_High_Bound (Etype (Id)))
+ then
+ return Build_Component_Subtype
+ (Build_Discriminal_Array_Constraint, Loc, T);
+ end if;
+
+ Next_Index (Id);
+ end loop;
+
+ elsif Ekind (T) = E_Record_Subtype
+ and then Has_Discriminants (T)
+ and then not Has_Unknown_Discriminants (T)
+ then
+ D := First_Elmt (Discriminant_Constraint (T));
+ while Present (D) loop
+ if Denotes_Discriminant (Node (D)) then
+ return Build_Component_Subtype
+ (Build_Discriminal_Record_Constraint, Loc, T);
+ end if;
+
+ Next_Elmt (D);
+ end loop;
+ end if;
+
+ -- If none of the above, the actual and nominal subtypes are the same
+
+ return Empty;
+ end Build_Discriminal_Subtype_Of_Component;
+
+ ------------------------------
+ -- Build_Elaboration_Entity --
+ ------------------------------
+
+ procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Decl : Node_Id;
+ Elab_Ent : Entity_Id;
+
+ procedure Set_Package_Name (Ent : Entity_Id);
+ -- Given an entity, sets the fully qualified name of the entity in
+ -- Name_Buffer, with components separated by double underscores. This
+ -- is a recursive routine that climbs the scope chain to Standard.
+
+ ----------------------
+ -- Set_Package_Name --
+ ----------------------
+
+ procedure Set_Package_Name (Ent : Entity_Id) is
+ begin
+ if Scope (Ent) /= Standard_Standard then
+ Set_Package_Name (Scope (Ent));
+
+ declare
+ Nam : constant String := Get_Name_String (Chars (Ent));
+ begin
+ Name_Buffer (Name_Len + 1) := '_';
+ Name_Buffer (Name_Len + 2) := '_';
+ Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
+ Name_Len := Name_Len + Nam'Length + 2;
+ end;
+
+ else
+ Get_Name_String (Chars (Ent));
+ end if;
+ end Set_Package_Name;
+
+ -- Start of processing for Build_Elaboration_Entity
+
+ begin
+ -- Ignore if already constructed
+
+ if Present (Elaboration_Entity (Spec_Id)) then
+ return;
+ end if;
+
+ -- Construct name of elaboration entity as xxx_E, where xxx is the unit
+ -- name with dots replaced by double underscore. We have to manually
+ -- construct this name, since it will be elaborated in the outer scope,
+ -- and thus will not have the unit name automatically prepended.
+
+ Set_Package_Name (Spec_Id);
+ Add_Str_To_Name_Buffer ("_E");
+
+ -- Create elaboration counter
+
+ Elab_Ent := Make_Defining_Identifier (Loc, Chars => Name_Find);
+ Set_Elaboration_Entity (Spec_Id, Elab_Ent);
+
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Elab_Ent,
+ Object_Definition =>
+ New_Occurrence_Of (Standard_Short_Integer, Loc),
+ Expression => Make_Integer_Literal (Loc, Uint_0));
+
+ Push_Scope (Standard_Standard);
+ Add_Global_Declaration (Decl);
+ Pop_Scope;
+
+ -- Reset True_Constant indication, since we will indeed assign a value
+ -- to the variable in the binder main. We also kill the Current_Value
+ -- and Last_Assignment fields for the same reason.
+
+ Set_Is_True_Constant (Elab_Ent, False);
+ Set_Current_Value (Elab_Ent, Empty);
+ Set_Last_Assignment (Elab_Ent, Empty);
+
+ -- We do not want any further qualification of the name (if we did not
+ -- do this, we would pick up the name of the generic package in the case
+ -- of a library level generic instantiation).
+
+ Set_Has_Qualified_Name (Elab_Ent);
+ Set_Has_Fully_Qualified_Name (Elab_Ent);
+ end Build_Elaboration_Entity;
+
+ --------------------------------
+ -- Build_Explicit_Dereference --
+ --------------------------------
+
+ procedure Build_Explicit_Dereference
+ (Expr : Node_Id;
+ Disc : Entity_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Expr);
+ begin
+
+ -- An entity of a type with a reference aspect is overloaded with
+ -- both interpretations: with and without the dereference. Now that
+ -- the dereference is made explicit, set the type of the node properly,
+ -- to prevent anomalies in the backend. Same if the expression is an
+ -- overloaded function call whose return type has a reference aspect.
+
+ if Is_Entity_Name (Expr) then
+ Set_Etype (Expr, Etype (Entity (Expr)));
+
+ elsif Nkind (Expr) = N_Function_Call then
+ Set_Etype (Expr, Etype (Name (Expr)));
+ end if;
+
+ Set_Is_Overloaded (Expr, False);
+ Rewrite (Expr,
+ Make_Explicit_Dereference (Loc,
+ Prefix =>
+ Make_Selected_Component (Loc,
+ Prefix => Relocate_Node (Expr),
+ Selector_Name => New_Occurrence_Of (Disc, Loc))));
+ Set_Etype (Prefix (Expr), Etype (Disc));
+ Set_Etype (Expr, Designated_Type (Etype (Disc)));
+ end Build_Explicit_Dereference;
+
+ -----------------------------------
+ -- Cannot_Raise_Constraint_Error --
+ -----------------------------------
+
+ function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
+ begin
+ if Compile_Time_Known_Value (Expr) then
+ return True;
+
+ elsif Do_Range_Check (Expr) then
+ return False;
+
+ elsif Raises_Constraint_Error (Expr) then
+ return False;
+
+ else
+ case Nkind (Expr) is
+ when N_Identifier =>
+ return True;
+
+ when N_Expanded_Name =>
+ return True;
+
+ when N_Selected_Component =>
+ return not Do_Discriminant_Check (Expr);
+
+ when N_Attribute_Reference =>
+ if Do_Overflow_Check (Expr) then
+ return False;
+
+ elsif No (Expressions (Expr)) then
+ return True;
+
+ else
+ declare
+ N : Node_Id;
+
+ begin
+ N := First (Expressions (Expr));
+ while Present (N) loop
+ if Cannot_Raise_Constraint_Error (N) then
+ Next (N);
+ else
+ return False;
+ end if;
+ end loop;
+
+ return True;
+ end;
+ end if;
+
+ when N_Type_Conversion =>
+ if Do_Overflow_Check (Expr)
+ or else Do_Length_Check (Expr)
+ or else Do_Tag_Check (Expr)
+ then
+ return False;
+ else
+ return Cannot_Raise_Constraint_Error (Expression (Expr));
+ end if;
+
+ when N_Unchecked_Type_Conversion =>
+ return Cannot_Raise_Constraint_Error (Expression (Expr));
+
+ when N_Unary_Op =>
+ if Do_Overflow_Check (Expr) then
+ return False;
+ else
+ return Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
+ end if;
+
+ when N_Op_Divide |
+ N_Op_Mod |
+ N_Op_Rem
+ =>
+ if Do_Division_Check (Expr)
+ or else Do_Overflow_Check (Expr)
+ then
+ return False;
+ else
+ return
+ Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
+ and then
+ Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
+ end if;
+
+ when N_Op_Add |
+ N_Op_And |
+ N_Op_Concat |
+ N_Op_Eq |
+ N_Op_Expon |
+ N_Op_Ge |
+ N_Op_Gt |
+ N_Op_Le |
+ N_Op_Lt |
+ N_Op_Multiply |
+ N_Op_Ne |
+ N_Op_Or |
+ N_Op_Rotate_Left |
+ N_Op_Rotate_Right |
+ N_Op_Shift_Left |
+ N_Op_Shift_Right |
+ N_Op_Shift_Right_Arithmetic |
+ N_Op_Subtract |
+ N_Op_Xor
+ =>
+ if Do_Overflow_Check (Expr) then
+ return False;
+ else
+ return
+ Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
+ and then
+ Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
+ end if;
+
+ when others =>
+ return False;
+ end case;
+ end if;
+ end Cannot_Raise_Constraint_Error;
+
+ -------------------------------------
+ -- Check_Function_Writable_Actuals --
+ -------------------------------------
+
+ procedure Check_Function_Writable_Actuals (N : Node_Id) is
+ Writable_Actuals_List : Elist_Id := No_Elist;
+ Identifiers_List : Elist_Id := No_Elist;
+ Error_Node : Node_Id := Empty;
+
+ procedure Collect_Identifiers (N : Node_Id);
+ -- In a single traversal of subtree N collect in Writable_Actuals_List
+ -- all the actuals of functions with writable actuals, and in the list
+ -- Identifiers_List collect all the identifiers that are not actuals of
+ -- functions with writable actuals. If a writable actual is referenced
+ -- twice as writable actual then Error_Node is set to reference its
+ -- second occurrence, the error is reported, and the tree traversal
+ -- is abandoned.
+
+ function Get_Function_Id (Call : Node_Id) return Entity_Id;
+ -- Return the entity associated with the function call
+
+ procedure Preanalyze_Without_Errors (N : Node_Id);
+ -- Preanalyze N without reporting errors. Very dubious, you can't just
+ -- go analyzing things more than once???
+
+ -------------------------
+ -- Collect_Identifiers --
+ -------------------------
+
+ procedure Collect_Identifiers (N : Node_Id) is
+
+ function Check_Node (N : Node_Id) return Traverse_Result;
+ -- Process a single node during the tree traversal to collect the
+ -- writable actuals of functions and all the identifiers which are
+ -- not writable actuals of functions.
+
+ function Contains (List : Elist_Id; N : Node_Id) return Boolean;
+ -- Returns True if List has a node whose Entity is Entity (N)
+
+ -------------------------
+ -- Check_Function_Call --
+ -------------------------
+
+ function Check_Node (N : Node_Id) return Traverse_Result is
+ Is_Writable_Actual : Boolean := False;
+
+ begin
+ if Nkind (N) = N_Identifier then
+
+ -- No analysis possible if the entity is not decorated
+
+ if No (Entity (N)) then
+ return Skip;
+
+ -- Don't collect identifiers of packages, called functions, etc
+
+ elsif Ekind_In (Entity (N), E_Package,
+ E_Function,
+ E_Procedure,
+ E_Entry)
+ then
+ return Skip;
+
+ -- Analyze if N is a writable actual of a function
+
+ elsif Nkind (Parent (N)) = N_Function_Call then
+ declare
+ Call : constant Node_Id := Parent (N);
+ Id : constant Entity_Id := Get_Function_Id (Call);
+ Actual : Node_Id;
+ Formal : Node_Id;
+
+ begin
+ Formal := First_Formal (Id);
+ Actual := First_Actual (Call);
+ while Present (Actual) and then Present (Formal) loop
+ if Actual = N then
+ if Ekind_In (Formal, E_Out_Parameter,
+ E_In_Out_Parameter)
+ then
+ Is_Writable_Actual := True;
+ end if;
+
+ exit;
+ end if;
+
+ Next_Formal (Formal);
+ Next_Actual (Actual);
+ end loop;
+ end;
+ end if;
+
+ if Is_Writable_Actual then
+ if Contains (Writable_Actuals_List, N) then
+ Error_Msg_N
+ ("conflict of writable function parameter in "
+ & "construct with arbitrary order of evaluation", N);
+ Error_Node := N;
+ return Abandon;
+ end if;
+
+ if Writable_Actuals_List = No_Elist then
+ Writable_Actuals_List := New_Elmt_List;
+ end if;
+
+ Append_Elmt (N, Writable_Actuals_List);
+ else
+ if Identifiers_List = No_Elist then
+ Identifiers_List := New_Elmt_List;
+ end if;
+
+ Append_Unique_Elmt (N, Identifiers_List);
+ end if;
+ end if;
+
+ return OK;
+ end Check_Node;
+
+ --------------
+ -- Contains --
+ --------------
+
+ function Contains
+ (List : Elist_Id;
+ N : Node_Id) return Boolean
+ is
+ pragma Assert (Nkind (N) in N_Has_Entity);
+
+ Elmt : Elmt_Id;
+
+ begin
+ if List = No_Elist then
+ return False;
+ end if;
+
+ Elmt := First_Elmt (List);
+ while Present (Elmt) loop
+ if Entity (Node (Elmt)) = Entity (N) then
+ return True;
+ else
+ Next_Elmt (Elmt);
+ end if;
+ end loop;
+
+ return False;
+ end Contains;
+
+ ------------------
+ -- Do_Traversal --
+ ------------------
+
+ procedure Do_Traversal is new Traverse_Proc (Check_Node);
+ -- The traversal procedure
+
+ -- Start of processing for Collect_Identifiers
+
+ begin
+ if Present (Error_Node) then
+ return;
+ end if;
+
+ if Nkind (N) in N_Subexpr
+ and then Is_Static_Expression (N)
+ then
+ return;
+ end if;
+
+ Do_Traversal (N);
+ end Collect_Identifiers;
+
+ ---------------------
+ -- Get_Function_Id --
+ ---------------------
+
+ function Get_Function_Id (Call : Node_Id) return Entity_Id is
+ Nam : constant Node_Id := Name (Call);
+ Id : Entity_Id;
+
+ begin
+ if Nkind (Nam) = N_Explicit_Dereference then
+ Id := Etype (Nam);
+ pragma Assert (Ekind (Id) = E_Subprogram_Type);
+
+ elsif Nkind (Nam) = N_Selected_Component then
+ Id := Entity (Selector_Name (Nam));
+
+ elsif Nkind (Nam) = N_Indexed_Component then
+ Id := Entity (Selector_Name (Prefix (Nam)));
+
+ else
+ Id := Entity (Nam);
+ end if;
+
+ return Id;
+ end Get_Function_Id;
+
+ ---------------------------
+ -- Preanalyze_Expression --
+ ---------------------------
+
+ procedure Preanalyze_Without_Errors (N : Node_Id) is
+ Status : constant Boolean := Get_Ignore_Errors;
+ begin
+ Set_Ignore_Errors (True);
+ Preanalyze (N);
+ Set_Ignore_Errors (Status);
+ end Preanalyze_Without_Errors;
+
+ -- Start of processing for Check_Function_Writable_Actuals
+
+ begin
+ if Ada_Version < Ada_2012
+ or else (not (Nkind (N) in N_Op)
+ and then not (Nkind (N) in N_Membership_Test)
+ and then not Nkind_In (N, N_Range,
+ N_Aggregate,
+ N_Extension_Aggregate,
+ N_Full_Type_Declaration,
+ N_Function_Call,
+ N_Procedure_Call_Statement,
+ N_Entry_Call_Statement))
+ or else (Nkind (N) = N_Full_Type_Declaration
+ and then not Is_Record_Type (Defining_Identifier (N)))
+ then
+ return;
+ end if;
+
+ -- If a construct C has two or more direct constituents that are names
+ -- or expressions whose evaluation may occur in an arbitrary order, at
+ -- least one of which contains a function call with an in out or out
+ -- parameter, then the construct is legal only if: for each name N that
+ -- is passed as a parameter of mode in out or out to some inner function
+ -- call C2 (not including the construct C itself), there is no other
+ -- name anywhere within a direct constituent of the construct C other
+ -- than the one containing C2, that is known to refer to the same
+ -- object (RM 6.4.1(6.17/3)).
+
+ case Nkind (N) is
+ when N_Range =>
+ Collect_Identifiers (Low_Bound (N));
+ Collect_Identifiers (High_Bound (N));
+
+ when N_Op | N_Membership_Test =>
+ declare
+ Expr : Node_Id;
+ begin
+ Collect_Identifiers (Left_Opnd (N));
+
+ if Present (Right_Opnd (N)) then
+ Collect_Identifiers (Right_Opnd (N));
+ end if;
+
+ if Nkind_In (N, N_In, N_Not_In)
+ and then Present (Alternatives (N))
+ then
+ Expr := First (Alternatives (N));
+ while Present (Expr) loop
+ Collect_Identifiers (Expr);
+
+ Next (Expr);
+ end loop;
+ end if;
+ end;
+
+ when N_Full_Type_Declaration =>
+ declare
+ function Get_Record_Part (N : Node_Id) return Node_Id;
+ -- Return the record part of this record type definition
+
+ function Get_Record_Part (N : Node_Id) return Node_Id is
+ Type_Def : constant Node_Id := Type_Definition (N);
+ begin
+ if Nkind (Type_Def) = N_Derived_Type_Definition then
+ return Record_Extension_Part (Type_Def);
+ else
+ return Type_Def;
+ end if;
+ end Get_Record_Part;
+
+ Comp : Node_Id;
+ Def_Id : Entity_Id := Defining_Identifier (N);
+ Rec : Node_Id := Get_Record_Part (N);
+
+ begin
+ -- No need to perform any analysis if the record has no
+ -- components
+
+ if No (Rec) or else No (Component_List (Rec)) then
+ return;
+ end if;
+
+ -- Collect the identifiers starting from the deepest
+ -- derivation. Done to report the error in the deepest
+ -- derivation.
+
+ loop
+ if Present (Component_List (Rec)) then
+ Comp := First (Component_Items (Component_List (Rec)));
+ while Present (Comp) loop
+ if Nkind (Comp) = N_Component_Declaration
+ and then Present (Expression (Comp))
+ then
+ Collect_Identifiers (Expression (Comp));
+ end if;
+
+ Next (Comp);
+ end loop;
+ end if;
+
+ exit when No (Underlying_Type (Etype (Def_Id)))
+ or else Base_Type (Underlying_Type (Etype (Def_Id)))
+ = Def_Id;
+
+ Def_Id := Base_Type (Underlying_Type (Etype (Def_Id)));
+ Rec := Get_Record_Part (Parent (Def_Id));
+ end loop;
+ end;
+
+ when N_Subprogram_Call |
+ N_Entry_Call_Statement =>
+ declare
+ Id : constant Entity_Id := Get_Function_Id (N);
+ Formal : Node_Id;
+ Actual : Node_Id;
+
+ begin
+ Formal := First_Formal (Id);
+ Actual := First_Actual (N);
+ while Present (Actual) and then Present (Formal) loop
+ if Ekind_In (Formal, E_Out_Parameter,
+ E_In_Out_Parameter)
+ then
+ Collect_Identifiers (Actual);
+ end if;
+
+ Next_Formal (Formal);
+ Next_Actual (Actual);
+ end loop;
+ end;
+
+ when N_Aggregate |
+ N_Extension_Aggregate =>
+ declare
+ Assoc : Node_Id;
+ Choice : Node_Id;
+ Comp_Expr : Node_Id;
+
+ begin
+ -- Handle the N_Others_Choice of array aggregates with static
+ -- bounds. There is no need to perform this analysis in
+ -- aggregates without static bounds since we cannot evaluate
+ -- if the N_Others_Choice covers several elements. There is
+ -- no need to handle the N_Others choice of record aggregates
+ -- since at this stage it has been already expanded by
+ -- Resolve_Record_Aggregate.
+
+ if Is_Array_Type (Etype (N))
+ and then Nkind (N) = N_Aggregate
+ and then Present (Aggregate_Bounds (N))
+ and then Compile_Time_Known_Bounds (Etype (N))
+ and then Expr_Value (High_Bound (Aggregate_Bounds (N)))
+ > Expr_Value (Low_Bound (Aggregate_Bounds (N)))
+ then
+ declare
+ Count_Components : Uint := Uint_0;
+ Num_Components : Uint;
+ Others_Assoc : Node_Id;
+ Others_Choice : Node_Id := Empty;
+ Others_Box_Present : Boolean := False;
+
+ begin
+ -- Count positional associations
+
+ if Present (Expressions (N)) then
+ Comp_Expr := First (Expressions (N));
+ while Present (Comp_Expr) loop
+ Count_Components := Count_Components + 1;
+ Next (Comp_Expr);
+ end loop;
+ end if;
+
+ -- Count the rest of elements and locate the N_Others
+ -- choice (if any)
+
+ Assoc := First (Component_Associations (N));
+ while Present (Assoc) loop
+ Choice := First (Choices (Assoc));
+ while Present (Choice) loop
+ if Nkind (Choice) = N_Others_Choice then
+ Others_Assoc := Assoc;
+ Others_Choice := Choice;
+ Others_Box_Present := Box_Present (Assoc);
+
+ -- Count several components
+
+ elsif Nkind_In (Choice, N_Range,
+ N_Subtype_Indication)
+ or else (Is_Entity_Name (Choice)
+ and then Is_Type (Entity (Choice)))
+ then
+ declare
+ L, H : Node_Id;
+ begin
+ Get_Index_Bounds (Choice, L, H);
+ pragma Assert
+ (Compile_Time_Known_Value (L)
+ and then Compile_Time_Known_Value (H));
+ Count_Components :=
+ Count_Components
+ + Expr_Value (H) - Expr_Value (L) + 1;
+ end;
+
+ -- Count single component. No other case available
+ -- since we are handling an aggregate with static
+ -- bounds.
+
+ else
+ pragma Assert (Is_Static_Expression (Choice)
+ or else Nkind (Choice) = N_Identifier
+ or else Nkind (Choice) = N_Integer_Literal);
+
+ Count_Components := Count_Components + 1;
+ end if;
+
+ Next (Choice);
+ end loop;
+
+ Next (Assoc);
+ end loop;
+
+ Num_Components :=
+ Expr_Value (High_Bound (Aggregate_Bounds (N))) -
+ Expr_Value (Low_Bound (Aggregate_Bounds (N))) + 1;
+
+ pragma Assert (Count_Components <= Num_Components);
+
+ -- Handle the N_Others choice if it covers several
+ -- components
+
+ if Present (Others_Choice)
+ and then (Num_Components - Count_Components) > 1
+ then
+ if not Others_Box_Present then
+
+ -- At this stage, if expansion is active, the
+ -- expression of the others choice has not been
+ -- analyzed. Hence we generate a duplicate and
+ -- we analyze it silently to have available the
+ -- minimum decoration required to collect the
+ -- identifiers.
+
+ if not Expander_Active then
+ Comp_Expr := Expression (Others_Assoc);
+ else
+ Comp_Expr :=
+ New_Copy_Tree (Expression (Others_Assoc));
+ Preanalyze_Without_Errors (Comp_Expr);
+ end if;
+
+ Collect_Identifiers (Comp_Expr);
+
+ if Writable_Actuals_List /= No_Elist then
+
+ -- As suggested by Robert, at current stage we
+ -- report occurrences of this case as warnings.
+
+ Error_Msg_N
+ ("conflict of writable function parameter in "
+ & "construct with arbitrary order of "
+ & "evaluation?",
+ Node (First_Elmt (Writable_Actuals_List)));
+ end if;
+ end if;
+ end if;
+ end;
+ end if;
+
+ -- Handle ancestor part of extension aggregates
+
+ if Nkind (N) = N_Extension_Aggregate then
+ Collect_Identifiers (Ancestor_Part (N));
+ end if;
+
+ -- Handle positional associations
+
+ if Present (Expressions (N)) then
+ Comp_Expr := First (Expressions (N));
+ while Present (Comp_Expr) loop
+ if not Is_Static_Expression (Comp_Expr) then
+ Collect_Identifiers (Comp_Expr);
+ end if;
+
+ Next (Comp_Expr);
+ end loop;
+ end if;
+
+ -- Handle discrete associations
+
+ if Present (Component_Associations (N)) then
+ Assoc := First (Component_Associations (N));
+ while Present (Assoc) loop
+
+ if not Box_Present (Assoc) then
+ Choice := First (Choices (Assoc));
+ while Present (Choice) loop
+
+ -- For now we skip discriminants since it requires
+ -- performing the analysis in two phases: first one
+ -- analyzing discriminants and second one analyzing
+ -- the rest of components since discriminants are
+ -- evaluated prior to components: too much extra
+ -- work to detect a corner case???
+
+ if Nkind (Choice) in N_Has_Entity
+ and then Present (Entity (Choice))
+ and then Ekind (Entity (Choice)) = E_Discriminant
+ then
+ null;
+
+ elsif Box_Present (Assoc) then
+ null;
+
+ else
+ if not Analyzed (Expression (Assoc)) then
+ Comp_Expr :=
+ New_Copy_Tree (Expression (Assoc));
+ Set_Parent (Comp_Expr, Parent (N));
+ Preanalyze_Without_Errors (Comp_Expr);
+ else
+ Comp_Expr := Expression (Assoc);
+ end if;
+
+ Collect_Identifiers (Comp_Expr);
+ end if;
+
+ Next (Choice);
+ end loop;
+ end if;
+
+ Next (Assoc);
+ end loop;
+ end if;
+ end;
+
+ when others =>
+ return;
+ end case;
+
+ -- No further action needed if we already reported an error
+
+ if Present (Error_Node) then
+ return;
+ end if;
+
+ -- Check if some writable argument of a function is referenced
+
+ if Writable_Actuals_List /= No_Elist
+ and then Identifiers_List /= No_Elist
+ then
+ declare
+ Elmt_1 : Elmt_Id;
+ Elmt_2 : Elmt_Id;
+
+ begin
+ Elmt_1 := First_Elmt (Writable_Actuals_List);
+ while Present (Elmt_1) loop
+ Elmt_2 := First_Elmt (Identifiers_List);
+ while Present (Elmt_2) loop
+ if Entity (Node (Elmt_1)) = Entity (Node (Elmt_2)) then
+ Error_Msg_N
+ ("conflict of writable function parameter in construct "
+ & "with arbitrary order of evaluation",
+ Node (Elmt_1));
+ end if;
+
+ Next_Elmt (Elmt_2);
+ end loop;
+
+ Next_Elmt (Elmt_1);
+ end loop;
+ end;
+ end if;
+ end Check_Function_Writable_Actuals;
+
+ --------------------------------
+ -- Check_Implicit_Dereference --
+ --------------------------------
+
+ procedure Check_Implicit_Dereference (Nam : Node_Id; Typ : Entity_Id) is
+ Disc : Entity_Id;
+ Desig : Entity_Id;
+
+ begin
+ if Ada_Version < Ada_2012
+ or else not Has_Implicit_Dereference (Base_Type (Typ))
+ then
+ return;
+
+ elsif not Comes_From_Source (Nam) then
+ return;
+
+ elsif Is_Entity_Name (Nam)
+ and then Is_Type (Entity (Nam))
+ then
+ null;
+
+ else
+ Disc := First_Discriminant (Typ);
+ while Present (Disc) loop
+ if Has_Implicit_Dereference (Disc) then
+ Desig := Designated_Type (Etype (Disc));
+ Add_One_Interp (Nam, Disc, Desig);
+ exit;
+ end if;
+
+ Next_Discriminant (Disc);
+ end loop;
+ end if;
+ end Check_Implicit_Dereference;
+
+ ----------------------------------
+ -- Check_Internal_Protected_Use --
+ ----------------------------------
+
+ procedure Check_Internal_Protected_Use (N : Node_Id; Nam : Entity_Id) is
+ S : Entity_Id;
+ Prot : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S) loop
+ if S = Standard_Standard then
+ return;
+
+ elsif Ekind (S) = E_Function
+ and then Ekind (Scope (S)) = E_Protected_Type
+ then
+ Prot := Scope (S);
+ exit;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ if Scope (Nam) = Prot and then Ekind (Nam) /= E_Function then
+ if Nkind (N) = N_Subprogram_Renaming_Declaration then
+ Error_Msg_N
+ ("within protected function cannot use protected "
+ & "procedure in renaming or as generic actual", N);
+
+ elsif Nkind (N) = N_Attribute_Reference then
+ Error_Msg_N
+ ("within protected function cannot take access of "
+ & " protected procedure", N);
+
+ else
+ Error_Msg_N
+ ("within protected function, protected object is constant", N);
+ Error_Msg_N
+ ("\cannot call operation that may modify it", N);
+ end if;
+ end if;
+ end Check_Internal_Protected_Use;
+
+ ---------------------------------------
+ -- Check_Later_Vs_Basic_Declarations --
+ ---------------------------------------
+
+ procedure Check_Later_Vs_Basic_Declarations
+ (Decls : List_Id;
+ During_Parsing : Boolean)
+ is
+ Body_Sloc : Source_Ptr;
+ Decl : Node_Id;
+
+ function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean;
+ -- Return whether Decl is considered as a declarative item.
+ -- When During_Parsing is True, the semantics of Ada 83 is followed.
+ -- When During_Parsing is False, the semantics of SPARK is followed.
+
+ -------------------------------
+ -- Is_Later_Declarative_Item --
+ -------------------------------
+
+ function Is_Later_Declarative_Item (Decl : Node_Id) return Boolean is
+ begin
+ if Nkind (Decl) in N_Later_Decl_Item then
+ return True;
+
+ elsif Nkind (Decl) = N_Pragma then
+ return True;
+
+ elsif During_Parsing then
+ return False;
+
+ -- In SPARK, a package declaration is not considered as a later
+ -- declarative item.
+
+ elsif Nkind (Decl) = N_Package_Declaration then
+ return False;
+
+ -- In SPARK, a renaming is considered as a later declarative item
+
+ elsif Nkind (Decl) in N_Renaming_Declaration then
+ return True;
+
+ else
+ return False;
+ end if;
+ end Is_Later_Declarative_Item;
+
+ -- Start of Check_Later_Vs_Basic_Declarations
+
+ begin
+ Decl := First (Decls);
+
+ -- Loop through sequence of basic declarative items
+
+ Outer : while Present (Decl) loop
+ if not Nkind_In (Decl, N_Subprogram_Body, N_Package_Body, N_Task_Body)
+ and then Nkind (Decl) not in N_Body_Stub
+ then
+ Next (Decl);
+
+ -- Once a body is encountered, we only allow later declarative
+ -- items. The inner loop checks the rest of the list.
+
+ else
+ Body_Sloc := Sloc (Decl);
+
+ Inner : while Present (Decl) loop
+ if not Is_Later_Declarative_Item (Decl) then
+ if During_Parsing then
+ if Ada_Version = Ada_83 then
+ Error_Msg_Sloc := Body_Sloc;
+ Error_Msg_N
+ ("(Ada 83) decl cannot appear after body#", Decl);
+ end if;
+ else
+ Error_Msg_Sloc := Body_Sloc;
+ Check_SPARK_Restriction
+ ("decl cannot appear after body#", Decl);
+ end if;
+ end if;
+
+ Next (Decl);
+ end loop Inner;
+ end if;
+ end loop Outer;
+ end Check_Later_Vs_Basic_Declarations;
+
+ -----------------------------------------
+ -- Check_Dynamically_Tagged_Expression --
+ -----------------------------------------
+
+ procedure Check_Dynamically_Tagged_Expression
+ (Expr : Node_Id;
+ Typ : Entity_Id;
+ Related_Nod : Node_Id)
+ is
+ begin
+ pragma Assert (Is_Tagged_Type (Typ));
+
+ -- In order to avoid spurious errors when analyzing the expanded code,
+ -- this check is done only for nodes that come from source and for
+ -- actuals of generic instantiations.
+
+ if (Comes_From_Source (Related_Nod)
+ or else In_Generic_Actual (Expr))
+ and then (Is_Class_Wide_Type (Etype (Expr))
+ or else Is_Dynamically_Tagged (Expr))
+ and then Is_Tagged_Type (Typ)
+ and then not Is_Class_Wide_Type (Typ)
+ then
+ Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
+ end if;
+ end Check_Dynamically_Tagged_Expression;
+
+ --------------------------
+ -- Check_Fully_Declared --
+ --------------------------
+
+ procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
+ begin
+ if Ekind (T) = E_Incomplete_Type then
+
+ -- Ada 2005 (AI-50217): If the type is available through a limited
+ -- with_clause, verify that its full view has been analyzed.
+
+ if From_With_Type (T)
+ and then Present (Non_Limited_View (T))
+ and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
+ then
+ -- The non-limited view is fully declared
+ null;
+
+ else
+ Error_Msg_NE
+ ("premature usage of incomplete}", N, First_Subtype (T));
+ end if;
+
+ -- Need comments for these tests ???
+
+ elsif Has_Private_Component (T)
+ and then not Is_Generic_Type (Root_Type (T))
+ and then not In_Spec_Expression
+ then
+ -- Special case: if T is the anonymous type created for a single
+ -- task or protected object, use the name of the source object.
+
+ if Is_Concurrent_Type (T)
+ and then not Comes_From_Source (T)
+ and then Nkind (N) = N_Object_Declaration
+ then
+ Error_Msg_NE ("type of& has incomplete component", N,
+ Defining_Identifier (N));
+
+ else
+ Error_Msg_NE
+ ("premature usage of incomplete}", N, First_Subtype (T));
+ end if;
+ end if;
+ end Check_Fully_Declared;
+
+ -------------------------
+ -- Check_Nested_Access --
+ -------------------------
+
+ procedure Check_Nested_Access (Ent : Entity_Id) is
+ Scop : constant Entity_Id := Current_Scope;
+ Current_Subp : Entity_Id;
+ Enclosing : Entity_Id;
+
+ begin
+ -- Currently only enabled for VM back-ends for efficiency, should we
+ -- enable it more systematically ???
+
+ -- Check for Is_Imported needs commenting below ???
+
+ if VM_Target /= No_VM
+ and then (Ekind (Ent) = E_Variable
+ or else
+ Ekind (Ent) = E_Constant
+ or else
+ Ekind (Ent) = E_Loop_Parameter)
+ and then Scope (Ent) /= Empty
+ and then not Is_Library_Level_Entity (Ent)
+ and then not Is_Imported (Ent)
+ then
+ if Is_Subprogram (Scop)
+ or else Is_Generic_Subprogram (Scop)
+ or else Is_Entry (Scop)
+ then
+ Current_Subp := Scop;
+ else
+ Current_Subp := Current_Subprogram;
+ end if;
+
+ Enclosing := Enclosing_Subprogram (Ent);
+
+ if Enclosing /= Empty
+ and then Enclosing /= Current_Subp
+ then
+ Set_Has_Up_Level_Access (Ent, True);
+ end if;
+ end if;
+ end Check_Nested_Access;
+
+ ------------------------------------------
+ -- Check_Potentially_Blocking_Operation --
+ ------------------------------------------
+
+ procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
+ S : Entity_Id;
+
+ begin
+ -- N is one of the potentially blocking operations listed in 9.5.1(8).
+ -- When pragma Detect_Blocking is active, the run time will raise
+ -- Program_Error. Here we only issue a warning, since we generally
+ -- support the use of potentially blocking operations in the absence
+ -- of the pragma.
+
+ -- Indirect blocking through a subprogram call cannot be diagnosed
+ -- statically without interprocedural analysis, so we do not attempt
+ -- to do it here.
+
+ S := Scope (Current_Scope);
+ while Present (S) and then S /= Standard_Standard loop
+ if Is_Protected_Type (S) then
+ Error_Msg_N
+ ("potentially blocking operation in protected operation??", N);
+ return;
+ end if;
+
+ S := Scope (S);
+ end loop;
+ end Check_Potentially_Blocking_Operation;
+
+ ------------------------------
+ -- Check_Unprotected_Access --
+ ------------------------------
+
+ procedure Check_Unprotected_Access
+ (Context : Node_Id;
+ Expr : Node_Id)
+ is
+ Cont_Encl_Typ : Entity_Id;
+ Pref_Encl_Typ : Entity_Id;
+
+ function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
+ -- Check whether Obj is a private component of a protected object.
+ -- Return the protected type where the component resides, Empty
+ -- otherwise.
+
+ function Is_Public_Operation return Boolean;
+ -- Verify that the enclosing operation is callable from outside the
+ -- protected object, to minimize false positives.
+
+ ------------------------------
+ -- Enclosing_Protected_Type --
+ ------------------------------
+
+ function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
+ begin
+ if Is_Entity_Name (Obj) then
+ declare
+ Ent : Entity_Id := Entity (Obj);
+
+ begin
+ -- The object can be a renaming of a private component, use
+ -- the original record component.
+
+ if Is_Prival (Ent) then
+ Ent := Prival_Link (Ent);
+ end if;
+
+ if Is_Protected_Type (Scope (Ent)) then
+ return Scope (Ent);
+ end if;
+ end;
+ end if;
+
+ -- For indexed and selected components, recursively check the prefix
+
+ if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
+ return Enclosing_Protected_Type (Prefix (Obj));
+
+ -- The object does not denote a protected component
+
+ else
+ return Empty;
+ end if;
+ end Enclosing_Protected_Type;
+
+ -------------------------
+ -- Is_Public_Operation --
+ -------------------------
+
+ function Is_Public_Operation return Boolean is
+ S : Entity_Id;
+ E : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S)
+ and then S /= Pref_Encl_Typ
+ loop
+ if Scope (S) = Pref_Encl_Typ then
+ E := First_Entity (Pref_Encl_Typ);
+ while Present (E)
+ and then E /= First_Private_Entity (Pref_Encl_Typ)
+ loop
+ if E = S then
+ return True;
+ end if;
+ Next_Entity (E);
+ end loop;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end Is_Public_Operation;
+
+ -- Start of processing for Check_Unprotected_Access
+
+ begin
+ if Nkind (Expr) = N_Attribute_Reference
+ and then Attribute_Name (Expr) = Name_Unchecked_Access
+ then
+ Cont_Encl_Typ := Enclosing_Protected_Type (Context);
+ Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
+
+ -- Check whether we are trying to export a protected component to a
+ -- context with an equal or lower access level.
+
+ if Present (Pref_Encl_Typ)
+ and then No (Cont_Encl_Typ)
+ and then Is_Public_Operation
+ and then Scope_Depth (Pref_Encl_Typ) >=
+ Object_Access_Level (Context)
+ then
+ Error_Msg_N
+ ("??possible unprotected access to protected data", Expr);
+ end if;
+ end if;
+ end Check_Unprotected_Access;
+
+ ---------------
+ -- Check_VMS --
+ ---------------
+
+ procedure Check_VMS (Construct : Node_Id) is
+ begin
+ if not OpenVMS_On_Target then
+ Error_Msg_N
+ ("this construct is allowed only in Open'V'M'S", Construct);
+ end if;
+ end Check_VMS;
+
+ ------------------------
+ -- Collect_Interfaces --
+ ------------------------
+
+ procedure Collect_Interfaces
+ (T : Entity_Id;
+ Ifaces_List : out Elist_Id;
+ Exclude_Parents : Boolean := False;
+ Use_Full_View : Boolean := True)
+ is
+ procedure Collect (Typ : Entity_Id);
+ -- Subsidiary subprogram used to traverse the whole list
+ -- of directly and indirectly implemented interfaces
+
+ -------------
+ -- Collect --
+ -------------
+
+ procedure Collect (Typ : Entity_Id) is
+ Ancestor : Entity_Id;
+ Full_T : Entity_Id;
+ Id : Node_Id;
+ Iface : Entity_Id;
+
+ begin
+ Full_T := Typ;
+
+ -- Handle private types
+
+ if Use_Full_View
+ and then Is_Private_Type (Typ)
+ and then Present (Full_View (Typ))
+ then
+ Full_T := Full_View (Typ);
+ end if;
+
+ -- Include the ancestor if we are generating the whole list of
+ -- abstract interfaces.
+
+ if Etype (Full_T) /= Typ
+
+ -- Protect the frontend against wrong sources. For example:
+
+ -- package P is
+ -- type A is tagged null record;
+ -- type B is new A with private;
+ -- type C is new A with private;
+ -- private
+ -- type B is new C with null record;
+ -- type C is new B with null record;
+ -- end P;
+
+ and then Etype (Full_T) /= T
+ then
+ Ancestor := Etype (Full_T);
+ Collect (Ancestor);
+
+ if Is_Interface (Ancestor)
+ and then not Exclude_Parents
+ then
+ Append_Unique_Elmt (Ancestor, Ifaces_List);
+ end if;
+ end if;
+
+ -- Traverse the graph of ancestor interfaces
+
+ if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
+ Id := First (Abstract_Interface_List (Full_T));
+ while Present (Id) loop
+ Iface := Etype (Id);
+
+ -- Protect against wrong uses. For example:
+ -- type I is interface;
+ -- type O is tagged null record;
+ -- type Wrong is new I and O with null record; -- ERROR
+
+ if Is_Interface (Iface) then
+ if Exclude_Parents
+ and then Etype (T) /= T
+ and then Interface_Present_In_Ancestor (Etype (T), Iface)
+ then
+ null;
+ else
+ Collect (Iface);
+ Append_Unique_Elmt (Iface, Ifaces_List);
+ end if;
+ end if;
+
+ Next (Id);
+ end loop;
+ end if;
+ end Collect;
+
+ -- Start of processing for Collect_Interfaces
+
+ begin
+ pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
+ Ifaces_List := New_Elmt_List;
+ Collect (T);
+ end Collect_Interfaces;
+
+ ----------------------------------
+ -- Collect_Interface_Components --
+ ----------------------------------
+
+ procedure Collect_Interface_Components
+ (Tagged_Type : Entity_Id;
+ Components_List : out Elist_Id)
+ is
+ procedure Collect (Typ : Entity_Id);
+ -- Subsidiary subprogram used to climb to the parents
+
+ -------------
+ -- Collect --
+ -------------
+
+ procedure Collect (Typ : Entity_Id) is
+ Tag_Comp : Entity_Id;
+ Parent_Typ : Entity_Id;
+
+ begin
+ -- Handle private types
+
+ if Present (Full_View (Etype (Typ))) then
+ Parent_Typ := Full_View (Etype (Typ));
+ else
+ Parent_Typ := Etype (Typ);
+ end if;
+
+ if Parent_Typ /= Typ
+
+ -- Protect the frontend against wrong sources. For example:
+
+ -- package P is
+ -- type A is tagged null record;
+ -- type B is new A with private;
+ -- type C is new A with private;
+ -- private
+ -- type B is new C with null record;
+ -- type C is new B with null record;
+ -- end P;
+
+ and then Parent_Typ /= Tagged_Type
+ then
+ Collect (Parent_Typ);
+ end if;
+
+ -- Collect the components containing tags of secondary dispatch
+ -- tables.
+
+ Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
+ while Present (Tag_Comp) loop
+ pragma Assert (Present (Related_Type (Tag_Comp)));
+ Append_Elmt (Tag_Comp, Components_List);
+
+ Tag_Comp := Next_Tag_Component (Tag_Comp);
+ end loop;
+ end Collect;
+
+ -- Start of processing for Collect_Interface_Components
+
+ begin
+ pragma Assert (Ekind (Tagged_Type) = E_Record_Type
+ and then Is_Tagged_Type (Tagged_Type));
+
+ Components_List := New_Elmt_List;
+ Collect (Tagged_Type);
+ end Collect_Interface_Components;
+
+ -----------------------------
+ -- Collect_Interfaces_Info --
+ -----------------------------
+
+ procedure Collect_Interfaces_Info
+ (T : Entity_Id;
+ Ifaces_List : out Elist_Id;
+ Components_List : out Elist_Id;
+ Tags_List : out Elist_Id)
+ is
+ Comps_List : Elist_Id;
+ Comp_Elmt : Elmt_Id;
+ Comp_Iface : Entity_Id;
+ Iface_Elmt : Elmt_Id;
+ Iface : Entity_Id;
+
+ function Search_Tag (Iface : Entity_Id) return Entity_Id;
+ -- Search for the secondary tag associated with the interface type
+ -- Iface that is implemented by T.
+
+ ----------------
+ -- Search_Tag --
+ ----------------
+
+ function Search_Tag (Iface : Entity_Id) return Entity_Id is
+ ADT : Elmt_Id;
+ begin
+ if not Is_CPP_Class (T) then
+ ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
+ else
+ ADT := Next_Elmt (First_Elmt (Access_Disp_Table (T)));
+ end if;
+
+ while Present (ADT)
+ and then Is_Tag (Node (ADT))
+ and then Related_Type (Node (ADT)) /= Iface
+ loop
+ -- Skip secondary dispatch table referencing thunks to user
+ -- defined primitives covered by this interface.
+
+ pragma Assert (Has_Suffix (Node (ADT), 'P'));
+ Next_Elmt (ADT);
+
+ -- Skip secondary dispatch tables of Ada types
+
+ if not Is_CPP_Class (T) then
+
+ -- Skip secondary dispatch table referencing thunks to
+ -- predefined primitives.
+
+ pragma Assert (Has_Suffix (Node (ADT), 'Y'));
+ Next_Elmt (ADT);
+
+ -- Skip secondary dispatch table referencing user-defined
+ -- primitives covered by this interface.
+
+ pragma Assert (Has_Suffix (Node (ADT), 'D'));
+ Next_Elmt (ADT);
+
+ -- Skip secondary dispatch table referencing predefined
+ -- primitives.
+
+ pragma Assert (Has_Suffix (Node (ADT), 'Z'));
+ Next_Elmt (ADT);
+ end if;
+ end loop;
+
+ pragma Assert (Is_Tag (Node (ADT)));
+ return Node (ADT);
+ end Search_Tag;
+
+ -- Start of processing for Collect_Interfaces_Info
+
+ begin
+ Collect_Interfaces (T, Ifaces_List);
+ Collect_Interface_Components (T, Comps_List);
+
+ -- Search for the record component and tag associated with each
+ -- interface type of T.
+
+ Components_List := New_Elmt_List;
+ Tags_List := New_Elmt_List;
+
+ Iface_Elmt := First_Elmt (Ifaces_List);
+ while Present (Iface_Elmt) loop
+ Iface := Node (Iface_Elmt);
+
+ -- Associate the primary tag component and the primary dispatch table
+ -- with all the interfaces that are parents of T
+
+ if Is_Ancestor (Iface, T, Use_Full_View => True) then
+ Append_Elmt (First_Tag_Component (T), Components_List);
+ Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
+
+ -- Otherwise search for the tag component and secondary dispatch
+ -- table of Iface
+
+ else
+ Comp_Elmt := First_Elmt (Comps_List);
+ while Present (Comp_Elmt) loop
+ Comp_Iface := Related_Type (Node (Comp_Elmt));
+
+ if Comp_Iface = Iface
+ or else Is_Ancestor (Iface, Comp_Iface, Use_Full_View => True)
+ then
+ Append_Elmt (Node (Comp_Elmt), Components_List);
+ Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
+ exit;
+ end if;
+
+ Next_Elmt (Comp_Elmt);
+ end loop;
+ pragma Assert (Present (Comp_Elmt));
+ end if;
+
+ Next_Elmt (Iface_Elmt);
+ end loop;
+ end Collect_Interfaces_Info;
+
+ ---------------------
+ -- Collect_Parents --
+ ---------------------
+
+ procedure Collect_Parents
+ (T : Entity_Id;
+ List : out Elist_Id;
+ Use_Full_View : Boolean := True)
+ is
+ Current_Typ : Entity_Id := T;
+ Parent_Typ : Entity_Id;
+
+ begin
+ List := New_Elmt_List;
+
+ -- No action if the if the type has no parents
+
+ if T = Etype (T) then
+ return;
+ end if;
+
+ loop
+ Parent_Typ := Etype (Current_Typ);
+
+ if Is_Private_Type (Parent_Typ)
+ and then Present (Full_View (Parent_Typ))
+ and then Use_Full_View
+ then
+ Parent_Typ := Full_View (Base_Type (Parent_Typ));
+ end if;
+
+ Append_Elmt (Parent_Typ, List);
+
+ exit when Parent_Typ = Current_Typ;
+ Current_Typ := Parent_Typ;
+ end loop;
+ end Collect_Parents;
+
+ ----------------------------------
+ -- Collect_Primitive_Operations --
+ ----------------------------------
+
+ function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
+ B_Type : constant Entity_Id := Base_Type (T);
+ B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
+ B_Scope : Entity_Id := Scope (B_Type);
+ Op_List : Elist_Id;
+ Formal : Entity_Id;
+ Is_Prim : Boolean;
+ Is_Type_In_Pkg : Boolean;
+ Formal_Derived : Boolean := False;
+ Id : Entity_Id;
+
+ function Match (E : Entity_Id) return Boolean;
+ -- True if E's base type is B_Type, or E is of an anonymous access type
+ -- and the base type of its designated type is B_Type.
+
+ -----------
+ -- Match --
+ -----------
+
+ function Match (E : Entity_Id) return Boolean is
+ Etyp : Entity_Id := Etype (E);
+
+ begin
+ if Ekind (Etyp) = E_Anonymous_Access_Type then
+ Etyp := Designated_Type (Etyp);
+ end if;
+
+ return Base_Type (Etyp) = B_Type;
+ end Match;
+
+ -- Start of processing for Collect_Primitive_Operations
+
+ begin
+ -- For tagged types, the primitive operations are collected as they
+ -- are declared, and held in an explicit list which is simply returned.
+
+ if Is_Tagged_Type (B_Type) then
+ return Primitive_Operations (B_Type);
+
+ -- An untagged generic type that is a derived type inherits the
+ -- primitive operations of its parent type. Other formal types only
+ -- have predefined operators, which are not explicitly represented.
+
+ elsif Is_Generic_Type (B_Type) then
+ if Nkind (B_Decl) = N_Formal_Type_Declaration
+ and then Nkind (Formal_Type_Definition (B_Decl))
+ = N_Formal_Derived_Type_Definition
+ then
+ Formal_Derived := True;
+ else
+ return New_Elmt_List;
+ end if;
+ end if;
+
+ Op_List := New_Elmt_List;
+
+ if B_Scope = Standard_Standard then
+ if B_Type = Standard_String then
+ Append_Elmt (Standard_Op_Concat, Op_List);
+
+ elsif B_Type = Standard_Wide_String then
+ Append_Elmt (Standard_Op_Concatw, Op_List);
+
+ else
+ null;
+ end if;
+
+ -- Locate the primitive subprograms of the type
+
+ else
+ -- The primitive operations appear after the base type, except
+ -- if the derivation happens within the private part of B_Scope
+ -- and the type is a private type, in which case both the type
+ -- and some primitive operations may appear before the base
+ -- type, and the list of candidates starts after the type.
+
+ if In_Open_Scopes (B_Scope)
+ and then Scope (T) = B_Scope
+ and then In_Private_Part (B_Scope)
+ then
+ Id := Next_Entity (T);
+ else
+ Id := Next_Entity (B_Type);
+ end if;
+
+ -- Set flag if this is a type in a package spec
+
+ Is_Type_In_Pkg :=
+ Is_Package_Or_Generic_Package (B_Scope)
+ and then
+ Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
+ N_Package_Body;
+
+ while Present (Id) loop
+
+ -- Test whether the result type or any of the parameter types of
+ -- each subprogram following the type match that type when the
+ -- type is declared in a package spec, is a derived type, or the
+ -- subprogram is marked as primitive. (The Is_Primitive test is
+ -- needed to find primitives of nonderived types in declarative
+ -- parts that happen to override the predefined "=" operator.)
+
+ -- Note that generic formal subprograms are not considered to be
+ -- primitive operations and thus are never inherited.
+
+ if Is_Overloadable (Id)
+ and then (Is_Type_In_Pkg
+ or else Is_Derived_Type (B_Type)
+ or else Is_Primitive (Id))
+ and then Nkind (Parent (Parent (Id)))
+ not in N_Formal_Subprogram_Declaration
+ then
+ Is_Prim := False;
+
+ if Match (Id) then
+ Is_Prim := True;
+
+ else
+ Formal := First_Formal (Id);
+ while Present (Formal) loop
+ if Match (Formal) then
+ Is_Prim := True;
+ exit;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+ end if;
+
+ -- For a formal derived type, the only primitives are the ones
+ -- inherited from the parent type. Operations appearing in the
+ -- package declaration are not primitive for it.
+
+ if Is_Prim
+ and then (not Formal_Derived
+ or else Present (Alias (Id)))
+ then
+ -- In the special case of an equality operator aliased to
+ -- an overriding dispatching equality belonging to the same
+ -- type, we don't include it in the list of primitives.
+ -- This avoids inheriting multiple equality operators when
+ -- deriving from untagged private types whose full type is
+ -- tagged, which can otherwise cause ambiguities. Note that
+ -- this should only happen for this kind of untagged parent
+ -- type, since normally dispatching operations are inherited
+ -- using the type's Primitive_Operations list.
+
+ if Chars (Id) = Name_Op_Eq
+ and then Is_Dispatching_Operation (Id)
+ and then Present (Alias (Id))
+ and then Present (Overridden_Operation (Alias (Id)))
+ and then Base_Type (Etype (First_Entity (Id))) =
+ Base_Type (Etype (First_Entity (Alias (Id))))
+ then
+ null;
+
+ -- Include the subprogram in the list of primitives
+
+ else
+ Append_Elmt (Id, Op_List);
+ end if;
+ end if;
+ end if;
+
+ Next_Entity (Id);
+
+ -- For a type declared in System, some of its operations may
+ -- appear in the target-specific extension to System.
+
+ if No (Id)
+ and then B_Scope = RTU_Entity (System)
+ and then Present_System_Aux
+ then
+ B_Scope := System_Aux_Id;
+ Id := First_Entity (System_Aux_Id);
+ end if;
+ end loop;
+ end if;
+
+ return Op_List;
+ end Collect_Primitive_Operations;
+
+ -----------------------------------
+ -- Compile_Time_Constraint_Error --
+ -----------------------------------
+
+ function Compile_Time_Constraint_Error
+ (N : Node_Id;
+ Msg : String;
+ Ent : Entity_Id := Empty;
+ Loc : Source_Ptr := No_Location;
+ Warn : Boolean := False) return Node_Id
+ is
+ Msgc : String (1 .. Msg'Length + 3);
+ -- Copy of message, with room for possible ?? and ! at end
+
+ Msgl : Natural;
+ Wmsg : Boolean;
+ P : Node_Id;
+ OldP : Node_Id;
+ Msgs : Boolean;
+ Eloc : Source_Ptr;
+
+ begin
+ -- A static constraint error in an instance body is not a fatal error.
+ -- we choose to inhibit the message altogether, because there is no
+ -- obvious node (for now) on which to post it. On the other hand the
+ -- offending node must be replaced with a constraint_error in any case.
+
+ -- No messages are generated if we already posted an error on this node
+
+ if not Error_Posted (N) then
+ if Loc /= No_Location then
+ Eloc := Loc;
+ else
+ Eloc := Sloc (N);
+ end if;
+
+ Msgc (1 .. Msg'Length) := Msg;
+ Msgl := Msg'Length;
+
+ -- Message is a warning, even in Ada 95 case
+
+ if Msg (Msg'Last) = '?' then
+ Wmsg := True;
+
+ -- In Ada 83, all messages are warnings. In the private part and
+ -- the body of an instance, constraint_checks are only warnings.
+ -- We also make this a warning if the Warn parameter is set.
+
+ elsif Warn
+ or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
+ then
+ Msgl := Msgl + 1;
+ Msgc (Msgl) := '?';
+ Msgl := Msgl + 1;
+ Msgc (Msgl) := '?';
+ Wmsg := True;
+
+ elsif In_Instance_Not_Visible then
+ Msgl := Msgl + 1;
+ Msgc (Msgl) := '?';
+ Msgl := Msgl + 1;
+ Msgc (Msgl) := '?';
+ Wmsg := True;
+
+ -- Otherwise we have a real error message (Ada 95 static case)
+ -- and we make this an unconditional message. Note that in the
+ -- warning case we do not make the message unconditional, it seems
+ -- quite reasonable to delete messages like this (about exceptions
+ -- that will be raised) in dead code.
+
+ else
+ Wmsg := False;
+ Msgl := Msgl + 1;
+ Msgc (Msgl) := '!';
+ end if;
+
+ -- Should we generate a warning? The answer is not quite yes. The
+ -- very annoying exception occurs in the case of a short circuit
+ -- operator where the left operand is static and decisive. Climb
+ -- parents to see if that is the case we have here. Conditional
+ -- expressions with decisive conditions are a similar situation.
+
+ Msgs := True;
+ P := N;
+ loop
+ OldP := P;
+ P := Parent (P);
+
+ -- And then with False as left operand
+
+ if Nkind (P) = N_And_Then
+ and then Compile_Time_Known_Value (Left_Opnd (P))
+ and then Is_False (Expr_Value (Left_Opnd (P)))
+ then
+ Msgs := False;
+ exit;
+
+ -- OR ELSE with True as left operand
+
+ elsif Nkind (P) = N_Or_Else
+ and then Compile_Time_Known_Value (Left_Opnd (P))
+ and then Is_True (Expr_Value (Left_Opnd (P)))
+ then
+ Msgs := False;
+ exit;
+
+ -- If expression
+
+ elsif Nkind (P) = N_If_Expression then
+ declare
+ Cond : constant Node_Id := First (Expressions (P));
+ Texp : constant Node_Id := Next (Cond);
+ Fexp : constant Node_Id := Next (Texp);
+
+ begin
+ if Compile_Time_Known_Value (Cond) then
+
+ -- Condition is True and we are in the right operand
+
+ if Is_True (Expr_Value (Cond))
+ and then OldP = Fexp
+ then
+ Msgs := False;
+ exit;
+
+ -- Condition is False and we are in the left operand
+
+ elsif Is_False (Expr_Value (Cond))
+ and then OldP = Texp
+ then
+ Msgs := False;
+ exit;
+ end if;
+ end if;
+ end;
+
+ -- Special case for component association in aggregates, where
+ -- we want to keep climbing up to the parent aggregate.
+
+ elsif Nkind (P) = N_Component_Association
+ and then Nkind (Parent (P)) = N_Aggregate
+ then
+ null;
+
+ -- Keep going if within subexpression
+
+ else
+ exit when Nkind (P) not in N_Subexpr;
+ end if;
+ end loop;
+
+ if Msgs then
+ if Present (Ent) then
+ Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
+ else
+ Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
+ end if;
+
+ if Wmsg then
+
+ -- Check whether the context is an Init_Proc
+
+ if Inside_Init_Proc then
+ declare
+ Conc_Typ : constant Entity_Id :=
+ Corresponding_Concurrent_Type
+ (Entity (Parameter_Type (First
+ (Parameter_Specifications
+ (Parent (Current_Scope))))));
+
+ begin
+ -- Don't complain if the corresponding concurrent type
+ -- doesn't come from source (i.e. a single task/protected
+ -- object).
+
+ if Present (Conc_Typ)
+ and then not Comes_From_Source (Conc_Typ)
+ then
+ Error_Msg_NEL
+ ("\??& will be raised at run time",
+ N, Standard_Constraint_Error, Eloc);
+
+ else
+ Error_Msg_NEL
+ ("\??& will be raised for objects of this type",
+ N, Standard_Constraint_Error, Eloc);
+ end if;
+ end;
+
+ else
+ Error_Msg_NEL
+ ("\??& will be raised at run time",
+ N, Standard_Constraint_Error, Eloc);
+ end if;
+
+ else
+ Error_Msg
+ ("\static expression fails Constraint_Check", Eloc);
+ Set_Error_Posted (N);
+ end if;
+ end if;
+ end if;
+
+ return N;
+ end Compile_Time_Constraint_Error;
+
+ -----------------------
+ -- Conditional_Delay --
+ -----------------------
+
+ procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
+ begin
+ if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
+ Set_Has_Delayed_Freeze (New_Ent);
+ end if;
+ end Conditional_Delay;
+
+ -------------------------
+ -- Copy_Component_List --
+ -------------------------
+
+ function Copy_Component_List
+ (R_Typ : Entity_Id;
+ Loc : Source_Ptr) return List_Id
+ is
+ Comp : Node_Id;
+ Comps : constant List_Id := New_List;
+
+ begin
+ Comp := First_Component (Underlying_Type (R_Typ));
+ while Present (Comp) loop
+ if Comes_From_Source (Comp) then
+ declare
+ Comp_Decl : constant Node_Id := Declaration_Node (Comp);
+ begin
+ Append_To (Comps,
+ Make_Component_Declaration (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc, Chars (Comp)),
+ Component_Definition =>
+ New_Copy_Tree
+ (Component_Definition (Comp_Decl), New_Sloc => Loc)));
+ end;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+
+ return Comps;
+ end Copy_Component_List;
+
+ -------------------------
+ -- Copy_Parameter_List --
+ -------------------------
+
+ function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
+ Loc : constant Source_Ptr := Sloc (Subp_Id);
+ Plist : List_Id;
+ Formal : Entity_Id;
+
+ begin
+ if No (First_Formal (Subp_Id)) then
+ return No_List;
+ else
+ Plist := New_List;
+ Formal := First_Formal (Subp_Id);
+ while Present (Formal) loop
+ Append
+ (Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Sloc (Formal),
+ Chars => Chars (Formal)),
+ In_Present => In_Present (Parent (Formal)),
+ Out_Present => Out_Present (Parent (Formal)),
+ Parameter_Type =>
+ New_Reference_To (Etype (Formal), Loc),
+ Expression =>
+ New_Copy_Tree (Expression (Parent (Formal)))),
+ Plist);
+
+ Next_Formal (Formal);
+ end loop;
+ end if;
+
+ return Plist;
+ end Copy_Parameter_List;
+
+ --------------------------------
+ -- Corresponding_Generic_Type --
+ --------------------------------
+
+ function Corresponding_Generic_Type (T : Entity_Id) return Entity_Id is
+ Inst : Entity_Id;
+ Gen : Entity_Id;
+ Typ : Entity_Id;
+
+ begin
+ if not Is_Generic_Actual_Type (T) then
+ return Any_Type;
+
+ -- If the actual is the actual of an enclosing instance, resolution
+ -- was correct in the generic.
+
+ elsif Nkind (Parent (T)) = N_Subtype_Declaration
+ and then Is_Entity_Name (Subtype_Indication (Parent (T)))
+ and then
+ Is_Generic_Actual_Type (Entity (Subtype_Indication (Parent (T))))
+ then
+ return Any_Type;
+
+ else
+ Inst := Scope (T);
+
+ if Is_Wrapper_Package (Inst) then
+ Inst := Related_Instance (Inst);
+ end if;
+
+ Gen :=
+ Generic_Parent
+ (Specification (Unit_Declaration_Node (Inst)));
+
+ -- Generic actual has the same name as the corresponding formal
+
+ Typ := First_Entity (Gen);
+ while Present (Typ) loop
+ if Chars (Typ) = Chars (T) then
+ return Typ;
+ end if;
+
+ Next_Entity (Typ);
+ end loop;
+
+ return Any_Type;
+ end if;
+ end Corresponding_Generic_Type;
+
+ --------------------
+ -- Current_Entity --
+ --------------------
+
+ -- The currently visible definition for a given identifier is the
+ -- one most chained at the start of the visibility chain, i.e. the
+ -- one that is referenced by the Node_Id value of the name of the
+ -- given identifier.
+
+ function Current_Entity (N : Node_Id) return Entity_Id is
+ begin
+ return Get_Name_Entity_Id (Chars (N));
+ end Current_Entity;
+
+ -----------------------------
+ -- Current_Entity_In_Scope --
+ -----------------------------
+
+ function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
+ E : Entity_Id;
+ CS : constant Entity_Id := Current_Scope;
+
+ Transient_Case : constant Boolean := Scope_Is_Transient;
+
+ begin
+ E := Get_Name_Entity_Id (Chars (N));
+ while Present (E)
+ and then Scope (E) /= CS
+ and then (not Transient_Case or else Scope (E) /= Scope (CS))
+ loop
+ E := Homonym (E);
+ end loop;
+
+ return E;
+ end Current_Entity_In_Scope;
+
+ -------------------
+ -- Current_Scope --
+ -------------------
+
+ function Current_Scope return Entity_Id is
+ begin
+ if Scope_Stack.Last = -1 then
+ return Standard_Standard;
+ else
+ declare
+ C : constant Entity_Id :=
+ Scope_Stack.Table (Scope_Stack.Last).Entity;
+ begin
+ if Present (C) then
+ return C;
+ else
+ return Standard_Standard;
+ end if;
+ end;
+ end if;
+ end Current_Scope;
+
+ ------------------------
+ -- Current_Subprogram --
+ ------------------------
+
+ function Current_Subprogram return Entity_Id is
+ Scop : constant Entity_Id := Current_Scope;
+ begin
+ if Is_Subprogram (Scop) or else Is_Generic_Subprogram (Scop) then
+ return Scop;
+ else
+ return Enclosing_Subprogram (Scop);
+ end if;
+ end Current_Subprogram;
+
+ ----------------------------------
+ -- Deepest_Type_Access_Level --
+ ----------------------------------
+
+ function Deepest_Type_Access_Level (Typ : Entity_Id) return Uint is
+ begin
+ if Ekind (Typ) = E_Anonymous_Access_Type
+ and then not Is_Local_Anonymous_Access (Typ)
+ and then Nkind (Associated_Node_For_Itype (Typ)) = N_Object_Declaration
+ then
+ -- Typ is the type of an Ada 2012 stand-alone object of an anonymous
+ -- access type.
+
+ return
+ Scope_Depth (Enclosing_Dynamic_Scope
+ (Defining_Identifier
+ (Associated_Node_For_Itype (Typ))));
+
+ -- For generic formal type, return Int'Last (infinite).
+ -- See comment preceding Is_Generic_Type call in Type_Access_Level.
+
+ elsif Is_Generic_Type (Root_Type (Typ)) then
+ return UI_From_Int (Int'Last);
+
+ else
+ return Type_Access_Level (Typ);
+ end if;
+ end Deepest_Type_Access_Level;
+
+ ---------------------
+ -- Defining_Entity --
+ ---------------------
+
+ function Defining_Entity (N : Node_Id) return Entity_Id is
+ K : constant Node_Kind := Nkind (N);
+ Err : Entity_Id := Empty;
+
+ begin
+ case K is
+ when
+ N_Subprogram_Declaration |
+ N_Abstract_Subprogram_Declaration |
+ N_Subprogram_Body |
+ N_Package_Declaration |
+ N_Subprogram_Renaming_Declaration |
+ N_Subprogram_Body_Stub |
+ N_Generic_Subprogram_Declaration |
+ N_Generic_Package_Declaration |
+ N_Formal_Subprogram_Declaration |
+ N_Expression_Function
+ =>
+ return Defining_Entity (Specification (N));
+
+ when
+ N_Component_Declaration |
+ N_Defining_Program_Unit_Name |
+ N_Discriminant_Specification |
+ N_Entry_Body |
+ N_Entry_Declaration |
+ N_Entry_Index_Specification |
+ N_Exception_Declaration |
+ N_Exception_Renaming_Declaration |
+ N_Formal_Object_Declaration |
+ N_Formal_Package_Declaration |
+ N_Formal_Type_Declaration |
+ N_Full_Type_Declaration |
+ N_Implicit_Label_Declaration |
+ N_Incomplete_Type_Declaration |
+ N_Loop_Parameter_Specification |
+ N_Number_Declaration |
+ N_Object_Declaration |
+ N_Object_Renaming_Declaration |
+ N_Package_Body_Stub |
+ N_Parameter_Specification |
+ N_Private_Extension_Declaration |
+ N_Private_Type_Declaration |
+ N_Protected_Body |
+ N_Protected_Body_Stub |
+ N_Protected_Type_Declaration |
+ N_Single_Protected_Declaration |
+ N_Single_Task_Declaration |
+ N_Subtype_Declaration |
+ N_Task_Body |
+ N_Task_Body_Stub |
+ N_Task_Type_Declaration
+ =>
+ return Defining_Identifier (N);
+
+ when N_Subunit =>
+ return Defining_Entity (Proper_Body (N));
+
+ when
+ N_Function_Instantiation |
+ N_Function_Specification |
+ N_Generic_Function_Renaming_Declaration |
+ N_Generic_Package_Renaming_Declaration |
+ N_Generic_Procedure_Renaming_Declaration |
+ N_Package_Body |
+ N_Package_Instantiation |
+ N_Package_Renaming_Declaration |
+ N_Package_Specification |
+ N_Procedure_Instantiation |
+ N_Procedure_Specification
+ =>
+ declare
+ Nam : constant Node_Id := Defining_Unit_Name (N);
+
+ begin
+ if Nkind (Nam) in N_Entity then
+ return Nam;
+
+ -- For Error, make up a name and attach to declaration
+ -- so we can continue semantic analysis
+
+ elsif Nam = Error then
+ Err := Make_Temporary (Sloc (N), 'T');
+ Set_Defining_Unit_Name (N, Err);
+
+ return Err;
+ -- If not an entity, get defining identifier
+
+ else
+ return Defining_Identifier (Nam);
+ end if;
+ end;
+
+ when N_Block_Statement =>
+ return Entity (Identifier (N));
+
+ when others =>
+ raise Program_Error;
+
+ end case;
+ end Defining_Entity;
+
+ --------------------------
+ -- Denotes_Discriminant --
+ --------------------------
+
+ function Denotes_Discriminant
+ (N : Node_Id;
+ Check_Concurrent : Boolean := False) return Boolean
+ is
+ E : Entity_Id;
+ begin
+ if not Is_Entity_Name (N)
+ or else No (Entity (N))
+ then
+ return False;
+ else
+ E := Entity (N);
+ end if;
+
+ -- If we are checking for a protected type, the discriminant may have
+ -- been rewritten as the corresponding discriminal of the original type
+ -- or of the corresponding concurrent record, depending on whether we
+ -- are in the spec or body of the protected type.
+
+ return Ekind (E) = E_Discriminant
+ or else
+ (Check_Concurrent
+ and then Ekind (E) = E_In_Parameter
+ and then Present (Discriminal_Link (E))
+ and then
+ (Is_Concurrent_Type (Scope (Discriminal_Link (E)))
+ or else
+ Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
+
+ end Denotes_Discriminant;
+
+ -------------------------
+ -- Denotes_Same_Object --
+ -------------------------
+
+ function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
+ Obj1 : Node_Id := A1;
+ Obj2 : Node_Id := A2;
+
+ function Has_Prefix (N : Node_Id) return Boolean;
+ -- Return True if N has attribute Prefix
+
+ function Is_Renaming (N : Node_Id) return Boolean;
+ -- Return true if N names a renaming entity
+
+ function Is_Valid_Renaming (N : Node_Id) return Boolean;
+ -- For renamings, return False if the prefix of any dereference within
+ -- the renamed object_name is a variable, or any expression within the
+ -- renamed object_name contains references to variables or calls on
+ -- nonstatic functions; otherwise return True (RM 6.4.1(6.10/3))
+
+ ----------------
+ -- Has_Prefix --
+ ----------------
+
+ function Has_Prefix (N : Node_Id) return Boolean is
+ begin
+ return
+ Nkind_In (N,
+ N_Attribute_Reference,
+ N_Expanded_Name,
+ N_Explicit_Dereference,
+ N_Indexed_Component,
+ N_Reference,
+ N_Selected_Component,
+ N_Slice);
+ end Has_Prefix;
+
+ -----------------
+ -- Is_Renaming --
+ -----------------
+
+ function Is_Renaming (N : Node_Id) return Boolean is
+ begin
+ return Is_Entity_Name (N)
+ and then Present (Renamed_Entity (Entity (N)));
+ end Is_Renaming;
+
+ -----------------------
+ -- Is_Valid_Renaming --
+ -----------------------
+
+ function Is_Valid_Renaming (N : Node_Id) return Boolean is
+
+ function Check_Renaming (N : Node_Id) return Boolean;
+ -- Recursive function used to traverse all the prefixes of N
+
+ function Check_Renaming (N : Node_Id) return Boolean is
+ begin
+ if Is_Renaming (N)
+ and then not Check_Renaming (Renamed_Entity (Entity (N)))
+ then
+ return False;
+ end if;
+
+ if Nkind (N) = N_Indexed_Component then
+ declare
+ Indx : Node_Id;
+
+ begin
+ Indx := First (Expressions (N));
+ while Present (Indx) loop
+ if not Is_OK_Static_Expression (Indx) then
+ return False;
+ end if;
+
+ Next_Index (Indx);
+ end loop;
+ end;
+ end if;
+
+ if Has_Prefix (N) then
+ declare
+ P : constant Node_Id := Prefix (N);
+
+ begin
+ if Nkind (N) = N_Explicit_Dereference
+ and then Is_Variable (P)
+ then
+ return False;
+
+ elsif Is_Entity_Name (P)
+ and then Ekind (Entity (P)) = E_Function
+ then
+ return False;
+
+ elsif Nkind (P) = N_Function_Call then
+ return False;
+ end if;
+
+ -- Recursion to continue traversing the prefix of the
+ -- renaming expression
+
+ return Check_Renaming (P);
+ end;
+ end if;
+
+ return True;
+ end Check_Renaming;
+
+ -- Start of processing for Is_Valid_Renaming
+
+ begin
+ return Check_Renaming (N);
+ end Is_Valid_Renaming;
+
+ -- Start of processing for Denotes_Same_Object
+
+ begin
+ -- Both names statically denote the same stand-alone object or parameter
+ -- (RM 6.4.1(6.5/3))
+
+ if Is_Entity_Name (Obj1)
+ and then Is_Entity_Name (Obj2)
+ and then Entity (Obj1) = Entity (Obj2)
+ then
+ return True;
+ end if;
+
+ -- For renamings, the prefix of any dereference within the renamed
+ -- object_name is not a variable, and any expression within the
+ -- renamed object_name contains no references to variables nor
+ -- calls on nonstatic functions (RM 6.4.1(6.10/3)).
+
+ if Is_Renaming (Obj1) then
+ if Is_Valid_Renaming (Obj1) then
+ Obj1 := Renamed_Entity (Entity (Obj1));
+ else
+ return False;
+ end if;
+ end if;
+
+ if Is_Renaming (Obj2) then
+ if Is_Valid_Renaming (Obj2) then
+ Obj2 := Renamed_Entity (Entity (Obj2));
+ else
+ return False;
+ end if;
+ end if;
+
+ -- No match if not same node kind (such cases are handled by
+ -- Denotes_Same_Prefix)
+
+ if Nkind (Obj1) /= Nkind (Obj2) then
+ return False;
+
+ -- After handling valid renamings, one of the two names statically
+ -- denoted a renaming declaration whose renamed object_name is known
+ -- to denote the same object as the other (RM 6.4.1(6.10/3))
+
+ elsif Is_Entity_Name (Obj1) then
+ if Is_Entity_Name (Obj2) then
+ return Entity (Obj1) = Entity (Obj2);
+ else
+ return False;
+ end if;
+
+ -- Both names are selected_components, their prefixes are known to
+ -- denote the same object, and their selector_names denote the same
+ -- component (RM 6.4.1(6.6/3)
+
+ elsif Nkind (Obj1) = N_Selected_Component then
+ return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
+ and then
+ Entity (Selector_Name (Obj1)) = Entity (Selector_Name (Obj2));
+
+ -- Both names are dereferences and the dereferenced names are known to
+ -- denote the same object (RM 6.4.1(6.7/3))
+
+ elsif Nkind (Obj1) = N_Explicit_Dereference then
+ return Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2));
+
+ -- Both names are indexed_components, their prefixes are known to denote
+ -- the same object, and each of the pairs of corresponding index values
+ -- are either both static expressions with the same static value or both
+ -- names that are known to denote the same object (RM 6.4.1(6.8/3))
+
+ elsif Nkind (Obj1) = N_Indexed_Component then
+ if not Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2)) then
+ return False;
+ else
+ declare
+ Indx1 : Node_Id;
+ Indx2 : Node_Id;
+
+ begin
+ Indx1 := First (Expressions (Obj1));
+ Indx2 := First (Expressions (Obj2));
+ while Present (Indx1) loop
+
+ -- Indexes must denote the same static value or same object
+
+ if Is_OK_Static_Expression (Indx1) then
+ if not Is_OK_Static_Expression (Indx2) then
+ return False;
+
+ elsif Expr_Value (Indx1) /= Expr_Value (Indx2) then
+ return False;
+ end if;
+
+ elsif not Denotes_Same_Object (Indx1, Indx2) then
+ return False;
+ end if;
+
+ Next (Indx1);
+ Next (Indx2);
+ end loop;
+
+ return True;
+ end;
+ end if;
+
+ -- Both names are slices, their prefixes are known to denote the same
+ -- object, and the two slices have statically matching index constraints
+ -- (RM 6.4.1(6.9/3))
+
+ elsif Nkind (Obj1) = N_Slice
+ and then Denotes_Same_Object (Prefix (Obj1), Prefix (Obj2))
+ then
+ declare
+ Lo1, Lo2, Hi1, Hi2 : Node_Id;
+
+ begin
+ Get_Index_Bounds (Etype (Obj1), Lo1, Hi1);
+ Get_Index_Bounds (Etype (Obj2), Lo2, Hi2);
+
+ -- Check whether bounds are statically identical. There is no
+ -- attempt to detect partial overlap of slices.
+
+ return Denotes_Same_Object (Lo1, Lo2)
+ and then Denotes_Same_Object (Hi1, Hi2);
+ end;
+
+ -- In the recursion, literals appear as indexes.
+
+ elsif Nkind (Obj1) = N_Integer_Literal
+ and then Nkind (Obj2) = N_Integer_Literal
+ then
+ return Intval (Obj1) = Intval (Obj2);
+
+ else
+ return False;
+ end if;
+ end Denotes_Same_Object;
+
+ -------------------------
+ -- Denotes_Same_Prefix --
+ -------------------------
+
+ function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
+
+ begin
+ if Is_Entity_Name (A1) then
+ if Nkind_In (A2, N_Selected_Component, N_Indexed_Component)
+ and then not Is_Access_Type (Etype (A1))
+ then
+ return Denotes_Same_Object (A1, Prefix (A2))
+ or else Denotes_Same_Prefix (A1, Prefix (A2));
+ else
+ return False;
+ end if;
+
+ elsif Is_Entity_Name (A2) then
+ return Denotes_Same_Prefix (A1 => A2, A2 => A1);
+
+ elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
+ and then
+ Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
+ then
+ declare
+ Root1, Root2 : Node_Id;
+ Depth1, Depth2 : Int := 0;
+
+ begin
+ Root1 := Prefix (A1);
+ while not Is_Entity_Name (Root1) loop
+ if not Nkind_In
+ (Root1, N_Selected_Component, N_Indexed_Component)
+ then
+ return False;
+ else
+ Root1 := Prefix (Root1);
+ end if;
+
+ Depth1 := Depth1 + 1;
+ end loop;
+
+ Root2 := Prefix (A2);
+ while not Is_Entity_Name (Root2) loop
+ if not Nkind_In
+ (Root2, N_Selected_Component, N_Indexed_Component)
+ then
+ return False;
+ else
+ Root2 := Prefix (Root2);
+ end if;
+
+ Depth2 := Depth2 + 1;
+ end loop;
+
+ -- If both have the same depth and they do not denote the same
+ -- object, they are disjoint and no warning is needed.
+
+ if Depth1 = Depth2 then
+ return False;
+
+ elsif Depth1 > Depth2 then
+ Root1 := Prefix (A1);
+ for I in 1 .. Depth1 - Depth2 - 1 loop
+ Root1 := Prefix (Root1);
+ end loop;
+
+ return Denotes_Same_Object (Root1, A2);
+
+ else
+ Root2 := Prefix (A2);
+ for I in 1 .. Depth2 - Depth1 - 1 loop
+ Root2 := Prefix (Root2);
+ end loop;
+
+ return Denotes_Same_Object (A1, Root2);
+ end if;
+ end;
+
+ else
+ return False;
+ end if;
+ end Denotes_Same_Prefix;
+
+ ----------------------
+ -- Denotes_Variable --
+ ----------------------
+
+ function Denotes_Variable (N : Node_Id) return Boolean is
+ begin
+ return Is_Variable (N) and then Paren_Count (N) = 0;
+ end Denotes_Variable;
+
+ -----------------------------
+ -- Depends_On_Discriminant --
+ -----------------------------
+
+ function Depends_On_Discriminant (N : Node_Id) return Boolean is
+ L : Node_Id;
+ H : Node_Id;
+
+ begin
+ Get_Index_Bounds (N, L, H);
+ return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
+ end Depends_On_Discriminant;
+
+ -------------------------
+ -- Designate_Same_Unit --
+ -------------------------
+
+ function Designate_Same_Unit
+ (Name1 : Node_Id;
+ Name2 : Node_Id) return Boolean
+ is
+ K1 : constant Node_Kind := Nkind (Name1);
+ K2 : constant Node_Kind := Nkind (Name2);
+
+ function Prefix_Node (N : Node_Id) return Node_Id;
+ -- Returns the parent unit name node of a defining program unit name
+ -- or the prefix if N is a selected component or an expanded name.
+
+ function Select_Node (N : Node_Id) return Node_Id;
+ -- Returns the defining identifier node of a defining program unit
+ -- name or the selector node if N is a selected component or an
+ -- expanded name.
+
+ -----------------
+ -- Prefix_Node --
+ -----------------
+
+ function Prefix_Node (N : Node_Id) return Node_Id is
+ begin
+ if Nkind (N) = N_Defining_Program_Unit_Name then
+ return Name (N);
+
+ else
+ return Prefix (N);
+ end if;
+ end Prefix_Node;
+
+ -----------------
+ -- Select_Node --
+ -----------------
+
+ function Select_Node (N : Node_Id) return Node_Id is
+ begin
+ if Nkind (N) = N_Defining_Program_Unit_Name then
+ return Defining_Identifier (N);
+
+ else
+ return Selector_Name (N);
+ end if;
+ end Select_Node;
+
+ -- Start of processing for Designate_Next_Unit
+
+ begin
+ if (K1 = N_Identifier or else
+ K1 = N_Defining_Identifier)
+ and then
+ (K2 = N_Identifier or else
+ K2 = N_Defining_Identifier)
+ then
+ return Chars (Name1) = Chars (Name2);
+
+ elsif
+ (K1 = N_Expanded_Name or else
+ K1 = N_Selected_Component or else
+ K1 = N_Defining_Program_Unit_Name)
+ and then
+ (K2 = N_Expanded_Name or else
+ K2 = N_Selected_Component or else
+ K2 = N_Defining_Program_Unit_Name)
+ then
+ return
+ (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
+ and then
+ Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
+
+ else
+ return False;
+ end if;
+ end Designate_Same_Unit;
+
+ ------------------------------------------
+ -- function Dynamic_Accessibility_Level --
+ ------------------------------------------
+
+ function Dynamic_Accessibility_Level (Expr : Node_Id) return Node_Id is
+ E : Entity_Id;
+ Loc : constant Source_Ptr := Sloc (Expr);
+
+ function Make_Level_Literal (Level : Uint) return Node_Id;
+ -- Construct an integer literal representing an accessibility level
+ -- with its type set to Natural.
+
+ ------------------------
+ -- Make_Level_Literal --
+ ------------------------
+
+ function Make_Level_Literal (Level : Uint) return Node_Id is
+ Result : constant Node_Id := Make_Integer_Literal (Loc, Level);
+ begin
+ Set_Etype (Result, Standard_Natural);
+ return Result;
+ end Make_Level_Literal;
+
+ -- Start of processing for Dynamic_Accessibility_Level
+
+ begin
+ if Is_Entity_Name (Expr) then
+ E := Entity (Expr);
+
+ if Present (Renamed_Object (E)) then
+ return Dynamic_Accessibility_Level (Renamed_Object (E));
+ end if;
+
+ if Is_Formal (E) or else Ekind_In (E, E_Variable, E_Constant) then
+ if Present (Extra_Accessibility (E)) then
+ return New_Occurrence_Of (Extra_Accessibility (E), Loc);
+ end if;
+ end if;
+ end if;
+
+ -- Unimplemented: Ptr.all'Access, where Ptr has Extra_Accessibility ???
+
+ case Nkind (Expr) is
+
+ -- For access discriminant, the level of the enclosing object
+
+ when N_Selected_Component =>
+ if Ekind (Entity (Selector_Name (Expr))) = E_Discriminant
+ and then Ekind (Etype (Entity (Selector_Name (Expr)))) =
+ E_Anonymous_Access_Type
+ then
+ return Make_Level_Literal (Object_Access_Level (Expr));
+ end if;
+
+ when N_Attribute_Reference =>
+ case Get_Attribute_Id (Attribute_Name (Expr)) is
+
+ -- For X'Access, the level of the prefix X
+
+ when Attribute_Access =>
+ return Make_Level_Literal
+ (Object_Access_Level (Prefix (Expr)));
+
+ -- Treat the unchecked attributes as library-level
+
+ when Attribute_Unchecked_Access |
+ Attribute_Unrestricted_Access =>
+ return Make_Level_Literal (Scope_Depth (Standard_Standard));
+
+ -- No other access-valued attributes
+
+ when others =>
+ raise Program_Error;
+ end case;
+
+ when N_Allocator =>
+
+ -- Unimplemented: depends on context. As an actual parameter where
+ -- formal type is anonymous, use
+ -- Scope_Depth (Current_Scope) + 1.
+ -- For other cases, see 3.10.2(14/3) and following. ???
+
+ null;
+
+ when N_Type_Conversion =>
+ if not Is_Local_Anonymous_Access (Etype (Expr)) then
+
+ -- Handle type conversions introduced for a rename of an
+ -- Ada 2012 stand-alone object of an anonymous access type.
+
+ return Dynamic_Accessibility_Level (Expression (Expr));
+ end if;
+
+ when others =>
+ null;
+ end case;
+
+ return Make_Level_Literal (Type_Access_Level (Etype (Expr)));
+ end Dynamic_Accessibility_Level;
+
+ -----------------------------------
+ -- Effective_Extra_Accessibility --
+ -----------------------------------
+
+ function Effective_Extra_Accessibility (Id : Entity_Id) return Entity_Id is
+ begin
+ if Present (Renamed_Object (Id))
+ and then Is_Entity_Name (Renamed_Object (Id))
+ then
+ return Effective_Extra_Accessibility (Entity (Renamed_Object (Id)));
+ else
+ return Extra_Accessibility (Id);
+ end if;
+ end Effective_Extra_Accessibility;
+
+ ------------------------------
+ -- Enclosing_Comp_Unit_Node --
+ ------------------------------
+
+ function Enclosing_Comp_Unit_Node (N : Node_Id) return Node_Id is
+ Current_Node : Node_Id;
+
+ begin
+ Current_Node := N;
+ while Present (Current_Node)
+ and then Nkind (Current_Node) /= N_Compilation_Unit
+ loop
+ Current_Node := Parent (Current_Node);
+ end loop;
+
+ if Nkind (Current_Node) /= N_Compilation_Unit then
+ return Empty;
+ else
+ return Current_Node;
+ end if;
+ end Enclosing_Comp_Unit_Node;
+
+ --------------------------
+ -- Enclosing_CPP_Parent --
+ --------------------------
+
+ function Enclosing_CPP_Parent (Typ : Entity_Id) return Entity_Id is
+ Parent_Typ : Entity_Id := Typ;
+
+ begin
+ while not Is_CPP_Class (Parent_Typ)
+ and then Etype (Parent_Typ) /= Parent_Typ
+ loop
+ Parent_Typ := Etype (Parent_Typ);
+
+ if Is_Private_Type (Parent_Typ) then
+ Parent_Typ := Full_View (Base_Type (Parent_Typ));
+ end if;
+ end loop;
+
+ pragma Assert (Is_CPP_Class (Parent_Typ));
+ return Parent_Typ;
+ end Enclosing_CPP_Parent;
+
+ ----------------------------
+ -- Enclosing_Generic_Body --
+ ----------------------------
+
+ function Enclosing_Generic_Body
+ (N : Node_Id) return Node_Id
+ is
+ P : Node_Id;
+ Decl : Node_Id;
+ Spec : Node_Id;
+
+ begin
+ P := Parent (N);
+ while Present (P) loop
+ if Nkind (P) = N_Package_Body
+ or else Nkind (P) = N_Subprogram_Body
+ then
+ Spec := Corresponding_Spec (P);
+
+ if Present (Spec) then
+ Decl := Unit_Declaration_Node (Spec);
+
+ if Nkind (Decl) = N_Generic_Package_Declaration
+ or else Nkind (Decl) = N_Generic_Subprogram_Declaration
+ then
+ return P;
+ end if;
+ end if;
+ end if;
+
+ P := Parent (P);
+ end loop;
+
+ return Empty;
+ end Enclosing_Generic_Body;
+
+ ----------------------------
+ -- Enclosing_Generic_Unit --
+ ----------------------------
+
+ function Enclosing_Generic_Unit
+ (N : Node_Id) return Node_Id
+ is
+ P : Node_Id;
+ Decl : Node_Id;
+ Spec : Node_Id;
+
+ begin
+ P := Parent (N);
+ while Present (P) loop
+ if Nkind (P) = N_Generic_Package_Declaration
+ or else Nkind (P) = N_Generic_Subprogram_Declaration
+ then
+ return P;
+
+ elsif Nkind (P) = N_Package_Body
+ or else Nkind (P) = N_Subprogram_Body
+ then
+ Spec := Corresponding_Spec (P);
+
+ if Present (Spec) then
+ Decl := Unit_Declaration_Node (Spec);
+
+ if Nkind (Decl) = N_Generic_Package_Declaration
+ or else Nkind (Decl) = N_Generic_Subprogram_Declaration
+ then
+ return Decl;
+ end if;
+ end if;
+ end if;
+
+ P := Parent (P);
+ end loop;
+
+ return Empty;
+ end Enclosing_Generic_Unit;
+
+ -------------------------------
+ -- Enclosing_Lib_Unit_Entity --
+ -------------------------------
+
+ function Enclosing_Lib_Unit_Entity
+ (E : Entity_Id := Current_Scope) return Entity_Id
+ is
+ Unit_Entity : Entity_Id;
+
+ begin
+ -- Look for enclosing library unit entity by following scope links.
+ -- Equivalent to, but faster than indexing through the scope stack.
+
+ Unit_Entity := E;
+ while (Present (Scope (Unit_Entity))
+ and then Scope (Unit_Entity) /= Standard_Standard)
+ and not Is_Child_Unit (Unit_Entity)
+ loop
+ Unit_Entity := Scope (Unit_Entity);
+ end loop;
+
+ return Unit_Entity;
+ end Enclosing_Lib_Unit_Entity;
+
+ -----------------------
+ -- Enclosing_Package --
+ -----------------------
+
+ function Enclosing_Package (E : Entity_Id) return Entity_Id is
+ Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
+
+ begin
+ if Dynamic_Scope = Standard_Standard then
+ return Standard_Standard;
+
+ elsif Dynamic_Scope = Empty then
+ return Empty;
+
+ elsif Ekind_In (Dynamic_Scope, E_Package, E_Package_Body,
+ E_Generic_Package)
+ then
+ return Dynamic_Scope;
+
+ else
+ return Enclosing_Package (Dynamic_Scope);
+ end if;
+ end Enclosing_Package;
+
+ --------------------------
+ -- Enclosing_Subprogram --
+ --------------------------
+
+ function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
+ Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
+
+ begin
+ if Dynamic_Scope = Standard_Standard then
+ return Empty;
+
+ elsif Dynamic_Scope = Empty then
+ return Empty;
+
+ elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
+ return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
+
+ elsif Ekind (Dynamic_Scope) = E_Block
+ or else Ekind (Dynamic_Scope) = E_Return_Statement
+ then
+ return Enclosing_Subprogram (Dynamic_Scope);
+
+ elsif Ekind (Dynamic_Scope) = E_Task_Type then
+ return Get_Task_Body_Procedure (Dynamic_Scope);
+
+ elsif Ekind (Dynamic_Scope) = E_Limited_Private_Type
+ and then Present (Full_View (Dynamic_Scope))
+ and then Ekind (Full_View (Dynamic_Scope)) = E_Task_Type
+ then
+ return Get_Task_Body_Procedure (Full_View (Dynamic_Scope));
+
+ -- No body is generated if the protected operation is eliminated
+
+ elsif Convention (Dynamic_Scope) = Convention_Protected
+ and then not Is_Eliminated (Dynamic_Scope)
+ and then Present (Protected_Body_Subprogram (Dynamic_Scope))
+ then
+ return Protected_Body_Subprogram (Dynamic_Scope);
+
+ else
+ return Dynamic_Scope;
+ end if;
+ end Enclosing_Subprogram;
+
+ ------------------------
+ -- Ensure_Freeze_Node --
+ ------------------------
+
+ procedure Ensure_Freeze_Node (E : Entity_Id) is
+ FN : Node_Id;
+
+ begin
+ if No (Freeze_Node (E)) then
+ FN := Make_Freeze_Entity (Sloc (E));
+ Set_Has_Delayed_Freeze (E);
+ Set_Freeze_Node (E, FN);
+ Set_Access_Types_To_Process (FN, No_Elist);
+ Set_TSS_Elist (FN, No_Elist);
+ Set_Entity (FN, E);
+ end if;
+ end Ensure_Freeze_Node;
+
+ ----------------
+ -- Enter_Name --
+ ----------------
+
+ procedure Enter_Name (Def_Id : Entity_Id) is
+ C : constant Entity_Id := Current_Entity (Def_Id);
+ E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
+ S : constant Entity_Id := Current_Scope;
+
+ begin
+ Generate_Definition (Def_Id);
+
+ -- Add new name to current scope declarations. Check for duplicate
+ -- declaration, which may or may not be a genuine error.
+
+ if Present (E) then
+
+ -- Case of previous entity entered because of a missing declaration
+ -- or else a bad subtype indication. Best is to use the new entity,
+ -- and make the previous one invisible.
+
+ if Etype (E) = Any_Type then
+ Set_Is_Immediately_Visible (E, False);
+
+ -- Case of renaming declaration constructed for package instances.
+ -- if there is an explicit declaration with the same identifier,
+ -- the renaming is not immediately visible any longer, but remains
+ -- visible through selected component notation.
+
+ elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
+ and then not Comes_From_Source (E)
+ then
+ Set_Is_Immediately_Visible (E, False);
+
+ -- The new entity may be the package renaming, which has the same
+ -- same name as a generic formal which has been seen already.
+
+ elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
+ and then not Comes_From_Source (Def_Id)
+ then
+ Set_Is_Immediately_Visible (E, False);
+
+ -- For a fat pointer corresponding to a remote access to subprogram,
+ -- we use the same identifier as the RAS type, so that the proper
+ -- name appears in the stub. This type is only retrieved through
+ -- the RAS type and never by visibility, and is not added to the
+ -- visibility list (see below).
+
+ elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
+ and then Present (Corresponding_Remote_Type (Def_Id))
+ then
+ null;
+
+ -- Case of an implicit operation or derived literal. The new entity
+ -- hides the implicit one, which is removed from all visibility,
+ -- i.e. the entity list of its scope, and homonym chain of its name.
+
+ elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
+ or else Is_Internal (E)
+ then
+ declare
+ Prev : Entity_Id;
+ Prev_Vis : Entity_Id;
+ Decl : constant Node_Id := Parent (E);
+
+ begin
+ -- If E is an implicit declaration, it cannot be the first
+ -- entity in the scope.
+
+ Prev := First_Entity (Current_Scope);
+ while Present (Prev)
+ and then Next_Entity (Prev) /= E
+ loop
+ Next_Entity (Prev);
+ end loop;
+
+ if No (Prev) then
+
+ -- If E is not on the entity chain of the current scope,
+ -- it is an implicit declaration in the generic formal
+ -- part of a generic subprogram. When analyzing the body,
+ -- the generic formals are visible but not on the entity
+ -- chain of the subprogram. The new entity will become
+ -- the visible one in the body.
+
+ pragma Assert
+ (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
+ null;
+
+ else
+ Set_Next_Entity (Prev, Next_Entity (E));
+
+ if No (Next_Entity (Prev)) then
+ Set_Last_Entity (Current_Scope, Prev);
+ end if;
+
+ if E = Current_Entity (E) then
+ Prev_Vis := Empty;
+
+ else
+ Prev_Vis := Current_Entity (E);
+ while Homonym (Prev_Vis) /= E loop
+ Prev_Vis := Homonym (Prev_Vis);
+ end loop;
+ end if;
+
+ if Present (Prev_Vis) then
+
+ -- Skip E in the visibility chain
+
+ Set_Homonym (Prev_Vis, Homonym (E));
+
+ else
+ Set_Name_Entity_Id (Chars (E), Homonym (E));
+ end if;
+ end if;
+ end;
+
+ -- This section of code could use a comment ???
+
+ elsif Present (Etype (E))
+ and then Is_Concurrent_Type (Etype (E))
+ and then E = Def_Id
+ then
+ return;
+
+ -- If the homograph is a protected component renaming, it should not
+ -- be hiding the current entity. Such renamings are treated as weak
+ -- declarations.
+
+ elsif Is_Prival (E) then
+ Set_Is_Immediately_Visible (E, False);
+
+ -- In this case the current entity is a protected component renaming.
+ -- Perform minimal decoration by setting the scope and return since
+ -- the prival should not be hiding other visible entities.
+
+ elsif Is_Prival (Def_Id) then
+ Set_Scope (Def_Id, Current_Scope);
+ return;
+
+ -- Analogous to privals, the discriminal generated for an entry index
+ -- parameter acts as a weak declaration. Perform minimal decoration
+ -- to avoid bogus errors.
+
+ elsif Is_Discriminal (Def_Id)
+ and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
+ then
+ Set_Scope (Def_Id, Current_Scope);
+ return;
+
+ -- In the body or private part of an instance, a type extension may
+ -- introduce a component with the same name as that of an actual. The
+ -- legality rule is not enforced, but the semantics of the full type
+ -- with two components of same name are not clear at this point???
+
+ elsif In_Instance_Not_Visible then
+ null;
+
+ -- When compiling a package body, some child units may have become
+ -- visible. They cannot conflict with local entities that hide them.
+
+ elsif Is_Child_Unit (E)
+ and then In_Open_Scopes (Scope (E))
+ and then not Is_Immediately_Visible (E)
+ then
+ null;
+
+ -- Conversely, with front-end inlining we may compile the parent body
+ -- first, and a child unit subsequently. The context is now the
+ -- parent spec, and body entities are not visible.
+
+ elsif Is_Child_Unit (Def_Id)
+ and then Is_Package_Body_Entity (E)
+ and then not In_Package_Body (Current_Scope)
+ then
+ null;
+
+ -- Case of genuine duplicate declaration
+
+ else
+ Error_Msg_Sloc := Sloc (E);
+
+ -- If the previous declaration is an incomplete type declaration
+ -- this may be an attempt to complete it with a private type. The
+ -- following avoids confusing cascaded errors.
+
+ if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
+ and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
+ then
+ Error_Msg_N
+ ("incomplete type cannot be completed with a private " &
+ "declaration", Parent (Def_Id));
+ Set_Is_Immediately_Visible (E, False);
+ Set_Full_View (E, Def_Id);
+
+ -- An inherited component of a record conflicts with a new
+ -- discriminant. The discriminant is inserted first in the scope,
+ -- but the error should be posted on it, not on the component.
+
+ elsif Ekind (E) = E_Discriminant
+ and then Present (Scope (Def_Id))
+ and then Scope (Def_Id) /= Current_Scope
+ then
+ Error_Msg_Sloc := Sloc (Def_Id);
+ Error_Msg_N ("& conflicts with declaration#", E);
+ return;
+
+ -- If the name of the unit appears in its own context clause, a
+ -- dummy package with the name has already been created, and the
+ -- error emitted. Try to continue quietly.
+
+ elsif Error_Posted (E)
+ and then Sloc (E) = No_Location
+ and then Nkind (Parent (E)) = N_Package_Specification
+ and then Current_Scope = Standard_Standard
+ then
+ Set_Scope (Def_Id, Current_Scope);
+ return;
+
+ else
+ Error_Msg_N ("& conflicts with declaration#", Def_Id);
+
+ -- Avoid cascaded messages with duplicate components in
+ -- derived types.
+
+ if Ekind_In (E, E_Component, E_Discriminant) then
+ return;
+ end if;
+ end if;
+
+ if Nkind (Parent (Parent (Def_Id))) =
+ N_Generic_Subprogram_Declaration
+ and then Def_Id =
+ Defining_Entity (Specification (Parent (Parent (Def_Id))))
+ then
+ Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
+ end if;
+
+ -- If entity is in standard, then we are in trouble, because it
+ -- means that we have a library package with a duplicated name.
+ -- That's hard to recover from, so abort!
+
+ if S = Standard_Standard then
+ raise Unrecoverable_Error;
+
+ -- Otherwise we continue with the declaration. Having two
+ -- identical declarations should not cause us too much trouble!
+
+ else
+ null;
+ end if;
+ end if;
+ end if;
+
+ -- If we fall through, declaration is OK, at least OK enough to continue
+
+ -- If Def_Id is a discriminant or a record component we are in the midst
+ -- of inheriting components in a derived record definition. Preserve
+ -- their Ekind and Etype.
+
+ if Ekind_In (Def_Id, E_Discriminant, E_Component) then
+ null;
+
+ -- If a type is already set, leave it alone (happens when a type
+ -- declaration is reanalyzed following a call to the optimizer).
+
+ elsif Present (Etype (Def_Id)) then
+ null;
+
+ -- Otherwise, the kind E_Void insures that premature uses of the entity
+ -- will be detected. Any_Type insures that no cascaded errors will occur
+
+ else
+ Set_Ekind (Def_Id, E_Void);
+ Set_Etype (Def_Id, Any_Type);
+ end if;
+
+ -- Inherited discriminants and components in derived record types are
+ -- immediately visible. Itypes are not.
+
+ if Ekind_In (Def_Id, E_Discriminant, E_Component)
+ or else (No (Corresponding_Remote_Type (Def_Id))
+ and then not Is_Itype (Def_Id))
+ then
+ Set_Is_Immediately_Visible (Def_Id);
+ Set_Current_Entity (Def_Id);
+ end if;
+
+ Set_Homonym (Def_Id, C);
+ Append_Entity (Def_Id, S);
+ Set_Public_Status (Def_Id);
+
+ -- Declaring a homonym is not allowed in SPARK ...
+
+ if Present (C)
+ and then Restriction_Check_Required (SPARK)
+ then
+ declare
+ Enclosing_Subp : constant Node_Id := Enclosing_Subprogram (Def_Id);
+ Enclosing_Pack : constant Node_Id := Enclosing_Package (Def_Id);
+ Other_Scope : constant Node_Id := Enclosing_Dynamic_Scope (C);
+
+ begin
+ -- ... unless the new declaration is in a subprogram, and the
+ -- visible declaration is a variable declaration or a parameter
+ -- specification outside that subprogram.
+
+ if Present (Enclosing_Subp)
+ and then Nkind_In (Parent (C), N_Object_Declaration,
+ N_Parameter_Specification)
+ and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Subp)
+ then
+ null;
+
+ -- ... or the new declaration is in a package, and the visible
+ -- declaration occurs outside that package.
+
+ elsif Present (Enclosing_Pack)
+ and then not Scope_Within_Or_Same (Other_Scope, Enclosing_Pack)
+ then
+ null;
+
+ -- ... or the new declaration is a component declaration in a
+ -- record type definition.
+
+ elsif Nkind (Parent (Def_Id)) = N_Component_Declaration then
+ null;
+
+ -- Don't issue error for non-source entities
+
+ elsif Comes_From_Source (Def_Id)
+ and then Comes_From_Source (C)
+ then
+ Error_Msg_Sloc := Sloc (C);
+ Check_SPARK_Restriction
+ ("redeclaration of identifier &#", Def_Id);
+ end if;
+ end;
+ end if;
+
+ -- Warn if new entity hides an old one
+
+ if Warn_On_Hiding and then Present (C)
+
+ -- Don't warn for record components since they always have a well
+ -- defined scope which does not confuse other uses. Note that in
+ -- some cases, Ekind has not been set yet.
+
+ and then Ekind (C) /= E_Component
+ and then Ekind (C) /= E_Discriminant
+ and then Nkind (Parent (C)) /= N_Component_Declaration
+ and then Ekind (Def_Id) /= E_Component
+ and then Ekind (Def_Id) /= E_Discriminant
+ and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
+
+ -- Don't warn for one character variables. It is too common to use
+ -- such variables as locals and will just cause too many false hits.
+
+ and then Length_Of_Name (Chars (C)) /= 1
+
+ -- Don't warn for non-source entities
+
+ and then Comes_From_Source (C)
+ and then Comes_From_Source (Def_Id)
+
+ -- Don't warn unless entity in question is in extended main source
+
+ and then In_Extended_Main_Source_Unit (Def_Id)
+
+ -- Finally, the hidden entity must be either immediately visible or
+ -- use visible (i.e. from a used package).
+
+ and then
+ (Is_Immediately_Visible (C)
+ or else
+ Is_Potentially_Use_Visible (C))
+ then
+ Error_Msg_Sloc := Sloc (C);
+ Error_Msg_N ("declaration hides &#?h?", Def_Id);
+ end if;
+ end Enter_Name;
+
+ --------------------------
+ -- Explain_Limited_Type --
+ --------------------------
+
+ procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
+ C : Entity_Id;
+
+ begin
+ -- For array, component type must be limited
+
+ if Is_Array_Type (T) then
+ Error_Msg_Node_2 := T;
+ Error_Msg_NE
+ ("\component type& of type& is limited", N, Component_Type (T));
+ Explain_Limited_Type (Component_Type (T), N);
+
+ elsif Is_Record_Type (T) then
+
+ -- No need for extra messages if explicit limited record
+
+ if Is_Limited_Record (Base_Type (T)) then
+ return;
+ end if;
+
+ -- Otherwise find a limited component. Check only components that
+ -- come from source, or inherited components that appear in the
+ -- source of the ancestor.
+
+ C := First_Component (T);
+ while Present (C) loop
+ if Is_Limited_Type (Etype (C))
+ and then
+ (Comes_From_Source (C)
+ or else
+ (Present (Original_Record_Component (C))
+ and then
+ Comes_From_Source (Original_Record_Component (C))))
+ then
+ Error_Msg_Node_2 := T;
+ Error_Msg_NE ("\component& of type& has limited type", N, C);
+ Explain_Limited_Type (Etype (C), N);
+ return;
+ end if;
+
+ Next_Component (C);
+ end loop;
+
+ -- The type may be declared explicitly limited, even if no component
+ -- of it is limited, in which case we fall out of the loop.
+ return;
+ end if;
+ end Explain_Limited_Type;
+
+ -----------------
+ -- Find_Actual --
+ -----------------
+
+ procedure Find_Actual
+ (N : Node_Id;
+ Formal : out Entity_Id;
+ Call : out Node_Id)
+ is
+ Parnt : constant Node_Id := Parent (N);
+ Actual : Node_Id;
+
+ begin
+ if (Nkind (Parnt) = N_Indexed_Component
+ or else
+ Nkind (Parnt) = N_Selected_Component)
+ and then N = Prefix (Parnt)
+ then
+ Find_Actual (Parnt, Formal, Call);
+ return;
+
+ elsif Nkind (Parnt) = N_Parameter_Association
+ and then N = Explicit_Actual_Parameter (Parnt)
+ then
+ Call := Parent (Parnt);
+
+ elsif Nkind (Parnt) in N_Subprogram_Call then
+ Call := Parnt;
+
+ else
+ Formal := Empty;
+ Call := Empty;
+ return;
+ end if;
+
+ -- If we have a call to a subprogram look for the parameter. Note that
+ -- we exclude overloaded calls, since we don't know enough to be sure
+ -- of giving the right answer in this case.
+
+ if Is_Entity_Name (Name (Call))
+ and then Present (Entity (Name (Call)))
+ and then Is_Overloadable (Entity (Name (Call)))
+ and then not Is_Overloaded (Name (Call))
+ then
+ -- Fall here if we are definitely a parameter
+
+ Actual := First_Actual (Call);
+ Formal := First_Formal (Entity (Name (Call)));
+ while Present (Formal) and then Present (Actual) loop
+ if Actual = N then
+ return;
+ else
+ Actual := Next_Actual (Actual);
+ Formal := Next_Formal (Formal);
+ end if;
+ end loop;
+ end if;
+
+ -- Fall through here if we did not find matching actual
+
+ Formal := Empty;
+ Call := Empty;
+ end Find_Actual;
+
+ ---------------------------
+ -- Find_Body_Discriminal --
+ ---------------------------
+
+ function Find_Body_Discriminal
+ (Spec_Discriminant : Entity_Id) return Entity_Id
+ is
+ Tsk : Entity_Id;
+ Disc : Entity_Id;
+
+ begin
+ -- If expansion is suppressed, then the scope can be the concurrent type
+ -- itself rather than a corresponding concurrent record type.
+
+ if Is_Concurrent_Type (Scope (Spec_Discriminant)) then
+ Tsk := Scope (Spec_Discriminant);
+
+ else
+ pragma Assert (Is_Concurrent_Record_Type (Scope (Spec_Discriminant)));
+
+ Tsk := Corresponding_Concurrent_Type (Scope (Spec_Discriminant));
+ end if;
+
+ -- Find discriminant of original concurrent type, and use its current
+ -- discriminal, which is the renaming within the task/protected body.
+
+ Disc := First_Discriminant (Tsk);
+ while Present (Disc) loop
+ if Chars (Disc) = Chars (Spec_Discriminant) then
+ return Discriminal (Disc);
+ end if;
+
+ Next_Discriminant (Disc);
+ end loop;
+
+ -- That loop should always succeed in finding a matching entry and
+ -- returning. Fatal error if not.
+
+ raise Program_Error;
+ end Find_Body_Discriminal;
+
+ -------------------------------------
+ -- Find_Corresponding_Discriminant --
+ -------------------------------------
+
+ function Find_Corresponding_Discriminant
+ (Id : Node_Id;
+ Typ : Entity_Id) return Entity_Id
+ is
+ Par_Disc : Entity_Id;
+ Old_Disc : Entity_Id;
+ New_Disc : Entity_Id;
+
+ begin
+ Par_Disc := Original_Record_Component (Original_Discriminant (Id));
+
+ -- The original type may currently be private, and the discriminant
+ -- only appear on its full view.
+
+ if Is_Private_Type (Scope (Par_Disc))
+ and then not Has_Discriminants (Scope (Par_Disc))
+ and then Present (Full_View (Scope (Par_Disc)))
+ then
+ Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
+ else
+ Old_Disc := First_Discriminant (Scope (Par_Disc));
+ end if;
+
+ if Is_Class_Wide_Type (Typ) then
+ New_Disc := First_Discriminant (Root_Type (Typ));
+ else
+ New_Disc := First_Discriminant (Typ);
+ end if;
+
+ while Present (Old_Disc) and then Present (New_Disc) loop
+ if Old_Disc = Par_Disc then
+ return New_Disc;
+ else
+ Next_Discriminant (Old_Disc);
+ Next_Discriminant (New_Disc);
+ end if;
+ end loop;
+
+ -- Should always find it
+
+ raise Program_Error;
+ end Find_Corresponding_Discriminant;
+
+ --------------------------
+ -- Find_Overlaid_Entity --
+ --------------------------
+
+ procedure Find_Overlaid_Entity
+ (N : Node_Id;
+ Ent : out Entity_Id;
+ Off : out Boolean)
+ is
+ Expr : Node_Id;
+
+ begin
+ -- We are looking for one of the two following forms:
+
+ -- for X'Address use Y'Address
+
+ -- or
+
+ -- Const : constant Address := expr;
+ -- ...
+ -- for X'Address use Const;
+
+ -- In the second case, the expr is either Y'Address, or recursively a
+ -- constant that eventually references Y'Address.
+
+ Ent := Empty;
+ Off := False;
+
+ if Nkind (N) = N_Attribute_Definition_Clause
+ and then Chars (N) = Name_Address
+ then
+ Expr := Expression (N);
+
+ -- This loop checks the form of the expression for Y'Address,
+ -- using recursion to deal with intermediate constants.
+
+ loop
+ -- Check for Y'Address
+
+ if Nkind (Expr) = N_Attribute_Reference
+ and then Attribute_Name (Expr) = Name_Address
+ then
+ Expr := Prefix (Expr);
+ exit;
+
+ -- Check for Const where Const is a constant entity
+
+ elsif Is_Entity_Name (Expr)
+ and then Ekind (Entity (Expr)) = E_Constant
+ then
+ Expr := Constant_Value (Entity (Expr));
+
+ -- Anything else does not need checking
+
+ else
+ return;
+ end if;
+ end loop;
+
+ -- This loop checks the form of the prefix for an entity, using
+ -- recursion to deal with intermediate components.
+
+ loop
+ -- Check for Y where Y is an entity
+
+ if Is_Entity_Name (Expr) then
+ Ent := Entity (Expr);
+ return;
+
+ -- Check for components
+
+ elsif
+ Nkind_In (Expr, N_Selected_Component, N_Indexed_Component)
+ then
+ Expr := Prefix (Expr);
+ Off := True;
+
+ -- Anything else does not need checking
+
+ else
+ return;
+ end if;
+ end loop;
+ end if;
+ end Find_Overlaid_Entity;
+
+ -------------------------
+ -- Find_Parameter_Type --
+ -------------------------
+
+ function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
+ begin
+ if Nkind (Param) /= N_Parameter_Specification then
+ return Empty;
+
+ -- For an access parameter, obtain the type from the formal entity
+ -- itself, because access to subprogram nodes do not carry a type.
+ -- Shouldn't we always use the formal entity ???
+
+ elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
+ return Etype (Defining_Identifier (Param));
+
+ else
+ return Etype (Parameter_Type (Param));
+ end if;
+ end Find_Parameter_Type;
+
+ -----------------------------
+ -- Find_Static_Alternative --
+ -----------------------------
+
+ function Find_Static_Alternative (N : Node_Id) return Node_Id is
+ Expr : constant Node_Id := Expression (N);
+ Val : constant Uint := Expr_Value (Expr);
+ Alt : Node_Id;
+ Choice : Node_Id;
+
+ begin
+ Alt := First (Alternatives (N));
+
+ Search : loop
+ if Nkind (Alt) /= N_Pragma then
+ Choice := First (Discrete_Choices (Alt));
+ while Present (Choice) loop
+
+ -- Others choice, always matches
+
+ if Nkind (Choice) = N_Others_Choice then
+ exit Search;
+
+ -- Range, check if value is in the range
+
+ elsif Nkind (Choice) = N_Range then
+ exit Search when
+ Val >= Expr_Value (Low_Bound (Choice))
+ and then
+ Val <= Expr_Value (High_Bound (Choice));
+
+ -- Choice is a subtype name. Note that we know it must
+ -- be a static subtype, since otherwise it would have
+ -- been diagnosed as illegal.
+
+ elsif Is_Entity_Name (Choice)
+ and then Is_Type (Entity (Choice))
+ then
+ exit Search when Is_In_Range (Expr, Etype (Choice),
+ Assume_Valid => False);
+
+ -- Choice is a subtype indication
+
+ elsif Nkind (Choice) = N_Subtype_Indication then
+ declare
+ C : constant Node_Id := Constraint (Choice);
+ R : constant Node_Id := Range_Expression (C);
+
+ begin
+ exit Search when
+ Val >= Expr_Value (Low_Bound (R))
+ and then
+ Val <= Expr_Value (High_Bound (R));
+ end;
+
+ -- Choice is a simple expression
+
+ else
+ exit Search when Val = Expr_Value (Choice);
+ end if;
+
+ Next (Choice);
+ end loop;
+ end if;
+
+ Next (Alt);
+ pragma Assert (Present (Alt));
+ end loop Search;
+
+ -- The above loop *must* terminate by finding a match, since
+ -- we know the case statement is valid, and the value of the
+ -- expression is known at compile time. When we fall out of
+ -- the loop, Alt points to the alternative that we know will
+ -- be selected at run time.
+
+ return Alt;
+ end Find_Static_Alternative;
+
+ ------------------
+ -- First_Actual --
+ ------------------
+
+ function First_Actual (Node : Node_Id) return Node_Id is
+ N : Node_Id;
+
+ begin
+ if No (Parameter_Associations (Node)) then
+ return Empty;
+ end if;
+
+ N := First (Parameter_Associations (Node));
+
+ if Nkind (N) = N_Parameter_Association then
+ return First_Named_Actual (Node);
+ else
+ return N;
+ end if;
+ end First_Actual;
+
+ -----------------------
+ -- Gather_Components --
+ -----------------------
+
+ procedure Gather_Components
+ (Typ : Entity_Id;
+ Comp_List : Node_Id;
+ Governed_By : List_Id;
+ Into : Elist_Id;
+ Report_Errors : out Boolean)
+ is
+ Assoc : Node_Id;
+ Variant : Node_Id;
+ Discrete_Choice : Node_Id;
+ Comp_Item : Node_Id;
+
+ Discrim : Entity_Id;
+ Discrim_Name : Node_Id;
+ Discrim_Value : Node_Id;
+
+ begin
+ Report_Errors := False;
+
+ if No (Comp_List) or else Null_Present (Comp_List) then
+ return;
+
+ elsif Present (Component_Items (Comp_List)) then
+ Comp_Item := First (Component_Items (Comp_List));
+
+ else
+ Comp_Item := Empty;
+ end if;
+
+ while Present (Comp_Item) loop
+
+ -- Skip the tag of a tagged record, the interface tags, as well
+ -- as all items that are not user components (anonymous types,
+ -- rep clauses, Parent field, controller field).
+
+ if Nkind (Comp_Item) = N_Component_Declaration then
+ declare
+ Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
+ begin
+ if not Is_Tag (Comp)
+ and then Chars (Comp) /= Name_uParent
+ then
+ Append_Elmt (Comp, Into);
+ end if;
+ end;
+ end if;
+
+ Next (Comp_Item);
+ end loop;
+
+ if No (Variant_Part (Comp_List)) then
+ return;
+ else
+ Discrim_Name := Name (Variant_Part (Comp_List));
+ Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
+ end if;
+
+ -- Look for the discriminant that governs this variant part.
+ -- The discriminant *must* be in the Governed_By List
+
+ Assoc := First (Governed_By);
+ Find_Constraint : loop
+ Discrim := First (Choices (Assoc));
+ exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
+ or else (Present (Corresponding_Discriminant (Entity (Discrim)))
+ and then
+ Chars (Corresponding_Discriminant (Entity (Discrim)))
+ = Chars (Discrim_Name))
+ or else Chars (Original_Record_Component (Entity (Discrim)))
+ = Chars (Discrim_Name);
+
+ if No (Next (Assoc)) then
+ if not Is_Constrained (Typ)
+ and then Is_Derived_Type (Typ)
+ and then Present (Stored_Constraint (Typ))
+ then
+ -- If the type is a tagged type with inherited discriminants,
+ -- use the stored constraint on the parent in order to find
+ -- the values of discriminants that are otherwise hidden by an
+ -- explicit constraint. Renamed discriminants are handled in
+ -- the code above.
+
+ -- If several parent discriminants are renamed by a single
+ -- discriminant of the derived type, the call to obtain the
+ -- Corresponding_Discriminant field only retrieves the last
+ -- of them. We recover the constraint on the others from the
+ -- Stored_Constraint as well.
+
+ declare
+ D : Entity_Id;
+ C : Elmt_Id;
+
+ begin
+ D := First_Discriminant (Etype (Typ));
+ C := First_Elmt (Stored_Constraint (Typ));
+ while Present (D) and then Present (C) loop
+ if Chars (Discrim_Name) = Chars (D) then
+ if Is_Entity_Name (Node (C))
+ and then Entity (Node (C)) = Entity (Discrim)
+ then
+ -- D is renamed by Discrim, whose value is given in
+ -- Assoc.
+
+ null;
+
+ else
+ Assoc :=
+ Make_Component_Association (Sloc (Typ),
+ New_List
+ (New_Occurrence_Of (D, Sloc (Typ))),
+ Duplicate_Subexpr_No_Checks (Node (C)));
+ end if;
+ exit Find_Constraint;
+ end if;
+
+ Next_Discriminant (D);
+ Next_Elmt (C);
+ end loop;
+ end;
+ end if;
+ end if;
+
+ if No (Next (Assoc)) then
+ Error_Msg_NE (" missing value for discriminant&",
+ First (Governed_By), Discrim_Name);
+ Report_Errors := True;
+ return;
+ end if;
+
+ Next (Assoc);
+ end loop Find_Constraint;
+
+ Discrim_Value := Expression (Assoc);
+
+ if not Is_OK_Static_Expression (Discrim_Value) then
+ Error_Msg_FE
+ ("value for discriminant & must be static!",
+ Discrim_Value, Discrim);
+ Why_Not_Static (Discrim_Value);
+ Report_Errors := True;
+ return;
+ end if;
+
+ Search_For_Discriminant_Value : declare
+ Low : Node_Id;
+ High : Node_Id;
+
+ UI_High : Uint;
+ UI_Low : Uint;
+ UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
+
+ begin
+ Find_Discrete_Value : while Present (Variant) loop
+ Discrete_Choice := First (Discrete_Choices (Variant));
+ while Present (Discrete_Choice) loop
+
+ exit Find_Discrete_Value when
+ Nkind (Discrete_Choice) = N_Others_Choice;
+
+ Get_Index_Bounds (Discrete_Choice, Low, High);
+
+ UI_Low := Expr_Value (Low);
+ UI_High := Expr_Value (High);
+
+ exit Find_Discrete_Value when
+ UI_Low <= UI_Discrim_Value
+ and then
+ UI_High >= UI_Discrim_Value;
+
+ Next (Discrete_Choice);
+ end loop;
+
+ Next_Non_Pragma (Variant);
+ end loop Find_Discrete_Value;
+ end Search_For_Discriminant_Value;
+
+ if No (Variant) then
+ Error_Msg_NE
+ ("value of discriminant & is out of range", Discrim_Value, Discrim);
+ Report_Errors := True;
+ return;
+ end if;
+
+ -- If we have found the corresponding choice, recursively add its
+ -- components to the Into list.
+
+ Gather_Components (Empty,
+ Component_List (Variant), Governed_By, Into, Report_Errors);
+ end Gather_Components;
+
+ ------------------------
+ -- Get_Actual_Subtype --
+ ------------------------
+
+ function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
+ Typ : constant Entity_Id := Etype (N);
+ Utyp : Entity_Id := Underlying_Type (Typ);
+ Decl : Node_Id;
+ Atyp : Entity_Id;
+
+ begin
+ if No (Utyp) then
+ Utyp := Typ;
+ end if;
+
+ -- If what we have is an identifier that references a subprogram
+ -- formal, or a variable or constant object, then we get the actual
+ -- subtype from the referenced entity if one has been built.
+
+ if Nkind (N) = N_Identifier
+ and then
+ (Is_Formal (Entity (N))
+ or else Ekind (Entity (N)) = E_Constant
+ or else Ekind (Entity (N)) = E_Variable)
+ and then Present (Actual_Subtype (Entity (N)))
+ then
+ return Actual_Subtype (Entity (N));
+
+ -- Actual subtype of unchecked union is always itself. We never need
+ -- the "real" actual subtype. If we did, we couldn't get it anyway
+ -- because the discriminant is not available. The restrictions on
+ -- Unchecked_Union are designed to make sure that this is OK.
+
+ elsif Is_Unchecked_Union (Base_Type (Utyp)) then
+ return Typ;
+
+ -- Here for the unconstrained case, we must find actual subtype
+ -- No actual subtype is available, so we must build it on the fly.
+
+ -- Checking the type, not the underlying type, for constrainedness
+ -- seems to be necessary. Maybe all the tests should be on the type???
+
+ elsif (not Is_Constrained (Typ))
+ and then (Is_Array_Type (Utyp)
+ or else (Is_Record_Type (Utyp)
+ and then Has_Discriminants (Utyp)))
+ and then not Has_Unknown_Discriminants (Utyp)
+ and then not (Ekind (Utyp) = E_String_Literal_Subtype)
+ then
+ -- Nothing to do if in spec expression (why not???)
+
+ if In_Spec_Expression then
+ return Typ;
+
+ elsif Is_Private_Type (Typ)
+ and then not Has_Discriminants (Typ)
+ then
+ -- If the type has no discriminants, there is no subtype to
+ -- build, even if the underlying type is discriminated.
+
+ return Typ;
+
+ -- Else build the actual subtype
+
+ else
+ Decl := Build_Actual_Subtype (Typ, N);
+ Atyp := Defining_Identifier (Decl);
+
+ -- If Build_Actual_Subtype generated a new declaration then use it
+
+ if Atyp /= Typ then
+
+ -- The actual subtype is an Itype, so analyze the declaration,
+ -- but do not attach it to the tree, to get the type defined.
+
+ Set_Parent (Decl, N);
+ Set_Is_Itype (Atyp);
+ Analyze (Decl, Suppress => All_Checks);
+ Set_Associated_Node_For_Itype (Atyp, N);
+ Set_Has_Delayed_Freeze (Atyp, False);
+
+ -- We need to freeze the actual subtype immediately. This is
+ -- needed, because otherwise this Itype will not get frozen
+ -- at all, and it is always safe to freeze on creation because
+ -- any associated types must be frozen at this point.
+
+ Freeze_Itype (Atyp, N);
+ return Atyp;
+
+ -- Otherwise we did not build a declaration, so return original
+
+ else
+ return Typ;
+ end if;
+ end if;
+
+ -- For all remaining cases, the actual subtype is the same as
+ -- the nominal type.
+
+ else
+ return Typ;
+ end if;
+ end Get_Actual_Subtype;
+
+ -------------------------------------
+ -- Get_Actual_Subtype_If_Available --
+ -------------------------------------
+
+ function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ -- If what we have is an identifier that references a subprogram
+ -- formal, or a variable or constant object, then we get the actual
+ -- subtype from the referenced entity if one has been built.
+
+ if Nkind (N) = N_Identifier
+ and then
+ (Is_Formal (Entity (N))
+ or else Ekind (Entity (N)) = E_Constant
+ or else Ekind (Entity (N)) = E_Variable)
+ and then Present (Actual_Subtype (Entity (N)))
+ then
+ return Actual_Subtype (Entity (N));
+
+ -- Otherwise the Etype of N is returned unchanged
+
+ else
+ return Typ;
+ end if;
+ end Get_Actual_Subtype_If_Available;
+
+ ------------------------
+ -- Get_Body_From_Stub --
+ ------------------------
+
+ function Get_Body_From_Stub (N : Node_Id) return Node_Id is
+ begin
+ return Proper_Body (Unit (Library_Unit (N)));
+ end Get_Body_From_Stub;
+
+ -------------------------------
+ -- Get_Default_External_Name --
+ -------------------------------
+
+ function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
+ begin
+ Get_Decoded_Name_String (Chars (E));
+
+ if Opt.External_Name_Imp_Casing = Uppercase then
+ Set_Casing (All_Upper_Case);
+ else
+ Set_Casing (All_Lower_Case);
+ end if;
+
+ return
+ Make_String_Literal (Sloc (E),
+ Strval => String_From_Name_Buffer);
+ end Get_Default_External_Name;
+
+ --------------------------
+ -- Get_Enclosing_Object --
+ --------------------------
+
+ function Get_Enclosing_Object (N : Node_Id) return Entity_Id is
+ begin
+ if Is_Entity_Name (N) then
+ return Entity (N);
+ else
+ case Nkind (N) is
+ when N_Indexed_Component |
+ N_Slice |
+ N_Selected_Component =>
+
+ -- If not generating code, a dereference may be left implicit.
+ -- In thoses cases, return Empty.
+
+ if Is_Access_Type (Etype (Prefix (N))) then
+ return Empty;
+ else
+ return Get_Enclosing_Object (Prefix (N));
+ end if;
+
+ when N_Type_Conversion =>
+ return Get_Enclosing_Object (Expression (N));
+
+ when others =>
+ return Empty;
+ end case;
+ end if;
+ end Get_Enclosing_Object;
+
+ ---------------------------
+ -- Get_Enum_Lit_From_Pos --
+ ---------------------------
+
+ function Get_Enum_Lit_From_Pos
+ (T : Entity_Id;
+ Pos : Uint;
+ Loc : Source_Ptr) return Node_Id
+ is
+ Btyp : Entity_Id := Base_Type (T);
+ Lit : Node_Id;
+
+ begin
+ -- In the case where the literal is of type Character, Wide_Character
+ -- or Wide_Wide_Character or of a type derived from them, there needs
+ -- to be some special handling since there is no explicit chain of
+ -- literals to search. Instead, an N_Character_Literal node is created
+ -- with the appropriate Char_Code and Chars fields.
+
+ if Is_Standard_Character_Type (T) then
+ Set_Character_Literal_Name (UI_To_CC (Pos));
+ return
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value => Pos);
+
+ -- For all other cases, we have a complete table of literals, and
+ -- we simply iterate through the chain of literal until the one
+ -- with the desired position value is found.
+ --
+
+ else
+ if Is_Private_Type (Btyp) and then Present (Full_View (Btyp)) then
+ Btyp := Full_View (Btyp);
+ end if;
+
+ Lit := First_Literal (Btyp);
+ for J in 1 .. UI_To_Int (Pos) loop
+ Next_Literal (Lit);
+ end loop;
+
+ return New_Occurrence_Of (Lit, Loc);
+ end if;
+ end Get_Enum_Lit_From_Pos;
+
+ ---------------------------------
+ -- Get_Ensures_From_CTC_Pragma --
+ ---------------------------------
+
+ function Get_Ensures_From_CTC_Pragma (N : Node_Id) return Node_Id is
+ Args : constant List_Id := Pragma_Argument_Associations (N);
+ Res : Node_Id;
+
+ begin
+ if List_Length (Args) = 4 then
+ Res := Pick (Args, 4);
+
+ elsif List_Length (Args) = 3 then
+ Res := Pick (Args, 3);
+
+ if Chars (Res) /= Name_Ensures then
+ Res := Empty;
+ end if;
+
+ else
+ Res := Empty;
+ end if;
+
+ return Res;
+ end Get_Ensures_From_CTC_Pragma;
+
+ ------------------------
+ -- Get_Generic_Entity --
+ ------------------------
+
+ function Get_Generic_Entity (N : Node_Id) return Entity_Id is
+ Ent : constant Entity_Id := Entity (Name (N));
+ begin
+ if Present (Renamed_Object (Ent)) then
+ return Renamed_Object (Ent);
+ else
+ return Ent;
+ end if;
+ end Get_Generic_Entity;
+
+ ----------------------
+ -- Get_Index_Bounds --
+ ----------------------
+
+ procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
+ Kind : constant Node_Kind := Nkind (N);
+ R : Node_Id;
+
+ begin
+ if Kind = N_Range then
+ L := Low_Bound (N);
+ H := High_Bound (N);
+
+ elsif Kind = N_Subtype_Indication then
+ R := Range_Expression (Constraint (N));
+
+ if R = Error then
+ L := Error;
+ H := Error;
+ return;
+
+ else
+ L := Low_Bound (Range_Expression (Constraint (N)));
+ H := High_Bound (Range_Expression (Constraint (N)));
+ end if;
+
+ elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
+ if Error_Posted (Scalar_Range (Entity (N))) then
+ L := Error;
+ H := Error;
+
+ elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
+ Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
+
+ else
+ L := Low_Bound (Scalar_Range (Entity (N)));
+ H := High_Bound (Scalar_Range (Entity (N)));
+ end if;
+
+ else
+ -- N is an expression, indicating a range with one value
+
+ L := N;
+ H := N;
+ end if;
+ end Get_Index_Bounds;
+
+ ----------------------------------
+ -- Get_Library_Unit_Name_string --
+ ----------------------------------
+
+ procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
+ Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
+
+ begin
+ Get_Unit_Name_String (Unit_Name_Id);
+
+ -- Remove seven last character (" (spec)" or " (body)")
+
+ Name_Len := Name_Len - 7;
+ pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
+ end Get_Library_Unit_Name_String;
+
+ ------------------------
+ -- Get_Name_Entity_Id --
+ ------------------------
+
+ function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
+ begin
+ return Entity_Id (Get_Name_Table_Info (Id));
+ end Get_Name_Entity_Id;
+
+ ------------------------------
+ -- Get_Name_From_CTC_Pragma --
+ ------------------------------
+
+ function Get_Name_From_CTC_Pragma (N : Node_Id) return String_Id is
+ Arg : constant Node_Id :=
+ Get_Pragma_Arg (First (Pragma_Argument_Associations (N)));
+ begin
+ return Strval (Expr_Value_S (Arg));
+ end Get_Name_From_CTC_Pragma;
+
+ -------------------
+ -- Get_Pragma_Id --
+ -------------------
+
+ function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
+ begin
+ return Get_Pragma_Id (Pragma_Name (N));
+ end Get_Pragma_Id;
+
+ ---------------------------
+ -- Get_Referenced_Object --
+ ---------------------------
+
+ function Get_Referenced_Object (N : Node_Id) return Node_Id is
+ R : Node_Id;
+
+ begin
+ R := N;
+ while Is_Entity_Name (R)
+ and then Present (Renamed_Object (Entity (R)))
+ loop
+ R := Renamed_Object (Entity (R));
+ end loop;
+
+ return R;
+ end Get_Referenced_Object;
+
+ ------------------------
+ -- Get_Renamed_Entity --
+ ------------------------
+
+ function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
+ R : Entity_Id;
+
+ begin
+ R := E;
+ while Present (Renamed_Entity (R)) loop
+ R := Renamed_Entity (R);
+ end loop;
+
+ return R;
+ end Get_Renamed_Entity;
+
+ ----------------------------------
+ -- Get_Requires_From_CTC_Pragma --
+ ----------------------------------
+
+ function Get_Requires_From_CTC_Pragma (N : Node_Id) return Node_Id is
+ Args : constant List_Id := Pragma_Argument_Associations (N);
+ Res : Node_Id;
+
+ begin
+ if List_Length (Args) >= 3 then
+ Res := Pick (Args, 3);
+
+ if Chars (Res) /= Name_Requires then
+ Res := Empty;
+ end if;
+
+ else
+ Res := Empty;
+ end if;
+
+ return Res;
+ end Get_Requires_From_CTC_Pragma;
+
+ -------------------------
+ -- Get_Subprogram_Body --
+ -------------------------
+
+ function Get_Subprogram_Body (E : Entity_Id) return Node_Id is
+ Decl : Node_Id;
+
+ begin
+ Decl := Unit_Declaration_Node (E);
+
+ if Nkind (Decl) = N_Subprogram_Body then
+ return Decl;
+
+ -- The below comment is bad, because it is possible for
+ -- Nkind (Decl) to be an N_Subprogram_Body_Stub ???
+
+ else -- Nkind (Decl) = N_Subprogram_Declaration
+
+ if Present (Corresponding_Body (Decl)) then
+ return Unit_Declaration_Node (Corresponding_Body (Decl));
+
+ -- Imported subprogram case
+
+ else
+ return Empty;
+ end if;
+ end if;
+ end Get_Subprogram_Body;
+
+ ---------------------------
+ -- Get_Subprogram_Entity --
+ ---------------------------
+
+ function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
+ Nam : Node_Id;
+ Proc : Entity_Id;
+
+ begin
+ if Nkind (Nod) = N_Accept_Statement then
+ Nam := Entry_Direct_Name (Nod);
+
+ -- For an entry call, the prefix of the call is a selected component.
+ -- Need additional code for internal calls ???
+
+ elsif Nkind (Nod) = N_Entry_Call_Statement then
+ if Nkind (Name (Nod)) = N_Selected_Component then
+ Nam := Entity (Selector_Name (Name (Nod)));
+ else
+ Nam := Empty;
+ end if;
+
+ else
+ Nam := Name (Nod);
+ end if;
+
+ if Nkind (Nam) = N_Explicit_Dereference then
+ Proc := Etype (Prefix (Nam));
+ elsif Is_Entity_Name (Nam) then
+ Proc := Entity (Nam);
+ else
+ return Empty;
+ end if;
+
+ if Is_Object (Proc) then
+ Proc := Etype (Proc);
+ end if;
+
+ if Ekind (Proc) = E_Access_Subprogram_Type then
+ Proc := Directly_Designated_Type (Proc);
+ end if;
+
+ if not Is_Subprogram (Proc)
+ and then Ekind (Proc) /= E_Subprogram_Type
+ then
+ return Empty;
+ else
+ return Proc;
+ end if;
+ end Get_Subprogram_Entity;
+
+ -----------------------------
+ -- Get_Task_Body_Procedure --
+ -----------------------------
+
+ function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
+ begin
+ -- Note: A task type may be the completion of a private type with
+ -- discriminants. When performing elaboration checks on a task
+ -- declaration, the current view of the type may be the private one,
+ -- and the procedure that holds the body of the task is held in its
+ -- underlying type.
+
+ -- This is an odd function, why not have Task_Body_Procedure do
+ -- the following digging???
+
+ return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
+ end Get_Task_Body_Procedure;
+
+ -----------------------
+ -- Has_Access_Values --
+ -----------------------
+
+ function Has_Access_Values (T : Entity_Id) return Boolean is
+ Typ : constant Entity_Id := Underlying_Type (T);
+
+ begin
+ -- Case of a private type which is not completed yet. This can only
+ -- happen in the case of a generic format type appearing directly, or
+ -- as a component of the type to which this function is being applied
+ -- at the top level. Return False in this case, since we certainly do
+ -- not know that the type contains access types.
+
+ if No (Typ) then
+ return False;
+
+ elsif Is_Access_Type (Typ) then
+ return True;
+
+ elsif Is_Array_Type (Typ) then
+ return Has_Access_Values (Component_Type (Typ));
+
+ elsif Is_Record_Type (Typ) then
+ declare
+ Comp : Entity_Id;
+
+ begin
+ -- Loop to Check components
+
+ Comp := First_Component_Or_Discriminant (Typ);
+ while Present (Comp) loop
+
+ -- Check for access component, tag field does not count, even
+ -- though it is implemented internally using an access type.
+
+ if Has_Access_Values (Etype (Comp))
+ and then Chars (Comp) /= Name_uTag
+ then
+ return True;
+ end if;
+
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
+ end;
+
+ return False;
+
+ else
+ return False;
+ end if;
+ end Has_Access_Values;
+
+ ------------------------------
+ -- Has_Compatible_Alignment --
+ ------------------------------
+
+ function Has_Compatible_Alignment
+ (Obj : Entity_Id;
+ Expr : Node_Id) return Alignment_Result
+ is
+ function Has_Compatible_Alignment_Internal
+ (Obj : Entity_Id;
+ Expr : Node_Id;
+ Default : Alignment_Result) return Alignment_Result;
+ -- This is the internal recursive function that actually does the work.
+ -- There is one additional parameter, which says what the result should
+ -- be if no alignment information is found, and there is no definite
+ -- indication of compatible alignments. At the outer level, this is set
+ -- to Unknown, but for internal recursive calls in the case where types
+ -- are known to be correct, it is set to Known_Compatible.
+
+ ---------------------------------------
+ -- Has_Compatible_Alignment_Internal --
+ ---------------------------------------
+
+ function Has_Compatible_Alignment_Internal
+ (Obj : Entity_Id;
+ Expr : Node_Id;
+ Default : Alignment_Result) return Alignment_Result
+ is
+ Result : Alignment_Result := Known_Compatible;
+ -- Holds the current status of the result. Note that once a value of
+ -- Known_Incompatible is set, it is sticky and does not get changed
+ -- to Unknown (the value in Result only gets worse as we go along,
+ -- never better).
+
+ Offs : Uint := No_Uint;
+ -- Set to a factor of the offset from the base object when Expr is a
+ -- selected or indexed component, based on Component_Bit_Offset and
+ -- Component_Size respectively. A negative value is used to represent
+ -- a value which is not known at compile time.
+
+ procedure Check_Prefix;
+ -- Checks the prefix recursively in the case where the expression
+ -- is an indexed or selected component.
+
+ procedure Set_Result (R : Alignment_Result);
+ -- If R represents a worse outcome (unknown instead of known
+ -- compatible, or known incompatible), then set Result to R.
+
+ ------------------
+ -- Check_Prefix --
+ ------------------
+
+ procedure Check_Prefix is
+ begin
+ -- The subtlety here is that in doing a recursive call to check
+ -- the prefix, we have to decide what to do in the case where we
+ -- don't find any specific indication of an alignment problem.
+
+ -- At the outer level, we normally set Unknown as the result in
+ -- this case, since we can only set Known_Compatible if we really
+ -- know that the alignment value is OK, but for the recursive
+ -- call, in the case where the types match, and we have not
+ -- specified a peculiar alignment for the object, we are only
+ -- concerned about suspicious rep clauses, the default case does
+ -- not affect us, since the compiler will, in the absence of such
+ -- rep clauses, ensure that the alignment is correct.
+
+ if Default = Known_Compatible
+ or else
+ (Etype (Obj) = Etype (Expr)
+ and then (Unknown_Alignment (Obj)
+ or else
+ Alignment (Obj) = Alignment (Etype (Obj))))
+ then
+ Set_Result
+ (Has_Compatible_Alignment_Internal
+ (Obj, Prefix (Expr), Known_Compatible));
+
+ -- In all other cases, we need a full check on the prefix
+
+ else
+ Set_Result
+ (Has_Compatible_Alignment_Internal
+ (Obj, Prefix (Expr), Unknown));
+ end if;
+ end Check_Prefix;
+
+ ----------------
+ -- Set_Result --
+ ----------------
+
+ procedure Set_Result (R : Alignment_Result) is
+ begin
+ if R > Result then
+ Result := R;
+ end if;
+ end Set_Result;
+
+ -- Start of processing for Has_Compatible_Alignment_Internal
+
+ begin
+ -- If Expr is a selected component, we must make sure there is no
+ -- potentially troublesome component clause, and that the record is
+ -- not packed.
+
+ if Nkind (Expr) = N_Selected_Component then
+
+ -- Packed record always generate unknown alignment
+
+ if Is_Packed (Etype (Prefix (Expr))) then
+ Set_Result (Unknown);
+ end if;
+
+ -- Check prefix and component offset
+
+ Check_Prefix;
+ Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
+
+ -- If Expr is an indexed component, we must make sure there is no
+ -- potentially troublesome Component_Size clause and that the array
+ -- is not bit-packed.
+
+ elsif Nkind (Expr) = N_Indexed_Component then
+ declare
+ Typ : constant Entity_Id := Etype (Prefix (Expr));
+ Ind : constant Node_Id := First_Index (Typ);
+
+ begin
+ -- Bit packed array always generates unknown alignment
+
+ if Is_Bit_Packed_Array (Typ) then
+ Set_Result (Unknown);
+ end if;
+
+ -- Check prefix and component offset
+
+ Check_Prefix;
+ Offs := Component_Size (Typ);
+
+ -- Small optimization: compute the full offset when possible
+
+ if Offs /= No_Uint
+ and then Offs > Uint_0
+ and then Present (Ind)
+ and then Nkind (Ind) = N_Range
+ and then Compile_Time_Known_Value (Low_Bound (Ind))
+ and then Compile_Time_Known_Value (First (Expressions (Expr)))
+ then
+ Offs := Offs * (Expr_Value (First (Expressions (Expr)))
+ - Expr_Value (Low_Bound ((Ind))));
+ end if;
+ end;
+ end if;
+
+ -- If we have a null offset, the result is entirely determined by
+ -- the base object and has already been computed recursively.
+
+ if Offs = Uint_0 then
+ null;
+
+ -- Case where we know the alignment of the object
+
+ elsif Known_Alignment (Obj) then
+ declare
+ ObjA : constant Uint := Alignment (Obj);
+ ExpA : Uint := No_Uint;
+ SizA : Uint := No_Uint;
+
+ begin
+ -- If alignment of Obj is 1, then we are always OK
+
+ if ObjA = 1 then
+ Set_Result (Known_Compatible);
+
+ -- Alignment of Obj is greater than 1, so we need to check
+
+ else
+ -- If we have an offset, see if it is compatible
+
+ if Offs /= No_Uint and Offs > Uint_0 then
+ if Offs mod (System_Storage_Unit * ObjA) /= 0 then
+ Set_Result (Known_Incompatible);
+ end if;
+
+ -- See if Expr is an object with known alignment
+
+ elsif Is_Entity_Name (Expr)
+ and then Known_Alignment (Entity (Expr))
+ then
+ ExpA := Alignment (Entity (Expr));
+
+ -- Otherwise, we can use the alignment of the type of
+ -- Expr given that we already checked for
+ -- discombobulating rep clauses for the cases of indexed
+ -- and selected components above.
+
+ elsif Known_Alignment (Etype (Expr)) then
+ ExpA := Alignment (Etype (Expr));
+
+ -- Otherwise the alignment is unknown
+
+ else
+ Set_Result (Default);
+ end if;
+
+ -- If we got an alignment, see if it is acceptable
+
+ if ExpA /= No_Uint and then ExpA < ObjA then
+ Set_Result (Known_Incompatible);
+ end if;
+
+ -- If Expr is not a piece of a larger object, see if size
+ -- is given. If so, check that it is not too small for the
+ -- required alignment.
+
+ if Offs /= No_Uint then
+ null;
+
+ -- See if Expr is an object with known size
+
+ elsif Is_Entity_Name (Expr)
+ and then Known_Static_Esize (Entity (Expr))
+ then
+ SizA := Esize (Entity (Expr));
+
+ -- Otherwise, we check the object size of the Expr type
+
+ elsif Known_Static_Esize (Etype (Expr)) then
+ SizA := Esize (Etype (Expr));
+ end if;
+
+ -- If we got a size, see if it is a multiple of the Obj
+ -- alignment, if not, then the alignment cannot be
+ -- acceptable, since the size is always a multiple of the
+ -- alignment.
+
+ if SizA /= No_Uint then
+ if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
+ Set_Result (Known_Incompatible);
+ end if;
+ end if;
+ end if;
+ end;
+
+ -- If we do not know required alignment, any non-zero offset is a
+ -- potential problem (but certainly may be OK, so result is unknown).
+
+ elsif Offs /= No_Uint then
+ Set_Result (Unknown);
+
+ -- If we can't find the result by direct comparison of alignment
+ -- values, then there is still one case that we can determine known
+ -- result, and that is when we can determine that the types are the
+ -- same, and no alignments are specified. Then we known that the
+ -- alignments are compatible, even if we don't know the alignment
+ -- value in the front end.
+
+ elsif Etype (Obj) = Etype (Expr) then
+
+ -- Types are the same, but we have to check for possible size
+ -- and alignments on the Expr object that may make the alignment
+ -- different, even though the types are the same.
+
+ if Is_Entity_Name (Expr) then
+
+ -- First check alignment of the Expr object. Any alignment less
+ -- than Maximum_Alignment is worrisome since this is the case
+ -- where we do not know the alignment of Obj.
+
+ if Known_Alignment (Entity (Expr))
+ and then
+ UI_To_Int (Alignment (Entity (Expr))) <
+ Ttypes.Maximum_Alignment
+ then
+ Set_Result (Unknown);
+
+ -- Now check size of Expr object. Any size that is not an
+ -- even multiple of Maximum_Alignment is also worrisome
+ -- since it may cause the alignment of the object to be less
+ -- than the alignment of the type.
+
+ elsif Known_Static_Esize (Entity (Expr))
+ and then
+ (UI_To_Int (Esize (Entity (Expr))) mod
+ (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
+ /= 0
+ then
+ Set_Result (Unknown);
+
+ -- Otherwise same type is decisive
+
+ else
+ Set_Result (Known_Compatible);
+ end if;
+ end if;
+
+ -- Another case to deal with is when there is an explicit size or
+ -- alignment clause when the types are not the same. If so, then the
+ -- result is Unknown. We don't need to do this test if the Default is
+ -- Unknown, since that result will be set in any case.
+
+ elsif Default /= Unknown
+ and then (Has_Size_Clause (Etype (Expr))
+ or else
+ Has_Alignment_Clause (Etype (Expr)))
+ then
+ Set_Result (Unknown);
+
+ -- If no indication found, set default
+
+ else
+ Set_Result (Default);
+ end if;
+
+ -- Return worst result found
+
+ return Result;
+ end Has_Compatible_Alignment_Internal;
+
+ -- Start of processing for Has_Compatible_Alignment
+
+ begin
+ -- If Obj has no specified alignment, then set alignment from the type
+ -- alignment. Perhaps we should always do this, but for sure we should
+ -- do it when there is an address clause since we can do more if the
+ -- alignment is known.
+
+ if Unknown_Alignment (Obj) then
+ Set_Alignment (Obj, Alignment (Etype (Obj)));
+ end if;
+
+ -- Now do the internal call that does all the work
+
+ return Has_Compatible_Alignment_Internal (Obj, Expr, Unknown);
+ end Has_Compatible_Alignment;
+
+ ----------------------
+ -- Has_Declarations --
+ ----------------------
+
+ function Has_Declarations (N : Node_Id) return Boolean is
+ begin
+ return Nkind_In (Nkind (N), N_Accept_Statement,
+ N_Block_Statement,
+ N_Compilation_Unit_Aux,
+ N_Entry_Body,
+ N_Package_Body,
+ N_Protected_Body,
+ N_Subprogram_Body,
+ N_Task_Body,
+ N_Package_Specification);
+ end Has_Declarations;
+
+ -------------------
+ -- Has_Denormals --
+ -------------------
+
+ function Has_Denormals (E : Entity_Id) return Boolean is
+ begin
+ return Is_Floating_Point_Type (E)
+ and then Denorm_On_Target
+ and then not Vax_Float (E);
+ end Has_Denormals;
+
+ -------------------------------------------
+ -- Has_Discriminant_Dependent_Constraint --
+ -------------------------------------------
+
+ function Has_Discriminant_Dependent_Constraint
+ (Comp : Entity_Id) return Boolean
+ is
+ Comp_Decl : constant Node_Id := Parent (Comp);
+ Subt_Indic : constant Node_Id :=
+ Subtype_Indication (Component_Definition (Comp_Decl));
+ Constr : Node_Id;
+ Assn : Node_Id;
+
+ begin
+ if Nkind (Subt_Indic) = N_Subtype_Indication then
+ Constr := Constraint (Subt_Indic);
+
+ if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
+ Assn := First (Constraints (Constr));
+ while Present (Assn) loop
+ case Nkind (Assn) is
+ when N_Subtype_Indication |
+ N_Range |
+ N_Identifier
+ =>
+ if Depends_On_Discriminant (Assn) then
+ return True;
+ end if;
+
+ when N_Discriminant_Association =>
+ if Depends_On_Discriminant (Expression (Assn)) then
+ return True;
+ end if;
+
+ when others =>
+ null;
+
+ end case;
+
+ Next (Assn);
+ end loop;
+ end if;
+ end if;
+
+ return False;
+ end Has_Discriminant_Dependent_Constraint;
+
+ --------------------
+ -- Has_Infinities --
+ --------------------
+
+ function Has_Infinities (E : Entity_Id) return Boolean is
+ begin
+ return
+ Is_Floating_Point_Type (E)
+ and then Nkind (Scalar_Range (E)) = N_Range
+ and then Includes_Infinities (Scalar_Range (E));
+ end Has_Infinities;
+
+ --------------------
+ -- Has_Interfaces --
+ --------------------
+
+ function Has_Interfaces
+ (T : Entity_Id;
+ Use_Full_View : Boolean := True) return Boolean
+ is
+ Typ : Entity_Id := Base_Type (T);
+
+ begin
+ -- Handle concurrent types
+
+ if Is_Concurrent_Type (Typ) then
+ Typ := Corresponding_Record_Type (Typ);
+ end if;
+
+ if not Present (Typ)
+ or else not Is_Record_Type (Typ)
+ or else not Is_Tagged_Type (Typ)
+ then
+ return False;
+ end if;
+
+ -- Handle private types
+
+ if Use_Full_View
+ and then Present (Full_View (Typ))
+ then
+ Typ := Full_View (Typ);
+ end if;
+
+ -- Handle concurrent record types
+
+ if Is_Concurrent_Record_Type (Typ)
+ and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
+ then
+ return True;
+ end if;
+
+ loop
+ if Is_Interface (Typ)
+ or else
+ (Is_Record_Type (Typ)
+ and then Present (Interfaces (Typ))
+ and then not Is_Empty_Elmt_List (Interfaces (Typ)))
+ then
+ return True;
+ end if;
+
+ exit when Etype (Typ) = Typ
+
+ -- Handle private types
+
+ or else (Present (Full_View (Etype (Typ)))
+ and then Full_View (Etype (Typ)) = Typ)
+
+ -- Protect the frontend against wrong source with cyclic
+ -- derivations
+
+ or else Etype (Typ) = T;
+
+ -- Climb to the ancestor type handling private types
+
+ if Present (Full_View (Etype (Typ))) then
+ Typ := Full_View (Etype (Typ));
+ else
+ Typ := Etype (Typ);
+ end if;
+ end loop;
+
+ return False;
+ end Has_Interfaces;
+
+ ------------------------
+ -- Has_Null_Exclusion --
+ ------------------------
+
+ function Has_Null_Exclusion (N : Node_Id) return Boolean is
+ begin
+ case Nkind (N) is
+ when N_Access_Definition |
+ N_Access_Function_Definition |
+ N_Access_Procedure_Definition |
+ N_Access_To_Object_Definition |
+ N_Allocator |
+ N_Derived_Type_Definition |
+ N_Function_Specification |
+ N_Subtype_Declaration =>
+ return Null_Exclusion_Present (N);
+
+ when N_Component_Definition |
+ N_Formal_Object_Declaration |
+ N_Object_Renaming_Declaration =>
+ if Present (Subtype_Mark (N)) then
+ return Null_Exclusion_Present (N);
+ else pragma Assert (Present (Access_Definition (N)));
+ return Null_Exclusion_Present (Access_Definition (N));
+ end if;
+
+ when N_Discriminant_Specification =>
+ if Nkind (Discriminant_Type (N)) = N_Access_Definition then
+ return Null_Exclusion_Present (Discriminant_Type (N));
+ else
+ return Null_Exclusion_Present (N);
+ end if;
+
+ when N_Object_Declaration =>
+ if Nkind (Object_Definition (N)) = N_Access_Definition then
+ return Null_Exclusion_Present (Object_Definition (N));
+ else
+ return Null_Exclusion_Present (N);
+ end if;
+
+ when N_Parameter_Specification =>
+ if Nkind (Parameter_Type (N)) = N_Access_Definition then
+ return Null_Exclusion_Present (Parameter_Type (N));
+ else
+ return Null_Exclusion_Present (N);
+ end if;
+
+ when others =>
+ return False;
+
+ end case;
+ end Has_Null_Exclusion;
+
+ ------------------------
+ -- Has_Null_Extension --
+ ------------------------
+
+ function Has_Null_Extension (T : Entity_Id) return Boolean is
+ B : constant Entity_Id := Base_Type (T);
+ Comps : Node_Id;
+ Ext : Node_Id;
+
+ begin
+ if Nkind (Parent (B)) = N_Full_Type_Declaration
+ and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
+ then
+ Ext := Record_Extension_Part (Type_Definition (Parent (B)));
+
+ if Present (Ext) then
+ if Null_Present (Ext) then
+ return True;
+ else
+ Comps := Component_List (Ext);
+
+ -- The null component list is rewritten during analysis to
+ -- include the parent component. Any other component indicates
+ -- that the extension was not originally null.
+
+ return Null_Present (Comps)
+ or else No (Next (First (Component_Items (Comps))));
+ end if;
+ else
+ return False;
+ end if;
+
+ else
+ return False;
+ end if;
+ end Has_Null_Extension;
+
+ -------------------------------
+ -- Has_Overriding_Initialize --
+ -------------------------------
+
+ function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
+ BT : constant Entity_Id := Base_Type (T);
+ P : Elmt_Id;
+
+ begin
+ if Is_Controlled (BT) then
+ if Is_RTU (Scope (BT), Ada_Finalization) then
+ return False;
+
+ elsif Present (Primitive_Operations (BT)) then
+ P := First_Elmt (Primitive_Operations (BT));
+ while Present (P) loop
+ declare
+ Init : constant Entity_Id := Node (P);
+ Formal : constant Entity_Id := First_Formal (Init);
+ begin
+ if Ekind (Init) = E_Procedure
+ and then Chars (Init) = Name_Initialize
+ and then Comes_From_Source (Init)
+ and then Present (Formal)
+ and then Etype (Formal) = BT
+ and then No (Next_Formal (Formal))
+ and then (Ada_Version < Ada_2012
+ or else not Null_Present (Parent (Init)))
+ then
+ return True;
+ end if;
+ end;
+
+ Next_Elmt (P);
+ end loop;
+ end if;
+
+ -- Here if type itself does not have a non-null Initialize operation:
+ -- check immediate ancestor.
+
+ if Is_Derived_Type (BT)
+ and then Has_Overriding_Initialize (Etype (BT))
+ then
+ return True;
+ end if;
+ end if;
+
+ return False;
+ end Has_Overriding_Initialize;
+
+ --------------------------------------
+ -- Has_Preelaborable_Initialization --
+ --------------------------------------
+
+ function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
+ Has_PE : Boolean;
+
+ procedure Check_Components (E : Entity_Id);
+ -- Check component/discriminant chain, sets Has_PE False if a component
+ -- or discriminant does not meet the preelaborable initialization rules.
+
+ ----------------------
+ -- Check_Components --
+ ----------------------
+
+ procedure Check_Components (E : Entity_Id) is
+ Ent : Entity_Id;
+ Exp : Node_Id;
+
+ function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
+ -- Returns True if and only if the expression denoted by N does not
+ -- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
+
+ ---------------------------------
+ -- Is_Preelaborable_Expression --
+ ---------------------------------
+
+ function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
+ Exp : Node_Id;
+ Assn : Node_Id;
+ Choice : Node_Id;
+ Comp_Type : Entity_Id;
+ Is_Array_Aggr : Boolean;
+
+ begin
+ if Is_Static_Expression (N) then
+ return True;
+
+ elsif Nkind (N) = N_Null then
+ return True;
+
+ -- Attributes are allowed in general, even if their prefix is a
+ -- formal type. (It seems that certain attributes known not to be
+ -- static might not be allowed, but there are no rules to prevent
+ -- them.)
+
+ elsif Nkind (N) = N_Attribute_Reference then
+ return True;
+
+ -- The name of a discriminant evaluated within its parent type is
+ -- defined to be preelaborable (10.2.1(8)). Note that we test for
+ -- names that denote discriminals as well as discriminants to
+ -- catch references occurring within init procs.
+
+ elsif Is_Entity_Name (N)
+ and then
+ (Ekind (Entity (N)) = E_Discriminant
+ or else
+ ((Ekind (Entity (N)) = E_Constant
+ or else Ekind (Entity (N)) = E_In_Parameter)
+ and then Present (Discriminal_Link (Entity (N)))))
+ then
+ return True;
+
+ elsif Nkind (N) = N_Qualified_Expression then
+ return Is_Preelaborable_Expression (Expression (N));
+
+ -- For aggregates we have to check that each of the associations
+ -- is preelaborable.
+
+ elsif Nkind (N) = N_Aggregate
+ or else Nkind (N) = N_Extension_Aggregate
+ then
+ Is_Array_Aggr := Is_Array_Type (Etype (N));
+
+ if Is_Array_Aggr then
+ Comp_Type := Component_Type (Etype (N));
+ end if;
+
+ -- Check the ancestor part of extension aggregates, which must
+ -- be either the name of a type that has preelaborable init or
+ -- an expression that is preelaborable.
+
+ if Nkind (N) = N_Extension_Aggregate then
+ declare
+ Anc_Part : constant Node_Id := Ancestor_Part (N);
+
+ begin
+ if Is_Entity_Name (Anc_Part)
+ and then Is_Type (Entity (Anc_Part))
+ then
+ if not Has_Preelaborable_Initialization
+ (Entity (Anc_Part))
+ then
+ return False;
+ end if;
+
+ elsif not Is_Preelaborable_Expression (Anc_Part) then
+ return False;
+ end if;
+ end;
+ end if;
+
+ -- Check positional associations
+
+ Exp := First (Expressions (N));
+ while Present (Exp) loop
+ if not Is_Preelaborable_Expression (Exp) then
+ return False;
+ end if;
+
+ Next (Exp);
+ end loop;
+
+ -- Check named associations
+
+ Assn := First (Component_Associations (N));
+ while Present (Assn) loop
+ Choice := First (Choices (Assn));
+ while Present (Choice) loop
+ if Is_Array_Aggr then
+ if Nkind (Choice) = N_Others_Choice then
+ null;
+
+ elsif Nkind (Choice) = N_Range then
+ if not Is_Static_Range (Choice) then
+ return False;
+ end if;
+
+ elsif not Is_Static_Expression (Choice) then
+ return False;
+ end if;
+
+ else
+ Comp_Type := Etype (Choice);
+ end if;
+
+ Next (Choice);
+ end loop;
+
+ -- If the association has a <> at this point, then we have
+ -- to check whether the component's type has preelaborable
+ -- initialization. Note that this only occurs when the
+ -- association's corresponding component does not have a
+ -- default expression, the latter case having already been
+ -- expanded as an expression for the association.
+
+ if Box_Present (Assn) then
+ if not Has_Preelaborable_Initialization (Comp_Type) then
+ return False;
+ end if;
+
+ -- In the expression case we check whether the expression
+ -- is preelaborable.
+
+ elsif
+ not Is_Preelaborable_Expression (Expression (Assn))
+ then
+ return False;
+ end if;
+
+ Next (Assn);
+ end loop;
+
+ -- If we get here then aggregate as a whole is preelaborable
+
+ return True;
+
+ -- All other cases are not preelaborable
+
+ else
+ return False;
+ end if;
+ end Is_Preelaborable_Expression;
+
+ -- Start of processing for Check_Components
+
+ begin
+ -- Loop through entities of record or protected type
+
+ Ent := E;
+ while Present (Ent) loop
+
+ -- We are interested only in components and discriminants
+
+ Exp := Empty;
+
+ case Ekind (Ent) is
+ when E_Component =>
+
+ -- Get default expression if any. If there is no declaration
+ -- node, it means we have an internal entity. The parent and
+ -- tag fields are examples of such entities. For such cases,
+ -- we just test the type of the entity.
+
+ if Present (Declaration_Node (Ent)) then
+ Exp := Expression (Declaration_Node (Ent));
+ end if;
+
+ when E_Discriminant =>
+
+ -- Note: for a renamed discriminant, the Declaration_Node
+ -- may point to the one from the ancestor, and have a
+ -- different expression, so use the proper attribute to
+ -- retrieve the expression from the derived constraint.
+
+ Exp := Discriminant_Default_Value (Ent);
+
+ when others =>
+ goto Check_Next_Entity;
+ end case;
+
+ -- A component has PI if it has no default expression and the
+ -- component type has PI.
+
+ if No (Exp) then
+ if not Has_Preelaborable_Initialization (Etype (Ent)) then
+ Has_PE := False;
+ exit;
+ end if;
+
+ -- Require the default expression to be preelaborable
+
+ elsif not Is_Preelaborable_Expression (Exp) then
+ Has_PE := False;
+ exit;
+ end if;
+
+ <<Check_Next_Entity>>
+ Next_Entity (Ent);
+ end loop;
+ end Check_Components;
+
+ -- Start of processing for Has_Preelaborable_Initialization
+
+ begin
+ -- Immediate return if already marked as known preelaborable init. This
+ -- covers types for which this function has already been called once
+ -- and returned True (in which case the result is cached), and also
+ -- types to which a pragma Preelaborable_Initialization applies.
+
+ if Known_To_Have_Preelab_Init (E) then
+ return True;
+ end if;
+
+ -- If the type is a subtype representing a generic actual type, then
+ -- test whether its base type has preelaborable initialization since
+ -- the subtype representing the actual does not inherit this attribute
+ -- from the actual or formal. (but maybe it should???)
+
+ if Is_Generic_Actual_Type (E) then
+ return Has_Preelaborable_Initialization (Base_Type (E));
+ end if;
+
+ -- All elementary types have preelaborable initialization
+
+ if Is_Elementary_Type (E) then
+ Has_PE := True;
+
+ -- Array types have PI if the component type has PI
+
+ elsif Is_Array_Type (E) then
+ Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
+
+ -- A derived type has preelaborable initialization if its parent type
+ -- has preelaborable initialization and (in the case of a derived record
+ -- extension) if the non-inherited components all have preelaborable
+ -- initialization. However, a user-defined controlled type with an
+ -- overriding Initialize procedure does not have preelaborable
+ -- initialization.
+
+ elsif Is_Derived_Type (E) then
+
+ -- If the derived type is a private extension then it doesn't have
+ -- preelaborable initialization.
+
+ if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
+ return False;
+ end if;
+
+ -- First check whether ancestor type has preelaborable initialization
+
+ Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
+
+ -- If OK, check extension components (if any)
+
+ if Has_PE and then Is_Record_Type (E) then
+ Check_Components (First_Entity (E));
+ end if;
+
+ -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
+ -- with a user defined Initialize procedure does not have PI.
+
+ if Has_PE
+ and then Is_Controlled (E)
+ and then Has_Overriding_Initialize (E)
+ then
+ Has_PE := False;
+ end if;
+
+ -- Private types not derived from a type having preelaborable init and
+ -- that are not marked with pragma Preelaborable_Initialization do not
+ -- have preelaborable initialization.
+
+ elsif Is_Private_Type (E) then
+ return False;
+
+ -- Record type has PI if it is non private and all components have PI
+
+ elsif Is_Record_Type (E) then
+ Has_PE := True;
+ Check_Components (First_Entity (E));
+
+ -- Protected types must not have entries, and components must meet
+ -- same set of rules as for record components.
+
+ elsif Is_Protected_Type (E) then
+ if Has_Entries (E) then
+ Has_PE := False;
+ else
+ Has_PE := True;
+ Check_Components (First_Entity (E));
+ Check_Components (First_Private_Entity (E));
+ end if;
+
+ -- Type System.Address always has preelaborable initialization
+
+ elsif Is_RTE (E, RE_Address) then
+ Has_PE := True;
+
+ -- In all other cases, type does not have preelaborable initialization
+
+ else
+ return False;
+ end if;
+
+ -- If type has preelaborable initialization, cache result
+
+ if Has_PE then
+ Set_Known_To_Have_Preelab_Init (E);
+ end if;
+
+ return Has_PE;
+ end Has_Preelaborable_Initialization;
+
+ ---------------------------
+ -- Has_Private_Component --
+ ---------------------------
+
+ function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
+ Btype : Entity_Id := Base_Type (Type_Id);
+ Component : Entity_Id;
+
+ begin
+ if Error_Posted (Type_Id)
+ or else Error_Posted (Btype)
+ then
+ return False;
+ end if;
+
+ if Is_Class_Wide_Type (Btype) then
+ Btype := Root_Type (Btype);
+ end if;
+
+ if Is_Private_Type (Btype) then
+ declare
+ UT : constant Entity_Id := Underlying_Type (Btype);
+ begin
+ if No (UT) then
+ if No (Full_View (Btype)) then
+ return not Is_Generic_Type (Btype)
+ and then not Is_Generic_Type (Root_Type (Btype));
+ else
+ return not Is_Generic_Type (Root_Type (Full_View (Btype)));
+ end if;
+ else
+ return not Is_Frozen (UT) and then Has_Private_Component (UT);
+ end if;
+ end;
+
+ elsif Is_Array_Type (Btype) then
+ return Has_Private_Component (Component_Type (Btype));
+
+ elsif Is_Record_Type (Btype) then
+ Component := First_Component (Btype);
+ while Present (Component) loop
+ if Has_Private_Component (Etype (Component)) then
+ return True;
+ end if;
+
+ Next_Component (Component);
+ end loop;
+
+ return False;
+
+ elsif Is_Protected_Type (Btype)
+ and then Present (Corresponding_Record_Type (Btype))
+ then
+ return Has_Private_Component (Corresponding_Record_Type (Btype));
+
+ else
+ return False;
+ end if;
+ end Has_Private_Component;
+
+ ----------------------
+ -- Has_Signed_Zeros --
+ ----------------------
+
+ function Has_Signed_Zeros (E : Entity_Id) return Boolean is
+ begin
+ return Is_Floating_Point_Type (E)
+ and then Signed_Zeros_On_Target
+ and then not Vax_Float (E);
+ end Has_Signed_Zeros;
+
+ -----------------------------
+ -- Has_Static_Array_Bounds --
+ -----------------------------
+
+ function Has_Static_Array_Bounds (Typ : Node_Id) return Boolean is
+ Ndims : constant Nat := Number_Dimensions (Typ);
+
+ Index : Node_Id;
+ Low : Node_Id;
+ High : Node_Id;
+
+ begin
+ -- Unconstrained types do not have static bounds
+
+ if not Is_Constrained (Typ) then
+ return False;
+ end if;
+
+ -- First treat string literals specially, as the lower bound and length
+ -- of string literals are not stored like those of arrays.
+
+ -- A string literal always has static bounds
+
+ if Ekind (Typ) = E_String_Literal_Subtype then
+ return True;
+ end if;
+
+ -- Treat all dimensions in turn
+
+ Index := First_Index (Typ);
+ for Indx in 1 .. Ndims loop
+
+ -- In case of an erroneous index which is not a discrete type, return
+ -- that the type is not static.
+
+ if not Is_Discrete_Type (Etype (Index))
+ or else Etype (Index) = Any_Type
+ then
+ return False;
+ end if;
+
+ Get_Index_Bounds (Index, Low, High);
+
+ if Error_Posted (Low) or else Error_Posted (High) then
+ return False;
+ end if;
+
+ if Is_OK_Static_Expression (Low)
+ and then
+ Is_OK_Static_Expression (High)
+ then
+ null;
+ else
+ return False;
+ end if;
+
+ Next (Index);
+ end loop;
+
+ -- If we fall through the loop, all indexes matched
+
+ return True;
+ end Has_Static_Array_Bounds;
+
+ ----------------
+ -- Has_Stream --
+ ----------------
+
+ function Has_Stream (T : Entity_Id) return Boolean is
+ E : Entity_Id;
+
+ begin
+ if No (T) then
+ return False;
+
+ elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
+ return True;
+
+ elsif Is_Array_Type (T) then
+ return Has_Stream (Component_Type (T));
+
+ elsif Is_Record_Type (T) then
+ E := First_Component (T);
+ while Present (E) loop
+ if Has_Stream (Etype (E)) then
+ return True;
+ else
+ Next_Component (E);
+ end if;
+ end loop;
+
+ return False;
+
+ elsif Is_Private_Type (T) then
+ return Has_Stream (Underlying_Type (T));
+
+ else
+ return False;
+ end if;
+ end Has_Stream;
+
+ ----------------
+ -- Has_Suffix --
+ ----------------
+
+ function Has_Suffix (E : Entity_Id; Suffix : Character) return Boolean is
+ begin
+ Get_Name_String (Chars (E));
+ return Name_Buffer (Name_Len) = Suffix;
+ end Has_Suffix;
+
+ ----------------
+ -- Add_Suffix --
+ ----------------
+
+ function Add_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
+ begin
+ Get_Name_String (Chars (E));
+ Add_Char_To_Name_Buffer (Suffix);
+ return Name_Find;
+ end Add_Suffix;
+
+ -------------------
+ -- Remove_Suffix --
+ -------------------
+
+ function Remove_Suffix (E : Entity_Id; Suffix : Character) return Name_Id is
+ begin
+ pragma Assert (Has_Suffix (E, Suffix));
+ Get_Name_String (Chars (E));
+ Name_Len := Name_Len - 1;
+ return Name_Find;
+ end Remove_Suffix;
+
+ --------------------------
+ -- Has_Tagged_Component --
+ --------------------------
+
+ function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
+ Comp : Entity_Id;
+
+ begin
+ if Is_Private_Type (Typ)
+ and then Present (Underlying_Type (Typ))
+ then
+ return Has_Tagged_Component (Underlying_Type (Typ));
+
+ elsif Is_Array_Type (Typ) then
+ return Has_Tagged_Component (Component_Type (Typ));
+
+ elsif Is_Tagged_Type (Typ) then
+ return True;
+
+ elsif Is_Record_Type (Typ) then
+ Comp := First_Component (Typ);
+ while Present (Comp) loop
+ if Has_Tagged_Component (Etype (Comp)) then
+ return True;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+
+ return False;
+
+ else
+ return False;
+ end if;
+ end Has_Tagged_Component;
+
+ -------------------------
+ -- Implementation_Kind --
+ -------------------------
+
+ function Implementation_Kind (Subp : Entity_Id) return Name_Id is
+ Impl_Prag : constant Node_Id := Get_Rep_Pragma (Subp, Name_Implemented);
+ Arg : Node_Id;
+ begin
+ pragma Assert (Present (Impl_Prag));
+ Arg := Last (Pragma_Argument_Associations (Impl_Prag));
+ return Chars (Get_Pragma_Arg (Arg));
+ end Implementation_Kind;
+
+ --------------------------
+ -- Implements_Interface --
+ --------------------------
+
+ function Implements_Interface
+ (Typ_Ent : Entity_Id;
+ Iface_Ent : Entity_Id;
+ Exclude_Parents : Boolean := False) return Boolean
+ is
+ Ifaces_List : Elist_Id;
+ Elmt : Elmt_Id;
+ Iface : Entity_Id := Base_Type (Iface_Ent);
+ Typ : Entity_Id := Base_Type (Typ_Ent);
+
+ begin
+ if Is_Class_Wide_Type (Typ) then
+ Typ := Root_Type (Typ);
+ end if;
+
+ if not Has_Interfaces (Typ) then
+ return False;
+ end if;
+
+ if Is_Class_Wide_Type (Iface) then
+ Iface := Root_Type (Iface);
+ end if;
+
+ Collect_Interfaces (Typ, Ifaces_List);
+
+ Elmt := First_Elmt (Ifaces_List);
+ while Present (Elmt) loop
+ if Is_Ancestor (Node (Elmt), Typ, Use_Full_View => True)
+ and then Exclude_Parents
+ then
+ null;
+
+ elsif Node (Elmt) = Iface then
+ return True;
+ end if;
+
+ Next_Elmt (Elmt);
+ end loop;
+
+ return False;
+ end Implements_Interface;
+
+ -----------------
+ -- In_Instance --
+ -----------------
+
+ function In_Instance return Boolean is
+ Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if (Ekind (S) = E_Function
+ or else Ekind (S) = E_Package
+ or else Ekind (S) = E_Procedure)
+ and then Is_Generic_Instance (S)
+ then
+ -- A child instance is always compiled in the context of a parent
+ -- instance. Nevertheless, the actuals are not analyzed in an
+ -- instance context. We detect this case by examining the current
+ -- compilation unit, which must be a child instance, and checking
+ -- that it is not currently on the scope stack.
+
+ if Is_Child_Unit (Curr_Unit)
+ and then
+ Nkind (Unit (Cunit (Current_Sem_Unit)))
+ = N_Package_Instantiation
+ and then not In_Open_Scopes (Curr_Unit)
+ then
+ return False;
+ else
+ return True;
+ end if;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end In_Instance;
+
+ ----------------------
+ -- In_Instance_Body --
+ ----------------------
+
+ function In_Instance_Body return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if (Ekind (S) = E_Function
+ or else Ekind (S) = E_Procedure)
+ and then Is_Generic_Instance (S)
+ then
+ return True;
+
+ elsif Ekind (S) = E_Package
+ and then In_Package_Body (S)
+ and then Is_Generic_Instance (S)
+ then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end In_Instance_Body;
+
+ -----------------------------
+ -- In_Instance_Not_Visible --
+ -----------------------------
+
+ function In_Instance_Not_Visible return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if (Ekind (S) = E_Function
+ or else Ekind (S) = E_Procedure)
+ and then Is_Generic_Instance (S)
+ then
+ return True;
+
+ elsif Ekind (S) = E_Package
+ and then (In_Package_Body (S) or else In_Private_Part (S))
+ and then Is_Generic_Instance (S)
+ then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end In_Instance_Not_Visible;
+
+ ------------------------------
+ -- In_Instance_Visible_Part --
+ ------------------------------
+
+ function In_Instance_Visible_Part return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if Ekind (S) = E_Package
+ and then Is_Generic_Instance (S)
+ and then not In_Package_Body (S)
+ and then not In_Private_Part (S)
+ then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end In_Instance_Visible_Part;
+
+ ---------------------
+ -- In_Package_Body --
+ ---------------------
+
+ function In_Package_Body return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if Ekind (S) = E_Package
+ and then In_Package_Body (S)
+ then
+ return True;
+ else
+ S := Scope (S);
+ end if;
+ end loop;
+
+ return False;
+ end In_Package_Body;
+
+ --------------------------------
+ -- In_Parameter_Specification --
+ --------------------------------
+
+ function In_Parameter_Specification (N : Node_Id) return Boolean is
+ PN : Node_Id;
+
+ begin
+ PN := Parent (N);
+ while Present (PN) loop
+ if Nkind (PN) = N_Parameter_Specification then
+ return True;
+ end if;
+
+ PN := Parent (PN);
+ end loop;
+
+ return False;
+ end In_Parameter_Specification;
+
+ -------------------------------------
+ -- In_Reverse_Storage_Order_Object --
+ -------------------------------------
+
+ function In_Reverse_Storage_Order_Object (N : Node_Id) return Boolean is
+ Pref : Node_Id;
+ Btyp : Entity_Id := Empty;
+
+ begin
+ -- Climb up indexed components
+
+ Pref := N;
+ loop
+ case Nkind (Pref) is
+ when N_Selected_Component =>
+ Pref := Prefix (Pref);
+ exit;
+
+ when N_Indexed_Component =>
+ Pref := Prefix (Pref);
+
+ when others =>
+ Pref := Empty;
+ exit;
+ end case;
+ end loop;
+
+ if Present (Pref) then
+ Btyp := Base_Type (Etype (Pref));
+ end if;
+
+ return
+ Present (Btyp)
+ and then (Is_Record_Type (Btyp) or else Is_Array_Type (Btyp))
+ and then Reverse_Storage_Order (Btyp);
+ end In_Reverse_Storage_Order_Object;
+
+ --------------------------------------
+ -- In_Subprogram_Or_Concurrent_Unit --
+ --------------------------------------
+
+ function In_Subprogram_Or_Concurrent_Unit return Boolean is
+ E : Entity_Id;
+ K : Entity_Kind;
+
+ begin
+ -- Use scope chain to check successively outer scopes
+
+ E := Current_Scope;
+ loop
+ K := Ekind (E);
+
+ if K in Subprogram_Kind
+ or else K in Concurrent_Kind
+ or else K in Generic_Subprogram_Kind
+ then
+ return True;
+
+ elsif E = Standard_Standard then
+ return False;
+ end if;
+
+ E := Scope (E);
+ end loop;
+ end In_Subprogram_Or_Concurrent_Unit;
+
+ ---------------------
+ -- In_Visible_Part --
+ ---------------------
+
+ function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
+ begin
+ return
+ Is_Package_Or_Generic_Package (Scope_Id)
+ and then In_Open_Scopes (Scope_Id)
+ and then not In_Package_Body (Scope_Id)
+ and then not In_Private_Part (Scope_Id);
+ end In_Visible_Part;
+
+ --------------------------------
+ -- Incomplete_Or_Private_View --
+ --------------------------------
+
+ function Incomplete_Or_Private_View (Typ : Entity_Id) return Entity_Id is
+ function Inspect_Decls
+ (Decls : List_Id;
+ Taft : Boolean := False) return Entity_Id;
+ -- Check whether a declarative region contains the incomplete or private
+ -- view of Typ.
+
+ -------------------
+ -- Inspect_Decls --
+ -------------------
+
+ function Inspect_Decls
+ (Decls : List_Id;
+ Taft : Boolean := False) return Entity_Id
+ is
+ Decl : Node_Id;
+ Match : Node_Id;
+
+ begin
+ Decl := First (Decls);
+ while Present (Decl) loop
+ Match := Empty;
+
+ if Taft then
+ if Nkind (Decl) = N_Incomplete_Type_Declaration then
+ Match := Defining_Identifier (Decl);
+ end if;
+
+ else
+ if Nkind_In (Decl, N_Private_Extension_Declaration,
+ N_Private_Type_Declaration)
+ then
+ Match := Defining_Identifier (Decl);
+ end if;
+ end if;
+
+ if Present (Match)
+ and then Present (Full_View (Match))
+ and then Full_View (Match) = Typ
+ then
+ return Match;
+ end if;
+
+ Next (Decl);
+ end loop;
+
+ return Empty;
+ end Inspect_Decls;
+
+ -- Local variables
+
+ Prev : Entity_Id;
+
+ -- Start of processing for Incomplete_Or_Partial_View
+
+ begin
+ -- Incomplete type case
+
+ Prev := Current_Entity_In_Scope (Typ);
+
+ if Present (Prev)
+ and then Is_Incomplete_Type (Prev)
+ and then Present (Full_View (Prev))
+ and then Full_View (Prev) = Typ
+ then
+ return Prev;
+ end if;
+
+ -- Private or Taft amendment type case
+
+ declare
+ Pkg : constant Entity_Id := Scope (Typ);
+ Pkg_Decl : Node_Id := Pkg;
+
+ begin
+ if Ekind (Pkg) = E_Package then
+ while Nkind (Pkg_Decl) /= N_Package_Specification loop
+ Pkg_Decl := Parent (Pkg_Decl);
+ end loop;
+
+ -- It is knows that Typ has a private view, look for it in the
+ -- visible declarations of the enclosing scope. A special case
+ -- of this is when the two views have been exchanged - the full
+ -- appears earlier than the private.
+
+ if Has_Private_Declaration (Typ) then
+ Prev := Inspect_Decls (Visible_Declarations (Pkg_Decl));
+
+ -- Exchanged view case, look in the private declarations
+
+ if No (Prev) then
+ Prev := Inspect_Decls (Private_Declarations (Pkg_Decl));
+ end if;
+
+ return Prev;
+
+ -- Otherwise if this is the package body, then Typ is a potential
+ -- Taft amendment type. The incomplete view should be located in
+ -- the private declarations of the enclosing scope.
+
+ elsif In_Package_Body (Pkg) then
+ return Inspect_Decls (Private_Declarations (Pkg_Decl), True);
+ end if;
+ end if;
+ end;
+
+ -- The type has no incomplete or private view
+
+ return Empty;
+ end Incomplete_Or_Private_View;
+
+ ---------------------------------
+ -- Insert_Explicit_Dereference --
+ ---------------------------------
+
+ procedure Insert_Explicit_Dereference (N : Node_Id) is
+ New_Prefix : constant Node_Id := Relocate_Node (N);
+ Ent : Entity_Id := Empty;
+ Pref : Node_Id;
+ I : Interp_Index;
+ It : Interp;
+ T : Entity_Id;
+
+ begin
+ Save_Interps (N, New_Prefix);
+
+ Rewrite (N,
+ Make_Explicit_Dereference (Sloc (Parent (N)),
+ Prefix => New_Prefix));
+
+ Set_Etype (N, Designated_Type (Etype (New_Prefix)));
+
+ if Is_Overloaded (New_Prefix) then
+
+ -- The dereference is also overloaded, and its interpretations are
+ -- the designated types of the interpretations of the original node.
+
+ Set_Etype (N, Any_Type);
+
+ Get_First_Interp (New_Prefix, I, It);
+ while Present (It.Nam) loop
+ T := It.Typ;
+
+ if Is_Access_Type (T) then
+ Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ End_Interp_List;
+
+ else
+ -- Prefix is unambiguous: mark the original prefix (which might
+ -- Come_From_Source) as a reference, since the new (relocated) one
+ -- won't be taken into account.
+
+ if Is_Entity_Name (New_Prefix) then
+ Ent := Entity (New_Prefix);
+ Pref := New_Prefix;
+
+ -- For a retrieval of a subcomponent of some composite object,
+ -- retrieve the ultimate entity if there is one.
+
+ elsif Nkind (New_Prefix) = N_Selected_Component
+ or else Nkind (New_Prefix) = N_Indexed_Component
+ then
+ Pref := Prefix (New_Prefix);
+ while Present (Pref)
+ and then
+ (Nkind (Pref) = N_Selected_Component
+ or else Nkind (Pref) = N_Indexed_Component)
+ loop
+ Pref := Prefix (Pref);
+ end loop;
+
+ if Present (Pref) and then Is_Entity_Name (Pref) then
+ Ent := Entity (Pref);
+ end if;
+ end if;
+
+ -- Place the reference on the entity node
+
+ if Present (Ent) then
+ Generate_Reference (Ent, Pref);
+ end if;
+ end if;
+ end Insert_Explicit_Dereference;
+
+ ------------------------------------------
+ -- Inspect_Deferred_Constant_Completion --
+ ------------------------------------------
+
+ procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
+ Decl : Node_Id;
+
+ begin
+ Decl := First (Decls);
+ while Present (Decl) loop
+
+ -- Deferred constant signature
+
+ if Nkind (Decl) = N_Object_Declaration
+ and then Constant_Present (Decl)
+ and then No (Expression (Decl))
+
+ -- No need to check internally generated constants
+
+ and then Comes_From_Source (Decl)
+
+ -- The constant is not completed. A full object declaration or a
+ -- pragma Import complete a deferred constant.
+
+ and then not Has_Completion (Defining_Identifier (Decl))
+ then
+ Error_Msg_N
+ ("constant declaration requires initialization expression",
+ Defining_Identifier (Decl));
+ end if;
+
+ Decl := Next (Decl);
+ end loop;
+ end Inspect_Deferred_Constant_Completion;
+
+ -----------------------------
+ -- Is_Actual_Out_Parameter --
+ -----------------------------
+
+ function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
+ Formal : Entity_Id;
+ Call : Node_Id;
+ begin
+ Find_Actual (N, Formal, Call);
+ return Present (Formal) and then Ekind (Formal) = E_Out_Parameter;
+ end Is_Actual_Out_Parameter;
+
+ -------------------------
+ -- Is_Actual_Parameter --
+ -------------------------
+
+ function Is_Actual_Parameter (N : Node_Id) return Boolean is
+ PK : constant Node_Kind := Nkind (Parent (N));
+
+ begin
+ case PK is
+ when N_Parameter_Association =>
+ return N = Explicit_Actual_Parameter (Parent (N));
+
+ when N_Subprogram_Call =>
+ return Is_List_Member (N)
+ and then
+ List_Containing (N) = Parameter_Associations (Parent (N));
+
+ when others =>
+ return False;
+ end case;
+ end Is_Actual_Parameter;
+
+ --------------------------------
+ -- Is_Actual_Tagged_Parameter --
+ --------------------------------
+
+ function Is_Actual_Tagged_Parameter (N : Node_Id) return Boolean is
+ Formal : Entity_Id;
+ Call : Node_Id;
+ begin
+ Find_Actual (N, Formal, Call);
+ return Present (Formal) and then Is_Tagged_Type (Etype (Formal));
+ end Is_Actual_Tagged_Parameter;
+
+ ---------------------
+ -- Is_Aliased_View --
+ ---------------------
+
+ function Is_Aliased_View (Obj : Node_Id) return Boolean is
+ E : Entity_Id;
+
+ begin
+ if Is_Entity_Name (Obj) then
+ E := Entity (Obj);
+
+ return
+ (Is_Object (E)
+ and then
+ (Is_Aliased (E)
+ or else (Present (Renamed_Object (E))
+ and then Is_Aliased_View (Renamed_Object (E)))))
+
+ or else ((Is_Formal (E)
+ or else Ekind (E) = E_Generic_In_Out_Parameter
+ or else Ekind (E) = E_Generic_In_Parameter)
+ and then Is_Tagged_Type (Etype (E)))
+
+ or else (Is_Concurrent_Type (E) and then In_Open_Scopes (E))
+
+ -- Current instance of type, either directly or as rewritten
+ -- reference to the current object.
+
+ or else (Is_Entity_Name (Original_Node (Obj))
+ and then Present (Entity (Original_Node (Obj)))
+ and then Is_Type (Entity (Original_Node (Obj))))
+
+ or else (Is_Type (E) and then E = Current_Scope)
+
+ or else (Is_Incomplete_Or_Private_Type (E)
+ and then Full_View (E) = Current_Scope)
+
+ -- Ada 2012 AI05-0053: the return object of an extended return
+ -- statement is aliased if its type is immutably limited.
+
+ or else (Is_Return_Object (E)
+ and then Is_Immutably_Limited_Type (Etype (E)));
+
+ elsif Nkind (Obj) = N_Selected_Component then
+ return Is_Aliased (Entity (Selector_Name (Obj)));
+
+ elsif Nkind (Obj) = N_Indexed_Component then
+ return Has_Aliased_Components (Etype (Prefix (Obj)))
+ or else
+ (Is_Access_Type (Etype (Prefix (Obj)))
+ and then Has_Aliased_Components
+ (Designated_Type (Etype (Prefix (Obj)))));
+
+ elsif Nkind_In (Obj, N_Unchecked_Type_Conversion, N_Type_Conversion) then
+ return Is_Tagged_Type (Etype (Obj))
+ and then Is_Aliased_View (Expression (Obj));
+
+ elsif Nkind (Obj) = N_Explicit_Dereference then
+ return Nkind (Original_Node (Obj)) /= N_Function_Call;
+
+ else
+ return False;
+ end if;
+ end Is_Aliased_View;
+
+ -------------------------
+ -- Is_Ancestor_Package --
+ -------------------------
+
+ function Is_Ancestor_Package
+ (E1 : Entity_Id;
+ E2 : Entity_Id) return Boolean
+ is
+ Par : Entity_Id;
+
+ begin
+ Par := E2;
+ while Present (Par)
+ and then Par /= Standard_Standard
+ loop
+ if Par = E1 then
+ return True;
+ end if;
+
+ Par := Scope (Par);
+ end loop;
+
+ return False;
+ end Is_Ancestor_Package;
+
+ ----------------------
+ -- Is_Atomic_Object --
+ ----------------------
+
+ function Is_Atomic_Object (N : Node_Id) return Boolean is
+
+ function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
+ -- Determines if given object has atomic components
+
+ function Is_Atomic_Prefix (N : Node_Id) return Boolean;
+ -- If prefix is an implicit dereference, examine designated type
+
+ ----------------------
+ -- Is_Atomic_Prefix --
+ ----------------------
+
+ function Is_Atomic_Prefix (N : Node_Id) return Boolean is
+ begin
+ if Is_Access_Type (Etype (N)) then
+ return
+ Has_Atomic_Components (Designated_Type (Etype (N)));
+ else
+ return Object_Has_Atomic_Components (N);
+ end if;
+ end Is_Atomic_Prefix;
+
+ ----------------------------------
+ -- Object_Has_Atomic_Components --
+ ----------------------------------
+
+ function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
+ begin
+ if Has_Atomic_Components (Etype (N))
+ or else Is_Atomic (Etype (N))
+ then
+ return True;
+
+ elsif Is_Entity_Name (N)
+ and then (Has_Atomic_Components (Entity (N))
+ or else Is_Atomic (Entity (N)))
+ then
+ return True;
+
+ elsif Nkind (N) = N_Selected_Component
+ and then Is_Atomic (Entity (Selector_Name (N)))
+ then
+ return True;
+
+ elsif Nkind (N) = N_Indexed_Component
+ or else Nkind (N) = N_Selected_Component
+ then
+ return Is_Atomic_Prefix (Prefix (N));
+
+ else
+ return False;
+ end if;
+ end Object_Has_Atomic_Components;
+
+ -- Start of processing for Is_Atomic_Object
+
+ begin
+ -- Predicate is not relevant to subprograms
+
+ if Is_Entity_Name (N) and then Is_Overloadable (Entity (N)) then
+ return False;
+
+ elsif Is_Atomic (Etype (N))
+ or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
+ then
+ return True;
+
+ elsif Nkind (N) = N_Selected_Component
+ and then Is_Atomic (Entity (Selector_Name (N)))
+ then
+ return True;
+
+ elsif Nkind (N) = N_Indexed_Component
+ or else Nkind (N) = N_Selected_Component
+ then
+ return Is_Atomic_Prefix (Prefix (N));
+
+ else
+ return False;
+ end if;
+ end Is_Atomic_Object;
+
+ -----------------------
+ -- Is_Bounded_String --
+ -----------------------
+
+ function Is_Bounded_String (T : Entity_Id) return Boolean is
+ Under : constant Entity_Id := Underlying_Type (Root_Type (T));
+
+ begin
+ -- Check whether T is ultimately derived from Ada.Strings.Superbounded.
+ -- Super_String, or one of the [Wide_]Wide_ versions. This will
+ -- be True for all the Bounded_String types in instances of the
+ -- Generic_Bounded_Length generics, and for types derived from those.
+
+ return Present (Under)
+ and then (Is_RTE (Root_Type (Under), RO_SU_Super_String) or else
+ Is_RTE (Root_Type (Under), RO_WI_Super_String) or else
+ Is_RTE (Root_Type (Under), RO_WW_Super_String));
+ end Is_Bounded_String;
+
+ -----------------------------
+ -- Is_Concurrent_Interface --
+ -----------------------------
+
+ function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
+ begin
+ return
+ Is_Interface (T)
+ and then
+ (Is_Protected_Interface (T)
+ or else Is_Synchronized_Interface (T)
+ or else Is_Task_Interface (T));
+ end Is_Concurrent_Interface;
+
+ --------------------------------------
+ -- Is_Controlling_Limited_Procedure --
+ --------------------------------------
+
+ function Is_Controlling_Limited_Procedure
+ (Proc_Nam : Entity_Id) return Boolean
+ is
+ Param_Typ : Entity_Id := Empty;
+
+ begin
+ if Ekind (Proc_Nam) = E_Procedure
+ and then Present (Parameter_Specifications (Parent (Proc_Nam)))
+ then
+ Param_Typ := Etype (Parameter_Type (First (
+ Parameter_Specifications (Parent (Proc_Nam)))));
+
+ -- In this case where an Itype was created, the procedure call has been
+ -- rewritten.
+
+ elsif Present (Associated_Node_For_Itype (Proc_Nam))
+ and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
+ and then
+ Present (Parameter_Associations
+ (Associated_Node_For_Itype (Proc_Nam)))
+ then
+ Param_Typ :=
+ Etype (First (Parameter_Associations
+ (Associated_Node_For_Itype (Proc_Nam))));
+ end if;
+
+ if Present (Param_Typ) then
+ return
+ Is_Interface (Param_Typ)
+ and then Is_Limited_Record (Param_Typ);
+ end if;
+
+ return False;
+ end Is_Controlling_Limited_Procedure;
+
+ -----------------------------
+ -- Is_CPP_Constructor_Call --
+ -----------------------------
+
+ function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
+ begin
+ return Nkind (N) = N_Function_Call
+ and then Is_CPP_Class (Etype (Etype (N)))
+ and then Is_Constructor (Entity (Name (N)))
+ and then Is_Imported (Entity (Name (N)));
+ end Is_CPP_Constructor_Call;
+
+ -----------------
+ -- Is_Delegate --
+ -----------------
+
+ function Is_Delegate (T : Entity_Id) return Boolean is
+ Desig_Type : Entity_Id;
+
+ begin
+ if VM_Target /= CLI_Target then
+ return False;
+ end if;
+
+ -- Access-to-subprograms are delegates in CIL
+
+ if Ekind (T) = E_Access_Subprogram_Type then
+ return True;
+ end if;
+
+ if Ekind (T) not in Access_Kind then
+
+ -- A delegate is a managed pointer. If no designated type is defined
+ -- it means that it's not a delegate.
+
+ return False;
+ end if;
+
+ Desig_Type := Etype (Directly_Designated_Type (T));
+
+ if not Is_Tagged_Type (Desig_Type) then
+ return False;
+ end if;
+
+ -- Test if the type is inherited from [mscorlib]System.Delegate
+
+ while Etype (Desig_Type) /= Desig_Type loop
+ if Chars (Scope (Desig_Type)) /= No_Name
+ and then Is_Imported (Scope (Desig_Type))
+ and then Get_Name_String (Chars (Scope (Desig_Type))) = "delegate"
+ then
+ return True;
+ end if;
+
+ Desig_Type := Etype (Desig_Type);
+ end loop;
+
+ return False;
+ end Is_Delegate;
+
+ ----------------------------------------------
+ -- Is_Dependent_Component_Of_Mutable_Object --
+ ----------------------------------------------
+
+ function Is_Dependent_Component_Of_Mutable_Object
+ (Object : Node_Id) return Boolean
+ is
+ P : Node_Id;
+ Prefix_Type : Entity_Id;
+ P_Aliased : Boolean := False;
+ Comp : Entity_Id;
+
+ function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
+ -- Returns True if and only if Comp is declared within a variant part
+
+ --------------------------------
+ -- Is_Declared_Within_Variant --
+ --------------------------------
+
+ function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
+ Comp_Decl : constant Node_Id := Parent (Comp);
+ Comp_List : constant Node_Id := Parent (Comp_Decl);
+ begin
+ return Nkind (Parent (Comp_List)) = N_Variant;
+ end Is_Declared_Within_Variant;
+
+ -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
+
+ begin
+ if Is_Variable (Object) then
+
+ if Nkind (Object) = N_Selected_Component then
+ P := Prefix (Object);
+ Prefix_Type := Etype (P);
+
+ if Is_Entity_Name (P) then
+
+ if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
+ Prefix_Type := Base_Type (Prefix_Type);
+ end if;
+
+ if Is_Aliased (Entity (P)) then
+ P_Aliased := True;
+ end if;
+
+ -- A discriminant check on a selected component may be expanded
+ -- into a dereference when removing side-effects. Recover the
+ -- original node and its type, which may be unconstrained.
+
+ elsif Nkind (P) = N_Explicit_Dereference
+ and then not (Comes_From_Source (P))
+ then
+ P := Original_Node (P);
+ Prefix_Type := Etype (P);
+
+ else
+ -- Check for prefix being an aliased component???
+
+ null;
+
+ end if;
+
+ -- A heap object is constrained by its initial value
+
+ -- Ada 2005 (AI-363): Always assume the object could be mutable in
+ -- the dereferenced case, since the access value might denote an
+ -- unconstrained aliased object, whereas in Ada 95 the designated
+ -- object is guaranteed to be constrained. A worst-case assumption
+ -- has to apply in Ada 2005 because we can't tell at compile time
+ -- whether the object is "constrained by its initial value"
+ -- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are
+ -- semantic rules -- these rules are acknowledged to need fixing).
+
+ if Ada_Version < Ada_2005 then
+ if Is_Access_Type (Prefix_Type)
+ or else Nkind (P) = N_Explicit_Dereference
+ then
+ return False;
+ end if;
+
+ elsif Ada_Version >= Ada_2005 then
+ if Is_Access_Type (Prefix_Type) then
+
+ -- If the access type is pool-specific, and there is no
+ -- constrained partial view of the designated type, then the
+ -- designated object is known to be constrained.
+
+ if Ekind (Prefix_Type) = E_Access_Type
+ and then not Effectively_Has_Constrained_Partial_View
+ (Typ => Designated_Type (Prefix_Type),
+ Scop => Current_Scope)
+ then
+ return False;
+
+ -- Otherwise (general access type, or there is a constrained
+ -- partial view of the designated type), we need to check
+ -- based on the designated type.
+
+ else
+ Prefix_Type := Designated_Type (Prefix_Type);
+ end if;
+ end if;
+ end if;
+
+ Comp :=
+ Original_Record_Component (Entity (Selector_Name (Object)));
+
+ -- As per AI-0017, the renaming is illegal in a generic body, even
+ -- if the subtype is indefinite.
+
+ -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
+
+ if not Is_Constrained (Prefix_Type)
+ and then (not Is_Indefinite_Subtype (Prefix_Type)
+ or else
+ (Is_Generic_Type (Prefix_Type)
+ and then Ekind (Current_Scope) = E_Generic_Package
+ and then In_Package_Body (Current_Scope)))
+
+ and then (Is_Declared_Within_Variant (Comp)
+ or else Has_Discriminant_Dependent_Constraint (Comp))
+ and then (not P_Aliased or else Ada_Version >= Ada_2005)
+ then
+ return True;
+
+ else
+ return
+ Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
+
+ end if;
+
+ elsif Nkind (Object) = N_Indexed_Component
+ or else Nkind (Object) = N_Slice
+ then
+ return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
+
+ -- A type conversion that Is_Variable is a view conversion:
+ -- go back to the denoted object.
+
+ elsif Nkind (Object) = N_Type_Conversion then
+ return
+ Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
+ end if;
+ end if;
+
+ return False;
+ end Is_Dependent_Component_Of_Mutable_Object;
+
+ ---------------------
+ -- Is_Dereferenced --
+ ---------------------
+
+ function Is_Dereferenced (N : Node_Id) return Boolean is
+ P : constant Node_Id := Parent (N);
+ begin
+ return
+ (Nkind (P) = N_Selected_Component
+ or else
+ Nkind (P) = N_Explicit_Dereference
+ or else
+ Nkind (P) = N_Indexed_Component
+ or else
+ Nkind (P) = N_Slice)
+ and then Prefix (P) = N;
+ end Is_Dereferenced;
+
+ ----------------------
+ -- Is_Descendent_Of --
+ ----------------------
+
+ function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
+ T : Entity_Id;
+ Etyp : Entity_Id;
+
+ begin
+ pragma Assert (Nkind (T1) in N_Entity);
+ pragma Assert (Nkind (T2) in N_Entity);
+
+ T := Base_Type (T1);
+
+ -- Immediate return if the types match
+
+ if T = T2 then
+ return True;
+
+ -- Comment needed here ???
+
+ elsif Ekind (T) = E_Class_Wide_Type then
+ return Etype (T) = T2;
+
+ -- All other cases
+
+ else
+ loop
+ Etyp := Etype (T);
+
+ -- Done if we found the type we are looking for
+
+ if Etyp = T2 then
+ return True;
+
+ -- Done if no more derivations to check
+
+ elsif T = T1
+ or else T = Etyp
+ then
+ return False;
+
+ -- Following test catches error cases resulting from prev errors
+
+ elsif No (Etyp) then
+ return False;
+
+ elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
+ return False;
+
+ elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
+ return False;
+ end if;
+
+ T := Base_Type (Etyp);
+ end loop;
+ end if;
+ end Is_Descendent_Of;
+
+ ----------------------------
+ -- Is_Expression_Function --
+ ----------------------------
+
+ function Is_Expression_Function (Subp : Entity_Id) return Boolean is
+ Decl : constant Node_Id := Unit_Declaration_Node (Subp);
+
+ begin
+ return Ekind (Subp) = E_Function
+ and then Nkind (Decl) = N_Subprogram_Declaration
+ and then
+ (Nkind (Original_Node (Decl)) = N_Expression_Function
+ or else
+ (Present (Corresponding_Body (Decl))
+ and then
+ Nkind (Original_Node
+ (Unit_Declaration_Node (Corresponding_Body (Decl))))
+ = N_Expression_Function));
+ end Is_Expression_Function;
+
+ --------------
+ -- Is_False --
+ --------------
+
+ function Is_False (U : Uint) return Boolean is
+ begin
+ return (U = 0);
+ end Is_False;
+
+ ---------------------------
+ -- Is_Fixed_Model_Number --
+ ---------------------------
+
+ function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
+ S : constant Ureal := Small_Value (T);
+ M : Urealp.Save_Mark;
+ R : Boolean;
+ begin
+ M := Urealp.Mark;
+ R := (U = UR_Trunc (U / S) * S);
+ Urealp.Release (M);
+ return R;
+ end Is_Fixed_Model_Number;
+
+ -------------------------------
+ -- Is_Fully_Initialized_Type --
+ -------------------------------
+
+ function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
+ begin
+ -- In Ada2012, a scalar type with an aspect Default_Value
+ -- is fully initialized.
+
+ if Is_Scalar_Type (Typ) then
+ return Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ);
+
+ elsif Is_Access_Type (Typ) then
+ return True;
+
+ elsif Is_Array_Type (Typ) then
+ if Is_Fully_Initialized_Type (Component_Type (Typ))
+ or else (Ada_Version >= Ada_2012 and then Has_Default_Aspect (Typ))
+ then
+ return True;
+ end if;
+
+ -- An interesting case, if we have a constrained type one of whose
+ -- bounds is known to be null, then there are no elements to be
+ -- initialized, so all the elements are initialized!
+
+ if Is_Constrained (Typ) then
+ declare
+ Indx : Node_Id;
+ Indx_Typ : Entity_Id;
+ Lbd, Hbd : Node_Id;
+
+ begin
+ Indx := First_Index (Typ);
+ while Present (Indx) loop
+ if Etype (Indx) = Any_Type then
+ return False;
+
+ -- If index is a range, use directly
+
+ elsif Nkind (Indx) = N_Range then
+ Lbd := Low_Bound (Indx);
+ Hbd := High_Bound (Indx);
+
+ else
+ Indx_Typ := Etype (Indx);
+
+ if Is_Private_Type (Indx_Typ) then
+ Indx_Typ := Full_View (Indx_Typ);
+ end if;
+
+ if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
+ return False;
+ else
+ Lbd := Type_Low_Bound (Indx_Typ);
+ Hbd := Type_High_Bound (Indx_Typ);
+ end if;
+ end if;
+
+ if Compile_Time_Known_Value (Lbd)
+ and then Compile_Time_Known_Value (Hbd)
+ then
+ if Expr_Value (Hbd) < Expr_Value (Lbd) then
+ return True;
+ end if;
+ end if;
+
+ Next_Index (Indx);
+ end loop;
+ end;
+ end if;
+
+ -- If no null indexes, then type is not fully initialized
+
+ return False;
+
+ -- Record types
+
+ elsif Is_Record_Type (Typ) then
+ if Has_Discriminants (Typ)
+ and then
+ Present (Discriminant_Default_Value (First_Discriminant (Typ)))
+ and then Is_Fully_Initialized_Variant (Typ)
+ then
+ return True;
+ end if;
+
+ -- We consider bounded string types to be fully initialized, because
+ -- otherwise we get false alarms when the Data component is not
+ -- default-initialized.
+
+ if Is_Bounded_String (Typ) then
+ return True;
+ end if;
+
+ -- Controlled records are considered to be fully initialized if
+ -- there is a user defined Initialize routine. This may not be
+ -- entirely correct, but as the spec notes, we are guessing here
+ -- what is best from the point of view of issuing warnings.
+
+ if Is_Controlled (Typ) then
+ declare
+ Utyp : constant Entity_Id := Underlying_Type (Typ);
+
+ begin
+ if Present (Utyp) then
+ declare
+ Init : constant Entity_Id :=
+ (Find_Prim_Op
+ (Underlying_Type (Typ), Name_Initialize));
+
+ begin
+ if Present (Init)
+ and then Comes_From_Source (Init)
+ and then not
+ Is_Predefined_File_Name
+ (File_Name (Get_Source_File_Index (Sloc (Init))))
+ then
+ return True;
+
+ elsif Has_Null_Extension (Typ)
+ and then
+ Is_Fully_Initialized_Type
+ (Etype (Base_Type (Typ)))
+ then
+ return True;
+ end if;
+ end;
+ end if;
+ end;
+ end if;
+
+ -- Otherwise see if all record components are initialized
+
+ declare
+ Ent : Entity_Id;
+
+ begin
+ Ent := First_Entity (Typ);
+ while Present (Ent) loop
+ if Ekind (Ent) = E_Component
+ and then (No (Parent (Ent))
+ or else No (Expression (Parent (Ent))))
+ and then not Is_Fully_Initialized_Type (Etype (Ent))
+
+ -- Special VM case for tag components, which need to be
+ -- defined in this case, but are never initialized as VMs
+ -- are using other dispatching mechanisms. Ignore this
+ -- uninitialized case. Note that this applies both to the
+ -- uTag entry and the main vtable pointer (CPP_Class case).
+
+ and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
+ then
+ return False;
+ end if;
+
+ Next_Entity (Ent);
+ end loop;
+ end;
+
+ -- No uninitialized components, so type is fully initialized.
+ -- Note that this catches the case of no components as well.
+
+ return True;
+
+ elsif Is_Concurrent_Type (Typ) then
+ return True;
+
+ elsif Is_Private_Type (Typ) then
+ declare
+ U : constant Entity_Id := Underlying_Type (Typ);
+
+ begin
+ if No (U) then
+ return False;
+ else
+ return Is_Fully_Initialized_Type (U);
+ end if;
+ end;
+
+ else
+ return False;
+ end if;
+ end Is_Fully_Initialized_Type;
+
+ ----------------------------------
+ -- Is_Fully_Initialized_Variant --
+ ----------------------------------
+
+ function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
+ Loc : constant Source_Ptr := Sloc (Typ);
+ Constraints : constant List_Id := New_List;
+ Components : constant Elist_Id := New_Elmt_List;
+ Comp_Elmt : Elmt_Id;
+ Comp_Id : Node_Id;
+ Comp_List : Node_Id;
+ Discr : Entity_Id;
+ Discr_Val : Node_Id;
+
+ Report_Errors : Boolean;
+ pragma Warnings (Off, Report_Errors);
+
+ begin
+ if Serious_Errors_Detected > 0 then
+ return False;
+ end if;
+
+ if Is_Record_Type (Typ)
+ and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
+ and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
+ then
+ Comp_List := Component_List (Type_Definition (Parent (Typ)));
+
+ Discr := First_Discriminant (Typ);
+ while Present (Discr) loop
+ if Nkind (Parent (Discr)) = N_Discriminant_Specification then
+ Discr_Val := Expression (Parent (Discr));
+
+ if Present (Discr_Val)
+ and then Is_OK_Static_Expression (Discr_Val)
+ then
+ Append_To (Constraints,
+ Make_Component_Association (Loc,
+ Choices => New_List (New_Occurrence_Of (Discr, Loc)),
+ Expression => New_Copy (Discr_Val)));
+ else
+ return False;
+ end if;
+ else
+ return False;
+ end if;
+
+ Next_Discriminant (Discr);
+ end loop;
+
+ Gather_Components
+ (Typ => Typ,
+ Comp_List => Comp_List,
+ Governed_By => Constraints,
+ Into => Components,
+ Report_Errors => Report_Errors);
+
+ -- Check that each component present is fully initialized
+
+ Comp_Elmt := First_Elmt (Components);
+ while Present (Comp_Elmt) loop
+ Comp_Id := Node (Comp_Elmt);
+
+ if Ekind (Comp_Id) = E_Component
+ and then (No (Parent (Comp_Id))
+ or else No (Expression (Parent (Comp_Id))))
+ and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
+ then
+ return False;
+ end if;
+
+ Next_Elmt (Comp_Elmt);
+ end loop;
+
+ return True;
+
+ elsif Is_Private_Type (Typ) then
+ declare
+ U : constant Entity_Id := Underlying_Type (Typ);
+
+ begin
+ if No (U) then
+ return False;
+ else
+ return Is_Fully_Initialized_Variant (U);
+ end if;
+ end;
+ else
+ return False;
+ end if;
+ end Is_Fully_Initialized_Variant;
+
+ ----------------------------
+ -- Is_Inherited_Operation --
+ ----------------------------
+
+ function Is_Inherited_Operation (E : Entity_Id) return Boolean is
+ pragma Assert (Is_Overloadable (E));
+ Kind : constant Node_Kind := Nkind (Parent (E));
+ begin
+ return Kind = N_Full_Type_Declaration
+ or else Kind = N_Private_Extension_Declaration
+ or else Kind = N_Subtype_Declaration
+ or else (Ekind (E) = E_Enumeration_Literal
+ and then Is_Derived_Type (Etype (E)));
+ end Is_Inherited_Operation;
+
+ -------------------------------------
+ -- Is_Inherited_Operation_For_Type --
+ -------------------------------------
+
+ function Is_Inherited_Operation_For_Type
+ (E : Entity_Id;
+ Typ : Entity_Id) return Boolean
+ is
+ begin
+ return Is_Inherited_Operation (E)
+ and then Etype (Parent (E)) = Typ;
+ end Is_Inherited_Operation_For_Type;
+
+ -----------------
+ -- Is_Iterator --
+ -----------------
+
+ function Is_Iterator (Typ : Entity_Id) return Boolean is
+ Ifaces_List : Elist_Id;
+ Iface_Elmt : Elmt_Id;
+ Iface : Entity_Id;
+
+ begin
+ if Is_Class_Wide_Type (Typ)
+ and then
+ (Chars (Etype (Typ)) = Name_Forward_Iterator
+ or else
+ Chars (Etype (Typ)) = Name_Reversible_Iterator)
+ and then
+ Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Etype (Typ))))
+ then
+ return True;
+
+ elsif not Is_Tagged_Type (Typ) or else not Is_Derived_Type (Typ) then
+ return False;
+
+ else
+ Collect_Interfaces (Typ, Ifaces_List);
+
+ Iface_Elmt := First_Elmt (Ifaces_List);
+ while Present (Iface_Elmt) loop
+ Iface := Node (Iface_Elmt);
+ if Chars (Iface) = Name_Forward_Iterator
+ and then
+ Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Iface)))
+ then
+ return True;
+ end if;
+
+ Next_Elmt (Iface_Elmt);
+ end loop;
+
+ return False;
+ end if;
+ end Is_Iterator;
+
+ ------------
+ -- Is_LHS --
+ ------------
+
+ -- We seem to have a lot of overlapping functions that do similar things
+ -- (testing for left hand sides or lvalues???). Anyway, since this one is
+ -- purely syntactic, it should be in Sem_Aux I would think???
+
+ function Is_LHS (N : Node_Id) return Boolean is
+ P : constant Node_Id := Parent (N);
+
+ begin
+ if Nkind (P) = N_Assignment_Statement then
+ return Name (P) = N;
+
+ elsif
+ Nkind_In (P, N_Indexed_Component, N_Selected_Component, N_Slice)
+ then
+ return N = Prefix (P) and then Is_LHS (P);
+
+ else
+ return False;
+ end if;
+ end Is_LHS;
+
+ -----------------------------
+ -- Is_Library_Level_Entity --
+ -----------------------------
+
+ function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
+ begin
+ -- The following is a small optimization, and it also properly handles
+ -- discriminals, which in task bodies might appear in expressions before
+ -- the corresponding procedure has been created, and which therefore do
+ -- not have an assigned scope.
+
+ if Is_Formal (E) then
+ return False;
+ end if;
+
+ -- Normal test is simply that the enclosing dynamic scope is Standard
+
+ return Enclosing_Dynamic_Scope (E) = Standard_Standard;
+ end Is_Library_Level_Entity;
+
+ --------------------------------
+ -- Is_Limited_Class_Wide_Type --
+ --------------------------------
+
+ function Is_Limited_Class_Wide_Type (Typ : Entity_Id) return Boolean is
+ begin
+ return
+ Is_Class_Wide_Type (Typ)
+ and then Is_Limited_Type (Typ);
+ end Is_Limited_Class_Wide_Type;
+
+ ---------------------------------
+ -- Is_Local_Variable_Reference --
+ ---------------------------------
+
+ function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
+ begin
+ if not Is_Entity_Name (Expr) then
+ return False;
+
+ else
+ declare
+ Ent : constant Entity_Id := Entity (Expr);
+ Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
+ begin
+ if not Ekind_In (Ent, E_Variable, E_In_Out_Parameter) then
+ return False;
+ else
+ return Present (Sub) and then Sub = Current_Subprogram;
+ end if;
+ end;
+ end if;
+ end Is_Local_Variable_Reference;
+
+ -------------------------
+ -- Is_Object_Reference --
+ -------------------------
+
+ function Is_Object_Reference (N : Node_Id) return Boolean is
+
+ function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean;
+ -- Determine whether N is the name of an internally-generated renaming
+
+ --------------------------------------
+ -- Is_Internally_Generated_Renaming --
+ --------------------------------------
+
+ function Is_Internally_Generated_Renaming (N : Node_Id) return Boolean is
+ P : Node_Id;
+
+ begin
+ P := N;
+ while Present (P) loop
+ if Nkind (P) = N_Object_Renaming_Declaration then
+ return not Comes_From_Source (P);
+ elsif Is_List_Member (P) then
+ return False;
+ end if;
+
+ P := Parent (P);
+ end loop;
+
+ return False;
+ end Is_Internally_Generated_Renaming;
+
+ -- Start of processing for Is_Object_Reference
+
+ begin
+ if Is_Entity_Name (N) then
+ return Present (Entity (N)) and then Is_Object (Entity (N));
+
+ else
+ case Nkind (N) is
+ when N_Indexed_Component | N_Slice =>
+ return
+ Is_Object_Reference (Prefix (N))
+ or else Is_Access_Type (Etype (Prefix (N)));
+
+ -- In Ada 95, a function call is a constant object; a procedure
+ -- call is not.
+
+ when N_Function_Call =>
+ return Etype (N) /= Standard_Void_Type;
+
+ -- Attributes 'Input and 'Result produce objects
+
+ when N_Attribute_Reference =>
+ return Attribute_Name (N) = Name_Input
+ or else
+ Attribute_Name (N) = Name_Result;
+
+ when N_Selected_Component =>
+ return
+ Is_Object_Reference (Selector_Name (N))
+ and then
+ (Is_Object_Reference (Prefix (N))
+ or else Is_Access_Type (Etype (Prefix (N))));
+
+ when N_Explicit_Dereference =>
+ return True;
+
+ -- A view conversion of a tagged object is an object reference
+
+ when N_Type_Conversion =>
+ return Is_Tagged_Type (Etype (Subtype_Mark (N)))
+ and then Is_Tagged_Type (Etype (Expression (N)))
+ and then Is_Object_Reference (Expression (N));
+
+ -- An unchecked type conversion is considered to be an object if
+ -- the operand is an object (this construction arises only as a
+ -- result of expansion activities).
+
+ when N_Unchecked_Type_Conversion =>
+ return True;
+
+ -- Allow string literals to act as objects as long as they appear
+ -- in internally-generated renamings. The expansion of iterators
+ -- may generate such renamings when the range involves a string
+ -- literal.
+
+ when N_String_Literal =>
+ return Is_Internally_Generated_Renaming (Parent (N));
+
+ -- AI05-0003: In Ada 2012 a qualified expression is a name.
+ -- This allows disambiguation of function calls and the use
+ -- of aggregates in more contexts.
+
+ when N_Qualified_Expression =>
+ if Ada_Version < Ada_2012 then
+ return False;
+ else
+ return Is_Object_Reference (Expression (N))
+ or else Nkind (Expression (N)) = N_Aggregate;
+ end if;
+
+ when others =>
+ return False;
+ end case;
+ end if;
+ end Is_Object_Reference;
+
+ -----------------------------------
+ -- Is_OK_Variable_For_Out_Formal --
+ -----------------------------------
+
+ function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
+ begin
+ Note_Possible_Modification (AV, Sure => True);
+
+ -- We must reject parenthesized variable names. The check for
+ -- Comes_From_Source is present because there are currently
+ -- cases where the compiler violates this rule (e.g. passing
+ -- a task object to its controlled Initialize routine).
+
+ if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
+ return False;
+
+ -- A variable is always allowed
+
+ elsif Is_Variable (AV) then
+ return True;
+
+ -- Unchecked conversions are allowed only if they come from the
+ -- generated code, which sometimes uses unchecked conversions for out
+ -- parameters in cases where code generation is unaffected. We tell
+ -- source unchecked conversions by seeing if they are rewrites of an
+ -- original Unchecked_Conversion function call, or of an explicit
+ -- conversion of a function call.
+
+ elsif Nkind (AV) = N_Unchecked_Type_Conversion then
+ if Nkind (Original_Node (AV)) = N_Function_Call then
+ return False;
+
+ elsif Comes_From_Source (AV)
+ and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
+ then
+ return False;
+
+ elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
+ return Is_OK_Variable_For_Out_Formal (Expression (AV));
+
+ else
+ return True;
+ end if;
+
+ -- Normal type conversions are allowed if argument is a variable
+
+ elsif Nkind (AV) = N_Type_Conversion then
+ if Is_Variable (Expression (AV))
+ and then Paren_Count (Expression (AV)) = 0
+ then
+ Note_Possible_Modification (Expression (AV), Sure => True);
+ return True;
+
+ -- We also allow a non-parenthesized expression that raises
+ -- constraint error if it rewrites what used to be a variable
+
+ elsif Raises_Constraint_Error (Expression (AV))
+ and then Paren_Count (Expression (AV)) = 0
+ and then Is_Variable (Original_Node (Expression (AV)))
+ then
+ return True;
+
+ -- Type conversion of something other than a variable
+
+ else
+ return False;
+ end if;
+
+ -- If this node is rewritten, then test the original form, if that is
+ -- OK, then we consider the rewritten node OK (for example, if the
+ -- original node is a conversion, then Is_Variable will not be true
+ -- but we still want to allow the conversion if it converts a variable).
+
+ elsif Original_Node (AV) /= AV then
+
+ -- In Ada 2012, the explicit dereference may be a rewritten call to a
+ -- Reference function.
+
+ if Ada_Version >= Ada_2012
+ and then Nkind (Original_Node (AV)) = N_Function_Call
+ and then
+ Has_Implicit_Dereference (Etype (Name (Original_Node (AV))))
+ then
+ return True;
+
+ else
+ return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
+ end if;
+
+ -- All other non-variables are rejected
+
+ else
+ return False;
+ end if;
+ end Is_OK_Variable_For_Out_Formal;
+
+ -----------------------------------
+ -- Is_Partially_Initialized_Type --
+ -----------------------------------
+
+ function Is_Partially_Initialized_Type
+ (Typ : Entity_Id;
+ Include_Implicit : Boolean := True) return Boolean
+ is
+ begin
+ if Is_Scalar_Type (Typ) then
+ return False;
+
+ elsif Is_Access_Type (Typ) then
+ return Include_Implicit;
+
+ elsif Is_Array_Type (Typ) then
+
+ -- If component type is partially initialized, so is array type
+
+ if Is_Partially_Initialized_Type
+ (Component_Type (Typ), Include_Implicit)
+ then
+ return True;
+
+ -- Otherwise we are only partially initialized if we are fully
+ -- initialized (this is the empty array case, no point in us
+ -- duplicating that code here).
+
+ else
+ return Is_Fully_Initialized_Type (Typ);
+ end if;
+
+ elsif Is_Record_Type (Typ) then
+
+ -- A discriminated type is always partially initialized if in
+ -- all mode
+
+ if Has_Discriminants (Typ) and then Include_Implicit then
+ return True;
+
+ -- A tagged type is always partially initialized
+
+ elsif Is_Tagged_Type (Typ) then
+ return True;
+
+ -- Case of non-discriminated record
+
+ else
+ declare
+ Ent : Entity_Id;
+
+ Component_Present : Boolean := False;
+ -- Set True if at least one component is present. If no
+ -- components are present, then record type is fully
+ -- initialized (another odd case, like the null array).
+
+ begin
+ -- Loop through components
+
+ Ent := First_Entity (Typ);
+ while Present (Ent) loop
+ if Ekind (Ent) = E_Component then
+ Component_Present := True;
+
+ -- If a component has an initialization expression then
+ -- the enclosing record type is partially initialized
+
+ if Present (Parent (Ent))
+ and then Present (Expression (Parent (Ent)))
+ then
+ return True;
+
+ -- If a component is of a type which is itself partially
+ -- initialized, then the enclosing record type is also.
+
+ elsif Is_Partially_Initialized_Type
+ (Etype (Ent), Include_Implicit)
+ then
+ return True;
+ end if;
+ end if;
+
+ Next_Entity (Ent);
+ end loop;
+
+ -- No initialized components found. If we found any components
+ -- they were all uninitialized so the result is false.
+
+ if Component_Present then
+ return False;
+
+ -- But if we found no components, then all the components are
+ -- initialized so we consider the type to be initialized.
+
+ else
+ return True;
+ end if;
+ end;
+ end if;
+
+ -- Concurrent types are always fully initialized
+
+ elsif Is_Concurrent_Type (Typ) then
+ return True;
+
+ -- For a private type, go to underlying type. If there is no underlying
+ -- type then just assume this partially initialized. Not clear if this
+ -- can happen in a non-error case, but no harm in testing for this.
+
+ elsif Is_Private_Type (Typ) then
+ declare
+ U : constant Entity_Id := Underlying_Type (Typ);
+ begin
+ if No (U) then
+ return True;
+ else
+ return Is_Partially_Initialized_Type (U, Include_Implicit);
+ end if;
+ end;
+
+ -- For any other type (are there any?) assume partially initialized
+
+ else
+ return True;
+ end if;
+ end Is_Partially_Initialized_Type;
+
+ ------------------------------------
+ -- Is_Potentially_Persistent_Type --
+ ------------------------------------
+
+ function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
+ Comp : Entity_Id;
+ Indx : Node_Id;
+
+ begin
+ -- For private type, test corresponding full type
+
+ if Is_Private_Type (T) then
+ return Is_Potentially_Persistent_Type (Full_View (T));
+
+ -- Scalar types are potentially persistent
+
+ elsif Is_Scalar_Type (T) then
+ return True;
+
+ -- Record type is potentially persistent if not tagged and the types of
+ -- all it components are potentially persistent, and no component has
+ -- an initialization expression.
+
+ elsif Is_Record_Type (T)
+ and then not Is_Tagged_Type (T)
+ and then not Is_Partially_Initialized_Type (T)
+ then
+ Comp := First_Component (T);
+ while Present (Comp) loop
+ if not Is_Potentially_Persistent_Type (Etype (Comp)) then
+ return False;
+ else
+ Next_Entity (Comp);
+ end if;
+ end loop;
+
+ return True;
+
+ -- Array type is potentially persistent if its component type is
+ -- potentially persistent and if all its constraints are static.
+
+ elsif Is_Array_Type (T) then
+ if not Is_Potentially_Persistent_Type (Component_Type (T)) then
+ return False;
+ end if;
+
+ Indx := First_Index (T);
+ while Present (Indx) loop
+ if not Is_OK_Static_Subtype (Etype (Indx)) then
+ return False;
+ else
+ Next_Index (Indx);
+ end if;
+ end loop;
+
+ return True;
+
+ -- All other types are not potentially persistent
+
+ else
+ return False;
+ end if;
+ end Is_Potentially_Persistent_Type;
+
+ ---------------------------------
+ -- Is_Protected_Self_Reference --
+ ---------------------------------
+
+ function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
+
+ function In_Access_Definition (N : Node_Id) return Boolean;
+ -- Returns true if N belongs to an access definition
+
+ --------------------------
+ -- In_Access_Definition --
+ --------------------------
+
+ function In_Access_Definition (N : Node_Id) return Boolean is
+ P : Node_Id;
+
+ begin
+ P := Parent (N);
+ while Present (P) loop
+ if Nkind (P) = N_Access_Definition then
+ return True;
+ end if;
+
+ P := Parent (P);
+ end loop;
+
+ return False;
+ end In_Access_Definition;
+
+ -- Start of processing for Is_Protected_Self_Reference
+
+ begin
+ -- Verify that prefix is analyzed and has the proper form. Note that
+ -- the attributes Elab_Spec, Elab_Body, Elab_Subp_Body and UET_Address,
+ -- which also produce the address of an entity, do not analyze their
+ -- prefix because they denote entities that are not necessarily visible.
+ -- Neither of them can apply to a protected type.
+
+ return Ada_Version >= Ada_2005
+ and then Is_Entity_Name (N)
+ and then Present (Entity (N))
+ and then Is_Protected_Type (Entity (N))
+ and then In_Open_Scopes (Entity (N))
+ and then not In_Access_Definition (N);
+ end Is_Protected_Self_Reference;
+
+ -----------------------------
+ -- Is_RCI_Pkg_Spec_Or_Body --
+ -----------------------------
+
+ function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
+
+ function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
+ -- Return True if the unit of Cunit is an RCI package declaration
+
+ ---------------------------
+ -- Is_RCI_Pkg_Decl_Cunit --
+ ---------------------------
+
+ function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
+ The_Unit : constant Node_Id := Unit (Cunit);
+
+ begin
+ if Nkind (The_Unit) /= N_Package_Declaration then
+ return False;
+ end if;
+
+ return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
+ end Is_RCI_Pkg_Decl_Cunit;
+
+ -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
+
+ begin
+ return Is_RCI_Pkg_Decl_Cunit (Cunit)
+ or else
+ (Nkind (Unit (Cunit)) = N_Package_Body
+ and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
+ end Is_RCI_Pkg_Spec_Or_Body;
+
+ -----------------------------------------
+ -- Is_Remote_Access_To_Class_Wide_Type --
+ -----------------------------------------
+
+ function Is_Remote_Access_To_Class_Wide_Type
+ (E : Entity_Id) return Boolean
+ is
+ begin
+ -- A remote access to class-wide type is a general access to object type
+ -- declared in the visible part of a Remote_Types or Remote_Call_
+ -- Interface unit.
+
+ return Ekind (E) = E_General_Access_Type
+ and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
+ end Is_Remote_Access_To_Class_Wide_Type;
+
+ -----------------------------------------
+ -- Is_Remote_Access_To_Subprogram_Type --
+ -----------------------------------------
+
+ function Is_Remote_Access_To_Subprogram_Type
+ (E : Entity_Id) return Boolean
+ is
+ begin
+ return (Ekind (E) = E_Access_Subprogram_Type
+ or else (Ekind (E) = E_Record_Type
+ and then Present (Corresponding_Remote_Type (E))))
+ and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
+ end Is_Remote_Access_To_Subprogram_Type;
+
+ --------------------
+ -- Is_Remote_Call --
+ --------------------
+
+ function Is_Remote_Call (N : Node_Id) return Boolean is
+ begin
+ if Nkind (N) not in N_Subprogram_Call then
+
+ -- An entry call cannot be remote
+
+ return False;
+
+ elsif Nkind (Name (N)) in N_Has_Entity
+ and then Is_Remote_Call_Interface (Entity (Name (N)))
+ then
+ -- A subprogram declared in the spec of a RCI package is remote
+
+ return True;
+
+ elsif Nkind (Name (N)) = N_Explicit_Dereference
+ and then Is_Remote_Access_To_Subprogram_Type
+ (Etype (Prefix (Name (N))))
+ then
+ -- The dereference of a RAS is a remote call
+
+ return True;
+
+ elsif Present (Controlling_Argument (N))
+ and then Is_Remote_Access_To_Class_Wide_Type
+ (Etype (Controlling_Argument (N)))
+ then
+ -- Any primitive operation call with a controlling argument of
+ -- a RACW type is a remote call.
+
+ return True;
+ end if;
+
+ -- All other calls are local calls
+
+ return False;
+ end Is_Remote_Call;
+
+ ----------------------
+ -- Is_Renamed_Entry --
+ ----------------------
+
+ function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
+ Orig_Node : Node_Id := Empty;
+ Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
+
+ function Is_Entry (Nam : Node_Id) return Boolean;
+ -- Determine whether Nam is an entry. Traverse selectors if there are
+ -- nested selected components.
+
+ --------------
+ -- Is_Entry --
+ --------------
+
+ function Is_Entry (Nam : Node_Id) return Boolean is
+ begin
+ if Nkind (Nam) = N_Selected_Component then
+ return Is_Entry (Selector_Name (Nam));
+ end if;
+
+ return Ekind (Entity (Nam)) = E_Entry;
+ end Is_Entry;
+
+ -- Start of processing for Is_Renamed_Entry
+
+ begin
+ if Present (Alias (Proc_Nam)) then
+ Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
+ end if;
+
+ -- Look for a rewritten subprogram renaming declaration
+
+ if Nkind (Subp_Decl) = N_Subprogram_Declaration
+ and then Present (Original_Node (Subp_Decl))
+ then
+ Orig_Node := Original_Node (Subp_Decl);
+ end if;
+
+ -- The rewritten subprogram is actually an entry
+
+ if Present (Orig_Node)
+ and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
+ and then Is_Entry (Name (Orig_Node))
+ then
+ return True;
+ end if;
+
+ return False;
+ end Is_Renamed_Entry;
+
+ ----------------------------
+ -- Is_Reversible_Iterator --
+ ----------------------------
+
+ function Is_Reversible_Iterator (Typ : Entity_Id) return Boolean is
+ Ifaces_List : Elist_Id;
+ Iface_Elmt : Elmt_Id;
+ Iface : Entity_Id;
+
+ begin
+ if Is_Class_Wide_Type (Typ)
+ and then Chars (Etype (Typ)) = Name_Reversible_Iterator
+ and then
+ Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Etype (Typ))))
+ then
+ return True;
+
+ elsif not Is_Tagged_Type (Typ)
+ or else not Is_Derived_Type (Typ)
+ then
+ return False;
+
+ else
+ Collect_Interfaces (Typ, Ifaces_List);
+
+ Iface_Elmt := First_Elmt (Ifaces_List);
+ while Present (Iface_Elmt) loop
+ Iface := Node (Iface_Elmt);
+ if Chars (Iface) = Name_Reversible_Iterator
+ and then
+ Is_Predefined_File_Name
+ (Unit_File_Name (Get_Source_Unit (Iface)))
+ then
+ return True;
+ end if;
+
+ Next_Elmt (Iface_Elmt);
+ end loop;
+ end if;
+
+ return False;
+ end Is_Reversible_Iterator;
+
+ ----------------------
+ -- Is_Selector_Name --
+ ----------------------
+
+ function Is_Selector_Name (N : Node_Id) return Boolean is
+ begin
+ if not Is_List_Member (N) then
+ declare
+ P : constant Node_Id := Parent (N);
+ K : constant Node_Kind := Nkind (P);
+ begin
+ return
+ (K = N_Expanded_Name or else
+ K = N_Generic_Association or else
+ K = N_Parameter_Association or else
+ K = N_Selected_Component)
+ and then Selector_Name (P) = N;
+ end;
+
+ else
+ declare
+ L : constant List_Id := List_Containing (N);
+ P : constant Node_Id := Parent (L);
+ begin
+ return (Nkind (P) = N_Discriminant_Association
+ and then Selector_Names (P) = L)
+ or else
+ (Nkind (P) = N_Component_Association
+ and then Choices (P) = L);
+ end;
+ end if;
+ end Is_Selector_Name;
+
+ ----------------------------------
+ -- Is_SPARK_Initialization_Expr --
+ ----------------------------------
+
+ function Is_SPARK_Initialization_Expr (N : Node_Id) return Boolean is
+ Is_Ok : Boolean;
+ Expr : Node_Id;
+ Comp_Assn : Node_Id;
+ Orig_N : constant Node_Id := Original_Node (N);
+
+ begin
+ Is_Ok := True;
+
+ if not Comes_From_Source (Orig_N) then
+ goto Done;
+ end if;
+
+ pragma Assert (Nkind (Orig_N) in N_Subexpr);
+
+ case Nkind (Orig_N) is
+ when N_Character_Literal |
+ N_Integer_Literal |
+ N_Real_Literal |
+ N_String_Literal =>
+ null;
+
+ when N_Identifier |
+ N_Expanded_Name =>
+ if Is_Entity_Name (Orig_N)
+ and then Present (Entity (Orig_N)) -- needed in some cases
+ then
+ case Ekind (Entity (Orig_N)) is
+ when E_Constant |
+ E_Enumeration_Literal |
+ E_Named_Integer |
+ E_Named_Real =>
+ null;
+ when others =>
+ if Is_Type (Entity (Orig_N)) then
+ null;
+ else
+ Is_Ok := False;
+ end if;
+ end case;
+ end if;
+
+ when N_Qualified_Expression |
+ N_Type_Conversion =>
+ Is_Ok := Is_SPARK_Initialization_Expr (Expression (Orig_N));
+
+ when N_Unary_Op =>
+ Is_Ok := Is_SPARK_Initialization_Expr (Right_Opnd (Orig_N));
+
+ when N_Binary_Op |
+ N_Short_Circuit |
+ N_Membership_Test =>
+ Is_Ok := Is_SPARK_Initialization_Expr (Left_Opnd (Orig_N))
+ and then Is_SPARK_Initialization_Expr (Right_Opnd (Orig_N));
+
+ when N_Aggregate |
+ N_Extension_Aggregate =>
+ if Nkind (Orig_N) = N_Extension_Aggregate then
+ Is_Ok := Is_SPARK_Initialization_Expr (Ancestor_Part (Orig_N));
+ end if;
+
+ Expr := First (Expressions (Orig_N));
+ while Present (Expr) loop
+ if not Is_SPARK_Initialization_Expr (Expr) then
+ Is_Ok := False;
+ goto Done;
+ end if;
+
+ Next (Expr);
+ end loop;
+
+ Comp_Assn := First (Component_Associations (Orig_N));
+ while Present (Comp_Assn) loop
+ Expr := Expression (Comp_Assn);
+ if Present (Expr) -- needed for box association
+ and then not Is_SPARK_Initialization_Expr (Expr)
+ then
+ Is_Ok := False;
+ goto Done;
+ end if;
+
+ Next (Comp_Assn);
+ end loop;
+
+ when N_Attribute_Reference =>
+ if Nkind (Prefix (Orig_N)) in N_Subexpr then
+ Is_Ok := Is_SPARK_Initialization_Expr (Prefix (Orig_N));
+ end if;
+
+ Expr := First (Expressions (Orig_N));
+ while Present (Expr) loop
+ if not Is_SPARK_Initialization_Expr (Expr) then
+ Is_Ok := False;
+ goto Done;
+ end if;
+
+ Next (Expr);
+ end loop;
+
+ -- Selected components might be expanded named not yet resolved, so
+ -- default on the safe side. (Eg on sparklex.ads)
+
+ when N_Selected_Component =>
+ null;
+
+ when others =>
+ Is_Ok := False;
+ end case;
+
+ <<Done>>
+ return Is_Ok;
+ end Is_SPARK_Initialization_Expr;
+
+ -------------------------------
+ -- Is_SPARK_Object_Reference --
+ -------------------------------
+
+ function Is_SPARK_Object_Reference (N : Node_Id) return Boolean is
+ begin
+ if Is_Entity_Name (N) then
+ return Present (Entity (N))
+ and then
+ (Ekind_In (Entity (N), E_Constant, E_Variable)
+ or else Ekind (Entity (N)) in Formal_Kind);
+
+ else
+ case Nkind (N) is
+ when N_Selected_Component =>
+ return Is_SPARK_Object_Reference (Prefix (N));
+
+ when others =>
+ return False;
+ end case;
+ end if;
+ end Is_SPARK_Object_Reference;
+
+ ------------------
+ -- Is_Statement --
+ ------------------
+
+ function Is_Statement (N : Node_Id) return Boolean is
+ begin
+ return
+ Nkind (N) in N_Statement_Other_Than_Procedure_Call
+ or else Nkind (N) = N_Procedure_Call_Statement;
+ end Is_Statement;
+
+ --------------------------------------------------
+ -- Is_Subprogram_Stub_Without_Prior_Declaration --
+ --------------------------------------------------
+
+ function Is_Subprogram_Stub_Without_Prior_Declaration
+ (N : Node_Id) return Boolean
+ is
+ begin
+ -- A subprogram stub without prior declaration serves as declaration for
+ -- the actual subprogram body. As such, it has an attached defining
+ -- entity of E_[Generic_]Function or E_[Generic_]Procedure.
+
+ return Nkind (N) = N_Subprogram_Body_Stub
+ and then Ekind (Defining_Entity (N)) /= E_Subprogram_Body;
+ end Is_Subprogram_Stub_Without_Prior_Declaration;
+
+ ---------------------------------
+ -- Is_Synchronized_Tagged_Type --
+ ---------------------------------
+
+ function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
+ Kind : constant Entity_Kind := Ekind (Base_Type (E));
+
+ begin
+ -- A task or protected type derived from an interface is a tagged type.
+ -- Such a tagged type is called a synchronized tagged type, as are
+ -- synchronized interfaces and private extensions whose declaration
+ -- includes the reserved word synchronized.
+
+ return (Is_Tagged_Type (E)
+ and then (Kind = E_Task_Type
+ or else Kind = E_Protected_Type))
+ or else
+ (Is_Interface (E)
+ and then Is_Synchronized_Interface (E))
+ or else
+ (Ekind (E) = E_Record_Type_With_Private
+ and then Nkind (Parent (E)) = N_Private_Extension_Declaration
+ and then (Synchronized_Present (Parent (E))
+ or else Is_Synchronized_Interface (Etype (E))));
+ end Is_Synchronized_Tagged_Type;
+
+ -----------------
+ -- Is_Transfer --
+ -----------------
+
+ function Is_Transfer (N : Node_Id) return Boolean is
+ Kind : constant Node_Kind := Nkind (N);
+
+ begin
+ if Kind = N_Simple_Return_Statement
+ or else
+ Kind = N_Extended_Return_Statement
+ or else
+ Kind = N_Goto_Statement
+ or else
+ Kind = N_Raise_Statement
+ or else
+ Kind = N_Requeue_Statement
+ then
+ return True;
+
+ elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
+ and then No (Condition (N))
+ then
+ return True;
+
+ elsif Kind = N_Procedure_Call_Statement
+ and then Is_Entity_Name (Name (N))
+ and then Present (Entity (Name (N)))
+ and then No_Return (Entity (Name (N)))
+ then
+ return True;
+
+ elsif Nkind (Original_Node (N)) = N_Raise_Statement then
+ return True;
+
+ else
+ return False;
+ end if;
+ end Is_Transfer;
+
+ -------------
+ -- Is_True --
+ -------------
+
+ function Is_True (U : Uint) return Boolean is
+ begin
+ return (U /= 0);
+ end Is_True;
+
+ -------------------------------
+ -- Is_Universal_Numeric_Type --
+ -------------------------------
+
+ function Is_Universal_Numeric_Type (T : Entity_Id) return Boolean is
+ begin
+ return T = Universal_Integer or else T = Universal_Real;
+ end Is_Universal_Numeric_Type;
+
+ -------------------
+ -- Is_Value_Type --
+ -------------------
+
+ function Is_Value_Type (T : Entity_Id) return Boolean is
+ begin
+ return VM_Target = CLI_Target
+ and then Nkind (T) in N_Has_Chars
+ and then Chars (T) /= No_Name
+ and then Get_Name_String (Chars (T)) = "valuetype";
+ end Is_Value_Type;
+
+ ---------------------
+ -- Is_VMS_Operator --
+ ---------------------
+
+ function Is_VMS_Operator (Op : Entity_Id) return Boolean is
+ begin
+ -- The VMS operators are declared in a child of System that is loaded
+ -- through pragma Extend_System. In some rare cases a program is run
+ -- with this extension but without indicating that the target is VMS.
+
+ return Ekind (Op) = E_Function
+ and then Is_Intrinsic_Subprogram (Op)
+ and then
+ ((Present_System_Aux
+ and then Scope (Op) = System_Aux_Id)
+ or else
+ (True_VMS_Target
+ and then Scope (Scope (Op)) = RTU_Entity (System)));
+ end Is_VMS_Operator;
+
+ -----------------
+ -- Is_Variable --
+ -----------------
+
+ function Is_Variable
+ (N : Node_Id;
+ Use_Original_Node : Boolean := True) return Boolean
+ is
+ Orig_Node : Node_Id;
+
+ function In_Protected_Function (E : Entity_Id) return Boolean;
+ -- Within a protected function, the private components of the enclosing
+ -- protected type are constants. A function nested within a (protected)
+ -- procedure is not itself protected.
+
+ function Is_Variable_Prefix (P : Node_Id) return Boolean;
+ -- Prefixes can involve implicit dereferences, in which case we must
+ -- test for the case of a reference of a constant access type, which can
+ -- can never be a variable.
+
+ ---------------------------
+ -- In_Protected_Function --
+ ---------------------------
+
+ function In_Protected_Function (E : Entity_Id) return Boolean is
+ Prot : constant Entity_Id := Scope (E);
+ S : Entity_Id;
+
+ begin
+ if not Is_Protected_Type (Prot) then
+ return False;
+ else
+ S := Current_Scope;
+ while Present (S) and then S /= Prot loop
+ if Ekind (S) = E_Function and then Scope (S) = Prot then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end if;
+ end In_Protected_Function;
+
+ ------------------------
+ -- Is_Variable_Prefix --
+ ------------------------
+
+ function Is_Variable_Prefix (P : Node_Id) return Boolean is
+ begin
+ if Is_Access_Type (Etype (P)) then
+ return not Is_Access_Constant (Root_Type (Etype (P)));
+
+ -- For the case of an indexed component whose prefix has a packed
+ -- array type, the prefix has been rewritten into a type conversion.
+ -- Determine variable-ness from the converted expression.
+
+ elsif Nkind (P) = N_Type_Conversion
+ and then not Comes_From_Source (P)
+ and then Is_Array_Type (Etype (P))
+ and then Is_Packed (Etype (P))
+ then
+ return Is_Variable (Expression (P));
+
+ else
+ return Is_Variable (P);
+ end if;
+ end Is_Variable_Prefix;
+
+ -- Start of processing for Is_Variable
+
+ begin
+ -- Check if we perform the test on the original node since this may be a
+ -- test of syntactic categories which must not be disturbed by whatever
+ -- rewriting might have occurred. For example, an aggregate, which is
+ -- certainly NOT a variable, could be turned into a variable by
+ -- expansion.
+
+ if Use_Original_Node then
+ Orig_Node := Original_Node (N);
+ else
+ Orig_Node := N;
+ end if;
+
+ -- Definitely OK if Assignment_OK is set. Since this is something that
+ -- only gets set for expanded nodes, the test is on N, not Orig_Node.
+
+ if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
+ return True;
+
+ -- Normally we go to the original node, but there is one exception where
+ -- we use the rewritten node, namely when it is an explicit dereference.
+ -- The generated code may rewrite a prefix which is an access type with
+ -- an explicit dereference. The dereference is a variable, even though
+ -- the original node may not be (since it could be a constant of the
+ -- access type).
+
+ -- In Ada 2005 we have a further case to consider: the prefix may be a
+ -- function call given in prefix notation. The original node appears to
+ -- be a selected component, but we need to examine the call.
+
+ elsif Nkind (N) = N_Explicit_Dereference
+ and then Nkind (Orig_Node) /= N_Explicit_Dereference
+ and then Present (Etype (Orig_Node))
+ and then Is_Access_Type (Etype (Orig_Node))
+ then
+ -- Note that if the prefix is an explicit dereference that does not
+ -- come from source, we must check for a rewritten function call in
+ -- prefixed notation before other forms of rewriting, to prevent a
+ -- compiler crash.
+
+ return
+ (Nkind (Orig_Node) = N_Function_Call
+ and then not Is_Access_Constant (Etype (Prefix (N))))
+ or else
+ Is_Variable_Prefix (Original_Node (Prefix (N)));
+
+ -- in Ada 2012, the dereference may have been added for a type with
+ -- a declared implicit dereference aspect.
+
+ elsif Nkind (N) = N_Explicit_Dereference
+ and then Present (Etype (Orig_Node))
+ and then Ada_Version >= Ada_2012
+ and then Has_Implicit_Dereference (Etype (Orig_Node))
+ then
+ return True;
+
+ -- A function call is never a variable
+
+ elsif Nkind (N) = N_Function_Call then
+ return False;
+
+ -- All remaining checks use the original node
+
+ elsif Is_Entity_Name (Orig_Node)
+ and then Present (Entity (Orig_Node))
+ then
+ declare
+ E : constant Entity_Id := Entity (Orig_Node);
+ K : constant Entity_Kind := Ekind (E);
+
+ begin
+ return (K = E_Variable
+ and then Nkind (Parent (E)) /= N_Exception_Handler)
+ or else (K = E_Component
+ and then not In_Protected_Function (E))
+ or else K = E_Out_Parameter
+ or else K = E_In_Out_Parameter
+ or else K = E_Generic_In_Out_Parameter
+
+ -- Current instance of type
+
+ or else (Is_Type (E) and then In_Open_Scopes (E))
+ or else (Is_Incomplete_Or_Private_Type (E)
+ and then In_Open_Scopes (Full_View (E)));
+ end;
+
+ else
+ case Nkind (Orig_Node) is
+ when N_Indexed_Component | N_Slice =>
+ return Is_Variable_Prefix (Prefix (Orig_Node));
+
+ when N_Selected_Component =>
+ return Is_Variable_Prefix (Prefix (Orig_Node))
+ and then Is_Variable (Selector_Name (Orig_Node));
+
+ -- For an explicit dereference, the type of the prefix cannot
+ -- be an access to constant or an access to subprogram.
+
+ when N_Explicit_Dereference =>
+ declare
+ Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
+ begin
+ return Is_Access_Type (Typ)
+ and then not Is_Access_Constant (Root_Type (Typ))
+ and then Ekind (Typ) /= E_Access_Subprogram_Type;
+ end;
+
+ -- The type conversion is the case where we do not deal with the
+ -- context dependent special case of an actual parameter. Thus
+ -- the type conversion is only considered a variable for the
+ -- purposes of this routine if the target type is tagged. However,
+ -- a type conversion is considered to be a variable if it does not
+ -- come from source (this deals for example with the conversions
+ -- of expressions to their actual subtypes).
+
+ when N_Type_Conversion =>
+ return Is_Variable (Expression (Orig_Node))
+ and then
+ (not Comes_From_Source (Orig_Node)
+ or else
+ (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
+ and then
+ Is_Tagged_Type (Etype (Expression (Orig_Node)))));
+
+ -- GNAT allows an unchecked type conversion as a variable. This
+ -- only affects the generation of internal expanded code, since
+ -- calls to instantiations of Unchecked_Conversion are never
+ -- considered variables (since they are function calls).
+
+ when N_Unchecked_Type_Conversion =>
+ return Is_Variable (Expression (Orig_Node));
+
+ when others =>
+ return False;
+ end case;
+ end if;
+ end Is_Variable;
+
+ ---------------------------
+ -- Is_Visibly_Controlled --
+ ---------------------------
+
+ function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
+ Root : constant Entity_Id := Root_Type (T);
+ begin
+ return Chars (Scope (Root)) = Name_Finalization
+ and then Chars (Scope (Scope (Root))) = Name_Ada
+ and then Scope (Scope (Scope (Root))) = Standard_Standard;
+ end Is_Visibly_Controlled;
+
+ ------------------------
+ -- Is_Volatile_Object --
+ ------------------------
+
+ function Is_Volatile_Object (N : Node_Id) return Boolean is
+
+ function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
+ -- Determines if given object has volatile components
+
+ function Is_Volatile_Prefix (N : Node_Id) return Boolean;
+ -- If prefix is an implicit dereference, examine designated type
+
+ ------------------------
+ -- Is_Volatile_Prefix --
+ ------------------------
+
+ function Is_Volatile_Prefix (N : Node_Id) return Boolean is
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ if Is_Access_Type (Typ) then
+ declare
+ Dtyp : constant Entity_Id := Designated_Type (Typ);
+
+ begin
+ return Is_Volatile (Dtyp)
+ or else Has_Volatile_Components (Dtyp);
+ end;
+
+ else
+ return Object_Has_Volatile_Components (N);
+ end if;
+ end Is_Volatile_Prefix;
+
+ ------------------------------------
+ -- Object_Has_Volatile_Components --
+ ------------------------------------
+
+ function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ if Is_Volatile (Typ)
+ or else Has_Volatile_Components (Typ)
+ then
+ return True;
+
+ elsif Is_Entity_Name (N)
+ and then (Has_Volatile_Components (Entity (N))
+ or else Is_Volatile (Entity (N)))
+ then
+ return True;
+
+ elsif Nkind (N) = N_Indexed_Component
+ or else Nkind (N) = N_Selected_Component
+ then
+ return Is_Volatile_Prefix (Prefix (N));
+
+ else
+ return False;
+ end if;
+ end Object_Has_Volatile_Components;
+
+ -- Start of processing for Is_Volatile_Object
+
+ begin
+ if Is_Volatile (Etype (N))
+ or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
+ then
+ return True;
+
+ elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component)
+ and then Is_Volatile_Prefix (Prefix (N))
+ then
+ return True;
+
+ elsif Nkind (N) = N_Selected_Component
+ and then Is_Volatile (Entity (Selector_Name (N)))
+ then
+ return True;
+
+ else
+ return False;
+ end if;
+ end Is_Volatile_Object;
+
+ ---------------------------
+ -- Itype_Has_Declaration --
+ ---------------------------
+
+ function Itype_Has_Declaration (Id : Entity_Id) return Boolean is
+ begin
+ pragma Assert (Is_Itype (Id));
+ return Present (Parent (Id))
+ and then Nkind_In (Parent (Id), N_Full_Type_Declaration,
+ N_Subtype_Declaration)
+ and then Defining_Entity (Parent (Id)) = Id;
+ end Itype_Has_Declaration;
+
+ -------------------------
+ -- Kill_Current_Values --
+ -------------------------
+
+ procedure Kill_Current_Values
+ (Ent : Entity_Id;
+ Last_Assignment_Only : Boolean := False)
+ is
+ begin
+ -- ??? do we have to worry about clearing cached checks?
+
+ if Is_Assignable (Ent) then
+ Set_Last_Assignment (Ent, Empty);
+ end if;
+
+ if Is_Object (Ent) then
+ if not Last_Assignment_Only then
+ Kill_Checks (Ent);
+ Set_Current_Value (Ent, Empty);
+
+ if not Can_Never_Be_Null (Ent) then
+ Set_Is_Known_Non_Null (Ent, False);
+ end if;
+
+ Set_Is_Known_Null (Ent, False);
+
+ -- Reset Is_Known_Valid unless type is always valid, or if we have
+ -- a loop parameter (loop parameters are always valid, since their
+ -- bounds are defined by the bounds given in the loop header).
+
+ if not Is_Known_Valid (Etype (Ent))
+ and then Ekind (Ent) /= E_Loop_Parameter
+ then
+ Set_Is_Known_Valid (Ent, False);
+ end if;
+ end if;
+ end if;
+ end Kill_Current_Values;
+
+ procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
+ S : Entity_Id;
+
+ procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
+ -- Clear current value for entity E and all entities chained to E
+
+ ------------------------------------------
+ -- Kill_Current_Values_For_Entity_Chain --
+ ------------------------------------------
+
+ procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
+ Ent : Entity_Id;
+ begin
+ Ent := E;
+ while Present (Ent) loop
+ Kill_Current_Values (Ent, Last_Assignment_Only);
+ Next_Entity (Ent);
+ end loop;
+ end Kill_Current_Values_For_Entity_Chain;
+
+ -- Start of processing for Kill_Current_Values
+
+ begin
+ -- Kill all saved checks, a special case of killing saved values
+
+ if not Last_Assignment_Only then
+ Kill_All_Checks;
+ end if;
+
+ -- Loop through relevant scopes, which includes the current scope and
+ -- any parent scopes if the current scope is a block or a package.
+
+ S := Current_Scope;
+ Scope_Loop : loop
+
+ -- Clear current values of all entities in current scope
+
+ Kill_Current_Values_For_Entity_Chain (First_Entity (S));
+
+ -- If scope is a package, also clear current values of all private
+ -- entities in the scope.
+
+ if Is_Package_Or_Generic_Package (S)
+ or else Is_Concurrent_Type (S)
+ then
+ Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
+ end if;
+
+ -- If this is a not a subprogram, deal with parents
+
+ if not Is_Subprogram (S) then
+ S := Scope (S);
+ exit Scope_Loop when S = Standard_Standard;
+ else
+ exit Scope_Loop;
+ end if;
+ end loop Scope_Loop;
+ end Kill_Current_Values;
+
+ --------------------------
+ -- Kill_Size_Check_Code --
+ --------------------------
+
+ procedure Kill_Size_Check_Code (E : Entity_Id) is
+ begin
+ if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
+ and then Present (Size_Check_Code (E))
+ then
+ Remove (Size_Check_Code (E));
+ Set_Size_Check_Code (E, Empty);
+ end if;
+ end Kill_Size_Check_Code;
+
+ --------------------------
+ -- Known_To_Be_Assigned --
+ --------------------------
+
+ function Known_To_Be_Assigned (N : Node_Id) return Boolean is
+ P : constant Node_Id := Parent (N);
+
+ begin
+ case Nkind (P) is
+
+ -- Test left side of assignment
+
+ when N_Assignment_Statement =>
+ return N = Name (P);
+
+ -- Function call arguments are never lvalues
+
+ when N_Function_Call =>
+ return False;
+
+ -- Positional parameter for procedure or accept call
+
+ when N_Procedure_Call_Statement |
+ N_Accept_Statement
+ =>
+ declare
+ Proc : Entity_Id;
+ Form : Entity_Id;
+ Act : Node_Id;
+
+ begin
+ Proc := Get_Subprogram_Entity (P);
+
+ if No (Proc) then
+ return False;
+ end if;
+
+ -- If we are not a list member, something is strange, so
+ -- be conservative and return False.
+
+ if not Is_List_Member (N) then
+ return False;
+ end if;
+
+ -- We are going to find the right formal by stepping forward
+ -- through the formals, as we step backwards in the actuals.
+
+ Form := First_Formal (Proc);
+ Act := N;
+ loop
+ -- If no formal, something is weird, so be conservative
+ -- and return False.
+
+ if No (Form) then
+ return False;
+ end if;
+
+ Prev (Act);
+ exit when No (Act);
+ Next_Formal (Form);
+ end loop;
+
+ return Ekind (Form) /= E_In_Parameter;
+ end;
+
+ -- Named parameter for procedure or accept call
+
+ when N_Parameter_Association =>
+ declare
+ Proc : Entity_Id;
+ Form : Entity_Id;
+
+ begin
+ Proc := Get_Subprogram_Entity (Parent (P));
+
+ if No (Proc) then
+ return False;
+ end if;
+
+ -- Loop through formals to find the one that matches
+
+ Form := First_Formal (Proc);
+ loop
+ -- If no matching formal, that's peculiar, some kind of
+ -- previous error, so return False to be conservative.
+ -- Actually this also happens in legal code in the case
+ -- where P is a parameter association for an Extra_Formal???
+
+ if No (Form) then
+ return False;
+ end if;
+
+ -- Else test for match
+
+ if Chars (Form) = Chars (Selector_Name (P)) then
+ return Ekind (Form) /= E_In_Parameter;
+ end if;
+
+ Next_Formal (Form);
+ end loop;
+ end;
+
+ -- Test for appearing in a conversion that itself appears
+ -- in an lvalue context, since this should be an lvalue.
+
+ when N_Type_Conversion =>
+ return Known_To_Be_Assigned (P);
+
+ -- All other references are definitely not known to be modifications
+
+ when others =>
+ return False;
+
+ end case;
+ end Known_To_Be_Assigned;
+
+ ---------------------------
+ -- Last_Source_Statement --
+ ---------------------------
+
+ function Last_Source_Statement (HSS : Node_Id) return Node_Id is
+ N : Node_Id;
+
+ begin
+ N := Last (Statements (HSS));
+ while Present (N) loop
+ exit when Comes_From_Source (N);
+ Prev (N);
+ end loop;
+
+ return N;
+ end Last_Source_Statement;
+
+ ----------------------------------
+ -- Matching_Static_Array_Bounds --
+ ----------------------------------
+
+ function Matching_Static_Array_Bounds
+ (L_Typ : Node_Id;
+ R_Typ : Node_Id) return Boolean
+ is
+ L_Ndims : constant Nat := Number_Dimensions (L_Typ);
+ R_Ndims : constant Nat := Number_Dimensions (R_Typ);
+
+ L_Index : Node_Id;
+ R_Index : Node_Id;
+ L_Low : Node_Id;
+ L_High : Node_Id;
+ L_Len : Uint;
+ R_Low : Node_Id;
+ R_High : Node_Id;
+ R_Len : Uint;
+
+ begin
+ if L_Ndims /= R_Ndims then
+ return False;
+ end if;
+
+ -- Unconstrained types do not have static bounds
+
+ if not Is_Constrained (L_Typ) or else not Is_Constrained (R_Typ) then
+ return False;
+ end if;
+
+ -- First treat specially the first dimension, as the lower bound and
+ -- length of string literals are not stored like those of arrays.
+
+ if Ekind (L_Typ) = E_String_Literal_Subtype then
+ L_Low := String_Literal_Low_Bound (L_Typ);
+ L_Len := String_Literal_Length (L_Typ);
+ else
+ L_Index := First_Index (L_Typ);
+ Get_Index_Bounds (L_Index, L_Low, L_High);
+
+ if Is_OK_Static_Expression (L_Low)
+ and then Is_OK_Static_Expression (L_High)
+ then
+ if Expr_Value (L_High) < Expr_Value (L_Low) then
+ L_Len := Uint_0;
+ else
+ L_Len := (Expr_Value (L_High) - Expr_Value (L_Low)) + 1;
+ end if;
+ else
+ return False;
+ end if;
+ end if;
+
+ if Ekind (R_Typ) = E_String_Literal_Subtype then
+ R_Low := String_Literal_Low_Bound (R_Typ);
+ R_Len := String_Literal_Length (R_Typ);
+ else
+ R_Index := First_Index (R_Typ);
+ Get_Index_Bounds (R_Index, R_Low, R_High);
+
+ if Is_OK_Static_Expression (R_Low)
+ and then Is_OK_Static_Expression (R_High)
+ then
+ if Expr_Value (R_High) < Expr_Value (R_Low) then
+ R_Len := Uint_0;
+ else
+ R_Len := (Expr_Value (R_High) - Expr_Value (R_Low)) + 1;
+ end if;
+ else
+ return False;
+ end if;
+ end if;
+
+ if Is_OK_Static_Expression (L_Low)
+ and then Is_OK_Static_Expression (R_Low)
+ and then Expr_Value (L_Low) = Expr_Value (R_Low)
+ and then L_Len = R_Len
+ then
+ null;
+ else
+ return False;
+ end if;
+
+ -- Then treat all other dimensions
+
+ for Indx in 2 .. L_Ndims loop
+ Next (L_Index);
+ Next (R_Index);
+
+ Get_Index_Bounds (L_Index, L_Low, L_High);
+ Get_Index_Bounds (R_Index, R_Low, R_High);
+
+ if Is_OK_Static_Expression (L_Low)
+ and then Is_OK_Static_Expression (L_High)
+ and then Is_OK_Static_Expression (R_Low)
+ and then Is_OK_Static_Expression (R_High)
+ and then Expr_Value (L_Low) = Expr_Value (R_Low)
+ and then Expr_Value (L_High) = Expr_Value (R_High)
+ then
+ null;
+ else
+ return False;
+ end if;
+ end loop;
+
+ -- If we fall through the loop, all indexes matched
+
+ return True;
+ end Matching_Static_Array_Bounds;
+
+ -------------------
+ -- May_Be_Lvalue --
+ -------------------
+
+ function May_Be_Lvalue (N : Node_Id) return Boolean is
+ P : constant Node_Id := Parent (N);
+
+ begin
+ case Nkind (P) is
+
+ -- Test left side of assignment
+
+ when N_Assignment_Statement =>
+ return N = Name (P);
+
+ -- Test prefix of component or attribute. Note that the prefix of an
+ -- explicit or implicit dereference cannot be an l-value.
+
+ when N_Attribute_Reference =>
+ return N = Prefix (P)
+ and then Name_Implies_Lvalue_Prefix (Attribute_Name (P));
+
+ -- For an expanded name, the name is an lvalue if the expanded name
+ -- is an lvalue, but the prefix is never an lvalue, since it is just
+ -- the scope where the name is found.
+
+ when N_Expanded_Name =>
+ if N = Prefix (P) then
+ return May_Be_Lvalue (P);
+ else
+ return False;
+ end if;
+
+ -- For a selected component A.B, A is certainly an lvalue if A.B is.
+ -- B is a little interesting, if we have A.B := 3, there is some
+ -- discussion as to whether B is an lvalue or not, we choose to say
+ -- it is. Note however that A is not an lvalue if it is of an access
+ -- type since this is an implicit dereference.
+
+ when N_Selected_Component =>
+ if N = Prefix (P)
+ and then Present (Etype (N))
+ and then Is_Access_Type (Etype (N))
+ then
+ return False;
+ else
+ return May_Be_Lvalue (P);
+ end if;
+
+ -- For an indexed component or slice, the index or slice bounds is
+ -- never an lvalue. The prefix is an lvalue if the indexed component
+ -- or slice is an lvalue, except if it is an access type, where we
+ -- have an implicit dereference.
+
+ when N_Indexed_Component | N_Slice =>
+ if N /= Prefix (P)
+ or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
+ then
+ return False;
+ else
+ return May_Be_Lvalue (P);
+ end if;
+
+ -- Prefix of a reference is an lvalue if the reference is an lvalue
+
+ when N_Reference =>
+ return May_Be_Lvalue (P);
+
+ -- Prefix of explicit dereference is never an lvalue
+
+ when N_Explicit_Dereference =>
+ return False;
+
+ -- Positional parameter for subprogram, entry, or accept call.
+ -- In older versions of Ada function call arguments are never
+ -- lvalues. In Ada 2012 functions can have in-out parameters.
+
+ when N_Subprogram_Call |
+ N_Entry_Call_Statement |
+ N_Accept_Statement
+ =>
+ if Nkind (P) = N_Function_Call and then Ada_Version < Ada_2012 then
+ return False;
+ end if;
+
+ -- The following mechanism is clumsy and fragile. A single flag
+ -- set in Resolve_Actuals would be preferable ???
+
+ declare
+ Proc : Entity_Id;
+ Form : Entity_Id;
+ Act : Node_Id;
+
+ begin
+ Proc := Get_Subprogram_Entity (P);
+
+ if No (Proc) then
+ return True;
+ end if;
+
+ -- If we are not a list member, something is strange, so be
+ -- conservative and return True.
+
+ if not Is_List_Member (N) then
+ return True;
+ end if;
+
+ -- We are going to find the right formal by stepping forward
+ -- through the formals, as we step backwards in the actuals.
+
+ Form := First_Formal (Proc);
+ Act := N;
+ loop
+ -- If no formal, something is weird, so be conservative and
+ -- return True.
+
+ if No (Form) then
+ return True;
+ end if;
+
+ Prev (Act);
+ exit when No (Act);
+ Next_Formal (Form);
+ end loop;
+
+ return Ekind (Form) /= E_In_Parameter;
+ end;
+
+ -- Named parameter for procedure or accept call
+
+ when N_Parameter_Association =>
+ declare
+ Proc : Entity_Id;
+ Form : Entity_Id;
+
+ begin
+ Proc := Get_Subprogram_Entity (Parent (P));
+
+ if No (Proc) then
+ return True;
+ end if;
+
+ -- Loop through formals to find the one that matches
+
+ Form := First_Formal (Proc);
+ loop
+ -- If no matching formal, that's peculiar, some kind of
+ -- previous error, so return True to be conservative.
+ -- Actually happens with legal code for an unresolved call
+ -- where we may get the wrong homonym???
+
+ if No (Form) then
+ return True;
+ end if;
+
+ -- Else test for match
+
+ if Chars (Form) = Chars (Selector_Name (P)) then
+ return Ekind (Form) /= E_In_Parameter;
+ end if;
+
+ Next_Formal (Form);
+ end loop;
+ end;
+
+ -- Test for appearing in a conversion that itself appears in an
+ -- lvalue context, since this should be an lvalue.
+
+ when N_Type_Conversion =>
+ return May_Be_Lvalue (P);
+
+ -- Test for appearance in object renaming declaration
+
+ when N_Object_Renaming_Declaration =>
+ return True;
+
+ -- All other references are definitely not lvalues
+
+ when others =>
+ return False;
+
+ end case;
+ end May_Be_Lvalue;
+
+ -----------------------
+ -- Mark_Coextensions --
+ -----------------------
+
+ procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
+ Is_Dynamic : Boolean;
+ -- Indicates whether the context causes nested coextensions to be
+ -- dynamic or static
+
+ function Mark_Allocator (N : Node_Id) return Traverse_Result;
+ -- Recognize an allocator node and label it as a dynamic coextension
+
+ --------------------
+ -- Mark_Allocator --
+ --------------------
+
+ function Mark_Allocator (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) = N_Allocator then
+ if Is_Dynamic then
+ Set_Is_Dynamic_Coextension (N);
+
+ -- If the allocator expression is potentially dynamic, it may
+ -- be expanded out of order and require dynamic allocation
+ -- anyway, so we treat the coextension itself as dynamic.
+ -- Potential optimization ???
+
+ elsif Nkind (Expression (N)) = N_Qualified_Expression
+ and then Nkind (Expression (Expression (N))) = N_Op_Concat
+ then
+ Set_Is_Dynamic_Coextension (N);
+ else
+ Set_Is_Static_Coextension (N);
+ end if;
+ end if;
+
+ return OK;
+ end Mark_Allocator;
+
+ procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
+
+ -- Start of processing Mark_Coextensions
+
+ begin
+ case Nkind (Context_Nod) is
+
+ -- Comment here ???
+
+ when N_Assignment_Statement =>
+ Is_Dynamic := Nkind (Expression (Context_Nod)) = N_Allocator;
+
+ -- An allocator that is a component of a returned aggregate
+ -- must be dynamic.
+
+ when N_Simple_Return_Statement =>
+ declare
+ Expr : constant Node_Id := Expression (Context_Nod);
+ begin
+ Is_Dynamic :=
+ Nkind (Expr) = N_Allocator
+ or else
+ (Nkind (Expr) = N_Qualified_Expression
+ and then Nkind (Expression (Expr)) = N_Aggregate);
+ end;
+
+ -- An alloctor within an object declaration in an extended return
+ -- statement is of necessity dynamic.
+
+ when N_Object_Declaration =>
+ Is_Dynamic := Nkind (Root_Nod) = N_Allocator
+ or else
+ Nkind (Parent (Context_Nod)) = N_Extended_Return_Statement;
+
+ -- This routine should not be called for constructs which may not
+ -- contain coextensions.
+
+ when others =>
+ raise Program_Error;
+ end case;
+
+ Mark_Allocators (Root_Nod);
+ end Mark_Coextensions;
+
+ -----------------
+ -- Must_Inline --
+ -----------------
+
+ function Must_Inline (Subp : Entity_Id) return Boolean is
+ begin
+ return
+ (Optimization_Level = 0
+
+ -- AAMP and VM targets have no support for inlining in the backend.
+ -- Hence we do as much inlining as possible in the front end.
+
+ or else AAMP_On_Target
+ or else VM_Target /= No_VM)
+ and then Has_Pragma_Inline (Subp)
+ and then (Has_Pragma_Inline_Always (Subp) or else Front_End_Inlining);
+ end Must_Inline;
+
+ ----------------------
+ -- Needs_One_Actual --
+ ----------------------
+
+ function Needs_One_Actual (E : Entity_Id) return Boolean is
+ Formal : Entity_Id;
+
+ begin
+ -- Ada 2005 or later, and formals present
+
+ if Ada_Version >= Ada_2005 and then Present (First_Formal (E)) then
+ Formal := Next_Formal (First_Formal (E));
+ while Present (Formal) loop
+ if No (Default_Value (Formal)) then
+ return False;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+
+ return True;
+
+ -- Ada 83/95 or no formals
+
+ else
+ return False;
+ end if;
+ end Needs_One_Actual;
+
+ ------------------------
+ -- New_Copy_List_Tree --
+ ------------------------
+
+ function New_Copy_List_Tree (List : List_Id) return List_Id is
+ NL : List_Id;
+ E : Node_Id;
+
+ begin
+ if List = No_List then
+ return No_List;
+
+ else
+ NL := New_List;
+ E := First (List);
+
+ while Present (E) loop
+ Append (New_Copy_Tree (E), NL);
+ E := Next (E);
+ end loop;
+
+ return NL;
+ end if;
+ end New_Copy_List_Tree;
+
+ -------------------
+ -- New_Copy_Tree --
+ -------------------
+
+ use Atree.Unchecked_Access;
+ use Atree_Private_Part;
+
+ -- Our approach here requires a two pass traversal of the tree. The
+ -- first pass visits all nodes that eventually will be copied looking
+ -- for defining Itypes. If any defining Itypes are found, then they are
+ -- copied, and an entry is added to the replacement map. In the second
+ -- phase, the tree is copied, using the replacement map to replace any
+ -- Itype references within the copied tree.
+
+ -- The following hash tables are used if the Map supplied has more
+ -- than hash threshold entries to speed up access to the map. If
+ -- there are fewer entries, then the map is searched sequentially
+ -- (because setting up a hash table for only a few entries takes
+ -- more time than it saves.
+
+ function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num;
+ -- Hash function used for hash operations
+
+ -------------------
+ -- New_Copy_Hash --
+ -------------------
+
+ function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num is
+ begin
+ return Nat (E) mod (NCT_Header_Num'Last + 1);
+ end New_Copy_Hash;
+
+ ---------------
+ -- NCT_Assoc --
+ ---------------
+
+ -- The hash table NCT_Assoc associates old entities in the table
+ -- with their corresponding new entities (i.e. the pairs of entries
+ -- presented in the original Map argument are Key-Element pairs).
+
+ package NCT_Assoc is new Simple_HTable (
+ Header_Num => NCT_Header_Num,
+ Element => Entity_Id,
+ No_Element => Empty,
+ Key => Entity_Id,
+ Hash => New_Copy_Hash,
+ Equal => Types."=");
+
+ ---------------------
+ -- NCT_Itype_Assoc --
+ ---------------------
+
+ -- The hash table NCT_Itype_Assoc contains entries only for those
+ -- old nodes which have a non-empty Associated_Node_For_Itype set.
+ -- The key is the associated node, and the element is the new node
+ -- itself (NOT the associated node for the new node).
+
+ package NCT_Itype_Assoc is new Simple_HTable (
+ Header_Num => NCT_Header_Num,
+ Element => Entity_Id,
+ No_Element => Empty,
+ Key => Entity_Id,
+ Hash => New_Copy_Hash,
+ Equal => Types."=");
+
+ -- Start of processing for New_Copy_Tree function
+
+ function New_Copy_Tree
+ (Source : Node_Id;
+ Map : Elist_Id := No_Elist;
+ New_Sloc : Source_Ptr := No_Location;
+ New_Scope : Entity_Id := Empty) return Node_Id
+ is
+ Actual_Map : Elist_Id := Map;
+ -- This is the actual map for the copy. It is initialized with the
+ -- given elements, and then enlarged as required for Itypes that are
+ -- copied during the first phase of the copy operation. The visit
+ -- procedures add elements to this map as Itypes are encountered.
+ -- The reason we cannot use Map directly, is that it may well be
+ -- (and normally is) initialized to No_Elist, and if we have mapped
+ -- entities, we have to reset it to point to a real Elist.
+
+ function Assoc (N : Node_Or_Entity_Id) return Node_Id;
+ -- Called during second phase to map entities into their corresponding
+ -- copies using Actual_Map. If the argument is not an entity, or is not
+ -- in Actual_Map, then it is returned unchanged.
+
+ procedure Build_NCT_Hash_Tables;
+ -- Builds hash tables (number of elements >= threshold value)
+
+ function Copy_Elist_With_Replacement
+ (Old_Elist : Elist_Id) return Elist_Id;
+ -- Called during second phase to copy element list doing replacements
+
+ procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id);
+ -- Called during the second phase to process a copied Itype. The actual
+ -- copy happened during the first phase (so that we could make the entry
+ -- in the mapping), but we still have to deal with the descendents of
+ -- the copied Itype and copy them where necessary.
+
+ function Copy_List_With_Replacement (Old_List : List_Id) return List_Id;
+ -- Called during second phase to copy list doing replacements
+
+ function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id;
+ -- Called during second phase to copy node doing replacements
+
+ procedure Visit_Elist (E : Elist_Id);
+ -- Called during first phase to visit all elements of an Elist
+
+ procedure Visit_Field (F : Union_Id; N : Node_Id);
+ -- Visit a single field, recursing to call Visit_Node or Visit_List
+ -- if the field is a syntactic descendent of the current node (i.e.
+ -- its parent is Node N).
+
+ procedure Visit_Itype (Old_Itype : Entity_Id);
+ -- Called during first phase to visit subsidiary fields of a defining
+ -- Itype, and also create a copy and make an entry in the replacement
+ -- map for the new copy.
+
+ procedure Visit_List (L : List_Id);
+ -- Called during first phase to visit all elements of a List
+
+ procedure Visit_Node (N : Node_Or_Entity_Id);
+ -- Called during first phase to visit a node and all its subtrees
+
+ -----------
+ -- Assoc --
+ -----------
+
+ function Assoc (N : Node_Or_Entity_Id) return Node_Id is
+ E : Elmt_Id;
+ Ent : Entity_Id;
+
+ begin
+ if not Has_Extension (N) or else No (Actual_Map) then
+ return N;
+
+ elsif NCT_Hash_Tables_Used then
+ Ent := NCT_Assoc.Get (Entity_Id (N));
+
+ if Present (Ent) then
+ return Ent;
+ else
+ return N;
+ end if;
+
+ -- No hash table used, do serial search
+
+ else
+ E := First_Elmt (Actual_Map);
+ while Present (E) loop
+ if Node (E) = N then
+ return Node (Next_Elmt (E));
+ else
+ E := Next_Elmt (Next_Elmt (E));
+ end if;
+ end loop;
+ end if;
+
+ return N;
+ end Assoc;
+
+ ---------------------------
+ -- Build_NCT_Hash_Tables --
+ ---------------------------
+
+ procedure Build_NCT_Hash_Tables is
+ Elmt : Elmt_Id;
+ Ent : Entity_Id;
+ begin
+ if NCT_Hash_Table_Setup then
+ NCT_Assoc.Reset;
+ NCT_Itype_Assoc.Reset;
+ end if;
+
+ Elmt := First_Elmt (Actual_Map);
+ while Present (Elmt) loop
+ Ent := Node (Elmt);
+
+ -- Get new entity, and associate old and new
+
+ Next_Elmt (Elmt);
+ NCT_Assoc.Set (Ent, Node (Elmt));
+
+ if Is_Type (Ent) then
+ declare
+ Anode : constant Entity_Id :=
+ Associated_Node_For_Itype (Ent);
+
+ begin
+ if Present (Anode) then
+
+ -- Enter a link between the associated node of the
+ -- old Itype and the new Itype, for updating later
+ -- when node is copied.
+
+ NCT_Itype_Assoc.Set (Anode, Node (Elmt));
+ end if;
+ end;
+ end if;
+
+ Next_Elmt (Elmt);
+ end loop;
+
+ NCT_Hash_Tables_Used := True;
+ NCT_Hash_Table_Setup := True;
+ end Build_NCT_Hash_Tables;
+
+ ---------------------------------
+ -- Copy_Elist_With_Replacement --
+ ---------------------------------
+
+ function Copy_Elist_With_Replacement
+ (Old_Elist : Elist_Id) return Elist_Id
+ is
+ M : Elmt_Id;
+ New_Elist : Elist_Id;
+
+ begin
+ if No (Old_Elist) then
+ return No_Elist;
+
+ else
+ New_Elist := New_Elmt_List;
+
+ M := First_Elmt (Old_Elist);
+ while Present (M) loop
+ Append_Elmt (Copy_Node_With_Replacement (Node (M)), New_Elist);
+ Next_Elmt (M);
+ end loop;
+ end if;
+
+ return New_Elist;
+ end Copy_Elist_With_Replacement;
+
+ ---------------------------------
+ -- Copy_Itype_With_Replacement --
+ ---------------------------------
+
+ -- This routine exactly parallels its phase one analog Visit_Itype,
+
+ procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id) is
+ begin
+ -- Translate Next_Entity, Scope and Etype fields, in case they
+ -- reference entities that have been mapped into copies.
+
+ Set_Next_Entity (New_Itype, Assoc (Next_Entity (New_Itype)));
+ Set_Etype (New_Itype, Assoc (Etype (New_Itype)));
+
+ if Present (New_Scope) then
+ Set_Scope (New_Itype, New_Scope);
+ else
+ Set_Scope (New_Itype, Assoc (Scope (New_Itype)));
+ end if;
+
+ -- Copy referenced fields
+
+ if Is_Discrete_Type (New_Itype) then
+ Set_Scalar_Range (New_Itype,
+ Copy_Node_With_Replacement (Scalar_Range (New_Itype)));
+
+ elsif Has_Discriminants (Base_Type (New_Itype)) then
+ Set_Discriminant_Constraint (New_Itype,
+ Copy_Elist_With_Replacement
+ (Discriminant_Constraint (New_Itype)));
+
+ elsif Is_Array_Type (New_Itype) then
+ if Present (First_Index (New_Itype)) then
+ Set_First_Index (New_Itype,
+ First (Copy_List_With_Replacement
+ (List_Containing (First_Index (New_Itype)))));
+ end if;
+
+ if Is_Packed (New_Itype) then
+ Set_Packed_Array_Type (New_Itype,
+ Copy_Node_With_Replacement
+ (Packed_Array_Type (New_Itype)));
+ end if;
+ end if;
+ end Copy_Itype_With_Replacement;
+
+ --------------------------------
+ -- Copy_List_With_Replacement --
+ --------------------------------
+
+ function Copy_List_With_Replacement
+ (Old_List : List_Id) return List_Id
+ is
+ New_List : List_Id;
+ E : Node_Id;
+
+ begin
+ if Old_List = No_List then
+ return No_List;
+
+ else
+ New_List := Empty_List;
+
+ E := First (Old_List);
+ while Present (E) loop
+ Append (Copy_Node_With_Replacement (E), New_List);
+ Next (E);
+ end loop;
+
+ return New_List;
+ end if;
+ end Copy_List_With_Replacement;
+
+ --------------------------------
+ -- Copy_Node_With_Replacement --
+ --------------------------------
+
+ function Copy_Node_With_Replacement
+ (Old_Node : Node_Id) return Node_Id
+ is
+ New_Node : Node_Id;
+
+ procedure Adjust_Named_Associations
+ (Old_Node : Node_Id;
+ New_Node : Node_Id);
+ -- If a call node has named associations, these are chained through
+ -- the First_Named_Actual, Next_Named_Actual links. These must be
+ -- propagated separately to the new parameter list, because these
+ -- are not syntactic fields.
+
+ function Copy_Field_With_Replacement
+ (Field : Union_Id) return Union_Id;
+ -- Given Field, which is a field of Old_Node, return a copy of it
+ -- if it is a syntactic field (i.e. its parent is Node), setting
+ -- the parent of the copy to poit to New_Node. Otherwise returns
+ -- the field (possibly mapped if it is an entity).
+
+ -------------------------------
+ -- Adjust_Named_Associations --
+ -------------------------------
+
+ procedure Adjust_Named_Associations
+ (Old_Node : Node_Id;
+ New_Node : Node_Id)
+ is
+ Old_E : Node_Id;
+ New_E : Node_Id;
+
+ Old_Next : Node_Id;
+ New_Next : Node_Id;
+
+ begin
+ Old_E := First (Parameter_Associations (Old_Node));
+ New_E := First (Parameter_Associations (New_Node));
+ while Present (Old_E) loop
+ if Nkind (Old_E) = N_Parameter_Association
+ and then Present (Next_Named_Actual (Old_E))
+ then
+ if First_Named_Actual (Old_Node)
+ = Explicit_Actual_Parameter (Old_E)
+ then
+ Set_First_Named_Actual
+ (New_Node, Explicit_Actual_Parameter (New_E));
+ end if;
+
+ -- Now scan parameter list from the beginning,to locate
+ -- next named actual, which can be out of order.
+
+ Old_Next := First (Parameter_Associations (Old_Node));
+ New_Next := First (Parameter_Associations (New_Node));
+
+ while Nkind (Old_Next) /= N_Parameter_Association
+ or else Explicit_Actual_Parameter (Old_Next)
+ /= Next_Named_Actual (Old_E)
+ loop
+ Next (Old_Next);
+ Next (New_Next);
+ end loop;
+
+ Set_Next_Named_Actual
+ (New_E, Explicit_Actual_Parameter (New_Next));
+ end if;
+
+ Next (Old_E);
+ Next (New_E);
+ end loop;
+ end Adjust_Named_Associations;
+
+ ---------------------------------
+ -- Copy_Field_With_Replacement --
+ ---------------------------------
+
+ function Copy_Field_With_Replacement
+ (Field : Union_Id) return Union_Id
+ is
+ begin
+ if Field = Union_Id (Empty) then
+ return Field;
+
+ elsif Field in Node_Range then
+ declare
+ Old_N : constant Node_Id := Node_Id (Field);
+ New_N : Node_Id;
+
+ begin
+ -- If syntactic field, as indicated by the parent pointer
+ -- being set, then copy the referenced node recursively.
+
+ if Parent (Old_N) = Old_Node then
+ New_N := Copy_Node_With_Replacement (Old_N);
+
+ if New_N /= Old_N then
+ Set_Parent (New_N, New_Node);
+ end if;
+
+ -- For semantic fields, update possible entity reference
+ -- from the replacement map.
+
+ else
+ New_N := Assoc (Old_N);
+ end if;
+
+ return Union_Id (New_N);
+ end;
+
+ elsif Field in List_Range then
+ declare
+ Old_L : constant List_Id := List_Id (Field);
+ New_L : List_Id;
+
+ begin
+ -- If syntactic field, as indicated by the parent pointer,
+ -- then recursively copy the entire referenced list.
+
+ if Parent (Old_L) = Old_Node then
+ New_L := Copy_List_With_Replacement (Old_L);
+ Set_Parent (New_L, New_Node);
+
+ -- For semantic list, just returned unchanged
+
+ else
+ New_L := Old_L;
+ end if;
+
+ return Union_Id (New_L);
+ end;
+
+ -- Anything other than a list or a node is returned unchanged
+
+ else
+ return Field;
+ end if;
+ end Copy_Field_With_Replacement;
+
+ -- Start of processing for Copy_Node_With_Replacement
+
+ begin
+ if Old_Node <= Empty_Or_Error then
+ return Old_Node;
+
+ elsif Has_Extension (Old_Node) then
+ return Assoc (Old_Node);
+
+ else
+ New_Node := New_Copy (Old_Node);
+
+ -- If the node we are copying is the associated node of a
+ -- previously copied Itype, then adjust the associated node
+ -- of the copy of that Itype accordingly.
+
+ if Present (Actual_Map) then
+ declare
+ E : Elmt_Id;
+ Ent : Entity_Id;
+
+ begin
+ -- Case of hash table used
+
+ if NCT_Hash_Tables_Used then
+ Ent := NCT_Itype_Assoc.Get (Old_Node);
+
+ if Present (Ent) then
+ Set_Associated_Node_For_Itype (Ent, New_Node);
+ end if;
+
+ -- Case of no hash table used
+
+ else
+ E := First_Elmt (Actual_Map);
+ while Present (E) loop
+ if Is_Itype (Node (E))
+ and then
+ Old_Node = Associated_Node_For_Itype (Node (E))
+ then
+ Set_Associated_Node_For_Itype
+ (Node (Next_Elmt (E)), New_Node);
+ end if;
+
+ E := Next_Elmt (Next_Elmt (E));
+ end loop;
+ end if;
+ end;
+ end if;
+
+ -- Recursively copy descendents
+
+ Set_Field1
+ (New_Node, Copy_Field_With_Replacement (Field1 (New_Node)));
+ Set_Field2
+ (New_Node, Copy_Field_With_Replacement (Field2 (New_Node)));
+ Set_Field3
+ (New_Node, Copy_Field_With_Replacement (Field3 (New_Node)));
+ Set_Field4
+ (New_Node, Copy_Field_With_Replacement (Field4 (New_Node)));
+ Set_Field5
+ (New_Node, Copy_Field_With_Replacement (Field5 (New_Node)));
+
+ -- Adjust Sloc of new node if necessary
+
+ if New_Sloc /= No_Location then
+ Set_Sloc (New_Node, New_Sloc);
+
+ -- If we adjust the Sloc, then we are essentially making
+ -- a completely new node, so the Comes_From_Source flag
+ -- should be reset to the proper default value.
+
+ Nodes.Table (New_Node).Comes_From_Source :=
+ Default_Node.Comes_From_Source;
+ end if;
+
+ -- If the node is call and has named associations,
+ -- set the corresponding links in the copy.
+
+ if (Nkind (Old_Node) = N_Function_Call
+ or else Nkind (Old_Node) = N_Entry_Call_Statement
+ or else
+ Nkind (Old_Node) = N_Procedure_Call_Statement)
+ and then Present (First_Named_Actual (Old_Node))
+ then
+ Adjust_Named_Associations (Old_Node, New_Node);
+ end if;
+
+ -- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
+ -- The replacement mechanism applies to entities, and is not used
+ -- here. Eventually we may need a more general graph-copying
+ -- routine. For now, do a sequential search to find desired node.
+
+ if Nkind (Old_Node) = N_Handled_Sequence_Of_Statements
+ and then Present (First_Real_Statement (Old_Node))
+ then
+ declare
+ Old_F : constant Node_Id := First_Real_Statement (Old_Node);
+ N1, N2 : Node_Id;
+
+ begin
+ N1 := First (Statements (Old_Node));
+ N2 := First (Statements (New_Node));
+
+ while N1 /= Old_F loop
+ Next (N1);
+ Next (N2);
+ end loop;
+
+ Set_First_Real_Statement (New_Node, N2);
+ end;
+ end if;
+ end if;
+
+ -- All done, return copied node
+
+ return New_Node;
+ end Copy_Node_With_Replacement;
+
+ -----------------
+ -- Visit_Elist --
+ -----------------
+
+ procedure Visit_Elist (E : Elist_Id) is
+ Elmt : Elmt_Id;
+ begin
+ if Present (E) then
+ Elmt := First_Elmt (E);
+
+ while Elmt /= No_Elmt loop
+ Visit_Node (Node (Elmt));
+ Next_Elmt (Elmt);
+ end loop;
+ end if;
+ end Visit_Elist;
+
+ -----------------
+ -- Visit_Field --
+ -----------------
+
+ procedure Visit_Field (F : Union_Id; N : Node_Id) is
+ begin
+ if F = Union_Id (Empty) then
+ return;
+
+ elsif F in Node_Range then
+
+ -- Copy node if it is syntactic, i.e. its parent pointer is
+ -- set to point to the field that referenced it (certain
+ -- Itypes will also meet this criterion, which is fine, since
+ -- these are clearly Itypes that do need to be copied, since
+ -- we are copying their parent.)
+
+ if Parent (Node_Id (F)) = N then
+ Visit_Node (Node_Id (F));
+ return;
+
+ -- Another case, if we are pointing to an Itype, then we want
+ -- to copy it if its associated node is somewhere in the tree
+ -- being copied.
+
+ -- Note: the exclusion of self-referential copies is just an
+ -- optimization, since the search of the already copied list
+ -- would catch it, but it is a common case (Etype pointing
+ -- to itself for an Itype that is a base type).
+
+ elsif Has_Extension (Node_Id (F))
+ and then Is_Itype (Entity_Id (F))
+ and then Node_Id (F) /= N
+ then
+ declare
+ P : Node_Id;
+
+ begin
+ P := Associated_Node_For_Itype (Node_Id (F));
+ while Present (P) loop
+ if P = Source then
+ Visit_Node (Node_Id (F));
+ return;
+ else
+ P := Parent (P);
+ end if;
+ end loop;
+
+ -- An Itype whose parent is not being copied definitely
+ -- should NOT be copied, since it does not belong in any
+ -- sense to the copied subtree.
+
+ return;
+ end;
+ end if;
+
+ elsif F in List_Range
+ and then Parent (List_Id (F)) = N
+ then
+ Visit_List (List_Id (F));
+ return;
+ end if;
+ end Visit_Field;
+
+ -----------------
+ -- Visit_Itype --
+ -----------------
+
+ procedure Visit_Itype (Old_Itype : Entity_Id) is
+ New_Itype : Entity_Id;
+ E : Elmt_Id;
+ Ent : Entity_Id;
+
+ begin
+ -- Itypes that describe the designated type of access to subprograms
+ -- have the structure of subprogram declarations, with signatures,
+ -- etc. Either we duplicate the signatures completely, or choose to
+ -- share such itypes, which is fine because their elaboration will
+ -- have no side effects.
+
+ if Ekind (Old_Itype) = E_Subprogram_Type then
+ return;
+ end if;
+
+ New_Itype := New_Copy (Old_Itype);
+
+ -- The new Itype has all the attributes of the old one, and
+ -- we just copy the contents of the entity. However, the back-end
+ -- needs different names for debugging purposes, so we create a
+ -- new internal name for it in all cases.
+
+ Set_Chars (New_Itype, New_Internal_Name ('T'));
+
+ -- If our associated node is an entity that has already been copied,
+ -- then set the associated node of the copy to point to the right
+ -- copy. If we have copied an Itype that is itself the associated
+ -- node of some previously copied Itype, then we set the right
+ -- pointer in the other direction.
+
+ if Present (Actual_Map) then
+
+ -- Case of hash tables used
+
+ if NCT_Hash_Tables_Used then
+
+ Ent := NCT_Assoc.Get (Associated_Node_For_Itype (Old_Itype));
+
+ if Present (Ent) then
+ Set_Associated_Node_For_Itype (New_Itype, Ent);
+ end if;
+
+ Ent := NCT_Itype_Assoc.Get (Old_Itype);
+ if Present (Ent) then
+ Set_Associated_Node_For_Itype (Ent, New_Itype);
+
+ -- If the hash table has no association for this Itype and
+ -- its associated node, enter one now.
+
+ else
+ NCT_Itype_Assoc.Set
+ (Associated_Node_For_Itype (Old_Itype), New_Itype);
+ end if;
+
+ -- Case of hash tables not used
+
+ else
+ E := First_Elmt (Actual_Map);
+ while Present (E) loop
+ if Associated_Node_For_Itype (Old_Itype) = Node (E) then
+ Set_Associated_Node_For_Itype
+ (New_Itype, Node (Next_Elmt (E)));
+ end if;
+
+ if Is_Type (Node (E))
+ and then
+ Old_Itype = Associated_Node_For_Itype (Node (E))
+ then
+ Set_Associated_Node_For_Itype
+ (Node (Next_Elmt (E)), New_Itype);
+ end if;
+
+ E := Next_Elmt (Next_Elmt (E));
+ end loop;
+ end if;
+ end if;
+
+ if Present (Freeze_Node (New_Itype)) then
+ Set_Is_Frozen (New_Itype, False);
+ Set_Freeze_Node (New_Itype, Empty);
+ end if;
+
+ -- Add new association to map
+
+ if No (Actual_Map) then
+ Actual_Map := New_Elmt_List;
+ end if;
+
+ Append_Elmt (Old_Itype, Actual_Map);
+ Append_Elmt (New_Itype, Actual_Map);
+
+ if NCT_Hash_Tables_Used then
+ NCT_Assoc.Set (Old_Itype, New_Itype);
+
+ else
+ NCT_Table_Entries := NCT_Table_Entries + 1;
+
+ if NCT_Table_Entries > NCT_Hash_Threshold then
+ Build_NCT_Hash_Tables;
+ end if;
+ end if;
+
+ -- If a record subtype is simply copied, the entity list will be
+ -- shared. Thus cloned_Subtype must be set to indicate the sharing.
+
+ if Ekind_In (Old_Itype, E_Record_Subtype, E_Class_Wide_Subtype) then
+ Set_Cloned_Subtype (New_Itype, Old_Itype);
+ end if;
+
+ -- Visit descendents that eventually get copied
+
+ Visit_Field (Union_Id (Etype (Old_Itype)), Old_Itype);
+
+ if Is_Discrete_Type (Old_Itype) then
+ Visit_Field (Union_Id (Scalar_Range (Old_Itype)), Old_Itype);
+
+ elsif Has_Discriminants (Base_Type (Old_Itype)) then
+ -- ??? This should involve call to Visit_Field
+ Visit_Elist (Discriminant_Constraint (Old_Itype));
+
+ elsif Is_Array_Type (Old_Itype) then
+ if Present (First_Index (Old_Itype)) then
+ Visit_Field (Union_Id (List_Containing
+ (First_Index (Old_Itype))),
+ Old_Itype);
+ end if;
+
+ if Is_Packed (Old_Itype) then
+ Visit_Field (Union_Id (Packed_Array_Type (Old_Itype)),
+ Old_Itype);
+ end if;
+ end if;
+ end Visit_Itype;
+
+ ----------------
+ -- Visit_List --
+ ----------------
+
+ procedure Visit_List (L : List_Id) is
+ N : Node_Id;
+ begin
+ if L /= No_List then
+ N := First (L);
+
+ while Present (N) loop
+ Visit_Node (N);
+ Next (N);
+ end loop;
+ end if;
+ end Visit_List;
+
+ ----------------
+ -- Visit_Node --
+ ----------------
+
+ procedure Visit_Node (N : Node_Or_Entity_Id) is
+
+ -- Start of processing for Visit_Node
+
+ begin
+ -- Handle case of an Itype, which must be copied
+
+ if Has_Extension (N)
+ and then Is_Itype (N)
+ then
+ -- Nothing to do if already in the list. This can happen with an
+ -- Itype entity that appears more than once in the tree.
+ -- Note that we do not want to visit descendents in this case.
+
+ -- Test for already in list when hash table is used
+
+ if NCT_Hash_Tables_Used then
+ if Present (NCT_Assoc.Get (Entity_Id (N))) then
+ return;
+ end if;
+
+ -- Test for already in list when hash table not used
+
+ else
+ declare
+ E : Elmt_Id;
+ begin
+ if Present (Actual_Map) then
+ E := First_Elmt (Actual_Map);
+ while Present (E) loop
+ if Node (E) = N then
+ return;
+ else
+ E := Next_Elmt (Next_Elmt (E));
+ end if;
+ end loop;
+ end if;
+ end;
+ end if;
+
+ Visit_Itype (N);
+ end if;
+
+ -- Visit descendents
+
+ Visit_Field (Field1 (N), N);
+ Visit_Field (Field2 (N), N);
+ Visit_Field (Field3 (N), N);
+ Visit_Field (Field4 (N), N);
+ Visit_Field (Field5 (N), N);
+ end Visit_Node;
+
+ -- Start of processing for New_Copy_Tree
+
+ begin
+ Actual_Map := Map;
+
+ -- See if we should use hash table
+
+ if No (Actual_Map) then
+ NCT_Hash_Tables_Used := False;
+
+ else
+ declare
+ Elmt : Elmt_Id;
+
+ begin
+ NCT_Table_Entries := 0;
+
+ Elmt := First_Elmt (Actual_Map);
+ while Present (Elmt) loop
+ NCT_Table_Entries := NCT_Table_Entries + 1;
+ Next_Elmt (Elmt);
+ Next_Elmt (Elmt);
+ end loop;
+
+ if NCT_Table_Entries > NCT_Hash_Threshold then
+ Build_NCT_Hash_Tables;
+ else
+ NCT_Hash_Tables_Used := False;
+ end if;
+ end;
+ end if;
+
+ -- Hash table set up if required, now start phase one by visiting
+ -- top node (we will recursively visit the descendents).
+
+ Visit_Node (Source);
+
+ -- Now the second phase of the copy can start. First we process
+ -- all the mapped entities, copying their descendents.
+
+ if Present (Actual_Map) then
+ declare
+ Elmt : Elmt_Id;
+ New_Itype : Entity_Id;
+ begin
+ Elmt := First_Elmt (Actual_Map);
+ while Present (Elmt) loop
+ Next_Elmt (Elmt);
+ New_Itype := Node (Elmt);
+ Copy_Itype_With_Replacement (New_Itype);
+ Next_Elmt (Elmt);
+ end loop;
+ end;
+ end if;
+
+ -- Now we can copy the actual tree
+
+ return Copy_Node_With_Replacement (Source);
+ end New_Copy_Tree;
+
+ -------------------------
+ -- New_External_Entity --
+ -------------------------
+
+ function New_External_Entity
+ (Kind : Entity_Kind;
+ Scope_Id : Entity_Id;
+ Sloc_Value : Source_Ptr;
+ Related_Id : Entity_Id;
+ Suffix : Character;
+ Suffix_Index : Nat := 0;
+ Prefix : Character := ' ') return Entity_Id
+ is
+ N : constant Entity_Id :=
+ Make_Defining_Identifier (Sloc_Value,
+ New_External_Name
+ (Chars (Related_Id), Suffix, Suffix_Index, Prefix));
+
+ begin
+ Set_Ekind (N, Kind);
+ Set_Is_Internal (N, True);
+ Append_Entity (N, Scope_Id);
+ Set_Public_Status (N);
+
+ if Kind in Type_Kind then
+ Init_Size_Align (N);
+ end if;
+
+ return N;
+ end New_External_Entity;
+
+ -------------------------
+ -- New_Internal_Entity --
+ -------------------------
+
+ function New_Internal_Entity
+ (Kind : Entity_Kind;
+ Scope_Id : Entity_Id;
+ Sloc_Value : Source_Ptr;
+ Id_Char : Character) return Entity_Id
+ is
+ N : constant Entity_Id := Make_Temporary (Sloc_Value, Id_Char);
+
+ begin
+ Set_Ekind (N, Kind);
+ Set_Is_Internal (N, True);
+ Append_Entity (N, Scope_Id);
+
+ if Kind in Type_Kind then
+ Init_Size_Align (N);
+ end if;
+
+ return N;
+ end New_Internal_Entity;
+
+ -----------------
+ -- Next_Actual --
+ -----------------
+
+ function Next_Actual (Actual_Id : Node_Id) return Node_Id is
+ N : Node_Id;
+
+ begin
+ -- If we are pointing at a positional parameter, it is a member of a
+ -- node list (the list of parameters), and the next parameter is the
+ -- next node on the list, unless we hit a parameter association, then
+ -- we shift to using the chain whose head is the First_Named_Actual in
+ -- the parent, and then is threaded using the Next_Named_Actual of the
+ -- Parameter_Association. All this fiddling is because the original node
+ -- list is in the textual call order, and what we need is the
+ -- declaration order.
+
+ if Is_List_Member (Actual_Id) then
+ N := Next (Actual_Id);
+
+ if Nkind (N) = N_Parameter_Association then
+ return First_Named_Actual (Parent (Actual_Id));
+ else
+ return N;
+ end if;
+
+ else
+ return Next_Named_Actual (Parent (Actual_Id));
+ end if;
+ end Next_Actual;
+
+ procedure Next_Actual (Actual_Id : in out Node_Id) is
+ begin
+ Actual_Id := Next_Actual (Actual_Id);
+ end Next_Actual;
+
+ ---------------------
+ -- No_Scalar_Parts --
+ ---------------------
+
+ function No_Scalar_Parts (T : Entity_Id) return Boolean is
+ C : Entity_Id;
+
+ begin
+ if Is_Scalar_Type (T) then
+ return False;
+
+ elsif Is_Array_Type (T) then
+ return No_Scalar_Parts (Component_Type (T));
+
+ elsif Is_Record_Type (T) or else Has_Discriminants (T) then
+ C := First_Component_Or_Discriminant (T);
+ while Present (C) loop
+ if not No_Scalar_Parts (Etype (C)) then
+ return False;
+ else
+ Next_Component_Or_Discriminant (C);
+ end if;
+ end loop;
+ end if;
+
+ return True;
+ end No_Scalar_Parts;
+
+ -----------------------
+ -- Normalize_Actuals --
+ -----------------------
+
+ -- Chain actuals according to formals of subprogram. If there are no named
+ -- associations, the chain is simply the list of Parameter Associations,
+ -- since the order is the same as the declaration order. If there are named
+ -- associations, then the First_Named_Actual field in the N_Function_Call
+ -- or N_Procedure_Call_Statement node points to the Parameter_Association
+ -- node for the parameter that comes first in declaration order. The
+ -- remaining named parameters are then chained in declaration order using
+ -- Next_Named_Actual.
+
+ -- This routine also verifies that the number of actuals is compatible with
+ -- the number and default values of formals, but performs no type checking
+ -- (type checking is done by the caller).
+
+ -- If the matching succeeds, Success is set to True and the caller proceeds
+ -- with type-checking. If the match is unsuccessful, then Success is set to
+ -- False, and the caller attempts a different interpretation, if there is
+ -- one.
+
+ -- If the flag Report is on, the call is not overloaded, and a failure to
+ -- match can be reported here, rather than in the caller.
+
+ procedure Normalize_Actuals
+ (N : Node_Id;
+ S : Entity_Id;
+ Report : Boolean;
+ Success : out Boolean)
+ is
+ Actuals : constant List_Id := Parameter_Associations (N);
+ Actual : Node_Id := Empty;
+ Formal : Entity_Id;
+ Last : Node_Id := Empty;
+ First_Named : Node_Id := Empty;
+ Found : Boolean;
+
+ Formals_To_Match : Integer := 0;
+ Actuals_To_Match : Integer := 0;
+
+ procedure Chain (A : Node_Id);
+ -- Add named actual at the proper place in the list, using the
+ -- Next_Named_Actual link.
+
+ function Reporting return Boolean;
+ -- Determines if an error is to be reported. To report an error, we
+ -- need Report to be True, and also we do not report errors caused
+ -- by calls to init procs that occur within other init procs. Such
+ -- errors must always be cascaded errors, since if all the types are
+ -- declared correctly, the compiler will certainly build decent calls!
+
+ -----------
+ -- Chain --
+ -----------
+
+ procedure Chain (A : Node_Id) is
+ begin
+ if No (Last) then
+
+ -- Call node points to first actual in list
+
+ Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
+
+ else
+ Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
+ end if;
+
+ Last := A;
+ Set_Next_Named_Actual (Last, Empty);
+ end Chain;
+
+ ---------------
+ -- Reporting --
+ ---------------
+
+ function Reporting return Boolean is
+ begin
+ if not Report then
+ return False;
+
+ elsif not Within_Init_Proc then
+ return True;
+
+ elsif Is_Init_Proc (Entity (Name (N))) then
+ return False;
+
+ else
+ return True;
+ end if;
+ end Reporting;
+
+ -- Start of processing for Normalize_Actuals
+
+ begin
+ if Is_Access_Type (S) then
+
+ -- The name in the call is a function call that returns an access
+ -- to subprogram. The designated type has the list of formals.
+
+ Formal := First_Formal (Designated_Type (S));
+ else
+ Formal := First_Formal (S);
+ end if;
+
+ while Present (Formal) loop
+ Formals_To_Match := Formals_To_Match + 1;
+ Next_Formal (Formal);
+ end loop;
+
+ -- Find if there is a named association, and verify that no positional
+ -- associations appear after named ones.
+
+ if Present (Actuals) then
+ Actual := First (Actuals);
+ end if;
+
+ while Present (Actual)
+ and then Nkind (Actual) /= N_Parameter_Association
+ loop
+ Actuals_To_Match := Actuals_To_Match + 1;
+ Next (Actual);
+ end loop;
+
+ if No (Actual) and Actuals_To_Match = Formals_To_Match then
+
+ -- Most common case: positional notation, no defaults
+
+ Success := True;
+ return;
+
+ elsif Actuals_To_Match > Formals_To_Match then
+
+ -- Too many actuals: will not work
+
+ if Reporting then
+ if Is_Entity_Name (Name (N)) then
+ Error_Msg_N ("too many arguments in call to&", Name (N));
+ else
+ Error_Msg_N ("too many arguments in call", N);
+ end if;
+ end if;
+
+ Success := False;
+ return;
+ end if;
+
+ First_Named := Actual;
+
+ while Present (Actual) loop
+ if Nkind (Actual) /= N_Parameter_Association then
+ Error_Msg_N
+ ("positional parameters not allowed after named ones", Actual);
+ Success := False;
+ return;
+
+ else
+ Actuals_To_Match := Actuals_To_Match + 1;
+ end if;
+
+ Next (Actual);
+ end loop;
+
+ if Present (Actuals) then
+ Actual := First (Actuals);
+ end if;
+
+ Formal := First_Formal (S);
+ while Present (Formal) loop
+
+ -- Match the formals in order. If the corresponding actual is
+ -- positional, nothing to do. Else scan the list of named actuals
+ -- to find the one with the right name.
+
+ if Present (Actual)
+ and then Nkind (Actual) /= N_Parameter_Association
+ then
+ Next (Actual);
+ Actuals_To_Match := Actuals_To_Match - 1;
+ Formals_To_Match := Formals_To_Match - 1;
+
+ else
+ -- For named parameters, search the list of actuals to find
+ -- one that matches the next formal name.
+
+ Actual := First_Named;
+ Found := False;
+ while Present (Actual) loop
+ if Chars (Selector_Name (Actual)) = Chars (Formal) then
+ Found := True;
+ Chain (Actual);
+ Actuals_To_Match := Actuals_To_Match - 1;
+ Formals_To_Match := Formals_To_Match - 1;
+ exit;
+ end if;
+
+ Next (Actual);
+ end loop;
+
+ if not Found then
+ if Ekind (Formal) /= E_In_Parameter
+ or else No (Default_Value (Formal))
+ then
+ if Reporting then
+ if (Comes_From_Source (S)
+ or else Sloc (S) = Standard_Location)
+ and then Is_Overloadable (S)
+ then
+ if No (Actuals)
+ and then
+ (Nkind (Parent (N)) = N_Procedure_Call_Statement
+ or else
+ (Nkind (Parent (N)) = N_Function_Call
+ or else
+ Nkind (Parent (N)) = N_Parameter_Association))
+ and then Ekind (S) /= E_Function
+ then
+ Set_Etype (N, Etype (S));
+ else
+ Error_Msg_Name_1 := Chars (S);
+ Error_Msg_Sloc := Sloc (S);
+ Error_Msg_NE
+ ("missing argument for parameter & " &
+ "in call to % declared #", N, Formal);
+ end if;
+
+ elsif Is_Overloadable (S) then
+ Error_Msg_Name_1 := Chars (S);
+
+ -- Point to type derivation that generated the
+ -- operation.
+
+ Error_Msg_Sloc := Sloc (Parent (S));
+
+ Error_Msg_NE
+ ("missing argument for parameter & " &
+ "in call to % (inherited) #", N, Formal);
+
+ else
+ Error_Msg_NE
+ ("missing argument for parameter &", N, Formal);
+ end if;
+ end if;
+
+ Success := False;
+ return;
+
+ else
+ Formals_To_Match := Formals_To_Match - 1;
+ end if;
+ end if;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+
+ if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
+ Success := True;
+ return;
+
+ else
+ if Reporting then
+
+ -- Find some superfluous named actual that did not get
+ -- attached to the list of associations.
+
+ Actual := First (Actuals);
+ while Present (Actual) loop
+ if Nkind (Actual) = N_Parameter_Association
+ and then Actual /= Last
+ and then No (Next_Named_Actual (Actual))
+ then
+ Error_Msg_N ("unmatched actual & in call",
+ Selector_Name (Actual));
+ exit;
+ end if;
+
+ Next (Actual);
+ end loop;
+ end if;
+
+ Success := False;
+ return;
+ end if;
+ end Normalize_Actuals;
+
+ --------------------------------
+ -- Note_Possible_Modification --
+ --------------------------------
+
+ procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
+ Modification_Comes_From_Source : constant Boolean :=
+ Comes_From_Source (Parent (N));
+
+ Ent : Entity_Id;
+ Exp : Node_Id;
+
+ begin
+ -- Loop to find referenced entity, if there is one
+
+ Exp := N;
+ loop
+ <<Continue>>
+ Ent := Empty;
+
+ if Is_Entity_Name (Exp) then
+ Ent := Entity (Exp);
+
+ -- If the entity is missing, it is an undeclared identifier,
+ -- and there is nothing to annotate.
+
+ if No (Ent) then
+ return;
+ end if;
+
+ elsif Nkind (Exp) = N_Explicit_Dereference then
+ declare
+ P : constant Node_Id := Prefix (Exp);
+
+ begin
+ -- In formal verification mode, keep track of all reads and
+ -- writes through explicit dereferences.
+
+ if Alfa_Mode then
+ Alfa.Generate_Dereference (N, 'm');
+ end if;
+
+ if Nkind (P) = N_Selected_Component
+ and then Present (
+ Entry_Formal (Entity (Selector_Name (P))))
+ then
+ -- Case of a reference to an entry formal
+
+ Ent := Entry_Formal (Entity (Selector_Name (P)));
+
+ elsif Nkind (P) = N_Identifier
+ and then Nkind (Parent (Entity (P))) = N_Object_Declaration
+ and then Present (Expression (Parent (Entity (P))))
+ and then Nkind (Expression (Parent (Entity (P))))
+ = N_Reference
+ then
+ -- Case of a reference to a value on which side effects have
+ -- been removed.
+
+ Exp := Prefix (Expression (Parent (Entity (P))));
+ goto Continue;
+
+ else
+ return;
+
+ end if;
+ end;
+
+ elsif Nkind (Exp) = N_Type_Conversion
+ or else Nkind (Exp) = N_Unchecked_Type_Conversion
+ then
+ Exp := Expression (Exp);
+ goto Continue;
+
+ elsif Nkind (Exp) = N_Slice
+ or else Nkind (Exp) = N_Indexed_Component
+ or else Nkind (Exp) = N_Selected_Component
+ then
+ Exp := Prefix (Exp);
+ goto Continue;
+
+ else
+ return;
+ end if;
+
+ -- Now look for entity being referenced
+
+ if Present (Ent) then
+ if Is_Object (Ent) then
+ if Comes_From_Source (Exp)
+ or else Modification_Comes_From_Source
+ then
+ -- Give warning if pragma unmodified given and we are
+ -- sure this is a modification.
+
+ if Has_Pragma_Unmodified (Ent) and then Sure then
+ Error_Msg_NE
+ ("??pragma Unmodified given for &!", N, Ent);
+ end if;
+
+ Set_Never_Set_In_Source (Ent, False);
+ end if;
+
+ Set_Is_True_Constant (Ent, False);
+ Set_Current_Value (Ent, Empty);
+ Set_Is_Known_Null (Ent, False);
+
+ if not Can_Never_Be_Null (Ent) then
+ Set_Is_Known_Non_Null (Ent, False);
+ end if;
+
+ -- Follow renaming chain
+
+ if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
+ and then Present (Renamed_Object (Ent))
+ then
+ Exp := Renamed_Object (Ent);
+ goto Continue;
+
+ -- The expression may be the renaming of a subcomponent of an
+ -- array or container. The assignment to the subcomponent is
+ -- a modification of the container.
+
+ elsif Comes_From_Source (Original_Node (Exp))
+ and then Nkind_In (Original_Node (Exp), N_Selected_Component,
+ N_Indexed_Component)
+ then
+ Exp := Prefix (Original_Node (Exp));
+ goto Continue;
+ end if;
+
+ -- Generate a reference only if the assignment comes from
+ -- source. This excludes, for example, calls to a dispatching
+ -- assignment operation when the left-hand side is tagged.
+
+ if Modification_Comes_From_Source or else Alfa_Mode then
+ Generate_Reference (Ent, Exp, 'm');
+
+ -- If the target of the assignment is the bound variable
+ -- in an iterator, indicate that the corresponding array
+ -- or container is also modified.
+
+ if Ada_Version >= Ada_2012
+ and then
+ Nkind (Parent (Ent)) = N_Iterator_Specification
+ then
+ declare
+ Domain : constant Node_Id := Name (Parent (Ent));
+
+ begin
+ -- TBD : in the full version of the construct, the
+ -- domain of iteration can be given by an expression.
+
+ if Is_Entity_Name (Domain) then
+ Generate_Reference (Entity (Domain), Exp, 'm');
+ Set_Is_True_Constant (Entity (Domain), False);
+ Set_Never_Set_In_Source (Entity (Domain), False);
+ end if;
+ end;
+ end if;
+ end if;
+
+ Check_Nested_Access (Ent);
+ end if;
+
+ Kill_Checks (Ent);
+
+ -- If we are sure this is a modification from source, and we know
+ -- this modifies a constant, then give an appropriate warning.
+
+ if Overlays_Constant (Ent)
+ and then Modification_Comes_From_Source
+ and then Sure
+ then
+ declare
+ A : constant Node_Id := Address_Clause (Ent);
+ begin
+ if Present (A) then
+ declare
+ Exp : constant Node_Id := Expression (A);
+ begin
+ if Nkind (Exp) = N_Attribute_Reference
+ and then Attribute_Name (Exp) = Name_Address
+ and then Is_Entity_Name (Prefix (Exp))
+ then
+ Error_Msg_Sloc := Sloc (A);
+ Error_Msg_NE
+ ("constant& may be modified via address "
+ & "clause#??", N, Entity (Prefix (Exp)));
+ end if;
+ end;
+ end if;
+ end;
+ end if;
+
+ return;
+ end if;
+ end loop;
+ end Note_Possible_Modification;
+
+ -------------------------
+ -- Object_Access_Level --
+ -------------------------
+
+ -- Returns the static accessibility level of the view denoted by Obj. Note
+ -- that the value returned is the result of a call to Scope_Depth. Only
+ -- scope depths associated with dynamic scopes can actually be returned.
+ -- Since only relative levels matter for accessibility checking, the fact
+ -- that the distance between successive levels of accessibility is not
+ -- always one is immaterial (invariant: if level(E2) is deeper than
+ -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
+
+ function Object_Access_Level (Obj : Node_Id) return Uint is
+ function Is_Interface_Conversion (N : Node_Id) return Boolean;
+ -- Determine whether N is a construct of the form
+ -- Some_Type (Operand._tag'Address)
+ -- This construct appears in the context of dispatching calls
+
+ function Reference_To (Obj : Node_Id) return Node_Id;
+ -- An explicit dereference is created when removing side-effects from
+ -- expressions for constraint checking purposes. In this case a local
+ -- access type is created for it. The correct access level is that of
+ -- the original source node. We detect this case by noting that the
+ -- prefix of the dereference is created by an object declaration whose
+ -- initial expression is a reference.
+
+ -----------------------------
+ -- Is_Interface_Conversion --
+ -----------------------------
+
+ function Is_Interface_Conversion (N : Node_Id) return Boolean is
+ begin
+ return
+ Nkind (N) = N_Unchecked_Type_Conversion
+ and then Nkind (Expression (N)) = N_Attribute_Reference
+ and then Attribute_Name (Expression (N)) = Name_Address;
+ end Is_Interface_Conversion;
+
+ ------------------
+ -- Reference_To --
+ ------------------
+
+ function Reference_To (Obj : Node_Id) return Node_Id is
+ Pref : constant Node_Id := Prefix (Obj);
+ begin
+ if Is_Entity_Name (Pref)
+ and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
+ and then Present (Expression (Parent (Entity (Pref))))
+ and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
+ then
+ return (Prefix (Expression (Parent (Entity (Pref)))));
+ else
+ return Empty;
+ end if;
+ end Reference_To;
+
+ -- Local variables
+
+ E : Entity_Id;
+
+ -- Start of processing for Object_Access_Level
+
+ begin
+ if Nkind (Obj) = N_Defining_Identifier
+ or else Is_Entity_Name (Obj)
+ then
+ if Nkind (Obj) = N_Defining_Identifier then
+ E := Obj;
+ else
+ E := Entity (Obj);
+ end if;
+
+ if Is_Prival (E) then
+ E := Prival_Link (E);
+ end if;
+
+ -- If E is a type then it denotes a current instance. For this case
+ -- we add one to the normal accessibility level of the type to ensure
+ -- that current instances are treated as always being deeper than
+ -- than the level of any visible named access type (see 3.10.2(21)).
+
+ if Is_Type (E) then
+ return Type_Access_Level (E) + 1;
+
+ elsif Present (Renamed_Object (E)) then
+ return Object_Access_Level (Renamed_Object (E));
+
+ -- Similarly, if E is a component of the current instance of a
+ -- protected type, any instance of it is assumed to be at a deeper
+ -- level than the type. For a protected object (whose type is an
+ -- anonymous protected type) its components are at the same level
+ -- as the type itself.
+
+ elsif not Is_Overloadable (E)
+ and then Ekind (Scope (E)) = E_Protected_Type
+ and then Comes_From_Source (Scope (E))
+ then
+ return Type_Access_Level (Scope (E)) + 1;
+
+ else
+ return Scope_Depth (Enclosing_Dynamic_Scope (E));
+ end if;
+
+ elsif Nkind (Obj) = N_Selected_Component then
+ if Is_Access_Type (Etype (Prefix (Obj))) then
+ return Type_Access_Level (Etype (Prefix (Obj)));
+ else
+ return Object_Access_Level (Prefix (Obj));
+ end if;
+
+ elsif Nkind (Obj) = N_Indexed_Component then
+ if Is_Access_Type (Etype (Prefix (Obj))) then
+ return Type_Access_Level (Etype (Prefix (Obj)));
+ else
+ return Object_Access_Level (Prefix (Obj));
+ end if;
+
+ elsif Nkind (Obj) = N_Explicit_Dereference then
+
+ -- If the prefix is a selected access discriminant then we make a
+ -- recursive call on the prefix, which will in turn check the level
+ -- of the prefix object of the selected discriminant.
+
+ if Nkind (Prefix (Obj)) = N_Selected_Component
+ and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
+ and then
+ Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
+ then
+ return Object_Access_Level (Prefix (Obj));
+
+ -- Detect an interface conversion in the context of a dispatching
+ -- call. Use the original form of the conversion to find the access
+ -- level of the operand.
+
+ elsif Is_Interface (Etype (Obj))
+ and then Is_Interface_Conversion (Prefix (Obj))
+ and then Nkind (Original_Node (Obj)) = N_Type_Conversion
+ then
+ return Object_Access_Level (Original_Node (Obj));
+
+ elsif not Comes_From_Source (Obj) then
+ declare
+ Ref : constant Node_Id := Reference_To (Obj);
+ begin
+ if Present (Ref) then
+ return Object_Access_Level (Ref);
+ else
+ return Type_Access_Level (Etype (Prefix (Obj)));
+ end if;
+ end;
+
+ else
+ return Type_Access_Level (Etype (Prefix (Obj)));
+ end if;
+
+ elsif Nkind_In (Obj, N_Type_Conversion, N_Unchecked_Type_Conversion) then
+ return Object_Access_Level (Expression (Obj));
+
+ elsif Nkind (Obj) = N_Function_Call then
+
+ -- Function results are objects, so we get either the access level of
+ -- the function or, in the case of an indirect call, the level of the
+ -- access-to-subprogram type. (This code is used for Ada 95, but it
+ -- looks wrong, because it seems that we should be checking the level
+ -- of the call itself, even for Ada 95. However, using the Ada 2005
+ -- version of the code causes regressions in several tests that are
+ -- compiled with -gnat95. ???)
+
+ if Ada_Version < Ada_2005 then
+ if Is_Entity_Name (Name (Obj)) then
+ return Subprogram_Access_Level (Entity (Name (Obj)));
+ else
+ return Type_Access_Level (Etype (Prefix (Name (Obj))));
+ end if;
+
+ -- For Ada 2005, the level of the result object of a function call is
+ -- defined to be the level of the call's innermost enclosing master.
+ -- We determine that by querying the depth of the innermost enclosing
+ -- dynamic scope.
+
+ else
+ Return_Master_Scope_Depth_Of_Call : declare
+
+ function Innermost_Master_Scope_Depth
+ (N : Node_Id) return Uint;
+ -- Returns the scope depth of the given node's innermost
+ -- enclosing dynamic scope (effectively the accessibility
+ -- level of the innermost enclosing master).
+
+ ----------------------------------
+ -- Innermost_Master_Scope_Depth --
+ ----------------------------------
+
+ function Innermost_Master_Scope_Depth
+ (N : Node_Id) return Uint
+ is
+ Node_Par : Node_Id := Parent (N);
+
+ begin
+ -- Locate the nearest enclosing node (by traversing Parents)
+ -- that Defining_Entity can be applied to, and return the
+ -- depth of that entity's nearest enclosing dynamic scope.
+
+ while Present (Node_Par) loop
+ case Nkind (Node_Par) is
+ when N_Component_Declaration |
+ N_Entry_Declaration |
+ N_Formal_Object_Declaration |
+ N_Formal_Type_Declaration |
+ N_Full_Type_Declaration |
+ N_Incomplete_Type_Declaration |
+ N_Loop_Parameter_Specification |
+ N_Object_Declaration |
+ N_Protected_Type_Declaration |
+ N_Private_Extension_Declaration |
+ N_Private_Type_Declaration |
+ N_Subtype_Declaration |
+ N_Function_Specification |
+ N_Procedure_Specification |
+ N_Task_Type_Declaration |
+ N_Body_Stub |
+ N_Generic_Instantiation |
+ N_Proper_Body |
+ N_Implicit_Label_Declaration |
+ N_Package_Declaration |
+ N_Single_Task_Declaration |
+ N_Subprogram_Declaration |
+ N_Generic_Declaration |
+ N_Renaming_Declaration |
+ N_Block_Statement |
+ N_Formal_Subprogram_Declaration |
+ N_Abstract_Subprogram_Declaration |
+ N_Entry_Body |
+ N_Exception_Declaration |
+ N_Formal_Package_Declaration |
+ N_Number_Declaration |
+ N_Package_Specification |
+ N_Parameter_Specification |
+ N_Single_Protected_Declaration |
+ N_Subunit =>
+
+ return Scope_Depth
+ (Nearest_Dynamic_Scope
+ (Defining_Entity (Node_Par)));
+
+ when others =>
+ null;
+ end case;
+
+ Node_Par := Parent (Node_Par);
+ end loop;
+
+ pragma Assert (False);
+
+ -- Should never reach the following return
+
+ return Scope_Depth (Current_Scope) + 1;
+ end Innermost_Master_Scope_Depth;
+
+ -- Start of processing for Return_Master_Scope_Depth_Of_Call
+
+ begin
+ return Innermost_Master_Scope_Depth (Obj);
+ end Return_Master_Scope_Depth_Of_Call;
+ end if;
+
+ -- For convenience we handle qualified expressions, even though they
+ -- aren't technically object names.
+
+ elsif Nkind (Obj) = N_Qualified_Expression then
+ return Object_Access_Level (Expression (Obj));
+
+ -- Otherwise return the scope level of Standard. (If there are cases
+ -- that fall through to this point they will be treated as having
+ -- global accessibility for now. ???)
+
+ else
+ return Scope_Depth (Standard_Standard);
+ end if;
+ end Object_Access_Level;
+
+ --------------------------------------
+ -- Original_Corresponding_Operation --
+ --------------------------------------
+
+ function Original_Corresponding_Operation (S : Entity_Id) return Entity_Id
+ is
+ Typ : constant Entity_Id := Find_Dispatching_Type (S);
+
+ begin
+ -- If S is an inherited primitive S2 the original corresponding
+ -- operation of S is the original corresponding operation of S2
+
+ if Present (Alias (S))
+ and then Find_Dispatching_Type (Alias (S)) /= Typ
+ then
+ return Original_Corresponding_Operation (Alias (S));
+
+ -- If S overrides an inherited subprogram S2 the original corresponding
+ -- operation of S is the original corresponding operation of S2
+
+ elsif Present (Overridden_Operation (S)) then
+ return Original_Corresponding_Operation (Overridden_Operation (S));
+
+ -- otherwise it is S itself
+
+ else
+ return S;
+ end if;
+ end Original_Corresponding_Operation;
+
+ -----------------------
+ -- Private_Component --
+ -----------------------
+
+ function Private_Component (Type_Id : Entity_Id) return Entity_Id is
+ Ancestor : constant Entity_Id := Base_Type (Type_Id);
+
+ function Trace_Components
+ (T : Entity_Id;
+ Check : Boolean) return Entity_Id;
+ -- Recursive function that does the work, and checks against circular
+ -- definition for each subcomponent type.
+
+ ----------------------
+ -- Trace_Components --
+ ----------------------
+
+ function Trace_Components
+ (T : Entity_Id;
+ Check : Boolean) return Entity_Id
+ is
+ Btype : constant Entity_Id := Base_Type (T);
+ Component : Entity_Id;
+ P : Entity_Id;
+ Candidate : Entity_Id := Empty;
+
+ begin
+ if Check and then Btype = Ancestor then
+ Error_Msg_N ("circular type definition", Type_Id);
+ return Any_Type;
+ end if;
+
+ if Is_Private_Type (Btype)
+ and then not Is_Generic_Type (Btype)
+ then
+ if Present (Full_View (Btype))
+ and then Is_Record_Type (Full_View (Btype))
+ and then not Is_Frozen (Btype)
+ then
+ -- To indicate that the ancestor depends on a private type, the
+ -- current Btype is sufficient. However, to check for circular
+ -- definition we must recurse on the full view.
+
+ Candidate := Trace_Components (Full_View (Btype), True);
+
+ if Candidate = Any_Type then
+ return Any_Type;
+ else
+ return Btype;
+ end if;
+
+ else
+ return Btype;
+ end if;
+
+ elsif Is_Array_Type (Btype) then
+ return Trace_Components (Component_Type (Btype), True);
+
+ elsif Is_Record_Type (Btype) then
+ Component := First_Entity (Btype);
+ while Present (Component)
+ and then Comes_From_Source (Component)
+ loop
+ -- Skip anonymous types generated by constrained components
+
+ if not Is_Type (Component) then
+ P := Trace_Components (Etype (Component), True);
+
+ if Present (P) then
+ if P = Any_Type then
+ return P;
+ else
+ Candidate := P;
+ end if;
+ end if;
+ end if;
+
+ Next_Entity (Component);
+ end loop;
+
+ return Candidate;
+
+ else
+ return Empty;
+ end if;
+ end Trace_Components;
+
+ -- Start of processing for Private_Component
+
+ begin
+ return Trace_Components (Type_Id, False);
+ end Private_Component;
+
+ ---------------------------
+ -- Primitive_Names_Match --
+ ---------------------------
+
+ function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
+
+ function Non_Internal_Name (E : Entity_Id) return Name_Id;
+ -- Given an internal name, returns the corresponding non-internal name
+
+ ------------------------
+ -- Non_Internal_Name --
+ ------------------------
+
+ function Non_Internal_Name (E : Entity_Id) return Name_Id is
+ begin
+ Get_Name_String (Chars (E));
+ Name_Len := Name_Len - 1;
+ return Name_Find;
+ end Non_Internal_Name;
+
+ -- Start of processing for Primitive_Names_Match
+
+ begin
+ pragma Assert (Present (E1) and then Present (E2));
+
+ return Chars (E1) = Chars (E2)
+ or else
+ (not Is_Internal_Name (Chars (E1))
+ and then Is_Internal_Name (Chars (E2))
+ and then Non_Internal_Name (E2) = Chars (E1))
+ or else
+ (not Is_Internal_Name (Chars (E2))
+ and then Is_Internal_Name (Chars (E1))
+ and then Non_Internal_Name (E1) = Chars (E2))
+ or else
+ (Is_Predefined_Dispatching_Operation (E1)
+ and then Is_Predefined_Dispatching_Operation (E2)
+ and then Same_TSS (E1, E2))
+ or else
+ (Is_Init_Proc (E1) and then Is_Init_Proc (E2));
+ end Primitive_Names_Match;
+
+ -----------------------
+ -- Process_End_Label --
+ -----------------------
+
+ procedure Process_End_Label
+ (N : Node_Id;
+ Typ : Character;
+ Ent : Entity_Id)
+ is
+ Loc : Source_Ptr;
+ Nam : Node_Id;
+ Scop : Entity_Id;
+
+ Label_Ref : Boolean;
+ -- Set True if reference to end label itself is required
+
+ Endl : Node_Id;
+ -- Gets set to the operator symbol or identifier that references the
+ -- entity Ent. For the child unit case, this is the identifier from the
+ -- designator. For other cases, this is simply Endl.
+
+ procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
+ -- N is an identifier node that appears as a parent unit reference in
+ -- the case where Ent is a child unit. This procedure generates an
+ -- appropriate cross-reference entry. E is the corresponding entity.
+
+ -------------------------
+ -- Generate_Parent_Ref --
+ -------------------------
+
+ procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
+ begin
+ -- If names do not match, something weird, skip reference
+
+ if Chars (E) = Chars (N) then
+
+ -- Generate the reference. We do NOT consider this as a reference
+ -- for unreferenced symbol purposes.
+
+ Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
+
+ if Style_Check then
+ Style.Check_Identifier (N, E);
+ end if;
+ end if;
+ end Generate_Parent_Ref;
+
+ -- Start of processing for Process_End_Label
+
+ begin
+ -- If no node, ignore. This happens in some error situations, and
+ -- also for some internally generated structures where no end label
+ -- references are required in any case.
+
+ if No (N) then
+ return;
+ end if;
+
+ -- Nothing to do if no End_Label, happens for internally generated
+ -- constructs where we don't want an end label reference anyway. Also
+ -- nothing to do if Endl is a string literal, which means there was
+ -- some prior error (bad operator symbol)
+
+ Endl := End_Label (N);
+
+ if No (Endl) or else Nkind (Endl) = N_String_Literal then
+ return;
+ end if;
+
+ -- Reference node is not in extended main source unit
+
+ if not In_Extended_Main_Source_Unit (N) then
+
+ -- Generally we do not collect references except for the extended
+ -- main source unit. The one exception is the 'e' entry for a
+ -- package spec, where it is useful for a client to have the
+ -- ending information to define scopes.
+
+ if Typ /= 'e' then
+ return;
+
+ else
+ Label_Ref := False;
+
+ -- For this case, we can ignore any parent references, but we
+ -- need the package name itself for the 'e' entry.
+
+ if Nkind (Endl) = N_Designator then
+ Endl := Identifier (Endl);
+ end if;
+ end if;
+
+ -- Reference is in extended main source unit
+
+ else
+ Label_Ref := True;
+
+ -- For designator, generate references for the parent entries
+
+ if Nkind (Endl) = N_Designator then
+
+ -- Generate references for the prefix if the END line comes from
+ -- source (otherwise we do not need these references) We climb the
+ -- scope stack to find the expected entities.
+
+ if Comes_From_Source (Endl) then
+ Nam := Name (Endl);
+ Scop := Current_Scope;
+ while Nkind (Nam) = N_Selected_Component loop
+ Scop := Scope (Scop);
+ exit when No (Scop);
+ Generate_Parent_Ref (Selector_Name (Nam), Scop);
+ Nam := Prefix (Nam);
+ end loop;
+
+ if Present (Scop) then
+ Generate_Parent_Ref (Nam, Scope (Scop));
+ end if;
+ end if;
+
+ Endl := Identifier (Endl);
+ end if;
+ end if;
+
+ -- If the end label is not for the given entity, then either we have
+ -- some previous error, or this is a generic instantiation for which
+ -- we do not need to make a cross-reference in this case anyway. In
+ -- either case we simply ignore the call.
+
+ if Chars (Ent) /= Chars (Endl) then
+ return;
+ end if;
+
+ -- If label was really there, then generate a normal reference and then
+ -- adjust the location in the end label to point past the name (which
+ -- should almost always be the semicolon).
+
+ Loc := Sloc (Endl);
+
+ if Comes_From_Source (Endl) then
+
+ -- If a label reference is required, then do the style check and
+ -- generate an l-type cross-reference entry for the label
+
+ if Label_Ref then
+ if Style_Check then
+ Style.Check_Identifier (Endl, Ent);
+ end if;
+
+ Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
+ end if;
+
+ -- Set the location to point past the label (normally this will
+ -- mean the semicolon immediately following the label). This is
+ -- done for the sake of the 'e' or 't' entry generated below.
+
+ Get_Decoded_Name_String (Chars (Endl));
+ Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
+
+ else
+ -- In SPARK mode, no missing label is allowed for packages and
+ -- subprogram bodies. Detect those cases by testing whether
+ -- Process_End_Label was called for a body (Typ = 't') or a package.
+
+ if Restriction_Check_Required (SPARK)
+ and then (Typ = 't' or else Ekind (Ent) = E_Package)
+ then
+ Error_Msg_Node_1 := Endl;
+ Check_SPARK_Restriction ("`END &` required", Endl, Force => True);
+ end if;
+ end if;
+
+ -- Now generate the e/t reference
+
+ Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
+
+ -- Restore Sloc, in case modified above, since we have an identifier
+ -- and the normal Sloc should be left set in the tree.
+
+ Set_Sloc (Endl, Loc);
+ end Process_End_Label;
+
+ ------------------------------------
+ -- References_Generic_Formal_Type --
+ ------------------------------------
+
+ function References_Generic_Formal_Type (N : Node_Id) return Boolean is
+
+ function Process (N : Node_Id) return Traverse_Result;
+ -- Process one node in search for generic formal type
+
+ -------------
+ -- Process --
+ -------------
+
+ function Process (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) in N_Has_Entity then
+ declare
+ E : constant Entity_Id := Entity (N);
+ begin
+ if Present (E) then
+ if Is_Generic_Type (E) then
+ return Abandon;
+ elsif Present (Etype (E))
+ and then Is_Generic_Type (Etype (E))
+ then
+ return Abandon;
+ end if;
+ end if;
+ end;
+ end if;
+
+ return Atree.OK;
+ end Process;
+
+ function Traverse is new Traverse_Func (Process);
+ -- Traverse tree to look for generic type
+
+ begin
+ if Inside_A_Generic then
+ return Traverse (N) = Abandon;
+ else
+ return False;
+ end if;
+ end References_Generic_Formal_Type;
+
+ --------------------
+ -- Remove_Homonym --
+ --------------------
+
+ procedure Remove_Homonym (E : Entity_Id) is
+ Prev : Entity_Id := Empty;
+ H : Entity_Id;
+
+ begin
+ if E = Current_Entity (E) then
+ if Present (Homonym (E)) then
+ Set_Current_Entity (Homonym (E));
+ else
+ Set_Name_Entity_Id (Chars (E), Empty);
+ end if;
+
+ else
+ H := Current_Entity (E);
+ while Present (H) and then H /= E loop
+ Prev := H;
+ H := Homonym (H);
+ end loop;
+
+ -- If E is not on the homonym chain, nothing to do
+
+ if Present (H) then
+ Set_Homonym (Prev, Homonym (E));
+ end if;
+ end if;
+ end Remove_Homonym;
+
+ ---------------------
+ -- Rep_To_Pos_Flag --
+ ---------------------
+
+ function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
+ begin
+ return New_Occurrence_Of
+ (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
+ end Rep_To_Pos_Flag;
+
+ --------------------
+ -- Require_Entity --
+ --------------------
+
+ procedure Require_Entity (N : Node_Id) is
+ begin
+ if Is_Entity_Name (N) and then No (Entity (N)) then
+ if Total_Errors_Detected /= 0 then
+ Set_Entity (N, Any_Id);
+ else
+ raise Program_Error;
+ end if;
+ end if;
+ end Require_Entity;
+
+ ------------------------------
+ -- Requires_Transient_Scope --
+ ------------------------------
+
+ -- A transient scope is required when variable-sized temporaries are
+ -- allocated in the primary or secondary stack, or when finalization
+ -- actions must be generated before the next instruction.
+
+ function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
+ Typ : constant Entity_Id := Underlying_Type (Id);
+
+ -- Start of processing for Requires_Transient_Scope
+
+ begin
+ -- This is a private type which is not completed yet. This can only
+ -- happen in a default expression (of a formal parameter or of a
+ -- record component). Do not expand transient scope in this case
+
+ if No (Typ) then
+ return False;
+
+ -- Do not expand transient scope for non-existent procedure return
+
+ elsif Typ = Standard_Void_Type then
+ return False;
+
+ -- Elementary types do not require a transient scope
+
+ elsif Is_Elementary_Type (Typ) then
+ return False;
+
+ -- Generally, indefinite subtypes require a transient scope, since the
+ -- back end cannot generate temporaries, since this is not a valid type
+ -- for declaring an object. It might be possible to relax this in the
+ -- future, e.g. by declaring the maximum possible space for the type.
+
+ elsif Is_Indefinite_Subtype (Typ) then
+ return True;
+
+ -- Functions returning tagged types may dispatch on result so their
+ -- returned value is allocated on the secondary stack. Controlled
+ -- type temporaries need finalization.
+
+ elsif Is_Tagged_Type (Typ)
+ or else Has_Controlled_Component (Typ)
+ then
+ return not Is_Value_Type (Typ);
+
+ -- Record type
+
+ elsif Is_Record_Type (Typ) then
+ declare
+ Comp : Entity_Id;
+ begin
+ Comp := First_Entity (Typ);
+ while Present (Comp) loop
+ if Ekind (Comp) = E_Component
+ and then Requires_Transient_Scope (Etype (Comp))
+ then
+ return True;
+ else
+ Next_Entity (Comp);
+ end if;
+ end loop;
+ end;
+
+ return False;
+
+ -- String literal types never require transient scope
+
+ elsif Ekind (Typ) = E_String_Literal_Subtype then
+ return False;
+
+ -- Array type. Note that we already know that this is a constrained
+ -- array, since unconstrained arrays will fail the indefinite test.
+
+ elsif Is_Array_Type (Typ) then
+
+ -- If component type requires a transient scope, the array does too
+
+ if Requires_Transient_Scope (Component_Type (Typ)) then
+ return True;
+
+ -- Otherwise, we only need a transient scope if the size depends on
+ -- the value of one or more discriminants.
+
+ else
+ return Size_Depends_On_Discriminant (Typ);
+ end if;
+
+ -- All other cases do not require a transient scope
+
+ else
+ return False;
+ end if;
+ end Requires_Transient_Scope;
+
+ --------------------------
+ -- Reset_Analyzed_Flags --
+ --------------------------
+
+ procedure Reset_Analyzed_Flags (N : Node_Id) is
+
+ function Clear_Analyzed (N : Node_Id) return Traverse_Result;
+ -- Function used to reset Analyzed flags in tree. Note that we do
+ -- not reset Analyzed flags in entities, since there is no need to
+ -- reanalyze entities, and indeed, it is wrong to do so, since it
+ -- can result in generating auxiliary stuff more than once.
+
+ --------------------
+ -- Clear_Analyzed --
+ --------------------
+
+ function Clear_Analyzed (N : Node_Id) return Traverse_Result is
+ begin
+ if not Has_Extension (N) then
+ Set_Analyzed (N, False);
+ end if;
+
+ return OK;
+ end Clear_Analyzed;
+
+ procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
+
+ -- Start of processing for Reset_Analyzed_Flags
+
+ begin
+ Reset_Analyzed (N);
+ end Reset_Analyzed_Flags;
+
+ --------------------------------
+ -- Returns_Unconstrained_Type --
+ --------------------------------
+
+ function Returns_Unconstrained_Type (Subp : Entity_Id) return Boolean is
+ begin
+ return Ekind (Subp) = E_Function
+ and then not Is_Scalar_Type (Etype (Subp))
+ and then not Is_Access_Type (Etype (Subp))
+ and then not Is_Constrained (Etype (Subp));
+ end Returns_Unconstrained_Type;
+
+ ---------------------------
+ -- Safe_To_Capture_Value --
+ ---------------------------
+
+ function Safe_To_Capture_Value
+ (N : Node_Id;
+ Ent : Entity_Id;
+ Cond : Boolean := False) return Boolean
+ is
+ begin
+ -- The only entities for which we track constant values are variables
+ -- which are not renamings, constants, out parameters, and in out
+ -- parameters, so check if we have this case.
+
+ -- Note: it may seem odd to track constant values for constants, but in
+ -- fact this routine is used for other purposes than simply capturing
+ -- the value. In particular, the setting of Known[_Non]_Null.
+
+ if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
+ or else
+ Ekind (Ent) = E_Constant
+ or else
+ Ekind (Ent) = E_Out_Parameter
+ or else
+ Ekind (Ent) = E_In_Out_Parameter
+ then
+ null;
+
+ -- For conditionals, we also allow loop parameters and all formals,
+ -- including in parameters.
+
+ elsif Cond
+ and then
+ (Ekind (Ent) = E_Loop_Parameter
+ or else
+ Ekind (Ent) = E_In_Parameter)
+ then
+ null;
+
+ -- For all other cases, not just unsafe, but impossible to capture
+ -- Current_Value, since the above are the only entities which have
+ -- Current_Value fields.
+
+ else
+ return False;
+ end if;
+
+ -- Skip if volatile or aliased, since funny things might be going on in
+ -- these cases which we cannot necessarily track. Also skip any variable
+ -- for which an address clause is given, or whose address is taken. Also
+ -- never capture value of library level variables (an attempt to do so
+ -- can occur in the case of package elaboration code).
+
+ if Treat_As_Volatile (Ent)
+ or else Is_Aliased (Ent)
+ or else Present (Address_Clause (Ent))
+ or else Address_Taken (Ent)
+ or else (Is_Library_Level_Entity (Ent)
+ and then Ekind (Ent) = E_Variable)
+ then
+ return False;
+ end if;
+
+ -- OK, all above conditions are met. We also require that the scope of
+ -- the reference be the same as the scope of the entity, not counting
+ -- packages and blocks and loops.
+
+ declare
+ E_Scope : constant Entity_Id := Scope (Ent);
+ R_Scope : Entity_Id;
+
+ begin
+ R_Scope := Current_Scope;
+ while R_Scope /= Standard_Standard loop
+ exit when R_Scope = E_Scope;
+
+ if not Ekind_In (R_Scope, E_Package, E_Block, E_Loop) then
+ return False;
+ else
+ R_Scope := Scope (R_Scope);
+ end if;
+ end loop;
+ end;
+
+ -- We also require that the reference does not appear in a context
+ -- where it is not sure to be executed (i.e. a conditional context
+ -- or an exception handler). We skip this if Cond is True, since the
+ -- capturing of values from conditional tests handles this ok.
+
+ if Cond then
+ return True;
+ end if;
+
+ declare
+ Desc : Node_Id;
+ P : Node_Id;
+
+ begin
+ Desc := N;
+
+ -- Seems dubious that case expressions are not handled here ???
+
+ P := Parent (N);
+ while Present (P) loop
+ if Nkind (P) = N_If_Statement
+ or else Nkind (P) = N_Case_Statement
+ or else (Nkind (P) in N_Short_Circuit
+ and then Desc = Right_Opnd (P))
+ or else (Nkind (P) = N_If_Expression
+ and then Desc /= First (Expressions (P)))
+ or else Nkind (P) = N_Exception_Handler
+ or else Nkind (P) = N_Selective_Accept
+ or else Nkind (P) = N_Conditional_Entry_Call
+ or else Nkind (P) = N_Timed_Entry_Call
+ or else Nkind (P) = N_Asynchronous_Select
+ then
+ return False;
+ else
+ Desc := P;
+ P := Parent (P);
+ end if;
+ end loop;
+ end;
+
+ -- OK, looks safe to set value
+
+ return True;
+ end Safe_To_Capture_Value;
+
+ ---------------
+ -- Same_Name --
+ ---------------
+
+ function Same_Name (N1, N2 : Node_Id) return Boolean is
+ K1 : constant Node_Kind := Nkind (N1);
+ K2 : constant Node_Kind := Nkind (N2);
+
+ begin
+ if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
+ and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
+ then
+ return Chars (N1) = Chars (N2);
+
+ elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
+ and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
+ then
+ return Same_Name (Selector_Name (N1), Selector_Name (N2))
+ and then Same_Name (Prefix (N1), Prefix (N2));
+
+ else
+ return False;
+ end if;
+ end Same_Name;
+
+ -----------------
+ -- Same_Object --
+ -----------------
+
+ function Same_Object (Node1, Node2 : Node_Id) return Boolean is
+ N1 : constant Node_Id := Original_Node (Node1);
+ N2 : constant Node_Id := Original_Node (Node2);
+ -- We do the tests on original nodes, since we are most interested
+ -- in the original source, not any expansion that got in the way.
+
+ K1 : constant Node_Kind := Nkind (N1);
+ K2 : constant Node_Kind := Nkind (N2);
+
+ begin
+ -- First case, both are entities with same entity
+
+ if K1 in N_Has_Entity and then K2 in N_Has_Entity then
+ declare
+ EN1 : constant Entity_Id := Entity (N1);
+ EN2 : constant Entity_Id := Entity (N2);
+ begin
+ if Present (EN1) and then Present (EN2)
+ and then (Ekind_In (EN1, E_Variable, E_Constant)
+ or else Is_Formal (EN1))
+ and then EN1 = EN2
+ then
+ return True;
+ end if;
+ end;
+ end if;
+
+ -- Second case, selected component with same selector, same record
+
+ if K1 = N_Selected_Component
+ and then K2 = N_Selected_Component
+ and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
+ then
+ return Same_Object (Prefix (N1), Prefix (N2));
+
+ -- Third case, indexed component with same subscripts, same array
+
+ elsif K1 = N_Indexed_Component
+ and then K2 = N_Indexed_Component
+ and then Same_Object (Prefix (N1), Prefix (N2))
+ then
+ declare
+ E1, E2 : Node_Id;
+ begin
+ E1 := First (Expressions (N1));
+ E2 := First (Expressions (N2));
+ while Present (E1) loop
+ if not Same_Value (E1, E2) then
+ return False;
+ else
+ Next (E1);
+ Next (E2);
+ end if;
+ end loop;
+
+ return True;
+ end;
+
+ -- Fourth case, slice of same array with same bounds
+
+ elsif K1 = N_Slice
+ and then K2 = N_Slice
+ and then Nkind (Discrete_Range (N1)) = N_Range
+ and then Nkind (Discrete_Range (N2)) = N_Range
+ and then Same_Value (Low_Bound (Discrete_Range (N1)),
+ Low_Bound (Discrete_Range (N2)))
+ and then Same_Value (High_Bound (Discrete_Range (N1)),
+ High_Bound (Discrete_Range (N2)))
+ then
+ return Same_Name (Prefix (N1), Prefix (N2));
+
+ -- All other cases, not clearly the same object
+
+ else
+ return False;
+ end if;
+ end Same_Object;
+
+ ---------------
+ -- Same_Type --
+ ---------------
+
+ function Same_Type (T1, T2 : Entity_Id) return Boolean is
+ begin
+ if T1 = T2 then
+ return True;
+
+ elsif not Is_Constrained (T1)
+ and then not Is_Constrained (T2)
+ and then Base_Type (T1) = Base_Type (T2)
+ then
+ return True;
+
+ -- For now don't bother with case of identical constraints, to be
+ -- fiddled with later on perhaps (this is only used for optimization
+ -- purposes, so it is not critical to do a best possible job)
+
+ else
+ return False;
+ end if;
+ end Same_Type;
+
+ ----------------
+ -- Same_Value --
+ ----------------
+
+ function Same_Value (Node1, Node2 : Node_Id) return Boolean is
+ begin
+ if Compile_Time_Known_Value (Node1)
+ and then Compile_Time_Known_Value (Node2)
+ and then Expr_Value (Node1) = Expr_Value (Node2)
+ then
+ return True;
+ elsif Same_Object (Node1, Node2) then
+ return True;
+ else
+ return False;
+ end if;
+ end Same_Value;
+
+ ------------------------
+ -- Scope_Is_Transient --
+ ------------------------
+
+ function Scope_Is_Transient return Boolean is
+ begin
+ return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
+ end Scope_Is_Transient;
+
+ ------------------
+ -- Scope_Within --
+ ------------------
+
+ function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
+ Scop : Entity_Id;
+
+ begin
+ Scop := Scope1;
+ while Scop /= Standard_Standard loop
+ Scop := Scope (Scop);
+
+ if Scop = Scope2 then
+ return True;
+ end if;
+ end loop;
+
+ return False;
+ end Scope_Within;
+
+ --------------------------
+ -- Scope_Within_Or_Same --
+ --------------------------
+
+ function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
+ Scop : Entity_Id;
+
+ begin
+ Scop := Scope1;
+ while Scop /= Standard_Standard loop
+ if Scop = Scope2 then
+ return True;
+ else
+ Scop := Scope (Scop);
+ end if;
+ end loop;
+
+ return False;
+ end Scope_Within_Or_Same;
+
+ --------------------
+ -- Set_Convention --
+ --------------------
+
+ procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
+ begin
+ Basic_Set_Convention (E, Val);
+
+ if Is_Type (E)
+ and then Is_Access_Subprogram_Type (Base_Type (E))
+ and then Has_Foreign_Convention (E)
+ then
+ Set_Can_Use_Internal_Rep (E, False);
+ end if;
+ end Set_Convention;
+
+ ------------------------
+ -- Set_Current_Entity --
+ ------------------------
+
+ -- The given entity is to be set as the currently visible definition of its
+ -- associated name (i.e. the Node_Id associated with its name). All we have
+ -- to do is to get the name from the identifier, and then set the
+ -- associated Node_Id to point to the given entity.
+
+ procedure Set_Current_Entity (E : Entity_Id) is
+ begin
+ Set_Name_Entity_Id (Chars (E), E);
+ end Set_Current_Entity;
+
+ ---------------------------
+ -- Set_Debug_Info_Needed --
+ ---------------------------
+
+ procedure Set_Debug_Info_Needed (T : Entity_Id) is
+
+ procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
+ pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
+ -- Used to set debug info in a related node if not set already
+
+ --------------------------------------
+ -- Set_Debug_Info_Needed_If_Not_Set --
+ --------------------------------------
+
+ procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
+ begin
+ if Present (E)
+ and then not Needs_Debug_Info (E)
+ then
+ Set_Debug_Info_Needed (E);
+
+ -- For a private type, indicate that the full view also needs
+ -- debug information.
+
+ if Is_Type (E)
+ and then Is_Private_Type (E)
+ and then Present (Full_View (E))
+ then
+ Set_Debug_Info_Needed (Full_View (E));
+ end if;
+ end if;
+ end Set_Debug_Info_Needed_If_Not_Set;
+
+ -- Start of processing for Set_Debug_Info_Needed
+
+ begin
+ -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
+ -- indicates that Debug_Info_Needed is never required for the entity.
+
+ if No (T)
+ or else Debug_Info_Off (T)
+ then
+ return;
+ end if;
+
+ -- Set flag in entity itself. Note that we will go through the following
+ -- circuitry even if the flag is already set on T. That's intentional,
+ -- it makes sure that the flag will be set in subsidiary entities.
+
+ Set_Needs_Debug_Info (T);
+
+ -- Set flag on subsidiary entities if not set already
+
+ if Is_Object (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Etype (T));
+
+ elsif Is_Type (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Etype (T));
+
+ if Is_Record_Type (T) then
+ declare
+ Ent : Entity_Id := First_Entity (T);
+ begin
+ while Present (Ent) loop
+ Set_Debug_Info_Needed_If_Not_Set (Ent);
+ Next_Entity (Ent);
+ end loop;
+ end;
+
+ -- For a class wide subtype, we also need debug information
+ -- for the equivalent type.
+
+ if Ekind (T) = E_Class_Wide_Subtype then
+ Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
+ end if;
+
+ elsif Is_Array_Type (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
+
+ declare
+ Indx : Node_Id := First_Index (T);
+ begin
+ while Present (Indx) loop
+ Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
+ Indx := Next_Index (Indx);
+ end loop;
+ end;
+
+ -- For a packed array type, we also need debug information for
+ -- the type used to represent the packed array. Conversely, we
+ -- also need it for the former if we need it for the latter.
+
+ if Is_Packed (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Type (T));
+ end if;
+
+ if Is_Packed_Array_Type (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Original_Array_Type (T));
+ end if;
+
+ elsif Is_Access_Type (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
+
+ elsif Is_Private_Type (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Full_View (T));
+
+ elsif Is_Protected_Type (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
+ end if;
+ end if;
+ end Set_Debug_Info_Needed;
+
+ ---------------------------------
+ -- Set_Entity_With_Style_Check --
+ ---------------------------------
+
+ procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id) is
+ Val_Actual : Entity_Id;
+ Nod : Node_Id;
+
+ begin
+ -- Unconditionally set the entity
+
+ Set_Entity (N, Val);
+
+ -- Check for No_Implementation_Identifiers
+
+ if Restriction_Check_Required (No_Implementation_Identifiers) then
+
+ -- We have an implementation defined entity if it is marked as
+ -- implementation defined, or is defined in a package marked as
+ -- implementation defined. However, library packages themselves
+ -- are excluded (we don't want to flag Interfaces itself, just
+ -- the entities within it).
+
+ if (Is_Implementation_Defined (Val)
+ and then not (Ekind_In (Val, E_Package, E_Generic_Package)
+ and then Is_Library_Level_Entity (Val)))
+ or else Is_Implementation_Defined (Scope (Val))
+ then
+ Check_Restriction (No_Implementation_Identifiers, N);
+ end if;
+ end if;
+
+ -- Do the style check
+
+ if Style_Check
+ and then not Suppress_Style_Checks (Val)
+ and then not In_Instance
+ then
+ if Nkind (N) = N_Identifier then
+ Nod := N;
+ elsif Nkind (N) = N_Expanded_Name then
+ Nod := Selector_Name (N);
+ else
+ return;
+ end if;
+
+ -- A special situation arises for derived operations, where we want
+ -- to do the check against the parent (since the Sloc of the derived
+ -- operation points to the derived type declaration itself).
+
+ Val_Actual := Val;
+ while not Comes_From_Source (Val_Actual)
+ and then Nkind (Val_Actual) in N_Entity
+ and then (Ekind (Val_Actual) = E_Enumeration_Literal
+ or else Is_Subprogram (Val_Actual)
+ or else Is_Generic_Subprogram (Val_Actual))
+ and then Present (Alias (Val_Actual))
+ loop
+ Val_Actual := Alias (Val_Actual);
+ end loop;
+
+ -- Renaming declarations for generic actuals do not come from source,
+ -- and have a different name from that of the entity they rename, so
+ -- there is no style check to perform here.
+
+ if Chars (Nod) = Chars (Val_Actual) then
+ Style.Check_Identifier (Nod, Val_Actual);
+ end if;
+ end if;
+
+ Set_Entity (N, Val);
+ end Set_Entity_With_Style_Check;
+
+ ------------------------
+ -- Set_Name_Entity_Id --
+ ------------------------
+
+ procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
+ begin
+ Set_Name_Table_Info (Id, Int (Val));
+ end Set_Name_Entity_Id;
+
+ ---------------------
+ -- Set_Next_Actual --
+ ---------------------
+
+ procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
+ begin
+ if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
+ Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
+ end if;
+ end Set_Next_Actual;
+
+ ----------------------------------
+ -- Set_Optimize_Alignment_Flags --
+ ----------------------------------
+
+ procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
+ begin
+ if Optimize_Alignment = 'S' then
+ Set_Optimize_Alignment_Space (E);
+ elsif Optimize_Alignment = 'T' then
+ Set_Optimize_Alignment_Time (E);
+ end if;
+ end Set_Optimize_Alignment_Flags;
+
+ -----------------------
+ -- Set_Public_Status --
+ -----------------------
+
+ procedure Set_Public_Status (Id : Entity_Id) is
+ S : constant Entity_Id := Current_Scope;
+
+ function Within_HSS_Or_If (E : Entity_Id) return Boolean;
+ -- Determines if E is defined within handled statement sequence or
+ -- an if statement, returns True if so, False otherwise.
+
+ ----------------------
+ -- Within_HSS_Or_If --
+ ----------------------
+
+ function Within_HSS_Or_If (E : Entity_Id) return Boolean is
+ N : Node_Id;
+ begin
+ N := Declaration_Node (E);
+ loop
+ N := Parent (N);
+
+ if No (N) then
+ return False;
+
+ elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
+ N_If_Statement)
+ then
+ return True;
+ end if;
+ end loop;
+ end Within_HSS_Or_If;
+
+ -- Start of processing for Set_Public_Status
+
+ begin
+ -- Everything in the scope of Standard is public
+
+ if S = Standard_Standard then
+ Set_Is_Public (Id);
+
+ -- Entity is definitely not public if enclosing scope is not public
+
+ elsif not Is_Public (S) then
+ return;
+
+ -- An object or function declaration that occurs in a handled sequence
+ -- of statements or within an if statement is the declaration for a
+ -- temporary object or local subprogram generated by the expander. It
+ -- never needs to be made public and furthermore, making it public can
+ -- cause back end problems.
+
+ elsif Nkind_In (Parent (Id), N_Object_Declaration,
+ N_Function_Specification)
+ and then Within_HSS_Or_If (Id)
+ then
+ return;
+
+ -- Entities in public packages or records are public
+
+ elsif Ekind (S) = E_Package or Is_Record_Type (S) then
+ Set_Is_Public (Id);
+
+ -- The bounds of an entry family declaration can generate object
+ -- declarations that are visible to the back-end, e.g. in the
+ -- the declaration of a composite type that contains tasks.
+
+ elsif Is_Concurrent_Type (S)
+ and then not Has_Completion (S)
+ and then Nkind (Parent (Id)) = N_Object_Declaration
+ then
+ Set_Is_Public (Id);
+ end if;
+ end Set_Public_Status;
+
+ -----------------------------
+ -- Set_Referenced_Modified --
+ -----------------------------
+
+ procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
+ Pref : Node_Id;
+
+ begin
+ -- Deal with indexed or selected component where prefix is modified
+
+ if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
+ Pref := Prefix (N);
+
+ -- If prefix is access type, then it is the designated object that is
+ -- being modified, which means we have no entity to set the flag on.
+
+ if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
+ return;
+
+ -- Otherwise chase the prefix
+
+ else
+ Set_Referenced_Modified (Pref, Out_Param);
+ end if;
+
+ -- Otherwise see if we have an entity name (only other case to process)
+
+ elsif Is_Entity_Name (N) and then Present (Entity (N)) then
+ Set_Referenced_As_LHS (Entity (N), not Out_Param);
+ Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
+ end if;
+ end Set_Referenced_Modified;
+
+ ----------------------------
+ -- Set_Scope_Is_Transient --
+ ----------------------------
+
+ procedure Set_Scope_Is_Transient (V : Boolean := True) is
+ begin
+ Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
+ end Set_Scope_Is_Transient;
+
+ -------------------
+ -- Set_Size_Info --
+ -------------------
+
+ procedure Set_Size_Info (T1, T2 : Entity_Id) is
+ begin
+ -- We copy Esize, but not RM_Size, since in general RM_Size is
+ -- subtype specific and does not get inherited by all subtypes.
+
+ Set_Esize (T1, Esize (T2));
+ Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
+
+ if Is_Discrete_Or_Fixed_Point_Type (T1)
+ and then
+ Is_Discrete_Or_Fixed_Point_Type (T2)
+ then
+ Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
+ end if;
+
+ Set_Alignment (T1, Alignment (T2));
+ end Set_Size_Info;
+
+ --------------------
+ -- Static_Boolean --
+ --------------------
+
+ function Static_Boolean (N : Node_Id) return Uint is
+ begin
+ Analyze_And_Resolve (N, Standard_Boolean);
+
+ if N = Error
+ or else Error_Posted (N)
+ or else Etype (N) = Any_Type
+ then
+ return No_Uint;
+ end if;
+
+ if Is_Static_Expression (N) then
+ if not Raises_Constraint_Error (N) then
+ return Expr_Value (N);
+ else
+ return No_Uint;
+ end if;
+
+ elsif Etype (N) = Any_Type then
+ return No_Uint;
+
+ else
+ Flag_Non_Static_Expr
+ ("static boolean expression required here", N);
+ return No_Uint;
+ end if;
+ end Static_Boolean;
+
+ --------------------
+ -- Static_Integer --
+ --------------------
+
+ function Static_Integer (N : Node_Id) return Uint is
+ begin
+ Analyze_And_Resolve (N, Any_Integer);
+
+ if N = Error
+ or else Error_Posted (N)
+ or else Etype (N) = Any_Type
+ then
+ return No_Uint;
+ end if;
+
+ if Is_Static_Expression (N) then
+ if not Raises_Constraint_Error (N) then
+ return Expr_Value (N);
+ else
+ return No_Uint;
+ end if;
+
+ elsif Etype (N) = Any_Type then
+ return No_Uint;
+
+ else
+ Flag_Non_Static_Expr
+ ("static integer expression required here", N);
+ return No_Uint;
+ end if;
+ end Static_Integer;
+
+ --------------------------
+ -- Statically_Different --
+ --------------------------
+
+ function Statically_Different (E1, E2 : Node_Id) return Boolean is
+ R1 : constant Node_Id := Get_Referenced_Object (E1);
+ R2 : constant Node_Id := Get_Referenced_Object (E2);
+ begin
+ return Is_Entity_Name (R1)
+ and then Is_Entity_Name (R2)
+ and then Entity (R1) /= Entity (R2)
+ and then not Is_Formal (Entity (R1))
+ and then not Is_Formal (Entity (R2));
+ end Statically_Different;
+
+ -----------------------------
+ -- Subprogram_Access_Level --
+ -----------------------------
+
+ function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
+ begin
+ if Present (Alias (Subp)) then
+ return Subprogram_Access_Level (Alias (Subp));
+ else
+ return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
+ end if;
+ end Subprogram_Access_Level;
+
+ -------------------------------
+ -- Support_Atomic_Primitives --
+ -------------------------------
+
+ function Support_Atomic_Primitives (Typ : Entity_Id) return Boolean is
+ Size : Int;
+
+ begin
+ -- Verify the alignment of Typ is known
+
+ if not Known_Alignment (Typ) then
+ return False;
+ end if;
+
+ if Known_Static_Esize (Typ) then
+ Size := UI_To_Int (Esize (Typ));
+
+ -- If the Esize (Object_Size) is unknown at compile-time, look at the
+ -- RM_Size (Value_Size) since it may have been set by an explicit rep
+ -- item.
+
+ elsif Known_Static_RM_Size (Typ) then
+ Size := UI_To_Int (RM_Size (Typ));
+
+ -- Otherwise, the size is considered to be unknown.
+
+ else
+ return False;
+ end if;
+
+ -- Check that the size of the component is 8, 16, 32 or 64 bits and that
+ -- Typ is properly aligned.
+
+ case Size is
+ when 8 | 16 | 32 | 64 =>
+ return Size = UI_To_Int (Alignment (Typ)) * 8;
+ when others =>
+ return False;
+ end case;
+ end Support_Atomic_Primitives;
+
+ -----------------
+ -- Trace_Scope --
+ -----------------
+
+ procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
+ begin
+ if Debug_Flag_W then
+ for J in 0 .. Scope_Stack.Last loop
+ Write_Str (" ");
+ end loop;
+
+ Write_Str (Msg);
+ Write_Name (Chars (E));
+ Write_Str (" from ");
+ Write_Location (Sloc (N));
+ Write_Eol;
+ end if;
+ end Trace_Scope;
+
+ -----------------------
+ -- Transfer_Entities --
+ -----------------------
+
+ procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
+ Ent : Entity_Id := First_Entity (From);
+
+ begin
+ if No (Ent) then
+ return;
+ end if;
+
+ if (Last_Entity (To)) = Empty then
+ Set_First_Entity (To, Ent);
+ else
+ Set_Next_Entity (Last_Entity (To), Ent);
+ end if;
+
+ Set_Last_Entity (To, Last_Entity (From));
+
+ while Present (Ent) loop
+ Set_Scope (Ent, To);
+
+ if not Is_Public (Ent) then
+ Set_Public_Status (Ent);
+
+ if Is_Public (Ent)
+ and then Ekind (Ent) = E_Record_Subtype
+
+ then
+ -- The components of the propagated Itype must be public
+ -- as well.
+
+ declare
+ Comp : Entity_Id;
+ begin
+ Comp := First_Entity (Ent);
+ while Present (Comp) loop
+ Set_Is_Public (Comp);
+ Next_Entity (Comp);
+ end loop;
+ end;
+ end if;
+ end if;
+
+ Next_Entity (Ent);
+ end loop;
+
+ Set_First_Entity (From, Empty);
+ Set_Last_Entity (From, Empty);
+ end Transfer_Entities;
+
+ -----------------------
+ -- Type_Access_Level --
+ -----------------------
+
+ function Type_Access_Level (Typ : Entity_Id) return Uint is
+ Btyp : Entity_Id;
+
+ begin
+ Btyp := Base_Type (Typ);
+
+ -- Ada 2005 (AI-230): For most cases of anonymous access types, we
+ -- simply use the level where the type is declared. This is true for
+ -- stand-alone object declarations, and for anonymous access types
+ -- associated with components the level is the same as that of the
+ -- enclosing composite type. However, special treatment is needed for
+ -- the cases of access parameters, return objects of an anonymous access
+ -- type, and, in Ada 95, access discriminants of limited types.
+
+ if Ekind (Btyp) in Access_Kind then
+ if Ekind (Btyp) = E_Anonymous_Access_Type then
+
+ -- If the type is a nonlocal anonymous access type (such as for
+ -- an access parameter) we treat it as being declared at the
+ -- library level to ensure that names such as X.all'access don't
+ -- fail static accessibility checks.
+
+ if not Is_Local_Anonymous_Access (Typ) then
+ return Scope_Depth (Standard_Standard);
+
+ -- If this is a return object, the accessibility level is that of
+ -- the result subtype of the enclosing function. The test here is
+ -- little complicated, because we have to account for extended
+ -- return statements that have been rewritten as blocks, in which
+ -- case we have to find and the Is_Return_Object attribute of the
+ -- itype's associated object. It would be nice to find a way to
+ -- simplify this test, but it doesn't seem worthwhile to add a new
+ -- flag just for purposes of this test. ???
+
+ elsif Ekind (Scope (Btyp)) = E_Return_Statement
+ or else
+ (Is_Itype (Btyp)
+ and then Nkind (Associated_Node_For_Itype (Btyp)) =
+ N_Object_Declaration
+ and then Is_Return_Object
+ (Defining_Identifier
+ (Associated_Node_For_Itype (Btyp))))
+ then
+ declare
+ Scop : Entity_Id;
+
+ begin
+ Scop := Scope (Scope (Btyp));
+ while Present (Scop) loop
+ exit when Ekind (Scop) = E_Function;
+ Scop := Scope (Scop);
+ end loop;
+
+ -- Treat the return object's type as having the level of the
+ -- function's result subtype (as per RM05-6.5(5.3/2)).
+
+ return Type_Access_Level (Etype (Scop));
+ end;
+ end if;
+ end if;
+
+ Btyp := Root_Type (Btyp);
+
+ -- The accessibility level of anonymous access types associated with
+ -- discriminants is that of the current instance of the type, and
+ -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
+
+ -- AI-402: access discriminants have accessibility based on the
+ -- object rather than the type in Ada 2005, so the above paragraph
+ -- doesn't apply.
+
+ -- ??? Needs completion with rules from AI-416
+
+ if Ada_Version <= Ada_95
+ and then Ekind (Typ) = E_Anonymous_Access_Type
+ and then Present (Associated_Node_For_Itype (Typ))
+ and then Nkind (Associated_Node_For_Itype (Typ)) =
+ N_Discriminant_Specification
+ then
+ return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
+ end if;
+ end if;
+
+ -- Return library level for a generic formal type. This is done because
+ -- RM(10.3.2) says that "The statically deeper relationship does not
+ -- apply to ... a descendant of a generic formal type". Rather than
+ -- checking at each point where a static accessibility check is
+ -- performed to see if we are dealing with a formal type, this rule is
+ -- implemented by having Type_Access_Level and Deepest_Type_Access_Level
+ -- return extreme values for a formal type; Deepest_Type_Access_Level
+ -- returns Int'Last. By calling the appropriate function from among the
+ -- two, we ensure that the static accessibility check will pass if we
+ -- happen to run into a formal type. More specifically, we should call
+ -- Deepest_Type_Access_Level instead of Type_Access_Level whenever the
+ -- call occurs as part of a static accessibility check and the error
+ -- case is the case where the type's level is too shallow (as opposed
+ -- to too deep).
+
+ if Is_Generic_Type (Root_Type (Btyp)) then
+ return Scope_Depth (Standard_Standard);
+ end if;
+
+ return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
+ end Type_Access_Level;
+
+ ------------------------------------
+ -- Type_Without_Stream_Operation --
+ ------------------------------------
+
+ function Type_Without_Stream_Operation
+ (T : Entity_Id;
+ Op : TSS_Name_Type := TSS_Null) return Entity_Id
+ is
+ BT : constant Entity_Id := Base_Type (T);
+ Op_Missing : Boolean;
+
+ begin
+ if not Restriction_Active (No_Default_Stream_Attributes) then
+ return Empty;
+ end if;
+
+ if Is_Elementary_Type (T) then
+ if Op = TSS_Null then
+ Op_Missing :=
+ No (TSS (BT, TSS_Stream_Read))
+ or else No (TSS (BT, TSS_Stream_Write));
+
+ else
+ Op_Missing := No (TSS (BT, Op));
+ end if;
+
+ if Op_Missing then
+ return T;
+ else
+ return Empty;
+ end if;
+
+ elsif Is_Array_Type (T) then
+ return Type_Without_Stream_Operation (Component_Type (T), Op);
+
+ elsif Is_Record_Type (T) then
+ declare
+ Comp : Entity_Id;
+ C_Typ : Entity_Id;
+
+ begin
+ Comp := First_Component (T);
+ while Present (Comp) loop
+ C_Typ := Type_Without_Stream_Operation (Etype (Comp), Op);
+
+ if Present (C_Typ) then
+ return C_Typ;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+
+ return Empty;
+ end;
+
+ elsif Is_Private_Type (T)
+ and then Present (Full_View (T))
+ then
+ return Type_Without_Stream_Operation (Full_View (T), Op);
+ else
+ return Empty;
+ end if;
+ end Type_Without_Stream_Operation;
+
+ ----------------------------
+ -- Unique_Defining_Entity --
+ ----------------------------
+
+ function Unique_Defining_Entity (N : Node_Id) return Entity_Id is
+ begin
+ return Unique_Entity (Defining_Entity (N));
+ end Unique_Defining_Entity;
+
+ -------------------
+ -- Unique_Entity --
+ -------------------
+
+ function Unique_Entity (E : Entity_Id) return Entity_Id is
+ U : Entity_Id := E;
+ P : Node_Id;
+
+ begin
+ case Ekind (E) is
+ when E_Constant =>
+ if Present (Full_View (E)) then
+ U := Full_View (E);
+ end if;
+
+ when Type_Kind =>
+ if Present (Full_View (E)) then
+ U := Full_View (E);
+ end if;
+
+ when E_Package_Body =>
+ P := Parent (E);
+
+ if Nkind (P) = N_Defining_Program_Unit_Name then
+ P := Parent (P);
+ end if;
+
+ U := Corresponding_Spec (P);
+
+ when E_Subprogram_Body =>
+ P := Parent (E);
+
+ if Nkind (P) = N_Defining_Program_Unit_Name then
+ P := Parent (P);
+ end if;
+
+ P := Parent (P);
+
+ if Nkind (P) = N_Subprogram_Body_Stub then
+ if Present (Library_Unit (P)) then
+
+ -- Get to the function or procedure (generic) entity through
+ -- the body entity.
+
+ U :=
+ Unique_Entity (Defining_Entity (Get_Body_From_Stub (P)));
+ end if;
+ else
+ U := Corresponding_Spec (P);
+ end if;
+
+ when Formal_Kind =>
+ if Present (Spec_Entity (E)) then
+ U := Spec_Entity (E);
+ end if;
+
+ when others =>
+ null;
+ end case;
+
+ return U;
+ end Unique_Entity;
+
+ -----------------
+ -- Unique_Name --
+ -----------------
+
+ function Unique_Name (E : Entity_Id) return String is
+
+ -- Names of E_Subprogram_Body or E_Package_Body entities are not
+ -- reliable, as they may not include the overloading suffix. Instead,
+ -- when looking for the name of E or one of its enclosing scope, we get
+ -- the name of the corresponding Unique_Entity.
+
+ function Get_Scoped_Name (E : Entity_Id) return String;
+ -- Return the name of E prefixed by all the names of the scopes to which
+ -- E belongs, except for Standard.
+
+ ---------------------
+ -- Get_Scoped_Name --
+ ---------------------
+
+ function Get_Scoped_Name (E : Entity_Id) return String is
+ Name : constant String := Get_Name_String (Chars (E));
+ begin
+ if Has_Fully_Qualified_Name (E)
+ or else Scope (E) = Standard_Standard
+ then
+ return Name;
+ else
+ return Get_Scoped_Name (Unique_Entity (Scope (E))) & "__" & Name;
+ end if;
+ end Get_Scoped_Name;
+
+ -- Start of processing for Unique_Name
+
+ begin
+ if E = Standard_Standard then
+ return Get_Name_String (Name_Standard);
+
+ elsif Scope (E) = Standard_Standard
+ and then not (Ekind (E) = E_Package or else Is_Subprogram (E))
+ then
+ return Get_Name_String (Name_Standard) & "__" &
+ Get_Name_String (Chars (E));
+
+ elsif Ekind (E) = E_Enumeration_Literal then
+ return Unique_Name (Etype (E)) & "__" & Get_Name_String (Chars (E));
+
+ else
+ return Get_Scoped_Name (Unique_Entity (E));
+ end if;
+ end Unique_Name;
+
+ ---------------------
+ -- Unit_Is_Visible --
+ ---------------------
+
+ function Unit_Is_Visible (U : Entity_Id) return Boolean is
+ Curr : constant Node_Id := Cunit (Current_Sem_Unit);
+ Curr_Entity : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
+
+ function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean;
+ -- For a child unit, check whether unit appears in a with_clause
+ -- of a parent.
+
+ function Unit_In_Context (Comp_Unit : Node_Id) return Boolean;
+ -- Scan the context clause of one compilation unit looking for a
+ -- with_clause for the unit in question.
+
+ ----------------------------
+ -- Unit_In_Parent_Context --
+ ----------------------------
+
+ function Unit_In_Parent_Context (Par_Unit : Node_Id) return Boolean is
+ begin
+ if Unit_In_Context (Par_Unit) then
+ return True;
+
+ elsif Is_Child_Unit (Defining_Entity (Unit (Par_Unit))) then
+ return Unit_In_Parent_Context (Parent_Spec (Unit (Par_Unit)));
+
+ else
+ return False;
+ end if;
+ end Unit_In_Parent_Context;
+
+ ---------------------
+ -- Unit_In_Context --
+ ---------------------
+
+ function Unit_In_Context (Comp_Unit : Node_Id) return Boolean is
+ Clause : Node_Id;
+
+ begin
+ Clause := First (Context_Items (Comp_Unit));
+ while Present (Clause) loop
+ if Nkind (Clause) = N_With_Clause then
+ if Library_Unit (Clause) = U then
+ return True;
+
+ -- The with_clause may denote a renaming of the unit we are
+ -- looking for, eg. Text_IO which renames Ada.Text_IO.
+
+ elsif
+ Renamed_Entity (Entity (Name (Clause))) =
+ Defining_Entity (Unit (U))
+ then
+ return True;
+ end if;
+ end if;
+
+ Next (Clause);
+ end loop;
+
+ return False;
+ end Unit_In_Context;
+
+ -- Start of processing for Unit_Is_Visible
+
+ begin
+ -- The currrent unit is directly visible
+
+ if Curr = U then
+ return True;
+
+ elsif Unit_In_Context (Curr) then
+ return True;
+
+ -- If the current unit is a body, check the context of the spec
+
+ elsif Nkind (Unit (Curr)) = N_Package_Body
+ or else
+ (Nkind (Unit (Curr)) = N_Subprogram_Body
+ and then not Acts_As_Spec (Unit (Curr)))
+ then
+ if Unit_In_Context (Library_Unit (Curr)) then
+ return True;
+ end if;
+ end if;
+
+ -- If the spec is a child unit, examine the parents
+
+ if Is_Child_Unit (Curr_Entity) then
+ if Nkind (Unit (Curr)) in N_Unit_Body then
+ return
+ Unit_In_Parent_Context
+ (Parent_Spec (Unit (Library_Unit (Curr))));
+ else
+ return Unit_In_Parent_Context (Parent_Spec (Unit (Curr)));
+ end if;
+
+ else
+ return False;
+ end if;
+ end Unit_Is_Visible;
+
+ ------------------------------
+ -- Universal_Interpretation --
+ ------------------------------
+
+ function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ -- The argument may be a formal parameter of an operator or subprogram
+ -- with multiple interpretations, or else an expression for an actual.
+
+ if Nkind (Opnd) = N_Defining_Identifier
+ or else not Is_Overloaded (Opnd)
+ then
+ if Etype (Opnd) = Universal_Integer
+ or else Etype (Opnd) = Universal_Real
+ then
+ return Etype (Opnd);
+ else
+ return Empty;
+ end if;
+
+ else
+ Get_First_Interp (Opnd, Index, It);
+ while Present (It.Typ) loop
+ if It.Typ = Universal_Integer
+ or else It.Typ = Universal_Real
+ then
+ return It.Typ;
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+
+ return Empty;
+ end if;
+ end Universal_Interpretation;
+
+ ---------------
+ -- Unqualify --
+ ---------------
+
+ function Unqualify (Expr : Node_Id) return Node_Id is
+ begin
+ -- Recurse to handle unlikely case of multiple levels of qualification
+
+ if Nkind (Expr) = N_Qualified_Expression then
+ return Unqualify (Expression (Expr));
+
+ -- Normal case, not a qualified expression
+
+ else
+ return Expr;
+ end if;
+ end Unqualify;
+
+ -----------------------
+ -- Visible_Ancestors --
+ -----------------------
+
+ function Visible_Ancestors (Typ : Entity_Id) return Elist_Id is
+ List_1 : Elist_Id;
+ List_2 : Elist_Id;
+ Elmt : Elmt_Id;
+
+ begin
+ pragma Assert (Is_Record_Type (Typ)
+ and then Is_Tagged_Type (Typ));
+
+ -- Collect all the parents and progenitors of Typ. If the full-view of
+ -- private parents and progenitors is available then it is used to
+ -- generate the list of visible ancestors; otherwise their partial
+ -- view is added to the resulting list.
+
+ Collect_Parents
+ (T => Typ,
+ List => List_1,
+ Use_Full_View => True);
+
+ Collect_Interfaces
+ (T => Typ,
+ Ifaces_List => List_2,
+ Exclude_Parents => True,
+ Use_Full_View => True);
+
+ -- Join the two lists. Avoid duplications because an interface may
+ -- simultaneously be parent and progenitor of a type.
+
+ Elmt := First_Elmt (List_2);
+ while Present (Elmt) loop
+ Append_Unique_Elmt (Node (Elmt), List_1);
+ Next_Elmt (Elmt);
+ end loop;
+
+ return List_1;
+ end Visible_Ancestors;
+
+ ----------------------
+ -- Within_Init_Proc --
+ ----------------------
+
+ function Within_Init_Proc return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while not Is_Overloadable (S) loop
+ if S = Standard_Standard then
+ return False;
+ else
+ S := Scope (S);
+ end if;
+ end loop;
+
+ return Is_Init_Proc (S);
+ end Within_Init_Proc;
+
+ ----------------
+ -- Wrong_Type --
+ ----------------
+
+ procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
+ Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
+ Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
+
+ Matching_Field : Entity_Id;
+ -- Entity to give a more precise suggestion on how to write a one-
+ -- element positional aggregate.
+
+ function Has_One_Matching_Field return Boolean;
+ -- Determines if Expec_Type is a record type with a single component or
+ -- discriminant whose type matches the found type or is one dimensional
+ -- array whose component type matches the found type. In the case of
+ -- one discriminant, we ignore the variant parts. That's not accurate,
+ -- but good enough for the warning.
+
+ ----------------------------
+ -- Has_One_Matching_Field --
+ ----------------------------
+
+ function Has_One_Matching_Field return Boolean is
+ E : Entity_Id;
+
+ begin
+ Matching_Field := Empty;
+
+ if Is_Array_Type (Expec_Type)
+ and then Number_Dimensions (Expec_Type) = 1
+ and then
+ Covers (Etype (Component_Type (Expec_Type)), Found_Type)
+ then
+ -- Use type name if available. This excludes multidimensional
+ -- arrays and anonymous arrays.
+
+ if Comes_From_Source (Expec_Type) then
+ Matching_Field := Expec_Type;
+
+ -- For an assignment, use name of target
+
+ elsif Nkind (Parent (Expr)) = N_Assignment_Statement
+ and then Is_Entity_Name (Name (Parent (Expr)))
+ then
+ Matching_Field := Entity (Name (Parent (Expr)));
+ end if;
+
+ return True;
+
+ elsif not Is_Record_Type (Expec_Type) then
+ return False;
+
+ else
+ E := First_Entity (Expec_Type);
+ loop
+ if No (E) then
+ return False;
+
+ elsif not Ekind_In (E, E_Discriminant, E_Component)
+ or else (Chars (E) = Name_uTag
+ or else
+ Chars (E) = Name_uParent)
+ then
+ Next_Entity (E);
+
+ else
+ exit;
+ end if;
+ end loop;
+
+ if not Covers (Etype (E), Found_Type) then
+ return False;
+
+ elsif Present (Next_Entity (E))
+ and then (Ekind (E) = E_Component
+ or else Ekind (Next_Entity (E)) = E_Discriminant)
+ then
+ return False;
+
+ else
+ Matching_Field := E;
+ return True;
+ end if;
+ end if;
+ end Has_One_Matching_Field;
+
+ -- Start of processing for Wrong_Type
+
+ begin
+ -- Don't output message if either type is Any_Type, or if a message
+ -- has already been posted for this node. We need to do the latter
+ -- check explicitly (it is ordinarily done in Errout), because we
+ -- are using ! to force the output of the error messages.
+
+ if Expec_Type = Any_Type
+ or else Found_Type = Any_Type
+ or else Error_Posted (Expr)
+ then
+ return;
+
+ -- If one of the types is a Taft-Amendment type and the other it its
+ -- completion, it must be an illegal use of a TAT in the spec, for
+ -- which an error was already emitted. Avoid cascaded errors.
+
+ elsif Is_Incomplete_Type (Expec_Type)
+ and then Has_Completion_In_Body (Expec_Type)
+ and then Full_View (Expec_Type) = Etype (Expr)
+ then
+ return;
+
+ elsif Is_Incomplete_Type (Etype (Expr))
+ and then Has_Completion_In_Body (Etype (Expr))
+ and then Full_View (Etype (Expr)) = Expec_Type
+ then
+ return;
+
+ -- In an instance, there is an ongoing problem with completion of
+ -- type derived from private types. Their structure is what Gigi
+ -- expects, but the Etype is the parent type rather than the
+ -- derived private type itself. Do not flag error in this case. The
+ -- private completion is an entity without a parent, like an Itype.
+ -- Similarly, full and partial views may be incorrect in the instance.
+ -- There is no simple way to insure that it is consistent ???
+
+ elsif In_Instance then
+ if Etype (Etype (Expr)) = Etype (Expected_Type)
+ and then
+ (Has_Private_Declaration (Expected_Type)
+ or else Has_Private_Declaration (Etype (Expr)))
+ and then No (Parent (Expected_Type))
+ then
+ return;
+ end if;
+ end if;
+
+ -- An interesting special check. If the expression is parenthesized
+ -- and its type corresponds to the type of the sole component of the
+ -- expected record type, or to the component type of the expected one
+ -- dimensional array type, then assume we have a bad aggregate attempt.
+
+ if Nkind (Expr) in N_Subexpr
+ and then Paren_Count (Expr) /= 0
+ and then Has_One_Matching_Field
+ then
+ Error_Msg_N ("positional aggregate cannot have one component", Expr);
+ if Present (Matching_Field) then
+ if Is_Array_Type (Expec_Type) then
+ Error_Msg_NE
+ ("\write instead `&''First ='> ...`", Expr, Matching_Field);
+
+ else
+ Error_Msg_NE
+ ("\write instead `& ='> ...`", Expr, Matching_Field);
+ end if;
+ end if;
+
+ -- Another special check, if we are looking for a pool-specific access
+ -- type and we found an E_Access_Attribute_Type, then we have the case
+ -- of an Access attribute being used in a context which needs a pool-
+ -- specific type, which is never allowed. The one extra check we make
+ -- is that the expected designated type covers the Found_Type.
+
+ elsif Is_Access_Type (Expec_Type)
+ and then Ekind (Found_Type) = E_Access_Attribute_Type
+ and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
+ and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
+ and then Covers
+ (Designated_Type (Expec_Type), Designated_Type (Found_Type))
+ then
+ Error_Msg_N -- CODEFIX
+ ("result must be general access type!", Expr);
+ Error_Msg_NE -- CODEFIX
+ ("add ALL to }!", Expr, Expec_Type);
+
+ -- Another special check, if the expected type is an integer type,
+ -- but the expression is of type System.Address, and the parent is
+ -- an addition or subtraction operation whose left operand is the
+ -- expression in question and whose right operand is of an integral
+ -- type, then this is an attempt at address arithmetic, so give
+ -- appropriate message.
+
+ elsif Is_Integer_Type (Expec_Type)
+ and then Is_RTE (Found_Type, RE_Address)
+ and then (Nkind (Parent (Expr)) = N_Op_Add
+ or else
+ Nkind (Parent (Expr)) = N_Op_Subtract)
+ and then Expr = Left_Opnd (Parent (Expr))
+ and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
+ then
+ Error_Msg_N
+ ("address arithmetic not predefined in package System",
+ Parent (Expr));
+ Error_Msg_N
+ ("\possible missing with/use of System.Storage_Elements",
+ Parent (Expr));
+ return;
+
+ -- If the expected type is an anonymous access type, as for access
+ -- parameters and discriminants, the error is on the designated types.
+
+ elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
+ if Comes_From_Source (Expec_Type) then
+ Error_Msg_NE ("expected}!", Expr, Expec_Type);
+ else
+ Error_Msg_NE
+ ("expected an access type with designated}",
+ Expr, Designated_Type (Expec_Type));
+ end if;
+
+ if Is_Access_Type (Found_Type)
+ and then not Comes_From_Source (Found_Type)
+ then
+ Error_Msg_NE
+ ("\\found an access type with designated}!",
+ Expr, Designated_Type (Found_Type));
+ else
+ if From_With_Type (Found_Type) then
+ Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
+ Error_Msg_Qual_Level := 99;
+ Error_Msg_NE -- CODEFIX
+ ("\\missing `WITH &;", Expr, Scope (Found_Type));
+ Error_Msg_Qual_Level := 0;
+ else
+ Error_Msg_NE ("found}!", Expr, Found_Type);
+ end if;
+ end if;
+
+ -- Normal case of one type found, some other type expected
+
+ else
+ -- If the names of the two types are the same, see if some number
+ -- of levels of qualification will help. Don't try more than three
+ -- levels, and if we get to standard, it's no use (and probably
+ -- represents an error in the compiler) Also do not bother with
+ -- internal scope names.
+
+ declare
+ Expec_Scope : Entity_Id;
+ Found_Scope : Entity_Id;
+
+ begin
+ Expec_Scope := Expec_Type;
+ Found_Scope := Found_Type;
+
+ for Levels in Int range 0 .. 3 loop
+ if Chars (Expec_Scope) /= Chars (Found_Scope) then
+ Error_Msg_Qual_Level := Levels;
+ exit;
+ end if;
+
+ Expec_Scope := Scope (Expec_Scope);
+ Found_Scope := Scope (Found_Scope);
+
+ exit when Expec_Scope = Standard_Standard
+ or else Found_Scope = Standard_Standard
+ or else not Comes_From_Source (Expec_Scope)
+ or else not Comes_From_Source (Found_Scope);
+ end loop;
+ end;
+
+ if Is_Record_Type (Expec_Type)
+ and then Present (Corresponding_Remote_Type (Expec_Type))
+ then
+ Error_Msg_NE ("expected}!", Expr,
+ Corresponding_Remote_Type (Expec_Type));
+ else
+ Error_Msg_NE ("expected}!", Expr, Expec_Type);
+ end if;
+
+ if Is_Entity_Name (Expr)
+ and then Is_Package_Or_Generic_Package (Entity (Expr))
+ then
+ Error_Msg_N ("\\found package name!", Expr);
+
+ elsif Is_Entity_Name (Expr)
+ and then
+ (Ekind (Entity (Expr)) = E_Procedure
+ or else
+ Ekind (Entity (Expr)) = E_Generic_Procedure)
+ then
+ if Ekind (Expec_Type) = E_Access_Subprogram_Type then
+ Error_Msg_N
+ ("found procedure name, possibly missing Access attribute!",
+ Expr);
+ else
+ Error_Msg_N
+ ("\\found procedure name instead of function!", Expr);
+ end if;
+
+ elsif Nkind (Expr) = N_Function_Call
+ and then Ekind (Expec_Type) = E_Access_Subprogram_Type
+ and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
+ and then No (Parameter_Associations (Expr))
+ then
+ Error_Msg_N
+ ("found function name, possibly missing Access attribute!",
+ Expr);
+
+ -- Catch common error: a prefix or infix operator which is not
+ -- directly visible because the type isn't.
+
+ elsif Nkind (Expr) in N_Op
+ and then Is_Overloaded (Expr)
+ and then not Is_Immediately_Visible (Expec_Type)
+ and then not Is_Potentially_Use_Visible (Expec_Type)
+ and then not In_Use (Expec_Type)
+ and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
+ then
+ Error_Msg_N
+ ("operator of the type is not directly visible!", Expr);
+
+ elsif Ekind (Found_Type) = E_Void
+ and then Present (Parent (Found_Type))
+ and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
+ then
+ Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
+
+ else
+ Error_Msg_NE ("\\found}!", Expr, Found_Type);
+ end if;
+
+ -- A special check for cases like M1 and M2 = 0 where M1 and M2 are
+ -- of the same modular type, and (M1 and M2) = 0 was intended.
+
+ if Expec_Type = Standard_Boolean
+ and then Is_Modular_Integer_Type (Found_Type)
+ and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
+ and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
+ then
+ declare
+ Op : constant Node_Id := Right_Opnd (Parent (Expr));
+ L : constant Node_Id := Left_Opnd (Op);
+ R : constant Node_Id := Right_Opnd (Op);
+ begin
+ -- The case for the message is when the left operand of the
+ -- comparison is the same modular type, or when it is an
+ -- integer literal (or other universal integer expression),
+ -- which would have been typed as the modular type if the
+ -- parens had been there.
+
+ if (Etype (L) = Found_Type
+ or else
+ Etype (L) = Universal_Integer)
+ and then Is_Integer_Type (Etype (R))
+ then
+ Error_Msg_N
+ ("\\possible missing parens for modular operation", Expr);
+ end if;
+ end;
+ end if;
+
+ -- Reset error message qualification indication
+
+ Error_Msg_Qual_Level := 0;
+ end if;
+ end Wrong_Type;
+
+end Sem_Util;