aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.3/gcc/ada/sem_ch5.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.3/gcc/ada/sem_ch5.adb')
-rw-r--r--gcc-4.8.3/gcc/ada/sem_ch5.adb3089
1 files changed, 3089 insertions, 0 deletions
diff --git a/gcc-4.8.3/gcc/ada/sem_ch5.adb b/gcc-4.8.3/gcc/ada/sem_ch5.adb
new file mode 100644
index 000000000..2e8f3a7b2
--- /dev/null
+++ b/gcc-4.8.3/gcc/ada/sem_ch5.adb
@@ -0,0 +1,3089 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ C H 5 --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Aspects; use Aspects;
+with Atree; use Atree;
+with Checks; use Checks;
+with Einfo; use Einfo;
+with Errout; use Errout;
+with Expander; use Expander;
+with Exp_Ch6; use Exp_Ch6;
+with Exp_Util; use Exp_Util;
+with Freeze; use Freeze;
+with Lib; use Lib;
+with Lib.Xref; use Lib.Xref;
+with Namet; use Namet;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Opt; use Opt;
+with Restrict; use Restrict;
+with Rident; use Rident;
+with Rtsfind; use Rtsfind;
+with Sem; use Sem;
+with Sem_Aux; use Sem_Aux;
+with Sem_Case; use Sem_Case;
+with Sem_Ch3; use Sem_Ch3;
+with Sem_Ch6; use Sem_Ch6;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Dim; use Sem_Dim;
+with Sem_Disp; use Sem_Disp;
+with Sem_Elab; use Sem_Elab;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Type; use Sem_Type;
+with Sem_Util; use Sem_Util;
+with Sem_Warn; use Sem_Warn;
+with Snames; use Snames;
+with Stand; use Stand;
+with Sinfo; use Sinfo;
+with Targparm; use Targparm;
+with Tbuild; use Tbuild;
+with Uintp; use Uintp;
+
+package body Sem_Ch5 is
+
+ Unblocked_Exit_Count : Nat := 0;
+ -- This variable is used when processing if statements, case statements,
+ -- and block statements. It counts the number of exit points that are not
+ -- blocked by unconditional transfer instructions: for IF and CASE, these
+ -- are the branches of the conditional; for a block, they are the statement
+ -- sequence of the block, and the statement sequences of any exception
+ -- handlers that are part of the block. When processing is complete, if
+ -- this count is zero, it means that control cannot fall through the IF,
+ -- CASE or block statement. This is used for the generation of warning
+ -- messages. This variable is recursively saved on entry to processing the
+ -- construct, and restored on exit.
+
+ procedure Preanalyze_Range (R_Copy : Node_Id);
+ -- Determine expected type of range or domain of iteration of Ada 2012
+ -- loop by analyzing separate copy. Do the analysis and resolution of the
+ -- copy of the bound(s) with expansion disabled, to prevent the generation
+ -- of finalization actions. This prevents memory leaks when the bounds
+ -- contain calls to functions returning controlled arrays or when the
+ -- domain of iteration is a container.
+
+ ------------------------
+ -- Analyze_Assignment --
+ ------------------------
+
+ procedure Analyze_Assignment (N : Node_Id) is
+ Lhs : constant Node_Id := Name (N);
+ Rhs : constant Node_Id := Expression (N);
+ T1 : Entity_Id;
+ T2 : Entity_Id;
+ Decl : Node_Id;
+
+ procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
+ -- N is the node for the left hand side of an assignment, and it is not
+ -- a variable. This routine issues an appropriate diagnostic.
+
+ procedure Kill_Lhs;
+ -- This is called to kill current value settings of a simple variable
+ -- on the left hand side. We call it if we find any error in analyzing
+ -- the assignment, and at the end of processing before setting any new
+ -- current values in place.
+
+ procedure Set_Assignment_Type
+ (Opnd : Node_Id;
+ Opnd_Type : in out Entity_Id);
+ -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
+ -- nominal subtype. This procedure is used to deal with cases where the
+ -- nominal subtype must be replaced by the actual subtype.
+
+ -------------------------------
+ -- Diagnose_Non_Variable_Lhs --
+ -------------------------------
+
+ procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
+ begin
+ -- Not worth posting another error if left hand side already flagged
+ -- as being illegal in some respect.
+
+ if Error_Posted (N) then
+ return;
+
+ -- Some special bad cases of entity names
+
+ elsif Is_Entity_Name (N) then
+ declare
+ Ent : constant Entity_Id := Entity (N);
+
+ begin
+ if Ekind (Ent) = E_In_Parameter then
+ Error_Msg_N
+ ("assignment to IN mode parameter not allowed", N);
+
+ -- Renamings of protected private components are turned into
+ -- constants when compiling a protected function. In the case
+ -- of single protected types, the private component appears
+ -- directly.
+
+ elsif (Is_Prival (Ent)
+ and then
+ (Ekind (Current_Scope) = E_Function
+ or else Ekind (Enclosing_Dynamic_Scope
+ (Current_Scope)) = E_Function))
+ or else
+ (Ekind (Ent) = E_Component
+ and then Is_Protected_Type (Scope (Ent)))
+ then
+ Error_Msg_N
+ ("protected function cannot modify protected object", N);
+
+ elsif Ekind (Ent) = E_Loop_Parameter then
+ Error_Msg_N
+ ("assignment to loop parameter not allowed", N);
+
+ else
+ Error_Msg_N
+ ("left hand side of assignment must be a variable", N);
+ end if;
+ end;
+
+ -- For indexed components or selected components, test prefix
+
+ elsif Nkind (N) = N_Indexed_Component then
+ Diagnose_Non_Variable_Lhs (Prefix (N));
+
+ -- Another special case for assignment to discriminant
+
+ elsif Nkind (N) = N_Selected_Component then
+ if Present (Entity (Selector_Name (N)))
+ and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
+ then
+ Error_Msg_N
+ ("assignment to discriminant not allowed", N);
+ else
+ Diagnose_Non_Variable_Lhs (Prefix (N));
+ end if;
+
+ else
+ -- If we fall through, we have no special message to issue!
+
+ Error_Msg_N ("left hand side of assignment must be a variable", N);
+ end if;
+ end Diagnose_Non_Variable_Lhs;
+
+ --------------
+ -- Kill_LHS --
+ --------------
+
+ procedure Kill_Lhs is
+ begin
+ if Is_Entity_Name (Lhs) then
+ declare
+ Ent : constant Entity_Id := Entity (Lhs);
+ begin
+ if Present (Ent) then
+ Kill_Current_Values (Ent);
+ end if;
+ end;
+ end if;
+ end Kill_Lhs;
+
+ -------------------------
+ -- Set_Assignment_Type --
+ -------------------------
+
+ procedure Set_Assignment_Type
+ (Opnd : Node_Id;
+ Opnd_Type : in out Entity_Id)
+ is
+ begin
+ Require_Entity (Opnd);
+
+ -- If the assignment operand is an in-out or out parameter, then we
+ -- get the actual subtype (needed for the unconstrained case). If the
+ -- operand is the actual in an entry declaration, then within the
+ -- accept statement it is replaced with a local renaming, which may
+ -- also have an actual subtype.
+
+ if Is_Entity_Name (Opnd)
+ and then (Ekind (Entity (Opnd)) = E_Out_Parameter
+ or else Ekind (Entity (Opnd)) =
+ E_In_Out_Parameter
+ or else Ekind (Entity (Opnd)) =
+ E_Generic_In_Out_Parameter
+ or else
+ (Ekind (Entity (Opnd)) = E_Variable
+ and then Nkind (Parent (Entity (Opnd))) =
+ N_Object_Renaming_Declaration
+ and then Nkind (Parent (Parent (Entity (Opnd)))) =
+ N_Accept_Statement))
+ then
+ Opnd_Type := Get_Actual_Subtype (Opnd);
+
+ -- If assignment operand is a component reference, then we get the
+ -- actual subtype of the component for the unconstrained case.
+
+ elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
+ and then not Is_Unchecked_Union (Opnd_Type)
+ then
+ Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
+
+ if Present (Decl) then
+ Insert_Action (N, Decl);
+ Mark_Rewrite_Insertion (Decl);
+ Analyze (Decl);
+ Opnd_Type := Defining_Identifier (Decl);
+ Set_Etype (Opnd, Opnd_Type);
+ Freeze_Itype (Opnd_Type, N);
+
+ elsif Is_Constrained (Etype (Opnd)) then
+ Opnd_Type := Etype (Opnd);
+ end if;
+
+ -- For slice, use the constrained subtype created for the slice
+
+ elsif Nkind (Opnd) = N_Slice then
+ Opnd_Type := Etype (Opnd);
+ end if;
+ end Set_Assignment_Type;
+
+ -- Start of processing for Analyze_Assignment
+
+ begin
+ Mark_Coextensions (N, Rhs);
+
+ Analyze (Rhs);
+ Analyze (Lhs);
+
+ -- Ensure that we never do an assignment on a variable marked as
+ -- as Safe_To_Reevaluate.
+
+ pragma Assert (not Is_Entity_Name (Lhs)
+ or else Ekind (Entity (Lhs)) /= E_Variable
+ or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
+
+ -- Start type analysis for assignment
+
+ T1 := Etype (Lhs);
+
+ -- In the most general case, both Lhs and Rhs can be overloaded, and we
+ -- must compute the intersection of the possible types on each side.
+
+ if Is_Overloaded (Lhs) then
+ declare
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ T1 := Any_Type;
+ Get_First_Interp (Lhs, I, It);
+
+ while Present (It.Typ) loop
+ if Has_Compatible_Type (Rhs, It.Typ) then
+ if T1 /= Any_Type then
+
+ -- An explicit dereference is overloaded if the prefix
+ -- is. Try to remove the ambiguity on the prefix, the
+ -- error will be posted there if the ambiguity is real.
+
+ if Nkind (Lhs) = N_Explicit_Dereference then
+ declare
+ PI : Interp_Index;
+ PI1 : Interp_Index := 0;
+ PIt : Interp;
+ Found : Boolean;
+
+ begin
+ Found := False;
+ Get_First_Interp (Prefix (Lhs), PI, PIt);
+
+ while Present (PIt.Typ) loop
+ if Is_Access_Type (PIt.Typ)
+ and then Has_Compatible_Type
+ (Rhs, Designated_Type (PIt.Typ))
+ then
+ if Found then
+ PIt :=
+ Disambiguate (Prefix (Lhs),
+ PI1, PI, Any_Type);
+
+ if PIt = No_Interp then
+ Error_Msg_N
+ ("ambiguous left-hand side"
+ & " in assignment", Lhs);
+ exit;
+ else
+ Resolve (Prefix (Lhs), PIt.Typ);
+ end if;
+
+ exit;
+ else
+ Found := True;
+ PI1 := PI;
+ end if;
+ end if;
+
+ Get_Next_Interp (PI, PIt);
+ end loop;
+ end;
+
+ else
+ Error_Msg_N
+ ("ambiguous left-hand side in assignment", Lhs);
+ exit;
+ end if;
+ else
+ T1 := It.Typ;
+ end if;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+
+ if T1 = Any_Type then
+ Error_Msg_N
+ ("no valid types for left-hand side for assignment", Lhs);
+ Kill_Lhs;
+ return;
+ end if;
+ end if;
+
+ -- The resulting assignment type is T1, so now we will resolve the left
+ -- hand side of the assignment using this determined type.
+
+ Resolve (Lhs, T1);
+
+ -- Cases where Lhs is not a variable
+
+ if not Is_Variable (Lhs) then
+
+ -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
+ -- protected object.
+
+ declare
+ Ent : Entity_Id;
+ S : Entity_Id;
+
+ begin
+ if Ada_Version >= Ada_2005 then
+
+ -- Handle chains of renamings
+
+ Ent := Lhs;
+ while Nkind (Ent) in N_Has_Entity
+ and then Present (Entity (Ent))
+ and then Present (Renamed_Object (Entity (Ent)))
+ loop
+ Ent := Renamed_Object (Entity (Ent));
+ end loop;
+
+ if (Nkind (Ent) = N_Attribute_Reference
+ and then Attribute_Name (Ent) = Name_Priority)
+
+ -- Renamings of the attribute Priority applied to protected
+ -- objects have been previously expanded into calls to the
+ -- Get_Ceiling run-time subprogram.
+
+ or else
+ (Nkind (Ent) = N_Function_Call
+ and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
+ or else
+ Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
+ then
+ -- The enclosing subprogram cannot be a protected function
+
+ S := Current_Scope;
+ while not (Is_Subprogram (S)
+ and then Convention (S) = Convention_Protected)
+ and then S /= Standard_Standard
+ loop
+ S := Scope (S);
+ end loop;
+
+ if Ekind (S) = E_Function
+ and then Convention (S) = Convention_Protected
+ then
+ Error_Msg_N
+ ("protected function cannot modify protected object",
+ Lhs);
+ end if;
+
+ -- Changes of the ceiling priority of the protected object
+ -- are only effective if the Ceiling_Locking policy is in
+ -- effect (AARM D.5.2 (5/2)).
+
+ if Locking_Policy /= 'C' then
+ Error_Msg_N ("assignment to the attribute PRIORITY has " &
+ "no effect??", Lhs);
+ Error_Msg_N ("\since no Locking_Policy has been " &
+ "specified??", Lhs);
+ end if;
+
+ return;
+ end if;
+ end if;
+ end;
+
+ Diagnose_Non_Variable_Lhs (Lhs);
+ return;
+
+ -- Error of assigning to limited type. We do however allow this in
+ -- certain cases where the front end generates the assignments.
+
+ elsif Is_Limited_Type (T1)
+ and then not Assignment_OK (Lhs)
+ and then not Assignment_OK (Original_Node (Lhs))
+ and then not Is_Value_Type (T1)
+ then
+ -- CPP constructors can only be called in declarations
+
+ if Is_CPP_Constructor_Call (Rhs) then
+ Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
+ else
+ Error_Msg_N
+ ("left hand of assignment must not be limited type", Lhs);
+ Explain_Limited_Type (T1, Lhs);
+ end if;
+ return;
+
+ -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
+ -- abstract. This is only checked when the assignment Comes_From_Source,
+ -- because in some cases the expander generates such assignments (such
+ -- in the _assign operation for an abstract type).
+
+ elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
+ Error_Msg_N
+ ("target of assignment operation must not be abstract", Lhs);
+ end if;
+
+ -- Resolution may have updated the subtype, in case the left-hand side
+ -- is a private protected component. Use the correct subtype to avoid
+ -- scoping issues in the back-end.
+
+ T1 := Etype (Lhs);
+
+ -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
+ -- type. For example:
+
+ -- limited with P;
+ -- package Pkg is
+ -- type Acc is access P.T;
+ -- end Pkg;
+
+ -- with Pkg; use Acc;
+ -- procedure Example is
+ -- A, B : Acc;
+ -- begin
+ -- A.all := B.all; -- ERROR
+ -- end Example;
+
+ if Nkind (Lhs) = N_Explicit_Dereference
+ and then Ekind (T1) = E_Incomplete_Type
+ then
+ Error_Msg_N ("invalid use of incomplete type", Lhs);
+ Kill_Lhs;
+ return;
+ end if;
+
+ -- Now we can complete the resolution of the right hand side
+
+ Set_Assignment_Type (Lhs, T1);
+ Resolve (Rhs, T1);
+
+ -- This is the point at which we check for an unset reference
+
+ Check_Unset_Reference (Rhs);
+ Check_Unprotected_Access (Lhs, Rhs);
+
+ -- Remaining steps are skipped if Rhs was syntactically in error
+
+ if Rhs = Error then
+ Kill_Lhs;
+ return;
+ end if;
+
+ T2 := Etype (Rhs);
+
+ if not Covers (T1, T2) then
+ Wrong_Type (Rhs, Etype (Lhs));
+ Kill_Lhs;
+ return;
+ end if;
+
+ -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
+ -- types, use the non-limited view if available
+
+ if Nkind (Rhs) = N_Explicit_Dereference
+ and then Ekind (T2) = E_Incomplete_Type
+ and then Is_Tagged_Type (T2)
+ and then Present (Non_Limited_View (T2))
+ then
+ T2 := Non_Limited_View (T2);
+ end if;
+
+ Set_Assignment_Type (Rhs, T2);
+
+ if Total_Errors_Detected /= 0 then
+ if No (T1) then
+ T1 := Any_Type;
+ end if;
+
+ if No (T2) then
+ T2 := Any_Type;
+ end if;
+ end if;
+
+ if T1 = Any_Type or else T2 = Any_Type then
+ Kill_Lhs;
+ return;
+ end if;
+
+ -- If the rhs is class-wide or dynamically tagged, then require the lhs
+ -- to be class-wide. The case where the rhs is a dynamically tagged call
+ -- to a dispatching operation with a controlling access result is
+ -- excluded from this check, since the target has an access type (and
+ -- no tag propagation occurs in that case).
+
+ if (Is_Class_Wide_Type (T2)
+ or else (Is_Dynamically_Tagged (Rhs)
+ and then not Is_Access_Type (T1)))
+ and then not Is_Class_Wide_Type (T1)
+ then
+ Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
+
+ elsif Is_Class_Wide_Type (T1)
+ and then not Is_Class_Wide_Type (T2)
+ and then not Is_Tag_Indeterminate (Rhs)
+ and then not Is_Dynamically_Tagged (Rhs)
+ then
+ Error_Msg_N ("dynamically tagged expression required!", Rhs);
+ end if;
+
+ -- Propagate the tag from a class-wide target to the rhs when the rhs
+ -- is a tag-indeterminate call.
+
+ if Is_Tag_Indeterminate (Rhs) then
+ if Is_Class_Wide_Type (T1) then
+ Propagate_Tag (Lhs, Rhs);
+
+ elsif Nkind (Rhs) = N_Function_Call
+ and then Is_Entity_Name (Name (Rhs))
+ and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
+ then
+ Error_Msg_N
+ ("call to abstract function must be dispatching", Name (Rhs));
+
+ elsif Nkind (Rhs) = N_Qualified_Expression
+ and then Nkind (Expression (Rhs)) = N_Function_Call
+ and then Is_Entity_Name (Name (Expression (Rhs)))
+ and then
+ Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
+ then
+ Error_Msg_N
+ ("call to abstract function must be dispatching",
+ Name (Expression (Rhs)));
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
+ -- apply an implicit conversion of the rhs to that type to force
+ -- appropriate static and run-time accessibility checks. This applies
+ -- as well to anonymous access-to-subprogram types that are component
+ -- subtypes or formal parameters.
+
+ if Ada_Version >= Ada_2005
+ and then Is_Access_Type (T1)
+ then
+ if Is_Local_Anonymous_Access (T1)
+ or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
+
+ -- Handle assignment to an Ada 2012 stand-alone object
+ -- of an anonymous access type.
+
+ or else (Ekind (T1) = E_Anonymous_Access_Type
+ and then Nkind (Associated_Node_For_Itype (T1)) =
+ N_Object_Declaration)
+
+ then
+ Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
+ Analyze_And_Resolve (Rhs, T1);
+ end if;
+ end if;
+
+ -- Ada 2005 (AI-231): Assignment to not null variable
+
+ if Ada_Version >= Ada_2005
+ and then Can_Never_Be_Null (T1)
+ and then not Assignment_OK (Lhs)
+ then
+ -- Case where we know the right hand side is null
+
+ if Known_Null (Rhs) then
+ Apply_Compile_Time_Constraint_Error
+ (N => Rhs,
+ Msg =>
+ "(Ada 2005) null not allowed in null-excluding objects??",
+ Reason => CE_Null_Not_Allowed);
+
+ -- We still mark this as a possible modification, that's necessary
+ -- to reset Is_True_Constant, and desirable for xref purposes.
+
+ Note_Possible_Modification (Lhs, Sure => True);
+ return;
+
+ -- If we know the right hand side is non-null, then we convert to the
+ -- target type, since we don't need a run time check in that case.
+
+ elsif not Can_Never_Be_Null (T2) then
+ Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
+ Analyze_And_Resolve (Rhs, T1);
+ end if;
+ end if;
+
+ if Is_Scalar_Type (T1) then
+ Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
+
+ -- For array types, verify that lengths match. If the right hand side
+ -- is a function call that has been inlined, the assignment has been
+ -- rewritten as a block, and the constraint check will be applied to the
+ -- assignment within the block.
+
+ elsif Is_Array_Type (T1)
+ and then
+ (Nkind (Rhs) /= N_Type_Conversion
+ or else Is_Constrained (Etype (Rhs)))
+ and then
+ (Nkind (Rhs) /= N_Function_Call
+ or else Nkind (N) /= N_Block_Statement)
+ then
+ -- Assignment verifies that the length of the Lsh and Rhs are equal,
+ -- but of course the indexes do not have to match. If the right-hand
+ -- side is a type conversion to an unconstrained type, a length check
+ -- is performed on the expression itself during expansion. In rare
+ -- cases, the redundant length check is computed on an index type
+ -- with a different representation, triggering incorrect code in the
+ -- back end.
+
+ Apply_Length_Check (Rhs, Etype (Lhs));
+
+ else
+ -- Discriminant checks are applied in the course of expansion
+
+ null;
+ end if;
+
+ -- Note: modifications of the Lhs may only be recorded after
+ -- checks have been applied.
+
+ Note_Possible_Modification (Lhs, Sure => True);
+
+ -- ??? a real accessibility check is needed when ???
+
+ -- Post warning for redundant assignment or variable to itself
+
+ if Warn_On_Redundant_Constructs
+
+ -- We only warn for source constructs
+
+ and then Comes_From_Source (N)
+
+ -- Where the object is the same on both sides
+
+ and then Same_Object (Lhs, Original_Node (Rhs))
+
+ -- But exclude the case where the right side was an operation that
+ -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
+ -- don't want to warn in such a case, since it is reasonable to write
+ -- such expressions especially when K is defined symbolically in some
+ -- other package.
+
+ and then Nkind (Original_Node (Rhs)) not in N_Op
+ then
+ if Nkind (Lhs) in N_Has_Entity then
+ Error_Msg_NE -- CODEFIX
+ ("?r?useless assignment of & to itself!", N, Entity (Lhs));
+ else
+ Error_Msg_N -- CODEFIX
+ ("?r?useless assignment of object to itself!", N);
+ end if;
+ end if;
+
+ -- Check for non-allowed composite assignment
+
+ if not Support_Composite_Assign_On_Target
+ and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
+ and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
+ then
+ Error_Msg_CRT ("composite assignment", N);
+ end if;
+
+ -- Check elaboration warning for left side if not in elab code
+
+ if not In_Subprogram_Or_Concurrent_Unit then
+ Check_Elab_Assign (Lhs);
+ end if;
+
+ -- Set Referenced_As_LHS if appropriate. We only set this flag if the
+ -- assignment is a source assignment in the extended main source unit.
+ -- We are not interested in any reference information outside this
+ -- context, or in compiler generated assignment statements.
+
+ if Comes_From_Source (N)
+ and then In_Extended_Main_Source_Unit (Lhs)
+ then
+ Set_Referenced_Modified (Lhs, Out_Param => False);
+ end if;
+
+ -- Final step. If left side is an entity, then we may be able to reset
+ -- the current tracked values to new safe values. We only have something
+ -- to do if the left side is an entity name, and expansion has not
+ -- modified the node into something other than an assignment, and of
+ -- course we only capture values if it is safe to do so.
+
+ if Is_Entity_Name (Lhs)
+ and then Nkind (N) = N_Assignment_Statement
+ then
+ declare
+ Ent : constant Entity_Id := Entity (Lhs);
+
+ begin
+ if Safe_To_Capture_Value (N, Ent) then
+
+ -- If simple variable on left side, warn if this assignment
+ -- blots out another one (rendering it useless). We only do
+ -- this for source assignments, otherwise we can generate bogus
+ -- warnings when an assignment is rewritten as another
+ -- assignment, and gets tied up with itself.
+
+ if Warn_On_Modified_Unread
+ and then Is_Assignable (Ent)
+ and then Comes_From_Source (N)
+ and then In_Extended_Main_Source_Unit (Ent)
+ then
+ Warn_On_Useless_Assignment (Ent, N);
+ end if;
+
+ -- If we are assigning an access type and the left side is an
+ -- entity, then make sure that the Is_Known_[Non_]Null flags
+ -- properly reflect the state of the entity after assignment.
+
+ if Is_Access_Type (T1) then
+ if Known_Non_Null (Rhs) then
+ Set_Is_Known_Non_Null (Ent, True);
+
+ elsif Known_Null (Rhs)
+ and then not Can_Never_Be_Null (Ent)
+ then
+ Set_Is_Known_Null (Ent, True);
+
+ else
+ Set_Is_Known_Null (Ent, False);
+
+ if not Can_Never_Be_Null (Ent) then
+ Set_Is_Known_Non_Null (Ent, False);
+ end if;
+ end if;
+
+ -- For discrete types, we may be able to set the current value
+ -- if the value is known at compile time.
+
+ elsif Is_Discrete_Type (T1)
+ and then Compile_Time_Known_Value (Rhs)
+ then
+ Set_Current_Value (Ent, Rhs);
+ else
+ Set_Current_Value (Ent, Empty);
+ end if;
+
+ -- If not safe to capture values, kill them
+
+ else
+ Kill_Lhs;
+ end if;
+ end;
+ end if;
+
+ -- If assigning to an object in whole or in part, note location of
+ -- assignment in case no one references value. We only do this for
+ -- source assignments, otherwise we can generate bogus warnings when an
+ -- assignment is rewritten as another assignment, and gets tied up with
+ -- itself.
+
+ declare
+ Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
+ begin
+ if Present (Ent)
+ and then Safe_To_Capture_Value (N, Ent)
+ and then Nkind (N) = N_Assignment_Statement
+ and then Warn_On_Modified_Unread
+ and then Is_Assignable (Ent)
+ and then Comes_From_Source (N)
+ and then In_Extended_Main_Source_Unit (Ent)
+ then
+ Set_Last_Assignment (Ent, Lhs);
+ end if;
+ end;
+
+ Analyze_Dimension (N);
+ end Analyze_Assignment;
+
+ -----------------------------
+ -- Analyze_Block_Statement --
+ -----------------------------
+
+ procedure Analyze_Block_Statement (N : Node_Id) is
+ procedure Install_Return_Entities (Scop : Entity_Id);
+ -- Install all entities of return statement scope Scop in the visibility
+ -- chain except for the return object since its entity is reused in a
+ -- renaming.
+
+ -----------------------------
+ -- Install_Return_Entities --
+ -----------------------------
+
+ procedure Install_Return_Entities (Scop : Entity_Id) is
+ Id : Entity_Id;
+
+ begin
+ Id := First_Entity (Scop);
+ while Present (Id) loop
+
+ -- Do not install the return object
+
+ if not Ekind_In (Id, E_Constant, E_Variable)
+ or else not Is_Return_Object (Id)
+ then
+ Install_Entity (Id);
+ end if;
+
+ Next_Entity (Id);
+ end loop;
+ end Install_Return_Entities;
+
+ -- Local constants and variables
+
+ Decls : constant List_Id := Declarations (N);
+ Id : constant Node_Id := Identifier (N);
+ HSS : constant Node_Id := Handled_Statement_Sequence (N);
+
+ Is_BIP_Return_Statement : Boolean;
+
+ -- Start of processing for Analyze_Block_Statement
+
+ begin
+ -- In SPARK mode, we reject block statements. Note that the case of
+ -- block statements generated by the expander is fine.
+
+ if Nkind (Original_Node (N)) = N_Block_Statement then
+ Check_SPARK_Restriction ("block statement is not allowed", N);
+ end if;
+
+ -- If no handled statement sequence is present, things are really messed
+ -- up, and we just return immediately (defence against previous errors).
+
+ if No (HSS) then
+ Check_Error_Detected;
+ return;
+ end if;
+
+ -- Detect whether the block is actually a rewritten return statement of
+ -- a build-in-place function.
+
+ Is_BIP_Return_Statement :=
+ Present (Id)
+ and then Present (Entity (Id))
+ and then Ekind (Entity (Id)) = E_Return_Statement
+ and then Is_Build_In_Place_Function
+ (Return_Applies_To (Entity (Id)));
+
+ -- Normal processing with HSS present
+
+ declare
+ EH : constant List_Id := Exception_Handlers (HSS);
+ Ent : Entity_Id := Empty;
+ S : Entity_Id;
+
+ Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
+ -- Recursively save value of this global, will be restored on exit
+
+ begin
+ -- Initialize unblocked exit count for statements of begin block
+ -- plus one for each exception handler that is present.
+
+ Unblocked_Exit_Count := 1;
+
+ if Present (EH) then
+ Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
+ end if;
+
+ -- If a label is present analyze it and mark it as referenced
+
+ if Present (Id) then
+ Analyze (Id);
+ Ent := Entity (Id);
+
+ -- An error defense. If we have an identifier, but no entity, then
+ -- something is wrong. If previous errors, then just remove the
+ -- identifier and continue, otherwise raise an exception.
+
+ if No (Ent) then
+ Check_Error_Detected;
+ Set_Identifier (N, Empty);
+
+ else
+ Set_Ekind (Ent, E_Block);
+ Generate_Reference (Ent, N, ' ');
+ Generate_Definition (Ent);
+
+ if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
+ Set_Label_Construct (Parent (Ent), N);
+ end if;
+ end if;
+ end if;
+
+ -- If no entity set, create a label entity
+
+ if No (Ent) then
+ Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
+ Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
+ Set_Parent (Ent, N);
+ end if;
+
+ Set_Etype (Ent, Standard_Void_Type);
+ Set_Block_Node (Ent, Identifier (N));
+ Push_Scope (Ent);
+
+ -- The block served as an extended return statement. Ensure that any
+ -- entities created during the analysis and expansion of the return
+ -- object declaration are once again visible.
+
+ if Is_BIP_Return_Statement then
+ Install_Return_Entities (Ent);
+ end if;
+
+ if Present (Decls) then
+ Analyze_Declarations (Decls);
+ Check_Completion;
+ Inspect_Deferred_Constant_Completion (Decls);
+ end if;
+
+ Analyze (HSS);
+ Process_End_Label (HSS, 'e', Ent);
+
+ -- If exception handlers are present, then we indicate that enclosing
+ -- scopes contain a block with handlers. We only need to mark non-
+ -- generic scopes.
+
+ if Present (EH) then
+ S := Scope (Ent);
+ loop
+ Set_Has_Nested_Block_With_Handler (S);
+ exit when Is_Overloadable (S)
+ or else Ekind (S) = E_Package
+ or else Is_Generic_Unit (S);
+ S := Scope (S);
+ end loop;
+ end if;
+
+ Check_References (Ent);
+ Warn_On_Useless_Assignments (Ent);
+ End_Scope;
+
+ if Unblocked_Exit_Count = 0 then
+ Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+ Check_Unreachable_Code (N);
+ else
+ Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+ end if;
+ end;
+ end Analyze_Block_Statement;
+
+ ----------------------------
+ -- Analyze_Case_Statement --
+ ----------------------------
+
+ procedure Analyze_Case_Statement (N : Node_Id) is
+ Exp : Node_Id;
+ Exp_Type : Entity_Id;
+ Exp_Btype : Entity_Id;
+ Last_Choice : Nat;
+ Dont_Care : Boolean;
+ Others_Present : Boolean;
+
+ pragma Warnings (Off, Last_Choice);
+ pragma Warnings (Off, Dont_Care);
+ -- Don't care about assigned values
+
+ Statements_Analyzed : Boolean := False;
+ -- Set True if at least some statement sequences get analyzed. If False
+ -- on exit, means we had a serious error that prevented full analysis of
+ -- the case statement, and as a result it is not a good idea to output
+ -- warning messages about unreachable code.
+
+ Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
+ -- Recursively save value of this global, will be restored on exit
+
+ procedure Non_Static_Choice_Error (Choice : Node_Id);
+ -- Error routine invoked by the generic instantiation below when the
+ -- case statement has a non static choice.
+
+ procedure Process_Statements (Alternative : Node_Id);
+ -- Analyzes all the statements associated with a case alternative.
+ -- Needed by the generic instantiation below.
+
+ package Case_Choices_Processing is new
+ Generic_Choices_Processing
+ (Get_Alternatives => Alternatives,
+ Get_Choices => Discrete_Choices,
+ Process_Empty_Choice => No_OP,
+ Process_Non_Static_Choice => Non_Static_Choice_Error,
+ Process_Associated_Node => Process_Statements);
+ use Case_Choices_Processing;
+ -- Instantiation of the generic choice processing package
+
+ -----------------------------
+ -- Non_Static_Choice_Error --
+ -----------------------------
+
+ procedure Non_Static_Choice_Error (Choice : Node_Id) is
+ begin
+ Flag_Non_Static_Expr
+ ("choice given in case statement is not static!", Choice);
+ end Non_Static_Choice_Error;
+
+ ------------------------
+ -- Process_Statements --
+ ------------------------
+
+ procedure Process_Statements (Alternative : Node_Id) is
+ Choices : constant List_Id := Discrete_Choices (Alternative);
+ Ent : Entity_Id;
+
+ begin
+ Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
+ Statements_Analyzed := True;
+
+ -- An interesting optimization. If the case statement expression
+ -- is a simple entity, then we can set the current value within an
+ -- alternative if the alternative has one possible value.
+
+ -- case N is
+ -- when 1 => alpha
+ -- when 2 | 3 => beta
+ -- when others => gamma
+
+ -- Here we know that N is initially 1 within alpha, but for beta and
+ -- gamma, we do not know anything more about the initial value.
+
+ if Is_Entity_Name (Exp) then
+ Ent := Entity (Exp);
+
+ if Ekind_In (Ent, E_Variable,
+ E_In_Out_Parameter,
+ E_Out_Parameter)
+ then
+ if List_Length (Choices) = 1
+ and then Nkind (First (Choices)) in N_Subexpr
+ and then Compile_Time_Known_Value (First (Choices))
+ then
+ Set_Current_Value (Entity (Exp), First (Choices));
+ end if;
+
+ Analyze_Statements (Statements (Alternative));
+
+ -- After analyzing the case, set the current value to empty
+ -- since we won't know what it is for the next alternative
+ -- (unless reset by this same circuit), or after the case.
+
+ Set_Current_Value (Entity (Exp), Empty);
+ return;
+ end if;
+ end if;
+
+ -- Case where expression is not an entity name of a variable
+
+ Analyze_Statements (Statements (Alternative));
+ end Process_Statements;
+
+ -- Start of processing for Analyze_Case_Statement
+
+ begin
+ Unblocked_Exit_Count := 0;
+ Exp := Expression (N);
+ Analyze (Exp);
+
+ -- The expression must be of any discrete type. In rare cases, the
+ -- expander constructs a case statement whose expression has a private
+ -- type whose full view is discrete. This can happen when generating
+ -- a stream operation for a variant type after the type is frozen,
+ -- when the partial of view of the type of the discriminant is private.
+ -- In that case, use the full view to analyze case alternatives.
+
+ if not Is_Overloaded (Exp)
+ and then not Comes_From_Source (N)
+ and then Is_Private_Type (Etype (Exp))
+ and then Present (Full_View (Etype (Exp)))
+ and then Is_Discrete_Type (Full_View (Etype (Exp)))
+ then
+ Resolve (Exp, Etype (Exp));
+ Exp_Type := Full_View (Etype (Exp));
+
+ else
+ Analyze_And_Resolve (Exp, Any_Discrete);
+ Exp_Type := Etype (Exp);
+ end if;
+
+ Check_Unset_Reference (Exp);
+ Exp_Btype := Base_Type (Exp_Type);
+
+ -- The expression must be of a discrete type which must be determinable
+ -- independently of the context in which the expression occurs, but
+ -- using the fact that the expression must be of a discrete type.
+ -- Moreover, the type this expression must not be a character literal
+ -- (which is always ambiguous) or, for Ada-83, a generic formal type.
+
+ -- If error already reported by Resolve, nothing more to do
+
+ if Exp_Btype = Any_Discrete
+ or else Exp_Btype = Any_Type
+ then
+ return;
+
+ elsif Exp_Btype = Any_Character then
+ Error_Msg_N
+ ("character literal as case expression is ambiguous", Exp);
+ return;
+
+ elsif Ada_Version = Ada_83
+ and then (Is_Generic_Type (Exp_Btype)
+ or else Is_Generic_Type (Root_Type (Exp_Btype)))
+ then
+ Error_Msg_N
+ ("(Ada 83) case expression cannot be of a generic type", Exp);
+ return;
+ end if;
+
+ -- If the case expression is a formal object of mode in out, then treat
+ -- it as having a nonstatic subtype by forcing use of the base type
+ -- (which has to get passed to Check_Case_Choices below). Also use base
+ -- type when the case expression is parenthesized.
+
+ if Paren_Count (Exp) > 0
+ or else (Is_Entity_Name (Exp)
+ and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
+ then
+ Exp_Type := Exp_Btype;
+ end if;
+
+ -- Call instantiated Analyze_Choices which does the rest of the work
+
+ Analyze_Choices (N, Exp_Type, Dont_Care, Others_Present);
+
+ -- A case statement with a single OTHERS alternative is not allowed
+ -- in SPARK.
+
+ if Others_Present
+ and then List_Length (Alternatives (N)) = 1
+ then
+ Check_SPARK_Restriction
+ ("OTHERS as unique case alternative is not allowed", N);
+ end if;
+
+ if Exp_Type = Universal_Integer and then not Others_Present then
+ Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
+ end if;
+
+ -- If all our exits were blocked by unconditional transfers of control,
+ -- then the entire CASE statement acts as an unconditional transfer of
+ -- control, so treat it like one, and check unreachable code. Skip this
+ -- test if we had serious errors preventing any statement analysis.
+
+ if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
+ Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+ Check_Unreachable_Code (N);
+ else
+ Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+ end if;
+
+ if not Expander_Active
+ and then Compile_Time_Known_Value (Expression (N))
+ and then Serious_Errors_Detected = 0
+ then
+ declare
+ Chosen : constant Node_Id := Find_Static_Alternative (N);
+ Alt : Node_Id;
+
+ begin
+ Alt := First (Alternatives (N));
+ while Present (Alt) loop
+ if Alt /= Chosen then
+ Remove_Warning_Messages (Statements (Alt));
+ end if;
+
+ Next (Alt);
+ end loop;
+ end;
+ end if;
+ end Analyze_Case_Statement;
+
+ ----------------------------
+ -- Analyze_Exit_Statement --
+ ----------------------------
+
+ -- If the exit includes a name, it must be the name of a currently open
+ -- loop. Otherwise there must be an innermost open loop on the stack, to
+ -- which the statement implicitly refers.
+
+ -- Additionally, in SPARK mode:
+
+ -- The exit can only name the closest enclosing loop;
+
+ -- An exit with a when clause must be directly contained in a loop;
+
+ -- An exit without a when clause must be directly contained in an
+ -- if-statement with no elsif or else, which is itself directly contained
+ -- in a loop. The exit must be the last statement in the if-statement.
+
+ procedure Analyze_Exit_Statement (N : Node_Id) is
+ Target : constant Node_Id := Name (N);
+ Cond : constant Node_Id := Condition (N);
+ Scope_Id : Entity_Id;
+ U_Name : Entity_Id;
+ Kind : Entity_Kind;
+
+ begin
+ if No (Cond) then
+ Check_Unreachable_Code (N);
+ end if;
+
+ if Present (Target) then
+ Analyze (Target);
+ U_Name := Entity (Target);
+
+ if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
+ Error_Msg_N ("invalid loop name in exit statement", N);
+ return;
+
+ else
+ if Has_Loop_In_Inner_Open_Scopes (U_Name) then
+ Check_SPARK_Restriction
+ ("exit label must name the closest enclosing loop", N);
+ end if;
+
+ Set_Has_Exit (U_Name);
+ end if;
+
+ else
+ U_Name := Empty;
+ end if;
+
+ for J in reverse 0 .. Scope_Stack.Last loop
+ Scope_Id := Scope_Stack.Table (J).Entity;
+ Kind := Ekind (Scope_Id);
+
+ if Kind = E_Loop
+ and then (No (Target) or else Scope_Id = U_Name)
+ then
+ Set_Has_Exit (Scope_Id);
+ exit;
+
+ elsif Kind = E_Block
+ or else Kind = E_Loop
+ or else Kind = E_Return_Statement
+ then
+ null;
+
+ else
+ Error_Msg_N
+ ("cannot exit from program unit or accept statement", N);
+ return;
+ end if;
+ end loop;
+
+ -- Verify that if present the condition is a Boolean expression
+
+ if Present (Cond) then
+ Analyze_And_Resolve (Cond, Any_Boolean);
+ Check_Unset_Reference (Cond);
+ end if;
+
+ -- In SPARK mode, verify that the exit statement respects the SPARK
+ -- restrictions.
+
+ if Present (Cond) then
+ if Nkind (Parent (N)) /= N_Loop_Statement then
+ Check_SPARK_Restriction
+ ("exit with when clause must be directly in loop", N);
+ end if;
+
+ else
+ if Nkind (Parent (N)) /= N_If_Statement then
+ if Nkind (Parent (N)) = N_Elsif_Part then
+ Check_SPARK_Restriction
+ ("exit must be in IF without ELSIF", N);
+ else
+ Check_SPARK_Restriction ("exit must be directly in IF", N);
+ end if;
+
+ elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
+ Check_SPARK_Restriction
+ ("exit must be in IF directly in loop", N);
+
+ -- First test the presence of ELSE, so that an exit in an ELSE leads
+ -- to an error mentioning the ELSE.
+
+ elsif Present (Else_Statements (Parent (N))) then
+ Check_SPARK_Restriction ("exit must be in IF without ELSE", N);
+
+ -- An exit in an ELSIF does not reach here, as it would have been
+ -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
+
+ elsif Present (Elsif_Parts (Parent (N))) then
+ Check_SPARK_Restriction ("exit must be in IF without ELSIF", N);
+ end if;
+ end if;
+
+ -- Chain exit statement to associated loop entity
+
+ Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
+ Set_First_Exit_Statement (Scope_Id, N);
+
+ -- Since the exit may take us out of a loop, any previous assignment
+ -- statement is not useless, so clear last assignment indications. It
+ -- is OK to keep other current values, since if the exit statement
+ -- does not exit, then the current values are still valid.
+
+ Kill_Current_Values (Last_Assignment_Only => True);
+ end Analyze_Exit_Statement;
+
+ ----------------------------
+ -- Analyze_Goto_Statement --
+ ----------------------------
+
+ procedure Analyze_Goto_Statement (N : Node_Id) is
+ Label : constant Node_Id := Name (N);
+ Scope_Id : Entity_Id;
+ Label_Scope : Entity_Id;
+ Label_Ent : Entity_Id;
+
+ begin
+ Check_SPARK_Restriction ("goto statement is not allowed", N);
+
+ -- Actual semantic checks
+
+ Check_Unreachable_Code (N);
+ Kill_Current_Values (Last_Assignment_Only => True);
+
+ Analyze (Label);
+ Label_Ent := Entity (Label);
+
+ -- Ignore previous error
+
+ if Label_Ent = Any_Id then
+ Check_Error_Detected;
+ return;
+
+ -- We just have a label as the target of a goto
+
+ elsif Ekind (Label_Ent) /= E_Label then
+ Error_Msg_N ("target of goto statement must be a label", Label);
+ return;
+
+ -- Check that the target of the goto is reachable according to Ada
+ -- scoping rules. Note: the special gotos we generate for optimizing
+ -- local handling of exceptions would violate these rules, but we mark
+ -- such gotos as analyzed when built, so this code is never entered.
+
+ elsif not Reachable (Label_Ent) then
+ Error_Msg_N ("target of goto statement is not reachable", Label);
+ return;
+ end if;
+
+ -- Here if goto passes initial validity checks
+
+ Label_Scope := Enclosing_Scope (Label_Ent);
+
+ for J in reverse 0 .. Scope_Stack.Last loop
+ Scope_Id := Scope_Stack.Table (J).Entity;
+
+ if Label_Scope = Scope_Id
+ or else (Ekind (Scope_Id) /= E_Block
+ and then Ekind (Scope_Id) /= E_Loop
+ and then Ekind (Scope_Id) /= E_Return_Statement)
+ then
+ if Scope_Id /= Label_Scope then
+ Error_Msg_N
+ ("cannot exit from program unit or accept statement", N);
+ end if;
+
+ return;
+ end if;
+ end loop;
+
+ raise Program_Error;
+ end Analyze_Goto_Statement;
+
+ --------------------------
+ -- Analyze_If_Statement --
+ --------------------------
+
+ -- A special complication arises in the analysis of if statements
+
+ -- The expander has circuitry to completely delete code that it can tell
+ -- will not be executed (as a result of compile time known conditions). In
+ -- the analyzer, we ensure that code that will be deleted in this manner is
+ -- analyzed but not expanded. This is obviously more efficient, but more
+ -- significantly, difficulties arise if code is expanded and then
+ -- eliminated (e.g. exception table entries disappear). Similarly, itypes
+ -- generated in deleted code must be frozen from start, because the nodes
+ -- on which they depend will not be available at the freeze point.
+
+ procedure Analyze_If_Statement (N : Node_Id) is
+ E : Node_Id;
+
+ Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
+ -- Recursively save value of this global, will be restored on exit
+
+ Save_In_Deleted_Code : Boolean;
+
+ Del : Boolean := False;
+ -- This flag gets set True if a True condition has been found, which
+ -- means that remaining ELSE/ELSIF parts are deleted.
+
+ procedure Analyze_Cond_Then (Cnode : Node_Id);
+ -- This is applied to either the N_If_Statement node itself or to an
+ -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
+ -- statements associated with it.
+
+ -----------------------
+ -- Analyze_Cond_Then --
+ -----------------------
+
+ procedure Analyze_Cond_Then (Cnode : Node_Id) is
+ Cond : constant Node_Id := Condition (Cnode);
+ Tstm : constant List_Id := Then_Statements (Cnode);
+
+ begin
+ Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
+ Analyze_And_Resolve (Cond, Any_Boolean);
+ Check_Unset_Reference (Cond);
+ Set_Current_Value_Condition (Cnode);
+
+ -- If already deleting, then just analyze then statements
+
+ if Del then
+ Analyze_Statements (Tstm);
+
+ -- Compile time known value, not deleting yet
+
+ elsif Compile_Time_Known_Value (Cond) then
+ Save_In_Deleted_Code := In_Deleted_Code;
+
+ -- If condition is True, then analyze the THEN statements and set
+ -- no expansion for ELSE and ELSIF parts.
+
+ if Is_True (Expr_Value (Cond)) then
+ Analyze_Statements (Tstm);
+ Del := True;
+ Expander_Mode_Save_And_Set (False);
+ In_Deleted_Code := True;
+
+ -- If condition is False, analyze THEN with expansion off
+
+ else -- Is_False (Expr_Value (Cond))
+ Expander_Mode_Save_And_Set (False);
+ In_Deleted_Code := True;
+ Analyze_Statements (Tstm);
+ Expander_Mode_Restore;
+ In_Deleted_Code := Save_In_Deleted_Code;
+ end if;
+
+ -- Not known at compile time, not deleting, normal analysis
+
+ else
+ Analyze_Statements (Tstm);
+ end if;
+ end Analyze_Cond_Then;
+
+ -- Start of Analyze_If_Statement
+
+ begin
+ -- Initialize exit count for else statements. If there is no else part,
+ -- this count will stay non-zero reflecting the fact that the uncovered
+ -- else case is an unblocked exit.
+
+ Unblocked_Exit_Count := 1;
+ Analyze_Cond_Then (N);
+
+ -- Now to analyze the elsif parts if any are present
+
+ if Present (Elsif_Parts (N)) then
+ E := First (Elsif_Parts (N));
+ while Present (E) loop
+ Analyze_Cond_Then (E);
+ Next (E);
+ end loop;
+ end if;
+
+ if Present (Else_Statements (N)) then
+ Analyze_Statements (Else_Statements (N));
+ end if;
+
+ -- If all our exits were blocked by unconditional transfers of control,
+ -- then the entire IF statement acts as an unconditional transfer of
+ -- control, so treat it like one, and check unreachable code.
+
+ if Unblocked_Exit_Count = 0 then
+ Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+ Check_Unreachable_Code (N);
+ else
+ Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
+ end if;
+
+ if Del then
+ Expander_Mode_Restore;
+ In_Deleted_Code := Save_In_Deleted_Code;
+ end if;
+
+ if not Expander_Active
+ and then Compile_Time_Known_Value (Condition (N))
+ and then Serious_Errors_Detected = 0
+ then
+ if Is_True (Expr_Value (Condition (N))) then
+ Remove_Warning_Messages (Else_Statements (N));
+
+ if Present (Elsif_Parts (N)) then
+ E := First (Elsif_Parts (N));
+ while Present (E) loop
+ Remove_Warning_Messages (Then_Statements (E));
+ Next (E);
+ end loop;
+ end if;
+
+ else
+ Remove_Warning_Messages (Then_Statements (N));
+ end if;
+ end if;
+ end Analyze_If_Statement;
+
+ ----------------------------------------
+ -- Analyze_Implicit_Label_Declaration --
+ ----------------------------------------
+
+ -- An implicit label declaration is generated in the innermost enclosing
+ -- declarative part. This is done for labels, and block and loop names.
+
+ -- Note: any changes in this routine may need to be reflected in
+ -- Analyze_Label_Entity.
+
+ procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
+ Id : constant Node_Id := Defining_Identifier (N);
+ begin
+ Enter_Name (Id);
+ Set_Ekind (Id, E_Label);
+ Set_Etype (Id, Standard_Void_Type);
+ Set_Enclosing_Scope (Id, Current_Scope);
+ end Analyze_Implicit_Label_Declaration;
+
+ ------------------------------
+ -- Analyze_Iteration_Scheme --
+ ------------------------------
+
+ procedure Analyze_Iteration_Scheme (N : Node_Id) is
+ Cond : Node_Id;
+ Iter_Spec : Node_Id;
+ Loop_Spec : Node_Id;
+
+ begin
+ -- For an infinite loop, there is no iteration scheme
+
+ if No (N) then
+ return;
+ end if;
+
+ Cond := Condition (N);
+ Iter_Spec := Iterator_Specification (N);
+ Loop_Spec := Loop_Parameter_Specification (N);
+
+ if Present (Cond) then
+ Analyze_And_Resolve (Cond, Any_Boolean);
+ Check_Unset_Reference (Cond);
+ Set_Current_Value_Condition (N);
+
+ elsif Present (Iter_Spec) then
+ Analyze_Iterator_Specification (Iter_Spec);
+
+ else
+ Analyze_Loop_Parameter_Specification (Loop_Spec);
+ end if;
+ end Analyze_Iteration_Scheme;
+
+ ------------------------------------
+ -- Analyze_Iterator_Specification --
+ ------------------------------------
+
+ procedure Analyze_Iterator_Specification (N : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Def_Id : constant Node_Id := Defining_Identifier (N);
+ Subt : constant Node_Id := Subtype_Indication (N);
+ Iter_Name : constant Node_Id := Name (N);
+
+ Ent : Entity_Id;
+ Typ : Entity_Id;
+
+ begin
+ Enter_Name (Def_Id);
+
+ if Present (Subt) then
+ Analyze (Subt);
+ end if;
+
+ Preanalyze_Range (Iter_Name);
+
+ -- Set the kind of the loop variable, which is not visible within
+ -- the iterator name.
+
+ Set_Ekind (Def_Id, E_Variable);
+
+ -- If the domain of iteration is an expression, create a declaration for
+ -- it, so that finalization actions are introduced outside of the loop.
+ -- The declaration must be a renaming because the body of the loop may
+ -- assign to elements.
+
+ if not Is_Entity_Name (Iter_Name)
+
+ -- When the context is a quantified expression, the renaming
+ -- declaration is delayed until the expansion phase if we are
+ -- doing expansion.
+
+ and then (Nkind (Parent (N)) /= N_Quantified_Expression
+ or else Operating_Mode = Check_Semantics)
+
+ -- Do not perform this expansion in Alfa mode, since the formal
+ -- verification directly deals with the source form of the iterator.
+
+ and then not Alfa_Mode
+ then
+ declare
+ Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
+ Decl : Node_Id;
+
+ begin
+ Typ := Etype (Iter_Name);
+
+ -- Protect against malformed iterator
+
+ if Typ = Any_Type then
+ Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
+ return;
+ end if;
+
+ -- The name in the renaming declaration may be a function call.
+ -- Indicate that it does not come from source, to suppress
+ -- spurious warnings on renamings of parameterless functions,
+ -- a common enough idiom in user-defined iterators.
+
+ Decl :=
+ Make_Object_Renaming_Declaration (Loc,
+ Defining_Identifier => Id,
+ Subtype_Mark => New_Occurrence_Of (Typ, Loc),
+ Name =>
+ New_Copy_Tree (Iter_Name, New_Sloc => Loc));
+
+ Insert_Actions (Parent (Parent (N)), New_List (Decl));
+ Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
+ Set_Etype (Id, Typ);
+ Set_Etype (Name (N), Typ);
+ end;
+
+ -- Container is an entity or an array with uncontrolled components, or
+ -- else it is a container iterator given by a function call, typically
+ -- called Iterate in the case of predefined containers, even though
+ -- Iterate is not a reserved name. What matters is that the return type
+ -- of the function is an iterator type.
+
+ elsif Is_Entity_Name (Iter_Name) then
+ Analyze (Iter_Name);
+
+ if Nkind (Iter_Name) = N_Function_Call then
+ declare
+ C : constant Node_Id := Name (Iter_Name);
+ I : Interp_Index;
+ It : Interp;
+
+ begin
+ if not Is_Overloaded (Iter_Name) then
+ Resolve (Iter_Name, Etype (C));
+
+ else
+ Get_First_Interp (C, I, It);
+ while It.Typ /= Empty loop
+ if Reverse_Present (N) then
+ if Is_Reversible_Iterator (It.Typ) then
+ Resolve (Iter_Name, It.Typ);
+ exit;
+ end if;
+
+ elsif Is_Iterator (It.Typ) then
+ Resolve (Iter_Name, It.Typ);
+ exit;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end if;
+ end;
+
+ -- Domain of iteration is not overloaded
+
+ else
+ Resolve (Iter_Name, Etype (Iter_Name));
+ end if;
+ end if;
+
+ Typ := Etype (Iter_Name);
+
+ if Is_Array_Type (Typ) then
+ if Of_Present (N) then
+ Set_Etype (Def_Id, Component_Type (Typ));
+
+ -- Here we have a missing Range attribute
+
+ else
+ Error_Msg_N
+ ("missing Range attribute in iteration over an array", N);
+
+ -- In Ada 2012 mode, this may be an attempt at an iterator
+
+ if Ada_Version >= Ada_2012 then
+ Error_Msg_NE
+ ("\if& is meant to designate an element of the array, use OF",
+ N, Def_Id);
+ end if;
+
+ -- Prevent cascaded errors
+
+ Set_Ekind (Def_Id, E_Loop_Parameter);
+ Set_Etype (Def_Id, Etype (First_Index (Typ)));
+ end if;
+
+ -- Check for type error in iterator
+
+ elsif Typ = Any_Type then
+ return;
+
+ -- Iteration over a container
+
+ else
+ Set_Ekind (Def_Id, E_Loop_Parameter);
+
+ if Of_Present (N) then
+
+ -- The type of the loop variable is the Iterator_Element aspect of
+ -- the container type.
+
+ declare
+ Element : constant Entity_Id :=
+ Find_Aspect (Typ, Aspect_Iterator_Element);
+ begin
+ if No (Element) then
+ Error_Msg_NE ("cannot iterate over&", N, Typ);
+ return;
+ else
+ Set_Etype (Def_Id, Entity (Element));
+
+ -- If the container has a variable indexing aspect, the
+ -- element is a variable and is modifiable in the loop.
+
+ if Present (Find_Aspect (Typ, Aspect_Variable_Indexing)) then
+ Set_Ekind (Def_Id, E_Variable);
+ end if;
+ end if;
+ end;
+
+ else
+ -- For an iteration of the form IN, the name must denote an
+ -- iterator, typically the result of a call to Iterate. Give a
+ -- useful error message when the name is a container by itself.
+
+ if Is_Entity_Name (Original_Node (Name (N)))
+ and then not Is_Iterator (Typ)
+ then
+ if No (Find_Aspect (Typ, Aspect_Iterator_Element)) then
+ Error_Msg_NE
+ ("cannot iterate over&", Name (N), Typ);
+ else
+ Error_Msg_N
+ ("name must be an iterator, not a container", Name (N));
+ end if;
+
+ Error_Msg_NE
+ ("\to iterate directly over the elements of a container, " &
+ "write `of &`", Name (N), Original_Node (Name (N)));
+ end if;
+
+ -- The result type of Iterate function is the classwide type of
+ -- the interface parent. We need the specific Cursor type defined
+ -- in the container package.
+
+ Ent := First_Entity (Scope (Typ));
+ while Present (Ent) loop
+ if Chars (Ent) = Name_Cursor then
+ Set_Etype (Def_Id, Etype (Ent));
+ exit;
+ end if;
+
+ Next_Entity (Ent);
+ end loop;
+ end if;
+ end if;
+ end Analyze_Iterator_Specification;
+
+ -------------------
+ -- Analyze_Label --
+ -------------------
+
+ -- Note: the semantic work required for analyzing labels (setting them as
+ -- reachable) was done in a prepass through the statements in the block,
+ -- so that forward gotos would be properly handled. See Analyze_Statements
+ -- for further details. The only processing required here is to deal with
+ -- optimizations that depend on an assumption of sequential control flow,
+ -- since of course the occurrence of a label breaks this assumption.
+
+ procedure Analyze_Label (N : Node_Id) is
+ pragma Warnings (Off, N);
+ begin
+ Kill_Current_Values;
+ end Analyze_Label;
+
+ --------------------------
+ -- Analyze_Label_Entity --
+ --------------------------
+
+ procedure Analyze_Label_Entity (E : Entity_Id) is
+ begin
+ Set_Ekind (E, E_Label);
+ Set_Etype (E, Standard_Void_Type);
+ Set_Enclosing_Scope (E, Current_Scope);
+ Set_Reachable (E, True);
+ end Analyze_Label_Entity;
+
+ ------------------------------------------
+ -- Analyze_Loop_Parameter_Specification --
+ ------------------------------------------
+
+ procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
+ Loop_Nod : constant Node_Id := Parent (Parent (N));
+
+ procedure Check_Controlled_Array_Attribute (DS : Node_Id);
+ -- If the bounds are given by a 'Range reference on a function call
+ -- that returns a controlled array, introduce an explicit declaration
+ -- to capture the bounds, so that the function result can be finalized
+ -- in timely fashion.
+
+ function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
+ -- N is the node for an arbitrary construct. This function searches the
+ -- construct N to see if any expressions within it contain function
+ -- calls that use the secondary stack, returning True if any such call
+ -- is found, and False otherwise.
+
+ procedure Process_Bounds (R : Node_Id);
+ -- If the iteration is given by a range, create temporaries and
+ -- assignment statements block to capture the bounds and perform
+ -- required finalization actions in case a bound includes a function
+ -- call that uses the temporary stack. We first pre-analyze a copy of
+ -- the range in order to determine the expected type, and analyze and
+ -- resolve the original bounds.
+
+ --------------------------------------
+ -- Check_Controlled_Array_Attribute --
+ --------------------------------------
+
+ procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
+ begin
+ if Nkind (DS) = N_Attribute_Reference
+ and then Is_Entity_Name (Prefix (DS))
+ and then Ekind (Entity (Prefix (DS))) = E_Function
+ and then Is_Array_Type (Etype (Entity (Prefix (DS))))
+ and then
+ Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
+ and then Expander_Active
+ then
+ declare
+ Loc : constant Source_Ptr := Sloc (N);
+ Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
+ Indx : constant Entity_Id :=
+ Base_Type (Etype (First_Index (Arr)));
+ Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
+ Decl : Node_Id;
+
+ begin
+ Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Subt,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (Indx, Loc),
+ Constraint =>
+ Make_Range_Constraint (Loc, Relocate_Node (DS))));
+ Insert_Before (Loop_Nod, Decl);
+ Analyze (Decl);
+
+ Rewrite (DS,
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Reference_To (Subt, Loc),
+ Attribute_Name => Attribute_Name (DS)));
+
+ Analyze (DS);
+ end;
+ end if;
+ end Check_Controlled_Array_Attribute;
+
+ ------------------------------------
+ -- Has_Call_Using_Secondary_Stack --
+ ------------------------------------
+
+ function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
+
+ function Check_Call (N : Node_Id) return Traverse_Result;
+ -- Check if N is a function call which uses the secondary stack
+
+ ----------------
+ -- Check_Call --
+ ----------------
+
+ function Check_Call (N : Node_Id) return Traverse_Result is
+ Nam : Node_Id;
+ Subp : Entity_Id;
+ Return_Typ : Entity_Id;
+
+ begin
+ if Nkind (N) = N_Function_Call then
+ Nam := Name (N);
+
+ -- Call using access to subprogram with explicit dereference
+
+ if Nkind (Nam) = N_Explicit_Dereference then
+ Subp := Etype (Nam);
+
+ -- Call using a selected component notation or Ada 2005 object
+ -- operation notation
+
+ elsif Nkind (Nam) = N_Selected_Component then
+ Subp := Entity (Selector_Name (Nam));
+
+ -- Common case
+
+ else
+ Subp := Entity (Nam);
+ end if;
+
+ Return_Typ := Etype (Subp);
+
+ if Is_Composite_Type (Return_Typ)
+ and then not Is_Constrained (Return_Typ)
+ then
+ return Abandon;
+
+ elsif Sec_Stack_Needed_For_Return (Subp) then
+ return Abandon;
+ end if;
+ end if;
+
+ -- Continue traversing the tree
+
+ return OK;
+ end Check_Call;
+
+ function Check_Calls is new Traverse_Func (Check_Call);
+
+ -- Start of processing for Has_Call_Using_Secondary_Stack
+
+ begin
+ return Check_Calls (N) = Abandon;
+ end Has_Call_Using_Secondary_Stack;
+
+ --------------------
+ -- Process_Bounds --
+ --------------------
+
+ procedure Process_Bounds (R : Node_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+
+ function One_Bound
+ (Original_Bound : Node_Id;
+ Analyzed_Bound : Node_Id;
+ Typ : Entity_Id) return Node_Id;
+ -- Capture value of bound and return captured value
+
+ ---------------
+ -- One_Bound --
+ ---------------
+
+ function One_Bound
+ (Original_Bound : Node_Id;
+ Analyzed_Bound : Node_Id;
+ Typ : Entity_Id) return Node_Id
+ is
+ Assign : Node_Id;
+ Decl : Node_Id;
+ Id : Entity_Id;
+
+ begin
+ -- If the bound is a constant or an object, no need for a separate
+ -- declaration. If the bound is the result of previous expansion
+ -- it is already analyzed and should not be modified. Note that
+ -- the Bound will be resolved later, if needed, as part of the
+ -- call to Make_Index (literal bounds may need to be resolved to
+ -- type Integer).
+
+ if Analyzed (Original_Bound) then
+ return Original_Bound;
+
+ elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
+ N_Character_Literal)
+ or else Is_Entity_Name (Analyzed_Bound)
+ then
+ Analyze_And_Resolve (Original_Bound, Typ);
+ return Original_Bound;
+ end if;
+
+ -- Normally, the best approach is simply to generate a constant
+ -- declaration that captures the bound. However, there is a nasty
+ -- case where this is wrong. If the bound is complex, and has a
+ -- possible use of the secondary stack, we need to generate a
+ -- separate assignment statement to ensure the creation of a block
+ -- which will release the secondary stack.
+
+ -- We prefer the constant declaration, since it leaves us with a
+ -- proper trace of the value, useful in optimizations that get rid
+ -- of junk range checks.
+
+ if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
+ Analyze_And_Resolve (Original_Bound, Typ);
+ Force_Evaluation (Original_Bound);
+ return Original_Bound;
+ end if;
+
+ Id := Make_Temporary (Loc, 'R', Original_Bound);
+
+ -- Here we make a declaration with a separate assignment
+ -- statement, and insert before loop header.
+
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Id,
+ Object_Definition => New_Occurrence_Of (Typ, Loc));
+
+ Assign :=
+ Make_Assignment_Statement (Loc,
+ Name => New_Occurrence_Of (Id, Loc),
+ Expression => Relocate_Node (Original_Bound));
+
+ Insert_Actions (Loop_Nod, New_List (Decl, Assign));
+
+ -- Now that this temporary variable is initialized we decorate it
+ -- as safe-to-reevaluate to inform to the backend that no further
+ -- asignment will be issued and hence it can be handled as side
+ -- effect free. Note that this decoration must be done when the
+ -- assignment has been analyzed because otherwise it will be
+ -- rejected (see Analyze_Assignment).
+
+ Set_Is_Safe_To_Reevaluate (Id);
+
+ Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
+
+ if Nkind (Assign) = N_Assignment_Statement then
+ return Expression (Assign);
+ else
+ return Original_Bound;
+ end if;
+ end One_Bound;
+
+ Hi : constant Node_Id := High_Bound (R);
+ Lo : constant Node_Id := Low_Bound (R);
+ R_Copy : constant Node_Id := New_Copy_Tree (R);
+ New_Hi : Node_Id;
+ New_Lo : Node_Id;
+ Typ : Entity_Id;
+
+ -- Start of processing for Process_Bounds
+
+ begin
+ Set_Parent (R_Copy, Parent (R));
+ Preanalyze_Range (R_Copy);
+ Typ := Etype (R_Copy);
+
+ -- If the type of the discrete range is Universal_Integer, then the
+ -- bound's type must be resolved to Integer, and any object used to
+ -- hold the bound must also have type Integer, unless the literal
+ -- bounds are constant-folded expressions with a user-defined type.
+
+ if Typ = Universal_Integer then
+ if Nkind (Lo) = N_Integer_Literal
+ and then Present (Etype (Lo))
+ and then Scope (Etype (Lo)) /= Standard_Standard
+ then
+ Typ := Etype (Lo);
+
+ elsif Nkind (Hi) = N_Integer_Literal
+ and then Present (Etype (Hi))
+ and then Scope (Etype (Hi)) /= Standard_Standard
+ then
+ Typ := Etype (Hi);
+
+ else
+ Typ := Standard_Integer;
+ end if;
+ end if;
+
+ Set_Etype (R, Typ);
+
+ New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
+ New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
+
+ -- Propagate staticness to loop range itself, in case the
+ -- corresponding subtype is static.
+
+ if New_Lo /= Lo
+ and then Is_Static_Expression (New_Lo)
+ then
+ Rewrite (Low_Bound (R), New_Copy (New_Lo));
+ end if;
+
+ if New_Hi /= Hi
+ and then Is_Static_Expression (New_Hi)
+ then
+ Rewrite (High_Bound (R), New_Copy (New_Hi));
+ end if;
+ end Process_Bounds;
+
+ -- Local variables
+
+ DS : constant Node_Id := Discrete_Subtype_Definition (N);
+ Id : constant Entity_Id := Defining_Identifier (N);
+
+ DS_Copy : Node_Id;
+
+ -- Start of processing for Analyze_Loop_Parameter_Specification
+
+ begin
+ Enter_Name (Id);
+
+ -- We always consider the loop variable to be referenced, since the loop
+ -- may be used just for counting purposes.
+
+ Generate_Reference (Id, N, ' ');
+
+ -- Check for the case of loop variable hiding a local variable (used
+ -- later on to give a nice warning if the hidden variable is never
+ -- assigned).
+
+ declare
+ H : constant Entity_Id := Homonym (Id);
+ begin
+ if Present (H)
+ and then Ekind (H) = E_Variable
+ and then Is_Discrete_Type (Etype (H))
+ and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
+ then
+ Set_Hiding_Loop_Variable (H, Id);
+ end if;
+ end;
+
+ -- Loop parameter specification must include subtype mark in SPARK
+
+ if Nkind (DS) = N_Range then
+ Check_SPARK_Restriction
+ ("loop parameter specification must include subtype mark", N);
+ end if;
+
+ -- Analyze the subtype definition and create temporaries for the bounds.
+ -- Do not evaluate the range when preanalyzing a quantified expression
+ -- because bounds expressed as function calls with side effects will be
+ -- erroneously replicated.
+
+ if Nkind (DS) = N_Range
+ and then Expander_Active
+ and then Nkind (Parent (N)) /= N_Quantified_Expression
+ then
+ Process_Bounds (DS);
+
+ -- Either the expander not active or the range of iteration is a subtype
+ -- indication, an entity, or a function call that yields an aggregate or
+ -- a container.
+
+ else
+ DS_Copy := New_Copy_Tree (DS);
+ Set_Parent (DS_Copy, Parent (DS));
+ Preanalyze_Range (DS_Copy);
+
+ -- Ada 2012: If the domain of iteration is a function call, it is the
+ -- new iterator form.
+
+ if Nkind (DS_Copy) = N_Function_Call
+ or else
+ (Is_Entity_Name (DS_Copy)
+ and then not Is_Type (Entity (DS_Copy)))
+ then
+ -- This is an iterator specification. Rewrite it as such and
+ -- analyze it to capture function calls that may require
+ -- finalization actions.
+
+ declare
+ I_Spec : constant Node_Id :=
+ Make_Iterator_Specification (Sloc (N),
+ Defining_Identifier => Relocate_Node (Id),
+ Name => DS_Copy,
+ Subtype_Indication => Empty,
+ Reverse_Present => Reverse_Present (N));
+ Scheme : constant Node_Id := Parent (N);
+
+ begin
+ Set_Iterator_Specification (Scheme, I_Spec);
+ Set_Loop_Parameter_Specification (Scheme, Empty);
+ Analyze_Iterator_Specification (I_Spec);
+
+ -- In a generic context, analyze the original domain of
+ -- iteration, for name capture.
+
+ if not Expander_Active then
+ Analyze (DS);
+ end if;
+
+ -- Set kind of loop parameter, which may be used in the
+ -- subsequent analysis of the condition in a quantified
+ -- expression.
+
+ Set_Ekind (Id, E_Loop_Parameter);
+ return;
+ end;
+
+ -- Domain of iteration is not a function call, and is side-effect
+ -- free.
+
+ else
+ -- A quantified expression that appears in a pre/post condition
+ -- is pre-analyzed several times. If the range is given by an
+ -- attribute reference it is rewritten as a range, and this is
+ -- done even with expansion disabled. If the type is already set
+ -- do not reanalyze, because a range with static bounds may be
+ -- typed Integer by default.
+
+ if Nkind (Parent (N)) = N_Quantified_Expression
+ and then Present (Etype (DS))
+ then
+ null;
+ else
+ Analyze (DS);
+ end if;
+ end if;
+ end if;
+
+ if DS = Error then
+ return;
+ end if;
+
+ -- Some additional checks if we are iterating through a type
+
+ if Is_Entity_Name (DS)
+ and then Present (Entity (DS))
+ and then Is_Type (Entity (DS))
+ then
+ -- The subtype indication may denote the completion of an incomplete
+ -- type declaration.
+
+ if Ekind (Entity (DS)) = E_Incomplete_Type then
+ Set_Entity (DS, Get_Full_View (Entity (DS)));
+ Set_Etype (DS, Entity (DS));
+ end if;
+
+ -- Attempt to iterate through non-static predicate
+
+ if Is_Discrete_Type (Entity (DS))
+ and then Present (Predicate_Function (Entity (DS)))
+ and then No (Static_Predicate (Entity (DS)))
+ then
+ Bad_Predicated_Subtype_Use
+ ("cannot use subtype& with non-static predicate for loop " &
+ "iteration", DS, Entity (DS));
+ end if;
+ end if;
+
+ -- Error if not discrete type
+
+ if not Is_Discrete_Type (Etype (DS)) then
+ Wrong_Type (DS, Any_Discrete);
+ Set_Etype (DS, Any_Type);
+ end if;
+
+ Check_Controlled_Array_Attribute (DS);
+
+ Make_Index (DS, N, In_Iter_Schm => True);
+ Set_Ekind (Id, E_Loop_Parameter);
+
+ -- A quantified expression which appears in a pre- or post-condition may
+ -- be analyzed multiple times. The analysis of the range creates several
+ -- itypes which reside in different scopes depending on whether the pre-
+ -- or post-condition has been expanded. Update the type of the loop
+ -- variable to reflect the proper itype at each stage of analysis.
+
+ if No (Etype (Id))
+ or else Etype (Id) = Any_Type
+ or else
+ (Present (Etype (Id))
+ and then Is_Itype (Etype (Id))
+ and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
+ and then Nkind (Original_Node (Parent (Loop_Nod))) =
+ N_Quantified_Expression)
+ then
+ Set_Etype (Id, Etype (DS));
+ end if;
+
+ -- Treat a range as an implicit reference to the type, to inhibit
+ -- spurious warnings.
+
+ Generate_Reference (Base_Type (Etype (DS)), N, ' ');
+ Set_Is_Known_Valid (Id, True);
+
+ -- The loop is not a declarative part, so the loop variable must be
+ -- frozen explicitly. Do not freeze while preanalyzing a quantified
+ -- expression because the freeze node will not be inserted into the
+ -- tree due to flag Is_Spec_Expression being set.
+
+ if Nkind (Parent (N)) /= N_Quantified_Expression then
+ declare
+ Flist : constant List_Id := Freeze_Entity (Id, N);
+ begin
+ if Is_Non_Empty_List (Flist) then
+ Insert_Actions (N, Flist);
+ end if;
+ end;
+ end if;
+
+ -- Check for null or possibly null range and issue warning. We suppress
+ -- such messages in generic templates and instances, because in practice
+ -- they tend to be dubious in these cases.
+
+ if Nkind (DS) = N_Range and then Comes_From_Source (N) then
+ declare
+ L : constant Node_Id := Low_Bound (DS);
+ H : constant Node_Id := High_Bound (DS);
+
+ begin
+ -- If range of loop is null, issue warning
+
+ if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
+
+ -- Suppress the warning if inside a generic template or
+ -- instance, since in practice they tend to be dubious in these
+ -- cases since they can result from intended parametrization.
+
+ if not Inside_A_Generic
+ and then not In_Instance
+ then
+ -- Specialize msg if invalid values could make the loop
+ -- non-null after all.
+
+ if Compile_Time_Compare
+ (L, H, Assume_Valid => False) = GT
+ then
+ Error_Msg_N
+ ("??loop range is null, loop will not execute", DS);
+
+ -- Since we know the range of the loop is null, set the
+ -- appropriate flag to remove the loop entirely during
+ -- expansion.
+
+ Set_Is_Null_Loop (Loop_Nod);
+
+ -- Here is where the loop could execute because of invalid
+ -- values, so issue appropriate message and in this case we
+ -- do not set the Is_Null_Loop flag since the loop may
+ -- execute.
+
+ else
+ Error_Msg_N
+ ("??loop range may be null, loop may not execute",
+ DS);
+ Error_Msg_N
+ ("??can only execute if invalid values are present",
+ DS);
+ end if;
+ end if;
+
+ -- In either case, suppress warnings in the body of the loop,
+ -- since it is likely that these warnings will be inappropriate
+ -- if the loop never actually executes, which is likely.
+
+ Set_Suppress_Loop_Warnings (Loop_Nod);
+
+ -- The other case for a warning is a reverse loop where the
+ -- upper bound is the integer literal zero or one, and the
+ -- lower bound can be positive.
+
+ -- For example, we have
+
+ -- for J in reverse N .. 1 loop
+
+ -- In practice, this is very likely to be a case of reversing
+ -- the bounds incorrectly in the range.
+
+ elsif Reverse_Present (N)
+ and then Nkind (Original_Node (H)) = N_Integer_Literal
+ and then
+ (Intval (Original_Node (H)) = Uint_0
+ or else Intval (Original_Node (H)) = Uint_1)
+ then
+ Error_Msg_N ("??loop range may be null", DS);
+ Error_Msg_N ("\??bounds may be wrong way round", DS);
+ end if;
+ end;
+ end if;
+ end Analyze_Loop_Parameter_Specification;
+
+ ----------------------------
+ -- Analyze_Loop_Statement --
+ ----------------------------
+
+ procedure Analyze_Loop_Statement (N : Node_Id) is
+
+ function Is_Container_Iterator (Iter : Node_Id) return Boolean;
+ -- Given a loop iteration scheme, determine whether it is an Ada 2012
+ -- container iteration.
+
+ function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
+ -- Determine whether node N is the sole statement of a block
+
+ ---------------------------
+ -- Is_Container_Iterator --
+ ---------------------------
+
+ function Is_Container_Iterator (Iter : Node_Id) return Boolean is
+ begin
+ -- Infinite loop
+
+ if No (Iter) then
+ return False;
+
+ -- While loop
+
+ elsif Present (Condition (Iter)) then
+ return False;
+
+ -- for Def_Id in [reverse] Name loop
+ -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
+
+ elsif Present (Iterator_Specification (Iter)) then
+ declare
+ Nam : constant Node_Id := Name (Iterator_Specification (Iter));
+ Nam_Copy : Node_Id;
+
+ begin
+ Nam_Copy := New_Copy_Tree (Nam);
+ Set_Parent (Nam_Copy, Parent (Nam));
+ Preanalyze_Range (Nam_Copy);
+
+ -- The only two options here are iteration over a container or
+ -- an array.
+
+ return not Is_Array_Type (Etype (Nam_Copy));
+ end;
+
+ -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
+
+ else
+ declare
+ LP : constant Node_Id := Loop_Parameter_Specification (Iter);
+ DS : constant Node_Id := Discrete_Subtype_Definition (LP);
+ DS_Copy : Node_Id;
+
+ begin
+ DS_Copy := New_Copy_Tree (DS);
+ Set_Parent (DS_Copy, Parent (DS));
+ Preanalyze_Range (DS_Copy);
+
+ -- Check for a call to Iterate ()
+
+ return
+ Nkind (DS_Copy) = N_Function_Call
+ and then Needs_Finalization (Etype (DS_Copy));
+ end;
+ end if;
+ end Is_Container_Iterator;
+
+ -------------------------
+ -- Is_Wrapped_In_Block --
+ -------------------------
+
+ function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
+ HSS : constant Node_Id := Parent (N);
+
+ begin
+ return
+ Nkind (HSS) = N_Handled_Sequence_Of_Statements
+ and then Nkind (Parent (HSS)) = N_Block_Statement
+ and then First (Statements (HSS)) = N
+ and then No (Next (First (Statements (HSS))));
+ end Is_Wrapped_In_Block;
+
+ -- Local declarations
+
+ Id : constant Node_Id := Identifier (N);
+ Iter : constant Node_Id := Iteration_Scheme (N);
+ Loc : constant Source_Ptr := Sloc (N);
+ Ent : Entity_Id;
+
+ -- Start of processing for Analyze_Loop_Statement
+
+ begin
+ if Present (Id) then
+
+ -- Make name visible, e.g. for use in exit statements. Loop labels
+ -- are always considered to be referenced.
+
+ Analyze (Id);
+ Ent := Entity (Id);
+
+ -- Guard against serious error (typically, a scope mismatch when
+ -- semantic analysis is requested) by creating loop entity to
+ -- continue analysis.
+
+ if No (Ent) then
+ if Total_Errors_Detected /= 0 then
+ Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
+ else
+ raise Program_Error;
+ end if;
+
+ else
+ Generate_Reference (Ent, N, ' ');
+ Generate_Definition (Ent);
+
+ -- If we found a label, mark its type. If not, ignore it, since it
+ -- means we have a conflicting declaration, which would already
+ -- have been diagnosed at declaration time. Set Label_Construct
+ -- of the implicit label declaration, which is not created by the
+ -- parser for generic units.
+
+ if Ekind (Ent) = E_Label then
+ Set_Ekind (Ent, E_Loop);
+
+ if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
+ Set_Label_Construct (Parent (Ent), N);
+ end if;
+ end if;
+ end if;
+
+ -- Case of no identifier present
+
+ else
+ Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
+ Set_Etype (Ent, Standard_Void_Type);
+ Set_Parent (Ent, N);
+ end if;
+
+ -- Iteration over a container in Ada 2012 involves the creation of a
+ -- controlled iterator object. Wrap the loop in a block to ensure the
+ -- timely finalization of the iterator and release of container locks.
+
+ if Ada_Version >= Ada_2012
+ and then Is_Container_Iterator (Iter)
+ and then not Is_Wrapped_In_Block (N)
+ then
+ Rewrite (N,
+ Make_Block_Statement (Loc,
+ Declarations => New_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (Relocate_Node (N)))));
+
+ Analyze (N);
+ return;
+ end if;
+
+ -- Kill current values on entry to loop, since statements in the body of
+ -- the loop may have been executed before the loop is entered. Similarly
+ -- we kill values after the loop, since we do not know that the body of
+ -- the loop was executed.
+
+ Kill_Current_Values;
+ Push_Scope (Ent);
+ Analyze_Iteration_Scheme (Iter);
+
+ -- Check for following case which merits a warning if the type E of is
+ -- a multi-dimensional array (and no explicit subscript ranges present).
+
+ -- for J in E'Range
+ -- for K in E'Range
+
+ if Present (Iter)
+ and then Present (Loop_Parameter_Specification (Iter))
+ then
+ declare
+ LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
+ DSD : constant Node_Id :=
+ Original_Node (Discrete_Subtype_Definition (LPS));
+ begin
+ if Nkind (DSD) = N_Attribute_Reference
+ and then Attribute_Name (DSD) = Name_Range
+ and then No (Expressions (DSD))
+ then
+ declare
+ Typ : constant Entity_Id := Etype (Prefix (DSD));
+ begin
+ if Is_Array_Type (Typ)
+ and then Number_Dimensions (Typ) > 1
+ and then Nkind (Parent (N)) = N_Loop_Statement
+ and then Present (Iteration_Scheme (Parent (N)))
+ then
+ declare
+ OIter : constant Node_Id :=
+ Iteration_Scheme (Parent (N));
+ OLPS : constant Node_Id :=
+ Loop_Parameter_Specification (OIter);
+ ODSD : constant Node_Id :=
+ Original_Node (Discrete_Subtype_Definition (OLPS));
+ begin
+ if Nkind (ODSD) = N_Attribute_Reference
+ and then Attribute_Name (ODSD) = Name_Range
+ and then No (Expressions (ODSD))
+ and then Etype (Prefix (ODSD)) = Typ
+ then
+ Error_Msg_Sloc := Sloc (ODSD);
+ Error_Msg_N
+ ("inner range same as outer range#??", DSD);
+ end if;
+ end;
+ end if;
+ end;
+ end if;
+ end;
+ end if;
+
+ -- Analyze the statements of the body except in the case of an Ada 2012
+ -- iterator with the expander active. In this case the expander will do
+ -- a rewrite of the loop into a while loop. We will then analyze the
+ -- loop body when we analyze this while loop.
+
+ -- We need to do this delay because if the container is for indefinite
+ -- types the actual subtype of the components will only be determined
+ -- when the cursor declaration is analyzed.
+
+ -- If the expander is not active, or in Alfa mode, then we want to
+ -- analyze the loop body now even in the Ada 2012 iterator case, since
+ -- the rewriting will not be done. Insert the loop variable in the
+ -- current scope, if not done when analysing the iteration scheme.
+
+ if No (Iter)
+ or else No (Iterator_Specification (Iter))
+ or else not Full_Expander_Active
+ then
+ if Present (Iter)
+ and then Present (Iterator_Specification (Iter))
+ then
+ declare
+ Id : constant Entity_Id :=
+ Defining_Identifier (Iterator_Specification (Iter));
+ begin
+ if Scope (Id) /= Current_Scope then
+ Enter_Name (Id);
+ end if;
+ end;
+ end if;
+
+ Analyze_Statements (Statements (N));
+ end if;
+
+ -- Finish up processing for the loop. We kill all current values, since
+ -- in general we don't know if the statements in the loop have been
+ -- executed. We could do a bit better than this with a loop that we
+ -- know will execute at least once, but it's not worth the trouble and
+ -- the front end is not in the business of flow tracing.
+
+ Process_End_Label (N, 'e', Ent);
+ End_Scope;
+ Kill_Current_Values;
+
+ -- Check for infinite loop. Skip check for generated code, since it
+ -- justs waste time and makes debugging the routine called harder.
+
+ -- Note that we have to wait till the body of the loop is fully analyzed
+ -- before making this call, since Check_Infinite_Loop_Warning relies on
+ -- being able to use semantic visibility information to find references.
+
+ if Comes_From_Source (N) then
+ Check_Infinite_Loop_Warning (N);
+ end if;
+
+ -- Code after loop is unreachable if the loop has no WHILE or FOR and
+ -- contains no EXIT statements within the body of the loop.
+
+ if No (Iter) and then not Has_Exit (Ent) then
+ Check_Unreachable_Code (N);
+ end if;
+ end Analyze_Loop_Statement;
+
+ ----------------------------
+ -- Analyze_Null_Statement --
+ ----------------------------
+
+ -- Note: the semantics of the null statement is implemented by a single
+ -- null statement, too bad everything isn't as simple as this!
+
+ procedure Analyze_Null_Statement (N : Node_Id) is
+ pragma Warnings (Off, N);
+ begin
+ null;
+ end Analyze_Null_Statement;
+
+ ------------------------
+ -- Analyze_Statements --
+ ------------------------
+
+ procedure Analyze_Statements (L : List_Id) is
+ S : Node_Id;
+ Lab : Entity_Id;
+
+ begin
+ -- The labels declared in the statement list are reachable from
+ -- statements in the list. We do this as a prepass so that any goto
+ -- statement will be properly flagged if its target is not reachable.
+ -- This is not required, but is nice behavior!
+
+ S := First (L);
+ while Present (S) loop
+ if Nkind (S) = N_Label then
+ Analyze (Identifier (S));
+ Lab := Entity (Identifier (S));
+
+ -- If we found a label mark it as reachable
+
+ if Ekind (Lab) = E_Label then
+ Generate_Definition (Lab);
+ Set_Reachable (Lab);
+
+ if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
+ Set_Label_Construct (Parent (Lab), S);
+ end if;
+
+ -- If we failed to find a label, it means the implicit declaration
+ -- of the label was hidden. A for-loop parameter can do this to
+ -- a label with the same name inside the loop, since the implicit
+ -- label declaration is in the innermost enclosing body or block
+ -- statement.
+
+ else
+ Error_Msg_Sloc := Sloc (Lab);
+ Error_Msg_N
+ ("implicit label declaration for & is hidden#",
+ Identifier (S));
+ end if;
+ end if;
+
+ Next (S);
+ end loop;
+
+ -- Perform semantic analysis on all statements
+
+ Conditional_Statements_Begin;
+
+ S := First (L);
+ while Present (S) loop
+ Analyze (S);
+
+ -- Remove dimension in all statements
+
+ Remove_Dimension_In_Statement (S);
+ Next (S);
+ end loop;
+
+ Conditional_Statements_End;
+
+ -- Make labels unreachable. Visibility is not sufficient, because labels
+ -- in one if-branch for example are not reachable from the other branch,
+ -- even though their declarations are in the enclosing declarative part.
+
+ S := First (L);
+ while Present (S) loop
+ if Nkind (S) = N_Label then
+ Set_Reachable (Entity (Identifier (S)), False);
+ end if;
+
+ Next (S);
+ end loop;
+ end Analyze_Statements;
+
+ ----------------------------
+ -- Check_Unreachable_Code --
+ ----------------------------
+
+ procedure Check_Unreachable_Code (N : Node_Id) is
+ Error_Node : Node_Id;
+ P : Node_Id;
+
+ begin
+ if Is_List_Member (N)
+ and then Comes_From_Source (N)
+ then
+ declare
+ Nxt : Node_Id;
+
+ begin
+ Nxt := Original_Node (Next (N));
+
+ -- Skip past pragmas
+
+ while Nkind (Nxt) = N_Pragma loop
+ Nxt := Original_Node (Next (Nxt));
+ end loop;
+
+ -- If a label follows us, then we never have dead code, since
+ -- someone could branch to the label, so we just ignore it, unless
+ -- we are in formal mode where goto statements are not allowed.
+
+ if Nkind (Nxt) = N_Label
+ and then not Restriction_Check_Required (SPARK)
+ then
+ return;
+
+ -- Otherwise see if we have a real statement following us
+
+ elsif Present (Nxt)
+ and then Comes_From_Source (Nxt)
+ and then Is_Statement (Nxt)
+ then
+ -- Special very annoying exception. If we have a return that
+ -- follows a raise, then we allow it without a warning, since
+ -- the Ada RM annoyingly requires a useless return here!
+
+ if Nkind (Original_Node (N)) /= N_Raise_Statement
+ or else Nkind (Nxt) /= N_Simple_Return_Statement
+ then
+ -- The rather strange shenanigans with the warning message
+ -- here reflects the fact that Kill_Dead_Code is very good
+ -- at removing warnings in deleted code, and this is one
+ -- warning we would prefer NOT to have removed.
+
+ Error_Node := Nxt;
+
+ -- If we have unreachable code, analyze and remove the
+ -- unreachable code, since it is useless and we don't
+ -- want to generate junk warnings.
+
+ -- We skip this step if we are not in code generation mode.
+ -- This is the one case where we remove dead code in the
+ -- semantics as opposed to the expander, and we do not want
+ -- to remove code if we are not in code generation mode,
+ -- since this messes up the ASIS trees.
+
+ -- Note that one might react by moving the whole circuit to
+ -- exp_ch5, but then we lose the warning in -gnatc mode.
+
+ if Operating_Mode = Generate_Code then
+ loop
+ Nxt := Next (N);
+
+ -- Quit deleting when we have nothing more to delete
+ -- or if we hit a label (since someone could transfer
+ -- control to a label, so we should not delete it).
+
+ exit when No (Nxt) or else Nkind (Nxt) = N_Label;
+
+ -- Statement/declaration is to be deleted
+
+ Analyze (Nxt);
+ Remove (Nxt);
+ Kill_Dead_Code (Nxt);
+ end loop;
+ end if;
+
+ -- Now issue the warning (or error in formal mode)
+
+ if Restriction_Check_Required (SPARK) then
+ Check_SPARK_Restriction
+ ("unreachable code is not allowed", Error_Node);
+ else
+ Error_Msg ("??unreachable code!", Sloc (Error_Node));
+ end if;
+ end if;
+
+ -- If the unconditional transfer of control instruction is the
+ -- last statement of a sequence, then see if our parent is one of
+ -- the constructs for which we count unblocked exits, and if so,
+ -- adjust the count.
+
+ else
+ P := Parent (N);
+
+ -- Statements in THEN part or ELSE part of IF statement
+
+ if Nkind (P) = N_If_Statement then
+ null;
+
+ -- Statements in ELSIF part of an IF statement
+
+ elsif Nkind (P) = N_Elsif_Part then
+ P := Parent (P);
+ pragma Assert (Nkind (P) = N_If_Statement);
+
+ -- Statements in CASE statement alternative
+
+ elsif Nkind (P) = N_Case_Statement_Alternative then
+ P := Parent (P);
+ pragma Assert (Nkind (P) = N_Case_Statement);
+
+ -- Statements in body of block
+
+ elsif Nkind (P) = N_Handled_Sequence_Of_Statements
+ and then Nkind (Parent (P)) = N_Block_Statement
+ then
+ null;
+
+ -- Statements in exception handler in a block
+
+ elsif Nkind (P) = N_Exception_Handler
+ and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
+ and then Nkind (Parent (Parent (P))) = N_Block_Statement
+ then
+ null;
+
+ -- None of these cases, so return
+
+ else
+ return;
+ end if;
+
+ -- This was one of the cases we are looking for (i.e. the
+ -- parent construct was IF, CASE or block) so decrement count.
+
+ Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
+ end if;
+ end;
+ end if;
+ end Check_Unreachable_Code;
+
+ ----------------------
+ -- Preanalyze_Range --
+ ----------------------
+
+ procedure Preanalyze_Range (R_Copy : Node_Id) is
+ Save_Analysis : constant Boolean := Full_Analysis;
+ Typ : Entity_Id;
+
+ begin
+ Full_Analysis := False;
+ Expander_Mode_Save_And_Set (False);
+
+ Analyze (R_Copy);
+
+ if Nkind (R_Copy) in N_Subexpr
+ and then Is_Overloaded (R_Copy)
+ then
+ -- Apply preference rules for range of predefined integer types, or
+ -- diagnose true ambiguity.
+
+ declare
+ I : Interp_Index;
+ It : Interp;
+ Found : Entity_Id := Empty;
+
+ begin
+ Get_First_Interp (R_Copy, I, It);
+ while Present (It.Typ) loop
+ if Is_Discrete_Type (It.Typ) then
+ if No (Found) then
+ Found := It.Typ;
+ else
+ if Scope (Found) = Standard_Standard then
+ null;
+
+ elsif Scope (It.Typ) = Standard_Standard then
+ Found := It.Typ;
+
+ else
+ -- Both of them are user-defined
+
+ Error_Msg_N
+ ("ambiguous bounds in range of iteration", R_Copy);
+ Error_Msg_N ("\possible interpretations:", R_Copy);
+ Error_Msg_NE ("\\} ", R_Copy, Found);
+ Error_Msg_NE ("\\} ", R_Copy, It.Typ);
+ exit;
+ end if;
+ end if;
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+ end;
+ end if;
+
+ -- Subtype mark in iteration scheme
+
+ if Is_Entity_Name (R_Copy)
+ and then Is_Type (Entity (R_Copy))
+ then
+ null;
+
+ -- Expression in range, or Ada 2012 iterator
+
+ elsif Nkind (R_Copy) in N_Subexpr then
+ Resolve (R_Copy);
+ Typ := Etype (R_Copy);
+
+ if Is_Discrete_Type (Typ) then
+ null;
+
+ -- Check that the resulting object is an iterable container
+
+ elsif Present (Find_Aspect (Typ, Aspect_Iterator_Element))
+ or else Present (Find_Aspect (Typ, Aspect_Constant_Indexing))
+ or else Present (Find_Aspect (Typ, Aspect_Variable_Indexing))
+ then
+ null;
+
+ -- The expression may yield an implicit reference to an iterable
+ -- container. Insert explicit dereference so that proper type is
+ -- visible in the loop.
+
+ elsif Has_Implicit_Dereference (Etype (R_Copy)) then
+ declare
+ Disc : Entity_Id;
+
+ begin
+ Disc := First_Discriminant (Typ);
+ while Present (Disc) loop
+ if Has_Implicit_Dereference (Disc) then
+ Build_Explicit_Dereference (R_Copy, Disc);
+ exit;
+ end if;
+
+ Next_Discriminant (Disc);
+ end loop;
+ end;
+
+ end if;
+ end if;
+
+ Expander_Mode_Restore;
+ Full_Analysis := Save_Analysis;
+ end Preanalyze_Range;
+
+end Sem_Ch5;