aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.3/gcc/ada/g-pehage.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.3/gcc/ada/g-pehage.adb')
-rw-r--r--gcc-4.8.3/gcc/ada/g-pehage.adb2598
1 files changed, 2598 insertions, 0 deletions
diff --git a/gcc-4.8.3/gcc/ada/g-pehage.adb b/gcc-4.8.3/gcc/ada/g-pehage.adb
new file mode 100644
index 000000000..ce2428ddd
--- /dev/null
+++ b/gcc-4.8.3/gcc/ada/g-pehage.adb
@@ -0,0 +1,2598 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- G N A T . P E R F E C T _ H A S H _ G E N E R A T O R S --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 2002-2011, AdaCore --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. --
+-- --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception, --
+-- version 3.1, as published by the Free Software Foundation. --
+-- --
+-- You should have received a copy of the GNU General Public License and --
+-- a copy of the GCC Runtime Library Exception along with this program; --
+-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
+-- <http://www.gnu.org/licenses/>. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Ada.IO_Exceptions; use Ada.IO_Exceptions;
+with Ada.Characters.Handling; use Ada.Characters.Handling;
+with Ada.Directories;
+
+with GNAT.Heap_Sort_G;
+with GNAT.OS_Lib; use GNAT.OS_Lib;
+with GNAT.Table;
+
+package body GNAT.Perfect_Hash_Generators is
+
+ -- We are using the algorithm of J. Czech as described in Zbigniew J.
+ -- Czech, George Havas, and Bohdan S. Majewski ``An Optimal Algorithm for
+ -- Generating Minimal Perfect Hash Functions'', Information Processing
+ -- Letters, 43(1992) pp.257-264, Oct.1992
+
+ -- This minimal perfect hash function generator is based on random graphs
+ -- and produces a hash function of the form:
+
+ -- h (w) = (g (f1 (w)) + g (f2 (w))) mod m
+
+ -- where f1 and f2 are functions that map strings into integers, and g is
+ -- a function that maps integers into [0, m-1]. h can be order preserving.
+ -- For instance, let W = {w_0, ..., w_i, ..., w_m-1}, h can be defined
+ -- such that h (w_i) = i.
+
+ -- This algorithm defines two possible constructions of f1 and f2. Method
+ -- b) stores the hash function in less memory space at the expense of
+ -- greater CPU time.
+
+ -- a) fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
+
+ -- size (Tk) = max (for w in W) (length (w)) * size (used char set)
+
+ -- b) fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
+
+ -- size (Tk) = max (for w in W) (length (w)) but the table lookups are
+ -- replaced by multiplications.
+
+ -- where Tk values are randomly generated. n is defined later on but the
+ -- algorithm recommends to use a value a little bit greater than 2m. Note
+ -- that for large values of m, the main memory space requirements comes
+ -- from the memory space for storing function g (>= 2m entries).
+
+ -- Random graphs are frequently used to solve difficult problems that do
+ -- not have polynomial solutions. This algorithm is based on a weighted
+ -- undirected graph. It comprises two steps: mapping and assignment.
+
+ -- In the mapping step, a graph G = (V, E) is constructed, where = {0, 1,
+ -- ..., n-1} and E = {(for w in W) (f1 (w), f2 (w))}. In order for the
+ -- assignment step to be successful, G has to be acyclic. To have a high
+ -- probability of generating an acyclic graph, n >= 2m. If it is not
+ -- acyclic, Tk have to be regenerated.
+
+ -- In the assignment step, the algorithm builds function g. As G is
+ -- acyclic, there is a vertex v1 with only one neighbor v2. Let w_i be
+ -- the word such that v1 = f1 (w_i) and v2 = f2 (w_i). Let g (v1) = 0 by
+ -- construction and g (v2) = (i - g (v1)) mod n (or h (i) - g (v1) mod n).
+ -- If word w_j is such that v2 = f1 (w_j) and v3 = f2 (w_j), g (v3) = (j -
+ -- g (v2)) mod (or to be general, (h (j) - g (v2)) mod n). If w_i has no
+ -- neighbor, then another vertex is selected. The algorithm traverses G to
+ -- assign values to all the vertices. It cannot assign a value to an
+ -- already assigned vertex as G is acyclic.
+
+ subtype Word_Id is Integer;
+ subtype Key_Id is Integer;
+ subtype Vertex_Id is Integer;
+ subtype Edge_Id is Integer;
+ subtype Table_Id is Integer;
+
+ No_Vertex : constant Vertex_Id := -1;
+ No_Edge : constant Edge_Id := -1;
+ No_Table : constant Table_Id := -1;
+
+ type Word_Type is new String_Access;
+ procedure Free_Word (W : in out Word_Type) renames Free;
+ function New_Word (S : String) return Word_Type;
+
+ procedure Resize_Word (W : in out Word_Type; Len : Natural);
+ -- Resize string W to have a length Len
+
+ type Key_Type is record
+ Edge : Edge_Id;
+ end record;
+ -- A key corresponds to an edge in the algorithm graph
+
+ type Vertex_Type is record
+ First : Edge_Id;
+ Last : Edge_Id;
+ end record;
+ -- A vertex can be involved in several edges. First and Last are the bounds
+ -- of an array of edges stored in a global edge table.
+
+ type Edge_Type is record
+ X : Vertex_Id;
+ Y : Vertex_Id;
+ Key : Key_Id;
+ end record;
+ -- An edge is a peer of vertices. In the algorithm, a key is associated to
+ -- an edge.
+
+ package WT is new GNAT.Table (Word_Type, Word_Id, 0, 32, 32);
+ package IT is new GNAT.Table (Integer, Integer, 0, 32, 32);
+ -- The two main tables. WT is used to store the words in their initial
+ -- version and in their reduced version (that is words reduced to their
+ -- significant characters). As an instance of GNAT.Table, WT does not
+ -- initialize string pointers to null. This initialization has to be done
+ -- manually when the table is allocated. IT is used to store several
+ -- tables of components containing only integers.
+
+ function Image (Int : Integer; W : Natural := 0) return String;
+ function Image (Str : String; W : Natural := 0) return String;
+ -- Return a string which includes string Str or integer Int preceded by
+ -- leading spaces if required by width W.
+
+ function Trim_Trailing_Nuls (Str : String) return String;
+ -- Return Str with trailing NUL characters removed
+
+ Output : File_Descriptor renames GNAT.OS_Lib.Standout;
+ -- Shortcuts
+
+ EOL : constant Character := ASCII.LF;
+
+ Max : constant := 78;
+ Last : Natural := 0;
+ Line : String (1 .. Max);
+ -- Use this line to provide buffered IO
+
+ procedure Add (C : Character);
+ procedure Add (S : String);
+ -- Add a character or a string in Line and update Last
+
+ procedure Put
+ (F : File_Descriptor;
+ S : String;
+ F1 : Natural;
+ L1 : Natural;
+ C1 : Natural;
+ F2 : Natural;
+ L2 : Natural;
+ C2 : Natural);
+ -- Write string S into file F as a element of an array of one or two
+ -- dimensions. Fk (resp. Lk and Ck) indicates the first (resp last and
+ -- current) index in the k-th dimension. If F1 = L1 the array is considered
+ -- as a one dimension array. This dimension is described by F2 and L2. This
+ -- routine takes care of all the parenthesis, spaces and commas needed to
+ -- format correctly the array. Moreover, the array is well indented and is
+ -- wrapped to fit in a 80 col line. When the line is full, the routine
+ -- writes it into file F. When the array is completed, the routine adds
+ -- semi-colon and writes the line into file F.
+
+ procedure New_Line (File : File_Descriptor);
+ -- Simulate Ada.Text_IO.New_Line with GNAT.OS_Lib
+
+ procedure Put (File : File_Descriptor; Str : String);
+ -- Simulate Ada.Text_IO.Put with GNAT.OS_Lib
+
+ procedure Put_Used_Char_Set (File : File_Descriptor; Title : String);
+ -- Output a title and a used character set
+
+ procedure Put_Int_Vector
+ (File : File_Descriptor;
+ Title : String;
+ Vector : Integer;
+ Length : Natural);
+ -- Output a title and a vector
+
+ procedure Put_Int_Matrix
+ (File : File_Descriptor;
+ Title : String;
+ Table : Table_Id;
+ Len_1 : Natural;
+ Len_2 : Natural);
+ -- Output a title and a matrix. When the matrix has only one non-empty
+ -- dimension (Len_2 = 0), output a vector.
+
+ procedure Put_Edges (File : File_Descriptor; Title : String);
+ -- Output a title and an edge table
+
+ procedure Put_Initial_Keys (File : File_Descriptor; Title : String);
+ -- Output a title and a key table
+
+ procedure Put_Reduced_Keys (File : File_Descriptor; Title : String);
+ -- Output a title and a key table
+
+ procedure Put_Vertex_Table (File : File_Descriptor; Title : String);
+ -- Output a title and a vertex table
+
+ function Ada_File_Base_Name (Pkg_Name : String) return String;
+ -- Return the base file name (i.e. without .ads/.adb extension) for an
+ -- Ada source file containing the named package, using the standard GNAT
+ -- file-naming convention. For example, if Pkg_Name is "Parent.Child", we
+ -- return "parent-child".
+
+ ----------------------------------
+ -- Character Position Selection --
+ ----------------------------------
+
+ -- We reduce the maximum key size by selecting representative positions
+ -- in these keys. We build a matrix with one word per line. We fill the
+ -- remaining space of a line with ASCII.NUL. The heuristic selects the
+ -- position that induces the minimum number of collisions. If there are
+ -- collisions, select another position on the reduced key set responsible
+ -- of the collisions. Apply the heuristic until there is no more collision.
+
+ procedure Apply_Position_Selection;
+ -- Apply Position selection and build the reduced key table
+
+ procedure Parse_Position_Selection (Argument : String);
+ -- Parse Argument and compute the position set. Argument is list of
+ -- substrings separated by commas. Each substring represents a position
+ -- or a range of positions (like x-y).
+
+ procedure Select_Character_Set;
+ -- Define an optimized used character set like Character'Pos in order not
+ -- to allocate tables of 256 entries.
+
+ procedure Select_Char_Position;
+ -- Find a min char position set in order to reduce the max key length. The
+ -- heuristic selects the position that induces the minimum number of
+ -- collisions. If there are collisions, select another position on the
+ -- reduced key set responsible of the collisions. Apply the heuristic until
+ -- there is no collision.
+
+ -----------------------------
+ -- Random Graph Generation --
+ -----------------------------
+
+ procedure Random (Seed : in out Natural);
+ -- Simulate Ada.Discrete_Numerics.Random
+
+ procedure Generate_Mapping_Table
+ (Tab : Table_Id;
+ L1 : Natural;
+ L2 : Natural;
+ Seed : in out Natural);
+ -- Random generation of the tables below. T is already allocated
+
+ procedure Generate_Mapping_Tables
+ (Opt : Optimization;
+ Seed : in out Natural);
+ -- Generate the mapping tables T1 and T2. They are used to define fk (w) =
+ -- sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n. Keys, NK and Chars
+ -- are used to compute the matrix size.
+
+ ---------------------------
+ -- Algorithm Computation --
+ ---------------------------
+
+ procedure Compute_Edges_And_Vertices (Opt : Optimization);
+ -- Compute the edge and vertex tables. These are empty when a self loop is
+ -- detected (f1 (w) = f2 (w)). The edge table is sorted by X value and then
+ -- Y value. Keys is the key table and NK the number of keys. Chars is the
+ -- set of characters really used in Keys. NV is the number of vertices
+ -- recommended by the algorithm. T1 and T2 are the mapping tables needed to
+ -- compute f1 (w) and f2 (w).
+
+ function Acyclic return Boolean;
+ -- Return True when the graph is acyclic. Vertices is the current vertex
+ -- table and Edges the current edge table.
+
+ procedure Assign_Values_To_Vertices;
+ -- Execute the assignment step of the algorithm. Keys is the current key
+ -- table. Vertices and Edges represent the random graph. G is the result of
+ -- the assignment step such that:
+ -- h (w) = (g (f1 (w)) + g (f2 (w))) mod m
+
+ function Sum
+ (Word : Word_Type;
+ Table : Table_Id;
+ Opt : Optimization) return Natural;
+ -- For an optimization of CPU_Time return
+ -- fk (w) = sum (for i in 1 .. length (w)) (Tk (i, w (i))) mod n
+ -- For an optimization of Memory_Space return
+ -- fk (w) = sum (for i in 1 .. length (w)) (Tk (i) * w (i)) mod n
+ -- Here NV = n
+
+ -------------------------------
+ -- Internal Table Management --
+ -------------------------------
+
+ function Allocate (N : Natural; S : Natural := 1) return Table_Id;
+ -- Allocate N * S ints from IT table
+
+ ----------
+ -- Keys --
+ ----------
+
+ Keys : Table_Id := No_Table;
+ NK : Natural := 0;
+ -- NK : Number of Keys
+
+ function Initial (K : Key_Id) return Word_Id;
+ pragma Inline (Initial);
+
+ function Reduced (K : Key_Id) return Word_Id;
+ pragma Inline (Reduced);
+
+ function Get_Key (N : Key_Id) return Key_Type;
+ procedure Set_Key (N : Key_Id; Item : Key_Type);
+ -- Get or Set Nth element of Keys table
+
+ ------------------
+ -- Char_Pos_Set --
+ ------------------
+
+ Char_Pos_Set : Table_Id := No_Table;
+ Char_Pos_Set_Len : Natural;
+ -- Character Selected Position Set
+
+ function Get_Char_Pos (P : Natural) return Natural;
+ procedure Set_Char_Pos (P : Natural; Item : Natural);
+ -- Get or Set the string position of the Pth selected character
+
+ -------------------
+ -- Used_Char_Set --
+ -------------------
+
+ Used_Char_Set : Table_Id := No_Table;
+ Used_Char_Set_Len : Natural;
+ -- Used Character Set : Define a new character mapping. When all the
+ -- characters are not present in the keys, in order to reduce the size
+ -- of some tables, we redefine the character mapping.
+
+ function Get_Used_Char (C : Character) return Natural;
+ procedure Set_Used_Char (C : Character; Item : Natural);
+
+ ------------
+ -- Tables --
+ ------------
+
+ T1 : Table_Id := No_Table;
+ T2 : Table_Id := No_Table;
+ T1_Len : Natural;
+ T2_Len : Natural;
+ -- T1 : Values table to compute F1
+ -- T2 : Values table to compute F2
+
+ function Get_Table (T : Integer; X, Y : Natural) return Natural;
+ procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural);
+
+ -----------
+ -- Graph --
+ -----------
+
+ G : Table_Id := No_Table;
+ G_Len : Natural;
+ -- Values table to compute G
+
+ NT : Natural := Default_Tries;
+ -- Number of tries running the algorithm before raising an error
+
+ function Get_Graph (N : Natural) return Integer;
+ procedure Set_Graph (N : Natural; Item : Integer);
+ -- Get or Set Nth element of graph
+
+ -----------
+ -- Edges --
+ -----------
+
+ Edge_Size : constant := 3;
+ Edges : Table_Id := No_Table;
+ Edges_Len : Natural;
+ -- Edges : Edge table of the random graph G
+
+ function Get_Edges (F : Natural) return Edge_Type;
+ procedure Set_Edges (F : Natural; Item : Edge_Type);
+
+ --------------
+ -- Vertices --
+ --------------
+
+ Vertex_Size : constant := 2;
+
+ Vertices : Table_Id := No_Table;
+ -- Vertex table of the random graph G
+
+ NV : Natural;
+ -- Number of Vertices
+
+ function Get_Vertices (F : Natural) return Vertex_Type;
+ procedure Set_Vertices (F : Natural; Item : Vertex_Type);
+ -- Comments needed ???
+
+ K2V : Float;
+ -- Ratio between Keys and Vertices (parameter of Czech's algorithm)
+
+ Opt : Optimization;
+ -- Optimization mode (memory vs CPU)
+
+ Max_Key_Len : Natural := 0;
+ Min_Key_Len : Natural := 0;
+ -- Maximum and minimum of all the word length
+
+ S : Natural;
+ -- Seed
+
+ function Type_Size (L : Natural) return Natural;
+ -- Given the last L of an unsigned integer type T, return its size
+
+ -------------
+ -- Acyclic --
+ -------------
+
+ function Acyclic return Boolean is
+ Marks : array (0 .. NV - 1) of Vertex_Id := (others => No_Vertex);
+
+ function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean;
+ -- Propagate Mark from X to Y. X is already marked. Mark Y and propagate
+ -- it to the edges of Y except the one representing the same key. Return
+ -- False when Y is marked with Mark.
+
+ --------------
+ -- Traverse --
+ --------------
+
+ function Traverse (Edge : Edge_Id; Mark : Vertex_Id) return Boolean is
+ E : constant Edge_Type := Get_Edges (Edge);
+ K : constant Key_Id := E.Key;
+ Y : constant Vertex_Id := E.Y;
+ M : constant Vertex_Id := Marks (E.Y);
+ V : Vertex_Type;
+
+ begin
+ if M = Mark then
+ return False;
+
+ elsif M = No_Vertex then
+ Marks (Y) := Mark;
+ V := Get_Vertices (Y);
+
+ for J in V.First .. V.Last loop
+
+ -- Do not propagate to the edge representing the same key
+
+ if Get_Edges (J).Key /= K
+ and then not Traverse (J, Mark)
+ then
+ return False;
+ end if;
+ end loop;
+ end if;
+
+ return True;
+ end Traverse;
+
+ Edge : Edge_Type;
+
+ -- Start of processing for Acyclic
+
+ begin
+ -- Edges valid range is
+
+ for J in 1 .. Edges_Len - 1 loop
+
+ Edge := Get_Edges (J);
+
+ -- Mark X of E when it has not been already done
+
+ if Marks (Edge.X) = No_Vertex then
+ Marks (Edge.X) := Edge.X;
+ end if;
+
+ -- Traverse E when this has not already been done
+
+ if Marks (Edge.Y) = No_Vertex
+ and then not Traverse (J, Edge.X)
+ then
+ return False;
+ end if;
+ end loop;
+
+ return True;
+ end Acyclic;
+
+ ------------------------
+ -- Ada_File_Base_Name --
+ ------------------------
+
+ function Ada_File_Base_Name (Pkg_Name : String) return String is
+ begin
+ -- Convert to lower case, then replace '.' with '-'
+
+ return Result : String := To_Lower (Pkg_Name) do
+ for J in Result'Range loop
+ if Result (J) = '.' then
+ Result (J) := '-';
+ end if;
+ end loop;
+ end return;
+ end Ada_File_Base_Name;
+
+ ---------
+ -- Add --
+ ---------
+
+ procedure Add (C : Character) is
+ pragma Assert (C /= ASCII.NUL);
+ begin
+ Line (Last + 1) := C;
+ Last := Last + 1;
+ end Add;
+
+ ---------
+ -- Add --
+ ---------
+
+ procedure Add (S : String) is
+ Len : constant Natural := S'Length;
+ begin
+ for J in S'Range loop
+ pragma Assert (S (J) /= ASCII.NUL);
+ null;
+ end loop;
+
+ Line (Last + 1 .. Last + Len) := S;
+ Last := Last + Len;
+ end Add;
+
+ --------------
+ -- Allocate --
+ --------------
+
+ function Allocate (N : Natural; S : Natural := 1) return Table_Id is
+ L : constant Integer := IT.Last;
+ begin
+ IT.Set_Last (L + N * S);
+
+ -- Initialize, so debugging printouts don't trip over uninitialized
+ -- components.
+
+ for J in L + 1 .. IT.Last loop
+ IT.Table (J) := -1;
+ end loop;
+
+ return L + 1;
+ end Allocate;
+
+ ------------------------------
+ -- Apply_Position_Selection --
+ ------------------------------
+
+ procedure Apply_Position_Selection is
+ begin
+ for J in 0 .. NK - 1 loop
+ declare
+ IW : constant String := WT.Table (Initial (J)).all;
+ RW : String (1 .. IW'Length) := (others => ASCII.NUL);
+ N : Natural := IW'First - 1;
+
+ begin
+ -- Select the characters of Word included in the position
+ -- selection.
+
+ for C in 0 .. Char_Pos_Set_Len - 1 loop
+ exit when IW (Get_Char_Pos (C)) = ASCII.NUL;
+ N := N + 1;
+ RW (N) := IW (Get_Char_Pos (C));
+ end loop;
+
+ -- Build the new table with the reduced word. Be careful
+ -- to deallocate the old version to avoid memory leaks.
+
+ Free_Word (WT.Table (Reduced (J)));
+ WT.Table (Reduced (J)) := New_Word (RW);
+ Set_Key (J, (Edge => No_Edge));
+ end;
+ end loop;
+ end Apply_Position_Selection;
+
+ -------------------------------
+ -- Assign_Values_To_Vertices --
+ -------------------------------
+
+ procedure Assign_Values_To_Vertices is
+ X : Vertex_Id;
+
+ procedure Assign (X : Vertex_Id);
+ -- Execute assignment on X's neighbors except the vertex that we are
+ -- coming from which is already assigned.
+
+ ------------
+ -- Assign --
+ ------------
+
+ procedure Assign (X : Vertex_Id) is
+ E : Edge_Type;
+ V : constant Vertex_Type := Get_Vertices (X);
+
+ begin
+ for J in V.First .. V.Last loop
+ E := Get_Edges (J);
+
+ if Get_Graph (E.Y) = -1 then
+ Set_Graph (E.Y, (E.Key - Get_Graph (X)) mod NK);
+ Assign (E.Y);
+ end if;
+ end loop;
+ end Assign;
+
+ -- Start of processing for Assign_Values_To_Vertices
+
+ begin
+ -- Value -1 denotes an uninitialized value as it is supposed to
+ -- be in the range 0 .. NK.
+
+ if G = No_Table then
+ G_Len := NV;
+ G := Allocate (G_Len, 1);
+ end if;
+
+ for J in 0 .. G_Len - 1 loop
+ Set_Graph (J, -1);
+ end loop;
+
+ for K in 0 .. NK - 1 loop
+ X := Get_Edges (Get_Key (K).Edge).X;
+
+ if Get_Graph (X) = -1 then
+ Set_Graph (X, 0);
+ Assign (X);
+ end if;
+ end loop;
+
+ for J in 0 .. G_Len - 1 loop
+ if Get_Graph (J) = -1 then
+ Set_Graph (J, 0);
+ end if;
+ end loop;
+
+ if Verbose then
+ Put_Int_Vector (Output, "Assign Values To Vertices", G, G_Len);
+ end if;
+ end Assign_Values_To_Vertices;
+
+ -------------
+ -- Compute --
+ -------------
+
+ procedure Compute (Position : String := Default_Position) is
+ Success : Boolean := False;
+
+ begin
+ if NK = 0 then
+ raise Program_Error with "keywords set cannot be empty";
+ end if;
+
+ if Verbose then
+ Put_Initial_Keys (Output, "Initial Key Table");
+ end if;
+
+ if Position'Length /= 0 then
+ Parse_Position_Selection (Position);
+ else
+ Select_Char_Position;
+ end if;
+
+ if Verbose then
+ Put_Int_Vector
+ (Output, "Char Position Set", Char_Pos_Set, Char_Pos_Set_Len);
+ end if;
+
+ Apply_Position_Selection;
+
+ if Verbose then
+ Put_Reduced_Keys (Output, "Reduced Keys Table");
+ end if;
+
+ Select_Character_Set;
+
+ if Verbose then
+ Put_Used_Char_Set (Output, "Character Position Table");
+ end if;
+
+ -- Perform Czech's algorithm
+
+ for J in 1 .. NT loop
+ Generate_Mapping_Tables (Opt, S);
+ Compute_Edges_And_Vertices (Opt);
+
+ -- When graph is not empty (no self-loop from previous operation) and
+ -- not acyclic.
+
+ if 0 < Edges_Len and then Acyclic then
+ Success := True;
+ exit;
+ end if;
+ end loop;
+
+ if not Success then
+ raise Too_Many_Tries;
+ end if;
+
+ Assign_Values_To_Vertices;
+ end Compute;
+
+ --------------------------------
+ -- Compute_Edges_And_Vertices --
+ --------------------------------
+
+ procedure Compute_Edges_And_Vertices (Opt : Optimization) is
+ X : Natural;
+ Y : Natural;
+ Key : Key_Type;
+ Edge : Edge_Type;
+ Vertex : Vertex_Type;
+ Not_Acyclic : Boolean := False;
+
+ procedure Move (From : Natural; To : Natural);
+ function Lt (L, R : Natural) return Boolean;
+ -- Subprograms needed for GNAT.Heap_Sort_G
+
+ --------
+ -- Lt --
+ --------
+
+ function Lt (L, R : Natural) return Boolean is
+ EL : constant Edge_Type := Get_Edges (L);
+ ER : constant Edge_Type := Get_Edges (R);
+ begin
+ return EL.X < ER.X or else (EL.X = ER.X and then EL.Y < ER.Y);
+ end Lt;
+
+ ----------
+ -- Move --
+ ----------
+
+ procedure Move (From : Natural; To : Natural) is
+ begin
+ Set_Edges (To, Get_Edges (From));
+ end Move;
+
+ package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
+
+ -- Start of processing for Compute_Edges_And_Vertices
+
+ begin
+ -- We store edges from 1 to 2 * NK and leave zero alone in order to use
+ -- GNAT.Heap_Sort_G.
+
+ Edges_Len := 2 * NK + 1;
+
+ if Edges = No_Table then
+ Edges := Allocate (Edges_Len, Edge_Size);
+ end if;
+
+ if Vertices = No_Table then
+ Vertices := Allocate (NV, Vertex_Size);
+ end if;
+
+ for J in 0 .. NV - 1 loop
+ Set_Vertices (J, (No_Vertex, No_Vertex - 1));
+ end loop;
+
+ -- For each w, X = f1 (w) and Y = f2 (w)
+
+ for J in 0 .. NK - 1 loop
+ Key := Get_Key (J);
+ Key.Edge := No_Edge;
+ Set_Key (J, Key);
+
+ X := Sum (WT.Table (Reduced (J)), T1, Opt);
+ Y := Sum (WT.Table (Reduced (J)), T2, Opt);
+
+ -- Discard T1 and T2 as soon as we discover a self loop
+
+ if X = Y then
+ Not_Acyclic := True;
+ exit;
+ end if;
+
+ -- We store (X, Y) and (Y, X) to ease assignment step
+
+ Set_Edges (2 * J + 1, (X, Y, J));
+ Set_Edges (2 * J + 2, (Y, X, J));
+ end loop;
+
+ -- Return an empty graph when self loop detected
+
+ if Not_Acyclic then
+ Edges_Len := 0;
+
+ else
+ if Verbose then
+ Put_Edges (Output, "Unsorted Edge Table");
+ Put_Int_Matrix (Output, "Function Table 1", T1,
+ T1_Len, T2_Len);
+ Put_Int_Matrix (Output, "Function Table 2", T2,
+ T1_Len, T2_Len);
+ end if;
+
+ -- Enforce consistency between edges and keys. Construct Vertices and
+ -- compute the list of neighbors of a vertex First .. Last as Edges
+ -- is sorted by X and then Y. To compute the neighbor list, sort the
+ -- edges.
+
+ Sorting.Sort (Edges_Len - 1);
+
+ if Verbose then
+ Put_Edges (Output, "Sorted Edge Table");
+ Put_Int_Matrix (Output, "Function Table 1", T1,
+ T1_Len, T2_Len);
+ Put_Int_Matrix (Output, "Function Table 2", T2,
+ T1_Len, T2_Len);
+ end if;
+
+ -- Edges valid range is 1 .. 2 * NK
+
+ for E in 1 .. Edges_Len - 1 loop
+ Edge := Get_Edges (E);
+ Key := Get_Key (Edge.Key);
+
+ if Key.Edge = No_Edge then
+ Key.Edge := E;
+ Set_Key (Edge.Key, Key);
+ end if;
+
+ Vertex := Get_Vertices (Edge.X);
+
+ if Vertex.First = No_Edge then
+ Vertex.First := E;
+ end if;
+
+ Vertex.Last := E;
+ Set_Vertices (Edge.X, Vertex);
+ end loop;
+
+ if Verbose then
+ Put_Reduced_Keys (Output, "Key Table");
+ Put_Edges (Output, "Edge Table");
+ Put_Vertex_Table (Output, "Vertex Table");
+ end if;
+ end if;
+ end Compute_Edges_And_Vertices;
+
+ ------------
+ -- Define --
+ ------------
+
+ procedure Define
+ (Name : Table_Name;
+ Item_Size : out Natural;
+ Length_1 : out Natural;
+ Length_2 : out Natural)
+ is
+ begin
+ case Name is
+ when Character_Position =>
+ Item_Size := 8;
+ Length_1 := Char_Pos_Set_Len;
+ Length_2 := 0;
+
+ when Used_Character_Set =>
+ Item_Size := 8;
+ Length_1 := 256;
+ Length_2 := 0;
+
+ when Function_Table_1
+ | Function_Table_2 =>
+ Item_Size := Type_Size (NV);
+ Length_1 := T1_Len;
+ Length_2 := T2_Len;
+
+ when Graph_Table =>
+ Item_Size := Type_Size (NK);
+ Length_1 := NV;
+ Length_2 := 0;
+ end case;
+ end Define;
+
+ --------------
+ -- Finalize --
+ --------------
+
+ procedure Finalize is
+ begin
+ if Verbose then
+ Put (Output, "Finalize");
+ New_Line (Output);
+ end if;
+
+ -- Deallocate all the WT components (both initial and reduced ones) to
+ -- avoid memory leaks.
+
+ for W in 0 .. WT.Last loop
+
+ -- Note: WT.Table (NK) is a temporary variable, do not free it since
+ -- this would cause a double free.
+
+ if W /= NK then
+ Free_Word (WT.Table (W));
+ end if;
+ end loop;
+
+ WT.Release;
+ IT.Release;
+
+ -- Reset all variables for next usage
+
+ Keys := No_Table;
+
+ Char_Pos_Set := No_Table;
+ Char_Pos_Set_Len := 0;
+
+ Used_Char_Set := No_Table;
+ Used_Char_Set_Len := 0;
+
+ T1 := No_Table;
+ T2 := No_Table;
+
+ T1_Len := 0;
+ T2_Len := 0;
+
+ G := No_Table;
+ G_Len := 0;
+
+ Edges := No_Table;
+ Edges_Len := 0;
+
+ Vertices := No_Table;
+ NV := 0;
+
+ NK := 0;
+ Max_Key_Len := 0;
+ Min_Key_Len := 0;
+ end Finalize;
+
+ ----------------------------
+ -- Generate_Mapping_Table --
+ ----------------------------
+
+ procedure Generate_Mapping_Table
+ (Tab : Integer;
+ L1 : Natural;
+ L2 : Natural;
+ Seed : in out Natural)
+ is
+ begin
+ for J in 0 .. L1 - 1 loop
+ for K in 0 .. L2 - 1 loop
+ Random (Seed);
+ Set_Table (Tab, J, K, Seed mod NV);
+ end loop;
+ end loop;
+ end Generate_Mapping_Table;
+
+ -----------------------------
+ -- Generate_Mapping_Tables --
+ -----------------------------
+
+ procedure Generate_Mapping_Tables
+ (Opt : Optimization;
+ Seed : in out Natural)
+ is
+ begin
+ -- If T1 and T2 are already allocated no need to do it twice. Reuse them
+ -- as their size has not changed.
+
+ if T1 = No_Table and then T2 = No_Table then
+ declare
+ Used_Char_Last : Natural := 0;
+ Used_Char : Natural;
+
+ begin
+ if Opt = CPU_Time then
+ for P in reverse Character'Range loop
+ Used_Char := Get_Used_Char (P);
+ if Used_Char /= 0 then
+ Used_Char_Last := Used_Char;
+ exit;
+ end if;
+ end loop;
+ end if;
+
+ T1_Len := Char_Pos_Set_Len;
+ T2_Len := Used_Char_Last + 1;
+ T1 := Allocate (T1_Len * T2_Len);
+ T2 := Allocate (T1_Len * T2_Len);
+ end;
+ end if;
+
+ Generate_Mapping_Table (T1, T1_Len, T2_Len, Seed);
+ Generate_Mapping_Table (T2, T1_Len, T2_Len, Seed);
+
+ if Verbose then
+ Put_Used_Char_Set (Output, "Used Character Set");
+ Put_Int_Matrix (Output, "Function Table 1", T1,
+ T1_Len, T2_Len);
+ Put_Int_Matrix (Output, "Function Table 2", T2,
+ T1_Len, T2_Len);
+ end if;
+ end Generate_Mapping_Tables;
+
+ ------------------
+ -- Get_Char_Pos --
+ ------------------
+
+ function Get_Char_Pos (P : Natural) return Natural is
+ N : constant Natural := Char_Pos_Set + P;
+ begin
+ return IT.Table (N);
+ end Get_Char_Pos;
+
+ ---------------
+ -- Get_Edges --
+ ---------------
+
+ function Get_Edges (F : Natural) return Edge_Type is
+ N : constant Natural := Edges + (F * Edge_Size);
+ E : Edge_Type;
+ begin
+ E.X := IT.Table (N);
+ E.Y := IT.Table (N + 1);
+ E.Key := IT.Table (N + 2);
+ return E;
+ end Get_Edges;
+
+ ---------------
+ -- Get_Graph --
+ ---------------
+
+ function Get_Graph (N : Natural) return Integer is
+ begin
+ return IT.Table (G + N);
+ end Get_Graph;
+
+ -------------
+ -- Get_Key --
+ -------------
+
+ function Get_Key (N : Key_Id) return Key_Type is
+ K : Key_Type;
+ begin
+ K.Edge := IT.Table (Keys + N);
+ return K;
+ end Get_Key;
+
+ ---------------
+ -- Get_Table --
+ ---------------
+
+ function Get_Table (T : Integer; X, Y : Natural) return Natural is
+ N : constant Natural := T + (Y * T1_Len) + X;
+ begin
+ return IT.Table (N);
+ end Get_Table;
+
+ -------------------
+ -- Get_Used_Char --
+ -------------------
+
+ function Get_Used_Char (C : Character) return Natural is
+ N : constant Natural := Used_Char_Set + Character'Pos (C);
+ begin
+ return IT.Table (N);
+ end Get_Used_Char;
+
+ ------------------
+ -- Get_Vertices --
+ ------------------
+
+ function Get_Vertices (F : Natural) return Vertex_Type is
+ N : constant Natural := Vertices + (F * Vertex_Size);
+ V : Vertex_Type;
+ begin
+ V.First := IT.Table (N);
+ V.Last := IT.Table (N + 1);
+ return V;
+ end Get_Vertices;
+
+ -----------
+ -- Image --
+ -----------
+
+ function Image (Int : Integer; W : Natural := 0) return String is
+ B : String (1 .. 32);
+ L : Natural := 0;
+
+ procedure Img (V : Natural);
+ -- Compute image of V into B, starting at B (L), incrementing L
+
+ ---------
+ -- Img --
+ ---------
+
+ procedure Img (V : Natural) is
+ begin
+ if V > 9 then
+ Img (V / 10);
+ end if;
+
+ L := L + 1;
+ B (L) := Character'Val ((V mod 10) + Character'Pos ('0'));
+ end Img;
+
+ -- Start of processing for Image
+
+ begin
+ if Int < 0 then
+ L := L + 1;
+ B (L) := '-';
+ Img (-Int);
+ else
+ Img (Int);
+ end if;
+
+ return Image (B (1 .. L), W);
+ end Image;
+
+ -----------
+ -- Image --
+ -----------
+
+ function Image (Str : String; W : Natural := 0) return String is
+ Len : constant Natural := Str'Length;
+ Max : Natural := Len;
+
+ begin
+ if Max < W then
+ Max := W;
+ end if;
+
+ declare
+ Buf : String (1 .. Max) := (1 .. Max => ' ');
+
+ begin
+ for J in 0 .. Len - 1 loop
+ Buf (Max - Len + 1 + J) := Str (Str'First + J);
+ end loop;
+
+ return Buf;
+ end;
+ end Image;
+
+ -------------
+ -- Initial --
+ -------------
+
+ function Initial (K : Key_Id) return Word_Id is
+ begin
+ return K;
+ end Initial;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize
+ (Seed : Natural;
+ K_To_V : Float := Default_K_To_V;
+ Optim : Optimization := Memory_Space;
+ Tries : Positive := Default_Tries)
+ is
+ begin
+ if Verbose then
+ Put (Output, "Initialize");
+ New_Line (Output);
+ end if;
+
+ -- Deallocate the part of the table concerning the reduced words.
+ -- Initial words are already present in the table. We may have reduced
+ -- words already there because a previous computation failed. We are
+ -- currently retrying and the reduced words have to be deallocated.
+
+ for W in Reduced (0) .. WT.Last loop
+ Free_Word (WT.Table (W));
+ end loop;
+
+ IT.Init;
+
+ -- Initialize of computation variables
+
+ Keys := No_Table;
+
+ Char_Pos_Set := No_Table;
+ Char_Pos_Set_Len := 0;
+
+ Used_Char_Set := No_Table;
+ Used_Char_Set_Len := 0;
+
+ T1 := No_Table;
+ T2 := No_Table;
+
+ T1_Len := 0;
+ T2_Len := 0;
+
+ G := No_Table;
+ G_Len := 0;
+
+ Edges := No_Table;
+ Edges_Len := 0;
+
+ Vertices := No_Table;
+ NV := 0;
+
+ S := Seed;
+ K2V := K_To_V;
+ Opt := Optim;
+ NT := Tries;
+
+ if K2V <= 2.0 then
+ raise Program_Error with "K to V ratio cannot be lower than 2.0";
+ end if;
+
+ -- Do not accept a value of K2V too close to 2.0 such that once
+ -- rounded up, NV = 2 * NK because the algorithm would not converge.
+
+ NV := Natural (Float (NK) * K2V);
+ if NV <= 2 * NK then
+ NV := 2 * NK + 1;
+ end if;
+
+ Keys := Allocate (NK);
+
+ -- Resize initial words to have all of them at the same size
+ -- (so the size of the largest one).
+
+ for K in 0 .. NK - 1 loop
+ Resize_Word (WT.Table (Initial (K)), Max_Key_Len);
+ end loop;
+
+ -- Allocated the table to store the reduced words. As WT is a
+ -- GNAT.Table (using C memory management), pointers have to be
+ -- explicitly initialized to null.
+
+ WT.Set_Last (Reduced (NK - 1));
+
+ -- Note: Reduced (0) = NK + 1
+
+ WT.Table (NK) := null;
+
+ for W in 0 .. NK - 1 loop
+ WT.Table (Reduced (W)) := null;
+ end loop;
+ end Initialize;
+
+ ------------
+ -- Insert --
+ ------------
+
+ procedure Insert (Value : String) is
+ Len : constant Natural := Value'Length;
+
+ begin
+ if Verbose then
+ Put (Output, "Inserting """ & Value & """");
+ New_Line (Output);
+ end if;
+
+ for J in Value'Range loop
+ pragma Assert (Value (J) /= ASCII.NUL);
+ null;
+ end loop;
+
+ WT.Set_Last (NK);
+ WT.Table (NK) := New_Word (Value);
+ NK := NK + 1;
+
+ if Max_Key_Len < Len then
+ Max_Key_Len := Len;
+ end if;
+
+ if Min_Key_Len = 0 or else Len < Min_Key_Len then
+ Min_Key_Len := Len;
+ end if;
+ end Insert;
+
+ --------------
+ -- New_Line --
+ --------------
+
+ procedure New_Line (File : File_Descriptor) is
+ begin
+ if Write (File, EOL'Address, 1) /= 1 then
+ raise Program_Error;
+ end if;
+ end New_Line;
+
+ --------------
+ -- New_Word --
+ --------------
+
+ function New_Word (S : String) return Word_Type is
+ begin
+ return new String'(S);
+ end New_Word;
+
+ ------------------------------
+ -- Parse_Position_Selection --
+ ------------------------------
+
+ procedure Parse_Position_Selection (Argument : String) is
+ N : Natural := Argument'First;
+ L : constant Natural := Argument'Last;
+ M : constant Natural := Max_Key_Len;
+
+ T : array (1 .. M) of Boolean := (others => False);
+
+ function Parse_Index return Natural;
+ -- Parse argument starting at index N to find an index
+
+ -----------------
+ -- Parse_Index --
+ -----------------
+
+ function Parse_Index return Natural is
+ C : Character := Argument (N);
+ V : Natural := 0;
+
+ begin
+ if C = '$' then
+ N := N + 1;
+ return M;
+ end if;
+
+ if C not in '0' .. '9' then
+ raise Program_Error with "cannot read position argument";
+ end if;
+
+ while C in '0' .. '9' loop
+ V := V * 10 + (Character'Pos (C) - Character'Pos ('0'));
+ N := N + 1;
+ exit when L < N;
+ C := Argument (N);
+ end loop;
+
+ return V;
+ end Parse_Index;
+
+ -- Start of processing for Parse_Position_Selection
+
+ begin
+ -- Empty specification means all the positions
+
+ if L < N then
+ Char_Pos_Set_Len := M;
+ Char_Pos_Set := Allocate (Char_Pos_Set_Len);
+
+ for C in 0 .. Char_Pos_Set_Len - 1 loop
+ Set_Char_Pos (C, C + 1);
+ end loop;
+
+ else
+ loop
+ declare
+ First, Last : Natural;
+
+ begin
+ First := Parse_Index;
+ Last := First;
+
+ -- Detect a range
+
+ if N <= L and then Argument (N) = '-' then
+ N := N + 1;
+ Last := Parse_Index;
+ end if;
+
+ -- Include the positions in the selection
+
+ for J in First .. Last loop
+ T (J) := True;
+ end loop;
+ end;
+
+ exit when L < N;
+
+ if Argument (N) /= ',' then
+ raise Program_Error with "cannot read position argument";
+ end if;
+
+ N := N + 1;
+ end loop;
+
+ -- Compute position selection length
+
+ N := 0;
+ for J in T'Range loop
+ if T (J) then
+ N := N + 1;
+ end if;
+ end loop;
+
+ -- Fill position selection
+
+ Char_Pos_Set_Len := N;
+ Char_Pos_Set := Allocate (Char_Pos_Set_Len);
+
+ N := 0;
+ for J in T'Range loop
+ if T (J) then
+ Set_Char_Pos (N, J);
+ N := N + 1;
+ end if;
+ end loop;
+ end if;
+ end Parse_Position_Selection;
+
+ -------------
+ -- Produce --
+ -------------
+
+ procedure Produce
+ (Pkg_Name : String := Default_Pkg_Name;
+ Use_Stdout : Boolean := False)
+ is
+ File : File_Descriptor := Standout;
+
+ Status : Boolean;
+ -- For call to Close
+
+ function Array_Img (N, T, R1 : String; R2 : String := "") return String;
+ -- Return string "N : constant array (R1[, R2]) of T;"
+
+ function Range_Img (F, L : Natural; T : String := "") return String;
+ -- Return string "[T range ]F .. L"
+
+ function Type_Img (L : Natural) return String;
+ -- Return the larger unsigned type T such that T'Last < L
+
+ ---------------
+ -- Array_Img --
+ ---------------
+
+ function Array_Img
+ (N, T, R1 : String;
+ R2 : String := "") return String
+ is
+ begin
+ Last := 0;
+ Add (" ");
+ Add (N);
+ Add (" : constant array (");
+ Add (R1);
+
+ if R2 /= "" then
+ Add (", ");
+ Add (R2);
+ end if;
+
+ Add (") of ");
+ Add (T);
+ Add (" :=");
+ return Line (1 .. Last);
+ end Array_Img;
+
+ ---------------
+ -- Range_Img --
+ ---------------
+
+ function Range_Img (F, L : Natural; T : String := "") return String is
+ FI : constant String := Image (F);
+ FL : constant Natural := FI'Length;
+ LI : constant String := Image (L);
+ LL : constant Natural := LI'Length;
+ TL : constant Natural := T'Length;
+ RI : String (1 .. TL + 7 + FL + 4 + LL);
+ Len : Natural := 0;
+
+ begin
+ if TL /= 0 then
+ RI (Len + 1 .. Len + TL) := T;
+ Len := Len + TL;
+ RI (Len + 1 .. Len + 7) := " range ";
+ Len := Len + 7;
+ end if;
+
+ RI (Len + 1 .. Len + FL) := FI;
+ Len := Len + FL;
+ RI (Len + 1 .. Len + 4) := " .. ";
+ Len := Len + 4;
+ RI (Len + 1 .. Len + LL) := LI;
+ Len := Len + LL;
+ return RI (1 .. Len);
+ end Range_Img;
+
+ --------------
+ -- Type_Img --
+ --------------
+
+ function Type_Img (L : Natural) return String is
+ S : constant String := Image (Type_Size (L));
+ U : String := "Unsigned_ ";
+ N : Natural := 9;
+
+ begin
+ for J in S'Range loop
+ N := N + 1;
+ U (N) := S (J);
+ end loop;
+
+ return U (1 .. N);
+ end Type_Img;
+
+ F : Natural;
+ L : Natural;
+ P : Natural;
+
+ FName : String := Ada_File_Base_Name (Pkg_Name) & ".ads";
+ -- Initially, the name of the spec file, then modified to be the name of
+ -- the body file. Not used if Use_Stdout is True.
+
+ -- Start of processing for Produce
+
+ begin
+
+ if Verbose and then not Use_Stdout then
+ Put (Output,
+ "Producing " & Ada.Directories.Current_Directory & "/" & FName);
+ New_Line (Output);
+ end if;
+
+ if not Use_Stdout then
+ File := Create_File (FName, Binary);
+
+ if File = Invalid_FD then
+ raise Program_Error with "cannot create: " & FName;
+ end if;
+ end if;
+
+ Put (File, "package ");
+ Put (File, Pkg_Name);
+ Put (File, " is");
+ New_Line (File);
+ Put (File, " function Hash (S : String) return Natural;");
+ New_Line (File);
+ Put (File, "end ");
+ Put (File, Pkg_Name);
+ Put (File, ";");
+ New_Line (File);
+
+ if not Use_Stdout then
+ Close (File, Status);
+
+ if not Status then
+ raise Device_Error;
+ end if;
+ end if;
+
+ if not Use_Stdout then
+
+ -- Set to body file name
+
+ FName (FName'Last) := 'b';
+
+ File := Create_File (FName, Binary);
+
+ if File = Invalid_FD then
+ raise Program_Error with "cannot create: " & FName;
+ end if;
+ end if;
+
+ Put (File, "with Interfaces; use Interfaces;");
+ New_Line (File);
+ New_Line (File);
+ Put (File, "package body ");
+ Put (File, Pkg_Name);
+ Put (File, " is");
+ New_Line (File);
+ New_Line (File);
+
+ if Opt = CPU_Time then
+ Put (File, Array_Img ("C", Type_Img (256), "Character"));
+ New_Line (File);
+
+ F := Character'Pos (Character'First);
+ L := Character'Pos (Character'Last);
+
+ for J in Character'Range loop
+ P := Get_Used_Char (J);
+ Put (File, Image (P), 1, 0, 1, F, L, Character'Pos (J));
+ end loop;
+
+ New_Line (File);
+ end if;
+
+ F := 0;
+ L := Char_Pos_Set_Len - 1;
+
+ Put (File, Array_Img ("P", "Natural", Range_Img (F, L)));
+ New_Line (File);
+
+ for J in F .. L loop
+ Put (File, Image (Get_Char_Pos (J)), 1, 0, 1, F, L, J);
+ end loop;
+
+ New_Line (File);
+
+ case Opt is
+ when CPU_Time =>
+ Put_Int_Matrix
+ (File,
+ Array_Img ("T1", Type_Img (NV),
+ Range_Img (0, T1_Len - 1),
+ Range_Img (0, T2_Len - 1, Type_Img (256))),
+ T1, T1_Len, T2_Len);
+
+ when Memory_Space =>
+ Put_Int_Matrix
+ (File,
+ Array_Img ("T1", Type_Img (NV),
+ Range_Img (0, T1_Len - 1)),
+ T1, T1_Len, 0);
+ end case;
+
+ New_Line (File);
+
+ case Opt is
+ when CPU_Time =>
+ Put_Int_Matrix
+ (File,
+ Array_Img ("T2", Type_Img (NV),
+ Range_Img (0, T1_Len - 1),
+ Range_Img (0, T2_Len - 1, Type_Img (256))),
+ T2, T1_Len, T2_Len);
+
+ when Memory_Space =>
+ Put_Int_Matrix
+ (File,
+ Array_Img ("T2", Type_Img (NV),
+ Range_Img (0, T1_Len - 1)),
+ T2, T1_Len, 0);
+ end case;
+
+ New_Line (File);
+
+ Put_Int_Vector
+ (File,
+ Array_Img ("G", Type_Img (NK),
+ Range_Img (0, G_Len - 1)),
+ G, G_Len);
+ New_Line (File);
+
+ Put (File, " function Hash (S : String) return Natural is");
+ New_Line (File);
+ Put (File, " F : constant Natural := S'First - 1;");
+ New_Line (File);
+ Put (File, " L : constant Natural := S'Length;");
+ New_Line (File);
+ Put (File, " F1, F2 : Natural := 0;");
+ New_Line (File);
+
+ Put (File, " J : ");
+
+ case Opt is
+ when CPU_Time =>
+ Put (File, Type_Img (256));
+ when Memory_Space =>
+ Put (File, "Natural");
+ end case;
+
+ Put (File, ";");
+ New_Line (File);
+
+ Put (File, " begin");
+ New_Line (File);
+ Put (File, " for K in P'Range loop");
+ New_Line (File);
+ Put (File, " exit when L < P (K);");
+ New_Line (File);
+ Put (File, " J := ");
+
+ case Opt is
+ when CPU_Time =>
+ Put (File, "C");
+ when Memory_Space =>
+ Put (File, "Character'Pos");
+ end case;
+
+ Put (File, " (S (P (K) + F));");
+ New_Line (File);
+
+ Put (File, " F1 := (F1 + Natural (T1 (K");
+
+ if Opt = CPU_Time then
+ Put (File, ", J");
+ end if;
+
+ Put (File, "))");
+
+ if Opt = Memory_Space then
+ Put (File, " * J");
+ end if;
+
+ Put (File, ") mod ");
+ Put (File, Image (NV));
+ Put (File, ";");
+ New_Line (File);
+
+ Put (File, " F2 := (F2 + Natural (T2 (K");
+
+ if Opt = CPU_Time then
+ Put (File, ", J");
+ end if;
+
+ Put (File, "))");
+
+ if Opt = Memory_Space then
+ Put (File, " * J");
+ end if;
+
+ Put (File, ") mod ");
+ Put (File, Image (NV));
+ Put (File, ";");
+ New_Line (File);
+
+ Put (File, " end loop;");
+ New_Line (File);
+
+ Put (File,
+ " return (Natural (G (F1)) + Natural (G (F2))) mod ");
+
+ Put (File, Image (NK));
+ Put (File, ";");
+ New_Line (File);
+ Put (File, " end Hash;");
+ New_Line (File);
+ New_Line (File);
+ Put (File, "end ");
+ Put (File, Pkg_Name);
+ Put (File, ";");
+ New_Line (File);
+
+ if not Use_Stdout then
+ Close (File, Status);
+
+ if not Status then
+ raise Device_Error;
+ end if;
+ end if;
+ end Produce;
+
+ ---------
+ -- Put --
+ ---------
+
+ procedure Put (File : File_Descriptor; Str : String) is
+ Len : constant Natural := Str'Length;
+ begin
+ for J in Str'Range loop
+ pragma Assert (Str (J) /= ASCII.NUL);
+ null;
+ end loop;
+
+ if Write (File, Str'Address, Len) /= Len then
+ raise Program_Error;
+ end if;
+ end Put;
+
+ ---------
+ -- Put --
+ ---------
+
+ procedure Put
+ (F : File_Descriptor;
+ S : String;
+ F1 : Natural;
+ L1 : Natural;
+ C1 : Natural;
+ F2 : Natural;
+ L2 : Natural;
+ C2 : Natural)
+ is
+ Len : constant Natural := S'Length;
+
+ procedure Flush;
+ -- Write current line, followed by LF
+
+ -----------
+ -- Flush --
+ -----------
+
+ procedure Flush is
+ begin
+ Put (F, Line (1 .. Last));
+ New_Line (F);
+ Last := 0;
+ end Flush;
+
+ -- Start of processing for Put
+
+ begin
+ if C1 = F1 and then C2 = F2 then
+ Last := 0;
+ end if;
+
+ if Last + Len + 3 >= Max then
+ Flush;
+ end if;
+
+ if Last = 0 then
+ Add (" ");
+
+ if F1 <= L1 then
+ if C1 = F1 and then C2 = F2 then
+ Add ('(');
+
+ if F1 = L1 then
+ Add ("0 .. 0 => ");
+ end if;
+
+ else
+ Add (' ');
+ end if;
+ end if;
+ end if;
+
+ if C2 = F2 then
+ Add ('(');
+
+ if F2 = L2 then
+ Add ("0 .. 0 => ");
+ end if;
+
+ else
+ Add (' ');
+ end if;
+
+ Add (S);
+
+ if C2 = L2 then
+ Add (')');
+
+ if F1 > L1 then
+ Add (';');
+ Flush;
+
+ elsif C1 /= L1 then
+ Add (',');
+ Flush;
+
+ else
+ Add (')');
+ Add (';');
+ Flush;
+ end if;
+
+ else
+ Add (',');
+ end if;
+ end Put;
+
+ ---------------
+ -- Put_Edges --
+ ---------------
+
+ procedure Put_Edges (File : File_Descriptor; Title : String) is
+ E : Edge_Type;
+ F1 : constant Natural := 1;
+ L1 : constant Natural := Edges_Len - 1;
+ M : constant Natural := Max / 5;
+
+ begin
+ Put (File, Title);
+ New_Line (File);
+
+ -- Edges valid range is 1 .. Edge_Len - 1
+
+ for J in F1 .. L1 loop
+ E := Get_Edges (J);
+ Put (File, Image (J, M), F1, L1, J, 1, 4, 1);
+ Put (File, Image (E.X, M), F1, L1, J, 1, 4, 2);
+ Put (File, Image (E.Y, M), F1, L1, J, 1, 4, 3);
+ Put (File, Image (E.Key, M), F1, L1, J, 1, 4, 4);
+ end loop;
+ end Put_Edges;
+
+ ----------------------
+ -- Put_Initial_Keys --
+ ----------------------
+
+ procedure Put_Initial_Keys (File : File_Descriptor; Title : String) is
+ F1 : constant Natural := 0;
+ L1 : constant Natural := NK - 1;
+ M : constant Natural := Max / 5;
+ K : Key_Type;
+
+ begin
+ Put (File, Title);
+ New_Line (File);
+
+ for J in F1 .. L1 loop
+ K := Get_Key (J);
+ Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
+ Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2);
+ Put (File, Trim_Trailing_Nuls (WT.Table (Initial (J)).all),
+ F1, L1, J, 1, 3, 3);
+ end loop;
+ end Put_Initial_Keys;
+
+ --------------------
+ -- Put_Int_Matrix --
+ --------------------
+
+ procedure Put_Int_Matrix
+ (File : File_Descriptor;
+ Title : String;
+ Table : Integer;
+ Len_1 : Natural;
+ Len_2 : Natural)
+ is
+ F1 : constant Integer := 0;
+ L1 : constant Integer := Len_1 - 1;
+ F2 : constant Integer := 0;
+ L2 : constant Integer := Len_2 - 1;
+ Ix : Natural;
+
+ begin
+ Put (File, Title);
+ New_Line (File);
+
+ if Len_2 = 0 then
+ for J in F1 .. L1 loop
+ Ix := IT.Table (Table + J);
+ Put (File, Image (Ix), 1, 0, 1, F1, L1, J);
+ end loop;
+
+ else
+ for J in F1 .. L1 loop
+ for K in F2 .. L2 loop
+ Ix := IT.Table (Table + J + K * Len_1);
+ Put (File, Image (Ix), F1, L1, J, F2, L2, K);
+ end loop;
+ end loop;
+ end if;
+ end Put_Int_Matrix;
+
+ --------------------
+ -- Put_Int_Vector --
+ --------------------
+
+ procedure Put_Int_Vector
+ (File : File_Descriptor;
+ Title : String;
+ Vector : Integer;
+ Length : Natural)
+ is
+ F2 : constant Natural := 0;
+ L2 : constant Natural := Length - 1;
+
+ begin
+ Put (File, Title);
+ New_Line (File);
+
+ for J in F2 .. L2 loop
+ Put (File, Image (IT.Table (Vector + J)), 1, 0, 1, F2, L2, J);
+ end loop;
+ end Put_Int_Vector;
+
+ ----------------------
+ -- Put_Reduced_Keys --
+ ----------------------
+
+ procedure Put_Reduced_Keys (File : File_Descriptor; Title : String) is
+ F1 : constant Natural := 0;
+ L1 : constant Natural := NK - 1;
+ M : constant Natural := Max / 5;
+ K : Key_Type;
+
+ begin
+ Put (File, Title);
+ New_Line (File);
+
+ for J in F1 .. L1 loop
+ K := Get_Key (J);
+ Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
+ Put (File, Image (K.Edge, M), F1, L1, J, 1, 3, 2);
+ Put (File, Trim_Trailing_Nuls (WT.Table (Reduced (J)).all),
+ F1, L1, J, 1, 3, 3);
+ end loop;
+ end Put_Reduced_Keys;
+
+ -----------------------
+ -- Put_Used_Char_Set --
+ -----------------------
+
+ procedure Put_Used_Char_Set (File : File_Descriptor; Title : String) is
+ F : constant Natural := Character'Pos (Character'First);
+ L : constant Natural := Character'Pos (Character'Last);
+
+ begin
+ Put (File, Title);
+ New_Line (File);
+
+ for J in Character'Range loop
+ Put
+ (File, Image (Get_Used_Char (J)), 1, 0, 1, F, L, Character'Pos (J));
+ end loop;
+ end Put_Used_Char_Set;
+
+ ----------------------
+ -- Put_Vertex_Table --
+ ----------------------
+
+ procedure Put_Vertex_Table (File : File_Descriptor; Title : String) is
+ F1 : constant Natural := 0;
+ L1 : constant Natural := NV - 1;
+ M : constant Natural := Max / 4;
+ V : Vertex_Type;
+
+ begin
+ Put (File, Title);
+ New_Line (File);
+
+ for J in F1 .. L1 loop
+ V := Get_Vertices (J);
+ Put (File, Image (J, M), F1, L1, J, 1, 3, 1);
+ Put (File, Image (V.First, M), F1, L1, J, 1, 3, 2);
+ Put (File, Image (V.Last, M), F1, L1, J, 1, 3, 3);
+ end loop;
+ end Put_Vertex_Table;
+
+ ------------
+ -- Random --
+ ------------
+
+ procedure Random (Seed : in out Natural) is
+
+ -- Park & Miller Standard Minimal using Schrage's algorithm to avoid
+ -- overflow: Xn+1 = 16807 * Xn mod (2 ** 31 - 1)
+
+ R : Natural;
+ Q : Natural;
+ X : Integer;
+
+ begin
+ R := Seed mod 127773;
+ Q := Seed / 127773;
+ X := 16807 * R - 2836 * Q;
+
+ Seed := (if X < 0 then X + 2147483647 else X);
+ end Random;
+
+ -------------
+ -- Reduced --
+ -------------
+
+ function Reduced (K : Key_Id) return Word_Id is
+ begin
+ return K + NK + 1;
+ end Reduced;
+
+ -----------------
+ -- Resize_Word --
+ -----------------
+
+ procedure Resize_Word (W : in out Word_Type; Len : Natural) is
+ S1 : constant String := W.all;
+ S2 : String (1 .. Len) := (others => ASCII.NUL);
+ L : constant Natural := S1'Length;
+ begin
+ if L /= Len then
+ Free_Word (W);
+ S2 (1 .. L) := S1;
+ W := New_Word (S2);
+ end if;
+ end Resize_Word;
+
+ --------------------------
+ -- Select_Char_Position --
+ --------------------------
+
+ procedure Select_Char_Position is
+
+ type Vertex_Table_Type is array (Natural range <>) of Vertex_Type;
+
+ procedure Build_Identical_Keys_Sets
+ (Table : in out Vertex_Table_Type;
+ Last : in out Natural;
+ Pos : Natural);
+ -- Build a list of keys subsets that are identical with the current
+ -- position selection plus Pos. Once this routine is called, reduced
+ -- words are sorted by subsets and each item (First, Last) in Sets
+ -- defines the range of identical keys.
+ -- Need comment saying exactly what Last is ???
+
+ function Count_Different_Keys
+ (Table : Vertex_Table_Type;
+ Last : Natural;
+ Pos : Natural) return Natural;
+ -- For each subset in Sets, count the number of different keys if we add
+ -- Pos to the current position selection.
+
+ Sel_Position : IT.Table_Type (1 .. Max_Key_Len);
+ Last_Sel_Pos : Natural := 0;
+ Max_Sel_Pos : Natural := 0;
+
+ -------------------------------
+ -- Build_Identical_Keys_Sets --
+ -------------------------------
+
+ procedure Build_Identical_Keys_Sets
+ (Table : in out Vertex_Table_Type;
+ Last : in out Natural;
+ Pos : Natural)
+ is
+ S : constant Vertex_Table_Type := Table (Table'First .. Last);
+ C : constant Natural := Pos;
+ -- Shortcuts (why are these not renames ???)
+
+ F : Integer;
+ L : Integer;
+ -- First and last words of a subset
+
+ Offset : Natural;
+ -- GNAT.Heap_Sort assumes that the first array index is 1. Offset
+ -- defines the translation to operate.
+
+ function Lt (L, R : Natural) return Boolean;
+ procedure Move (From : Natural; To : Natural);
+ -- Subprograms needed by GNAT.Heap_Sort_G
+
+ --------
+ -- Lt --
+ --------
+
+ function Lt (L, R : Natural) return Boolean is
+ C : constant Natural := Pos;
+ Left : Natural;
+ Right : Natural;
+
+ begin
+ if L = 0 then
+ Left := NK;
+ Right := Offset + R;
+ elsif R = 0 then
+ Left := Offset + L;
+ Right := NK;
+ else
+ Left := Offset + L;
+ Right := Offset + R;
+ end if;
+
+ return WT.Table (Left)(C) < WT.Table (Right)(C);
+ end Lt;
+
+ ----------
+ -- Move --
+ ----------
+
+ procedure Move (From : Natural; To : Natural) is
+ Target, Source : Natural;
+
+ begin
+ if From = 0 then
+ Source := NK;
+ Target := Offset + To;
+ elsif To = 0 then
+ Source := Offset + From;
+ Target := NK;
+ else
+ Source := Offset + From;
+ Target := Offset + To;
+ end if;
+
+ WT.Table (Target) := WT.Table (Source);
+ WT.Table (Source) := null;
+ end Move;
+
+ package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
+
+ -- Start of processing for Build_Identical_Key_Sets
+
+ begin
+ Last := 0;
+
+ -- For each subset in S, extract the new subsets we have by adding C
+ -- in the position selection.
+
+ for J in S'Range loop
+ if S (J).First = S (J).Last then
+ F := S (J).First;
+ L := S (J).Last;
+ Last := Last + 1;
+ Table (Last) := (F, L);
+
+ else
+ Offset := Reduced (S (J).First) - 1;
+ Sorting.Sort (S (J).Last - S (J).First + 1);
+
+ F := S (J).First;
+ L := F;
+ for N in S (J).First .. S (J).Last loop
+
+ -- For the last item, close the last subset
+
+ if N = S (J).Last then
+ Last := Last + 1;
+ Table (Last) := (F, N);
+
+ -- Two contiguous words are identical when they have the
+ -- same Cth character.
+
+ elsif WT.Table (Reduced (N))(C) =
+ WT.Table (Reduced (N + 1))(C)
+ then
+ L := N + 1;
+
+ -- Find a new subset of identical keys. Store the current
+ -- one and create a new subset.
+
+ else
+ Last := Last + 1;
+ Table (Last) := (F, L);
+ F := N + 1;
+ L := F;
+ end if;
+ end loop;
+ end if;
+ end loop;
+ end Build_Identical_Keys_Sets;
+
+ --------------------------
+ -- Count_Different_Keys --
+ --------------------------
+
+ function Count_Different_Keys
+ (Table : Vertex_Table_Type;
+ Last : Natural;
+ Pos : Natural) return Natural
+ is
+ N : array (Character) of Natural;
+ C : Character;
+ T : Natural := 0;
+
+ begin
+ -- For each subset, count the number of words that are still
+ -- different when we include Pos in the position selection. Only
+ -- focus on this position as the other positions already produce
+ -- identical keys.
+
+ for S in 1 .. Last loop
+
+ -- Count the occurrences of the different characters
+
+ N := (others => 0);
+ for K in Table (S).First .. Table (S).Last loop
+ C := WT.Table (Reduced (K))(Pos);
+ N (C) := N (C) + 1;
+ end loop;
+
+ -- Update the number of different keys. Each character used
+ -- denotes a different key.
+
+ for J in N'Range loop
+ if N (J) > 0 then
+ T := T + 1;
+ end if;
+ end loop;
+ end loop;
+
+ return T;
+ end Count_Different_Keys;
+
+ -- Start of processing for Select_Char_Position
+
+ begin
+ -- Initialize the reduced words set
+
+ for K in 0 .. NK - 1 loop
+ WT.Table (Reduced (K)) := New_Word (WT.Table (Initial (K)).all);
+ end loop;
+
+ declare
+ Differences : Natural;
+ Max_Differences : Natural := 0;
+ Old_Differences : Natural;
+ Max_Diff_Sel_Pos : Natural := 0; -- init to kill warning
+ Max_Diff_Sel_Pos_Idx : Natural := 0; -- init to kill warning
+ Same_Keys_Sets_Table : Vertex_Table_Type (1 .. NK);
+ Same_Keys_Sets_Last : Natural := 1;
+
+ begin
+ for C in Sel_Position'Range loop
+ Sel_Position (C) := C;
+ end loop;
+
+ Same_Keys_Sets_Table (1) := (0, NK - 1);
+
+ loop
+ -- Preserve maximum number of different keys and check later on
+ -- that this value is strictly incrementing. Otherwise, it means
+ -- that two keys are strictly identical.
+
+ Old_Differences := Max_Differences;
+
+ -- The first position should not exceed the minimum key length.
+ -- Otherwise, we may end up with an empty word once reduced.
+
+ Max_Sel_Pos :=
+ (if Last_Sel_Pos = 0 then Min_Key_Len else Max_Key_Len);
+
+ -- Find which position increases more the number of differences
+
+ for J in Last_Sel_Pos + 1 .. Max_Sel_Pos loop
+ Differences := Count_Different_Keys
+ (Same_Keys_Sets_Table,
+ Same_Keys_Sets_Last,
+ Sel_Position (J));
+
+ if Verbose then
+ Put (Output,
+ "Selecting position" & Sel_Position (J)'Img &
+ " results in" & Differences'Img &
+ " differences");
+ New_Line (Output);
+ end if;
+
+ if Differences > Max_Differences then
+ Max_Differences := Differences;
+ Max_Diff_Sel_Pos := Sel_Position (J);
+ Max_Diff_Sel_Pos_Idx := J;
+ end if;
+ end loop;
+
+ if Old_Differences = Max_Differences then
+ raise Program_Error with "some keys are identical";
+ end if;
+
+ -- Insert selected position and sort Sel_Position table
+
+ Last_Sel_Pos := Last_Sel_Pos + 1;
+ Sel_Position (Last_Sel_Pos + 1 .. Max_Diff_Sel_Pos_Idx) :=
+ Sel_Position (Last_Sel_Pos .. Max_Diff_Sel_Pos_Idx - 1);
+ Sel_Position (Last_Sel_Pos) := Max_Diff_Sel_Pos;
+
+ for P in 1 .. Last_Sel_Pos - 1 loop
+ if Max_Diff_Sel_Pos < Sel_Position (P) then
+ Sel_Position (P + 1 .. Last_Sel_Pos) :=
+ Sel_Position (P .. Last_Sel_Pos - 1);
+ Sel_Position (P) := Max_Diff_Sel_Pos;
+ exit;
+ end if;
+ end loop;
+
+ exit when Max_Differences = NK;
+
+ Build_Identical_Keys_Sets
+ (Same_Keys_Sets_Table,
+ Same_Keys_Sets_Last,
+ Max_Diff_Sel_Pos);
+
+ if Verbose then
+ Put (Output,
+ "Selecting position" & Max_Diff_Sel_Pos'Img &
+ " results in" & Max_Differences'Img &
+ " differences");
+ New_Line (Output);
+ Put (Output, "--");
+ New_Line (Output);
+ for J in 1 .. Same_Keys_Sets_Last loop
+ for K in
+ Same_Keys_Sets_Table (J).First ..
+ Same_Keys_Sets_Table (J).Last
+ loop
+ Put (Output,
+ Trim_Trailing_Nuls (WT.Table (Reduced (K)).all));
+ New_Line (Output);
+ end loop;
+ Put (Output, "--");
+ New_Line (Output);
+ end loop;
+ end if;
+ end loop;
+ end;
+
+ Char_Pos_Set_Len := Last_Sel_Pos;
+ Char_Pos_Set := Allocate (Char_Pos_Set_Len);
+
+ for C in 1 .. Last_Sel_Pos loop
+ Set_Char_Pos (C - 1, Sel_Position (C));
+ end loop;
+ end Select_Char_Position;
+
+ --------------------------
+ -- Select_Character_Set --
+ --------------------------
+
+ procedure Select_Character_Set is
+ Last : Natural := 0;
+ Used : array (Character) of Boolean := (others => False);
+ Char : Character;
+
+ begin
+ for J in 0 .. NK - 1 loop
+ for K in 0 .. Char_Pos_Set_Len - 1 loop
+ Char := WT.Table (Initial (J))(Get_Char_Pos (K));
+ exit when Char = ASCII.NUL;
+ Used (Char) := True;
+ end loop;
+ end loop;
+
+ Used_Char_Set_Len := 256;
+ Used_Char_Set := Allocate (Used_Char_Set_Len);
+
+ for J in Used'Range loop
+ if Used (J) then
+ Set_Used_Char (J, Last);
+ Last := Last + 1;
+ else
+ Set_Used_Char (J, 0);
+ end if;
+ end loop;
+ end Select_Character_Set;
+
+ ------------------
+ -- Set_Char_Pos --
+ ------------------
+
+ procedure Set_Char_Pos (P : Natural; Item : Natural) is
+ N : constant Natural := Char_Pos_Set + P;
+ begin
+ IT.Table (N) := Item;
+ end Set_Char_Pos;
+
+ ---------------
+ -- Set_Edges --
+ ---------------
+
+ procedure Set_Edges (F : Natural; Item : Edge_Type) is
+ N : constant Natural := Edges + (F * Edge_Size);
+ begin
+ IT.Table (N) := Item.X;
+ IT.Table (N + 1) := Item.Y;
+ IT.Table (N + 2) := Item.Key;
+ end Set_Edges;
+
+ ---------------
+ -- Set_Graph --
+ ---------------
+
+ procedure Set_Graph (N : Natural; Item : Integer) is
+ begin
+ IT.Table (G + N) := Item;
+ end Set_Graph;
+
+ -------------
+ -- Set_Key --
+ -------------
+
+ procedure Set_Key (N : Key_Id; Item : Key_Type) is
+ begin
+ IT.Table (Keys + N) := Item.Edge;
+ end Set_Key;
+
+ ---------------
+ -- Set_Table --
+ ---------------
+
+ procedure Set_Table (T : Integer; X, Y : Natural; Item : Natural) is
+ N : constant Natural := T + ((Y * T1_Len) + X);
+ begin
+ IT.Table (N) := Item;
+ end Set_Table;
+
+ -------------------
+ -- Set_Used_Char --
+ -------------------
+
+ procedure Set_Used_Char (C : Character; Item : Natural) is
+ N : constant Natural := Used_Char_Set + Character'Pos (C);
+ begin
+ IT.Table (N) := Item;
+ end Set_Used_Char;
+
+ ------------------
+ -- Set_Vertices --
+ ------------------
+
+ procedure Set_Vertices (F : Natural; Item : Vertex_Type) is
+ N : constant Natural := Vertices + (F * Vertex_Size);
+ begin
+ IT.Table (N) := Item.First;
+ IT.Table (N + 1) := Item.Last;
+ end Set_Vertices;
+
+ ---------
+ -- Sum --
+ ---------
+
+ function Sum
+ (Word : Word_Type;
+ Table : Table_Id;
+ Opt : Optimization) return Natural
+ is
+ S : Natural := 0;
+ R : Natural;
+
+ begin
+ case Opt is
+ when CPU_Time =>
+ for J in 0 .. T1_Len - 1 loop
+ exit when Word (J + 1) = ASCII.NUL;
+ R := Get_Table (Table, J, Get_Used_Char (Word (J + 1)));
+ S := (S + R) mod NV;
+ end loop;
+
+ when Memory_Space =>
+ for J in 0 .. T1_Len - 1 loop
+ exit when Word (J + 1) = ASCII.NUL;
+ R := Get_Table (Table, J, 0);
+ S := (S + R * Character'Pos (Word (J + 1))) mod NV;
+ end loop;
+ end case;
+
+ return S;
+ end Sum;
+
+ ------------------------
+ -- Trim_Trailing_Nuls --
+ ------------------------
+
+ function Trim_Trailing_Nuls (Str : String) return String is
+ begin
+ for J in reverse Str'Range loop
+ if Str (J) /= ASCII.NUL then
+ return Str (Str'First .. J);
+ end if;
+ end loop;
+
+ return Str;
+ end Trim_Trailing_Nuls;
+
+ ---------------
+ -- Type_Size --
+ ---------------
+
+ function Type_Size (L : Natural) return Natural is
+ begin
+ if L <= 2 ** 8 then
+ return 8;
+ elsif L <= 2 ** 16 then
+ return 16;
+ else
+ return 32;
+ end if;
+ end Type_Size;
+
+ -----------
+ -- Value --
+ -----------
+
+ function Value
+ (Name : Table_Name;
+ J : Natural;
+ K : Natural := 0) return Natural
+ is
+ begin
+ case Name is
+ when Character_Position =>
+ return Get_Char_Pos (J);
+
+ when Used_Character_Set =>
+ return Get_Used_Char (Character'Val (J));
+
+ when Function_Table_1 =>
+ return Get_Table (T1, J, K);
+
+ when Function_Table_2 =>
+ return Get_Table (T2, J, K);
+
+ when Graph_Table =>
+ return Get_Graph (J);
+
+ end case;
+ end Value;
+
+end GNAT.Perfect_Hash_Generators;