aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.3/gcc/ada/exp_strm.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.3/gcc/ada/exp_strm.adb')
-rw-r--r--gcc-4.8.3/gcc/ada/exp_strm.adb1770
1 files changed, 1770 insertions, 0 deletions
diff --git a/gcc-4.8.3/gcc/ada/exp_strm.adb b/gcc-4.8.3/gcc/ada/exp_strm.adb
new file mode 100644
index 000000000..987556a84
--- /dev/null
+++ b/gcc-4.8.3/gcc/ada/exp_strm.adb
@@ -0,0 +1,1770 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- E X P _ S T R M --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Einfo; use Einfo;
+with Elists; use Elists;
+with Exp_Util; use Exp_Util;
+with Namet; use Namet;
+with Nlists; use Nlists;
+with Nmake; use Nmake;
+with Rtsfind; use Rtsfind;
+with Sem_Aux; use Sem_Aux;
+with Sem_Util; use Sem_Util;
+with Sinfo; use Sinfo;
+with Snames; use Snames;
+with Stand; use Stand;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Uintp; use Uintp;
+
+package body Exp_Strm is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Build_Array_Read_Write_Procedure
+ (Nod : Node_Id;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Pnam : Entity_Id;
+ Nam : Name_Id);
+ -- Common routine shared to build either an array Read procedure or an
+ -- array Write procedure, Nam is Name_Read or Name_Write to select which.
+ -- Pnam is the defining identifier for the constructed procedure. The
+ -- other parameters are as for Build_Array_Read_Procedure except that
+ -- the first parameter Nod supplies the Sloc to be used to generate code.
+
+ procedure Build_Record_Read_Write_Procedure
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Pnam : Entity_Id;
+ Nam : Name_Id);
+ -- Common routine shared to build a record Read Write procedure, Nam
+ -- is Name_Read or Name_Write to select which. Pnam is the defining
+ -- identifier for the constructed procedure. The other parameters are
+ -- as for Build_Record_Read_Procedure.
+
+ procedure Build_Stream_Function
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Fnam : Entity_Id;
+ Decls : List_Id;
+ Stms : List_Id);
+ -- Called to build an array or record stream function. The first three
+ -- arguments are the same as Build_Record_Or_Elementary_Input_Function.
+ -- Decls and Stms are the declarations and statements for the body and
+ -- The parameter Fnam is the name of the constructed function.
+
+ function Has_Stream_Standard_Rep (U_Type : Entity_Id) return Boolean;
+ -- This function is used to test the type U_Type, to determine if it has
+ -- a standard representation from a streaming point of view. Standard means
+ -- that it has a standard representation (e.g. no enumeration rep clause),
+ -- and the size of the root type is the same as the streaming size (which
+ -- is defined as value specified by a Stream_Size clause if present, or
+ -- the Esize of U_Type if not).
+
+ function Make_Stream_Subprogram_Name
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Nam : TSS_Name_Type) return Entity_Id;
+ -- Return the entity that identifies the stream subprogram for type Typ
+ -- that is identified by the given Nam. This procedure deals with the
+ -- difference between tagged types (where a single subprogram associated
+ -- with the type is generated) and all other cases (where a subprogram
+ -- is generated at the point of the stream attribute reference). The
+ -- Loc parameter is used as the Sloc of the created entity.
+
+ function Stream_Base_Type (E : Entity_Id) return Entity_Id;
+ -- Stream attributes work on the basis of the base type except for the
+ -- array case. For the array case, we do not go to the base type, but
+ -- to the first subtype if it is constrained. This avoids problems with
+ -- incorrect conversions in the packed array case. Stream_Base_Type is
+ -- exactly this function (returns the base type, unless we have an array
+ -- type whose first subtype is constrained, in which case it returns the
+ -- first subtype).
+
+ --------------------------------
+ -- Build_Array_Input_Function --
+ --------------------------------
+
+ -- The function we build looks like
+
+ -- function typSI[_nnn] (S : access RST) return Typ is
+ -- L1 : constant Index_Type_1 := Index_Type_1'Input (S);
+ -- H1 : constant Index_Type_1 := Index_Type_1'Input (S);
+ -- L2 : constant Index_Type_2 := Index_Type_2'Input (S);
+ -- H2 : constant Index_Type_2 := Index_Type_2'Input (S);
+ -- ..
+ -- Ln : constant Index_Type_n := Index_Type_n'Input (S);
+ -- Hn : constant Index_Type_n := Index_Type_n'Input (S);
+ --
+ -- V : Typ'Base (L1 .. H1, L2 .. H2, ... Ln .. Hn)
+
+ -- begin
+ -- Typ'Read (S, V);
+ -- return V;
+ -- end typSI[_nnn]
+
+ -- Note: the suffix [_nnn] is present for non-tagged types, where we
+ -- generate a local subprogram at the point of the occurrence of the
+ -- attribute reference, so the name must be unique.
+
+ procedure Build_Array_Input_Function
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Fnam : out Entity_Id)
+ is
+ Dim : constant Pos := Number_Dimensions (Typ);
+ Lnam : Name_Id;
+ Hnam : Name_Id;
+ Decls : List_Id;
+ Ranges : List_Id;
+ Stms : List_Id;
+ Rstmt : Node_Id;
+ Indx : Node_Id;
+ Odecl : Node_Id;
+
+ begin
+ Decls := New_List;
+ Ranges := New_List;
+ Indx := First_Index (Typ);
+
+ for J in 1 .. Dim loop
+ Lnam := New_External_Name ('L', J);
+ Hnam := New_External_Name ('H', J);
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Lnam),
+ Constant_Present => True,
+ Object_Definition => New_Occurrence_Of (Etype (Indx), Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
+ Attribute_Name => Name_Input,
+ Expressions => New_List (Make_Identifier (Loc, Name_S)))));
+
+ Append_To (Decls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Hnam),
+ Constant_Present => True,
+ Object_Definition =>
+ New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
+ Expression =>
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
+ Attribute_Name => Name_Input,
+ Expressions => New_List (Make_Identifier (Loc, Name_S)))));
+
+ Append_To (Ranges,
+ Make_Range (Loc,
+ Low_Bound => Make_Identifier (Loc, Lnam),
+ High_Bound => Make_Identifier (Loc, Hnam)));
+
+ Next_Index (Indx);
+ end loop;
+
+ -- If the type is constrained, use it directly. Otherwise build a
+ -- subtype indication with the proper bounds.
+
+ if Is_Constrained (Typ) then
+ Odecl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
+ Object_Definition => New_Occurrence_Of (Typ, Loc));
+
+ else
+ Odecl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
+ Object_Definition =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark =>
+ New_Occurrence_Of (Stream_Base_Type (Typ), Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc, Ranges)));
+ end if;
+
+ Rstmt :=
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Typ, Loc),
+ Attribute_Name => Name_Read,
+ Expressions => New_List (
+ Make_Identifier (Loc, Name_S),
+ Make_Identifier (Loc, Name_V)));
+
+ Stms := New_List (
+ Make_Extended_Return_Statement (Loc,
+ Return_Object_Declarations => New_List (Odecl),
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc, New_List (Rstmt))));
+
+ Fnam :=
+ Make_Defining_Identifier (Loc,
+ Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Input));
+
+ Build_Stream_Function (Loc, Typ, Decl, Fnam, Decls, Stms);
+ end Build_Array_Input_Function;
+
+ ----------------------------------
+ -- Build_Array_Output_Procedure --
+ ----------------------------------
+
+ procedure Build_Array_Output_Procedure
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Pnam : out Entity_Id)
+ is
+ Stms : List_Id;
+ Indx : Node_Id;
+
+ begin
+ -- Build series of statements to output bounds
+
+ Indx := First_Index (Typ);
+ Stms := New_List;
+
+ for J in 1 .. Number_Dimensions (Typ) loop
+ Append_To (Stms,
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
+ Attribute_Name => Name_Write,
+ Expressions => New_List (
+ Make_Identifier (Loc, Name_S),
+ Make_Attribute_Reference (Loc,
+ Prefix => Make_Identifier (Loc, Name_V),
+ Attribute_Name => Name_First,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J))))));
+
+ Append_To (Stms,
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
+ Attribute_Name => Name_Write,
+ Expressions => New_List (
+ Make_Identifier (Loc, Name_S),
+ Make_Attribute_Reference (Loc,
+ Prefix => Make_Identifier (Loc, Name_V),
+ Attribute_Name => Name_Last,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J))))));
+
+ Next_Index (Indx);
+ end loop;
+
+ -- Append Write attribute to write array elements
+
+ Append_To (Stms,
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Typ, Loc),
+ Attribute_Name => Name_Write,
+ Expressions => New_List (
+ Make_Identifier (Loc, Name_S),
+ Make_Identifier (Loc, Name_V))));
+
+ Pnam :=
+ Make_Defining_Identifier (Loc,
+ Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Output));
+
+ Build_Stream_Procedure (Loc, Typ, Decl, Pnam, Stms, False);
+ end Build_Array_Output_Procedure;
+
+ --------------------------------
+ -- Build_Array_Read_Procedure --
+ --------------------------------
+
+ procedure Build_Array_Read_Procedure
+ (Nod : Node_Id;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Pnam : out Entity_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Nod);
+
+ begin
+ Pnam :=
+ Make_Defining_Identifier (Loc,
+ Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Read));
+ Build_Array_Read_Write_Procedure (Nod, Typ, Decl, Pnam, Name_Read);
+ end Build_Array_Read_Procedure;
+
+ --------------------------------------
+ -- Build_Array_Read_Write_Procedure --
+ --------------------------------------
+
+ -- The form of the array read/write procedure is as follows:
+
+ -- procedure pnam (S : access RST, V : [out] Typ) is
+ -- begin
+ -- for L1 in V'Range (1) loop
+ -- for L2 in V'Range (2) loop
+ -- ...
+ -- for Ln in V'Range (n) loop
+ -- Component_Type'Read/Write (S, V (L1, L2, .. Ln));
+ -- end loop;
+ -- ..
+ -- end loop;
+ -- end loop
+ -- end pnam;
+
+ -- The out keyword for V is supplied in the Read case
+
+ procedure Build_Array_Read_Write_Procedure
+ (Nod : Node_Id;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Pnam : Entity_Id;
+ Nam : Name_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Nod);
+ Ndim : constant Pos := Number_Dimensions (Typ);
+ Ctyp : constant Entity_Id := Component_Type (Typ);
+
+ Stm : Node_Id;
+ Exl : List_Id;
+ RW : Entity_Id;
+
+ begin
+ -- First build the inner attribute call
+
+ Exl := New_List;
+
+ for J in 1 .. Ndim loop
+ Append_To (Exl, Make_Identifier (Loc, New_External_Name ('L', J)));
+ end loop;
+
+ Stm :=
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Stream_Base_Type (Ctyp), Loc),
+ Attribute_Name => Nam,
+ Expressions => New_List (
+ Make_Identifier (Loc, Name_S),
+ Make_Indexed_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_V),
+ Expressions => Exl)));
+
+ -- The corresponding stream attribute for the component type of the
+ -- array may be user-defined, and be frozen after the type for which
+ -- we are generating the stream subprogram. In that case, freeze the
+ -- stream attribute of the component type, whose declaration could not
+ -- generate any additional freezing actions in any case.
+
+ if Nam = Name_Read then
+ RW := TSS (Base_Type (Ctyp), TSS_Stream_Read);
+ else
+ RW := TSS (Base_Type (Ctyp), TSS_Stream_Write);
+ end if;
+
+ if Present (RW)
+ and then not Is_Frozen (RW)
+ then
+ Set_Is_Frozen (RW);
+ end if;
+
+ -- Now this is the big loop to wrap that statement up in a sequence
+ -- of loops. The first time around, Stm is the attribute call. The
+ -- second and subsequent times, Stm is an inner loop.
+
+ for J in 1 .. Ndim loop
+ Stm :=
+ Make_Implicit_Loop_Statement (Nod,
+ Iteration_Scheme =>
+ Make_Iteration_Scheme (Loc,
+ Loop_Parameter_Specification =>
+ Make_Loop_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Loc,
+ Chars => New_External_Name ('L', Ndim - J + 1)),
+
+ Discrete_Subtype_Definition =>
+ Make_Attribute_Reference (Loc,
+ Prefix => Make_Identifier (Loc, Name_V),
+ Attribute_Name => Name_Range,
+
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, Ndim - J + 1))))),
+
+ Statements => New_List (Stm));
+
+ end loop;
+
+ Build_Stream_Procedure
+ (Loc, Typ, Decl, Pnam, New_List (Stm), Nam = Name_Read);
+ end Build_Array_Read_Write_Procedure;
+
+ ---------------------------------
+ -- Build_Array_Write_Procedure --
+ ---------------------------------
+
+ procedure Build_Array_Write_Procedure
+ (Nod : Node_Id;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Pnam : out Entity_Id)
+ is
+ Loc : constant Source_Ptr := Sloc (Nod);
+
+ begin
+ Pnam :=
+ Make_Defining_Identifier (Loc,
+ Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Write));
+ Build_Array_Read_Write_Procedure (Nod, Typ, Decl, Pnam, Name_Write);
+ end Build_Array_Write_Procedure;
+
+ ---------------------------------
+ -- Build_Elementary_Input_Call --
+ ---------------------------------
+
+ function Build_Elementary_Input_Call (N : Node_Id) return Node_Id is
+ Loc : constant Source_Ptr := Sloc (N);
+ P_Type : constant Entity_Id := Entity (Prefix (N));
+ U_Type : constant Entity_Id := Underlying_Type (P_Type);
+ Rt_Type : constant Entity_Id := Root_Type (U_Type);
+ FST : constant Entity_Id := First_Subtype (U_Type);
+ Strm : constant Node_Id := First (Expressions (N));
+ Targ : constant Node_Id := Next (Strm);
+ P_Size : constant Uint := Get_Stream_Size (FST);
+ Res : Node_Id;
+ Lib_RE : RE_Id;
+
+ begin
+
+ -- Check first for Boolean and Character. These are enumeration types,
+ -- but we treat them specially, since they may require special handling
+ -- in the transfer protocol. However, this special handling only applies
+ -- if they have standard representation, otherwise they are treated like
+ -- any other enumeration type.
+
+ if Rt_Type = Standard_Boolean
+ and then Has_Stream_Standard_Rep (U_Type)
+ then
+ Lib_RE := RE_I_B;
+
+ elsif Rt_Type = Standard_Character
+ and then Has_Stream_Standard_Rep (U_Type)
+ then
+ Lib_RE := RE_I_C;
+
+ elsif Rt_Type = Standard_Wide_Character
+ and then Has_Stream_Standard_Rep (U_Type)
+ then
+ Lib_RE := RE_I_WC;
+
+ elsif Rt_Type = Standard_Wide_Wide_Character
+ and then Has_Stream_Standard_Rep (U_Type)
+ then
+ Lib_RE := RE_I_WWC;
+
+ -- Floating point types
+
+ elsif Is_Floating_Point_Type (U_Type) then
+
+ -- Question: should we use P_Size or Rt_Type to distinguish between
+ -- possible floating point types? If a non-standard size or a stream
+ -- size is specified, then we should certainly use the size. But if
+ -- we have two types the same (notably Short_Float_Size = Float_Size
+ -- which is close to universally true, and Long_Long_Float_Size =
+ -- Long_Float_Size, true on most targets except the x86), then we
+ -- would really rather use the root type, so that if people want to
+ -- fiddle with System.Stream_Attributes to get inter-target portable
+ -- streams, they get the size they expect. Consider in particular the
+ -- case of a stream written on an x86, with 96-bit Long_Long_Float
+ -- being read into a non-x86 target with 64 bit Long_Long_Float. A
+ -- special version of System.Stream_Attributes can deal with this
+ -- provided the proper type is always used.
+
+ -- To deal with these two requirements we add the special checks
+ -- on equal sizes and use the root type to distinguish.
+
+ if P_Size <= Standard_Short_Float_Size
+ and then (Standard_Short_Float_Size /= Standard_Float_Size
+ or else Rt_Type = Standard_Short_Float)
+ then
+ Lib_RE := RE_I_SF;
+
+ elsif P_Size <= Standard_Float_Size then
+ Lib_RE := RE_I_F;
+
+ elsif P_Size <= Standard_Long_Float_Size
+ and then (Standard_Long_Float_Size /= Standard_Long_Long_Float_Size
+ or else Rt_Type = Standard_Long_Float)
+ then
+ Lib_RE := RE_I_LF;
+
+ else
+ Lib_RE := RE_I_LLF;
+ end if;
+
+ -- Signed integer types. Also includes signed fixed-point types and
+ -- enumeration types with a signed representation.
+
+ -- Note on signed integer types. We do not consider types as signed for
+ -- this purpose if they have no negative numbers, or if they have biased
+ -- representation. The reason is that the value in either case basically
+ -- represents an unsigned value.
+
+ -- For example, consider:
+
+ -- type W is range 0 .. 2**32 - 1;
+ -- for W'Size use 32;
+
+ -- This is a signed type, but the representation is unsigned, and may
+ -- be outside the range of a 32-bit signed integer, so this must be
+ -- treated as 32-bit unsigned.
+
+ -- Similarly, if we have
+
+ -- type W is range -1 .. +254;
+ -- for W'Size use 8;
+
+ -- then the representation is unsigned
+
+ elsif not Is_Unsigned_Type (FST)
+
+ -- The following set of tests gets repeated many times, we should
+ -- have an abstraction defined ???
+
+ and then
+ (Is_Fixed_Point_Type (U_Type)
+ or else
+ Is_Enumeration_Type (U_Type)
+ or else
+ (Is_Signed_Integer_Type (U_Type)
+ and then not Has_Biased_Representation (FST)))
+
+ then
+ if P_Size <= Standard_Short_Short_Integer_Size then
+ Lib_RE := RE_I_SSI;
+
+ elsif P_Size <= Standard_Short_Integer_Size then
+ Lib_RE := RE_I_SI;
+
+ elsif P_Size <= Standard_Integer_Size then
+ Lib_RE := RE_I_I;
+
+ elsif P_Size <= Standard_Long_Integer_Size then
+ Lib_RE := RE_I_LI;
+
+ else
+ Lib_RE := RE_I_LLI;
+ end if;
+
+ -- Unsigned integer types, also includes unsigned fixed-point types
+ -- and enumeration types with an unsigned representation (note that
+ -- we know they are unsigned because we already tested for signed).
+
+ -- Also includes signed integer types that are unsigned in the sense
+ -- that they do not include negative numbers. See above for details.
+
+ elsif Is_Modular_Integer_Type (U_Type)
+ or else Is_Fixed_Point_Type (U_Type)
+ or else Is_Enumeration_Type (U_Type)
+ or else Is_Signed_Integer_Type (U_Type)
+ then
+ if P_Size <= Standard_Short_Short_Integer_Size then
+ Lib_RE := RE_I_SSU;
+
+ elsif P_Size <= Standard_Short_Integer_Size then
+ Lib_RE := RE_I_SU;
+
+ elsif P_Size <= Standard_Integer_Size then
+ Lib_RE := RE_I_U;
+
+ elsif P_Size <= Standard_Long_Integer_Size then
+ Lib_RE := RE_I_LU;
+
+ else
+ Lib_RE := RE_I_LLU;
+ end if;
+
+ else pragma Assert (Is_Access_Type (U_Type));
+ if P_Size > System_Address_Size then
+ Lib_RE := RE_I_AD;
+ else
+ Lib_RE := RE_I_AS;
+ end if;
+ end if;
+
+ -- Call the function, and do an unchecked conversion of the result
+ -- to the actual type of the prefix. If the target is a discriminant,
+ -- and we are in the body of the default implementation of a 'Read
+ -- attribute, set target type to force a constraint check (13.13.2(35)).
+ -- If the type of the discriminant is currently private, add another
+ -- unchecked conversion from the full view.
+
+ if Nkind (Targ) = N_Identifier
+ and then Is_Internal_Name (Chars (Targ))
+ and then Is_TSS (Scope (Entity (Targ)), TSS_Stream_Read)
+ then
+ Res :=
+ Unchecked_Convert_To (Base_Type (U_Type),
+ Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (RTE (Lib_RE), Loc),
+ Parameter_Associations => New_List (
+ Relocate_Node (Strm))));
+
+ Set_Do_Range_Check (Res);
+ if Base_Type (P_Type) /= Base_Type (U_Type) then
+ Res := Unchecked_Convert_To (Base_Type (P_Type), Res);
+ end if;
+
+ return Res;
+
+ else
+ return
+ Unchecked_Convert_To (P_Type,
+ Make_Function_Call (Loc,
+ Name => New_Occurrence_Of (RTE (Lib_RE), Loc),
+ Parameter_Associations => New_List (
+ Relocate_Node (Strm))));
+ end if;
+ end Build_Elementary_Input_Call;
+
+ ---------------------------------
+ -- Build_Elementary_Write_Call --
+ ---------------------------------
+
+ function Build_Elementary_Write_Call (N : Node_Id) return Node_Id is
+ Loc : constant Source_Ptr := Sloc (N);
+ P_Type : constant Entity_Id := Entity (Prefix (N));
+ U_Type : constant Entity_Id := Underlying_Type (P_Type);
+ Rt_Type : constant Entity_Id := Root_Type (U_Type);
+ FST : constant Entity_Id := First_Subtype (U_Type);
+ Strm : constant Node_Id := First (Expressions (N));
+ Item : constant Node_Id := Next (Strm);
+ P_Size : Uint;
+ Lib_RE : RE_Id;
+ Libent : Entity_Id;
+
+ begin
+
+ -- Compute the size of the stream element. This is either the size of
+ -- the first subtype or if given the size of the Stream_Size attribute.
+
+ if Has_Stream_Size_Clause (FST) then
+ P_Size := Static_Integer (Expression (Stream_Size_Clause (FST)));
+ else
+ P_Size := Esize (FST);
+ end if;
+
+ -- Find the routine to be called
+
+ -- Check for First Boolean and Character. These are enumeration types,
+ -- but we treat them specially, since they may require special handling
+ -- in the transfer protocol. However, this special handling only applies
+ -- if they have standard representation, otherwise they are treated like
+ -- any other enumeration type.
+
+ if Rt_Type = Standard_Boolean
+ and then Has_Stream_Standard_Rep (U_Type)
+ then
+ Lib_RE := RE_W_B;
+
+ elsif Rt_Type = Standard_Character
+ and then Has_Stream_Standard_Rep (U_Type)
+ then
+ Lib_RE := RE_W_C;
+
+ elsif Rt_Type = Standard_Wide_Character
+ and then Has_Stream_Standard_Rep (U_Type)
+ then
+ Lib_RE := RE_W_WC;
+
+ elsif Rt_Type = Standard_Wide_Wide_Character
+ and then Has_Stream_Standard_Rep (U_Type)
+ then
+ Lib_RE := RE_W_WWC;
+
+ -- Floating point types
+
+ elsif Is_Floating_Point_Type (U_Type) then
+
+ -- Question: should we use P_Size or Rt_Type to distinguish between
+ -- possible floating point types? If a non-standard size or a stream
+ -- size is specified, then we should certainly use the size. But if
+ -- we have two types the same (notably Short_Float_Size = Float_Size
+ -- which is close to universally true, and Long_Long_Float_Size =
+ -- Long_Float_Size, true on most targets except the x86), then we
+ -- would really rather use the root type, so that if people want to
+ -- fiddle with System.Stream_Attributes to get inter-target portable
+ -- streams, they get the size they expect. Consider in particular the
+ -- case of a stream written on an x86, with 96-bit Long_Long_Float
+ -- being read into a non-x86 target with 64 bit Long_Long_Float. A
+ -- special version of System.Stream_Attributes can deal with this
+ -- provided the proper type is always used.
+
+ -- To deal with these two requirements we add the special checks
+ -- on equal sizes and use the root type to distinguish.
+
+ if P_Size <= Standard_Short_Float_Size
+ and then (Standard_Short_Float_Size /= Standard_Float_Size
+ or else Rt_Type = Standard_Short_Float)
+ then
+ Lib_RE := RE_W_SF;
+
+ elsif P_Size <= Standard_Float_Size then
+ Lib_RE := RE_W_F;
+
+ elsif P_Size <= Standard_Long_Float_Size
+ and then (Standard_Long_Float_Size /= Standard_Long_Long_Float_Size
+ or else Rt_Type = Standard_Long_Float)
+ then
+ Lib_RE := RE_W_LF;
+
+ else
+ Lib_RE := RE_W_LLF;
+ end if;
+
+ -- Signed integer types. Also includes signed fixed-point types and
+ -- signed enumeration types share this circuitry.
+
+ -- Note on signed integer types. We do not consider types as signed for
+ -- this purpose if they have no negative numbers, or if they have biased
+ -- representation. The reason is that the value in either case basically
+ -- represents an unsigned value.
+
+ -- For example, consider:
+
+ -- type W is range 0 .. 2**32 - 1;
+ -- for W'Size use 32;
+
+ -- This is a signed type, but the representation is unsigned, and may
+ -- be outside the range of a 32-bit signed integer, so this must be
+ -- treated as 32-bit unsigned.
+
+ -- Similarly, the representation is also unsigned if we have:
+
+ -- type W is range -1 .. +254;
+ -- for W'Size use 8;
+
+ -- forcing a biased and unsigned representation
+
+ elsif not Is_Unsigned_Type (FST)
+ and then
+ (Is_Fixed_Point_Type (U_Type)
+ or else
+ Is_Enumeration_Type (U_Type)
+ or else
+ (Is_Signed_Integer_Type (U_Type)
+ and then not Has_Biased_Representation (FST)))
+ then
+ if P_Size <= Standard_Short_Short_Integer_Size then
+ Lib_RE := RE_W_SSI;
+ elsif P_Size <= Standard_Short_Integer_Size then
+ Lib_RE := RE_W_SI;
+ elsif P_Size <= Standard_Integer_Size then
+ Lib_RE := RE_W_I;
+ elsif P_Size <= Standard_Long_Integer_Size then
+ Lib_RE := RE_W_LI;
+ else
+ Lib_RE := RE_W_LLI;
+ end if;
+
+ -- Unsigned integer types, also includes unsigned fixed-point types
+ -- and unsigned enumeration types (note we know they are unsigned
+ -- because we already tested for signed above).
+
+ -- Also includes signed integer types that are unsigned in the sense
+ -- that they do not include negative numbers. See above for details.
+
+ elsif Is_Modular_Integer_Type (U_Type)
+ or else Is_Fixed_Point_Type (U_Type)
+ or else Is_Enumeration_Type (U_Type)
+ or else Is_Signed_Integer_Type (U_Type)
+ then
+ if P_Size <= Standard_Short_Short_Integer_Size then
+ Lib_RE := RE_W_SSU;
+ elsif P_Size <= Standard_Short_Integer_Size then
+ Lib_RE := RE_W_SU;
+ elsif P_Size <= Standard_Integer_Size then
+ Lib_RE := RE_W_U;
+ elsif P_Size <= Standard_Long_Integer_Size then
+ Lib_RE := RE_W_LU;
+ else
+ Lib_RE := RE_W_LLU;
+ end if;
+
+ else pragma Assert (Is_Access_Type (U_Type));
+
+ if P_Size > System_Address_Size then
+ Lib_RE := RE_W_AD;
+ else
+ Lib_RE := RE_W_AS;
+ end if;
+ end if;
+
+ -- Unchecked-convert parameter to the required type (i.e. the type of
+ -- the corresponding parameter, and call the appropriate routine.
+
+ Libent := RTE (Lib_RE);
+
+ return
+ Make_Procedure_Call_Statement (Loc,
+ Name => New_Occurrence_Of (Libent, Loc),
+ Parameter_Associations => New_List (
+ Relocate_Node (Strm),
+ Unchecked_Convert_To (Etype (Next_Formal (First_Formal (Libent))),
+ Relocate_Node (Item))));
+ end Build_Elementary_Write_Call;
+
+ -----------------------------------------
+ -- Build_Mutable_Record_Read_Procedure --
+ -----------------------------------------
+
+ procedure Build_Mutable_Record_Read_Procedure
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Pnam : out Entity_Id)
+ is
+ Out_Formal : Node_Id;
+ -- Expression denoting the out formal parameter
+
+ Dcls : constant List_Id := New_List;
+ -- Declarations for the 'Read body
+
+ Stms : constant List_Id := New_List;
+ -- Statements for the 'Read body
+
+ Disc : Entity_Id;
+ -- Entity of the discriminant being processed
+
+ Tmp_For_Disc : Entity_Id;
+ -- Temporary object used to read the value of Disc
+
+ Tmps_For_Discs : constant List_Id := New_List;
+ -- List of object declarations for temporaries holding the read values
+ -- for the discriminants.
+
+ Cstr : constant List_Id := New_List;
+ -- List of constraints to be applied on temporary record
+
+ Discriminant_Checks : constant List_Id := New_List;
+ -- List of discriminant checks to be performed if the actual object
+ -- is constrained.
+
+ Tmp : constant Entity_Id := Make_Defining_Identifier (Loc, Name_V);
+ -- Temporary record must hide formal (assignments to components of the
+ -- record are always generated with V as the identifier for the record).
+
+ Constrained_Stms : List_Id := New_List;
+ -- Statements within the block where we have the constrained temporary
+
+ begin
+ -- A mutable type cannot be a tagged type, so we generate a new name
+ -- for the stream procedure.
+
+ Pnam :=
+ Make_Defining_Identifier (Loc,
+ Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Read));
+
+ if Is_Unchecked_Union (Typ) then
+
+ -- If this is an unchecked union, the stream procedure is erroneous,
+ -- because there are no discriminants to read.
+
+ -- This should generate a warning ???
+
+ Append_To (Stms,
+ Make_Raise_Program_Error (Loc,
+ Reason => PE_Unchecked_Union_Restriction));
+
+ Build_Stream_Procedure (Loc, Typ, Decl, Pnam, Stms, Outp => True);
+ return;
+ end if;
+
+ Disc := First_Discriminant (Typ);
+
+ Out_Formal :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Occurrence_Of (Pnam, Loc),
+ Selector_Name => Make_Identifier (Loc, Name_V));
+
+ -- Generate Reads for the discriminants of the type. The discriminants
+ -- need to be read before the rest of the components, so that variants
+ -- are initialized correctly. The discriminants must be read into temp
+ -- variables so an incomplete Read (interrupted by an exception, for
+ -- example) does not alter the passed object.
+
+ while Present (Disc) loop
+ Tmp_For_Disc := Make_Defining_Identifier (Loc,
+ New_External_Name (Chars (Disc), "D"));
+
+ Append_To (Tmps_For_Discs,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Tmp_For_Disc,
+ Object_Definition => New_Occurrence_Of (Etype (Disc), Loc)));
+ Set_No_Initialization (Last (Tmps_For_Discs));
+
+ Append_To (Stms,
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Etype (Disc), Loc),
+ Attribute_Name => Name_Read,
+ Expressions => New_List (
+ Make_Identifier (Loc, Name_S),
+ New_Occurrence_Of (Tmp_For_Disc, Loc))));
+
+ Append_To (Cstr,
+ Make_Discriminant_Association (Loc,
+ Selector_Names => New_List (New_Occurrence_Of (Disc, Loc)),
+ Expression => New_Occurrence_Of (Tmp_For_Disc, Loc)));
+
+ Append_To (Discriminant_Checks,
+ Make_Raise_Constraint_Error (Loc,
+ Condition =>
+ Make_Op_Ne (Loc,
+ Left_Opnd => New_Occurrence_Of (Tmp_For_Disc, Loc),
+ Right_Opnd =>
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (Out_Formal),
+ Selector_Name => New_Occurrence_Of (Disc, Loc))),
+ Reason => CE_Discriminant_Check_Failed));
+ Next_Discriminant (Disc);
+ end loop;
+
+ -- Generate reads for the components of the record (including those
+ -- that depend on discriminants).
+
+ Build_Record_Read_Write_Procedure (Loc, Typ, Decl, Pnam, Name_Read);
+
+ -- Save original statement sequence for component assignments, and
+ -- replace it with Stms.
+
+ Constrained_Stms := Statements (Handled_Statement_Sequence (Decl));
+ Set_Handled_Statement_Sequence (Decl,
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => Stms));
+
+ -- If Typ has controlled components (i.e. if it is classwide
+ -- or Has_Controlled), or components constrained using the discriminants
+ -- of Typ, then we need to ensure that all component assignments
+ -- are performed on an object that has been appropriately constrained
+ -- prior to being initialized. To this effect, we wrap the component
+ -- assignments in a block where V is a constrained temporary.
+
+ Append_To (Dcls,
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Tmp,
+ Object_Definition =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (Typ, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => Cstr))));
+
+ -- AI05-023-1: Insert discriminant check prior to initialization of the
+ -- constrained temporary.
+
+ Append_To (Stms,
+ Make_Implicit_If_Statement (Pnam,
+ Condition =>
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Copy_Tree (Out_Formal),
+ Attribute_Name => Name_Constrained),
+ Then_Statements => Discriminant_Checks));
+
+ -- Now insert back original component assignments, wrapped in a block
+ -- in which V is the constrained temporary.
+
+ Append_To (Stms,
+ Make_Block_Statement (Loc,
+ Declarations => Dcls,
+ Handled_Statement_Sequence => Parent (Constrained_Stms)));
+
+ Append_To (Constrained_Stms,
+ Make_Assignment_Statement (Loc,
+ Name => Out_Formal,
+ Expression => Make_Identifier (Loc, Name_V)));
+
+ Set_Declarations (Decl, Tmps_For_Discs);
+ end Build_Mutable_Record_Read_Procedure;
+
+ ------------------------------------------
+ -- Build_Mutable_Record_Write_Procedure --
+ ------------------------------------------
+
+ procedure Build_Mutable_Record_Write_Procedure
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Pnam : out Entity_Id)
+ is
+ Stms : List_Id;
+ Disc : Entity_Id;
+ D_Ref : Node_Id;
+
+ begin
+ Stms := New_List;
+ Disc := First_Discriminant (Typ);
+
+ -- Generate Writes for the discriminants of the type
+ -- If the type is an unchecked union, use the default values of
+ -- the discriminants, because they are not stored.
+
+ while Present (Disc) loop
+ if Is_Unchecked_Union (Typ) then
+ D_Ref :=
+ New_Copy_Tree (Discriminant_Default_Value (Disc));
+ else
+ D_Ref :=
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_V),
+ Selector_Name => New_Occurrence_Of (Disc, Loc));
+ end if;
+
+ Append_To (Stms,
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Etype (Disc), Loc),
+ Attribute_Name => Name_Write,
+ Expressions => New_List (
+ Make_Identifier (Loc, Name_S),
+ D_Ref)));
+
+ Next_Discriminant (Disc);
+ end loop;
+
+ -- A mutable type cannot be a tagged type, so we generate a new name
+ -- for the stream procedure.
+
+ Pnam :=
+ Make_Defining_Identifier (Loc,
+ Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Write));
+ Build_Record_Read_Write_Procedure (Loc, Typ, Decl, Pnam, Name_Write);
+
+ -- Write the discriminants before the rest of the components, so
+ -- that discriminant values are properly set of variants, etc.
+
+ if Is_Non_Empty_List (
+ Statements (Handled_Statement_Sequence (Decl)))
+ then
+ Insert_List_Before
+ (First (Statements (Handled_Statement_Sequence (Decl))), Stms);
+ else
+ Set_Statements (Handled_Statement_Sequence (Decl), Stms);
+ end if;
+ end Build_Mutable_Record_Write_Procedure;
+
+ -----------------------------------------------
+ -- Build_Record_Or_Elementary_Input_Function --
+ -----------------------------------------------
+
+ -- The function we build looks like
+
+ -- function InputN (S : access RST) return Typ is
+ -- C1 : constant Disc_Type_1;
+ -- Discr_Type_1'Read (S, C1);
+ -- C2 : constant Disc_Type_2;
+ -- Discr_Type_2'Read (S, C2);
+ -- ...
+ -- Cn : constant Disc_Type_n;
+ -- Discr_Type_n'Read (S, Cn);
+ -- V : Typ (C1, C2, .. Cn)
+
+ -- begin
+ -- Typ'Read (S, V);
+ -- return V;
+ -- end InputN
+
+ -- The discriminants are of course only present in the case of a record
+ -- with discriminants. In the case of a record with no discriminants, or
+ -- an elementary type, then no Cn constants are defined.
+
+ procedure Build_Record_Or_Elementary_Input_Function
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Fnam : out Entity_Id)
+ is
+ B_Typ : constant Entity_Id := Base_Type (Typ);
+ Cn : Name_Id;
+ Constr : List_Id;
+ Decls : List_Id;
+ Discr : Entity_Id;
+ Discr_Elmt : Elmt_Id := No_Elmt;
+ J : Pos;
+ Obj_Decl : Node_Id;
+ Odef : Node_Id;
+ Stms : List_Id;
+
+ begin
+ Decls := New_List;
+ Constr := New_List;
+
+ J := 1;
+
+ if Has_Discriminants (B_Typ) then
+ Discr := First_Discriminant (B_Typ);
+
+ -- If the prefix subtype is constrained, then retrieve the first
+ -- element of its constraint.
+
+ if Is_Constrained (Typ) then
+ Discr_Elmt := First_Elmt (Discriminant_Constraint (Typ));
+ end if;
+
+ while Present (Discr) loop
+ Cn := New_External_Name ('C', J);
+
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Cn),
+ Object_Definition =>
+ New_Occurrence_Of (Etype (Discr), Loc));
+
+ -- If this is an access discriminant, do not perform default
+ -- initialization. The discriminant is about to get its value
+ -- from Read, and if the type is null excluding we do not want
+ -- spurious warnings on an initial null value.
+
+ if Is_Access_Type (Etype (Discr)) then
+ Set_No_Initialization (Decl);
+ end if;
+
+ Append_To (Decls, Decl);
+ Append_To (Decls,
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Etype (Discr), Loc),
+ Attribute_Name => Name_Read,
+ Expressions => New_List (
+ Make_Identifier (Loc, Name_S),
+ Make_Identifier (Loc, Cn))));
+
+ Append_To (Constr, Make_Identifier (Loc, Cn));
+
+ -- If the prefix subtype imposes a discriminant constraint, then
+ -- check that each discriminant value equals the value read.
+
+ if Present (Discr_Elmt) then
+ Append_To (Decls,
+ Make_Raise_Constraint_Error (Loc,
+ Condition => Make_Op_Ne (Loc,
+ Left_Opnd =>
+ New_Reference_To
+ (Defining_Identifier (Decl), Loc),
+ Right_Opnd =>
+ New_Copy_Tree (Node (Discr_Elmt))),
+ Reason => CE_Discriminant_Check_Failed));
+
+ Next_Elmt (Discr_Elmt);
+ end if;
+
+ Next_Discriminant (Discr);
+ J := J + 1;
+ end loop;
+
+ Odef :=
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (B_Typ, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => Constr));
+
+ -- If no discriminants, then just use the type with no constraint
+
+ else
+ Odef := New_Occurrence_Of (B_Typ, Loc);
+ end if;
+
+ -- Create an extended return statement encapsulating the result object
+ -- and 'Read call, which is needed in general for proper handling of
+ -- build-in-place results (such as when the result type is inherently
+ -- limited).
+
+ Obj_Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
+ Object_Definition => Odef);
+
+ -- If the type is an access type, do not perform default initialization.
+ -- The object is about to get its value from Read, and if the type is
+ -- null excluding we do not want spurious warnings on an initial null.
+
+ if Is_Access_Type (B_Typ) then
+ Set_No_Initialization (Obj_Decl);
+ end if;
+
+ Stms := New_List (
+ Make_Extended_Return_Statement (Loc,
+ Return_Object_Declarations => New_List (Obj_Decl),
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => New_List (
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (B_Typ, Loc),
+ Attribute_Name => Name_Read,
+ Expressions => New_List (
+ Make_Identifier (Loc, Name_S),
+ Make_Identifier (Loc, Name_V)))))));
+
+ Fnam := Make_Stream_Subprogram_Name (Loc, B_Typ, TSS_Stream_Input);
+
+ Build_Stream_Function (Loc, B_Typ, Decl, Fnam, Decls, Stms);
+ end Build_Record_Or_Elementary_Input_Function;
+
+ -------------------------------------------------
+ -- Build_Record_Or_Elementary_Output_Procedure --
+ -------------------------------------------------
+
+ procedure Build_Record_Or_Elementary_Output_Procedure
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Pnam : out Entity_Id)
+ is
+ Stms : List_Id;
+ Disc : Entity_Id;
+ Disc_Ref : Node_Id;
+
+ begin
+ Stms := New_List;
+
+ -- Note that of course there will be no discriminants for the
+ -- elementary type case, so Has_Discriminants will be False.
+
+ if Has_Discriminants (Typ) then
+ Disc := First_Discriminant (Typ);
+
+ while Present (Disc) loop
+
+ -- If the type is an unchecked union, it must have default
+ -- discriminants (this is checked earlier), and those defaults
+ -- are written out to the stream.
+
+ if Is_Unchecked_Union (Typ) then
+ Disc_Ref := New_Copy_Tree (Discriminant_Default_Value (Disc));
+
+ else
+ Disc_Ref :=
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_V),
+ Selector_Name => New_Occurrence_Of (Disc, Loc));
+ end if;
+
+ Append_To (Stms,
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Stream_Base_Type (Etype (Disc)), Loc),
+ Attribute_Name => Name_Write,
+ Expressions => New_List (
+ Make_Identifier (Loc, Name_S),
+ Disc_Ref)));
+
+ Next_Discriminant (Disc);
+ end loop;
+ end if;
+
+ Append_To (Stms,
+ Make_Attribute_Reference (Loc,
+ Prefix => New_Occurrence_Of (Typ, Loc),
+ Attribute_Name => Name_Write,
+ Expressions => New_List (
+ Make_Identifier (Loc, Name_S),
+ Make_Identifier (Loc, Name_V))));
+
+ Pnam := Make_Stream_Subprogram_Name (Loc, Typ, TSS_Stream_Output);
+
+ Build_Stream_Procedure (Loc, Typ, Decl, Pnam, Stms, False);
+ end Build_Record_Or_Elementary_Output_Procedure;
+
+ ---------------------------------
+ -- Build_Record_Read_Procedure --
+ ---------------------------------
+
+ procedure Build_Record_Read_Procedure
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Pnam : out Entity_Id)
+ is
+ begin
+ Pnam := Make_Stream_Subprogram_Name (Loc, Typ, TSS_Stream_Read);
+ Build_Record_Read_Write_Procedure (Loc, Typ, Decl, Pnam, Name_Read);
+ end Build_Record_Read_Procedure;
+
+ ---------------------------------------
+ -- Build_Record_Read_Write_Procedure --
+ ---------------------------------------
+
+ -- The form of the record read/write procedure is as shown by the
+ -- following example for a case with one discriminant case variant:
+
+ -- procedure pnam (S : access RST, V : [out] Typ) is
+ -- begin
+ -- Component_Type'Read/Write (S, V.component);
+ -- Component_Type'Read/Write (S, V.component);
+ -- ...
+ -- Component_Type'Read/Write (S, V.component);
+ --
+ -- case V.discriminant is
+ -- when choices =>
+ -- Component_Type'Read/Write (S, V.component);
+ -- Component_Type'Read/Write (S, V.component);
+ -- ...
+ -- Component_Type'Read/Write (S, V.component);
+ --
+ -- when choices =>
+ -- Component_Type'Read/Write (S, V.component);
+ -- Component_Type'Read/Write (S, V.component);
+ -- ...
+ -- Component_Type'Read/Write (S, V.component);
+ -- ...
+ -- end case;
+ -- end pnam;
+
+ -- The out keyword for V is supplied in the Read case
+
+ procedure Build_Record_Read_Write_Procedure
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Pnam : Entity_Id;
+ Nam : Name_Id)
+ is
+ Rdef : Node_Id;
+ Stms : List_Id;
+ Typt : Entity_Id;
+
+ In_Limited_Extension : Boolean := False;
+ -- Set to True while processing the record extension definition
+ -- for an extension of a limited type (for which an ancestor type
+ -- has an explicit Nam attribute definition).
+
+ function Make_Component_List_Attributes (CL : Node_Id) return List_Id;
+ -- Returns a sequence of attributes to process the components that
+ -- are referenced in the given component list.
+
+ function Make_Field_Attribute (C : Entity_Id) return Node_Id;
+ -- Given C, the entity for a discriminant or component, build
+ -- an attribute for the corresponding field values.
+
+ function Make_Field_Attributes (Clist : List_Id) return List_Id;
+ -- Given Clist, a component items list, construct series of attributes
+ -- for fieldwise processing of the corresponding components.
+
+ ------------------------------------
+ -- Make_Component_List_Attributes --
+ ------------------------------------
+
+ function Make_Component_List_Attributes (CL : Node_Id) return List_Id is
+ CI : constant List_Id := Component_Items (CL);
+ VP : constant Node_Id := Variant_Part (CL);
+
+ Result : List_Id;
+ Alts : List_Id;
+ V : Node_Id;
+ DC : Node_Id;
+ DCH : List_Id;
+ D_Ref : Node_Id;
+
+ begin
+ Result := Make_Field_Attributes (CI);
+
+ if Present (VP) then
+ Alts := New_List;
+
+ V := First_Non_Pragma (Variants (VP));
+ while Present (V) loop
+ DCH := New_List;
+
+ DC := First (Discrete_Choices (V));
+ while Present (DC) loop
+ Append_To (DCH, New_Copy_Tree (DC));
+ Next (DC);
+ end loop;
+
+ Append_To (Alts,
+ Make_Case_Statement_Alternative (Loc,
+ Discrete_Choices => DCH,
+ Statements =>
+ Make_Component_List_Attributes (Component_List (V))));
+ Next_Non_Pragma (V);
+ end loop;
+
+ -- Note: in the following, we make sure that we use new occurrence
+ -- of for the selector, since there are cases in which we make a
+ -- reference to a hidden discriminant that is not visible.
+
+ -- If the enclosing record is an unchecked_union, we use the
+ -- default expressions for the discriminant (it must exist)
+ -- because we cannot generate a reference to it, given that
+ -- it is not stored.
+
+ if Is_Unchecked_Union (Scope (Entity (Name (VP)))) then
+ D_Ref :=
+ New_Copy_Tree
+ (Discriminant_Default_Value (Entity (Name (VP))));
+ else
+ D_Ref :=
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_V),
+ Selector_Name =>
+ New_Occurrence_Of (Entity (Name (VP)), Loc));
+ end if;
+
+ Append_To (Result,
+ Make_Case_Statement (Loc,
+ Expression => D_Ref,
+ Alternatives => Alts));
+ end if;
+
+ return Result;
+ end Make_Component_List_Attributes;
+
+ --------------------------
+ -- Make_Field_Attribute --
+ --------------------------
+
+ function Make_Field_Attribute (C : Entity_Id) return Node_Id is
+ Field_Typ : constant Entity_Id := Stream_Base_Type (Etype (C));
+
+ TSS_Names : constant array (Name_Input .. Name_Write) of
+ TSS_Name_Type :=
+ (Name_Read => TSS_Stream_Read,
+ Name_Write => TSS_Stream_Write,
+ Name_Input => TSS_Stream_Input,
+ Name_Output => TSS_Stream_Output,
+ others => TSS_Null);
+ pragma Assert (TSS_Names (Nam) /= TSS_Null);
+
+ begin
+ if In_Limited_Extension
+ and then Is_Limited_Type (Field_Typ)
+ and then No (Find_Inherited_TSS (Field_Typ, TSS_Names (Nam)))
+ then
+ -- The declaration is illegal per 13.13.2(9/1), and this is
+ -- enforced in Exp_Ch3.Check_Stream_Attributes. Keep the caller
+ -- happy by returning a null statement.
+
+ return Make_Null_Statement (Loc);
+ end if;
+
+ return
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ New_Occurrence_Of (Field_Typ, Loc),
+ Attribute_Name => Nam,
+ Expressions => New_List (
+ Make_Identifier (Loc, Name_S),
+ Make_Selected_Component (Loc,
+ Prefix => Make_Identifier (Loc, Name_V),
+ Selector_Name => New_Occurrence_Of (C, Loc))));
+ end Make_Field_Attribute;
+
+ ---------------------------
+ -- Make_Field_Attributes --
+ ---------------------------
+
+ function Make_Field_Attributes (Clist : List_Id) return List_Id is
+ Item : Node_Id;
+ Result : List_Id;
+
+ begin
+ Result := New_List;
+
+ if Present (Clist) then
+ Item := First (Clist);
+
+ -- Loop through components, skipping all internal components,
+ -- which are not part of the value (e.g. _Tag), except that we
+ -- don't skip the _Parent, since we do want to process that
+ -- recursively. If _Parent is an interface type, being abstract
+ -- with no components there is no need to handle it.
+
+ while Present (Item) loop
+ if Nkind (Item) = N_Component_Declaration
+ and then
+ ((Chars (Defining_Identifier (Item)) = Name_uParent
+ and then not Is_Interface
+ (Etype (Defining_Identifier (Item))))
+ or else
+ not Is_Internal_Name (Chars (Defining_Identifier (Item))))
+ then
+ Append_To
+ (Result,
+ Make_Field_Attribute (Defining_Identifier (Item)));
+ end if;
+
+ Next (Item);
+ end loop;
+ end if;
+
+ return Result;
+ end Make_Field_Attributes;
+
+ -- Start of processing for Build_Record_Read_Write_Procedure
+
+ begin
+ -- For the protected type case, use corresponding record
+
+ if Is_Protected_Type (Typ) then
+ Typt := Corresponding_Record_Type (Typ);
+ else
+ Typt := Typ;
+ end if;
+
+ -- Note that we do nothing with the discriminants, since Read and
+ -- Write do not read or write the discriminant values. All handling
+ -- of discriminants occurs in the Input and Output subprograms.
+
+ Rdef := Type_Definition
+ (Declaration_Node (Base_Type (Underlying_Type (Typt))));
+ Stms := Empty_List;
+
+ -- In record extension case, the fields we want, including the _Parent
+ -- field representing the parent type, are to be found in the extension.
+ -- Note that we will naturally process the _Parent field using the type
+ -- of the parent, and hence its stream attributes, which is appropriate.
+
+ if Nkind (Rdef) = N_Derived_Type_Definition then
+ Rdef := Record_Extension_Part (Rdef);
+
+ if Is_Limited_Type (Typt) then
+ In_Limited_Extension := True;
+ end if;
+ end if;
+
+ if Present (Component_List (Rdef)) then
+ Append_List_To (Stms,
+ Make_Component_List_Attributes (Component_List (Rdef)));
+ end if;
+
+ Build_Stream_Procedure
+ (Loc, Typ, Decl, Pnam, Stms, Nam = Name_Read);
+ end Build_Record_Read_Write_Procedure;
+
+ ----------------------------------
+ -- Build_Record_Write_Procedure --
+ ----------------------------------
+
+ procedure Build_Record_Write_Procedure
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Pnam : out Entity_Id)
+ is
+ begin
+ Pnam := Make_Stream_Subprogram_Name (Loc, Typ, TSS_Stream_Write);
+ Build_Record_Read_Write_Procedure (Loc, Typ, Decl, Pnam, Name_Write);
+ end Build_Record_Write_Procedure;
+
+ -------------------------------
+ -- Build_Stream_Attr_Profile --
+ -------------------------------
+
+ function Build_Stream_Attr_Profile
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Nam : TSS_Name_Type) return List_Id
+ is
+ Profile : List_Id;
+
+ begin
+ -- (Ada 2005: AI-441): Set the null-excluding attribute because it has
+ -- no semantic meaning in Ada 95 but it is a requirement in Ada 2005.
+
+ Profile := New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_S),
+ Parameter_Type =>
+ Make_Access_Definition (Loc,
+ Null_Exclusion_Present => True,
+ Subtype_Mark => New_Reference_To (
+ Class_Wide_Type (RTE (RE_Root_Stream_Type)), Loc))));
+
+ if Nam /= TSS_Stream_Input then
+ Append_To (Profile,
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
+ Out_Present => (Nam = TSS_Stream_Read),
+ Parameter_Type => New_Reference_To (Typ, Loc)));
+ end if;
+
+ return Profile;
+ end Build_Stream_Attr_Profile;
+
+ ---------------------------
+ -- Build_Stream_Function --
+ ---------------------------
+
+ procedure Build_Stream_Function
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Fnam : Entity_Id;
+ Decls : List_Id;
+ Stms : List_Id)
+ is
+ Spec : Node_Id;
+
+ begin
+ -- Construct function specification
+
+ -- (Ada 2005: AI-441): Set the null-excluding attribute because it has
+ -- no semantic meaning in Ada 95 but it is a requirement in Ada 2005.
+
+ Spec :=
+ Make_Function_Specification (Loc,
+ Defining_Unit_Name => Fnam,
+
+ Parameter_Specifications => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_S),
+ Parameter_Type =>
+ Make_Access_Definition (Loc,
+ Null_Exclusion_Present => True,
+ Subtype_Mark => New_Reference_To (
+ Class_Wide_Type (RTE (RE_Root_Stream_Type)), Loc)))),
+
+ Result_Definition => New_Occurrence_Of (Typ, Loc));
+
+ Decl :=
+ Make_Subprogram_Body (Loc,
+ Specification => Spec,
+ Declarations => Decls,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => Stms));
+ end Build_Stream_Function;
+
+ ----------------------------
+ -- Build_Stream_Procedure --
+ ----------------------------
+
+ procedure Build_Stream_Procedure
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Decl : out Node_Id;
+ Pnam : Entity_Id;
+ Stms : List_Id;
+ Outp : Boolean)
+ is
+ Spec : Node_Id;
+
+ begin
+ -- Construct procedure specification
+
+ -- (Ada 2005: AI-441): Set the null-excluding attribute because it has
+ -- no semantic meaning in Ada 95 but it is a requirement in Ada 2005.
+
+ Spec :=
+ Make_Procedure_Specification (Loc,
+ Defining_Unit_Name => Pnam,
+
+ Parameter_Specifications => New_List (
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_S),
+ Parameter_Type =>
+ Make_Access_Definition (Loc,
+ Null_Exclusion_Present => True,
+ Subtype_Mark => New_Reference_To (
+ Class_Wide_Type (RTE (RE_Root_Stream_Type)), Loc))),
+
+ Make_Parameter_Specification (Loc,
+ Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
+ Out_Present => Outp,
+ Parameter_Type => New_Occurrence_Of (Typ, Loc))));
+
+ Decl :=
+ Make_Subprogram_Body (Loc,
+ Specification => Spec,
+ Declarations => Empty_List,
+ Handled_Statement_Sequence =>
+ Make_Handled_Sequence_Of_Statements (Loc,
+ Statements => Stms));
+ end Build_Stream_Procedure;
+
+ -----------------------------
+ -- Has_Stream_Standard_Rep --
+ -----------------------------
+
+ function Has_Stream_Standard_Rep (U_Type : Entity_Id) return Boolean is
+ Siz : Uint;
+
+ begin
+ if Has_Non_Standard_Rep (U_Type) then
+ return False;
+ end if;
+
+ if Has_Stream_Size_Clause (U_Type) then
+ Siz := Static_Integer (Expression (Stream_Size_Clause (U_Type)));
+ else
+ Siz := Esize (First_Subtype (U_Type));
+ end if;
+
+ return Siz = Esize (Root_Type (U_Type));
+ end Has_Stream_Standard_Rep;
+
+ ---------------------------------
+ -- Make_Stream_Subprogram_Name --
+ ---------------------------------
+
+ function Make_Stream_Subprogram_Name
+ (Loc : Source_Ptr;
+ Typ : Entity_Id;
+ Nam : TSS_Name_Type) return Entity_Id
+ is
+ Sname : Name_Id;
+
+ begin
+ -- For tagged types, we are dealing with a TSS associated with the
+ -- declaration, so we use the standard primitive function name. For
+ -- other types, generate a local TSS name since we are generating
+ -- the subprogram at the point of use.
+
+ if Is_Tagged_Type (Typ) then
+ Sname := Make_TSS_Name (Typ, Nam);
+ else
+ Sname := Make_TSS_Name_Local (Typ, Nam);
+ end if;
+
+ return Make_Defining_Identifier (Loc, Sname);
+ end Make_Stream_Subprogram_Name;
+
+ ----------------------
+ -- Stream_Base_Type --
+ ----------------------
+
+ function Stream_Base_Type (E : Entity_Id) return Entity_Id is
+ begin
+ if Is_Array_Type (E)
+ and then Is_First_Subtype (E)
+ then
+ return E;
+ else
+ return Base_Type (E);
+ end if;
+ end Stream_Base_Type;
+
+end Exp_Strm;