aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/libstdc++-v3/doc/html/manual/memory.html
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/libstdc++-v3/doc/html/manual/memory.html')
-rw-r--r--gcc-4.8.1/libstdc++-v3/doc/html/manual/memory.html685
1 files changed, 0 insertions, 685 deletions
diff --git a/gcc-4.8.1/libstdc++-v3/doc/html/manual/memory.html b/gcc-4.8.1/libstdc++-v3/doc/html/manual/memory.html
deleted file mode 100644
index b31c49da9..000000000
--- a/gcc-4.8.1/libstdc++-v3/doc/html/manual/memory.html
+++ /dev/null
@@ -1,685 +0,0 @@
-<?xml version="1.0" encoding="UTF-8" standalone="no"?>
-<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>Memory</title><meta name="generator" content="DocBook XSL-NS Stylesheets V1.77.1" /><meta name="keywords" content="ISO C++, library" /><meta name="keywords" content="ISO C++, runtime, library" /><link rel="home" href="../index.html" title="The GNU C++ Library" /><link rel="up" href="utilities.html" title="Chapter 6.  Utilities" /><link rel="prev" href="pairs.html" title="Pairs" /><link rel="next" href="traits.html" title="Traits" /></head><body><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Memory</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="pairs.html">Prev</a> </td><th width="60%" align="center">Chapter 6. 
- Utilities
-
-</th><td width="20%" align="right"> <a accesskey="n" href="traits.html">Next</a></td></tr></table><hr /></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="std.util.memory"></a>Memory</h2></div></div></div><p>
- Memory contains three general areas. First, function and operator
- calls via <code class="function">new</code> and <code class="function">delete</code>
- operator or member function calls. Second, allocation via
- <code class="classname">allocator</code>. And finally, smart pointer and
- intelligent pointer abstractions.
- </p><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="std.util.memory.allocator"></a>Allocators</h3></div></div></div><p>
- Memory management for Standard Library entities is encapsulated in a
- class template called <code class="classname">allocator</code>. The
- <code class="classname">allocator</code> abstraction is used throughout the
- library in <code class="classname">string</code>, container classes,
- algorithms, and parts of iostreams. This class, and base classes of
- it, are the superset of available free store (<span class="quote">“<span class="quote">heap</span>”</span>)
- management classes.
-</p><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="allocator.req"></a>Requirements</h4></div></div></div><p>
- The C++ standard only gives a few directives in this area:
- </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>
- When you add elements to a container, and the container must
- allocate more memory to hold them, the container makes the
- request via its <span class="type">Allocator</span> template
- parameter, which is usually aliased to
- <span class="type">allocator_type</span>. This includes adding chars
- to the string class, which acts as a regular STL container in
- this respect.
- </p></li><li class="listitem"><p>
- The default <span class="type">Allocator</span> argument of every
- container-of-T is <code class="classname">allocator&lt;T&gt;</code>.
- </p></li><li class="listitem"><p>
- The interface of the <code class="classname">allocator&lt;T&gt;</code> class is
- extremely simple. It has about 20 public declarations (nested
- typedefs, member functions, etc), but the two which concern us most
- are:
- </p><pre class="programlisting">
- T* allocate (size_type n, const void* hint = 0);
- void deallocate (T* p, size_type n);
- </pre><p>
- The <code class="varname">n</code> arguments in both those
- functions is a <span class="emphasis"><em>count</em></span> of the number of
- <span class="type">T</span>'s to allocate space for, <span class="emphasis"><em>not their
- total size</em></span>.
- (This is a simplification; the real signatures use nested typedefs.)
- </p></li><li class="listitem"><p>
- The storage is obtained by calling <code class="function">::operator
- new</code>, but it is unspecified when or how
- often this function is called. The use of the
- <code class="varname">hint</code> is unspecified, but intended as an
- aid to locality if an implementation so
- desires. <code class="constant">[20.4.1.1]/6</code>
- </p></li></ul></div><p>
- Complete details can be found in the C++ standard, look in
- <code class="constant">[20.4 Memory]</code>.
- </p></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="allocator.design_issues"></a>Design Issues</h4></div></div></div><p>
- The easiest way of fulfilling the requirements is to call
- <code class="function">operator new</code> each time a container needs
- memory, and to call <code class="function">operator delete</code> each time
- the container releases memory. This method may be <a class="link" href="http://gcc.gnu.org/ml/libstdc++/2001-05/msg00105.html" target="_top">slower</a>
- than caching the allocations and re-using previously-allocated
- memory, but has the advantage of working correctly across a wide
- variety of hardware and operating systems, including large
- clusters. The <code class="classname">__gnu_cxx::new_allocator</code>
- implements the simple operator new and operator delete semantics,
- while <code class="classname">__gnu_cxx::malloc_allocator</code>
- implements much the same thing, only with the C language functions
- <code class="function">std::malloc</code> and <code class="function">std::free</code>.
- </p><p>
- Another approach is to use intelligence within the allocator
- class to cache allocations. This extra machinery can take a variety
- of forms: a bitmap index, an index into an exponentially increasing
- power-of-two-sized buckets, or simpler fixed-size pooling cache.
- The cache is shared among all the containers in the program: when
- your program's <code class="classname">std::vector&lt;int&gt;</code> gets
- cut in half and frees a bunch of its storage, that memory can be
- reused by the private
- <code class="classname">std::list&lt;WonkyWidget&gt;</code> brought in from
- a KDE library that you linked against. And operators
- <code class="function">new</code> and <code class="function">delete</code> are not
- always called to pass the memory on, either, which is a speed
- bonus. Examples of allocators that use these techniques are
- <code class="classname">__gnu_cxx::bitmap_allocator</code>,
- <code class="classname">__gnu_cxx::pool_allocator</code>, and
- <code class="classname">__gnu_cxx::__mt_alloc</code>.
- </p><p>
- Depending on the implementation techniques used, the underlying
- operating system, and compilation environment, scaling caching
- allocators can be tricky. In particular, order-of-destruction and
- order-of-creation for memory pools may be difficult to pin down
- with certainty, which may create problems when used with plugins
- or loading and unloading shared objects in memory. As such, using
- caching allocators on systems that do not support
- <code class="function">abi::__cxa_atexit</code> is not recommended.
- </p></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="allocator.impl"></a>Implementation</h4></div></div></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="idp13920976"></a>Interface Design</h5></div></div></div><p>
- The only allocator interface that
- is supported is the standard C++ interface. As such, all STL
- containers have been adjusted, and all external allocators have
- been modified to support this change.
- </p><p>
- The class <code class="classname">allocator</code> just has typedef,
- constructor, and rebind members. It inherits from one of the
- high-speed extension allocators, covered below. Thus, all
- allocation and deallocation depends on the base class.
- </p><p>
- The base class that <code class="classname">allocator</code> is derived from
- may not be user-configurable.
-</p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="idp13924528"></a>Selecting Default Allocation Policy</h5></div></div></div><p>
- It's difficult to pick an allocation strategy that will provide
- maximum utility, without excessively penalizing some behavior. In
- fact, it's difficult just deciding which typical actions to measure
- for speed.
- </p><p>
- Three synthetic benchmarks have been created that provide data
- that is used to compare different C++ allocators. These tests are:
- </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>
- Insertion.
- </p><p>
- Over multiple iterations, various STL container
- objects have elements inserted to some maximum amount. A variety
- of allocators are tested.
- Test source for <a class="link" href="http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert/sequence.cc?view=markup" target="_top">sequence</a>
- and <a class="link" href="http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert/associative.cc?view=markup" target="_top">associative</a>
- containers.
- </p></li><li class="listitem"><p>
- Insertion and erasure in a multi-threaded environment.
- </p><p>
- This test shows the ability of the allocator to reclaim memory
- on a per-thread basis, as well as measuring thread contention
- for memory resources.
- Test source
- <a class="link" href="http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert_erase/associative.cc?view=markup" target="_top">here</a>.
- </p></li><li class="listitem"><p>
- A threaded producer/consumer model.
- </p><p>
- Test source for
- <a class="link" href="http://gcc.gnu.org/viewcvs/trunk/libstdc++-v3/testsuite/performance/23_containers/producer_consumer/sequence.cc?view=markup" target="_top">sequence</a>
- and
- <a class="link" href="http://gcc.gnu.org/viewcvs/trunk/libstdc++-v3/testsuite/performance/23_containers/producer_consumer/associative.cc?view=markup" target="_top">associative</a>
- containers.
- </p></li></ol></div><p>
- The current default choice for
- <code class="classname">allocator</code> is
- <code class="classname">__gnu_cxx::new_allocator</code>.
- </p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="idp13937824"></a>Disabling Memory Caching</h5></div></div></div><p>
- In use, <code class="classname">allocator</code> may allocate and
- deallocate using implementation-specific strategies and
- heuristics. Because of this, a given call to an allocator object's
- <code class="function">allocate</code> member function may not actually
- call the global <code class="code">operator new</code> and a given call to
- to the <code class="function">deallocate</code> member function may not
- call <code class="code">operator delete</code>.
- </p><p>
- This can be confusing.
- </p><p>
- In particular, this can make debugging memory errors more
- difficult, especially when using third-party tools like valgrind or
- debug versions of <code class="function">new</code>.
- </p><p>
- There are various ways to solve this problem. One would be to use
- a custom allocator that just called operators
- <code class="function">new</code> and <code class="function">delete</code>
- directly, for every allocation. (See the default allocator,
- <code class="filename">include/ext/new_allocator.h</code>, for instance.)
- However, that option may involve changing source code to use
- a non-default allocator. Another option is to force the
- default allocator to remove caching and pools, and to directly
- allocate with every call of <code class="function">allocate</code> and
- directly deallocate with every call of
- <code class="function">deallocate</code>, regardless of efficiency. As it
- turns out, this last option is also available.
- </p><p>
- To globally disable memory caching within the library for some of
- the optional non-default allocators, merely set
- <code class="constant">GLIBCXX_FORCE_NEW</code> (with any value) in the
- system's environment before running the program. If your program
- crashes with <code class="constant">GLIBCXX_FORCE_NEW</code> in the
- environment, it likely means that you linked against objects
- built against the older library (objects which might still using the
- cached allocations...).
- </p></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="allocator.using"></a>Using a Specific Allocator</h4></div></div></div><p>
- You can specify different memory management schemes on a
- per-container basis, by overriding the default
- <span class="type">Allocator</span> template parameter. For example, an easy
- (but non-portable) method of specifying that only <code class="function">malloc</code> or <code class="function">free</code>
- should be used instead of the default node allocator is:
- </p><pre class="programlisting">
- std::list &lt;int, __gnu_cxx::malloc_allocator&lt;int&gt; &gt; malloc_list;</pre><p>
- Likewise, a debugging form of whichever allocator is currently in use:
- </p><pre class="programlisting">
- std::deque &lt;int, __gnu_cxx::debug_allocator&lt;std::allocator&lt;int&gt; &gt; &gt; debug_deque;
- </pre></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="allocator.custom"></a>Custom Allocators</h4></div></div></div><p>
- Writing a portable C++ allocator would dictate that the interface
- would look much like the one specified for
- <code class="classname">allocator</code>. Additional member functions, but
- not subtractions, would be permissible.
- </p><p>
- Probably the best place to start would be to copy one of the
- extension allocators: say a simple one like
- <code class="classname">new_allocator</code>.
- </p></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="allocator.ext"></a>Extension Allocators</h4></div></div></div><p>
- Several other allocators are provided as part of this
- implementation. The location of the extension allocators and their
- names have changed, but in all cases, functionality is
- equivalent. Starting with gcc-3.4, all extension allocators are
- standard style. Before this point, SGI style was the norm. Because of
- this, the number of template arguments also changed. Here's a simple
- chart to track the changes.
- </p><p>
- More details on each of these extension allocators follows.
- </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>
- <code class="classname">new_allocator</code>
- </p><p>
- Simply wraps <code class="function">::operator new</code>
- and <code class="function">::operator delete</code>.
- </p></li><li class="listitem"><p>
- <code class="classname">malloc_allocator</code>
- </p><p>
- Simply wraps <code class="function">malloc</code> and
- <code class="function">free</code>. There is also a hook for an
- out-of-memory handler (for
- <code class="function">new</code>/<code class="function">delete</code> this is
- taken care of elsewhere).
- </p></li><li class="listitem"><p>
- <code class="classname">array_allocator</code>
- </p><p>
- Allows allocations of known and fixed sizes using existing
- global or external storage allocated via construction of
- <code class="classname">std::tr1::array</code> objects. By using this
- allocator, fixed size containers (including
- <code class="classname">std::string</code>) can be used without
- instances calling <code class="function">::operator new</code> and
- <code class="function">::operator delete</code>. This capability
- allows the use of STL abstractions without runtime
- complications or overhead, even in situations such as program
- startup. For usage examples, please consult the testsuite.
- </p></li><li class="listitem"><p>
- <code class="classname">debug_allocator</code>
- </p><p>
- A wrapper around an arbitrary allocator A. It passes on
- slightly increased size requests to A, and uses the extra
- memory to store size information. When a pointer is passed
- to <code class="function">deallocate()</code>, the stored size is
- checked, and <code class="function">assert()</code> is used to
- guarantee they match.
- </p></li><li class="listitem"><p>
- <code class="classname">throw_allocator</code>
- </p><p>
- Includes memory tracking and marking abilities as well as hooks for
- throwing exceptions at configurable intervals (including random,
- all, none).
- </p></li><li class="listitem"><p>
- <code class="classname">__pool_alloc</code>
- </p><p>
- A high-performance, single pool allocator. The reusable
- memory is shared among identical instantiations of this type.
- It calls through <code class="function">::operator new</code> to
- obtain new memory when its lists run out. If a client
- container requests a block larger than a certain threshold
- size, then the pool is bypassed, and the allocate/deallocate
- request is passed to <code class="function">::operator new</code>
- directly.
- </p><p>
- Older versions of this class take a boolean template
- parameter, called <code class="varname">thr</code>, and an integer template
- parameter, called <code class="varname">inst</code>.
- </p><p>
- The <code class="varname">inst</code> number is used to track additional memory
- pools. The point of the number is to allow multiple
- instantiations of the classes without changing the semantics at
- all. All three of
- </p><pre class="programlisting">
- typedef __pool_alloc&lt;true,0&gt; normal;
- typedef __pool_alloc&lt;true,1&gt; private;
- typedef __pool_alloc&lt;true,42&gt; also_private;
- </pre><p>
- behave exactly the same way. However, the memory pool for each type
- (and remember that different instantiations result in different types)
- remains separate.
- </p><p>
- The library uses <span class="emphasis"><em>0</em></span> in all its instantiations. If you
- wish to keep separate free lists for a particular purpose, use a
- different number.
- </p><p>The <code class="varname">thr</code> boolean determines whether the
- pool should be manipulated atomically or not. When
- <code class="varname">thr</code> = <code class="constant">true</code>, the allocator
- is thread-safe, while <code class="varname">thr</code> =
- <code class="constant">false</code>, is slightly faster but unsafe for
- multiple threads.
- </p><p>
- For thread-enabled configurations, the pool is locked with a
- single big lock. In some situations, this implementation detail
- may result in severe performance degradation.
- </p><p>
- (Note that the GCC thread abstraction layer allows us to provide
- safe zero-overhead stubs for the threading routines, if threads
- were disabled at configuration time.)
- </p></li><li class="listitem"><p>
- <code class="classname">__mt_alloc</code>
- </p><p>
- A high-performance fixed-size allocator with
- exponentially-increasing allocations. It has its own
- <a class="link" href="mt_allocator.html" title="Chapter 20. The mt_allocator">chapter</a>
- in the documentation.
- </p></li><li class="listitem"><p>
- <code class="classname">bitmap_allocator</code>
- </p><p>
- A high-performance allocator that uses a bit-map to keep track
- of the used and unused memory locations. It has its own
- <a class="link" href="bitmap_allocator.html" title="Chapter 21. The bitmap_allocator">chapter</a>
- in the documentation.
- </p></li></ol></div></div><div class="bibliography"><div class="titlepage"><div><div><h4 class="title"><a id="allocator.biblio"></a>Bibliography</h4></div></div></div><div class="biblioentry"><a id="idp13992848"></a><p><span class="citetitle"><em class="citetitle">
- ISO/IEC 14882:1998 Programming languages - C++
- </em>. </span>
- isoc++_1998
- <span class="pagenums">20.4 Memory. </span></p></div><div class="biblioentry"><a id="idp13994688"></a><p><span class="title"><em>
- <a class="link" href="http://www.drdobbs.com/cpp/184403759" target="_top">
- The Standard Librarian: What Are Allocators Good For?
- </a>
- </em>. </span><span class="author"><span class="firstname">Matt</span> <span class="surname">Austern</span>. </span><span class="publisher"><span class="publishername">
- C/C++ Users Journal
- . </span></span></p></div><div class="biblioentry"><a id="idp13998416"></a><p><span class="title"><em>
- <a class="link" href="http://www.hoard.org/" target="_top">
- The Hoard Memory Allocator
- </a>
- </em>. </span><span class="author"><span class="firstname">Emery</span> <span class="surname">Berger</span>. </span></p></div><div class="biblioentry"><a id="idp14001184"></a><p><span class="title"><em>
- <a class="link" href="http://people.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf" target="_top">
- Reconsidering Custom Memory Allocation
- </a>
- </em>. </span><span class="author"><span class="firstname">Emery</span> <span class="surname">Berger</span>. </span><span class="author"><span class="firstname">Ben</span> <span class="surname">Zorn</span>. </span><span class="author"><span class="firstname">Kathryn</span> <span class="surname">McKinley</span>. </span><span class="copyright">Copyright © 2002 OOPSLA. </span></p></div><div class="biblioentry"><a id="idp14007344"></a><p><span class="title"><em>
- <a class="link" href="http://www.angelikalanger.com/Articles/C++Report/Allocators/Allocators.html" target="_top">
- Allocator Types
- </a>
- </em>. </span><span class="author"><span class="firstname">Klaus</span> <span class="surname">Kreft</span>. </span><span class="author"><span class="firstname">Angelika</span> <span class="surname">Langer</span>. </span><span class="publisher"><span class="publishername">
- C/C++ Users Journal
- . </span></span></p></div><div class="biblioentry"><a id="idp14012080"></a><p><span class="citetitle"><em class="citetitle">The C++ Programming Language</em>. </span><span class="author"><span class="firstname">Bjarne</span> <span class="surname">Stroustrup</span>. </span><span class="copyright">Copyright © 2000 . </span><span class="pagenums">19.4 Allocators. </span><span class="publisher"><span class="publishername">
- Addison Wesley
- . </span></span></p></div><div class="biblioentry"><a id="idp14016512"></a><p><span class="citetitle"><em class="citetitle">Yalloc: A Recycling C++ Allocator</em>. </span><span class="author"><span class="firstname">Felix</span> <span class="surname">Yen</span>. </span></p></div></div></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="std.util.memory.auto_ptr"></a>auto_ptr</h3></div></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="auto_ptr.limitations"></a>Limitations</h4></div></div></div><p>Explaining all of the fun and delicious things that can
- happen with misuse of the <code class="classname">auto_ptr</code> class
- template (called <acronym class="acronym">AP</acronym> here) would take some
- time. Suffice it to say that the use of <acronym class="acronym">AP</acronym>
- safely in the presence of copying has some subtleties.
- </p><p>
- The AP class is a really
- nifty idea for a smart pointer, but it is one of the dumbest of
- all the smart pointers -- and that's fine.
- </p><p>
- AP is not meant to be a supersmart solution to all resource
- leaks everywhere. Neither is it meant to be an effective form
- of garbage collection (although it can help, a little bit).
- And it can <span class="emphasis"><em>not</em></span>be used for arrays!
- </p><p>
- <acronym class="acronym">AP</acronym> is meant to prevent nasty leaks in the
- presence of exceptions. That's <span class="emphasis"><em>all</em></span>. This
- code is AP-friendly:
- </p><pre class="programlisting">
- // Not a recommend naming scheme, but good for web-based FAQs.
- typedef std::auto_ptr&lt;MyClass&gt; APMC;
-
- extern function_taking_MyClass_pointer (MyClass*);
- extern some_throwable_function ();
-
- void func (int data)
- {
- APMC ap (new MyClass(data));
-
- some_throwable_function(); // this will throw an exception
-
- function_taking_MyClass_pointer (ap.get());
- }
- </pre><p>When an exception gets thrown, the instance of MyClass that's
- been created on the heap will be <code class="function">delete</code>'d as the stack is
- unwound past <code class="function">func()</code>.
- </p><p>Changing that code as follows is not <acronym class="acronym">AP</acronym>-friendly:
- </p><pre class="programlisting">
- APMC ap (new MyClass[22]);
- </pre><p>You will get the same problems as you would without the use
- of <acronym class="acronym">AP</acronym>:
- </p><pre class="programlisting">
- char* array = new char[10]; // array new...
- ...
- delete array; // ...but single-object delete
- </pre><p>
- AP cannot tell whether the pointer you've passed at creation points
- to one or many things. If it points to many things, you are about
- to die. AP is trivial to write, however, so you could write your
- own <code class="code">auto_array_ptr</code> for that situation (in fact, this has
- been done many times; check the mailing lists, Usenet, Boost, etc).
- </p></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="auto_ptr.using"></a>Use in Containers</h4></div></div></div><p>
- </p><p>All of the <a class="link" href="containers.html" title="Chapter 9.  Containers">containers</a>
- described in the standard library require their contained types
- to have, among other things, a copy constructor like this:
- </p><pre class="programlisting">
- struct My_Type
- {
- My_Type (My_Type const&amp;);
- };
- </pre><p>
- Note the const keyword; the object being copied shouldn't change.
- The template class <code class="code">auto_ptr</code> (called AP here) does not
- meet this requirement. Creating a new AP by copying an existing
- one transfers ownership of the pointed-to object, which means that
- the AP being copied must change, which in turn means that the
- copy ctors of AP do not take const objects.
- </p><p>
- The resulting rule is simple: <span class="emphasis"><em>Never ever use a
- container of auto_ptr objects</em></span>. The standard says that
- <span class="quote">“<span class="quote">undefined</span>”</span> behavior is the result, but it is
- guaranteed to be messy.
- </p><p>
- To prevent you from doing this to yourself, the
- <a class="link" href="ext_compile_checks.html" title="Chapter 16. Compile Time Checks">concept checks</a> built
- in to this implementation will issue an error if you try to
- compile code like this:
- </p><pre class="programlisting">
- #include &lt;vector&gt;
- #include &lt;memory&gt;
-
- void f()
- {
- std::vector&lt; std::auto_ptr&lt;int&gt; &gt; vec_ap_int;
- }
- </pre><p>
-Should you try this with the checks enabled, you will see an error.
- </p></div></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a id="std.util.memory.shared_ptr"></a>shared_ptr</h3></div></div></div><p>
-The shared_ptr class template stores a pointer, usually obtained via new,
-and implements shared ownership semantics.
-</p><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="shared_ptr.req"></a>Requirements</h4></div></div></div><p>
- </p><p>
- The standard deliberately doesn't require a reference-counted
- implementation, allowing other techniques such as a
- circular-linked-list.
- </p><p>
- </p></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="shared_ptr.design_issues"></a>Design Issues</h4></div></div></div><p>
-The <code class="classname">shared_ptr</code> code is kindly donated to GCC by the Boost
-project and the original authors of the code. The basic design and
-algorithms are from Boost, the notes below describe details specific to
-the GCC implementation. Names have been uglified in this implementation,
-but the design should be recognisable to anyone familiar with the Boost
-1.32 shared_ptr.
- </p><p>
-The basic design is an abstract base class, <code class="code">_Sp_counted_base</code> that
-does the reference-counting and calls virtual functions when the count
-drops to zero.
-Derived classes override those functions to destroy resources in a context
-where the correct dynamic type is known. This is an application of the
-technique known as type erasure.
- </p></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="shared_ptr.impl"></a>Implementation</h4></div></div></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="idp15512272"></a>Class Hierarchy</h5></div></div></div><p>
-A <code class="classname">shared_ptr&lt;T&gt;</code> contains a pointer of
-type <span class="type">T*</span> and an object of type
-<code class="classname">__shared_count</code>. The shared_count contains a
-pointer of type <span class="type">_Sp_counted_base*</span> which points to the
-object that maintains the reference-counts and destroys the managed
-resource.
- </p><div class="variablelist"><dl class="variablelist"><dt><span class="term"><code class="classname">_Sp_counted_base&lt;Lp&gt;</code></span></dt><dd><p>
-The base of the hierarchy is parameterized on the lock policy (see below.)
-_Sp_counted_base doesn't depend on the type of pointer being managed,
-it only maintains the reference counts and calls virtual functions when
-the counts drop to zero. The managed object is destroyed when the last
-strong reference is dropped, but the _Sp_counted_base itself must exist
-until the last weak reference is dropped.
- </p></dd><dt><span class="term"><code class="classname">_Sp_counted_base_impl&lt;Ptr, Deleter, Lp&gt;</code></span></dt><dd><p>
-Inherits from _Sp_counted_base and stores a pointer of type <code class="code">Ptr</code>
-and a deleter of type <code class="code">Deleter</code>. <code class="classname">_Sp_deleter</code> is
-used when the user doesn't supply a custom deleter. Unlike Boost's, this
-default deleter is not "checked" because GCC already issues a warning if
-<code class="function">delete</code> is used with an incomplete type.
-This is the only derived type used by <code class="classname">tr1::shared_ptr&lt;Ptr&gt;</code>
-and it is never used by <code class="classname">std::shared_ptr</code>, which uses one of
-the following types, depending on how the shared_ptr is constructed.
- </p></dd><dt><span class="term"><code class="classname">_Sp_counted_ptr&lt;Ptr, Lp&gt;</code></span></dt><dd><p>
-Inherits from _Sp_counted_base and stores a pointer of type <span class="type">Ptr</span>,
-which is passed to <code class="function">delete</code> when the last reference is dropped.
-This is the simplest form and is used when there is no custom deleter or
-allocator.
- </p></dd><dt><span class="term"><code class="classname">_Sp_counted_deleter&lt;Ptr, Deleter, Alloc&gt;</code></span></dt><dd><p>
-Inherits from _Sp_counted_ptr and adds support for custom deleter and
-allocator. Empty Base Optimization is used for the allocator. This class
-is used even when the user only provides a custom deleter, in which case
-<code class="classname">allocator</code> is used as the allocator.
- </p></dd><dt><span class="term"><code class="classname">_Sp_counted_ptr_inplace&lt;Tp, Alloc, Lp&gt;</code></span></dt><dd><p>
-Used by <code class="code">allocate_shared</code> and <code class="code">make_shared</code>.
-Contains aligned storage to hold an object of type <span class="type">Tp</span>,
-which is constructed in-place with placement <code class="function">new</code>.
-Has a variadic template constructor allowing any number of arguments to
-be forwarded to <span class="type">Tp</span>'s constructor.
-Unlike the other <code class="classname">_Sp_counted_*</code> classes, this one is parameterized on the
-type of object, not the type of pointer; this is purely a convenience
-that simplifies the implementation slightly.
- </p></dd></dl></div><p>
-C++11-only features are: rvalue-ref/move support, allocator support,
-aliasing constructor, make_shared &amp; allocate_shared. Additionally,
-the constructors taking <code class="classname">auto_ptr</code> parameters are
-deprecated in C++11 mode.
- </p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="idp15534784"></a>Thread Safety</h5></div></div></div><p>
-The
-<a class="link" href="http://boost.org/libs/smart_ptr/shared_ptr.htm#ThreadSafety" target="_top">Thread
-Safety</a> section of the Boost shared_ptr documentation says "shared_ptr
-objects offer the same level of thread safety as built-in types."
-The implementation must ensure that concurrent updates to separate shared_ptr
-instances are correct even when those instances share a reference count e.g.
-</p><pre class="programlisting">
-shared_ptr&lt;A&gt; a(new A);
-shared_ptr&lt;A&gt; b(a);
-
-// Thread 1 // Thread 2
- a.reset(); b.reset();
-</pre><p>
-The dynamically-allocated object must be destroyed by exactly one of the
-threads. Weak references make things even more interesting.
-The shared state used to implement shared_ptr must be transparent to the
-user and invariants must be preserved at all times.
-The key pieces of shared state are the strong and weak reference counts.
-Updates to these need to be atomic and visible to all threads to ensure
-correct cleanup of the managed resource (which is, after all, shared_ptr's
-job!)
-On multi-processor systems memory synchronisation may be needed so that
-reference-count updates and the destruction of the managed resource are
-race-free.
-</p><p>
-The function <code class="function">_Sp_counted_base::_M_add_ref_lock()</code>, called when
-obtaining a shared_ptr from a weak_ptr, has to test if the managed
-resource still exists and either increment the reference count or throw
-<code class="classname">bad_weak_ptr</code>.
-In a multi-threaded program there is a potential race condition if the last
-reference is dropped (and the managed resource destroyed) between testing
-the reference count and incrementing it, which could result in a shared_ptr
-pointing to invalid memory.
-</p><p>
-The Boost shared_ptr (as used in GCC) features a clever lock-free
-algorithm to avoid the race condition, but this relies on the
-processor supporting an atomic <span class="emphasis"><em>Compare-And-Swap</em></span>
-instruction. For other platforms there are fall-backs using mutex
-locks. Boost (as of version 1.35) includes several different
-implementations and the preprocessor selects one based on the
-compiler, standard library, platform etc. For the version of
-shared_ptr in libstdc++ the compiler and library are fixed, which
-makes things much simpler: we have an atomic CAS or we don't, see Lock
-Policy below for details.
-</p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="idp15542080"></a>Selecting Lock Policy</h5></div></div></div><p>
- </p><p>
-There is a single <code class="classname">_Sp_counted_base</code> class,
-which is a template parameterized on the enum
-<span class="type">__gnu_cxx::_Lock_policy</span>. The entire family of classes is
-parameterized on the lock policy, right up to
-<code class="classname">__shared_ptr</code>, <code class="classname">__weak_ptr</code> and
-<code class="classname">__enable_shared_from_this</code>. The actual
-<code class="classname">std::shared_ptr</code> class inherits from
-<code class="classname">__shared_ptr</code> with the lock policy parameter
-selected automatically based on the thread model and platform that
-libstdc++ is configured for, so that the best available template
-specialization will be used. This design is necessary because it would
-not be conforming for <code class="classname">shared_ptr</code> to have an
-extra template parameter, even if it had a default value. The
-available policies are:
- </p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>
- <code class="constant">_S_Atomic</code>
- </p><p>
-Selected when GCC supports a builtin atomic compare-and-swap operation
-on the target processor (see <a class="link" href="http://gcc.gnu.org/onlinedocs/gcc/Atomic-Builtins.html" target="_top">Atomic
-Builtins</a>.) The reference counts are maintained using a lock-free
-algorithm and GCC's atomic builtins, which provide the required memory
-synchronisation.
- </p></li><li class="listitem"><p>
- <code class="constant">_S_Mutex</code>
- </p><p>
-The _Sp_counted_base specialization for this policy contains a mutex,
-which is locked in add_ref_lock(). This policy is used when GCC's atomic
-builtins aren't available so explicit memory barriers are needed in places.
- </p></li><li class="listitem"><p>
- <code class="constant">_S_Single</code>
- </p><p>
-This policy uses a non-reentrant add_ref_lock() with no locking. It is
-used when libstdc++ is built without <code class="literal">--enable-threads</code>.
- </p></li></ol></div><p>
- For all three policies, reference count increments and
- decrements are done via the functions in
- <code class="filename">ext/atomicity.h</code>, which detect if the program
- is multi-threaded. If only one thread of execution exists in
- the program then less expensive non-atomic operations are used.
- </p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="idp15556704"></a>Related functions and classes</h5></div></div></div><div class="variablelist"><dl class="variablelist"><dt><span class="term"><code class="code">dynamic_pointer_cast</code>, <code class="code">static_pointer_cast</code>,
-<code class="code">const_pointer_cast</code></span></dt><dd><p>
-As noted in N2351, these functions can be implemented non-intrusively using
-the alias constructor. However the aliasing constructor is only available
-in C++11 mode, so in TR1 mode these casts rely on three non-standard
-constructors in shared_ptr and __shared_ptr.
-In C++11 mode these constructors and the related tag types are not needed.
- </p></dd><dt><span class="term"><code class="code">enable_shared_from_this</code></span></dt><dd><p>
-The clever overload to detect a base class of type
-<code class="code">enable_shared_from_this</code> comes straight from Boost.
-There is an extra overload for <code class="code">__enable_shared_from_this</code> to
-work smoothly with <code class="code">__shared_ptr&lt;Tp, Lp&gt;</code> using any lock
-policy.
- </p></dd><dt><span class="term"><code class="code">make_shared</code>, <code class="code">allocate_shared</code></span></dt><dd><p>
-<code class="code">make_shared</code> simply forwards to <code class="code">allocate_shared</code>
-with <code class="code">std::allocator</code> as the allocator.
-Although these functions can be implemented non-intrusively using the
-alias constructor, if they have access to the implementation then it is
-possible to save storage and reduce the number of heap allocations. The
-newly constructed object and the _Sp_counted_* can be allocated in a single
-block and the standard says implementations are "encouraged, but not required,"
-to do so. This implementation provides additional non-standard constructors
-(selected with the type <code class="code">_Sp_make_shared_tag</code>) which create an
-object of type <code class="code">_Sp_counted_ptr_inplace</code> to hold the new object.
-The returned <code class="code">shared_ptr&lt;A&gt;</code> needs to know the address of the
-new <code class="code">A</code> object embedded in the <code class="code">_Sp_counted_ptr_inplace</code>,
-but it has no way to access it.
-This implementation uses a "covert channel" to return the address of the
-embedded object when <code class="code">get_deleter&lt;_Sp_make_shared_tag&gt;()</code>
-is called. Users should not try to use this.
-As well as the extra constructors, this implementation also needs some
-members of _Sp_counted_deleter to be protected where they could otherwise
-be private.
- </p></dd></dl></div></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="shared_ptr.using"></a>Use</h4></div></div></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="idp15573056"></a>Examples</h5></div></div></div><p>
- Examples of use can be found in the testsuite, under
- <code class="filename">testsuite/tr1/2_general_utilities/shared_ptr</code>,
- <code class="filename">testsuite/20_util/shared_ptr</code>
- and
- <code class="filename">testsuite/20_util/weak_ptr</code>.
- </p></div><div class="section"><div class="titlepage"><div><div><h5 class="title"><a id="idp15576640"></a>Unresolved Issues</h5></div></div></div><p>
- The <span class="emphasis"><em><code class="classname">shared_ptr</code> atomic access</em></span>
- clause in the C++11 standard is not implemented in GCC.
- </p><p>
- The <span class="type">_S_single</span> policy uses atomics when used in MT
- code, because it uses the same dispatcher functions that check
- <code class="function">__gthread_active_p()</code>. This could be
- addressed by providing template specialisations for some members
- of <code class="classname">_Sp_counted_base&lt;_S_single&gt;</code>.
- </p><p>
- Unlike Boost, this implementation does not use separate classes
- for the pointer+deleter and pointer+deleter+allocator cases in
- C++11 mode, combining both into _Sp_counted_deleter and using
- <code class="classname">allocator</code> when the user doesn't specify
- an allocator. If it was found to be beneficial an additional
- class could easily be added. With the current implementation,
- the _Sp_counted_deleter and __shared_count constructors taking a
- custom deleter but no allocator are technically redundant and
- could be removed, changing callers to always specify an
- allocator. If a separate pointer+deleter class was added the
- __shared_count constructor would be needed, so it has been kept
- for now.
- </p><p>
- The hack used to get the address of the managed object from
- <code class="function">_Sp_counted_ptr_inplace::_M_get_deleter()</code>
- is accessible to users. This could be prevented if
- <code class="function">get_deleter&lt;_Sp_make_shared_tag&gt;()</code>
- always returned NULL, since the hack only needs to work at a
- lower level, not in the public API. This wouldn't be difficult,
- but hasn't been done since there is no danger of accidental
- misuse: users already know they are relying on unsupported
- features if they refer to implementation details such as
- _Sp_make_shared_tag.
- </p><p>
- tr1::_Sp_deleter could be a private member of tr1::__shared_count but it
- would alter the ABI.
- </p></div></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a id="shared_ptr.ack"></a>Acknowledgments</h4></div></div></div><p>
- The original authors of the Boost shared_ptr, which is really nice
- code to work with, Peter Dimov in particular for his help and
- invaluable advice on thread safety. Phillip Jordan and Paolo
- Carlini for the lock policy implementation.
- </p></div><div class="bibliography"><div class="titlepage"><div><div><h4 class="title"><a id="shared_ptr.biblio"></a>Bibliography</h4></div></div></div><div class="biblioentry"><a id="idp15587936"></a><p><span class="title"><em>
- <a class="link" href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2351.htm" target="_top">
- Improving shared_ptr for C++0x, Revision 2
- </a>
- </em>. </span><span class="subtitle">
- N2351
- . </span></p></div><div class="biblioentry"><a id="idp15590224"></a><p><span class="title"><em>
- <a class="link" href="http://open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2456.html" target="_top">
- C++ Standard Library Active Issues List
- </a>
- </em>. </span><span class="subtitle">
- N2456
- . </span></p></div><div class="biblioentry"><a id="idp15592512"></a><p><span class="title"><em>
- <a class="link" href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2461.pdf" target="_top">
- Working Draft, Standard for Programming Language C++
- </a>
- </em>. </span><span class="subtitle">
- N2461
- . </span></p></div><div class="biblioentry"><a id="idp15594816"></a><p><span class="title"><em>
- <a class="link" href="http://boost.org/libs/smart_ptr/shared_ptr.htm" target="_top">
- Boost C++ Libraries documentation, shared_ptr
- </a>
- </em>. </span><span class="subtitle">
- N2461
- . </span></p></div></div></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="pairs.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="utilities.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="traits.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Pairs </td><td width="20%" align="center"><a accesskey="h" href="../index.html">Home</a></td><td width="40%" align="right" valign="top"> Traits</td></tr></table></div></body></html> \ No newline at end of file