aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/libgo/runtime/proc.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/libgo/runtime/proc.c')
-rw-r--r--gcc-4.8.1/libgo/runtime/proc.c1815
1 files changed, 0 insertions, 1815 deletions
diff --git a/gcc-4.8.1/libgo/runtime/proc.c b/gcc-4.8.1/libgo/runtime/proc.c
deleted file mode 100644
index 9b563a509..000000000
--- a/gcc-4.8.1/libgo/runtime/proc.c
+++ /dev/null
@@ -1,1815 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-#include <limits.h>
-#include <signal.h>
-#include <stdlib.h>
-#include <pthread.h>
-#include <unistd.h>
-
-#include "config.h"
-
-#ifdef HAVE_DL_ITERATE_PHDR
-#include <link.h>
-#endif
-
-#include "runtime.h"
-#include "arch.h"
-#include "defs.h"
-#include "malloc.h"
-#include "race.h"
-#include "go-type.h"
-#include "go-defer.h"
-
-#ifdef USING_SPLIT_STACK
-
-/* FIXME: These are not declared anywhere. */
-
-extern void __splitstack_getcontext(void *context[10]);
-
-extern void __splitstack_setcontext(void *context[10]);
-
-extern void *__splitstack_makecontext(size_t, void *context[10], size_t *);
-
-extern void * __splitstack_resetcontext(void *context[10], size_t *);
-
-extern void *__splitstack_find(void *, void *, size_t *, void **, void **,
- void **);
-
-extern void __splitstack_block_signals (int *, int *);
-
-extern void __splitstack_block_signals_context (void *context[10], int *,
- int *);
-
-#endif
-
-#ifndef PTHREAD_STACK_MIN
-# define PTHREAD_STACK_MIN 8192
-#endif
-
-#if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK)
-# define StackMin PTHREAD_STACK_MIN
-#else
-# define StackMin 2 * 1024 * 1024
-#endif
-
-uintptr runtime_stacks_sys;
-
-static void schedule(G*);
-
-static void gtraceback(G*);
-
-typedef struct Sched Sched;
-
-M runtime_m0;
-G runtime_g0; // idle goroutine for m0
-
-#ifdef __rtems__
-#define __thread
-#endif
-
-static __thread G *g;
-static __thread M *m;
-
-#ifndef SETCONTEXT_CLOBBERS_TLS
-
-static inline void
-initcontext(void)
-{
-}
-
-static inline void
-fixcontext(ucontext_t *c __attribute__ ((unused)))
-{
-}
-
-#else
-
-# if defined(__x86_64__) && defined(__sun__)
-
-// x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs
-// register to that of the thread which called getcontext. The effect
-// is that the address of all __thread variables changes. This bug
-// also affects pthread_self() and pthread_getspecific. We work
-// around it by clobbering the context field directly to keep %fs the
-// same.
-
-static __thread greg_t fs;
-
-static inline void
-initcontext(void)
-{
- ucontext_t c;
-
- getcontext(&c);
- fs = c.uc_mcontext.gregs[REG_FSBASE];
-}
-
-static inline void
-fixcontext(ucontext_t* c)
-{
- c->uc_mcontext.gregs[REG_FSBASE] = fs;
-}
-
-# elif defined(__NetBSD__)
-
-// NetBSD has a bug: setcontext clobbers tlsbase, we need to save
-// and restore it ourselves.
-
-static __thread __greg_t tlsbase;
-
-static inline void
-initcontext(void)
-{
- ucontext_t c;
-
- getcontext(&c);
- tlsbase = c.uc_mcontext._mc_tlsbase;
-}
-
-static inline void
-fixcontext(ucontext_t* c)
-{
- c->uc_mcontext._mc_tlsbase = tlsbase;
-}
-
-# else
-
-# error unknown case for SETCONTEXT_CLOBBERS_TLS
-
-# endif
-
-#endif
-
-// We can not always refer to the TLS variables directly. The
-// compiler will call tls_get_addr to get the address of the variable,
-// and it may hold it in a register across a call to schedule. When
-// we get back from the call we may be running in a different thread,
-// in which case the register now points to the TLS variable for a
-// different thread. We use non-inlinable functions to avoid this
-// when necessary.
-
-G* runtime_g(void) __attribute__ ((noinline, no_split_stack));
-
-G*
-runtime_g(void)
-{
- return g;
-}
-
-M* runtime_m(void) __attribute__ ((noinline, no_split_stack));
-
-M*
-runtime_m(void)
-{
- return m;
-}
-
-int32 runtime_gcwaiting;
-
-G* runtime_allg;
-G* runtime_lastg;
-M* runtime_allm;
-
-int8* runtime_goos;
-int32 runtime_ncpu;
-
-// The static TLS size. See runtime_newm.
-static int tlssize;
-
-#ifdef HAVE_DL_ITERATE_PHDR
-
-// Called via dl_iterate_phdr.
-
-static int
-addtls(struct dl_phdr_info* info, size_t size __attribute__ ((unused)), void *data)
-{
- size_t *total = (size_t *)data;
- unsigned int i;
-
- for(i = 0; i < info->dlpi_phnum; ++i) {
- if(info->dlpi_phdr[i].p_type == PT_TLS)
- *total += info->dlpi_phdr[i].p_memsz;
- }
- return 0;
-}
-
-// Set the total TLS size.
-
-static void
-inittlssize()
-{
- size_t total = 0;
-
- dl_iterate_phdr(addtls, (void *)&total);
- tlssize = total;
-}
-
-#else
-
-static void
-inittlssize()
-{
-}
-
-#endif
-
-// Go scheduler
-//
-// The go scheduler's job is to match ready-to-run goroutines (`g's)
-// with waiting-for-work schedulers (`m's). If there are ready g's
-// and no waiting m's, ready() will start a new m running in a new
-// OS thread, so that all ready g's can run simultaneously, up to a limit.
-// For now, m's never go away.
-//
-// By default, Go keeps only one kernel thread (m) running user code
-// at a single time; other threads may be blocked in the operating system.
-// Setting the environment variable $GOMAXPROCS or calling
-// runtime.GOMAXPROCS() will change the number of user threads
-// allowed to execute simultaneously. $GOMAXPROCS is thus an
-// approximation of the maximum number of cores to use.
-//
-// Even a program that can run without deadlock in a single process
-// might use more m's if given the chance. For example, the prime
-// sieve will use as many m's as there are primes (up to runtime_sched.mmax),
-// allowing different stages of the pipeline to execute in parallel.
-// We could revisit this choice, only kicking off new m's for blocking
-// system calls, but that would limit the amount of parallel computation
-// that go would try to do.
-//
-// In general, one could imagine all sorts of refinements to the
-// scheduler, but the goal now is just to get something working on
-// Linux and OS X.
-
-struct Sched {
- Lock;
-
- G *gfree; // available g's (status == Gdead)
- int64 goidgen;
-
- G *ghead; // g's waiting to run
- G *gtail;
- int32 gwait; // number of g's waiting to run
- int32 gcount; // number of g's that are alive
- int32 grunning; // number of g's running on cpu or in syscall
-
- M *mhead; // m's waiting for work
- int32 mwait; // number of m's waiting for work
- int32 mcount; // number of m's that have been created
-
- volatile uint32 atomic; // atomic scheduling word (see below)
-
- int32 profilehz; // cpu profiling rate
-
- bool init; // running initialization
- bool lockmain; // init called runtime.LockOSThread
-
- Note stopped; // one g can set waitstop and wait here for m's to stop
-};
-
-// The atomic word in sched is an atomic uint32 that
-// holds these fields.
-//
-// [15 bits] mcpu number of m's executing on cpu
-// [15 bits] mcpumax max number of m's allowed on cpu
-// [1 bit] waitstop some g is waiting on stopped
-// [1 bit] gwaiting gwait != 0
-//
-// These fields are the information needed by entersyscall
-// and exitsyscall to decide whether to coordinate with the
-// scheduler. Packing them into a single machine word lets
-// them use a fast path with a single atomic read/write and
-// no lock/unlock. This greatly reduces contention in
-// syscall- or cgo-heavy multithreaded programs.
-//
-// Except for entersyscall and exitsyscall, the manipulations
-// to these fields only happen while holding the schedlock,
-// so the routines holding schedlock only need to worry about
-// what entersyscall and exitsyscall do, not the other routines
-// (which also use the schedlock).
-//
-// In particular, entersyscall and exitsyscall only read mcpumax,
-// waitstop, and gwaiting. They never write them. Thus, writes to those
-// fields can be done (holding schedlock) without fear of write conflicts.
-// There may still be logic conflicts: for example, the set of waitstop must
-// be conditioned on mcpu >= mcpumax or else the wait may be a
-// spurious sleep. The Promela model in proc.p verifies these accesses.
-enum {
- mcpuWidth = 15,
- mcpuMask = (1<<mcpuWidth) - 1,
- mcpuShift = 0,
- mcpumaxShift = mcpuShift + mcpuWidth,
- waitstopShift = mcpumaxShift + mcpuWidth,
- gwaitingShift = waitstopShift+1,
-
- // The max value of GOMAXPROCS is constrained
- // by the max value we can store in the bit fields
- // of the atomic word. Reserve a few high values
- // so that we can detect accidental decrement
- // beyond zero.
- maxgomaxprocs = mcpuMask - 10,
-};
-
-#define atomic_mcpu(v) (((v)>>mcpuShift)&mcpuMask)
-#define atomic_mcpumax(v) (((v)>>mcpumaxShift)&mcpuMask)
-#define atomic_waitstop(v) (((v)>>waitstopShift)&1)
-#define atomic_gwaiting(v) (((v)>>gwaitingShift)&1)
-
-Sched runtime_sched;
-int32 runtime_gomaxprocs;
-bool runtime_singleproc;
-
-static bool canaddmcpu(void);
-
-// An m that is waiting for notewakeup(&m->havenextg). This may
-// only be accessed while the scheduler lock is held. This is used to
-// minimize the number of times we call notewakeup while the scheduler
-// lock is held, since the m will normally move quickly to lock the
-// scheduler itself, producing lock contention.
-static M* mwakeup;
-
-// Scheduling helpers. Sched must be locked.
-static void gput(G*); // put/get on ghead/gtail
-static G* gget(void);
-static void mput(M*); // put/get on mhead
-static M* mget(G*);
-static void gfput(G*); // put/get on gfree
-static G* gfget(void);
-static void matchmg(void); // match m's to g's
-static void readylocked(G*); // ready, but sched is locked
-static void mnextg(M*, G*);
-static void mcommoninit(M*);
-
-void
-setmcpumax(uint32 n)
-{
- uint32 v, w;
-
- for(;;) {
- v = runtime_sched.atomic;
- w = v;
- w &= ~(mcpuMask<<mcpumaxShift);
- w |= n<<mcpumaxShift;
- if(runtime_cas(&runtime_sched.atomic, v, w))
- break;
- }
-}
-
-// First function run by a new goroutine. This replaces gogocall.
-static void
-kickoff(void)
-{
- void (*fn)(void*);
-
- if(g->traceback != nil)
- gtraceback(g);
-
- fn = (void (*)(void*))(g->entry);
- fn(g->param);
- runtime_goexit();
-}
-
-// Switch context to a different goroutine. This is like longjmp.
-static void runtime_gogo(G*) __attribute__ ((noinline));
-static void
-runtime_gogo(G* newg)
-{
-#ifdef USING_SPLIT_STACK
- __splitstack_setcontext(&newg->stack_context[0]);
-#endif
- g = newg;
- newg->fromgogo = true;
- fixcontext(&newg->context);
- setcontext(&newg->context);
- runtime_throw("gogo setcontext returned");
-}
-
-// Save context and call fn passing g as a parameter. This is like
-// setjmp. Because getcontext always returns 0, unlike setjmp, we use
-// g->fromgogo as a code. It will be true if we got here via
-// setcontext. g == nil the first time this is called in a new m.
-static void runtime_mcall(void (*)(G*)) __attribute__ ((noinline));
-static void
-runtime_mcall(void (*pfn)(G*))
-{
- M *mp;
- G *gp;
-#ifndef USING_SPLIT_STACK
- int i;
-#endif
-
- // Ensure that all registers are on the stack for the garbage
- // collector.
- __builtin_unwind_init();
-
- mp = m;
- gp = g;
- if(gp == mp->g0)
- runtime_throw("runtime: mcall called on m->g0 stack");
-
- if(gp != nil) {
-
-#ifdef USING_SPLIT_STACK
- __splitstack_getcontext(&g->stack_context[0]);
-#else
- gp->gcnext_sp = &i;
-#endif
- gp->fromgogo = false;
- getcontext(&gp->context);
-
- // When we return from getcontext, we may be running
- // in a new thread. That means that m and g may have
- // changed. They are global variables so we will
- // reload them, but the addresses of m and g may be
- // cached in our local stack frame, and those
- // addresses may be wrong. Call functions to reload
- // the values for this thread.
- mp = runtime_m();
- gp = runtime_g();
-
- if(gp->traceback != nil)
- gtraceback(gp);
- }
- if (gp == nil || !gp->fromgogo) {
-#ifdef USING_SPLIT_STACK
- __splitstack_setcontext(&mp->g0->stack_context[0]);
-#endif
- mp->g0->entry = (byte*)pfn;
- mp->g0->param = gp;
-
- // It's OK to set g directly here because this case
- // can not occur if we got here via a setcontext to
- // the getcontext call just above.
- g = mp->g0;
-
- fixcontext(&mp->g0->context);
- setcontext(&mp->g0->context);
- runtime_throw("runtime: mcall function returned");
- }
-}
-
-// Keep trace of scavenger's goroutine for deadlock detection.
-static G *scvg;
-
-// The bootstrap sequence is:
-//
-// call osinit
-// call schedinit
-// make & queue new G
-// call runtime_mstart
-//
-// The new G calls runtime_main.
-void
-runtime_schedinit(void)
-{
- int32 n;
- const byte *p;
-
- m = &runtime_m0;
- g = &runtime_g0;
- m->g0 = g;
- m->curg = g;
- g->m = m;
-
- initcontext();
- inittlssize();
-
- m->nomemprof++;
- runtime_mallocinit();
- mcommoninit(m);
-
- runtime_goargs();
- runtime_goenvs();
-
- // For debugging:
- // Allocate internal symbol table representation now,
- // so that we don't need to call malloc when we crash.
- // runtime_findfunc(0);
-
- runtime_gomaxprocs = 1;
- p = runtime_getenv("GOMAXPROCS");
- if(p != nil && (n = runtime_atoi(p)) != 0) {
- if(n > maxgomaxprocs)
- n = maxgomaxprocs;
- runtime_gomaxprocs = n;
- }
- // wait for the main goroutine to start before taking
- // GOMAXPROCS into account.
- setmcpumax(1);
- runtime_singleproc = runtime_gomaxprocs == 1;
-
- canaddmcpu(); // mcpu++ to account for bootstrap m
- m->helpgc = 1; // flag to tell schedule() to mcpu--
- runtime_sched.grunning++;
-
- // Can not enable GC until all roots are registered.
- // mstats.enablegc = 1;
- m->nomemprof--;
-
- if(raceenabled)
- runtime_raceinit();
-}
-
-extern void main_init(void) __asm__ (GOSYM_PREFIX "__go_init_main");
-extern void main_main(void) __asm__ (GOSYM_PREFIX "main.main");
-
-// The main goroutine.
-void
-runtime_main(void)
-{
- // Lock the main goroutine onto this, the main OS thread,
- // during initialization. Most programs won't care, but a few
- // do require certain calls to be made by the main thread.
- // Those can arrange for main.main to run in the main thread
- // by calling runtime.LockOSThread during initialization
- // to preserve the lock.
- runtime_LockOSThread();
- // From now on, newgoroutines may use non-main threads.
- setmcpumax(runtime_gomaxprocs);
- runtime_sched.init = true;
- scvg = __go_go(runtime_MHeap_Scavenger, nil);
- scvg->issystem = true;
- main_init();
- runtime_sched.init = false;
- if(!runtime_sched.lockmain)
- runtime_UnlockOSThread();
-
- // For gccgo we have to wait until after main is initialized
- // to enable GC, because initializing main registers the GC
- // roots.
- mstats.enablegc = 1;
-
- // The deadlock detection has false negatives.
- // Let scvg start up, to eliminate the false negative
- // for the trivial program func main() { select{} }.
- runtime_gosched();
-
- main_main();
- if(raceenabled)
- runtime_racefini();
- runtime_exit(0);
- for(;;)
- *(int32*)0 = 0;
-}
-
-// Lock the scheduler.
-static void
-schedlock(void)
-{
- runtime_lock(&runtime_sched);
-}
-
-// Unlock the scheduler.
-static void
-schedunlock(void)
-{
- M *mp;
-
- mp = mwakeup;
- mwakeup = nil;
- runtime_unlock(&runtime_sched);
- if(mp != nil)
- runtime_notewakeup(&mp->havenextg);
-}
-
-void
-runtime_goexit(void)
-{
- g->status = Gmoribund;
- runtime_gosched();
-}
-
-void
-runtime_goroutineheader(G *gp)
-{
- const char *status;
-
- switch(gp->status) {
- case Gidle:
- status = "idle";
- break;
- case Grunnable:
- status = "runnable";
- break;
- case Grunning:
- status = "running";
- break;
- case Gsyscall:
- status = "syscall";
- break;
- case Gwaiting:
- if(gp->waitreason)
- status = gp->waitreason;
- else
- status = "waiting";
- break;
- case Gmoribund:
- status = "moribund";
- break;
- default:
- status = "???";
- break;
- }
- runtime_printf("goroutine %D [%s]:\n", gp->goid, status);
-}
-
-void
-runtime_goroutinetrailer(G *g)
-{
- if(g != nil && g->gopc != 0 && g->goid != 1) {
- String fn;
- String file;
- intgo line;
-
- if(__go_file_line(g->gopc - 1, &fn, &file, &line)) {
- runtime_printf("created by %S\n", fn);
- runtime_printf("\t%S:%D\n", file, (int64) line);
- }
- }
-}
-
-struct Traceback
-{
- G* gp;
- Location locbuf[100];
- int32 c;
-};
-
-void
-runtime_tracebackothers(G * volatile me)
-{
- G * volatile gp;
- Traceback tb;
- int32 traceback;
-
- tb.gp = me;
- traceback = runtime_gotraceback();
- for(gp = runtime_allg; gp != nil; gp = gp->alllink) {
- if(gp == me || gp->status == Gdead)
- continue;
- if(gp->issystem && traceback < 2)
- continue;
- runtime_printf("\n");
- runtime_goroutineheader(gp);
-
- // Our only mechanism for doing a stack trace is
- // _Unwind_Backtrace. And that only works for the
- // current thread, not for other random goroutines.
- // So we need to switch context to the goroutine, get
- // the backtrace, and then switch back.
-
- // This means that if g is running or in a syscall, we
- // can't reliably print a stack trace. FIXME.
- if(gp->status == Gsyscall || gp->status == Grunning) {
- runtime_printf("no stack trace available\n");
- runtime_goroutinetrailer(gp);
- continue;
- }
-
- gp->traceback = &tb;
-
-#ifdef USING_SPLIT_STACK
- __splitstack_getcontext(&me->stack_context[0]);
-#endif
- getcontext(&me->context);
-
- if(gp->traceback != nil) {
- runtime_gogo(gp);
- }
-
- runtime_printtrace(tb.locbuf, tb.c, false);
- runtime_goroutinetrailer(gp);
- }
-}
-
-// Do a stack trace of gp, and then restore the context to
-// gp->dotraceback.
-
-static void
-gtraceback(G* gp)
-{
- Traceback* traceback;
-
- traceback = gp->traceback;
- gp->traceback = nil;
- traceback->c = runtime_callers(1, traceback->locbuf,
- sizeof traceback->locbuf / sizeof traceback->locbuf[0]);
- runtime_gogo(traceback->gp);
-}
-
-// Mark this g as m's idle goroutine.
-// This functionality might be used in environments where programs
-// are limited to a single thread, to simulate a select-driven
-// network server. It is not exposed via the standard runtime API.
-void
-runtime_idlegoroutine(void)
-{
- if(g->idlem != nil)
- runtime_throw("g is already an idle goroutine");
- g->idlem = m;
-}
-
-static void
-mcommoninit(M *mp)
-{
- mp->id = runtime_sched.mcount++;
- mp->fastrand = 0x49f6428aUL + mp->id + runtime_cputicks();
-
- if(mp->mcache == nil)
- mp->mcache = runtime_allocmcache();
-
- runtime_callers(1, mp->createstack, nelem(mp->createstack));
-
- // Add to runtime_allm so garbage collector doesn't free m
- // when it is just in a register or thread-local storage.
- mp->alllink = runtime_allm;
- // runtime_NumCgoCall() iterates over allm w/o schedlock,
- // so we need to publish it safely.
- runtime_atomicstorep(&runtime_allm, mp);
-}
-
-// Try to increment mcpu. Report whether succeeded.
-static bool
-canaddmcpu(void)
-{
- uint32 v;
-
- for(;;) {
- v = runtime_sched.atomic;
- if(atomic_mcpu(v) >= atomic_mcpumax(v))
- return 0;
- if(runtime_cas(&runtime_sched.atomic, v, v+(1<<mcpuShift)))
- return 1;
- }
-}
-
-// Put on `g' queue. Sched must be locked.
-static void
-gput(G *gp)
-{
- M *mp;
-
- // If g is wired, hand it off directly.
- if((mp = gp->lockedm) != nil && canaddmcpu()) {
- mnextg(mp, gp);
- return;
- }
-
- // If g is the idle goroutine for an m, hand it off.
- if(gp->idlem != nil) {
- if(gp->idlem->idleg != nil) {
- runtime_printf("m%d idle out of sync: g%D g%D\n",
- gp->idlem->id,
- gp->idlem->idleg->goid, gp->goid);
- runtime_throw("runtime: double idle");
- }
- gp->idlem->idleg = gp;
- return;
- }
-
- gp->schedlink = nil;
- if(runtime_sched.ghead == nil)
- runtime_sched.ghead = gp;
- else
- runtime_sched.gtail->schedlink = gp;
- runtime_sched.gtail = gp;
-
- // increment gwait.
- // if it transitions to nonzero, set atomic gwaiting bit.
- if(runtime_sched.gwait++ == 0)
- runtime_xadd(&runtime_sched.atomic, 1<<gwaitingShift);
-}
-
-// Report whether gget would return something.
-static bool
-haveg(void)
-{
- return runtime_sched.ghead != nil || m->idleg != nil;
-}
-
-// Get from `g' queue. Sched must be locked.
-static G*
-gget(void)
-{
- G *gp;
-
- gp = runtime_sched.ghead;
- if(gp) {
- runtime_sched.ghead = gp->schedlink;
- if(runtime_sched.ghead == nil)
- runtime_sched.gtail = nil;
- // decrement gwait.
- // if it transitions to zero, clear atomic gwaiting bit.
- if(--runtime_sched.gwait == 0)
- runtime_xadd(&runtime_sched.atomic, -1<<gwaitingShift);
- } else if(m->idleg != nil) {
- gp = m->idleg;
- m->idleg = nil;
- }
- return gp;
-}
-
-// Put on `m' list. Sched must be locked.
-static void
-mput(M *mp)
-{
- mp->schedlink = runtime_sched.mhead;
- runtime_sched.mhead = mp;
- runtime_sched.mwait++;
-}
-
-// Get an `m' to run `g'. Sched must be locked.
-static M*
-mget(G *gp)
-{
- M *mp;
-
- // if g has its own m, use it.
- if(gp && (mp = gp->lockedm) != nil)
- return mp;
-
- // otherwise use general m pool.
- if((mp = runtime_sched.mhead) != nil) {
- runtime_sched.mhead = mp->schedlink;
- runtime_sched.mwait--;
- }
- return mp;
-}
-
-// Mark g ready to run.
-void
-runtime_ready(G *gp)
-{
- schedlock();
- readylocked(gp);
- schedunlock();
-}
-
-// Mark g ready to run. Sched is already locked.
-// G might be running already and about to stop.
-// The sched lock protects g->status from changing underfoot.
-static void
-readylocked(G *gp)
-{
- if(gp->m) {
- // Running on another machine.
- // Ready it when it stops.
- gp->readyonstop = 1;
- return;
- }
-
- // Mark runnable.
- if(gp->status == Grunnable || gp->status == Grunning) {
- runtime_printf("goroutine %D has status %d\n", gp->goid, gp->status);
- runtime_throw("bad g->status in ready");
- }
- gp->status = Grunnable;
-
- gput(gp);
- matchmg();
-}
-
-// Same as readylocked but a different symbol so that
-// debuggers can set a breakpoint here and catch all
-// new goroutines.
-static void
-newprocreadylocked(G *gp)
-{
- readylocked(gp);
-}
-
-// Pass g to m for running.
-// Caller has already incremented mcpu.
-static void
-mnextg(M *mp, G *gp)
-{
- runtime_sched.grunning++;
- mp->nextg = gp;
- if(mp->waitnextg) {
- mp->waitnextg = 0;
- if(mwakeup != nil)
- runtime_notewakeup(&mwakeup->havenextg);
- mwakeup = mp;
- }
-}
-
-// Get the next goroutine that m should run.
-// Sched must be locked on entry, is unlocked on exit.
-// Makes sure that at most $GOMAXPROCS g's are
-// running on cpus (not in system calls) at any given time.
-static G*
-nextgandunlock(void)
-{
- G *gp;
- uint32 v;
-
-top:
- if(atomic_mcpu(runtime_sched.atomic) >= maxgomaxprocs)
- runtime_throw("negative mcpu");
-
- // If there is a g waiting as m->nextg, the mcpu++
- // happened before it was passed to mnextg.
- if(m->nextg != nil) {
- gp = m->nextg;
- m->nextg = nil;
- schedunlock();
- return gp;
- }
-
- if(m->lockedg != nil) {
- // We can only run one g, and it's not available.
- // Make sure some other cpu is running to handle
- // the ordinary run queue.
- if(runtime_sched.gwait != 0) {
- matchmg();
- // m->lockedg might have been on the queue.
- if(m->nextg != nil) {
- gp = m->nextg;
- m->nextg = nil;
- schedunlock();
- return gp;
- }
- }
- } else {
- // Look for work on global queue.
- while(haveg() && canaddmcpu()) {
- gp = gget();
- if(gp == nil)
- runtime_throw("gget inconsistency");
-
- if(gp->lockedm) {
- mnextg(gp->lockedm, gp);
- continue;
- }
- runtime_sched.grunning++;
- schedunlock();
- return gp;
- }
-
- // The while loop ended either because the g queue is empty
- // or because we have maxed out our m procs running go
- // code (mcpu >= mcpumax). We need to check that
- // concurrent actions by entersyscall/exitsyscall cannot
- // invalidate the decision to end the loop.
- //
- // We hold the sched lock, so no one else is manipulating the
- // g queue or changing mcpumax. Entersyscall can decrement
- // mcpu, but if does so when there is something on the g queue,
- // the gwait bit will be set, so entersyscall will take the slow path
- // and use the sched lock. So it cannot invalidate our decision.
- //
- // Wait on global m queue.
- mput(m);
- }
-
- // Look for deadlock situation.
- // There is a race with the scavenger that causes false negatives:
- // if the scavenger is just starting, then we have
- // scvg != nil && grunning == 0 && gwait == 0
- // and we do not detect a deadlock. It is possible that we should
- // add that case to the if statement here, but it is too close to Go 1
- // to make such a subtle change. Instead, we work around the
- // false negative in trivial programs by calling runtime.gosched
- // from the main goroutine just before main.main.
- // See runtime_main above.
- //
- // On a related note, it is also possible that the scvg == nil case is
- // wrong and should include gwait, but that does not happen in
- // standard Go programs, which all start the scavenger.
- //
- if((scvg == nil && runtime_sched.grunning == 0) ||
- (scvg != nil && runtime_sched.grunning == 1 && runtime_sched.gwait == 0 &&
- (scvg->status == Grunning || scvg->status == Gsyscall))) {
- m->throwing = -1; // do not dump full stacks
- runtime_throw("all goroutines are asleep - deadlock!");
- }
-
- m->nextg = nil;
- m->waitnextg = 1;
- runtime_noteclear(&m->havenextg);
-
- // Stoptheworld is waiting for all but its cpu to go to stop.
- // Entersyscall might have decremented mcpu too, but if so
- // it will see the waitstop and take the slow path.
- // Exitsyscall never increments mcpu beyond mcpumax.
- v = runtime_atomicload(&runtime_sched.atomic);
- if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) {
- // set waitstop = 0 (known to be 1)
- runtime_xadd(&runtime_sched.atomic, -1<<waitstopShift);
- runtime_notewakeup(&runtime_sched.stopped);
- }
- schedunlock();
-
- runtime_notesleep(&m->havenextg);
- if(m->helpgc) {
- runtime_gchelper();
- m->helpgc = 0;
- runtime_lock(&runtime_sched);
- goto top;
- }
- if((gp = m->nextg) == nil)
- runtime_throw("bad m->nextg in nextgoroutine");
- m->nextg = nil;
- return gp;
-}
-
-int32
-runtime_gcprocs(void)
-{
- int32 n;
-
- // Figure out how many CPUs to use during GC.
- // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
- n = runtime_gomaxprocs;
- if(n > runtime_ncpu)
- n = runtime_ncpu > 0 ? runtime_ncpu : 1;
- if(n > MaxGcproc)
- n = MaxGcproc;
- if(n > runtime_sched.mwait+1) // one M is currently running
- n = runtime_sched.mwait+1;
- return n;
-}
-
-void
-runtime_helpgc(int32 nproc)
-{
- M *mp;
- int32 n;
-
- runtime_lock(&runtime_sched);
- for(n = 1; n < nproc; n++) { // one M is currently running
- mp = mget(nil);
- if(mp == nil)
- runtime_throw("runtime_gcprocs inconsistency");
- mp->helpgc = 1;
- mp->waitnextg = 0;
- runtime_notewakeup(&mp->havenextg);
- }
- runtime_unlock(&runtime_sched);
-}
-
-void
-runtime_stoptheworld(void)
-{
- uint32 v;
-
- schedlock();
- runtime_gcwaiting = 1;
-
- setmcpumax(1);
-
- // while mcpu > 1
- for(;;) {
- v = runtime_sched.atomic;
- if(atomic_mcpu(v) <= 1)
- break;
-
- // It would be unsafe for multiple threads to be using
- // the stopped note at once, but there is only
- // ever one thread doing garbage collection.
- runtime_noteclear(&runtime_sched.stopped);
- if(atomic_waitstop(v))
- runtime_throw("invalid waitstop");
-
- // atomic { waitstop = 1 }, predicated on mcpu <= 1 check above
- // still being true.
- if(!runtime_cas(&runtime_sched.atomic, v, v+(1<<waitstopShift)))
- continue;
-
- schedunlock();
- runtime_notesleep(&runtime_sched.stopped);
- schedlock();
- }
- runtime_singleproc = runtime_gomaxprocs == 1;
- schedunlock();
-}
-
-void
-runtime_starttheworld(void)
-{
- M *mp;
- int32 max;
-
- // Figure out how many CPUs GC could possibly use.
- max = runtime_gomaxprocs;
- if(max > runtime_ncpu)
- max = runtime_ncpu > 0 ? runtime_ncpu : 1;
- if(max > MaxGcproc)
- max = MaxGcproc;
-
- schedlock();
- runtime_gcwaiting = 0;
- setmcpumax(runtime_gomaxprocs);
- matchmg();
- if(runtime_gcprocs() < max && canaddmcpu()) {
- // If GC could have used another helper proc, start one now,
- // in the hope that it will be available next time.
- // It would have been even better to start it before the collection,
- // but doing so requires allocating memory, so it's tricky to
- // coordinate. This lazy approach works out in practice:
- // we don't mind if the first couple gc rounds don't have quite
- // the maximum number of procs.
- // canaddmcpu above did mcpu++
- // (necessary, because m will be doing various
- // initialization work so is definitely running),
- // but m is not running a specific goroutine,
- // so set the helpgc flag as a signal to m's
- // first schedule(nil) to mcpu-- and grunning--.
- mp = runtime_newm();
- mp->helpgc = 1;
- runtime_sched.grunning++;
- }
- schedunlock();
-}
-
-// Called to start an M.
-void*
-runtime_mstart(void* mp)
-{
- m = (M*)mp;
- g = m->g0;
-
- initcontext();
-
- g->entry = nil;
- g->param = nil;
-
- // Record top of stack for use by mcall.
- // Once we call schedule we're never coming back,
- // so other calls can reuse this stack space.
-#ifdef USING_SPLIT_STACK
- __splitstack_getcontext(&g->stack_context[0]);
-#else
- g->gcinitial_sp = &mp;
- // Setting gcstack_size to 0 is a marker meaning that gcinitial_sp
- // is the top of the stack, not the bottom.
- g->gcstack_size = 0;
- g->gcnext_sp = &mp;
-#endif
- getcontext(&g->context);
-
- if(g->entry != nil) {
- // Got here from mcall.
- void (*pfn)(G*) = (void (*)(G*))g->entry;
- G* gp = (G*)g->param;
- pfn(gp);
- *(int*)0x21 = 0x21;
- }
- runtime_minit();
-
-#ifdef USING_SPLIT_STACK
- {
- int dont_block_signals = 0;
- __splitstack_block_signals(&dont_block_signals, nil);
- }
-#endif
-
- // Install signal handlers; after minit so that minit can
- // prepare the thread to be able to handle the signals.
- if(m == &runtime_m0)
- runtime_initsig();
-
- schedule(nil);
-
- // TODO(brainman): This point is never reached, because scheduler
- // does not release os threads at the moment. But once this path
- // is enabled, we must remove our seh here.
-
- return nil;
-}
-
-typedef struct CgoThreadStart CgoThreadStart;
-struct CgoThreadStart
-{
- M *m;
- G *g;
- void (*fn)(void);
-};
-
-// Kick off new m's as needed (up to mcpumax).
-// Sched is locked.
-static void
-matchmg(void)
-{
- G *gp;
- M *mp;
-
- if(m->mallocing || m->gcing)
- return;
-
- while(haveg() && canaddmcpu()) {
- gp = gget();
- if(gp == nil)
- runtime_throw("gget inconsistency");
-
- // Find the m that will run gp.
- if((mp = mget(gp)) == nil)
- mp = runtime_newm();
- mnextg(mp, gp);
- }
-}
-
-// Create a new m. It will start off with a call to runtime_mstart.
-M*
-runtime_newm(void)
-{
- M *mp;
- pthread_attr_t attr;
- pthread_t tid;
- size_t stacksize;
- sigset_t clear;
- sigset_t old;
- int ret;
-
-#if 0
- static const Type *mtype; // The Go type M
- if(mtype == nil) {
- Eface e;
- runtime_gc_m_ptr(&e);
- mtype = ((const PtrType*)e.__type_descriptor)->__element_type;
- }
-#endif
-
- mp = runtime_mal(sizeof *mp);
- mcommoninit(mp);
- mp->g0 = runtime_malg(-1, nil, nil);
-
- if(pthread_attr_init(&attr) != 0)
- runtime_throw("pthread_attr_init");
- if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0)
- runtime_throw("pthread_attr_setdetachstate");
-
- stacksize = PTHREAD_STACK_MIN;
-
- // With glibc before version 2.16 the static TLS size is taken
- // out of the stack size, and we get an error or a crash if
- // there is not enough stack space left. Add it back in if we
- // can, in case the program uses a lot of TLS space. FIXME:
- // This can be disabled in glibc 2.16 and later, if the bug is
- // indeed fixed then.
- stacksize += tlssize;
-
- if(pthread_attr_setstacksize(&attr, stacksize) != 0)
- runtime_throw("pthread_attr_setstacksize");
-
- // Block signals during pthread_create so that the new thread
- // starts with signals disabled. It will enable them in minit.
- sigfillset(&clear);
-
-#ifdef SIGTRAP
- // Blocking SIGTRAP reportedly breaks gdb on Alpha GNU/Linux.
- sigdelset(&clear, SIGTRAP);
-#endif
-
- sigemptyset(&old);
- sigprocmask(SIG_BLOCK, &clear, &old);
- ret = pthread_create(&tid, &attr, runtime_mstart, mp);
- sigprocmask(SIG_SETMASK, &old, nil);
-
- if (ret != 0)
- runtime_throw("pthread_create");
-
- return mp;
-}
-
-// One round of scheduler: find a goroutine and run it.
-// The argument is the goroutine that was running before
-// schedule was called, or nil if this is the first call.
-// Never returns.
-static void
-schedule(G *gp)
-{
- int32 hz;
- uint32 v;
-
- schedlock();
- if(gp != nil) {
- // Just finished running gp.
- gp->m = nil;
- runtime_sched.grunning--;
-
- // atomic { mcpu-- }
- v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift);
- if(atomic_mcpu(v) > maxgomaxprocs)
- runtime_throw("negative mcpu in scheduler");
-
- switch(gp->status) {
- case Grunnable:
- case Gdead:
- // Shouldn't have been running!
- runtime_throw("bad gp->status in sched");
- case Grunning:
- gp->status = Grunnable;
- gput(gp);
- break;
- case Gmoribund:
- if(raceenabled)
- runtime_racegoend(gp->goid);
- gp->status = Gdead;
- if(gp->lockedm) {
- gp->lockedm = nil;
- m->lockedg = nil;
- }
- gp->idlem = nil;
- runtime_memclr(&gp->context, sizeof gp->context);
- gfput(gp);
- if(--runtime_sched.gcount == 0)
- runtime_exit(0);
- break;
- }
- if(gp->readyonstop) {
- gp->readyonstop = 0;
- readylocked(gp);
- }
- } else if(m->helpgc) {
- // Bootstrap m or new m started by starttheworld.
- // atomic { mcpu-- }
- v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift);
- if(atomic_mcpu(v) > maxgomaxprocs)
- runtime_throw("negative mcpu in scheduler");
- // Compensate for increment in starttheworld().
- runtime_sched.grunning--;
- m->helpgc = 0;
- } else if(m->nextg != nil) {
- // New m started by matchmg.
- } else {
- runtime_throw("invalid m state in scheduler");
- }
-
- // Find (or wait for) g to run. Unlocks runtime_sched.
- gp = nextgandunlock();
- gp->readyonstop = 0;
- gp->status = Grunning;
- m->curg = gp;
- gp->m = m;
-
- // Check whether the profiler needs to be turned on or off.
- hz = runtime_sched.profilehz;
- if(m->profilehz != hz)
- runtime_resetcpuprofiler(hz);
-
- runtime_gogo(gp);
-}
-
-// Enter scheduler. If g->status is Grunning,
-// re-queues g and runs everyone else who is waiting
-// before running g again. If g->status is Gmoribund,
-// kills off g.
-void
-runtime_gosched(void)
-{
- if(m->locks != 0)
- runtime_throw("gosched holding locks");
- if(g == m->g0)
- runtime_throw("gosched of g0");
- runtime_mcall(schedule);
-}
-
-// Puts the current goroutine into a waiting state and unlocks the lock.
-// The goroutine can be made runnable again by calling runtime_ready(gp).
-void
-runtime_park(void (*unlockf)(Lock*), Lock *lock, const char *reason)
-{
- g->status = Gwaiting;
- g->waitreason = reason;
- if(unlockf)
- unlockf(lock);
- runtime_gosched();
-}
-
-// The goroutine g is about to enter a system call.
-// Record that it's not using the cpu anymore.
-// This is called only from the go syscall library and cgocall,
-// not from the low-level system calls used by the runtime.
-//
-// Entersyscall cannot split the stack: the runtime_gosave must
-// make g->sched refer to the caller's stack segment, because
-// entersyscall is going to return immediately after.
-// It's okay to call matchmg and notewakeup even after
-// decrementing mcpu, because we haven't released the
-// sched lock yet, so the garbage collector cannot be running.
-
-void runtime_entersyscall(void) __attribute__ ((no_split_stack));
-
-void
-runtime_entersyscall(void)
-{
- uint32 v;
-
- if(m->profilehz > 0)
- runtime_setprof(false);
-
- // Leave SP around for gc and traceback.
-#ifdef USING_SPLIT_STACK
- g->gcstack = __splitstack_find(nil, nil, &g->gcstack_size,
- &g->gcnext_segment, &g->gcnext_sp,
- &g->gcinitial_sp);
-#else
- g->gcnext_sp = (byte *) &v;
-#endif
-
- // Save the registers in the g structure so that any pointers
- // held in registers will be seen by the garbage collector.
- getcontext(&g->gcregs);
-
- g->status = Gsyscall;
-
- // Fast path.
- // The slow path inside the schedlock/schedunlock will get
- // through without stopping if it does:
- // mcpu--
- // gwait not true
- // waitstop && mcpu <= mcpumax not true
- // If we can do the same with a single atomic add,
- // then we can skip the locks.
- v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift);
- if(!atomic_gwaiting(v) && (!atomic_waitstop(v) || atomic_mcpu(v) > atomic_mcpumax(v)))
- return;
-
- schedlock();
- v = runtime_atomicload(&runtime_sched.atomic);
- if(atomic_gwaiting(v)) {
- matchmg();
- v = runtime_atomicload(&runtime_sched.atomic);
- }
- if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) {
- runtime_xadd(&runtime_sched.atomic, -1<<waitstopShift);
- runtime_notewakeup(&runtime_sched.stopped);
- }
-
- schedunlock();
-}
-
-// The goroutine g exited its system call.
-// Arrange for it to run on a cpu again.
-// This is called only from the go syscall library, not
-// from the low-level system calls used by the runtime.
-void
-runtime_exitsyscall(void)
-{
- G *gp;
- uint32 v;
-
- // Fast path.
- // If we can do the mcpu++ bookkeeping and
- // find that we still have mcpu <= mcpumax, then we can
- // start executing Go code immediately, without having to
- // schedlock/schedunlock.
- // Also do fast return if any locks are held, so that
- // panic code can use syscalls to open a file.
- gp = g;
- v = runtime_xadd(&runtime_sched.atomic, (1<<mcpuShift));
- if((m->profilehz == runtime_sched.profilehz && atomic_mcpu(v) <= atomic_mcpumax(v)) || m->locks > 0) {
- // There's a cpu for us, so we can run.
- gp->status = Grunning;
- // Garbage collector isn't running (since we are),
- // so okay to clear gcstack.
-#ifdef USING_SPLIT_STACK
- gp->gcstack = nil;
-#endif
- gp->gcnext_sp = nil;
- runtime_memclr(&gp->gcregs, sizeof gp->gcregs);
-
- if(m->profilehz > 0)
- runtime_setprof(true);
- return;
- }
-
- // Tell scheduler to put g back on the run queue:
- // mostly equivalent to g->status = Grunning,
- // but keeps the garbage collector from thinking
- // that g is running right now, which it's not.
- gp->readyonstop = 1;
-
- // All the cpus are taken.
- // The scheduler will ready g and put this m to sleep.
- // When the scheduler takes g away from m,
- // it will undo the runtime_sched.mcpu++ above.
- runtime_gosched();
-
- // Gosched returned, so we're allowed to run now.
- // Delete the gcstack information that we left for
- // the garbage collector during the system call.
- // Must wait until now because until gosched returns
- // we don't know for sure that the garbage collector
- // is not running.
-#ifdef USING_SPLIT_STACK
- gp->gcstack = nil;
-#endif
- gp->gcnext_sp = nil;
- runtime_memclr(&gp->gcregs, sizeof gp->gcregs);
-}
-
-// Allocate a new g, with a stack big enough for stacksize bytes.
-G*
-runtime_malg(int32 stacksize, byte** ret_stack, size_t* ret_stacksize)
-{
- G *newg;
-
- newg = runtime_malloc(sizeof(G));
- if(stacksize >= 0) {
-#if USING_SPLIT_STACK
- int dont_block_signals = 0;
-
- *ret_stack = __splitstack_makecontext(stacksize,
- &newg->stack_context[0],
- ret_stacksize);
- __splitstack_block_signals_context(&newg->stack_context[0],
- &dont_block_signals, nil);
-#else
- *ret_stack = runtime_mallocgc(stacksize, FlagNoProfiling|FlagNoGC, 0, 0);
- *ret_stacksize = stacksize;
- newg->gcinitial_sp = *ret_stack;
- newg->gcstack_size = stacksize;
- runtime_xadd(&runtime_stacks_sys, stacksize);
-#endif
- }
- return newg;
-}
-
-/* For runtime package testing. */
-
-void runtime_testing_entersyscall(void)
- __asm__ (GOSYM_PREFIX "runtime.entersyscall");
-
-void
-runtime_testing_entersyscall()
-{
- runtime_entersyscall();
-}
-
-void runtime_testing_exitsyscall(void)
- __asm__ (GOSYM_PREFIX "runtime.exitsyscall");
-
-void
-runtime_testing_exitsyscall()
-{
- runtime_exitsyscall();
-}
-
-G*
-__go_go(void (*fn)(void*), void* arg)
-{
- byte *sp;
- size_t spsize;
- G *newg;
- int64 goid;
-
- goid = runtime_xadd64((uint64*)&runtime_sched.goidgen, 1);
- if(raceenabled)
- runtime_racegostart(goid, runtime_getcallerpc(&fn));
-
- schedlock();
-
- if((newg = gfget()) != nil) {
-#ifdef USING_SPLIT_STACK
- int dont_block_signals = 0;
-
- sp = __splitstack_resetcontext(&newg->stack_context[0],
- &spsize);
- __splitstack_block_signals_context(&newg->stack_context[0],
- &dont_block_signals, nil);
-#else
- sp = newg->gcinitial_sp;
- spsize = newg->gcstack_size;
- if(spsize == 0)
- runtime_throw("bad spsize in __go_go");
- newg->gcnext_sp = sp;
-#endif
- } else {
- newg = runtime_malg(StackMin, &sp, &spsize);
- if(runtime_lastg == nil)
- runtime_allg = newg;
- else
- runtime_lastg->alllink = newg;
- runtime_lastg = newg;
- }
- newg->status = Gwaiting;
- newg->waitreason = "new goroutine";
-
- newg->entry = (byte*)fn;
- newg->param = arg;
- newg->gopc = (uintptr)__builtin_return_address(0);
-
- runtime_sched.gcount++;
- newg->goid = goid;
-
- if(sp == nil)
- runtime_throw("nil g->stack0");
-
- {
- // Avoid warnings about variables clobbered by
- // longjmp.
- byte * volatile vsp = sp;
- size_t volatile vspsize = spsize;
- G * volatile vnewg = newg;
-
- getcontext(&vnewg->context);
- vnewg->context.uc_stack.ss_sp = vsp;
-#ifdef MAKECONTEXT_STACK_TOP
- vnewg->context.uc_stack.ss_sp += vspsize;
-#endif
- vnewg->context.uc_stack.ss_size = vspsize;
- makecontext(&vnewg->context, kickoff, 0);
-
- newprocreadylocked(vnewg);
- schedunlock();
-
- return vnewg;
- }
-}
-
-// Put on gfree list. Sched must be locked.
-static void
-gfput(G *gp)
-{
- gp->schedlink = runtime_sched.gfree;
- runtime_sched.gfree = gp;
-}
-
-// Get from gfree list. Sched must be locked.
-static G*
-gfget(void)
-{
- G *gp;
-
- gp = runtime_sched.gfree;
- if(gp)
- runtime_sched.gfree = gp->schedlink;
- return gp;
-}
-
-void runtime_Gosched (void) __asm__ (GOSYM_PREFIX "runtime.Gosched");
-
-void
-runtime_Gosched(void)
-{
- runtime_gosched();
-}
-
-// Implementation of runtime.GOMAXPROCS.
-// delete when scheduler is stronger
-int32
-runtime_gomaxprocsfunc(int32 n)
-{
- int32 ret;
- uint32 v;
-
- schedlock();
- ret = runtime_gomaxprocs;
- if(n <= 0)
- n = ret;
- if(n > maxgomaxprocs)
- n = maxgomaxprocs;
- runtime_gomaxprocs = n;
- if(runtime_gomaxprocs > 1)
- runtime_singleproc = false;
- if(runtime_gcwaiting != 0) {
- if(atomic_mcpumax(runtime_sched.atomic) != 1)
- runtime_throw("invalid mcpumax during gc");
- schedunlock();
- return ret;
- }
-
- setmcpumax(n);
-
- // If there are now fewer allowed procs
- // than procs running, stop.
- v = runtime_atomicload(&runtime_sched.atomic);
- if((int32)atomic_mcpu(v) > n) {
- schedunlock();
- runtime_gosched();
- return ret;
- }
- // handle more procs
- matchmg();
- schedunlock();
- return ret;
-}
-
-void
-runtime_LockOSThread(void)
-{
- if(m == &runtime_m0 && runtime_sched.init) {
- runtime_sched.lockmain = true;
- return;
- }
- m->lockedg = g;
- g->lockedm = m;
-}
-
-void
-runtime_UnlockOSThread(void)
-{
- if(m == &runtime_m0 && runtime_sched.init) {
- runtime_sched.lockmain = false;
- return;
- }
- m->lockedg = nil;
- g->lockedm = nil;
-}
-
-bool
-runtime_lockedOSThread(void)
-{
- return g->lockedm != nil && m->lockedg != nil;
-}
-
-// for testing of callbacks
-
-_Bool runtime_golockedOSThread(void)
- __asm__ (GOSYM_PREFIX "runtime.golockedOSThread");
-
-_Bool
-runtime_golockedOSThread(void)
-{
- return runtime_lockedOSThread();
-}
-
-// for testing of wire, unwire
-uint32
-runtime_mid()
-{
- return m->id;
-}
-
-intgo runtime_NumGoroutine (void)
- __asm__ (GOSYM_PREFIX "runtime.NumGoroutine");
-
-intgo
-runtime_NumGoroutine()
-{
- return runtime_sched.gcount;
-}
-
-int32
-runtime_gcount(void)
-{
- return runtime_sched.gcount;
-}
-
-int32
-runtime_mcount(void)
-{
- return runtime_sched.mcount;
-}
-
-static struct {
- Lock;
- void (*fn)(uintptr*, int32);
- int32 hz;
- uintptr pcbuf[100];
- Location locbuf[100];
-} prof;
-
-// Called if we receive a SIGPROF signal.
-void
-runtime_sigprof()
-{
- int32 n, i;
-
- if(prof.fn == nil || prof.hz == 0)
- return;
-
- runtime_lock(&prof);
- if(prof.fn == nil) {
- runtime_unlock(&prof);
- return;
- }
- n = runtime_callers(0, prof.locbuf, nelem(prof.locbuf));
- for(i = 0; i < n; i++)
- prof.pcbuf[i] = prof.locbuf[i].pc;
- if(n > 0)
- prof.fn(prof.pcbuf, n);
- runtime_unlock(&prof);
-}
-
-// Arrange to call fn with a traceback hz times a second.
-void
-runtime_setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz)
-{
- // Force sane arguments.
- if(hz < 0)
- hz = 0;
- if(hz == 0)
- fn = nil;
- if(fn == nil)
- hz = 0;
-
- // Stop profiler on this cpu so that it is safe to lock prof.
- // if a profiling signal came in while we had prof locked,
- // it would deadlock.
- runtime_resetcpuprofiler(0);
-
- runtime_lock(&prof);
- prof.fn = fn;
- prof.hz = hz;
- runtime_unlock(&prof);
- runtime_lock(&runtime_sched);
- runtime_sched.profilehz = hz;
- runtime_unlock(&runtime_sched);
-
- if(hz != 0)
- runtime_resetcpuprofiler(hz);
-}