aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/libgo/go/sort/sort.go
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/libgo/go/sort/sort.go')
-rw-r--r--gcc-4.8.1/libgo/go/sort/sort.go261
1 files changed, 0 insertions, 261 deletions
diff --git a/gcc-4.8.1/libgo/go/sort/sort.go b/gcc-4.8.1/libgo/go/sort/sort.go
deleted file mode 100644
index 62a4d55e7..000000000
--- a/gcc-4.8.1/libgo/go/sort/sort.go
+++ /dev/null
@@ -1,261 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package sort provides primitives for sorting slices and user-defined
-// collections.
-package sort
-
-import "math"
-
-// A type, typically a collection, that satisfies sort.Interface can be
-// sorted by the routines in this package. The methods require that the
-// elements of the collection be enumerated by an integer index.
-type Interface interface {
- // Len is the number of elements in the collection.
- Len() int
- // Less returns whether the element with index i should sort
- // before the element with index j.
- Less(i, j int) bool
- // Swap swaps the elements with indexes i and j.
- Swap(i, j int)
-}
-
-func min(a, b int) int {
- if a < b {
- return a
- }
- return b
-}
-
-// Insertion sort
-func insertionSort(data Interface, a, b int) {
- for i := a + 1; i < b; i++ {
- for j := i; j > a && data.Less(j, j-1); j-- {
- data.Swap(j, j-1)
- }
- }
-}
-
-// siftDown implements the heap property on data[lo, hi).
-// first is an offset into the array where the root of the heap lies.
-func siftDown(data Interface, lo, hi, first int) {
- root := lo
- for {
- child := 2*root + 1
- if child >= hi {
- break
- }
- if child+1 < hi && data.Less(first+child, first+child+1) {
- child++
- }
- if !data.Less(first+root, first+child) {
- return
- }
- data.Swap(first+root, first+child)
- root = child
- }
-}
-
-func heapSort(data Interface, a, b int) {
- first := a
- lo := 0
- hi := b - a
-
- // Build heap with greatest element at top.
- for i := (hi - 1) / 2; i >= 0; i-- {
- siftDown(data, i, hi, first)
- }
-
- // Pop elements, largest first, into end of data.
- for i := hi - 1; i >= 0; i-- {
- data.Swap(first, first+i)
- siftDown(data, lo, i, first)
- }
-}
-
-// Quicksort, following Bentley and McIlroy,
-// ``Engineering a Sort Function,'' SP&E November 1993.
-
-// medianOfThree moves the median of the three values data[a], data[b], data[c] into data[a].
-func medianOfThree(data Interface, a, b, c int) {
- m0 := b
- m1 := a
- m2 := c
- // bubble sort on 3 elements
- if data.Less(m1, m0) {
- data.Swap(m1, m0)
- }
- if data.Less(m2, m1) {
- data.Swap(m2, m1)
- }
- if data.Less(m1, m0) {
- data.Swap(m1, m0)
- }
- // now data[m0] <= data[m1] <= data[m2]
-}
-
-func swapRange(data Interface, a, b, n int) {
- for i := 0; i < n; i++ {
- data.Swap(a+i, b+i)
- }
-}
-
-func doPivot(data Interface, lo, hi int) (midlo, midhi int) {
- m := lo + (hi-lo)/2 // Written like this to avoid integer overflow.
- if hi-lo > 40 {
- // Tukey's ``Ninther,'' median of three medians of three.
- s := (hi - lo) / 8
- medianOfThree(data, lo, lo+s, lo+2*s)
- medianOfThree(data, m, m-s, m+s)
- medianOfThree(data, hi-1, hi-1-s, hi-1-2*s)
- }
- medianOfThree(data, lo, m, hi-1)
-
- // Invariants are:
- // data[lo] = pivot (set up by ChoosePivot)
- // data[lo <= i < a] = pivot
- // data[a <= i < b] < pivot
- // data[b <= i < c] is unexamined
- // data[c <= i < d] > pivot
- // data[d <= i < hi] = pivot
- //
- // Once b meets c, can swap the "= pivot" sections
- // into the middle of the slice.
- pivot := lo
- a, b, c, d := lo+1, lo+1, hi, hi
- for b < c {
- if data.Less(b, pivot) { // data[b] < pivot
- b++
- continue
- }
- if !data.Less(pivot, b) { // data[b] = pivot
- data.Swap(a, b)
- a++
- b++
- continue
- }
- if data.Less(pivot, c-1) { // data[c-1] > pivot
- c--
- continue
- }
- if !data.Less(c-1, pivot) { // data[c-1] = pivot
- data.Swap(c-1, d-1)
- c--
- d--
- continue
- }
- // data[b] > pivot; data[c-1] < pivot
- data.Swap(b, c-1)
- b++
- c--
- }
-
- n := min(b-a, a-lo)
- swapRange(data, lo, b-n, n)
-
- n = min(hi-d, d-c)
- swapRange(data, c, hi-n, n)
-
- return lo + b - a, hi - (d - c)
-}
-
-func quickSort(data Interface, a, b, maxDepth int) {
- for b-a > 7 {
- if maxDepth == 0 {
- heapSort(data, a, b)
- return
- }
- maxDepth--
- mlo, mhi := doPivot(data, a, b)
- // Avoiding recursion on the larger subproblem guarantees
- // a stack depth of at most lg(b-a).
- if mlo-a < b-mhi {
- quickSort(data, a, mlo, maxDepth)
- a = mhi // i.e., quickSort(data, mhi, b)
- } else {
- quickSort(data, mhi, b, maxDepth)
- b = mlo // i.e., quickSort(data, a, mlo)
- }
- }
- if b-a > 1 {
- insertionSort(data, a, b)
- }
-}
-
-// Sort sorts data.
-// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
-// data.Less and data.Swap. The sort is not guaranteed to be stable.
-func Sort(data Interface) {
- // Switch to heapsort if depth of 2*ceil(lg(n+1)) is reached.
- n := data.Len()
- maxDepth := 0
- for i := n; i > 0; i >>= 1 {
- maxDepth++
- }
- maxDepth *= 2
- quickSort(data, 0, n, maxDepth)
-}
-
-// IsSorted reports whether data is sorted.
-func IsSorted(data Interface) bool {
- n := data.Len()
- for i := n - 1; i > 0; i-- {
- if data.Less(i, i-1) {
- return false
- }
- }
- return true
-}
-
-// Convenience types for common cases
-
-// IntSlice attaches the methods of Interface to []int, sorting in increasing order.
-type IntSlice []int
-
-func (p IntSlice) Len() int { return len(p) }
-func (p IntSlice) Less(i, j int) bool { return p[i] < p[j] }
-func (p IntSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
-
-// Sort is a convenience method.
-func (p IntSlice) Sort() { Sort(p) }
-
-// Float64Slice attaches the methods of Interface to []float64, sorting in increasing order.
-type Float64Slice []float64
-
-func (p Float64Slice) Len() int { return len(p) }
-func (p Float64Slice) Less(i, j int) bool { return p[i] < p[j] || math.IsNaN(p[i]) && !math.IsNaN(p[j]) }
-func (p Float64Slice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
-
-// Sort is a convenience method.
-func (p Float64Slice) Sort() { Sort(p) }
-
-// StringSlice attaches the methods of Interface to []string, sorting in increasing order.
-type StringSlice []string
-
-func (p StringSlice) Len() int { return len(p) }
-func (p StringSlice) Less(i, j int) bool { return p[i] < p[j] }
-func (p StringSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
-
-// Sort is a convenience method.
-func (p StringSlice) Sort() { Sort(p) }
-
-// Convenience wrappers for common cases
-
-// Ints sorts a slice of ints in increasing order.
-func Ints(a []int) { Sort(IntSlice(a)) }
-
-// Float64s sorts a slice of float64s in increasing order.
-func Float64s(a []float64) { Sort(Float64Slice(a)) }
-
-// Strings sorts a slice of strings in increasing order.
-func Strings(a []string) { Sort(StringSlice(a)) }
-
-// IntsAreSorted tests whether a slice of ints is sorted in increasing order.
-func IntsAreSorted(a []int) bool { return IsSorted(IntSlice(a)) }
-
-// Float64sAreSorted tests whether a slice of float64s is sorted in increasing order.
-func Float64sAreSorted(a []float64) bool { return IsSorted(Float64Slice(a)) }
-
-// StringsAreSorted tests whether a slice of strings is sorted in increasing order.
-func StringsAreSorted(a []string) bool { return IsSorted(StringSlice(a)) }