aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/libgo/go/reflect/value.go
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/libgo/go/reflect/value.go')
-rw-r--r--gcc-4.8.1/libgo/go/reflect/value.go2364
1 files changed, 0 insertions, 2364 deletions
diff --git a/gcc-4.8.1/libgo/go/reflect/value.go b/gcc-4.8.1/libgo/go/reflect/value.go
deleted file mode 100644
index 15f571509..000000000
--- a/gcc-4.8.1/libgo/go/reflect/value.go
+++ /dev/null
@@ -1,2364 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package reflect
-
-import (
- "math"
- "runtime"
- "strconv"
- "unsafe"
-)
-
-const bigEndian = false // can be smarter if we find a big-endian machine
-const ptrSize = unsafe.Sizeof((*byte)(nil))
-const cannotSet = "cannot set value obtained from unexported struct field"
-
-// TODO: This will have to go away when
-// the new gc goes in.
-func memmove(adst, asrc unsafe.Pointer, n uintptr) {
- dst := uintptr(adst)
- src := uintptr(asrc)
- switch {
- case src < dst && src+n > dst:
- // byte copy backward
- // careful: i is unsigned
- for i := n; i > 0; {
- i--
- *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
- }
- case (n|src|dst)&(ptrSize-1) != 0:
- // byte copy forward
- for i := uintptr(0); i < n; i++ {
- *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
- }
- default:
- // word copy forward
- for i := uintptr(0); i < n; i += ptrSize {
- *(*uintptr)(unsafe.Pointer(dst + i)) = *(*uintptr)(unsafe.Pointer(src + i))
- }
- }
-}
-
-// Value is the reflection interface to a Go value.
-//
-// Not all methods apply to all kinds of values. Restrictions,
-// if any, are noted in the documentation for each method.
-// Use the Kind method to find out the kind of value before
-// calling kind-specific methods. Calling a method
-// inappropriate to the kind of type causes a run time panic.
-//
-// The zero Value represents no value.
-// Its IsValid method returns false, its Kind method returns Invalid,
-// its String method returns "<invalid Value>", and all other methods panic.
-// Most functions and methods never return an invalid value.
-// If one does, its documentation states the conditions explicitly.
-//
-// A Value can be used concurrently by multiple goroutines provided that
-// the underlying Go value can be used concurrently for the equivalent
-// direct operations.
-type Value struct {
- // typ holds the type of the value represented by a Value.
- typ *rtype
-
- // val holds the 1-word representation of the value.
- // If flag's flagIndir bit is set, then val is a pointer to the data.
- // Otherwise val is a word holding the actual data.
- // When the data is smaller than a word, it begins at
- // the first byte (in the memory address sense) of val.
- // We use unsafe.Pointer so that the garbage collector
- // knows that val could be a pointer.
- val unsafe.Pointer
-
- // flag holds metadata about the value.
- // The lowest bits are flag bits:
- // - flagRO: obtained via unexported field, so read-only
- // - flagIndir: val holds a pointer to the data
- // - flagAddr: v.CanAddr is true (implies flagIndir)
- // - flagMethod: v is a method value.
- // The next five bits give the Kind of the value.
- // This repeats typ.Kind() except for method values.
- // The remaining 23+ bits give a method number for method values.
- // If flag.kind() != Func, code can assume that flagMethod is unset.
- // If typ.size > ptrSize, code can assume that flagIndir is set.
- flag
-
- // A method value represents a curried method invocation
- // like r.Read for some receiver r. The typ+val+flag bits describe
- // the receiver r, but the flag's Kind bits say Func (methods are
- // functions), and the top bits of the flag give the method number
- // in r's type's method table.
-}
-
-type flag uintptr
-
-const (
- flagRO flag = 1 << iota
- flagIndir
- flagAddr
- flagMethod
- flagKindShift = iota
- flagKindWidth = 5 // there are 27 kinds
- flagKindMask flag = 1<<flagKindWidth - 1
- flagMethodShift = flagKindShift + flagKindWidth
-)
-
-func (f flag) kind() Kind {
- return Kind((f >> flagKindShift) & flagKindMask)
-}
-
-// A ValueError occurs when a Value method is invoked on
-// a Value that does not support it. Such cases are documented
-// in the description of each method.
-type ValueError struct {
- Method string
- Kind Kind
-}
-
-func (e *ValueError) Error() string {
- if e.Kind == 0 {
- return "reflect: call of " + e.Method + " on zero Value"
- }
- return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
-}
-
-// methodName returns the name of the calling method,
-// assumed to be two stack frames above.
-func methodName() string {
- pc, _, _, _ := runtime.Caller(2)
- f := runtime.FuncForPC(pc)
- if f == nil {
- return "unknown method"
- }
- return f.Name()
-}
-
-// An iword is the word that would be stored in an
-// interface to represent a given value v. Specifically, if v is
-// bigger than a pointer, its word is a pointer to v's data.
-// Otherwise, its word holds the data stored
-// in its leading bytes (so is not a pointer).
-// Because the value sometimes holds a pointer, we use
-// unsafe.Pointer to represent it, so that if iword appears
-// in a struct, the garbage collector knows that might be
-// a pointer.
-type iword unsafe.Pointer
-
-func (v Value) iword() iword {
- if v.flag&flagIndir != 0 && (v.kind() == Ptr || v.kind() == UnsafePointer) {
- // Have indirect but want direct word.
- return loadIword(v.val, v.typ.size)
- }
- return iword(v.val)
-}
-
-// loadIword loads n bytes at p from memory into an iword.
-func loadIword(p unsafe.Pointer, n uintptr) iword {
- // Run the copy ourselves instead of calling memmove
- // to avoid moving w to the heap.
- var w iword
- switch n {
- default:
- panic("reflect: internal error: loadIword of " + strconv.Itoa(int(n)) + "-byte value")
- case 0:
- case 1:
- *(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p)
- case 2:
- *(*uint16)(unsafe.Pointer(&w)) = *(*uint16)(p)
- case 3:
- *(*[3]byte)(unsafe.Pointer(&w)) = *(*[3]byte)(p)
- case 4:
- *(*uint32)(unsafe.Pointer(&w)) = *(*uint32)(p)
- case 5:
- *(*[5]byte)(unsafe.Pointer(&w)) = *(*[5]byte)(p)
- case 6:
- *(*[6]byte)(unsafe.Pointer(&w)) = *(*[6]byte)(p)
- case 7:
- *(*[7]byte)(unsafe.Pointer(&w)) = *(*[7]byte)(p)
- case 8:
- *(*uint64)(unsafe.Pointer(&w)) = *(*uint64)(p)
- }
- return w
-}
-
-// storeIword stores n bytes from w into p.
-func storeIword(p unsafe.Pointer, w iword, n uintptr) {
- // Run the copy ourselves instead of calling memmove
- // to avoid moving w to the heap.
- switch n {
- default:
- panic("reflect: internal error: storeIword of " + strconv.Itoa(int(n)) + "-byte value")
- case 0:
- case 1:
- *(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w))
- case 2:
- *(*uint16)(p) = *(*uint16)(unsafe.Pointer(&w))
- case 3:
- *(*[3]byte)(p) = *(*[3]byte)(unsafe.Pointer(&w))
- case 4:
- *(*uint32)(p) = *(*uint32)(unsafe.Pointer(&w))
- case 5:
- *(*[5]byte)(p) = *(*[5]byte)(unsafe.Pointer(&w))
- case 6:
- *(*[6]byte)(p) = *(*[6]byte)(unsafe.Pointer(&w))
- case 7:
- *(*[7]byte)(p) = *(*[7]byte)(unsafe.Pointer(&w))
- case 8:
- *(*uint64)(p) = *(*uint64)(unsafe.Pointer(&w))
- }
-}
-
-// emptyInterface is the header for an interface{} value.
-type emptyInterface struct {
- typ *rtype
- word iword
-}
-
-// nonEmptyInterface is the header for a interface value with methods.
-type nonEmptyInterface struct {
- // see ../runtime/iface.c:/Itab
- itab *struct {
- typ *rtype // dynamic concrete type
- fun [100000]unsafe.Pointer // method table
- }
- word iword
-}
-
-// mustBe panics if f's kind is not expected.
-// Making this a method on flag instead of on Value
-// (and embedding flag in Value) means that we can write
-// the very clear v.mustBe(Bool) and have it compile into
-// v.flag.mustBe(Bool), which will only bother to copy the
-// single important word for the receiver.
-func (f flag) mustBe(expected Kind) {
- k := f.kind()
- if k != expected {
- panic(&ValueError{methodName(), k})
- }
-}
-
-// mustBeExported panics if f records that the value was obtained using
-// an unexported field.
-func (f flag) mustBeExported() {
- if f == 0 {
- panic(&ValueError{methodName(), 0})
- }
- if f&flagRO != 0 {
- panic(methodName() + " using value obtained using unexported field")
- }
-}
-
-// mustBeAssignable panics if f records that the value is not assignable,
-// which is to say that either it was obtained using an unexported field
-// or it is not addressable.
-func (f flag) mustBeAssignable() {
- if f == 0 {
- panic(&ValueError{methodName(), Invalid})
- }
- // Assignable if addressable and not read-only.
- if f&flagRO != 0 {
- panic(methodName() + " using value obtained using unexported field")
- }
- if f&flagAddr == 0 {
- panic(methodName() + " using unaddressable value")
- }
-}
-
-// Addr returns a pointer value representing the address of v.
-// It panics if CanAddr() returns false.
-// Addr is typically used to obtain a pointer to a struct field
-// or slice element in order to call a method that requires a
-// pointer receiver.
-func (v Value) Addr() Value {
- if v.flag&flagAddr == 0 {
- panic("reflect.Value.Addr of unaddressable value")
- }
- return Value{v.typ.ptrTo(), v.val, (v.flag & flagRO) | flag(Ptr)<<flagKindShift}
-}
-
-// Bool returns v's underlying value.
-// It panics if v's kind is not Bool.
-func (v Value) Bool() bool {
- v.mustBe(Bool)
- if v.flag&flagIndir != 0 {
- return *(*bool)(v.val)
- }
- return *(*bool)(unsafe.Pointer(&v.val))
-}
-
-// Bytes returns v's underlying value.
-// It panics if v's underlying value is not a slice of bytes.
-func (v Value) Bytes() []byte {
- v.mustBe(Slice)
- if v.typ.Elem().Kind() != Uint8 {
- panic("reflect.Value.Bytes of non-byte slice")
- }
- // Slice is always bigger than a word; assume flagIndir.
- return *(*[]byte)(v.val)
-}
-
-// runes returns v's underlying value.
-// It panics if v's underlying value is not a slice of runes (int32s).
-func (v Value) runes() []rune {
- v.mustBe(Slice)
- if v.typ.Elem().Kind() != Int32 {
- panic("reflect.Value.Bytes of non-rune slice")
- }
- // Slice is always bigger than a word; assume flagIndir.
- return *(*[]rune)(v.val)
-}
-
-// CanAddr returns true if the value's address can be obtained with Addr.
-// Such values are called addressable. A value is addressable if it is
-// an element of a slice, an element of an addressable array,
-// a field of an addressable struct, or the result of dereferencing a pointer.
-// If CanAddr returns false, calling Addr will panic.
-func (v Value) CanAddr() bool {
- return v.flag&flagAddr != 0
-}
-
-// CanSet returns true if the value of v can be changed.
-// A Value can be changed only if it is addressable and was not
-// obtained by the use of unexported struct fields.
-// If CanSet returns false, calling Set or any type-specific
-// setter (e.g., SetBool, SetInt64) will panic.
-func (v Value) CanSet() bool {
- return v.flag&(flagAddr|flagRO) == flagAddr
-}
-
-// Call calls the function v with the input arguments in.
-// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
-// Call panics if v's Kind is not Func.
-// It returns the output results as Values.
-// As in Go, each input argument must be assignable to the
-// type of the function's corresponding input parameter.
-// If v is a variadic function, Call creates the variadic slice parameter
-// itself, copying in the corresponding values.
-func (v Value) Call(in []Value) []Value {
- v.mustBe(Func)
- v.mustBeExported()
- return v.call("Call", in)
-}
-
-// CallSlice calls the variadic function v with the input arguments in,
-// assigning the slice in[len(in)-1] to v's final variadic argument.
-// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...).
-// Call panics if v's Kind is not Func or if v is not variadic.
-// It returns the output results as Values.
-// As in Go, each input argument must be assignable to the
-// type of the function's corresponding input parameter.
-func (v Value) CallSlice(in []Value) []Value {
- v.mustBe(Func)
- v.mustBeExported()
- return v.call("CallSlice", in)
-}
-
-func (v Value) call(method string, in []Value) []Value {
- // Get function pointer, type.
- t := v.typ
- var (
- fn unsafe.Pointer
- rcvr iword
- )
- if v.flag&flagMethod != 0 {
- i := int(v.flag) >> flagMethodShift
- if v.typ.Kind() == Interface {
- tt := (*interfaceType)(unsafe.Pointer(v.typ))
- if i < 0 || i >= len(tt.methods) {
- panic("reflect: broken Value")
- }
- m := &tt.methods[i]
- if m.pkgPath != nil {
- panic(method + " of unexported method")
- }
- t = m.typ
- iface := (*nonEmptyInterface)(v.val)
- if iface.itab == nil {
- panic(method + " of method on nil interface value")
- }
- fn = iface.itab.fun[i]
- rcvr = iface.word
- } else {
- ut := v.typ.uncommon()
- if ut == nil || i < 0 || i >= len(ut.methods) {
- panic("reflect: broken Value")
- }
- m := &ut.methods[i]
- if m.pkgPath != nil {
- panic(method + " of unexported method")
- }
- fn = m.tfn
- t = m.mtyp
- rcvr = v.iword()
- }
- } else if v.flag&flagIndir != 0 {
- fn = *(*unsafe.Pointer)(v.val)
- } else {
- fn = v.val
- }
-
- if fn == nil {
- panic("reflect.Value.Call: call of nil function")
- }
-
- isSlice := method == "CallSlice"
- n := t.NumIn()
- if isSlice {
- if !t.IsVariadic() {
- panic("reflect: CallSlice of non-variadic function")
- }
- if len(in) < n {
- panic("reflect: CallSlice with too few input arguments")
- }
- if len(in) > n {
- panic("reflect: CallSlice with too many input arguments")
- }
- } else {
- if t.IsVariadic() {
- n--
- }
- if len(in) < n {
- panic("reflect: Call with too few input arguments")
- }
- if !t.IsVariadic() && len(in) > n {
- panic("reflect: Call with too many input arguments")
- }
- }
- for _, x := range in {
- if x.Kind() == Invalid {
- panic("reflect: " + method + " using zero Value argument")
- }
- }
- for i := 0; i < n; i++ {
- if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
- panic("reflect: " + method + " using " + xt.String() + " as type " + targ.String())
- }
- }
- if !isSlice && t.IsVariadic() {
- // prepare slice for remaining values
- m := len(in) - n
- slice := MakeSlice(t.In(n), m, m)
- elem := t.In(n).Elem()
- for i := 0; i < m; i++ {
- x := in[n+i]
- if xt := x.Type(); !xt.AssignableTo(elem) {
- panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + method)
- }
- slice.Index(i).Set(x)
- }
- origIn := in
- in = make([]Value, n+1)
- copy(in[:n], origIn)
- in[n] = slice
- }
-
- nin := len(in)
- if nin != t.NumIn() {
- panic("reflect.Value.Call: wrong argument count")
- }
- nout := t.NumOut()
-
- if v.flag&flagMethod != 0 {
- nin++
- }
- params := make([]unsafe.Pointer, nin)
- off := 0
- if v.flag&flagMethod != 0 {
- // Hard-wired first argument.
- p := new(iword)
- *p = rcvr
- params[0] = unsafe.Pointer(p)
- off = 1
- }
- first_pointer := false
- for i, pv := range in {
- pv.mustBeExported()
- targ := t.In(i).(*rtype)
- pv = pv.assignTo("reflect.Value.Call", targ, nil)
- if pv.flag&flagIndir == 0 {
- p := new(unsafe.Pointer)
- *p = pv.val
- params[off] = unsafe.Pointer(p)
- } else {
- params[off] = pv.val
- }
- if i == 0 && Kind(targ.kind) != Ptr && v.flag&flagMethod == 0 && isMethod(v.typ) {
- p := new(unsafe.Pointer)
- *p = params[off]
- params[off] = unsafe.Pointer(p)
- first_pointer = true
- }
- off++
- }
-
- ret := make([]Value, nout)
- results := make([]unsafe.Pointer, nout)
- for i := 0; i < nout; i++ {
- v := New(t.Out(i))
- results[i] = unsafe.Pointer(v.Pointer())
- ret[i] = Indirect(v)
- }
-
- var pp *unsafe.Pointer
- if len(params) > 0 {
- pp = &params[0]
- }
- var pr *unsafe.Pointer
- if len(results) > 0 {
- pr = &results[0]
- }
-
- call(t, fn, v.flag&flagMethod != 0, first_pointer, pp, pr)
-
- return ret
-}
-
-// gccgo specific test to see if typ is a method. We can tell by
-// looking at the string to see if there is a receiver. We need this
-// because for gccgo all methods take pointer receivers.
-func isMethod(t *rtype) bool {
- if Kind(t.kind) != Func {
- return false
- }
- s := *t.string
- parens := 0
- params := 0
- sawRet := false
- for i, c := range s {
- if c == '(' {
- parens++
- params++
- } else if c == ')' {
- parens--
- } else if parens == 0 && c == ' ' && s[i+1] != '(' && !sawRet {
- params++
- sawRet = true
- }
- }
- return params > 2
-}
-
-// callReflect is the call implementation used by a function
-// returned by MakeFunc. In many ways it is the opposite of the
-// method Value.call above. The method above converts a call using Values
-// into a call of a function with a concrete argument frame, while
-// callReflect converts a call of a function with a concrete argument
-// frame into a call using Values.
-// It is in this file so that it can be next to the call method above.
-// The remainder of the MakeFunc implementation is in makefunc.go.
-func callReflect(ftyp *funcType, f func([]Value) []Value, frame unsafe.Pointer) {
- // Copy argument frame into Values.
- ptr := frame
- off := uintptr(0)
- in := make([]Value, 0, len(ftyp.in))
- for _, arg := range ftyp.in {
- typ := arg
- off += -off & uintptr(typ.align-1)
- v := Value{typ, nil, flag(typ.Kind()) << flagKindShift}
- if typ.size <= ptrSize {
- // value fits in word.
- v.val = unsafe.Pointer(loadIword(unsafe.Pointer(uintptr(ptr)+off), typ.size))
- } else {
- // value does not fit in word.
- // Must make a copy, because f might keep a reference to it,
- // and we cannot let f keep a reference to the stack frame
- // after this function returns, not even a read-only reference.
- v.val = unsafe_New(typ)
- memmove(v.val, unsafe.Pointer(uintptr(ptr)+off), typ.size)
- v.flag |= flagIndir
- }
- in = append(in, v)
- off += typ.size
- }
-
- // Call underlying function.
- out := f(in)
- if len(out) != len(ftyp.out) {
- panic("reflect: wrong return count from function created by MakeFunc")
- }
-
- // Copy results back into argument frame.
- if len(ftyp.out) > 0 {
- off += -off & (ptrSize - 1)
- for i, arg := range ftyp.out {
- typ := arg
- v := out[i]
- if v.typ != typ {
- panic("reflect: function created by MakeFunc using " + funcName(f) +
- " returned wrong type: have " +
- out[i].typ.String() + " for " + typ.String())
- }
- if v.flag&flagRO != 0 {
- panic("reflect: function created by MakeFunc using " + funcName(f) +
- " returned value obtained from unexported field")
- }
- off += -off & uintptr(typ.align-1)
- addr := unsafe.Pointer(uintptr(ptr) + off)
- if v.flag&flagIndir == 0 {
- storeIword(addr, iword(v.val), typ.size)
- } else {
- memmove(addr, v.val, typ.size)
- }
- off += typ.size
- }
- }
-}
-
-// funcName returns the name of f, for use in error messages.
-func funcName(f func([]Value) []Value) string {
- pc := *(*uintptr)(unsafe.Pointer(&f))
- rf := runtime.FuncForPC(pc)
- if rf != nil {
- return rf.Name()
- }
- return "closure"
-}
-
-// Cap returns v's capacity.
-// It panics if v's Kind is not Array, Chan, or Slice.
-func (v Value) Cap() int {
- k := v.kind()
- switch k {
- case Array:
- return v.typ.Len()
- case Chan:
- return int(chancap(*(*iword)(v.iword())))
- case Slice:
- // Slice is always bigger than a word; assume flagIndir.
- return (*SliceHeader)(v.val).Cap
- }
- panic(&ValueError{"reflect.Value.Cap", k})
-}
-
-// Close closes the channel v.
-// It panics if v's Kind is not Chan.
-func (v Value) Close() {
- v.mustBe(Chan)
- v.mustBeExported()
- chanclose(*(*iword)(v.iword()))
-}
-
-// Complex returns v's underlying value, as a complex128.
-// It panics if v's Kind is not Complex64 or Complex128
-func (v Value) Complex() complex128 {
- k := v.kind()
- switch k {
- case Complex64:
- if v.flag&flagIndir != 0 {
- return complex128(*(*complex64)(v.val))
- }
- return complex128(*(*complex64)(unsafe.Pointer(&v.val)))
- case Complex128:
- // complex128 is always bigger than a word; assume flagIndir.
- return *(*complex128)(v.val)
- }
- panic(&ValueError{"reflect.Value.Complex", k})
-}
-
-// Elem returns the value that the interface v contains
-// or that the pointer v points to.
-// It panics if v's Kind is not Interface or Ptr.
-// It returns the zero Value if v is nil.
-func (v Value) Elem() Value {
- k := v.kind()
- switch k {
- case Interface:
- var (
- typ *rtype
- val unsafe.Pointer
- )
- if v.typ.NumMethod() == 0 {
- eface := (*emptyInterface)(v.val)
- if eface.typ == nil {
- // nil interface value
- return Value{}
- }
- typ = eface.typ
- val = unsafe.Pointer(eface.word)
- } else {
- iface := (*nonEmptyInterface)(v.val)
- if iface.itab == nil {
- // nil interface value
- return Value{}
- }
- typ = iface.itab.typ
- val = unsafe.Pointer(iface.word)
- }
- fl := v.flag & flagRO
- fl |= flag(typ.Kind()) << flagKindShift
- if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
- fl |= flagIndir
- }
- return Value{typ, val, fl}
-
- case Ptr:
- val := v.val
- if v.flag&flagIndir != 0 {
- val = *(*unsafe.Pointer)(val)
- }
- // The returned value's address is v's value.
- if val == nil {
- return Value{}
- }
- tt := (*ptrType)(unsafe.Pointer(v.typ))
- typ := tt.elem
- fl := v.flag&flagRO | flagIndir | flagAddr
- fl |= flag(typ.Kind() << flagKindShift)
- return Value{typ, val, fl}
- }
- panic(&ValueError{"reflect.Value.Elem", k})
-}
-
-// Field returns the i'th field of the struct v.
-// It panics if v's Kind is not Struct or i is out of range.
-func (v Value) Field(i int) Value {
- v.mustBe(Struct)
- tt := (*structType)(unsafe.Pointer(v.typ))
- if i < 0 || i >= len(tt.fields) {
- panic("reflect: Field index out of range")
- }
- field := &tt.fields[i]
- typ := field.typ
-
- // Inherit permission bits from v.
- fl := v.flag & (flagRO | flagIndir | flagAddr)
- // Using an unexported field forces flagRO.
- if field.pkgPath != nil {
- fl |= flagRO
- }
- fl |= flag(typ.Kind()) << flagKindShift
-
- var val unsafe.Pointer
- switch {
- case fl&flagIndir != 0:
- // Indirect. Just bump pointer.
- val = unsafe.Pointer(uintptr(v.val) + field.offset)
- case bigEndian:
- // Direct. Discard leading bytes.
- val = unsafe.Pointer(uintptr(v.val) << (field.offset * 8))
- default:
- // Direct. Discard leading bytes.
- val = unsafe.Pointer(uintptr(v.val) >> (field.offset * 8))
- }
-
- return Value{typ, val, fl}
-}
-
-// FieldByIndex returns the nested field corresponding to index.
-// It panics if v's Kind is not struct.
-func (v Value) FieldByIndex(index []int) Value {
- v.mustBe(Struct)
- for i, x := range index {
- if i > 0 {
- if v.Kind() == Ptr && v.Elem().Kind() == Struct {
- v = v.Elem()
- }
- }
- v = v.Field(x)
- }
- return v
-}
-
-// FieldByName returns the struct field with the given name.
-// It returns the zero Value if no field was found.
-// It panics if v's Kind is not struct.
-func (v Value) FieldByName(name string) Value {
- v.mustBe(Struct)
- if f, ok := v.typ.FieldByName(name); ok {
- return v.FieldByIndex(f.Index)
- }
- return Value{}
-}
-
-// FieldByNameFunc returns the struct field with a name
-// that satisfies the match function.
-// It panics if v's Kind is not struct.
-// It returns the zero Value if no field was found.
-func (v Value) FieldByNameFunc(match func(string) bool) Value {
- v.mustBe(Struct)
- if f, ok := v.typ.FieldByNameFunc(match); ok {
- return v.FieldByIndex(f.Index)
- }
- return Value{}
-}
-
-// Float returns v's underlying value, as a float64.
-// It panics if v's Kind is not Float32 or Float64
-func (v Value) Float() float64 {
- k := v.kind()
- switch k {
- case Float32:
- if v.flag&flagIndir != 0 {
- return float64(*(*float32)(v.val))
- }
- return float64(*(*float32)(unsafe.Pointer(&v.val)))
- case Float64:
- if v.flag&flagIndir != 0 {
- return *(*float64)(v.val)
- }
- return *(*float64)(unsafe.Pointer(&v.val))
- }
- panic(&ValueError{"reflect.Value.Float", k})
-}
-
-var uint8Type = TypeOf(uint8(0)).(*rtype)
-
-// Index returns v's i'th element.
-// It panics if v's Kind is not Array, Slice, or String or i is out of range.
-func (v Value) Index(i int) Value {
- k := v.kind()
- switch k {
- case Array:
- tt := (*arrayType)(unsafe.Pointer(v.typ))
- if i < 0 || i > int(tt.len) {
- panic("reflect: array index out of range")
- }
- typ := tt.elem
- fl := v.flag & (flagRO | flagIndir | flagAddr) // bits same as overall array
- fl |= flag(typ.Kind()) << flagKindShift
- offset := uintptr(i) * typ.size
-
- var val unsafe.Pointer
- switch {
- case fl&flagIndir != 0:
- // Indirect. Just bump pointer.
- val = unsafe.Pointer(uintptr(v.val) + offset)
- case bigEndian:
- // Direct. Discard leading bytes.
- val = unsafe.Pointer(uintptr(v.val) << (offset * 8))
- default:
- // Direct. Discard leading bytes.
- val = unsafe.Pointer(uintptr(v.val) >> (offset * 8))
- }
- return Value{typ, val, fl}
-
- case Slice:
- // Element flag same as Elem of Ptr.
- // Addressable, indirect, possibly read-only.
- fl := flagAddr | flagIndir | v.flag&flagRO
- s := (*SliceHeader)(v.val)
- if i < 0 || i >= s.Len {
- panic("reflect: slice index out of range")
- }
- tt := (*sliceType)(unsafe.Pointer(v.typ))
- typ := tt.elem
- fl |= flag(typ.Kind()) << flagKindShift
- val := unsafe.Pointer(s.Data + uintptr(i)*typ.size)
- return Value{typ, val, fl}
-
- case String:
- fl := v.flag&flagRO | flag(Uint8<<flagKindShift) | flagIndir
- s := (*StringHeader)(v.val)
- if i < 0 || i >= s.Len {
- panic("reflect: string index out of range")
- }
- val := *(*byte)(unsafe.Pointer(s.Data + uintptr(i)))
- return Value{uint8Type, unsafe.Pointer(&val), fl}
- }
- panic(&ValueError{"reflect.Value.Index", k})
-}
-
-// Int returns v's underlying value, as an int64.
-// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
-func (v Value) Int() int64 {
- k := v.kind()
- var p unsafe.Pointer
- if v.flag&flagIndir != 0 {
- p = v.val
- } else {
- // The escape analysis is good enough that &v.val
- // does not trigger a heap allocation.
- p = unsafe.Pointer(&v.val)
- }
- switch k {
- case Int:
- return int64(*(*int)(p))
- case Int8:
- return int64(*(*int8)(p))
- case Int16:
- return int64(*(*int16)(p))
- case Int32:
- return int64(*(*int32)(p))
- case Int64:
- return int64(*(*int64)(p))
- }
- panic(&ValueError{"reflect.Value.Int", k})
-}
-
-// CanInterface returns true if Interface can be used without panicking.
-func (v Value) CanInterface() bool {
- if v.flag == 0 {
- panic(&ValueError{"reflect.Value.CanInterface", Invalid})
- }
- return v.flag&(flagMethod|flagRO) == 0
-}
-
-// Interface returns v's current value as an interface{}.
-// It is equivalent to:
-// var i interface{} = (v's underlying value)
-// If v is a method obtained by invoking Value.Method
-// (as opposed to Type.Method), Interface cannot return an
-// interface value, so it panics.
-// It also panics if the Value was obtained by accessing
-// unexported struct fields.
-func (v Value) Interface() (i interface{}) {
- return valueInterface(v, true)
-}
-
-func valueInterface(v Value, safe bool) interface{} {
- if v.flag == 0 {
- panic(&ValueError{"reflect.Value.Interface", 0})
- }
- if v.flag&flagMethod != 0 {
- panic("reflect.Value.Interface: cannot create interface value for method with bound receiver")
- }
-
- if safe && v.flag&flagRO != 0 {
- // Do not allow access to unexported values via Interface,
- // because they might be pointers that should not be
- // writable or methods or function that should not be callable.
- panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
- }
-
- k := v.kind()
- if k == Interface {
- // Special case: return the element inside the interface.
- // Empty interface has one layout, all interfaces with
- // methods have a second layout.
- if v.NumMethod() == 0 {
- return *(*interface{})(v.val)
- }
- return *(*interface {
- M()
- })(v.val)
- }
-
- // Non-interface value.
- var eface emptyInterface
- eface.typ = toType(v.typ).common()
- eface.word = v.iword()
-
- if v.flag&flagIndir != 0 && v.kind() != Ptr && v.kind() != UnsafePointer {
- // eface.word is a pointer to the actual data,
- // which might be changed. We need to return
- // a pointer to unchanging data, so make a copy.
- ptr := unsafe_New(v.typ)
- memmove(ptr, unsafe.Pointer(eface.word), v.typ.size)
- eface.word = iword(ptr)
- }
-
- if v.flag&flagIndir == 0 && v.kind() != Ptr && v.kind() != UnsafePointer {
- panic("missing flagIndir")
- }
-
- return *(*interface{})(unsafe.Pointer(&eface))
-}
-
-// InterfaceData returns the interface v's value as a uintptr pair.
-// It panics if v's Kind is not Interface.
-func (v Value) InterfaceData() [2]uintptr {
- v.mustBe(Interface)
- // We treat this as a read operation, so we allow
- // it even for unexported data, because the caller
- // has to import "unsafe" to turn it into something
- // that can be abused.
- // Interface value is always bigger than a word; assume flagIndir.
- return *(*[2]uintptr)(v.val)
-}
-
-// IsNil returns true if v is a nil value.
-// It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice.
-func (v Value) IsNil() bool {
- k := v.kind()
- switch k {
- case Chan, Func, Map, Ptr:
- if v.flag&flagMethod != 0 {
- panic("reflect: IsNil of method Value")
- }
- ptr := v.val
- if v.flag&flagIndir != 0 {
- ptr = *(*unsafe.Pointer)(ptr)
- }
- return ptr == nil
- case Interface, Slice:
- // Both interface and slice are nil if first word is 0.
- // Both are always bigger than a word; assume flagIndir.
- return *(*unsafe.Pointer)(v.val) == nil
- }
- panic(&ValueError{"reflect.Value.IsNil", k})
-}
-
-// IsValid returns true if v represents a value.
-// It returns false if v is the zero Value.
-// If IsValid returns false, all other methods except String panic.
-// Most functions and methods never return an invalid value.
-// If one does, its documentation states the conditions explicitly.
-func (v Value) IsValid() bool {
- return v.flag != 0
-}
-
-// Kind returns v's Kind.
-// If v is the zero Value (IsValid returns false), Kind returns Invalid.
-func (v Value) Kind() Kind {
- return v.kind()
-}
-
-// Len returns v's length.
-// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
-func (v Value) Len() int {
- k := v.kind()
- switch k {
- case Array:
- tt := (*arrayType)(unsafe.Pointer(v.typ))
- return int(tt.len)
- case Chan:
- return chanlen(*(*iword)(v.iword()))
- case Map:
- return maplen(*(*iword)(v.iword()))
- case Slice:
- // Slice is bigger than a word; assume flagIndir.
- return (*SliceHeader)(v.val).Len
- case String:
- // String is bigger than a word; assume flagIndir.
- return (*StringHeader)(v.val).Len
- }
- panic(&ValueError{"reflect.Value.Len", k})
-}
-
-// MapIndex returns the value associated with key in the map v.
-// It panics if v's Kind is not Map.
-// It returns the zero Value if key is not found in the map or if v represents a nil map.
-// As in Go, the key's value must be assignable to the map's key type.
-func (v Value) MapIndex(key Value) Value {
- v.mustBe(Map)
- tt := (*mapType)(unsafe.Pointer(v.typ))
-
- // Do not require key to be exported, so that DeepEqual
- // and other programs can use all the keys returned by
- // MapKeys as arguments to MapIndex. If either the map
- // or the key is unexported, though, the result will be
- // considered unexported. This is consistent with the
- // behavior for structs, which allow read but not write
- // of unexported fields.
- key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
-
- word, ok := mapaccess(v.typ, *(*iword)(v.iword()), key.iword())
- if !ok {
- return Value{}
- }
- typ := tt.elem
- fl := (v.flag | key.flag) & flagRO
- if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
- fl |= flagIndir
- }
- fl |= flag(typ.Kind()) << flagKindShift
- return Value{typ, unsafe.Pointer(word), fl}
-}
-
-// MapKeys returns a slice containing all the keys present in the map,
-// in unspecified order.
-// It panics if v's Kind is not Map.
-// It returns an empty slice if v represents a nil map.
-func (v Value) MapKeys() []Value {
- v.mustBe(Map)
- tt := (*mapType)(unsafe.Pointer(v.typ))
- keyType := tt.key
-
- fl := v.flag & flagRO
- fl |= flag(keyType.Kind()) << flagKindShift
- if keyType.Kind() != Ptr && keyType.Kind() != UnsafePointer {
- fl |= flagIndir
- }
-
- m := *(*iword)(v.iword())
- mlen := int(0)
- if m != nil {
- mlen = maplen(m)
- }
- it := mapiterinit(v.typ, m)
- a := make([]Value, mlen)
- var i int
- for i = 0; i < len(a); i++ {
- keyWord, ok := mapiterkey(it)
- if !ok {
- break
- }
- a[i] = Value{keyType, unsafe.Pointer(keyWord), fl}
- mapiternext(it)
- }
- return a[:i]
-}
-
-// Method returns a function value corresponding to v's i'th method.
-// The arguments to a Call on the returned function should not include
-// a receiver; the returned function will always use v as the receiver.
-// Method panics if i is out of range.
-func (v Value) Method(i int) Value {
- if v.typ == nil {
- panic(&ValueError{"reflect.Value.Method", Invalid})
- }
- if v.flag&flagMethod != 0 || i < 0 || i >= v.typ.NumMethod() {
- panic("reflect: Method index out of range")
- }
- fl := v.flag & (flagRO | flagAddr | flagIndir)
- fl |= flag(Func) << flagKindShift
- fl |= flag(i)<<flagMethodShift | flagMethod
- return Value{v.typ, v.val, fl}
-}
-
-// NumMethod returns the number of methods in the value's method set.
-func (v Value) NumMethod() int {
- if v.typ == nil {
- panic(&ValueError{"reflect.Value.NumMethod", Invalid})
- }
- if v.flag&flagMethod != 0 {
- return 0
- }
- return v.typ.NumMethod()
-}
-
-// MethodByName returns a function value corresponding to the method
-// of v with the given name.
-// The arguments to a Call on the returned function should not include
-// a receiver; the returned function will always use v as the receiver.
-// It returns the zero Value if no method was found.
-func (v Value) MethodByName(name string) Value {
- if v.typ == nil {
- panic(&ValueError{"reflect.Value.MethodByName", Invalid})
- }
- if v.flag&flagMethod != 0 {
- return Value{}
- }
- m, ok := v.typ.MethodByName(name)
- if !ok {
- return Value{}
- }
- return v.Method(m.Index)
-}
-
-// NumField returns the number of fields in the struct v.
-// It panics if v's Kind is not Struct.
-func (v Value) NumField() int {
- v.mustBe(Struct)
- tt := (*structType)(unsafe.Pointer(v.typ))
- return len(tt.fields)
-}
-
-// OverflowComplex returns true if the complex128 x cannot be represented by v's type.
-// It panics if v's Kind is not Complex64 or Complex128.
-func (v Value) OverflowComplex(x complex128) bool {
- k := v.kind()
- switch k {
- case Complex64:
- return overflowFloat32(real(x)) || overflowFloat32(imag(x))
- case Complex128:
- return false
- }
- panic(&ValueError{"reflect.Value.OverflowComplex", k})
-}
-
-// OverflowFloat returns true if the float64 x cannot be represented by v's type.
-// It panics if v's Kind is not Float32 or Float64.
-func (v Value) OverflowFloat(x float64) bool {
- k := v.kind()
- switch k {
- case Float32:
- return overflowFloat32(x)
- case Float64:
- return false
- }
- panic(&ValueError{"reflect.Value.OverflowFloat", k})
-}
-
-func overflowFloat32(x float64) bool {
- if x < 0 {
- x = -x
- }
- return math.MaxFloat32 < x && x <= math.MaxFloat64
-}
-
-// OverflowInt returns true if the int64 x cannot be represented by v's type.
-// It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
-func (v Value) OverflowInt(x int64) bool {
- k := v.kind()
- switch k {
- case Int, Int8, Int16, Int32, Int64:
- bitSize := v.typ.size * 8
- trunc := (x << (64 - bitSize)) >> (64 - bitSize)
- return x != trunc
- }
- panic(&ValueError{"reflect.Value.OverflowInt", k})
-}
-
-// OverflowUint returns true if the uint64 x cannot be represented by v's type.
-// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
-func (v Value) OverflowUint(x uint64) bool {
- k := v.kind()
- switch k {
- case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
- bitSize := v.typ.size * 8
- trunc := (x << (64 - bitSize)) >> (64 - bitSize)
- return x != trunc
- }
- panic(&ValueError{"reflect.Value.OverflowUint", k})
-}
-
-// Pointer returns v's value as a uintptr.
-// It returns uintptr instead of unsafe.Pointer so that
-// code using reflect cannot obtain unsafe.Pointers
-// without importing the unsafe package explicitly.
-// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
-func (v Value) Pointer() uintptr {
- k := v.kind()
- switch k {
- case Chan, Func, Map, Ptr, UnsafePointer:
- if k == Func && v.flag&flagMethod != 0 {
- panic("reflect.Value.Pointer of method Value")
- }
- p := v.val
- if v.flag&flagIndir != 0 {
- p = *(*unsafe.Pointer)(p)
- }
- return uintptr(p)
- case Slice:
- return (*SliceHeader)(v.val).Data
- }
- panic(&ValueError{"reflect.Value.Pointer", k})
-}
-
-// Recv receives and returns a value from the channel v.
-// It panics if v's Kind is not Chan.
-// The receive blocks until a value is ready.
-// The boolean value ok is true if the value x corresponds to a send
-// on the channel, false if it is a zero value received because the channel is closed.
-func (v Value) Recv() (x Value, ok bool) {
- v.mustBe(Chan)
- v.mustBeExported()
- return v.recv(false)
-}
-
-// internal recv, possibly non-blocking (nb).
-// v is known to be a channel.
-func (v Value) recv(nb bool) (val Value, ok bool) {
- tt := (*chanType)(unsafe.Pointer(v.typ))
- if ChanDir(tt.dir)&RecvDir == 0 {
- panic("recv on send-only channel")
- }
- word, selected, ok := chanrecv(v.typ, *(*iword)(v.iword()), nb)
- if selected {
- typ := tt.elem
- fl := flag(typ.Kind()) << flagKindShift
- if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
- fl |= flagIndir
- }
- val = Value{typ, unsafe.Pointer(word), fl}
- }
- return
-}
-
-// Send sends x on the channel v.
-// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
-// As in Go, x's value must be assignable to the channel's element type.
-func (v Value) Send(x Value) {
- v.mustBe(Chan)
- v.mustBeExported()
- v.send(x, false)
-}
-
-// internal send, possibly non-blocking.
-// v is known to be a channel.
-func (v Value) send(x Value, nb bool) (selected bool) {
- tt := (*chanType)(unsafe.Pointer(v.typ))
- if ChanDir(tt.dir)&SendDir == 0 {
- panic("send on recv-only channel")
- }
- x.mustBeExported()
- x = x.assignTo("reflect.Value.Send", tt.elem, nil)
- return chansend(v.typ, *(*iword)(v.iword()), x.iword(), nb)
-}
-
-// Set assigns x to the value v.
-// It panics if CanSet returns false.
-// As in Go, x's value must be assignable to v's type.
-func (v Value) Set(x Value) {
- v.mustBeAssignable()
- x.mustBeExported() // do not let unexported x leak
- var target *interface{}
- if v.kind() == Interface {
- target = (*interface{})(v.val)
- }
- x = x.assignTo("reflect.Set", v.typ, target)
- if x.flag&flagIndir != 0 {
- memmove(v.val, x.val, v.typ.size)
- } else {
- storeIword(v.val, iword(x.val), v.typ.size)
- }
-}
-
-// SetBool sets v's underlying value.
-// It panics if v's Kind is not Bool or if CanSet() is false.
-func (v Value) SetBool(x bool) {
- v.mustBeAssignable()
- v.mustBe(Bool)
- *(*bool)(v.val) = x
-}
-
-// SetBytes sets v's underlying value.
-// It panics if v's underlying value is not a slice of bytes.
-func (v Value) SetBytes(x []byte) {
- v.mustBeAssignable()
- v.mustBe(Slice)
- if v.typ.Elem().Kind() != Uint8 {
- panic("reflect.Value.SetBytes of non-byte slice")
- }
- *(*[]byte)(v.val) = x
-}
-
-// setRunes sets v's underlying value.
-// It panics if v's underlying value is not a slice of runes (int32s).
-func (v Value) setRunes(x []rune) {
- v.mustBeAssignable()
- v.mustBe(Slice)
- if v.typ.Elem().Kind() != Int32 {
- panic("reflect.Value.setRunes of non-rune slice")
- }
- *(*[]rune)(v.val) = x
-}
-
-// SetComplex sets v's underlying value to x.
-// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
-func (v Value) SetComplex(x complex128) {
- v.mustBeAssignable()
- switch k := v.kind(); k {
- default:
- panic(&ValueError{"reflect.Value.SetComplex", k})
- case Complex64:
- *(*complex64)(v.val) = complex64(x)
- case Complex128:
- *(*complex128)(v.val) = x
- }
-}
-
-// SetFloat sets v's underlying value to x.
-// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
-func (v Value) SetFloat(x float64) {
- v.mustBeAssignable()
- switch k := v.kind(); k {
- default:
- panic(&ValueError{"reflect.Value.SetFloat", k})
- case Float32:
- *(*float32)(v.val) = float32(x)
- case Float64:
- *(*float64)(v.val) = x
- }
-}
-
-// SetInt sets v's underlying value to x.
-// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
-func (v Value) SetInt(x int64) {
- v.mustBeAssignable()
- switch k := v.kind(); k {
- default:
- panic(&ValueError{"reflect.Value.SetInt", k})
- case Int:
- *(*int)(v.val) = int(x)
- case Int8:
- *(*int8)(v.val) = int8(x)
- case Int16:
- *(*int16)(v.val) = int16(x)
- case Int32:
- *(*int32)(v.val) = int32(x)
- case Int64:
- *(*int64)(v.val) = x
- }
-}
-
-// SetLen sets v's length to n.
-// It panics if v's Kind is not Slice or if n is negative or
-// greater than the capacity of the slice.
-func (v Value) SetLen(n int) {
- v.mustBeAssignable()
- v.mustBe(Slice)
- s := (*SliceHeader)(v.val)
- if n < 0 || n > int(s.Cap) {
- panic("reflect: slice length out of range in SetLen")
- }
- s.Len = n
-}
-
-// SetMapIndex sets the value associated with key in the map v to val.
-// It panics if v's Kind is not Map.
-// If val is the zero Value, SetMapIndex deletes the key from the map.
-// As in Go, key's value must be assignable to the map's key type,
-// and val's value must be assignable to the map's value type.
-func (v Value) SetMapIndex(key, val Value) {
- v.mustBe(Map)
- v.mustBeExported()
- key.mustBeExported()
- tt := (*mapType)(unsafe.Pointer(v.typ))
- key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
- if val.typ != nil {
- val.mustBeExported()
- val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
- }
- mapassign(v.typ, *(*iword)(v.iword()), key.iword(), val.iword(), val.typ != nil)
-}
-
-// SetUint sets v's underlying value to x.
-// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
-func (v Value) SetUint(x uint64) {
- v.mustBeAssignable()
- switch k := v.kind(); k {
- default:
- panic(&ValueError{"reflect.Value.SetUint", k})
- case Uint:
- *(*uint)(v.val) = uint(x)
- case Uint8:
- *(*uint8)(v.val) = uint8(x)
- case Uint16:
- *(*uint16)(v.val) = uint16(x)
- case Uint32:
- *(*uint32)(v.val) = uint32(x)
- case Uint64:
- *(*uint64)(v.val) = x
- case Uintptr:
- *(*uintptr)(v.val) = uintptr(x)
- }
-}
-
-// SetPointer sets the unsafe.Pointer value v to x.
-// It panics if v's Kind is not UnsafePointer.
-func (v Value) SetPointer(x unsafe.Pointer) {
- v.mustBeAssignable()
- v.mustBe(UnsafePointer)
- *(*unsafe.Pointer)(v.val) = x
-}
-
-// SetString sets v's underlying value to x.
-// It panics if v's Kind is not String or if CanSet() is false.
-func (v Value) SetString(x string) {
- v.mustBeAssignable()
- v.mustBe(String)
- *(*string)(v.val) = x
-}
-
-// Slice returns a slice of v.
-// It panics if v's Kind is not Array, Slice, or String.
-func (v Value) Slice(beg, end int) Value {
- var (
- cap int
- typ *sliceType
- base unsafe.Pointer
- )
- switch k := v.kind(); k {
- default:
- panic(&ValueError{"reflect.Value.Slice", k})
-
- case Array:
- if v.flag&flagAddr == 0 {
- panic("reflect.Value.Slice: slice of unaddressable array")
- }
- tt := (*arrayType)(unsafe.Pointer(v.typ))
- cap = int(tt.len)
- typ = (*sliceType)(unsafe.Pointer(tt.slice))
- base = v.val
-
- case Slice:
- typ = (*sliceType)(unsafe.Pointer(v.typ))
- s := (*SliceHeader)(v.val)
- base = unsafe.Pointer(s.Data)
- cap = s.Cap
-
- case String:
- s := (*StringHeader)(v.val)
- if beg < 0 || end < beg || end > s.Len {
- panic("reflect.Value.Slice: string slice index out of bounds")
- }
- var x string
- val := (*StringHeader)(unsafe.Pointer(&x))
- val.Data = s.Data + uintptr(beg)
- val.Len = end - beg
- return Value{v.typ, unsafe.Pointer(&x), v.flag}
- }
-
- if beg < 0 || end < beg || end > cap {
- panic("reflect.Value.Slice: slice index out of bounds")
- }
-
- // Declare slice so that gc can see the base pointer in it.
- var x []unsafe.Pointer
-
- // Reinterpret as *SliceHeader to edit.
- s := (*SliceHeader)(unsafe.Pointer(&x))
- s.Data = uintptr(base) + uintptr(beg)*typ.elem.Size()
- s.Len = end - beg
- s.Cap = cap - beg
-
- fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift
- return Value{typ.common(), unsafe.Pointer(&x), fl}
-}
-
-// String returns the string v's underlying value, as a string.
-// String is a special case because of Go's String method convention.
-// Unlike the other getters, it does not panic if v's Kind is not String.
-// Instead, it returns a string of the form "<T value>" where T is v's type.
-func (v Value) String() string {
- switch k := v.kind(); k {
- case Invalid:
- return "<invalid Value>"
- case String:
- return *(*string)(v.val)
- }
- // If you call String on a reflect.Value of other type, it's better to
- // print something than to panic. Useful in debugging.
- return "<" + v.typ.String() + " Value>"
-}
-
-// TryRecv attempts to receive a value from the channel v but will not block.
-// It panics if v's Kind is not Chan.
-// If the receive cannot finish without blocking, x is the zero Value.
-// The boolean ok is true if the value x corresponds to a send
-// on the channel, false if it is a zero value received because the channel is closed.
-func (v Value) TryRecv() (x Value, ok bool) {
- v.mustBe(Chan)
- v.mustBeExported()
- return v.recv(true)
-}
-
-// TrySend attempts to send x on the channel v but will not block.
-// It panics if v's Kind is not Chan.
-// It returns true if the value was sent, false otherwise.
-// As in Go, x's value must be assignable to the channel's element type.
-func (v Value) TrySend(x Value) bool {
- v.mustBe(Chan)
- v.mustBeExported()
- return v.send(x, true)
-}
-
-// Type returns v's type.
-func (v Value) Type() Type {
- f := v.flag
- if f == 0 {
- panic(&ValueError{"reflect.Value.Type", Invalid})
- }
- if f&flagMethod == 0 {
- // Easy case
- return toType(v.typ)
- }
-
- // Method value.
- // v.typ describes the receiver, not the method type.
- i := int(v.flag) >> flagMethodShift
- if v.typ.Kind() == Interface {
- // Method on interface.
- tt := (*interfaceType)(unsafe.Pointer(v.typ))
- if i < 0 || i >= len(tt.methods) {
- panic("reflect: broken Value")
- }
- m := &tt.methods[i]
- return toType(m.typ)
- }
- // Method on concrete type.
- ut := v.typ.uncommon()
- if ut == nil || i < 0 || i >= len(ut.methods) {
- panic("reflect: broken Value")
- }
- m := &ut.methods[i]
- return toType(m.mtyp)
-}
-
-// Uint returns v's underlying value, as a uint64.
-// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
-func (v Value) Uint() uint64 {
- k := v.kind()
- var p unsafe.Pointer
- if v.flag&flagIndir != 0 {
- p = v.val
- } else {
- // The escape analysis is good enough that &v.val
- // does not trigger a heap allocation.
- p = unsafe.Pointer(&v.val)
- }
- switch k {
- case Uint:
- return uint64(*(*uint)(p))
- case Uint8:
- return uint64(*(*uint8)(p))
- case Uint16:
- return uint64(*(*uint16)(p))
- case Uint32:
- return uint64(*(*uint32)(p))
- case Uint64:
- return uint64(*(*uint64)(p))
- case Uintptr:
- return uint64(*(*uintptr)(p))
- }
- panic(&ValueError{"reflect.Value.Uint", k})
-}
-
-// UnsafeAddr returns a pointer to v's data.
-// It is for advanced clients that also import the "unsafe" package.
-// It panics if v is not addressable.
-func (v Value) UnsafeAddr() uintptr {
- if v.typ == nil {
- panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
- }
- if v.flag&flagAddr == 0 {
- panic("reflect.Value.UnsafeAddr of unaddressable value")
- }
- return uintptr(v.val)
-}
-
-// StringHeader is the runtime representation of a string.
-// It cannot be used safely or portably.
-type StringHeader struct {
- Data uintptr
- Len int
-}
-
-// SliceHeader is the runtime representation of a slice.
-// It cannot be used safely or portably.
-type SliceHeader struct {
- Data uintptr
- Len int
- Cap int
-}
-
-func typesMustMatch(what string, t1, t2 Type) {
- if t1 != t2 {
- panic(what + ": " + t1.String() + " != " + t2.String())
- }
-}
-
-// grow grows the slice s so that it can hold extra more values, allocating
-// more capacity if needed. It also returns the old and new slice lengths.
-func grow(s Value, extra int) (Value, int, int) {
- i0 := s.Len()
- i1 := i0 + extra
- if i1 < i0 {
- panic("reflect.Append: slice overflow")
- }
- m := s.Cap()
- if i1 <= m {
- return s.Slice(0, i1), i0, i1
- }
- if m == 0 {
- m = extra
- } else {
- for m < i1 {
- if i0 < 1024 {
- m += m
- } else {
- m += m / 4
- }
- }
- }
- t := MakeSlice(s.Type(), i1, m)
- Copy(t, s)
- return t, i0, i1
-}
-
-// Append appends the values x to a slice s and returns the resulting slice.
-// As in Go, each x's value must be assignable to the slice's element type.
-func Append(s Value, x ...Value) Value {
- s.mustBe(Slice)
- s, i0, i1 := grow(s, len(x))
- for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
- s.Index(i).Set(x[j])
- }
- return s
-}
-
-// AppendSlice appends a slice t to a slice s and returns the resulting slice.
-// The slices s and t must have the same element type.
-func AppendSlice(s, t Value) Value {
- s.mustBe(Slice)
- t.mustBe(Slice)
- typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
- s, i0, i1 := grow(s, t.Len())
- Copy(s.Slice(i0, i1), t)
- return s
-}
-
-// Copy copies the contents of src into dst until either
-// dst has been filled or src has been exhausted.
-// It returns the number of elements copied.
-// Dst and src each must have kind Slice or Array, and
-// dst and src must have the same element type.
-func Copy(dst, src Value) int {
- dk := dst.kind()
- if dk != Array && dk != Slice {
- panic(&ValueError{"reflect.Copy", dk})
- }
- if dk == Array {
- dst.mustBeAssignable()
- }
- dst.mustBeExported()
-
- sk := src.kind()
- if sk != Array && sk != Slice {
- panic(&ValueError{"reflect.Copy", sk})
- }
- src.mustBeExported()
-
- de := dst.typ.Elem()
- se := src.typ.Elem()
- typesMustMatch("reflect.Copy", de, se)
-
- n := dst.Len()
- if sn := src.Len(); n > sn {
- n = sn
- }
-
- // If sk is an in-line array, cannot take its address.
- // Instead, copy element by element.
- if src.flag&flagIndir == 0 {
- for i := 0; i < n; i++ {
- dst.Index(i).Set(src.Index(i))
- }
- return n
- }
-
- // Copy via memmove.
- var da, sa unsafe.Pointer
- if dk == Array {
- da = dst.val
- } else {
- da = unsafe.Pointer((*SliceHeader)(dst.val).Data)
- }
- if sk == Array {
- sa = src.val
- } else {
- sa = unsafe.Pointer((*SliceHeader)(src.val).Data)
- }
- memmove(da, sa, uintptr(n)*de.Size())
- return n
-}
-
-// A runtimeSelect is a single case passed to rselect.
-// This must match ../runtime/chan.c:/runtimeSelect
-type runtimeSelect struct {
- dir uintptr // 0, SendDir, or RecvDir
- typ *rtype // channel type
- ch iword // interface word for channel
- val iword // interface word for value (for SendDir)
-}
-
-// rselect runs a select. It returns the index of the chosen case,
-// and if the case was a receive, the interface word of the received
-// value and the conventional OK bool to indicate whether the receive
-// corresponds to a sent value.
-func rselect([]runtimeSelect) (chosen int, recv iword, recvOK bool)
-
-// A SelectDir describes the communication direction of a select case.
-type SelectDir int
-
-// NOTE: These values must match ../runtime/chan.c:/SelectDir.
-
-const (
- _ SelectDir = iota
- SelectSend // case Chan <- Send
- SelectRecv // case <-Chan:
- SelectDefault // default
-)
-
-// A SelectCase describes a single case in a select operation.
-// The kind of case depends on Dir, the communication direction.
-//
-// If Dir is SelectDefault, the case represents a default case.
-// Chan and Send must be zero Values.
-//
-// If Dir is SelectSend, the case represents a send operation.
-// Normally Chan's underlying value must be a channel, and Send's underlying value must be
-// assignable to the channel's element type. As a special case, if Chan is a zero Value,
-// then the case is ignored, and the field Send will also be ignored and may be either zero
-// or non-zero.
-//
-// If Dir is SelectRecv, the case represents a receive operation.
-// Normally Chan's underlying value must be a channel and Send must be a zero Value.
-// If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
-// When a receive operation is selected, the received Value is returned by Select.
-//
-type SelectCase struct {
- Dir SelectDir // direction of case
- Chan Value // channel to use (for send or receive)
- Send Value // value to send (for send)
-}
-
-// Select executes a select operation described by the list of cases.
-// Like the Go select statement, it blocks until one of the cases can
-// proceed and then executes that case. It returns the index of the chosen case
-// and, if that case was a receive operation, the value received and a
-// boolean indicating whether the value corresponds to a send on the channel
-// (as opposed to a zero value received because the channel is closed).
-func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
- // NOTE: Do not trust that caller is not modifying cases data underfoot.
- // The range is safe because the caller cannot modify our copy of the len
- // and each iteration makes its own copy of the value c.
- runcases := make([]runtimeSelect, len(cases))
- haveDefault := false
- for i, c := range cases {
- rc := &runcases[i]
- rc.dir = uintptr(c.Dir)
- switch c.Dir {
- default:
- panic("reflect.Select: invalid Dir")
-
- case SelectDefault: // default
- if haveDefault {
- panic("reflect.Select: multiple default cases")
- }
- haveDefault = true
- if c.Chan.IsValid() {
- panic("reflect.Select: default case has Chan value")
- }
- if c.Send.IsValid() {
- panic("reflect.Select: default case has Send value")
- }
-
- case SelectSend:
- ch := c.Chan
- if !ch.IsValid() {
- break
- }
- ch.mustBe(Chan)
- ch.mustBeExported()
- tt := (*chanType)(unsafe.Pointer(ch.typ))
- if ChanDir(tt.dir)&SendDir == 0 {
- panic("reflect.Select: SendDir case using recv-only channel")
- }
- rc.ch = *(*iword)(ch.iword())
- rc.typ = &tt.rtype
- v := c.Send
- if !v.IsValid() {
- panic("reflect.Select: SendDir case missing Send value")
- }
- v.mustBeExported()
- v = v.assignTo("reflect.Select", tt.elem, nil)
- rc.val = v.iword()
-
- case SelectRecv:
- if c.Send.IsValid() {
- panic("reflect.Select: RecvDir case has Send value")
- }
- ch := c.Chan
- if !ch.IsValid() {
- break
- }
- ch.mustBe(Chan)
- ch.mustBeExported()
- tt := (*chanType)(unsafe.Pointer(ch.typ))
- rc.typ = &tt.rtype
- if ChanDir(tt.dir)&RecvDir == 0 {
- panic("reflect.Select: RecvDir case using send-only channel")
- }
- rc.ch = *(*iword)(ch.iword())
- }
- }
-
- chosen, word, recvOK := rselect(runcases)
- if runcases[chosen].dir == uintptr(SelectRecv) {
- tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
- typ := tt.elem
- fl := flag(typ.Kind()) << flagKindShift
- if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
- fl |= flagIndir
- }
- recv = Value{typ, unsafe.Pointer(word), fl}
- }
- return chosen, recv, recvOK
-}
-
-/*
- * constructors
- */
-
-// implemented in package runtime
-func unsafe_New(*rtype) unsafe.Pointer
-func unsafe_NewArray(*rtype, int) unsafe.Pointer
-
-// MakeSlice creates a new zero-initialized slice value
-// for the specified slice type, length, and capacity.
-func MakeSlice(typ Type, len, cap int) Value {
- if typ.Kind() != Slice {
- panic("reflect.MakeSlice of non-slice type")
- }
- if len < 0 {
- panic("reflect.MakeSlice: negative len")
- }
- if cap < 0 {
- panic("reflect.MakeSlice: negative cap")
- }
- if len > cap {
- panic("reflect.MakeSlice: len > cap")
- }
-
- // Declare slice so that gc can see the base pointer in it.
- var x []unsafe.Pointer
-
- // Reinterpret as *SliceHeader to edit.
- s := (*SliceHeader)(unsafe.Pointer(&x))
- s.Data = uintptr(unsafe_NewArray(typ.Elem().(*rtype), cap))
- s.Len = len
- s.Cap = cap
-
- return Value{typ.common(), unsafe.Pointer(&x), flagIndir | flag(Slice)<<flagKindShift}
-}
-
-// MakeChan creates a new channel with the specified type and buffer size.
-func MakeChan(typ Type, buffer int) Value {
- if typ.Kind() != Chan {
- panic("reflect.MakeChan of non-chan type")
- }
- if buffer < 0 {
- panic("reflect.MakeChan: negative buffer size")
- }
- if typ.ChanDir() != BothDir {
- panic("reflect.MakeChan: unidirectional channel type")
- }
- ch := makechan(typ.(*rtype), uint64(buffer))
- return Value{typ.common(), unsafe.Pointer(ch), flagIndir | (flag(Chan) << flagKindShift)}
-}
-
-// MakeMap creates a new map of the specified type.
-func MakeMap(typ Type) Value {
- if typ.Kind() != Map {
- panic("reflect.MakeMap of non-map type")
- }
- m := makemap(typ.(*rtype))
- return Value{typ.common(), unsafe.Pointer(m), flagIndir | (flag(Map) << flagKindShift)}
-}
-
-// Indirect returns the value that v points to.
-// If v is a nil pointer, Indirect returns a zero Value.
-// If v is not a pointer, Indirect returns v.
-func Indirect(v Value) Value {
- if v.Kind() != Ptr {
- return v
- }
- return v.Elem()
-}
-
-// ValueOf returns a new Value initialized to the concrete value
-// stored in the interface i. ValueOf(nil) returns the zero Value.
-func ValueOf(i interface{}) Value {
- if i == nil {
- return Value{}
- }
-
- // TODO(rsc): Eliminate this terrible hack.
- // In the call to packValue, eface.typ doesn't escape,
- // and eface.word is an integer. So it looks like
- // i (= eface) doesn't escape. But really it does,
- // because eface.word is actually a pointer.
- escapes(i)
-
- // For an interface value with the noAddr bit set,
- // the representation is identical to an empty interface.
- eface := *(*emptyInterface)(unsafe.Pointer(&i))
- typ := eface.typ
- fl := flag(typ.Kind()) << flagKindShift
- if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
- fl |= flagIndir
- }
- return Value{typ, unsafe.Pointer(eface.word), fl}
-}
-
-// Zero returns a Value representing the zero value for the specified type.
-// The result is different from the zero value of the Value struct,
-// which represents no value at all.
-// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
-// The returned value is neither addressable nor settable.
-func Zero(typ Type) Value {
- if typ == nil {
- panic("reflect: Zero(nil)")
- }
- t := typ.common()
- fl := flag(t.Kind()) << flagKindShift
- if t.Kind() == Ptr || t.Kind() == UnsafePointer {
- return Value{t, nil, fl}
- }
- return Value{t, unsafe_New(typ.(*rtype)), fl | flagIndir}
-}
-
-// New returns a Value representing a pointer to a new zero value
-// for the specified type. That is, the returned Value's Type is PtrTo(t).
-func New(typ Type) Value {
- if typ == nil {
- panic("reflect: New(nil)")
- }
- ptr := unsafe_New(typ.(*rtype))
- fl := flag(Ptr) << flagKindShift
- return Value{typ.common().ptrTo(), ptr, fl}
-}
-
-// NewAt returns a Value representing a pointer to a value of the
-// specified type, using p as that pointer.
-func NewAt(typ Type, p unsafe.Pointer) Value {
- fl := flag(Ptr) << flagKindShift
- return Value{typ.common().ptrTo(), p, fl}
-}
-
-// assignTo returns a value v that can be assigned directly to typ.
-// It panics if v is not assignable to typ.
-// For a conversion to an interface type, target is a suggested scratch space to use.
-func (v Value) assignTo(context string, dst *rtype, target *interface{}) Value {
- if v.flag&flagMethod != 0 {
- panic(context + ": cannot assign method value to type " + dst.String())
- }
-
- switch {
- case directlyAssignable(dst, v.typ):
- // Overwrite type so that they match.
- // Same memory layout, so no harm done.
- v.typ = dst
- fl := v.flag & (flagRO | flagAddr | flagIndir)
- fl |= flag(dst.Kind()) << flagKindShift
- return Value{dst, v.val, fl}
-
- case implements(dst, v.typ):
- if target == nil {
- target = new(interface{})
- }
- x := valueInterface(v, false)
- if dst.NumMethod() == 0 {
- *target = x
- } else {
- ifaceE2I(dst, x, unsafe.Pointer(target))
- }
- return Value{dst, unsafe.Pointer(target), flagIndir | flag(Interface)<<flagKindShift}
- }
-
- // Failed.
- panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
-}
-
-// Convert returns the value v converted to type t.
-// If the usual Go conversion rules do not allow conversion
-// of the value v to type t, Convert panics.
-func (v Value) Convert(t Type) Value {
- if v.flag&flagMethod != 0 {
- panic("reflect.Value.Convert: cannot convert method values")
- }
- op := convertOp(t.common(), v.typ)
- if op == nil {
- panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
- }
- return op(v, t)
-}
-
-// convertOp returns the function to convert a value of type src
-// to a value of type dst. If the conversion is illegal, convertOp returns nil.
-func convertOp(dst, src *rtype) func(Value, Type) Value {
- switch src.Kind() {
- case Int, Int8, Int16, Int32, Int64:
- switch dst.Kind() {
- case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
- return cvtInt
- case Float32, Float64:
- return cvtIntFloat
- case String:
- return cvtIntString
- }
-
- case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
- switch dst.Kind() {
- case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
- return cvtUint
- case Float32, Float64:
- return cvtUintFloat
- case String:
- return cvtUintString
- }
-
- case Float32, Float64:
- switch dst.Kind() {
- case Int, Int8, Int16, Int32, Int64:
- return cvtFloatInt
- case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
- return cvtFloatUint
- case Float32, Float64:
- return cvtFloat
- }
-
- case Complex64, Complex128:
- switch dst.Kind() {
- case Complex64, Complex128:
- return cvtComplex
- }
-
- case String:
- if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
- switch dst.Elem().Kind() {
- case Uint8:
- return cvtStringBytes
- case Int32:
- return cvtStringRunes
- }
- }
-
- case Slice:
- if dst.Kind() == String && src.Elem().PkgPath() == "" {
- switch src.Elem().Kind() {
- case Uint8:
- return cvtBytesString
- case Int32:
- return cvtRunesString
- }
- }
- }
-
- // dst and src have same underlying type.
- if haveIdenticalUnderlyingType(dst, src) {
- return cvtDirect
- }
-
- // dst and src are unnamed pointer types with same underlying base type.
- if dst.Kind() == Ptr && dst.Name() == "" &&
- src.Kind() == Ptr && src.Name() == "" &&
- haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common()) {
- return cvtDirect
- }
-
- if implements(dst, src) {
- if src.Kind() == Interface {
- return cvtI2I
- }
- return cvtT2I
- }
-
- return nil
-}
-
-// makeInt returns a Value of type t equal to bits (possibly truncated),
-// where t is a signed or unsigned int type.
-func makeInt(f flag, bits uint64, t Type) Value {
- typ := t.common()
- if typ.size > ptrSize {
- // Assume ptrSize >= 4, so this must be uint64.
- ptr := unsafe_New(typ)
- *(*uint64)(unsafe.Pointer(ptr)) = bits
- return Value{typ, ptr, f | flagIndir | flag(typ.Kind())<<flagKindShift}
- }
- var w iword
- switch typ.size {
- case 1:
- *(*uint8)(unsafe.Pointer(&w)) = uint8(bits)
- case 2:
- *(*uint16)(unsafe.Pointer(&w)) = uint16(bits)
- case 4:
- *(*uint32)(unsafe.Pointer(&w)) = uint32(bits)
- case 8:
- *(*uint64)(unsafe.Pointer(&w)) = uint64(bits)
- }
- return Value{typ, unsafe.Pointer(&w), f | flag(typ.Kind())<<flagKindShift | flagIndir}
-}
-
-// makeFloat returns a Value of type t equal to v (possibly truncated to float32),
-// where t is a float32 or float64 type.
-func makeFloat(f flag, v float64, t Type) Value {
- typ := t.common()
- if typ.size > ptrSize {
- // Assume ptrSize >= 4, so this must be float64.
- ptr := unsafe_New(typ)
- *(*float64)(unsafe.Pointer(ptr)) = v
- return Value{typ, ptr, f | flagIndir | flag(typ.Kind())<<flagKindShift}
- }
-
- var w iword
- switch typ.size {
- case 4:
- *(*float32)(unsafe.Pointer(&w)) = float32(v)
- case 8:
- *(*float64)(unsafe.Pointer(&w)) = v
- }
- return Value{typ, unsafe.Pointer(&w), f | flag(typ.Kind())<<flagKindShift | flagIndir}
-}
-
-// makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
-// where t is a complex64 or complex128 type.
-func makeComplex(f flag, v complex128, t Type) Value {
- typ := t.common()
- if typ.size > ptrSize {
- ptr := unsafe_New(typ)
- switch typ.size {
- case 8:
- *(*complex64)(unsafe.Pointer(ptr)) = complex64(v)
- case 16:
- *(*complex128)(unsafe.Pointer(ptr)) = v
- }
- return Value{typ, ptr, f | flagIndir | flag(typ.Kind())<<flagKindShift}
- }
-
- // Assume ptrSize <= 8 so this must be complex64.
- var w iword
- *(*complex64)(unsafe.Pointer(&w)) = complex64(v)
- return Value{typ, unsafe.Pointer(&w), f | flag(typ.Kind())<<flagKindShift | flagIndir}
-}
-
-func makeString(f flag, v string, t Type) Value {
- ret := New(t).Elem()
- ret.SetString(v)
- ret.flag = ret.flag&^flagAddr | f | flagIndir
- return ret
-}
-
-func makeBytes(f flag, v []byte, t Type) Value {
- ret := New(t).Elem()
- ret.SetBytes(v)
- ret.flag = ret.flag&^flagAddr | f | flagIndir
- return ret
-}
-
-func makeRunes(f flag, v []rune, t Type) Value {
- ret := New(t).Elem()
- ret.setRunes(v)
- ret.flag = ret.flag&^flagAddr | f | flagIndir
- return ret
-}
-
-// These conversion functions are returned by convertOp
-// for classes of conversions. For example, the first function, cvtInt,
-// takes any value v of signed int type and returns the value converted
-// to type t, where t is any signed or unsigned int type.
-
-// convertOp: intXX -> [u]intXX
-func cvtInt(v Value, t Type) Value {
- return makeInt(v.flag&flagRO, uint64(v.Int()), t)
-}
-
-// convertOp: uintXX -> [u]intXX
-func cvtUint(v Value, t Type) Value {
- return makeInt(v.flag&flagRO, v.Uint(), t)
-}
-
-// convertOp: floatXX -> intXX
-func cvtFloatInt(v Value, t Type) Value {
- return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t)
-}
-
-// convertOp: floatXX -> uintXX
-func cvtFloatUint(v Value, t Type) Value {
- return makeInt(v.flag&flagRO, uint64(v.Float()), t)
-}
-
-// convertOp: intXX -> floatXX
-func cvtIntFloat(v Value, t Type) Value {
- return makeFloat(v.flag&flagRO, float64(v.Int()), t)
-}
-
-// convertOp: uintXX -> floatXX
-func cvtUintFloat(v Value, t Type) Value {
- return makeFloat(v.flag&flagRO, float64(v.Uint()), t)
-}
-
-// convertOp: floatXX -> floatXX
-func cvtFloat(v Value, t Type) Value {
- return makeFloat(v.flag&flagRO, v.Float(), t)
-}
-
-// convertOp: complexXX -> complexXX
-func cvtComplex(v Value, t Type) Value {
- return makeComplex(v.flag&flagRO, v.Complex(), t)
-}
-
-// convertOp: intXX -> string
-func cvtIntString(v Value, t Type) Value {
- return makeString(v.flag&flagRO, string(v.Int()), t)
-}
-
-// convertOp: uintXX -> string
-func cvtUintString(v Value, t Type) Value {
- return makeString(v.flag&flagRO, string(v.Uint()), t)
-}
-
-// convertOp: []byte -> string
-func cvtBytesString(v Value, t Type) Value {
- return makeString(v.flag&flagRO, string(v.Bytes()), t)
-}
-
-// convertOp: string -> []byte
-func cvtStringBytes(v Value, t Type) Value {
- return makeBytes(v.flag&flagRO, []byte(v.String()), t)
-}
-
-// convertOp: []rune -> string
-func cvtRunesString(v Value, t Type) Value {
- return makeString(v.flag&flagRO, string(v.runes()), t)
-}
-
-// convertOp: string -> []rune
-func cvtStringRunes(v Value, t Type) Value {
- return makeRunes(v.flag&flagRO, []rune(v.String()), t)
-}
-
-// convertOp: direct copy
-func cvtDirect(v Value, typ Type) Value {
- f := v.flag
- t := typ.common()
- val := v.val
- if f&flagAddr != 0 {
- // indirect, mutable word - make a copy
- ptr := unsafe_New(t)
- memmove(ptr, val, t.size)
- val = ptr
- f &^= flagAddr
- }
- return Value{t, val, v.flag&flagRO | f}
-}
-
-// convertOp: concrete -> interface
-func cvtT2I(v Value, typ Type) Value {
- target := new(interface{})
- x := valueInterface(v, false)
- if typ.NumMethod() == 0 {
- *target = x
- } else {
- ifaceE2I(typ.(*rtype), x, unsafe.Pointer(target))
- }
- return Value{typ.common(), unsafe.Pointer(target), v.flag&flagRO | flagIndir | flag(Interface)<<flagKindShift}
-}
-
-// convertOp: interface -> interface
-func cvtI2I(v Value, typ Type) Value {
- if v.IsNil() {
- ret := Zero(typ)
- ret.flag |= v.flag & flagRO
- return ret
- }
- return cvtT2I(v.Elem(), typ)
-}
-
-// implemented in ../pkg/runtime
-func chancap(ch iword) int
-func chanclose(ch iword)
-func chanlen(ch iword) int
-func chanrecv(t *rtype, ch iword, nb bool) (val iword, selected, received bool)
-func chansend(t *rtype, ch iword, val iword, nb bool) bool
-
-func makechan(typ *rtype, size uint64) (ch iword)
-func makemap(t *rtype) (m iword)
-func mapaccess(t *rtype, m iword, key iword) (val iword, ok bool)
-func mapassign(t *rtype, m iword, key, val iword, ok bool)
-func mapiterinit(t *rtype, m iword) *byte
-func mapiterkey(it *byte) (key iword, ok bool)
-func mapiternext(it *byte)
-func maplen(m iword) int
-
-func call(typ *rtype, fnaddr unsafe.Pointer, isInterface bool, isMethod bool, params *unsafe.Pointer, results *unsafe.Pointer)
-func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
-
-// Dummy annotation marking that the value x escapes,
-// for use in cases where the reflect code is so clever that
-// the compiler cannot follow.
-func escapes(x interface{}) {
- if dummy.b {
- dummy.x = x
- }
-}
-
-var dummy struct {
- b bool
- x interface{}
-}