aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/libgo/go/math/big/nat.go
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/libgo/go/math/big/nat.go')
-rw-r--r--gcc-4.8.1/libgo/go/math/big/nat.go1505
1 files changed, 0 insertions, 1505 deletions
diff --git a/gcc-4.8.1/libgo/go/math/big/nat.go b/gcc-4.8.1/libgo/go/math/big/nat.go
deleted file mode 100644
index 9d09f97b7..000000000
--- a/gcc-4.8.1/libgo/go/math/big/nat.go
+++ /dev/null
@@ -1,1505 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package big implements multi-precision arithmetic (big numbers).
-// The following numeric types are supported:
-//
-// - Int signed integers
-// - Rat rational numbers
-//
-// Methods are typically of the form:
-//
-// func (z *Int) Op(x, y *Int) *Int (similar for *Rat)
-//
-// and implement operations z = x Op y with the result as receiver; if it
-// is one of the operands it may be overwritten (and its memory reused).
-// To enable chaining of operations, the result is also returned. Methods
-// returning a result other than *Int or *Rat take one of the operands as
-// the receiver.
-//
-package big
-
-// This file contains operations on unsigned multi-precision integers.
-// These are the building blocks for the operations on signed integers
-// and rationals.
-
-import (
- "errors"
- "io"
- "math"
- "math/rand"
- "sync"
-)
-
-// An unsigned integer x of the form
-//
-// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
-//
-// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
-// with the digits x[i] as the slice elements.
-//
-// A number is normalized if the slice contains no leading 0 digits.
-// During arithmetic operations, denormalized values may occur but are
-// always normalized before returning the final result. The normalized
-// representation of 0 is the empty or nil slice (length = 0).
-//
-type nat []Word
-
-var (
- natOne = nat{1}
- natTwo = nat{2}
- natTen = nat{10}
-)
-
-func (z nat) clear() {
- for i := range z {
- z[i] = 0
- }
-}
-
-func (z nat) norm() nat {
- i := len(z)
- for i > 0 && z[i-1] == 0 {
- i--
- }
- return z[0:i]
-}
-
-func (z nat) make(n int) nat {
- if n <= cap(z) {
- return z[0:n] // reuse z
- }
- // Choosing a good value for e has significant performance impact
- // because it increases the chance that a value can be reused.
- const e = 4 // extra capacity
- return make(nat, n, n+e)
-}
-
-func (z nat) setWord(x Word) nat {
- if x == 0 {
- return z.make(0)
- }
- z = z.make(1)
- z[0] = x
- return z
-}
-
-func (z nat) setUint64(x uint64) nat {
- // single-digit values
- if w := Word(x); uint64(w) == x {
- return z.setWord(w)
- }
-
- // compute number of words n required to represent x
- n := 0
- for t := x; t > 0; t >>= _W {
- n++
- }
-
- // split x into n words
- z = z.make(n)
- for i := range z {
- z[i] = Word(x & _M)
- x >>= _W
- }
-
- return z
-}
-
-func (z nat) set(x nat) nat {
- z = z.make(len(x))
- copy(z, x)
- return z
-}
-
-func (z nat) add(x, y nat) nat {
- m := len(x)
- n := len(y)
-
- switch {
- case m < n:
- return z.add(y, x)
- case m == 0:
- // n == 0 because m >= n; result is 0
- return z.make(0)
- case n == 0:
- // result is x
- return z.set(x)
- }
- // m > 0
-
- z = z.make(m + 1)
- c := addVV(z[0:n], x, y)
- if m > n {
- c = addVW(z[n:m], x[n:], c)
- }
- z[m] = c
-
- return z.norm()
-}
-
-func (z nat) sub(x, y nat) nat {
- m := len(x)
- n := len(y)
-
- switch {
- case m < n:
- panic("underflow")
- case m == 0:
- // n == 0 because m >= n; result is 0
- return z.make(0)
- case n == 0:
- // result is x
- return z.set(x)
- }
- // m > 0
-
- z = z.make(m)
- c := subVV(z[0:n], x, y)
- if m > n {
- c = subVW(z[n:], x[n:], c)
- }
- if c != 0 {
- panic("underflow")
- }
-
- return z.norm()
-}
-
-func (x nat) cmp(y nat) (r int) {
- m := len(x)
- n := len(y)
- if m != n || m == 0 {
- switch {
- case m < n:
- r = -1
- case m > n:
- r = 1
- }
- return
- }
-
- i := m - 1
- for i > 0 && x[i] == y[i] {
- i--
- }
-
- switch {
- case x[i] < y[i]:
- r = -1
- case x[i] > y[i]:
- r = 1
- }
- return
-}
-
-func (z nat) mulAddWW(x nat, y, r Word) nat {
- m := len(x)
- if m == 0 || y == 0 {
- return z.setWord(r) // result is r
- }
- // m > 0
-
- z = z.make(m + 1)
- z[m] = mulAddVWW(z[0:m], x, y, r)
-
- return z.norm()
-}
-
-// basicMul multiplies x and y and leaves the result in z.
-// The (non-normalized) result is placed in z[0 : len(x) + len(y)].
-func basicMul(z, x, y nat) {
- z[0 : len(x)+len(y)].clear() // initialize z
- for i, d := range y {
- if d != 0 {
- z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
- }
- }
-}
-
-// Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks.
-// Factored out for readability - do not use outside karatsuba.
-func karatsubaAdd(z, x nat, n int) {
- if c := addVV(z[0:n], z, x); c != 0 {
- addVW(z[n:n+n>>1], z[n:], c)
- }
-}
-
-// Like karatsubaAdd, but does subtract.
-func karatsubaSub(z, x nat, n int) {
- if c := subVV(z[0:n], z, x); c != 0 {
- subVW(z[n:n+n>>1], z[n:], c)
- }
-}
-
-// Operands that are shorter than karatsubaThreshold are multiplied using
-// "grade school" multiplication; for longer operands the Karatsuba algorithm
-// is used.
-var karatsubaThreshold int = 40 // computed by calibrate.go
-
-// karatsuba multiplies x and y and leaves the result in z.
-// Both x and y must have the same length n and n must be a
-// power of 2. The result vector z must have len(z) >= 6*n.
-// The (non-normalized) result is placed in z[0 : 2*n].
-func karatsuba(z, x, y nat) {
- n := len(y)
-
- // Switch to basic multiplication if numbers are odd or small.
- // (n is always even if karatsubaThreshold is even, but be
- // conservative)
- if n&1 != 0 || n < karatsubaThreshold || n < 2 {
- basicMul(z, x, y)
- return
- }
- // n&1 == 0 && n >= karatsubaThreshold && n >= 2
-
- // Karatsuba multiplication is based on the observation that
- // for two numbers x and y with:
- //
- // x = x1*b + x0
- // y = y1*b + y0
- //
- // the product x*y can be obtained with 3 products z2, z1, z0
- // instead of 4:
- //
- // x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0
- // = z2*b*b + z1*b + z0
- //
- // with:
- //
- // xd = x1 - x0
- // yd = y0 - y1
- //
- // z1 = xd*yd + z2 + z0
- // = (x1-x0)*(y0 - y1) + z2 + z0
- // = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0
- // = x1*y0 - z2 - z0 + x0*y1 + z2 + z0
- // = x1*y0 + x0*y1
-
- // split x, y into "digits"
- n2 := n >> 1 // n2 >= 1
- x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0
- y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0
-
- // z is used for the result and temporary storage:
- //
- // 6*n 5*n 4*n 3*n 2*n 1*n 0*n
- // z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ]
- //
- // For each recursive call of karatsuba, an unused slice of
- // z is passed in that has (at least) half the length of the
- // caller's z.
-
- // compute z0 and z2 with the result "in place" in z
- karatsuba(z, x0, y0) // z0 = x0*y0
- karatsuba(z[n:], x1, y1) // z2 = x1*y1
-
- // compute xd (or the negative value if underflow occurs)
- s := 1 // sign of product xd*yd
- xd := z[2*n : 2*n+n2]
- if subVV(xd, x1, x0) != 0 { // x1-x0
- s = -s
- subVV(xd, x0, x1) // x0-x1
- }
-
- // compute yd (or the negative value if underflow occurs)
- yd := z[2*n+n2 : 3*n]
- if subVV(yd, y0, y1) != 0 { // y0-y1
- s = -s
- subVV(yd, y1, y0) // y1-y0
- }
-
- // p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0
- // p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0
- p := z[n*3:]
- karatsuba(p, xd, yd)
-
- // save original z2:z0
- // (ok to use upper half of z since we're done recursing)
- r := z[n*4:]
- copy(r, z[:n*2])
-
- // add up all partial products
- //
- // 2*n n 0
- // z = [ z2 | z0 ]
- // + [ z0 ]
- // + [ z2 ]
- // + [ p ]
- //
- karatsubaAdd(z[n2:], r, n)
- karatsubaAdd(z[n2:], r[n:], n)
- if s > 0 {
- karatsubaAdd(z[n2:], p, n)
- } else {
- karatsubaSub(z[n2:], p, n)
- }
-}
-
-// alias returns true if x and y share the same base array.
-func alias(x, y nat) bool {
- return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
-}
-
-// addAt implements z += x<<(_W*i); z must be long enough.
-// (we don't use nat.add because we need z to stay the same
-// slice, and we don't need to normalize z after each addition)
-func addAt(z, x nat, i int) {
- if n := len(x); n > 0 {
- if c := addVV(z[i:i+n], z[i:], x); c != 0 {
- j := i + n
- if j < len(z) {
- addVW(z[j:], z[j:], c)
- }
- }
- }
-}
-
-func max(x, y int) int {
- if x > y {
- return x
- }
- return y
-}
-
-// karatsubaLen computes an approximation to the maximum k <= n such that
-// k = p<<i for a number p <= karatsubaThreshold and an i >= 0. Thus, the
-// result is the largest number that can be divided repeatedly by 2 before
-// becoming about the value of karatsubaThreshold.
-func karatsubaLen(n int) int {
- i := uint(0)
- for n > karatsubaThreshold {
- n >>= 1
- i++
- }
- return n << i
-}
-
-func (z nat) mul(x, y nat) nat {
- m := len(x)
- n := len(y)
-
- switch {
- case m < n:
- return z.mul(y, x)
- case m == 0 || n == 0:
- return z.make(0)
- case n == 1:
- return z.mulAddWW(x, y[0], 0)
- }
- // m >= n > 1
-
- // determine if z can be reused
- if alias(z, x) || alias(z, y) {
- z = nil // z is an alias for x or y - cannot reuse
- }
-
- // use basic multiplication if the numbers are small
- if n < karatsubaThreshold {
- z = z.make(m + n)
- basicMul(z, x, y)
- return z.norm()
- }
- // m >= n && n >= karatsubaThreshold && n >= 2
-
- // determine Karatsuba length k such that
- //
- // x = xh*b + x0 (0 <= x0 < b)
- // y = yh*b + y0 (0 <= y0 < b)
- // b = 1<<(_W*k) ("base" of digits xi, yi)
- //
- k := karatsubaLen(n)
- // k <= n
-
- // multiply x0 and y0 via Karatsuba
- x0 := x[0:k] // x0 is not normalized
- y0 := y[0:k] // y0 is not normalized
- z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
- karatsuba(z, x0, y0)
- z = z[0 : m+n] // z has final length but may be incomplete
- z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m)
-
- // If xh != 0 or yh != 0, add the missing terms to z. For
- //
- // xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b)
- // yh = y1*b (0 <= y1 < b)
- //
- // the missing terms are
- //
- // x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0
- //
- // since all the yi for i > 1 are 0 by choice of k: If any of them
- // were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would
- // be a larger valid threshold contradicting the assumption about k.
- //
- if k < n || m != n {
- var t nat
-
- // add x0*y1*b
- x0 := x0.norm()
- y1 := y[k:] // y1 is normalized because y is
- t = t.mul(x0, y1) // update t so we don't lose t's underlying array
- addAt(z, t, k)
-
- // add xi*y0<<i, xi*y1*b<<(i+k)
- y0 := y0.norm()
- for i := k; i < len(x); i += k {
- xi := x[i:]
- if len(xi) > k {
- xi = xi[:k]
- }
- xi = xi.norm()
- t = t.mul(xi, y0)
- addAt(z, t, i)
- t = t.mul(xi, y1)
- addAt(z, t, i+k)
- }
- }
-
- return z.norm()
-}
-
-// mulRange computes the product of all the unsigned integers in the
-// range [a, b] inclusively. If a > b (empty range), the result is 1.
-func (z nat) mulRange(a, b uint64) nat {
- switch {
- case a == 0:
- // cut long ranges short (optimization)
- return z.setUint64(0)
- case a > b:
- return z.setUint64(1)
- case a == b:
- return z.setUint64(a)
- case a+1 == b:
- return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b))
- }
- m := (a + b) / 2
- return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b))
-}
-
-// q = (x-r)/y, with 0 <= r < y
-func (z nat) divW(x nat, y Word) (q nat, r Word) {
- m := len(x)
- switch {
- case y == 0:
- panic("division by zero")
- case y == 1:
- q = z.set(x) // result is x
- return
- case m == 0:
- q = z.make(0) // result is 0
- return
- }
- // m > 0
- z = z.make(m)
- r = divWVW(z, 0, x, y)
- q = z.norm()
- return
-}
-
-func (z nat) div(z2, u, v nat) (q, r nat) {
- if len(v) == 0 {
- panic("division by zero")
- }
-
- if u.cmp(v) < 0 {
- q = z.make(0)
- r = z2.set(u)
- return
- }
-
- if len(v) == 1 {
- var r2 Word
- q, r2 = z.divW(u, v[0])
- r = z2.setWord(r2)
- return
- }
-
- q, r = z.divLarge(z2, u, v)
- return
-}
-
-// q = (uIn-r)/v, with 0 <= r < y
-// Uses z as storage for q, and u as storage for r if possible.
-// See Knuth, Volume 2, section 4.3.1, Algorithm D.
-// Preconditions:
-// len(v) >= 2
-// len(uIn) >= len(v)
-func (z nat) divLarge(u, uIn, v nat) (q, r nat) {
- n := len(v)
- m := len(uIn) - n
-
- // determine if z can be reused
- // TODO(gri) should find a better solution - this if statement
- // is very costly (see e.g. time pidigits -s -n 10000)
- if alias(z, uIn) || alias(z, v) {
- z = nil // z is an alias for uIn or v - cannot reuse
- }
- q = z.make(m + 1)
-
- qhatv := make(nat, n+1)
- if alias(u, uIn) || alias(u, v) {
- u = nil // u is an alias for uIn or v - cannot reuse
- }
- u = u.make(len(uIn) + 1)
- u.clear()
-
- // D1.
- shift := leadingZeros(v[n-1])
- if shift > 0 {
- // do not modify v, it may be used by another goroutine simultaneously
- v1 := make(nat, n)
- shlVU(v1, v, shift)
- v = v1
- }
- u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift)
-
- // D2.
- for j := m; j >= 0; j-- {
- // D3.
- qhat := Word(_M)
- if u[j+n] != v[n-1] {
- var rhat Word
- qhat, rhat = divWW(u[j+n], u[j+n-1], v[n-1])
-
- // x1 | x2 = q̂v_{n-2}
- x1, x2 := mulWW(qhat, v[n-2])
- // test if q̂v_{n-2} > br̂ + u_{j+n-2}
- for greaterThan(x1, x2, rhat, u[j+n-2]) {
- qhat--
- prevRhat := rhat
- rhat += v[n-1]
- // v[n-1] >= 0, so this tests for overflow.
- if rhat < prevRhat {
- break
- }
- x1, x2 = mulWW(qhat, v[n-2])
- }
- }
-
- // D4.
- qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0)
-
- c := subVV(u[j:j+len(qhatv)], u[j:], qhatv)
- if c != 0 {
- c := addVV(u[j:j+n], u[j:], v)
- u[j+n] += c
- qhat--
- }
-
- q[j] = qhat
- }
-
- q = q.norm()
- shrVU(u, u, shift)
- r = u.norm()
-
- return q, r
-}
-
-// Length of x in bits. x must be normalized.
-func (x nat) bitLen() int {
- if i := len(x) - 1; i >= 0 {
- return i*_W + bitLen(x[i])
- }
- return 0
-}
-
-// MaxBase is the largest number base accepted for string conversions.
-const MaxBase = 'z' - 'a' + 10 + 1 // = hexValue('z') + 1
-
-func hexValue(ch rune) Word {
- d := int(MaxBase + 1) // illegal base
- switch {
- case '0' <= ch && ch <= '9':
- d = int(ch - '0')
- case 'a' <= ch && ch <= 'z':
- d = int(ch - 'a' + 10)
- case 'A' <= ch && ch <= 'Z':
- d = int(ch - 'A' + 10)
- }
- return Word(d)
-}
-
-// scan sets z to the natural number corresponding to the longest possible prefix
-// read from r representing an unsigned integer in a given conversion base.
-// It returns z, the actual conversion base used, and an error, if any. In the
-// error case, the value of z is undefined. The syntax follows the syntax of
-// unsigned integer literals in Go.
-//
-// The base argument must be 0 or a value from 2 through MaxBase. If the base
-// is 0, the string prefix determines the actual conversion base. A prefix of
-// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
-// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
-//
-func (z nat) scan(r io.RuneScanner, base int) (nat, int, error) {
- // reject illegal bases
- if base < 0 || base == 1 || MaxBase < base {
- return z, 0, errors.New("illegal number base")
- }
-
- // one char look-ahead
- ch, _, err := r.ReadRune()
- if err != nil {
- return z, 0, err
- }
-
- // determine base if necessary
- b := Word(base)
- if base == 0 {
- b = 10
- if ch == '0' {
- switch ch, _, err = r.ReadRune(); err {
- case nil:
- b = 8
- switch ch {
- case 'x', 'X':
- b = 16
- case 'b', 'B':
- b = 2
- }
- if b == 2 || b == 16 {
- if ch, _, err = r.ReadRune(); err != nil {
- return z, 0, err
- }
- }
- case io.EOF:
- return z.make(0), 10, nil
- default:
- return z, 10, err
- }
- }
- }
-
- // convert string
- // - group as many digits d as possible together into a "super-digit" dd with "super-base" bb
- // - only when bb does not fit into a word anymore, do a full number mulAddWW using bb and dd
- z = z.make(0)
- bb := Word(1)
- dd := Word(0)
- for max := _M / b; ; {
- d := hexValue(ch)
- if d >= b {
- r.UnreadRune() // ch does not belong to number anymore
- break
- }
-
- if bb <= max {
- bb *= b
- dd = dd*b + d
- } else {
- // bb * b would overflow
- z = z.mulAddWW(z, bb, dd)
- bb = b
- dd = d
- }
-
- if ch, _, err = r.ReadRune(); err != nil {
- if err != io.EOF {
- return z, int(b), err
- }
- break
- }
- }
-
- switch {
- case bb > 1:
- // there was at least one mantissa digit
- z = z.mulAddWW(z, bb, dd)
- case base == 0 && b == 8:
- // there was only the octal prefix 0 (possibly followed by digits > 7);
- // return base 10, not 8
- return z, 10, nil
- case base != 0 || b != 8:
- // there was neither a mantissa digit nor the octal prefix 0
- return z, int(b), errors.New("syntax error scanning number")
- }
-
- return z.norm(), int(b), nil
-}
-
-// Character sets for string conversion.
-const (
- lowercaseDigits = "0123456789abcdefghijklmnopqrstuvwxyz"
- uppercaseDigits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
-)
-
-// decimalString returns a decimal representation of x.
-// It calls x.string with the charset "0123456789".
-func (x nat) decimalString() string {
- return x.string(lowercaseDigits[0:10])
-}
-
-// string converts x to a string using digits from a charset; a digit with
-// value d is represented by charset[d]. The conversion base is determined
-// by len(charset), which must be >= 2 and <= 256.
-func (x nat) string(charset string) string {
- b := Word(len(charset))
-
- // special cases
- switch {
- case b < 2 || MaxBase > 256:
- panic("illegal base")
- case len(x) == 0:
- return string(charset[0])
- }
-
- // allocate buffer for conversion
- i := int(float64(x.bitLen())/math.Log2(float64(b))) + 1 // off by one at most
- s := make([]byte, i)
-
- // convert power of two and non power of two bases separately
- if b == b&-b {
- // shift is base-b digit size in bits
- shift := trailingZeroBits(b) // shift > 0 because b >= 2
- mask := Word(1)<<shift - 1
- w := x[0]
- nbits := uint(_W) // number of unprocessed bits in w
-
- // convert less-significant words
- for k := 1; k < len(x); k++ {
- // convert full digits
- for nbits >= shift {
- i--
- s[i] = charset[w&mask]
- w >>= shift
- nbits -= shift
- }
-
- // convert any partial leading digit and advance to next word
- if nbits == 0 {
- // no partial digit remaining, just advance
- w = x[k]
- nbits = _W
- } else {
- // partial digit in current (k-1) and next (k) word
- w |= x[k] << nbits
- i--
- s[i] = charset[w&mask]
-
- // advance
- w = x[k] >> (shift - nbits)
- nbits = _W - (shift - nbits)
- }
- }
-
- // convert digits of most-significant word (omit leading zeros)
- for nbits >= 0 && w != 0 {
- i--
- s[i] = charset[w&mask]
- w >>= shift
- nbits -= shift
- }
-
- } else {
- // determine "big base"; i.e., the largest possible value bb
- // that is a power of base b and still fits into a Word
- // (as in 10^19 for 19 decimal digits in a 64bit Word)
- bb := b // big base is b**ndigits
- ndigits := 1 // number of base b digits
- for max := Word(_M / b); bb <= max; bb *= b {
- ndigits++ // maximize ndigits where bb = b**ndigits, bb <= _M
- }
-
- // construct table of successive squares of bb*leafSize to use in subdivisions
- // result (table != nil) <=> (len(x) > leafSize > 0)
- table := divisors(len(x), b, ndigits, bb)
-
- // preserve x, create local copy for use by convertWords
- q := nat(nil).set(x)
-
- // convert q to string s in base b
- q.convertWords(s, charset, b, ndigits, bb, table)
-
- // strip leading zeros
- // (x != 0; thus s must contain at least one non-zero digit
- // and the loop will terminate)
- i = 0
- for zero := charset[0]; s[i] == zero; {
- i++
- }
- }
-
- return string(s[i:])
-}
-
-// Convert words of q to base b digits in s. If q is large, it is recursively "split in half"
-// by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using
-// repeated nat/Word division.
-//
-// The iterative method processes n Words by n divW() calls, each of which visits every Word in the
-// incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s.
-// Recursive conversion divides q by its approximate square root, yielding two parts, each half
-// the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s
-// plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and
-// is made better by splitting the subblocks recursively. Best is to split blocks until one more
-// split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the
-// iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the
-// range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and
-// ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for
-// specific hardware.
-//
-func (q nat) convertWords(s []byte, charset string, b Word, ndigits int, bb Word, table []divisor) {
- // split larger blocks recursively
- if table != nil {
- // len(q) > leafSize > 0
- var r nat
- index := len(table) - 1
- for len(q) > leafSize {
- // find divisor close to sqrt(q) if possible, but in any case < q
- maxLength := q.bitLen() // ~= log2 q, or at of least largest possible q of this bit length
- minLength := maxLength >> 1 // ~= log2 sqrt(q)
- for index > 0 && table[index-1].nbits > minLength {
- index-- // desired
- }
- if table[index].nbits >= maxLength && table[index].bbb.cmp(q) >= 0 {
- index--
- if index < 0 {
- panic("internal inconsistency")
- }
- }
-
- // split q into the two digit number (q'*bbb + r) to form independent subblocks
- q, r = q.div(r, q, table[index].bbb)
-
- // convert subblocks and collect results in s[:h] and s[h:]
- h := len(s) - table[index].ndigits
- r.convertWords(s[h:], charset, b, ndigits, bb, table[0:index])
- s = s[:h] // == q.convertWords(s, charset, b, ndigits, bb, table[0:index+1])
- }
- }
-
- // having split any large blocks now process the remaining (small) block iteratively
- i := len(s)
- var r Word
- if b == 10 {
- // hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants)
- for len(q) > 0 {
- // extract least significant, base bb "digit"
- q, r = q.divW(q, bb)
- for j := 0; j < ndigits && i > 0; j++ {
- i--
- // avoid % computation since r%10 == r - int(r/10)*10;
- // this appears to be faster for BenchmarkString10000Base10
- // and smaller strings (but a bit slower for larger ones)
- t := r / 10
- s[i] = charset[r-t<<3-t-t] // TODO(gri) replace w/ t*10 once compiler produces better code
- r = t
- }
- }
- } else {
- for len(q) > 0 {
- // extract least significant, base bb "digit"
- q, r = q.divW(q, bb)
- for j := 0; j < ndigits && i > 0; j++ {
- i--
- s[i] = charset[r%b]
- r /= b
- }
- }
- }
-
- // prepend high-order zeroes
- zero := charset[0]
- for i > 0 { // while need more leading zeroes
- i--
- s[i] = zero
- }
-}
-
-// Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion)
-// Benchmark and configure leafSize using: go test -bench="Leaf"
-// 8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines)
-// 8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPU
-var leafSize int = 8 // number of Word-size binary values treat as a monolithic block
-
-type divisor struct {
- bbb nat // divisor
- nbits int // bit length of divisor (discounting leading zeroes) ~= log2(bbb)
- ndigits int // digit length of divisor in terms of output base digits
-}
-
-var cacheBase10 struct {
- sync.Mutex
- table [64]divisor // cached divisors for base 10
-}
-
-// expWW computes x**y
-func (z nat) expWW(x, y Word) nat {
- return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil)
-}
-
-// construct table of powers of bb*leafSize to use in subdivisions
-func divisors(m int, b Word, ndigits int, bb Word) []divisor {
- // only compute table when recursive conversion is enabled and x is large
- if leafSize == 0 || m <= leafSize {
- return nil
- }
-
- // determine k where (bb**leafSize)**(2**k) >= sqrt(x)
- k := 1
- for words := leafSize; words < m>>1 && k < len(cacheBase10.table); words <<= 1 {
- k++
- }
-
- // reuse and extend existing table of divisors or create new table as appropriate
- var table []divisor // for b == 10, table overlaps with cacheBase10.table
- if b == 10 {
- cacheBase10.Lock()
- table = cacheBase10.table[0:k] // reuse old table for this conversion
- } else {
- table = make([]divisor, k) // create new table for this conversion
- }
-
- // extend table
- if table[k-1].ndigits == 0 {
- // add new entries as needed
- var larger nat
- for i := 0; i < k; i++ {
- if table[i].ndigits == 0 {
- if i == 0 {
- table[0].bbb = nat(nil).expWW(bb, Word(leafSize))
- table[0].ndigits = ndigits * leafSize
- } else {
- table[i].bbb = nat(nil).mul(table[i-1].bbb, table[i-1].bbb)
- table[i].ndigits = 2 * table[i-1].ndigits
- }
-
- // optimization: exploit aggregated extra bits in macro blocks
- larger = nat(nil).set(table[i].bbb)
- for mulAddVWW(larger, larger, b, 0) == 0 {
- table[i].bbb = table[i].bbb.set(larger)
- table[i].ndigits++
- }
-
- table[i].nbits = table[i].bbb.bitLen()
- }
- }
- }
-
- if b == 10 {
- cacheBase10.Unlock()
- }
-
- return table
-}
-
-const deBruijn32 = 0x077CB531
-
-var deBruijn32Lookup = []byte{
- 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
- 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
-}
-
-const deBruijn64 = 0x03f79d71b4ca8b09
-
-var deBruijn64Lookup = []byte{
- 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
- 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
- 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
- 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
-}
-
-// trailingZeroBits returns the number of consecutive least significant zero
-// bits of x.
-func trailingZeroBits(x Word) uint {
- // x & -x leaves only the right-most bit set in the word. Let k be the
- // index of that bit. Since only a single bit is set, the value is two
- // to the power of k. Multiplying by a power of two is equivalent to
- // left shifting, in this case by k bits. The de Bruijn constant is
- // such that all six bit, consecutive substrings are distinct.
- // Therefore, if we have a left shifted version of this constant we can
- // find by how many bits it was shifted by looking at which six bit
- // substring ended up at the top of the word.
- // (Knuth, volume 4, section 7.3.1)
- switch _W {
- case 32:
- return uint(deBruijn32Lookup[((x&-x)*deBruijn32)>>27])
- case 64:
- return uint(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58])
- default:
- panic("unknown word size")
- }
-
- return 0
-}
-
-// trailingZeroBits returns the number of consecutive least significant zero
-// bits of x.
-func (x nat) trailingZeroBits() uint {
- if len(x) == 0 {
- return 0
- }
- var i uint
- for x[i] == 0 {
- i++
- }
- // x[i] != 0
- return i*_W + trailingZeroBits(x[i])
-}
-
-// z = x << s
-func (z nat) shl(x nat, s uint) nat {
- m := len(x)
- if m == 0 {
- return z.make(0)
- }
- // m > 0
-
- n := m + int(s/_W)
- z = z.make(n + 1)
- z[n] = shlVU(z[n-m:n], x, s%_W)
- z[0 : n-m].clear()
-
- return z.norm()
-}
-
-// z = x >> s
-func (z nat) shr(x nat, s uint) nat {
- m := len(x)
- n := m - int(s/_W)
- if n <= 0 {
- return z.make(0)
- }
- // n > 0
-
- z = z.make(n)
- shrVU(z, x[m-n:], s%_W)
-
- return z.norm()
-}
-
-func (z nat) setBit(x nat, i uint, b uint) nat {
- j := int(i / _W)
- m := Word(1) << (i % _W)
- n := len(x)
- switch b {
- case 0:
- z = z.make(n)
- copy(z, x)
- if j >= n {
- // no need to grow
- return z
- }
- z[j] &^= m
- return z.norm()
- case 1:
- if j >= n {
- z = z.make(j + 1)
- z[n:].clear()
- } else {
- z = z.make(n)
- }
- copy(z, x)
- z[j] |= m
- // no need to normalize
- return z
- }
- panic("set bit is not 0 or 1")
-}
-
-func (z nat) bit(i uint) uint {
- j := int(i / _W)
- if j >= len(z) {
- return 0
- }
- return uint(z[j] >> (i % _W) & 1)
-}
-
-func (z nat) and(x, y nat) nat {
- m := len(x)
- n := len(y)
- if m > n {
- m = n
- }
- // m <= n
-
- z = z.make(m)
- for i := 0; i < m; i++ {
- z[i] = x[i] & y[i]
- }
-
- return z.norm()
-}
-
-func (z nat) andNot(x, y nat) nat {
- m := len(x)
- n := len(y)
- if n > m {
- n = m
- }
- // m >= n
-
- z = z.make(m)
- for i := 0; i < n; i++ {
- z[i] = x[i] &^ y[i]
- }
- copy(z[n:m], x[n:m])
-
- return z.norm()
-}
-
-func (z nat) or(x, y nat) nat {
- m := len(x)
- n := len(y)
- s := x
- if m < n {
- n, m = m, n
- s = y
- }
- // m >= n
-
- z = z.make(m)
- for i := 0; i < n; i++ {
- z[i] = x[i] | y[i]
- }
- copy(z[n:m], s[n:m])
-
- return z.norm()
-}
-
-func (z nat) xor(x, y nat) nat {
- m := len(x)
- n := len(y)
- s := x
- if m < n {
- n, m = m, n
- s = y
- }
- // m >= n
-
- z = z.make(m)
- for i := 0; i < n; i++ {
- z[i] = x[i] ^ y[i]
- }
- copy(z[n:m], s[n:m])
-
- return z.norm()
-}
-
-// greaterThan returns true iff (x1<<_W + x2) > (y1<<_W + y2)
-func greaterThan(x1, x2, y1, y2 Word) bool {
- return x1 > y1 || x1 == y1 && x2 > y2
-}
-
-// modW returns x % d.
-func (x nat) modW(d Word) (r Word) {
- // TODO(agl): we don't actually need to store the q value.
- var q nat
- q = q.make(len(x))
- return divWVW(q, 0, x, d)
-}
-
-// random creates a random integer in [0..limit), using the space in z if
-// possible. n is the bit length of limit.
-func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
- if alias(z, limit) {
- z = nil // z is an alias for limit - cannot reuse
- }
- z = z.make(len(limit))
-
- bitLengthOfMSW := uint(n % _W)
- if bitLengthOfMSW == 0 {
- bitLengthOfMSW = _W
- }
- mask := Word((1 << bitLengthOfMSW) - 1)
-
- for {
- switch _W {
- case 32:
- for i := range z {
- z[i] = Word(rand.Uint32())
- }
- case 64:
- for i := range z {
- z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
- }
- default:
- panic("unknown word size")
- }
- z[len(limit)-1] &= mask
- if z.cmp(limit) < 0 {
- break
- }
- }
-
- return z.norm()
-}
-
-// If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
-// otherwise it sets z to x**y. The result is the value of z.
-func (z nat) expNN(x, y, m nat) nat {
- if alias(z, x) || alias(z, y) {
- // We cannot allow in-place modification of x or y.
- z = nil
- }
-
- if len(y) == 0 {
- z = z.make(1)
- z[0] = 1
- return z
- }
- // y > 0
-
- if len(m) != 0 {
- // We likely end up being as long as the modulus.
- z = z.make(len(m))
- }
- z = z.set(x)
-
- // If the base is non-trivial and the exponent is large, we use
- // 4-bit, windowed exponentiation. This involves precomputing 14 values
- // (x^2...x^15) but then reduces the number of multiply-reduces by a
- // third. Even for a 32-bit exponent, this reduces the number of
- // operations.
- if len(x) > 1 && len(y) > 1 && len(m) > 0 {
- return z.expNNWindowed(x, y, m)
- }
-
- v := y[len(y)-1] // v > 0 because y is normalized and y > 0
- shift := leadingZeros(v) + 1
- v <<= shift
- var q nat
-
- const mask = 1 << (_W - 1)
-
- // We walk through the bits of the exponent one by one. Each time we
- // see a bit, we square, thus doubling the power. If the bit is a one,
- // we also multiply by x, thus adding one to the power.
-
- w := _W - int(shift)
- // zz and r are used to avoid allocating in mul and div as
- // otherwise the arguments would alias.
- var zz, r nat
- for j := 0; j < w; j++ {
- zz = zz.mul(z, z)
- zz, z = z, zz
-
- if v&mask != 0 {
- zz = zz.mul(z, x)
- zz, z = z, zz
- }
-
- if len(m) != 0 {
- zz, r = zz.div(r, z, m)
- zz, r, q, z = q, z, zz, r
- }
-
- v <<= 1
- }
-
- for i := len(y) - 2; i >= 0; i-- {
- v = y[i]
-
- for j := 0; j < _W; j++ {
- zz = zz.mul(z, z)
- zz, z = z, zz
-
- if v&mask != 0 {
- zz = zz.mul(z, x)
- zz, z = z, zz
- }
-
- if len(m) != 0 {
- zz, r = zz.div(r, z, m)
- zz, r, q, z = q, z, zz, r
- }
-
- v <<= 1
- }
- }
-
- return z.norm()
-}
-
-// expNNWindowed calculates x**y mod m using a fixed, 4-bit window.
-func (z nat) expNNWindowed(x, y, m nat) nat {
- // zz and r are used to avoid allocating in mul and div as otherwise
- // the arguments would alias.
- var zz, r nat
-
- const n = 4
- // powers[i] contains x^i.
- var powers [1 << n]nat
- powers[0] = natOne
- powers[1] = x
- for i := 2; i < 1<<n; i += 2 {
- p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1]
- *p = p.mul(*p2, *p2)
- zz, r = zz.div(r, *p, m)
- *p, r = r, *p
- *p1 = p1.mul(*p, x)
- zz, r = zz.div(r, *p1, m)
- *p1, r = r, *p1
- }
-
- z = z.setWord(1)
-
- for i := len(y) - 1; i >= 0; i-- {
- yi := y[i]
- for j := 0; j < _W; j += n {
- if i != len(y)-1 || j != 0 {
- // Unrolled loop for significant performance
- // gain. Use go test -bench=".*" in crypto/rsa
- // to check performance before making changes.
- zz = zz.mul(z, z)
- zz, z = z, zz
- zz, r = zz.div(r, z, m)
- z, r = r, z
-
- zz = zz.mul(z, z)
- zz, z = z, zz
- zz, r = zz.div(r, z, m)
- z, r = r, z
-
- zz = zz.mul(z, z)
- zz, z = z, zz
- zz, r = zz.div(r, z, m)
- z, r = r, z
-
- zz = zz.mul(z, z)
- zz, z = z, zz
- zz, r = zz.div(r, z, m)
- z, r = r, z
- }
-
- zz = zz.mul(z, powers[yi>>(_W-n)])
- zz, z = z, zz
- zz, r = zz.div(r, z, m)
- z, r = r, z
-
- yi <<= n
- }
- }
-
- return z.norm()
-}
-
-// probablyPrime performs reps Miller-Rabin tests to check whether n is prime.
-// If it returns true, n is prime with probability 1 - 1/4^reps.
-// If it returns false, n is not prime.
-func (n nat) probablyPrime(reps int) bool {
- if len(n) == 0 {
- return false
- }
-
- if len(n) == 1 {
- if n[0] < 2 {
- return false
- }
-
- if n[0]%2 == 0 {
- return n[0] == 2
- }
-
- // We have to exclude these cases because we reject all
- // multiples of these numbers below.
- switch n[0] {
- case 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53:
- return true
- }
- }
-
- const primesProduct32 = 0xC0CFD797 // Π {p ∈ primes, 2 < p <= 29}
- const primesProduct64 = 0xE221F97C30E94E1D // Π {p ∈ primes, 2 < p <= 53}
-
- var r Word
- switch _W {
- case 32:
- r = n.modW(primesProduct32)
- case 64:
- r = n.modW(primesProduct64 & _M)
- default:
- panic("Unknown word size")
- }
-
- if r%3 == 0 || r%5 == 0 || r%7 == 0 || r%11 == 0 ||
- r%13 == 0 || r%17 == 0 || r%19 == 0 || r%23 == 0 || r%29 == 0 {
- return false
- }
-
- if _W == 64 && (r%31 == 0 || r%37 == 0 || r%41 == 0 ||
- r%43 == 0 || r%47 == 0 || r%53 == 0) {
- return false
- }
-
- nm1 := nat(nil).sub(n, natOne)
- // determine q, k such that nm1 = q << k
- k := nm1.trailingZeroBits()
- q := nat(nil).shr(nm1, k)
-
- nm3 := nat(nil).sub(nm1, natTwo)
- rand := rand.New(rand.NewSource(int64(n[0])))
-
- var x, y, quotient nat
- nm3Len := nm3.bitLen()
-
-NextRandom:
- for i := 0; i < reps; i++ {
- x = x.random(rand, nm3, nm3Len)
- x = x.add(x, natTwo)
- y = y.expNN(x, q, n)
- if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
- continue
- }
- for j := uint(1); j < k; j++ {
- y = y.mul(y, y)
- quotient, y = quotient.div(y, y, n)
- if y.cmp(nm1) == 0 {
- continue NextRandom
- }
- if y.cmp(natOne) == 0 {
- return false
- }
- }
- return false
- }
-
- return true
-}
-
-// bytes writes the value of z into buf using big-endian encoding.
-// len(buf) must be >= len(z)*_S. The value of z is encoded in the
-// slice buf[i:]. The number i of unused bytes at the beginning of
-// buf is returned as result.
-func (z nat) bytes(buf []byte) (i int) {
- i = len(buf)
- for _, d := range z {
- for j := 0; j < _S; j++ {
- i--
- buf[i] = byte(d)
- d >>= 8
- }
- }
-
- for i < len(buf) && buf[i] == 0 {
- i++
- }
-
- return
-}
-
-// setBytes interprets buf as the bytes of a big-endian unsigned
-// integer, sets z to that value, and returns z.
-func (z nat) setBytes(buf []byte) nat {
- z = z.make((len(buf) + _S - 1) / _S)
-
- k := 0
- s := uint(0)
- var d Word
- for i := len(buf); i > 0; i-- {
- d |= Word(buf[i-1]) << s
- if s += 8; s == _S*8 {
- z[k] = d
- k++
- s = 0
- d = 0
- }
- }
- if k < len(z) {
- z[k] = d
- }
-
- return z.norm()
-}