aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/libgo/go/image/png/writer.go
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/libgo/go/image/png/writer.go')
-rw-r--r--gcc-4.8.1/libgo/go/image/png/writer.go482
1 files changed, 0 insertions, 482 deletions
diff --git a/gcc-4.8.1/libgo/go/image/png/writer.go b/gcc-4.8.1/libgo/go/image/png/writer.go
deleted file mode 100644
index 093d47193..000000000
--- a/gcc-4.8.1/libgo/go/image/png/writer.go
+++ /dev/null
@@ -1,482 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package png
-
-import (
- "bufio"
- "compress/zlib"
- "hash/crc32"
- "image"
- "image/color"
- "io"
- "strconv"
-)
-
-type encoder struct {
- w io.Writer
- m image.Image
- cb int
- err error
- header [8]byte
- footer [4]byte
- tmp [4 * 256]byte
-}
-
-// Big-endian.
-func writeUint32(b []uint8, u uint32) {
- b[0] = uint8(u >> 24)
- b[1] = uint8(u >> 16)
- b[2] = uint8(u >> 8)
- b[3] = uint8(u >> 0)
-}
-
-type opaquer interface {
- Opaque() bool
-}
-
-// Returns whether or not the image is fully opaque.
-func opaque(m image.Image) bool {
- if o, ok := m.(opaquer); ok {
- return o.Opaque()
- }
- b := m.Bounds()
- for y := b.Min.Y; y < b.Max.Y; y++ {
- for x := b.Min.X; x < b.Max.X; x++ {
- _, _, _, a := m.At(x, y).RGBA()
- if a != 0xffff {
- return false
- }
- }
- }
- return true
-}
-
-// The absolute value of a byte interpreted as a signed int8.
-func abs8(d uint8) int {
- if d < 128 {
- return int(d)
- }
- return 256 - int(d)
-}
-
-func (e *encoder) writeChunk(b []byte, name string) {
- if e.err != nil {
- return
- }
- n := uint32(len(b))
- if int(n) != len(b) {
- e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b)))
- return
- }
- writeUint32(e.header[:4], n)
- e.header[4] = name[0]
- e.header[5] = name[1]
- e.header[6] = name[2]
- e.header[7] = name[3]
- crc := crc32.NewIEEE()
- crc.Write(e.header[4:8])
- crc.Write(b)
- writeUint32(e.footer[:4], crc.Sum32())
-
- _, e.err = e.w.Write(e.header[:8])
- if e.err != nil {
- return
- }
- _, e.err = e.w.Write(b)
- if e.err != nil {
- return
- }
- _, e.err = e.w.Write(e.footer[:4])
-}
-
-func (e *encoder) writeIHDR() {
- b := e.m.Bounds()
- writeUint32(e.tmp[0:4], uint32(b.Dx()))
- writeUint32(e.tmp[4:8], uint32(b.Dy()))
- // Set bit depth and color type.
- switch e.cb {
- case cbG8:
- e.tmp[8] = 8
- e.tmp[9] = ctGrayscale
- case cbTC8:
- e.tmp[8] = 8
- e.tmp[9] = ctTrueColor
- case cbP8:
- e.tmp[8] = 8
- e.tmp[9] = ctPaletted
- case cbTCA8:
- e.tmp[8] = 8
- e.tmp[9] = ctTrueColorAlpha
- case cbG16:
- e.tmp[8] = 16
- e.tmp[9] = ctGrayscale
- case cbTC16:
- e.tmp[8] = 16
- e.tmp[9] = ctTrueColor
- case cbTCA16:
- e.tmp[8] = 16
- e.tmp[9] = ctTrueColorAlpha
- }
- e.tmp[10] = 0 // default compression method
- e.tmp[11] = 0 // default filter method
- e.tmp[12] = 0 // non-interlaced
- e.writeChunk(e.tmp[:13], "IHDR")
-}
-
-func (e *encoder) writePLTEAndTRNS(p color.Palette) {
- if len(p) < 1 || len(p) > 256 {
- e.err = FormatError("bad palette length: " + strconv.Itoa(len(p)))
- return
- }
- last := -1
- for i, c := range p {
- c1 := color.NRGBAModel.Convert(c).(color.NRGBA)
- e.tmp[3*i+0] = c1.R
- e.tmp[3*i+1] = c1.G
- e.tmp[3*i+2] = c1.B
- if c1.A != 0xff {
- last = i
- }
- e.tmp[3*256+i] = c1.A
- }
- e.writeChunk(e.tmp[:3*len(p)], "PLTE")
- if last != -1 {
- e.writeChunk(e.tmp[3*256:3*256+1+last], "tRNS")
- }
-}
-
-// An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks,
-// including an 8-byte header and 4-byte CRC checksum per Write call. Such calls
-// should be relatively infrequent, since writeIDATs uses a bufio.Writer.
-//
-// This method should only be called from writeIDATs (via writeImage).
-// No other code should treat an encoder as an io.Writer.
-func (e *encoder) Write(b []byte) (int, error) {
- e.writeChunk(b, "IDAT")
- if e.err != nil {
- return 0, e.err
- }
- return len(b), nil
-}
-
-// Chooses the filter to use for encoding the current row, and applies it.
-// The return value is the index of the filter and also of the row in cr that has had it applied.
-func filter(cr *[nFilter][]byte, pr []byte, bpp int) int {
- // We try all five filter types, and pick the one that minimizes the sum of absolute differences.
- // This is the same heuristic that libpng uses, although the filters are attempted in order of
- // estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than
- // in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth).
- cdat0 := cr[0][1:]
- cdat1 := cr[1][1:]
- cdat2 := cr[2][1:]
- cdat3 := cr[3][1:]
- cdat4 := cr[4][1:]
- pdat := pr[1:]
- n := len(cdat0)
-
- // The up filter.
- sum := 0
- for i := 0; i < n; i++ {
- cdat2[i] = cdat0[i] - pdat[i]
- sum += abs8(cdat2[i])
- }
- best := sum
- filter := ftUp
-
- // The Paeth filter.
- sum = 0
- for i := 0; i < bpp; i++ {
- cdat4[i] = cdat0[i] - paeth(0, pdat[i], 0)
- sum += abs8(cdat4[i])
- }
- for i := bpp; i < n; i++ {
- cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp])
- sum += abs8(cdat4[i])
- if sum >= best {
- break
- }
- }
- if sum < best {
- best = sum
- filter = ftPaeth
- }
-
- // The none filter.
- sum = 0
- for i := 0; i < n; i++ {
- sum += abs8(cdat0[i])
- if sum >= best {
- break
- }
- }
- if sum < best {
- best = sum
- filter = ftNone
- }
-
- // The sub filter.
- sum = 0
- for i := 0; i < bpp; i++ {
- cdat1[i] = cdat0[i]
- sum += abs8(cdat1[i])
- }
- for i := bpp; i < n; i++ {
- cdat1[i] = cdat0[i] - cdat0[i-bpp]
- sum += abs8(cdat1[i])
- if sum >= best {
- break
- }
- }
- if sum < best {
- best = sum
- filter = ftSub
- }
-
- // The average filter.
- sum = 0
- for i := 0; i < bpp; i++ {
- cdat3[i] = cdat0[i] - pdat[i]/2
- sum += abs8(cdat3[i])
- }
- for i := bpp; i < n; i++ {
- cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2)
- sum += abs8(cdat3[i])
- if sum >= best {
- break
- }
- }
- if sum < best {
- best = sum
- filter = ftAverage
- }
-
- return filter
-}
-
-func writeImage(w io.Writer, m image.Image, cb int) error {
- zw := zlib.NewWriter(w)
- defer zw.Close()
-
- bpp := 0 // Bytes per pixel.
-
- switch cb {
- case cbG8:
- bpp = 1
- case cbTC8:
- bpp = 3
- case cbP8:
- bpp = 1
- case cbTCA8:
- bpp = 4
- case cbTC16:
- bpp = 6
- case cbTCA16:
- bpp = 8
- case cbG16:
- bpp = 2
- }
- // cr[*] and pr are the bytes for the current and previous row.
- // cr[0] is unfiltered (or equivalently, filtered with the ftNone filter).
- // cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the
- // other PNG filter types. These buffers are allocated once and re-used for each row.
- // The +1 is for the per-row filter type, which is at cr[*][0].
- b := m.Bounds()
- var cr [nFilter][]uint8
- for i := range cr {
- cr[i] = make([]uint8, 1+bpp*b.Dx())
- cr[i][0] = uint8(i)
- }
- pr := make([]uint8, 1+bpp*b.Dx())
-
- gray, _ := m.(*image.Gray)
- rgba, _ := m.(*image.RGBA)
- paletted, _ := m.(*image.Paletted)
- nrgba, _ := m.(*image.NRGBA)
-
- for y := b.Min.Y; y < b.Max.Y; y++ {
- // Convert from colors to bytes.
- i := 1
- switch cb {
- case cbG8:
- if gray != nil {
- offset := (y - b.Min.Y) * gray.Stride
- copy(cr[0][1:], gray.Pix[offset:offset+b.Dx()])
- } else {
- for x := b.Min.X; x < b.Max.X; x++ {
- c := color.GrayModel.Convert(m.At(x, y)).(color.Gray)
- cr[0][i] = c.Y
- i++
- }
- }
- case cbTC8:
- // We have previously verified that the alpha value is fully opaque.
- cr0 := cr[0]
- stride, pix := 0, []byte(nil)
- if rgba != nil {
- stride, pix = rgba.Stride, rgba.Pix
- } else if nrgba != nil {
- stride, pix = nrgba.Stride, nrgba.Pix
- }
- if stride != 0 {
- j0 := (y - b.Min.Y) * stride
- j1 := j0 + b.Dx()*4
- for j := j0; j < j1; j += 4 {
- cr0[i+0] = pix[j+0]
- cr0[i+1] = pix[j+1]
- cr0[i+2] = pix[j+2]
- i += 3
- }
- } else {
- for x := b.Min.X; x < b.Max.X; x++ {
- r, g, b, _ := m.At(x, y).RGBA()
- cr0[i+0] = uint8(r >> 8)
- cr0[i+1] = uint8(g >> 8)
- cr0[i+2] = uint8(b >> 8)
- i += 3
- }
- }
- case cbP8:
- if paletted != nil {
- offset := (y - b.Min.Y) * paletted.Stride
- copy(cr[0][1:], paletted.Pix[offset:offset+b.Dx()])
- } else {
- pi := m.(image.PalettedImage)
- for x := b.Min.X; x < b.Max.X; x++ {
- cr[0][i] = pi.ColorIndexAt(x, y)
- i += 1
- }
- }
- case cbTCA8:
- if nrgba != nil {
- offset := (y - b.Min.Y) * nrgba.Stride
- copy(cr[0][1:], nrgba.Pix[offset:offset+b.Dx()*4])
- } else {
- // Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.
- for x := b.Min.X; x < b.Max.X; x++ {
- c := color.NRGBAModel.Convert(m.At(x, y)).(color.NRGBA)
- cr[0][i+0] = c.R
- cr[0][i+1] = c.G
- cr[0][i+2] = c.B
- cr[0][i+3] = c.A
- i += 4
- }
- }
- case cbG16:
- for x := b.Min.X; x < b.Max.X; x++ {
- c := color.Gray16Model.Convert(m.At(x, y)).(color.Gray16)
- cr[0][i+0] = uint8(c.Y >> 8)
- cr[0][i+1] = uint8(c.Y)
- i += 2
- }
- case cbTC16:
- // We have previously verified that the alpha value is fully opaque.
- for x := b.Min.X; x < b.Max.X; x++ {
- r, g, b, _ := m.At(x, y).RGBA()
- cr[0][i+0] = uint8(r >> 8)
- cr[0][i+1] = uint8(r)
- cr[0][i+2] = uint8(g >> 8)
- cr[0][i+3] = uint8(g)
- cr[0][i+4] = uint8(b >> 8)
- cr[0][i+5] = uint8(b)
- i += 6
- }
- case cbTCA16:
- // Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied.
- for x := b.Min.X; x < b.Max.X; x++ {
- c := color.NRGBA64Model.Convert(m.At(x, y)).(color.NRGBA64)
- cr[0][i+0] = uint8(c.R >> 8)
- cr[0][i+1] = uint8(c.R)
- cr[0][i+2] = uint8(c.G >> 8)
- cr[0][i+3] = uint8(c.G)
- cr[0][i+4] = uint8(c.B >> 8)
- cr[0][i+5] = uint8(c.B)
- cr[0][i+6] = uint8(c.A >> 8)
- cr[0][i+7] = uint8(c.A)
- i += 8
- }
- }
-
- // Apply the filter.
- f := filter(&cr, pr, bpp)
-
- // Write the compressed bytes.
- if _, err := zw.Write(cr[f]); err != nil {
- return err
- }
-
- // The current row for y is the previous row for y+1.
- pr, cr[0] = cr[0], pr
- }
- return nil
-}
-
-// Write the actual image data to one or more IDAT chunks.
-func (e *encoder) writeIDATs() {
- if e.err != nil {
- return
- }
- var bw *bufio.Writer
- bw = bufio.NewWriterSize(e, 1<<15)
- e.err = writeImage(bw, e.m, e.cb)
- if e.err != nil {
- return
- }
- e.err = bw.Flush()
-}
-
-func (e *encoder) writeIEND() { e.writeChunk(nil, "IEND") }
-
-// Encode writes the Image m to w in PNG format. Any Image may be encoded, but
-// images that are not image.NRGBA might be encoded lossily.
-func Encode(w io.Writer, m image.Image) error {
- // Obviously, negative widths and heights are invalid. Furthermore, the PNG
- // spec section 11.2.2 says that zero is invalid. Excessively large images are
- // also rejected.
- mw, mh := int64(m.Bounds().Dx()), int64(m.Bounds().Dy())
- if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 {
- return FormatError("invalid image size: " + strconv.FormatInt(mw, 10) + "x" + strconv.FormatInt(mw, 10))
- }
-
- var e encoder
- e.w = w
- e.m = m
-
- var pal color.Palette
- // cbP8 encoding needs PalettedImage's ColorIndexAt method.
- if _, ok := m.(image.PalettedImage); ok {
- pal, _ = m.ColorModel().(color.Palette)
- }
- if pal != nil {
- e.cb = cbP8
- } else {
- switch m.ColorModel() {
- case color.GrayModel:
- e.cb = cbG8
- case color.Gray16Model:
- e.cb = cbG16
- case color.RGBAModel, color.NRGBAModel, color.AlphaModel:
- if opaque(m) {
- e.cb = cbTC8
- } else {
- e.cb = cbTCA8
- }
- default:
- if opaque(m) {
- e.cb = cbTC16
- } else {
- e.cb = cbTCA16
- }
- }
- }
-
- _, e.err = io.WriteString(w, pngHeader)
- e.writeIHDR()
- if pal != nil {
- e.writePLTEAndTRNS(pal)
- }
- e.writeIDATs()
- e.writeIEND()
- return e.err
-}