aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/tree-vrp.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/tree-vrp.c')
-rw-r--r--gcc-4.8.1/gcc/tree-vrp.c9377
1 files changed, 0 insertions, 9377 deletions
diff --git a/gcc-4.8.1/gcc/tree-vrp.c b/gcc-4.8.1/gcc/tree-vrp.c
deleted file mode 100644
index 0b8fdf988..000000000
--- a/gcc-4.8.1/gcc/tree-vrp.c
+++ /dev/null
@@ -1,9377 +0,0 @@
-/* Support routines for Value Range Propagation (VRP).
- Copyright (C) 2005-2013 Free Software Foundation, Inc.
- Contributed by Diego Novillo <dnovillo@redhat.com>.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 3, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "ggc.h"
-#include "flags.h"
-#include "tree.h"
-#include "basic-block.h"
-#include "tree-flow.h"
-#include "tree-pass.h"
-#include "tree-dump.h"
-#include "gimple-pretty-print.h"
-#include "diagnostic-core.h"
-#include "intl.h"
-#include "cfgloop.h"
-#include "tree-scalar-evolution.h"
-#include "tree-ssa-propagate.h"
-#include "tree-chrec.h"
-#include "gimple-fold.h"
-#include "expr.h"
-#include "optabs.h"
-
-
-/* Type of value ranges. See value_range_d for a description of these
- types. */
-enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
-
-/* Range of values that can be associated with an SSA_NAME after VRP
- has executed. */
-struct value_range_d
-{
- /* Lattice value represented by this range. */
- enum value_range_type type;
-
- /* Minimum and maximum values represented by this range. These
- values should be interpreted as follows:
-
- - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
- be NULL.
-
- - If TYPE == VR_RANGE then MIN holds the minimum value and
- MAX holds the maximum value of the range [MIN, MAX].
-
- - If TYPE == ANTI_RANGE the variable is known to NOT
- take any values in the range [MIN, MAX]. */
- tree min;
- tree max;
-
- /* Set of SSA names whose value ranges are equivalent to this one.
- This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
- bitmap equiv;
-};
-
-typedef struct value_range_d value_range_t;
-
-#define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
-
-/* Set of SSA names found live during the RPO traversal of the function
- for still active basic-blocks. */
-static sbitmap *live;
-
-/* Return true if the SSA name NAME is live on the edge E. */
-
-static bool
-live_on_edge (edge e, tree name)
-{
- return (live[e->dest->index]
- && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
-}
-
-/* Local functions. */
-static int compare_values (tree val1, tree val2);
-static int compare_values_warnv (tree val1, tree val2, bool *);
-static void vrp_meet (value_range_t *, value_range_t *);
-static void vrp_intersect_ranges (value_range_t *, value_range_t *);
-static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
- tree, tree, bool, bool *,
- bool *);
-
-/* Location information for ASSERT_EXPRs. Each instance of this
- structure describes an ASSERT_EXPR for an SSA name. Since a single
- SSA name may have more than one assertion associated with it, these
- locations are kept in a linked list attached to the corresponding
- SSA name. */
-struct assert_locus_d
-{
- /* Basic block where the assertion would be inserted. */
- basic_block bb;
-
- /* Some assertions need to be inserted on an edge (e.g., assertions
- generated by COND_EXPRs). In those cases, BB will be NULL. */
- edge e;
-
- /* Pointer to the statement that generated this assertion. */
- gimple_stmt_iterator si;
-
- /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
- enum tree_code comp_code;
-
- /* Value being compared against. */
- tree val;
-
- /* Expression to compare. */
- tree expr;
-
- /* Next node in the linked list. */
- struct assert_locus_d *next;
-};
-
-typedef struct assert_locus_d *assert_locus_t;
-
-/* If bit I is present, it means that SSA name N_i has a list of
- assertions that should be inserted in the IL. */
-static bitmap need_assert_for;
-
-/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
- holds a list of ASSERT_LOCUS_T nodes that describe where
- ASSERT_EXPRs for SSA name N_I should be inserted. */
-static assert_locus_t *asserts_for;
-
-/* Value range array. After propagation, VR_VALUE[I] holds the range
- of values that SSA name N_I may take. */
-static unsigned num_vr_values;
-static value_range_t **vr_value;
-static bool values_propagated;
-
-/* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
- number of executable edges we saw the last time we visited the
- node. */
-static int *vr_phi_edge_counts;
-
-typedef struct {
- gimple stmt;
- tree vec;
-} switch_update;
-
-static vec<edge> to_remove_edges;
-static vec<switch_update> to_update_switch_stmts;
-
-
-/* Return the maximum value for TYPE. */
-
-static inline tree
-vrp_val_max (const_tree type)
-{
- if (!INTEGRAL_TYPE_P (type))
- return NULL_TREE;
-
- return TYPE_MAX_VALUE (type);
-}
-
-/* Return the minimum value for TYPE. */
-
-static inline tree
-vrp_val_min (const_tree type)
-{
- if (!INTEGRAL_TYPE_P (type))
- return NULL_TREE;
-
- return TYPE_MIN_VALUE (type);
-}
-
-/* Return whether VAL is equal to the maximum value of its type. This
- will be true for a positive overflow infinity. We can't do a
- simple equality comparison with TYPE_MAX_VALUE because C typedefs
- and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
- to the integer constant with the same value in the type. */
-
-static inline bool
-vrp_val_is_max (const_tree val)
-{
- tree type_max = vrp_val_max (TREE_TYPE (val));
- return (val == type_max
- || (type_max != NULL_TREE
- && operand_equal_p (val, type_max, 0)));
-}
-
-/* Return whether VAL is equal to the minimum value of its type. This
- will be true for a negative overflow infinity. */
-
-static inline bool
-vrp_val_is_min (const_tree val)
-{
- tree type_min = vrp_val_min (TREE_TYPE (val));
- return (val == type_min
- || (type_min != NULL_TREE
- && operand_equal_p (val, type_min, 0)));
-}
-
-
-/* Return whether TYPE should use an overflow infinity distinct from
- TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
- represent a signed overflow during VRP computations. An infinity
- is distinct from a half-range, which will go from some number to
- TYPE_{MIN,MAX}_VALUE. */
-
-static inline bool
-needs_overflow_infinity (const_tree type)
-{
- return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
-}
-
-/* Return whether TYPE can support our overflow infinity
- representation: we use the TREE_OVERFLOW flag, which only exists
- for constants. If TYPE doesn't support this, we don't optimize
- cases which would require signed overflow--we drop them to
- VARYING. */
-
-static inline bool
-supports_overflow_infinity (const_tree type)
-{
- tree min = vrp_val_min (type), max = vrp_val_max (type);
-#ifdef ENABLE_CHECKING
- gcc_assert (needs_overflow_infinity (type));
-#endif
- return (min != NULL_TREE
- && CONSTANT_CLASS_P (min)
- && max != NULL_TREE
- && CONSTANT_CLASS_P (max));
-}
-
-/* VAL is the maximum or minimum value of a type. Return a
- corresponding overflow infinity. */
-
-static inline tree
-make_overflow_infinity (tree val)
-{
- gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
- val = copy_node (val);
- TREE_OVERFLOW (val) = 1;
- return val;
-}
-
-/* Return a negative overflow infinity for TYPE. */
-
-static inline tree
-negative_overflow_infinity (tree type)
-{
- gcc_checking_assert (supports_overflow_infinity (type));
- return make_overflow_infinity (vrp_val_min (type));
-}
-
-/* Return a positive overflow infinity for TYPE. */
-
-static inline tree
-positive_overflow_infinity (tree type)
-{
- gcc_checking_assert (supports_overflow_infinity (type));
- return make_overflow_infinity (vrp_val_max (type));
-}
-
-/* Return whether VAL is a negative overflow infinity. */
-
-static inline bool
-is_negative_overflow_infinity (const_tree val)
-{
- return (needs_overflow_infinity (TREE_TYPE (val))
- && CONSTANT_CLASS_P (val)
- && TREE_OVERFLOW (val)
- && vrp_val_is_min (val));
-}
-
-/* Return whether VAL is a positive overflow infinity. */
-
-static inline bool
-is_positive_overflow_infinity (const_tree val)
-{
- return (needs_overflow_infinity (TREE_TYPE (val))
- && CONSTANT_CLASS_P (val)
- && TREE_OVERFLOW (val)
- && vrp_val_is_max (val));
-}
-
-/* Return whether VAL is a positive or negative overflow infinity. */
-
-static inline bool
-is_overflow_infinity (const_tree val)
-{
- return (needs_overflow_infinity (TREE_TYPE (val))
- && CONSTANT_CLASS_P (val)
- && TREE_OVERFLOW (val)
- && (vrp_val_is_min (val) || vrp_val_is_max (val)));
-}
-
-/* Return whether STMT has a constant rhs that is_overflow_infinity. */
-
-static inline bool
-stmt_overflow_infinity (gimple stmt)
-{
- if (is_gimple_assign (stmt)
- && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
- GIMPLE_SINGLE_RHS)
- return is_overflow_infinity (gimple_assign_rhs1 (stmt));
- return false;
-}
-
-/* If VAL is now an overflow infinity, return VAL. Otherwise, return
- the same value with TREE_OVERFLOW clear. This can be used to avoid
- confusing a regular value with an overflow value. */
-
-static inline tree
-avoid_overflow_infinity (tree val)
-{
- if (!is_overflow_infinity (val))
- return val;
-
- if (vrp_val_is_max (val))
- return vrp_val_max (TREE_TYPE (val));
- else
- {
- gcc_checking_assert (vrp_val_is_min (val));
- return vrp_val_min (TREE_TYPE (val));
- }
-}
-
-
-/* Return true if ARG is marked with the nonnull attribute in the
- current function signature. */
-
-static bool
-nonnull_arg_p (const_tree arg)
-{
- tree t, attrs, fntype;
- unsigned HOST_WIDE_INT arg_num;
-
- gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
-
- /* The static chain decl is always non null. */
- if (arg == cfun->static_chain_decl)
- return true;
-
- fntype = TREE_TYPE (current_function_decl);
- for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
- {
- attrs = lookup_attribute ("nonnull", attrs);
-
- /* If "nonnull" wasn't specified, we know nothing about the argument. */
- if (attrs == NULL_TREE)
- return false;
-
- /* If "nonnull" applies to all the arguments, then ARG is non-null. */
- if (TREE_VALUE (attrs) == NULL_TREE)
- return true;
-
- /* Get the position number for ARG in the function signature. */
- for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
- t;
- t = DECL_CHAIN (t), arg_num++)
- {
- if (t == arg)
- break;
- }
-
- gcc_assert (t == arg);
-
- /* Now see if ARG_NUM is mentioned in the nonnull list. */
- for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
- {
- if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
- return true;
- }
- }
-
- return false;
-}
-
-
-/* Set value range VR to VR_UNDEFINED. */
-
-static inline void
-set_value_range_to_undefined (value_range_t *vr)
-{
- vr->type = VR_UNDEFINED;
- vr->min = vr->max = NULL_TREE;
- if (vr->equiv)
- bitmap_clear (vr->equiv);
-}
-
-
-/* Set value range VR to VR_VARYING. */
-
-static inline void
-set_value_range_to_varying (value_range_t *vr)
-{
- vr->type = VR_VARYING;
- vr->min = vr->max = NULL_TREE;
- if (vr->equiv)
- bitmap_clear (vr->equiv);
-}
-
-
-/* Set value range VR to {T, MIN, MAX, EQUIV}. */
-
-static void
-set_value_range (value_range_t *vr, enum value_range_type t, tree min,
- tree max, bitmap equiv)
-{
-#if defined ENABLE_CHECKING
- /* Check the validity of the range. */
- if (t == VR_RANGE || t == VR_ANTI_RANGE)
- {
- int cmp;
-
- gcc_assert (min && max);
-
- if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
- gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
-
- cmp = compare_values (min, max);
- gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
-
- if (needs_overflow_infinity (TREE_TYPE (min)))
- gcc_assert (!is_overflow_infinity (min)
- || !is_overflow_infinity (max));
- }
-
- if (t == VR_UNDEFINED || t == VR_VARYING)
- gcc_assert (min == NULL_TREE && max == NULL_TREE);
-
- if (t == VR_UNDEFINED || t == VR_VARYING)
- gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
-#endif
-
- vr->type = t;
- vr->min = min;
- vr->max = max;
-
- /* Since updating the equivalence set involves deep copying the
- bitmaps, only do it if absolutely necessary. */
- if (vr->equiv == NULL
- && equiv != NULL)
- vr->equiv = BITMAP_ALLOC (NULL);
-
- if (equiv != vr->equiv)
- {
- if (equiv && !bitmap_empty_p (equiv))
- bitmap_copy (vr->equiv, equiv);
- else
- bitmap_clear (vr->equiv);
- }
-}
-
-
-/* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
- This means adjusting T, MIN and MAX representing the case of a
- wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
- as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
- In corner cases where MAX+1 or MIN-1 wraps this will fall back
- to varying.
- This routine exists to ease canonicalization in the case where we
- extract ranges from var + CST op limit. */
-
-static void
-set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
- tree min, tree max, bitmap equiv)
-{
- /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
- if (t == VR_UNDEFINED)
- {
- set_value_range_to_undefined (vr);
- return;
- }
- else if (t == VR_VARYING)
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* Nothing to canonicalize for symbolic ranges. */
- if (TREE_CODE (min) != INTEGER_CST
- || TREE_CODE (max) != INTEGER_CST)
- {
- set_value_range (vr, t, min, max, equiv);
- return;
- }
-
- /* Wrong order for min and max, to swap them and the VR type we need
- to adjust them. */
- if (tree_int_cst_lt (max, min))
- {
- tree one, tmp;
-
- /* For one bit precision if max < min, then the swapped
- range covers all values, so for VR_RANGE it is varying and
- for VR_ANTI_RANGE empty range, so drop to varying as well. */
- if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- one = build_int_cst (TREE_TYPE (min), 1);
- tmp = int_const_binop (PLUS_EXPR, max, one);
- max = int_const_binop (MINUS_EXPR, min, one);
- min = tmp;
-
- /* There's one corner case, if we had [C+1, C] before we now have
- that again. But this represents an empty value range, so drop
- to varying in this case. */
- if (tree_int_cst_lt (max, min))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
- }
-
- /* Anti-ranges that can be represented as ranges should be so. */
- if (t == VR_ANTI_RANGE)
- {
- bool is_min = vrp_val_is_min (min);
- bool is_max = vrp_val_is_max (max);
-
- if (is_min && is_max)
- {
- /* We cannot deal with empty ranges, drop to varying.
- ??? This could be VR_UNDEFINED instead. */
- set_value_range_to_varying (vr);
- return;
- }
- else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
- && (is_min || is_max))
- {
- /* Non-empty boolean ranges can always be represented
- as a singleton range. */
- if (is_min)
- min = max = vrp_val_max (TREE_TYPE (min));
- else
- min = max = vrp_val_min (TREE_TYPE (min));
- t = VR_RANGE;
- }
- else if (is_min
- /* As a special exception preserve non-null ranges. */
- && !(TYPE_UNSIGNED (TREE_TYPE (min))
- && integer_zerop (max)))
- {
- tree one = build_int_cst (TREE_TYPE (max), 1);
- min = int_const_binop (PLUS_EXPR, max, one);
- max = vrp_val_max (TREE_TYPE (max));
- t = VR_RANGE;
- }
- else if (is_max)
- {
- tree one = build_int_cst (TREE_TYPE (min), 1);
- max = int_const_binop (MINUS_EXPR, min, one);
- min = vrp_val_min (TREE_TYPE (min));
- t = VR_RANGE;
- }
- }
-
- /* Drop [-INF(OVF), +INF(OVF)] to varying. */
- if (needs_overflow_infinity (TREE_TYPE (min))
- && is_overflow_infinity (min)
- && is_overflow_infinity (max))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- set_value_range (vr, t, min, max, equiv);
-}
-
-/* Copy value range FROM into value range TO. */
-
-static inline void
-copy_value_range (value_range_t *to, value_range_t *from)
-{
- set_value_range (to, from->type, from->min, from->max, from->equiv);
-}
-
-/* Set value range VR to a single value. This function is only called
- with values we get from statements, and exists to clear the
- TREE_OVERFLOW flag so that we don't think we have an overflow
- infinity when we shouldn't. */
-
-static inline void
-set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
-{
- gcc_assert (is_gimple_min_invariant (val));
- val = avoid_overflow_infinity (val);
- set_value_range (vr, VR_RANGE, val, val, equiv);
-}
-
-/* Set value range VR to a non-negative range of type TYPE.
- OVERFLOW_INFINITY indicates whether to use an overflow infinity
- rather than TYPE_MAX_VALUE; this should be true if we determine
- that the range is nonnegative based on the assumption that signed
- overflow does not occur. */
-
-static inline void
-set_value_range_to_nonnegative (value_range_t *vr, tree type,
- bool overflow_infinity)
-{
- tree zero;
-
- if (overflow_infinity && !supports_overflow_infinity (type))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- zero = build_int_cst (type, 0);
- set_value_range (vr, VR_RANGE, zero,
- (overflow_infinity
- ? positive_overflow_infinity (type)
- : TYPE_MAX_VALUE (type)),
- vr->equiv);
-}
-
-/* Set value range VR to a non-NULL range of type TYPE. */
-
-static inline void
-set_value_range_to_nonnull (value_range_t *vr, tree type)
-{
- tree zero = build_int_cst (type, 0);
- set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
-}
-
-
-/* Set value range VR to a NULL range of type TYPE. */
-
-static inline void
-set_value_range_to_null (value_range_t *vr, tree type)
-{
- set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
-}
-
-
-/* Set value range VR to a range of a truthvalue of type TYPE. */
-
-static inline void
-set_value_range_to_truthvalue (value_range_t *vr, tree type)
-{
- if (TYPE_PRECISION (type) == 1)
- set_value_range_to_varying (vr);
- else
- set_value_range (vr, VR_RANGE,
- build_int_cst (type, 0), build_int_cst (type, 1),
- vr->equiv);
-}
-
-
-/* If abs (min) < abs (max), set VR to [-max, max], if
- abs (min) >= abs (max), set VR to [-min, min]. */
-
-static void
-abs_extent_range (value_range_t *vr, tree min, tree max)
-{
- int cmp;
-
- gcc_assert (TREE_CODE (min) == INTEGER_CST);
- gcc_assert (TREE_CODE (max) == INTEGER_CST);
- gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
- gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
- min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
- max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
- if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
- {
- set_value_range_to_varying (vr);
- return;
- }
- cmp = compare_values (min, max);
- if (cmp == -1)
- min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
- else if (cmp == 0 || cmp == 1)
- {
- max = min;
- min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
- }
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
-}
-
-
-/* Return value range information for VAR.
-
- If we have no values ranges recorded (ie, VRP is not running), then
- return NULL. Otherwise create an empty range if none existed for VAR. */
-
-static value_range_t *
-get_value_range (const_tree var)
-{
- static const struct value_range_d vr_const_varying
- = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
- value_range_t *vr;
- tree sym;
- unsigned ver = SSA_NAME_VERSION (var);
-
- /* If we have no recorded ranges, then return NULL. */
- if (! vr_value)
- return NULL;
-
- /* If we query the range for a new SSA name return an unmodifiable VARYING.
- We should get here at most from the substitute-and-fold stage which
- will never try to change values. */
- if (ver >= num_vr_values)
- return CONST_CAST (value_range_t *, &vr_const_varying);
-
- vr = vr_value[ver];
- if (vr)
- return vr;
-
- /* After propagation finished do not allocate new value-ranges. */
- if (values_propagated)
- return CONST_CAST (value_range_t *, &vr_const_varying);
-
- /* Create a default value range. */
- vr_value[ver] = vr = XCNEW (value_range_t);
-
- /* Defer allocating the equivalence set. */
- vr->equiv = NULL;
-
- /* If VAR is a default definition of a parameter, the variable can
- take any value in VAR's type. */
- if (SSA_NAME_IS_DEFAULT_DEF (var))
- {
- sym = SSA_NAME_VAR (var);
- if (TREE_CODE (sym) == PARM_DECL)
- {
- /* Try to use the "nonnull" attribute to create ~[0, 0]
- anti-ranges for pointers. Note that this is only valid with
- default definitions of PARM_DECLs. */
- if (POINTER_TYPE_P (TREE_TYPE (sym))
- && nonnull_arg_p (sym))
- set_value_range_to_nonnull (vr, TREE_TYPE (sym));
- else
- set_value_range_to_varying (vr);
- }
- else if (TREE_CODE (sym) == RESULT_DECL
- && DECL_BY_REFERENCE (sym))
- set_value_range_to_nonnull (vr, TREE_TYPE (sym));
- }
-
- return vr;
-}
-
-/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
-
-static inline bool
-vrp_operand_equal_p (const_tree val1, const_tree val2)
-{
- if (val1 == val2)
- return true;
- if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
- return false;
- if (is_overflow_infinity (val1))
- return is_overflow_infinity (val2);
- return true;
-}
-
-/* Return true, if the bitmaps B1 and B2 are equal. */
-
-static inline bool
-vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
-{
- return (b1 == b2
- || ((!b1 || bitmap_empty_p (b1))
- && (!b2 || bitmap_empty_p (b2)))
- || (b1 && b2
- && bitmap_equal_p (b1, b2)));
-}
-
-/* Update the value range and equivalence set for variable VAR to
- NEW_VR. Return true if NEW_VR is different from VAR's previous
- value.
-
- NOTE: This function assumes that NEW_VR is a temporary value range
- object created for the sole purpose of updating VAR's range. The
- storage used by the equivalence set from NEW_VR will be freed by
- this function. Do not call update_value_range when NEW_VR
- is the range object associated with another SSA name. */
-
-static inline bool
-update_value_range (const_tree var, value_range_t *new_vr)
-{
- value_range_t *old_vr;
- bool is_new;
-
- /* Update the value range, if necessary. */
- old_vr = get_value_range (var);
- is_new = old_vr->type != new_vr->type
- || !vrp_operand_equal_p (old_vr->min, new_vr->min)
- || !vrp_operand_equal_p (old_vr->max, new_vr->max)
- || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
-
- if (is_new)
- {
- /* Do not allow transitions up the lattice. The following
- is slightly more awkward than just new_vr->type < old_vr->type
- because VR_RANGE and VR_ANTI_RANGE need to be considered
- the same. We may not have is_new when transitioning to
- UNDEFINED or from VARYING. */
- if (new_vr->type == VR_UNDEFINED
- || old_vr->type == VR_VARYING)
- set_value_range_to_varying (old_vr);
- else
- set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
- new_vr->equiv);
- }
-
- BITMAP_FREE (new_vr->equiv);
-
- return is_new;
-}
-
-
-/* Add VAR and VAR's equivalence set to EQUIV. This is the central
- point where equivalence processing can be turned on/off. */
-
-static void
-add_equivalence (bitmap *equiv, const_tree var)
-{
- unsigned ver = SSA_NAME_VERSION (var);
- value_range_t *vr = vr_value[ver];
-
- if (*equiv == NULL)
- *equiv = BITMAP_ALLOC (NULL);
- bitmap_set_bit (*equiv, ver);
- if (vr && vr->equiv)
- bitmap_ior_into (*equiv, vr->equiv);
-}
-
-
-/* Return true if VR is ~[0, 0]. */
-
-static inline bool
-range_is_nonnull (value_range_t *vr)
-{
- return vr->type == VR_ANTI_RANGE
- && integer_zerop (vr->min)
- && integer_zerop (vr->max);
-}
-
-
-/* Return true if VR is [0, 0]. */
-
-static inline bool
-range_is_null (value_range_t *vr)
-{
- return vr->type == VR_RANGE
- && integer_zerop (vr->min)
- && integer_zerop (vr->max);
-}
-
-/* Return true if max and min of VR are INTEGER_CST. It's not necessary
- a singleton. */
-
-static inline bool
-range_int_cst_p (value_range_t *vr)
-{
- return (vr->type == VR_RANGE
- && TREE_CODE (vr->max) == INTEGER_CST
- && TREE_CODE (vr->min) == INTEGER_CST);
-}
-
-/* Return true if VR is a INTEGER_CST singleton. */
-
-static inline bool
-range_int_cst_singleton_p (value_range_t *vr)
-{
- return (range_int_cst_p (vr)
- && !TREE_OVERFLOW (vr->min)
- && !TREE_OVERFLOW (vr->max)
- && tree_int_cst_equal (vr->min, vr->max));
-}
-
-/* Return true if value range VR involves at least one symbol. */
-
-static inline bool
-symbolic_range_p (value_range_t *vr)
-{
- return (!is_gimple_min_invariant (vr->min)
- || !is_gimple_min_invariant (vr->max));
-}
-
-/* Return true if value range VR uses an overflow infinity. */
-
-static inline bool
-overflow_infinity_range_p (value_range_t *vr)
-{
- return (vr->type == VR_RANGE
- && (is_overflow_infinity (vr->min)
- || is_overflow_infinity (vr->max)));
-}
-
-/* Return false if we can not make a valid comparison based on VR;
- this will be the case if it uses an overflow infinity and overflow
- is not undefined (i.e., -fno-strict-overflow is in effect).
- Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
- uses an overflow infinity. */
-
-static bool
-usable_range_p (value_range_t *vr, bool *strict_overflow_p)
-{
- gcc_assert (vr->type == VR_RANGE);
- if (is_overflow_infinity (vr->min))
- {
- *strict_overflow_p = true;
- if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
- return false;
- }
- if (is_overflow_infinity (vr->max))
- {
- *strict_overflow_p = true;
- if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
- return false;
- }
- return true;
-}
-
-
-/* Return true if the result of assignment STMT is know to be non-negative.
- If the return value is based on the assumption that signed overflow is
- undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
- *STRICT_OVERFLOW_P.*/
-
-static bool
-gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
-{
- enum tree_code code = gimple_assign_rhs_code (stmt);
- switch (get_gimple_rhs_class (code))
- {
- case GIMPLE_UNARY_RHS:
- return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt),
- strict_overflow_p);
- case GIMPLE_BINARY_RHS:
- return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt),
- strict_overflow_p);
- case GIMPLE_TERNARY_RHS:
- return false;
- case GIMPLE_SINGLE_RHS:
- return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
- strict_overflow_p);
- case GIMPLE_INVALID_RHS:
- gcc_unreachable ();
- default:
- gcc_unreachable ();
- }
-}
-
-/* Return true if return value of call STMT is know to be non-negative.
- If the return value is based on the assumption that signed overflow is
- undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
- *STRICT_OVERFLOW_P.*/
-
-static bool
-gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
-{
- tree arg0 = gimple_call_num_args (stmt) > 0 ?
- gimple_call_arg (stmt, 0) : NULL_TREE;
- tree arg1 = gimple_call_num_args (stmt) > 1 ?
- gimple_call_arg (stmt, 1) : NULL_TREE;
-
- return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
- gimple_call_fndecl (stmt),
- arg0,
- arg1,
- strict_overflow_p);
-}
-
-/* Return true if STMT is know to to compute a non-negative value.
- If the return value is based on the assumption that signed overflow is
- undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
- *STRICT_OVERFLOW_P.*/
-
-static bool
-gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
-{
- switch (gimple_code (stmt))
- {
- case GIMPLE_ASSIGN:
- return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
- case GIMPLE_CALL:
- return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
- default:
- gcc_unreachable ();
- }
-}
-
-/* Return true if the result of assignment STMT is know to be non-zero.
- If the return value is based on the assumption that signed overflow is
- undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
- *STRICT_OVERFLOW_P.*/
-
-static bool
-gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
-{
- enum tree_code code = gimple_assign_rhs_code (stmt);
- switch (get_gimple_rhs_class (code))
- {
- case GIMPLE_UNARY_RHS:
- return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt),
- strict_overflow_p);
- case GIMPLE_BINARY_RHS:
- return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt),
- strict_overflow_p);
- case GIMPLE_TERNARY_RHS:
- return false;
- case GIMPLE_SINGLE_RHS:
- return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
- strict_overflow_p);
- case GIMPLE_INVALID_RHS:
- gcc_unreachable ();
- default:
- gcc_unreachable ();
- }
-}
-
-/* Return true if STMT is know to to compute a non-zero value.
- If the return value is based on the assumption that signed overflow is
- undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
- *STRICT_OVERFLOW_P.*/
-
-static bool
-gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
-{
- switch (gimple_code (stmt))
- {
- case GIMPLE_ASSIGN:
- return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
- case GIMPLE_CALL:
- return gimple_alloca_call_p (stmt);
- default:
- gcc_unreachable ();
- }
-}
-
-/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
- obtained so far. */
-
-static bool
-vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
-{
- if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
- return true;
-
- /* If we have an expression of the form &X->a, then the expression
- is nonnull if X is nonnull. */
- if (is_gimple_assign (stmt)
- && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
- {
- tree expr = gimple_assign_rhs1 (stmt);
- tree base = get_base_address (TREE_OPERAND (expr, 0));
-
- if (base != NULL_TREE
- && TREE_CODE (base) == MEM_REF
- && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
- {
- value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
- if (range_is_nonnull (vr))
- return true;
- }
- }
-
- return false;
-}
-
-/* Returns true if EXPR is a valid value (as expected by compare_values) --
- a gimple invariant, or SSA_NAME +- CST. */
-
-static bool
-valid_value_p (tree expr)
-{
- if (TREE_CODE (expr) == SSA_NAME)
- return true;
-
- if (TREE_CODE (expr) == PLUS_EXPR
- || TREE_CODE (expr) == MINUS_EXPR)
- return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
- && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
-
- return is_gimple_min_invariant (expr);
-}
-
-/* Return
- 1 if VAL < VAL2
- 0 if !(VAL < VAL2)
- -2 if those are incomparable. */
-static inline int
-operand_less_p (tree val, tree val2)
-{
- /* LT is folded faster than GE and others. Inline the common case. */
- if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
- {
- if (TYPE_UNSIGNED (TREE_TYPE (val)))
- return INT_CST_LT_UNSIGNED (val, val2);
- else
- {
- if (INT_CST_LT (val, val2))
- return 1;
- }
- }
- else
- {
- tree tcmp;
-
- fold_defer_overflow_warnings ();
-
- tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
-
- fold_undefer_and_ignore_overflow_warnings ();
-
- if (!tcmp
- || TREE_CODE (tcmp) != INTEGER_CST)
- return -2;
-
- if (!integer_zerop (tcmp))
- return 1;
- }
-
- /* val >= val2, not considering overflow infinity. */
- if (is_negative_overflow_infinity (val))
- return is_negative_overflow_infinity (val2) ? 0 : 1;
- else if (is_positive_overflow_infinity (val2))
- return is_positive_overflow_infinity (val) ? 0 : 1;
-
- return 0;
-}
-
-/* Compare two values VAL1 and VAL2. Return
-
- -2 if VAL1 and VAL2 cannot be compared at compile-time,
- -1 if VAL1 < VAL2,
- 0 if VAL1 == VAL2,
- +1 if VAL1 > VAL2, and
- +2 if VAL1 != VAL2
-
- This is similar to tree_int_cst_compare but supports pointer values
- and values that cannot be compared at compile time.
-
- If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
- true if the return value is only valid if we assume that signed
- overflow is undefined. */
-
-static int
-compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
-{
- if (val1 == val2)
- return 0;
-
- /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
- both integers. */
- gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
- == POINTER_TYPE_P (TREE_TYPE (val2)));
- /* Convert the two values into the same type. This is needed because
- sizetype causes sign extension even for unsigned types. */
- val2 = fold_convert (TREE_TYPE (val1), val2);
- STRIP_USELESS_TYPE_CONVERSION (val2);
-
- if ((TREE_CODE (val1) == SSA_NAME
- || TREE_CODE (val1) == PLUS_EXPR
- || TREE_CODE (val1) == MINUS_EXPR)
- && (TREE_CODE (val2) == SSA_NAME
- || TREE_CODE (val2) == PLUS_EXPR
- || TREE_CODE (val2) == MINUS_EXPR))
- {
- tree n1, c1, n2, c2;
- enum tree_code code1, code2;
-
- /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
- return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
- same name, return -2. */
- if (TREE_CODE (val1) == SSA_NAME)
- {
- code1 = SSA_NAME;
- n1 = val1;
- c1 = NULL_TREE;
- }
- else
- {
- code1 = TREE_CODE (val1);
- n1 = TREE_OPERAND (val1, 0);
- c1 = TREE_OPERAND (val1, 1);
- if (tree_int_cst_sgn (c1) == -1)
- {
- if (is_negative_overflow_infinity (c1))
- return -2;
- c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
- if (!c1)
- return -2;
- code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
- }
- }
-
- if (TREE_CODE (val2) == SSA_NAME)
- {
- code2 = SSA_NAME;
- n2 = val2;
- c2 = NULL_TREE;
- }
- else
- {
- code2 = TREE_CODE (val2);
- n2 = TREE_OPERAND (val2, 0);
- c2 = TREE_OPERAND (val2, 1);
- if (tree_int_cst_sgn (c2) == -1)
- {
- if (is_negative_overflow_infinity (c2))
- return -2;
- c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
- if (!c2)
- return -2;
- code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
- }
- }
-
- /* Both values must use the same name. */
- if (n1 != n2)
- return -2;
-
- if (code1 == SSA_NAME
- && code2 == SSA_NAME)
- /* NAME == NAME */
- return 0;
-
- /* If overflow is defined we cannot simplify more. */
- if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
- return -2;
-
- if (strict_overflow_p != NULL
- && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
- && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
- *strict_overflow_p = true;
-
- if (code1 == SSA_NAME)
- {
- if (code2 == PLUS_EXPR)
- /* NAME < NAME + CST */
- return -1;
- else if (code2 == MINUS_EXPR)
- /* NAME > NAME - CST */
- return 1;
- }
- else if (code1 == PLUS_EXPR)
- {
- if (code2 == SSA_NAME)
- /* NAME + CST > NAME */
- return 1;
- else if (code2 == PLUS_EXPR)
- /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
- return compare_values_warnv (c1, c2, strict_overflow_p);
- else if (code2 == MINUS_EXPR)
- /* NAME + CST1 > NAME - CST2 */
- return 1;
- }
- else if (code1 == MINUS_EXPR)
- {
- if (code2 == SSA_NAME)
- /* NAME - CST < NAME */
- return -1;
- else if (code2 == PLUS_EXPR)
- /* NAME - CST1 < NAME + CST2 */
- return -1;
- else if (code2 == MINUS_EXPR)
- /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
- C1 and C2 are swapped in the call to compare_values. */
- return compare_values_warnv (c2, c1, strict_overflow_p);
- }
-
- gcc_unreachable ();
- }
-
- /* We cannot compare non-constants. */
- if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
- return -2;
-
- if (!POINTER_TYPE_P (TREE_TYPE (val1)))
- {
- /* We cannot compare overflowed values, except for overflow
- infinities. */
- if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
- {
- if (strict_overflow_p != NULL)
- *strict_overflow_p = true;
- if (is_negative_overflow_infinity (val1))
- return is_negative_overflow_infinity (val2) ? 0 : -1;
- else if (is_negative_overflow_infinity (val2))
- return 1;
- else if (is_positive_overflow_infinity (val1))
- return is_positive_overflow_infinity (val2) ? 0 : 1;
- else if (is_positive_overflow_infinity (val2))
- return -1;
- return -2;
- }
-
- return tree_int_cst_compare (val1, val2);
- }
- else
- {
- tree t;
-
- /* First see if VAL1 and VAL2 are not the same. */
- if (val1 == val2 || operand_equal_p (val1, val2, 0))
- return 0;
-
- /* If VAL1 is a lower address than VAL2, return -1. */
- if (operand_less_p (val1, val2) == 1)
- return -1;
-
- /* If VAL1 is a higher address than VAL2, return +1. */
- if (operand_less_p (val2, val1) == 1)
- return 1;
-
- /* If VAL1 is different than VAL2, return +2.
- For integer constants we either have already returned -1 or 1
- or they are equivalent. We still might succeed in proving
- something about non-trivial operands. */
- if (TREE_CODE (val1) != INTEGER_CST
- || TREE_CODE (val2) != INTEGER_CST)
- {
- t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
- if (t && integer_onep (t))
- return 2;
- }
-
- return -2;
- }
-}
-
-/* Compare values like compare_values_warnv, but treat comparisons of
- nonconstants which rely on undefined overflow as incomparable. */
-
-static int
-compare_values (tree val1, tree val2)
-{
- bool sop;
- int ret;
-
- sop = false;
- ret = compare_values_warnv (val1, val2, &sop);
- if (sop
- && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
- ret = -2;
- return ret;
-}
-
-
-/* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
- 0 if VAL is not inside [MIN, MAX],
- -2 if we cannot tell either way.
-
- Benchmark compile/20001226-1.c compilation time after changing this
- function. */
-
-static inline int
-value_inside_range (tree val, tree min, tree max)
-{
- int cmp1, cmp2;
-
- cmp1 = operand_less_p (val, min);
- if (cmp1 == -2)
- return -2;
- if (cmp1 == 1)
- return 0;
-
- cmp2 = operand_less_p (max, val);
- if (cmp2 == -2)
- return -2;
-
- return !cmp2;
-}
-
-
-/* Return true if value ranges VR0 and VR1 have a non-empty
- intersection.
-
- Benchmark compile/20001226-1.c compilation time after changing this
- function.
- */
-
-static inline bool
-value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
-{
- /* The value ranges do not intersect if the maximum of the first range is
- less than the minimum of the second range or vice versa.
- When those relations are unknown, we can't do any better. */
- if (operand_less_p (vr0->max, vr1->min) != 0)
- return false;
- if (operand_less_p (vr1->max, vr0->min) != 0)
- return false;
- return true;
-}
-
-
-/* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
- include the value zero, -2 if we cannot tell. */
-
-static inline int
-range_includes_zero_p (tree min, tree max)
-{
- tree zero = build_int_cst (TREE_TYPE (min), 0);
- return value_inside_range (zero, min, max);
-}
-
-/* Return true if *VR is know to only contain nonnegative values. */
-
-static inline bool
-value_range_nonnegative_p (value_range_t *vr)
-{
- /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
- which would return a useful value should be encoded as a
- VR_RANGE. */
- if (vr->type == VR_RANGE)
- {
- int result = compare_values (vr->min, integer_zero_node);
- return (result == 0 || result == 1);
- }
-
- return false;
-}
-
-/* Return true if T, an SSA_NAME, is known to be nonnegative. Return
- false otherwise or if no value range information is available. */
-
-bool
-ssa_name_nonnegative_p (const_tree t)
-{
- value_range_t *vr = get_value_range (t);
-
- if (INTEGRAL_TYPE_P (t)
- && TYPE_UNSIGNED (t))
- return true;
-
- if (!vr)
- return false;
-
- return value_range_nonnegative_p (vr);
-}
-
-/* If *VR has a value rante that is a single constant value return that,
- otherwise return NULL_TREE. */
-
-static tree
-value_range_constant_singleton (value_range_t *vr)
-{
- if (vr->type == VR_RANGE
- && operand_equal_p (vr->min, vr->max, 0)
- && is_gimple_min_invariant (vr->min))
- return vr->min;
-
- return NULL_TREE;
-}
-
-/* If OP has a value range with a single constant value return that,
- otherwise return NULL_TREE. This returns OP itself if OP is a
- constant. */
-
-static tree
-op_with_constant_singleton_value_range (tree op)
-{
- if (is_gimple_min_invariant (op))
- return op;
-
- if (TREE_CODE (op) != SSA_NAME)
- return NULL_TREE;
-
- return value_range_constant_singleton (get_value_range (op));
-}
-
-/* Return true if op is in a boolean [0, 1] value-range. */
-
-static bool
-op_with_boolean_value_range_p (tree op)
-{
- value_range_t *vr;
-
- if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
- return true;
-
- if (integer_zerop (op)
- || integer_onep (op))
- return true;
-
- if (TREE_CODE (op) != SSA_NAME)
- return false;
-
- vr = get_value_range (op);
- return (vr->type == VR_RANGE
- && integer_zerop (vr->min)
- && integer_onep (vr->max));
-}
-
-/* Extract value range information from an ASSERT_EXPR EXPR and store
- it in *VR_P. */
-
-static void
-extract_range_from_assert (value_range_t *vr_p, tree expr)
-{
- tree var, cond, limit, min, max, type;
- value_range_t *limit_vr;
- enum tree_code cond_code;
-
- var = ASSERT_EXPR_VAR (expr);
- cond = ASSERT_EXPR_COND (expr);
-
- gcc_assert (COMPARISON_CLASS_P (cond));
-
- /* Find VAR in the ASSERT_EXPR conditional. */
- if (var == TREE_OPERAND (cond, 0)
- || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
- || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
- {
- /* If the predicate is of the form VAR COMP LIMIT, then we just
- take LIMIT from the RHS and use the same comparison code. */
- cond_code = TREE_CODE (cond);
- limit = TREE_OPERAND (cond, 1);
- cond = TREE_OPERAND (cond, 0);
- }
- else
- {
- /* If the predicate is of the form LIMIT COMP VAR, then we need
- to flip around the comparison code to create the proper range
- for VAR. */
- cond_code = swap_tree_comparison (TREE_CODE (cond));
- limit = TREE_OPERAND (cond, 0);
- cond = TREE_OPERAND (cond, 1);
- }
-
- limit = avoid_overflow_infinity (limit);
-
- type = TREE_TYPE (var);
- gcc_assert (limit != var);
-
- /* For pointer arithmetic, we only keep track of pointer equality
- and inequality. */
- if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
- {
- set_value_range_to_varying (vr_p);
- return;
- }
-
- /* If LIMIT is another SSA name and LIMIT has a range of its own,
- try to use LIMIT's range to avoid creating symbolic ranges
- unnecessarily. */
- limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
-
- /* LIMIT's range is only interesting if it has any useful information. */
- if (limit_vr
- && (limit_vr->type == VR_UNDEFINED
- || limit_vr->type == VR_VARYING
- || symbolic_range_p (limit_vr)))
- limit_vr = NULL;
-
- /* Initially, the new range has the same set of equivalences of
- VAR's range. This will be revised before returning the final
- value. Since assertions may be chained via mutually exclusive
- predicates, we will need to trim the set of equivalences before
- we are done. */
- gcc_assert (vr_p->equiv == NULL);
- add_equivalence (&vr_p->equiv, var);
-
- /* Extract a new range based on the asserted comparison for VAR and
- LIMIT's value range. Notice that if LIMIT has an anti-range, we
- will only use it for equality comparisons (EQ_EXPR). For any
- other kind of assertion, we cannot derive a range from LIMIT's
- anti-range that can be used to describe the new range. For
- instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
- then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
- no single range for x_2 that could describe LE_EXPR, so we might
- as well build the range [b_4, +INF] for it.
- One special case we handle is extracting a range from a
- range test encoded as (unsigned)var + CST <= limit. */
- if (TREE_CODE (cond) == NOP_EXPR
- || TREE_CODE (cond) == PLUS_EXPR)
- {
- if (TREE_CODE (cond) == PLUS_EXPR)
- {
- min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
- TREE_OPERAND (cond, 1));
- max = int_const_binop (PLUS_EXPR, limit, min);
- cond = TREE_OPERAND (cond, 0);
- }
- else
- {
- min = build_int_cst (TREE_TYPE (var), 0);
- max = limit;
- }
-
- /* Make sure to not set TREE_OVERFLOW on the final type
- conversion. We are willingly interpreting large positive
- unsigned values as negative singed values here. */
- min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
- 0, false);
- max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
- 0, false);
-
- /* We can transform a max, min range to an anti-range or
- vice-versa. Use set_and_canonicalize_value_range which does
- this for us. */
- if (cond_code == LE_EXPR)
- set_and_canonicalize_value_range (vr_p, VR_RANGE,
- min, max, vr_p->equiv);
- else if (cond_code == GT_EXPR)
- set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
- min, max, vr_p->equiv);
- else
- gcc_unreachable ();
- }
- else if (cond_code == EQ_EXPR)
- {
- enum value_range_type range_type;
-
- if (limit_vr)
- {
- range_type = limit_vr->type;
- min = limit_vr->min;
- max = limit_vr->max;
- }
- else
- {
- range_type = VR_RANGE;
- min = limit;
- max = limit;
- }
-
- set_value_range (vr_p, range_type, min, max, vr_p->equiv);
-
- /* When asserting the equality VAR == LIMIT and LIMIT is another
- SSA name, the new range will also inherit the equivalence set
- from LIMIT. */
- if (TREE_CODE (limit) == SSA_NAME)
- add_equivalence (&vr_p->equiv, limit);
- }
- else if (cond_code == NE_EXPR)
- {
- /* As described above, when LIMIT's range is an anti-range and
- this assertion is an inequality (NE_EXPR), then we cannot
- derive anything from the anti-range. For instance, if
- LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
- not imply that VAR's range is [0, 0]. So, in the case of
- anti-ranges, we just assert the inequality using LIMIT and
- not its anti-range.
-
- If LIMIT_VR is a range, we can only use it to build a new
- anti-range if LIMIT_VR is a single-valued range. For
- instance, if LIMIT_VR is [0, 1], the predicate
- VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
- Rather, it means that for value 0 VAR should be ~[0, 0]
- and for value 1, VAR should be ~[1, 1]. We cannot
- represent these ranges.
-
- The only situation in which we can build a valid
- anti-range is when LIMIT_VR is a single-valued range
- (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
- build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
- if (limit_vr
- && limit_vr->type == VR_RANGE
- && compare_values (limit_vr->min, limit_vr->max) == 0)
- {
- min = limit_vr->min;
- max = limit_vr->max;
- }
- else
- {
- /* In any other case, we cannot use LIMIT's range to build a
- valid anti-range. */
- min = max = limit;
- }
-
- /* If MIN and MAX cover the whole range for their type, then
- just use the original LIMIT. */
- if (INTEGRAL_TYPE_P (type)
- && vrp_val_is_min (min)
- && vrp_val_is_max (max))
- min = max = limit;
-
- set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
- min, max, vr_p->equiv);
- }
- else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
- {
- min = TYPE_MIN_VALUE (type);
-
- if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
- max = limit;
- else
- {
- /* If LIMIT_VR is of the form [N1, N2], we need to build the
- range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
- LT_EXPR. */
- max = limit_vr->max;
- }
-
- /* If the maximum value forces us to be out of bounds, simply punt.
- It would be pointless to try and do anything more since this
- all should be optimized away above us. */
- if ((cond_code == LT_EXPR
- && compare_values (max, min) == 0)
- || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
- set_value_range_to_varying (vr_p);
- else
- {
- /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
- if (cond_code == LT_EXPR)
- {
- if (TYPE_PRECISION (TREE_TYPE (max)) == 1
- && !TYPE_UNSIGNED (TREE_TYPE (max)))
- max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
- build_int_cst (TREE_TYPE (max), -1));
- else
- max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
- build_int_cst (TREE_TYPE (max), 1));
- if (EXPR_P (max))
- TREE_NO_WARNING (max) = 1;
- }
-
- set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
- }
- }
- else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
- {
- max = TYPE_MAX_VALUE (type);
-
- if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
- min = limit;
- else
- {
- /* If LIMIT_VR is of the form [N1, N2], we need to build the
- range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
- GT_EXPR. */
- min = limit_vr->min;
- }
-
- /* If the minimum value forces us to be out of bounds, simply punt.
- It would be pointless to try and do anything more since this
- all should be optimized away above us. */
- if ((cond_code == GT_EXPR
- && compare_values (min, max) == 0)
- || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
- set_value_range_to_varying (vr_p);
- else
- {
- /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
- if (cond_code == GT_EXPR)
- {
- if (TYPE_PRECISION (TREE_TYPE (min)) == 1
- && !TYPE_UNSIGNED (TREE_TYPE (min)))
- min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
- build_int_cst (TREE_TYPE (min), -1));
- else
- min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
- build_int_cst (TREE_TYPE (min), 1));
- if (EXPR_P (min))
- TREE_NO_WARNING (min) = 1;
- }
-
- set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
- }
- }
- else
- gcc_unreachable ();
-
- /* Finally intersect the new range with what we already know about var. */
- vrp_intersect_ranges (vr_p, get_value_range (var));
-}
-
-
-/* Extract range information from SSA name VAR and store it in VR. If
- VAR has an interesting range, use it. Otherwise, create the
- range [VAR, VAR] and return it. This is useful in situations where
- we may have conditionals testing values of VARYING names. For
- instance,
-
- x_3 = y_5;
- if (x_3 > y_5)
- ...
-
- Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
- always false. */
-
-static void
-extract_range_from_ssa_name (value_range_t *vr, tree var)
-{
- value_range_t *var_vr = get_value_range (var);
-
- if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
- copy_value_range (vr, var_vr);
- else
- set_value_range (vr, VR_RANGE, var, var, NULL);
-
- add_equivalence (&vr->equiv, var);
-}
-
-
-/* Wrapper around int_const_binop. If the operation overflows and we
- are not using wrapping arithmetic, then adjust the result to be
- -INF or +INF depending on CODE, VAL1 and VAL2. This can return
- NULL_TREE if we need to use an overflow infinity representation but
- the type does not support it. */
-
-static tree
-vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
-{
- tree res;
-
- res = int_const_binop (code, val1, val2);
-
- /* If we are using unsigned arithmetic, operate symbolically
- on -INF and +INF as int_const_binop only handles signed overflow. */
- if (TYPE_UNSIGNED (TREE_TYPE (val1)))
- {
- int checkz = compare_values (res, val1);
- bool overflow = false;
-
- /* Ensure that res = val1 [+*] val2 >= val1
- or that res = val1 - val2 <= val1. */
- if ((code == PLUS_EXPR
- && !(checkz == 1 || checkz == 0))
- || (code == MINUS_EXPR
- && !(checkz == 0 || checkz == -1)))
- {
- overflow = true;
- }
- /* Checking for multiplication overflow is done by dividing the
- output of the multiplication by the first input of the
- multiplication. If the result of that division operation is
- not equal to the second input of the multiplication, then the
- multiplication overflowed. */
- else if (code == MULT_EXPR && !integer_zerop (val1))
- {
- tree tmp = int_const_binop (TRUNC_DIV_EXPR,
- res,
- val1);
- int check = compare_values (tmp, val2);
-
- if (check != 0)
- overflow = true;
- }
-
- if (overflow)
- {
- res = copy_node (res);
- TREE_OVERFLOW (res) = 1;
- }
-
- }
- else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
- /* If the singed operation wraps then int_const_binop has done
- everything we want. */
- ;
- else if ((TREE_OVERFLOW (res)
- && !TREE_OVERFLOW (val1)
- && !TREE_OVERFLOW (val2))
- || is_overflow_infinity (val1)
- || is_overflow_infinity (val2))
- {
- /* If the operation overflowed but neither VAL1 nor VAL2 are
- overflown, return -INF or +INF depending on the operation
- and the combination of signs of the operands. */
- int sgn1 = tree_int_cst_sgn (val1);
- int sgn2 = tree_int_cst_sgn (val2);
-
- if (needs_overflow_infinity (TREE_TYPE (res))
- && !supports_overflow_infinity (TREE_TYPE (res)))
- return NULL_TREE;
-
- /* We have to punt on adding infinities of different signs,
- since we can't tell what the sign of the result should be.
- Likewise for subtracting infinities of the same sign. */
- if (((code == PLUS_EXPR && sgn1 != sgn2)
- || (code == MINUS_EXPR && sgn1 == sgn2))
- && is_overflow_infinity (val1)
- && is_overflow_infinity (val2))
- return NULL_TREE;
-
- /* Don't try to handle division or shifting of infinities. */
- if ((code == TRUNC_DIV_EXPR
- || code == FLOOR_DIV_EXPR
- || code == CEIL_DIV_EXPR
- || code == EXACT_DIV_EXPR
- || code == ROUND_DIV_EXPR
- || code == RSHIFT_EXPR)
- && (is_overflow_infinity (val1)
- || is_overflow_infinity (val2)))
- return NULL_TREE;
-
- /* Notice that we only need to handle the restricted set of
- operations handled by extract_range_from_binary_expr.
- Among them, only multiplication, addition and subtraction
- can yield overflow without overflown operands because we
- are working with integral types only... except in the
- case VAL1 = -INF and VAL2 = -1 which overflows to +INF
- for division too. */
-
- /* For multiplication, the sign of the overflow is given
- by the comparison of the signs of the operands. */
- if ((code == MULT_EXPR && sgn1 == sgn2)
- /* For addition, the operands must be of the same sign
- to yield an overflow. Its sign is therefore that
- of one of the operands, for example the first. For
- infinite operands X + -INF is negative, not positive. */
- || (code == PLUS_EXPR
- && (sgn1 >= 0
- ? !is_negative_overflow_infinity (val2)
- : is_positive_overflow_infinity (val2)))
- /* For subtraction, non-infinite operands must be of
- different signs to yield an overflow. Its sign is
- therefore that of the first operand or the opposite of
- that of the second operand. A first operand of 0 counts
- as positive here, for the corner case 0 - (-INF), which
- overflows, but must yield +INF. For infinite operands 0
- - INF is negative, not positive. */
- || (code == MINUS_EXPR
- && (sgn1 >= 0
- ? !is_positive_overflow_infinity (val2)
- : is_negative_overflow_infinity (val2)))
- /* We only get in here with positive shift count, so the
- overflow direction is the same as the sign of val1.
- Actually rshift does not overflow at all, but we only
- handle the case of shifting overflowed -INF and +INF. */
- || (code == RSHIFT_EXPR
- && sgn1 >= 0)
- /* For division, the only case is -INF / -1 = +INF. */
- || code == TRUNC_DIV_EXPR
- || code == FLOOR_DIV_EXPR
- || code == CEIL_DIV_EXPR
- || code == EXACT_DIV_EXPR
- || code == ROUND_DIV_EXPR)
- return (needs_overflow_infinity (TREE_TYPE (res))
- ? positive_overflow_infinity (TREE_TYPE (res))
- : TYPE_MAX_VALUE (TREE_TYPE (res)));
- else
- return (needs_overflow_infinity (TREE_TYPE (res))
- ? negative_overflow_infinity (TREE_TYPE (res))
- : TYPE_MIN_VALUE (TREE_TYPE (res)));
- }
-
- return res;
-}
-
-
-/* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
- bitmask if some bit is unset, it means for all numbers in the range
- the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
- bitmask if some bit is set, it means for all numbers in the range
- the bit is 1, otherwise it might be 0 or 1. */
-
-static bool
-zero_nonzero_bits_from_vr (value_range_t *vr,
- double_int *may_be_nonzero,
- double_int *must_be_nonzero)
-{
- *may_be_nonzero = double_int_minus_one;
- *must_be_nonzero = double_int_zero;
- if (!range_int_cst_p (vr)
- || TREE_OVERFLOW (vr->min)
- || TREE_OVERFLOW (vr->max))
- return false;
-
- if (range_int_cst_singleton_p (vr))
- {
- *may_be_nonzero = tree_to_double_int (vr->min);
- *must_be_nonzero = *may_be_nonzero;
- }
- else if (tree_int_cst_sgn (vr->min) >= 0
- || tree_int_cst_sgn (vr->max) < 0)
- {
- double_int dmin = tree_to_double_int (vr->min);
- double_int dmax = tree_to_double_int (vr->max);
- double_int xor_mask = dmin ^ dmax;
- *may_be_nonzero = dmin | dmax;
- *must_be_nonzero = dmin & dmax;
- if (xor_mask.high != 0)
- {
- unsigned HOST_WIDE_INT mask
- = ((unsigned HOST_WIDE_INT) 1
- << floor_log2 (xor_mask.high)) - 1;
- may_be_nonzero->low = ALL_ONES;
- may_be_nonzero->high |= mask;
- must_be_nonzero->low = 0;
- must_be_nonzero->high &= ~mask;
- }
- else if (xor_mask.low != 0)
- {
- unsigned HOST_WIDE_INT mask
- = ((unsigned HOST_WIDE_INT) 1
- << floor_log2 (xor_mask.low)) - 1;
- may_be_nonzero->low |= mask;
- must_be_nonzero->low &= ~mask;
- }
- }
-
- return true;
-}
-
-/* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
- so that *VR0 U *VR1 == *AR. Returns true if that is possible,
- false otherwise. If *AR can be represented with a single range
- *VR1 will be VR_UNDEFINED. */
-
-static bool
-ranges_from_anti_range (value_range_t *ar,
- value_range_t *vr0, value_range_t *vr1)
-{
- tree type = TREE_TYPE (ar->min);
-
- vr0->type = VR_UNDEFINED;
- vr1->type = VR_UNDEFINED;
-
- if (ar->type != VR_ANTI_RANGE
- || TREE_CODE (ar->min) != INTEGER_CST
- || TREE_CODE (ar->max) != INTEGER_CST
- || !vrp_val_min (type)
- || !vrp_val_max (type))
- return false;
-
- if (!vrp_val_is_min (ar->min))
- {
- vr0->type = VR_RANGE;
- vr0->min = vrp_val_min (type);
- vr0->max
- = double_int_to_tree (type,
- tree_to_double_int (ar->min) - double_int_one);
- }
- if (!vrp_val_is_max (ar->max))
- {
- vr1->type = VR_RANGE;
- vr1->min
- = double_int_to_tree (type,
- tree_to_double_int (ar->max) + double_int_one);
- vr1->max = vrp_val_max (type);
- }
- if (vr0->type == VR_UNDEFINED)
- {
- *vr0 = *vr1;
- vr1->type = VR_UNDEFINED;
- }
-
- return vr0->type != VR_UNDEFINED;
-}
-
-/* Helper to extract a value-range *VR for a multiplicative operation
- *VR0 CODE *VR1. */
-
-static void
-extract_range_from_multiplicative_op_1 (value_range_t *vr,
- enum tree_code code,
- value_range_t *vr0, value_range_t *vr1)
-{
- enum value_range_type type;
- tree val[4];
- size_t i;
- tree min, max;
- bool sop;
- int cmp;
-
- /* Multiplications, divisions and shifts are a bit tricky to handle,
- depending on the mix of signs we have in the two ranges, we
- need to operate on different values to get the minimum and
- maximum values for the new range. One approach is to figure
- out all the variations of range combinations and do the
- operations.
-
- However, this involves several calls to compare_values and it
- is pretty convoluted. It's simpler to do the 4 operations
- (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
- MAX1) and then figure the smallest and largest values to form
- the new range. */
- gcc_assert (code == MULT_EXPR
- || code == TRUNC_DIV_EXPR
- || code == FLOOR_DIV_EXPR
- || code == CEIL_DIV_EXPR
- || code == EXACT_DIV_EXPR
- || code == ROUND_DIV_EXPR
- || code == RSHIFT_EXPR
- || code == LSHIFT_EXPR);
- gcc_assert ((vr0->type == VR_RANGE
- || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
- && vr0->type == vr1->type);
-
- type = vr0->type;
-
- /* Compute the 4 cross operations. */
- sop = false;
- val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
- if (val[0] == NULL_TREE)
- sop = true;
-
- if (vr1->max == vr1->min)
- val[1] = NULL_TREE;
- else
- {
- val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
- if (val[1] == NULL_TREE)
- sop = true;
- }
-
- if (vr0->max == vr0->min)
- val[2] = NULL_TREE;
- else
- {
- val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
- if (val[2] == NULL_TREE)
- sop = true;
- }
-
- if (vr0->min == vr0->max || vr1->min == vr1->max)
- val[3] = NULL_TREE;
- else
- {
- val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
- if (val[3] == NULL_TREE)
- sop = true;
- }
-
- if (sop)
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* Set MIN to the minimum of VAL[i] and MAX to the maximum
- of VAL[i]. */
- min = val[0];
- max = val[0];
- for (i = 1; i < 4; i++)
- {
- if (!is_gimple_min_invariant (min)
- || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
- || !is_gimple_min_invariant (max)
- || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
- break;
-
- if (val[i])
- {
- if (!is_gimple_min_invariant (val[i])
- || (TREE_OVERFLOW (val[i])
- && !is_overflow_infinity (val[i])))
- {
- /* If we found an overflowed value, set MIN and MAX
- to it so that we set the resulting range to
- VARYING. */
- min = max = val[i];
- break;
- }
-
- if (compare_values (val[i], min) == -1)
- min = val[i];
-
- if (compare_values (val[i], max) == 1)
- max = val[i];
- }
- }
-
- /* If either MIN or MAX overflowed, then set the resulting range to
- VARYING. But we do accept an overflow infinity
- representation. */
- if (min == NULL_TREE
- || !is_gimple_min_invariant (min)
- || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
- || max == NULL_TREE
- || !is_gimple_min_invariant (max)
- || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* We punt if:
- 1) [-INF, +INF]
- 2) [-INF, +-INF(OVF)]
- 3) [+-INF(OVF), +INF]
- 4) [+-INF(OVF), +-INF(OVF)]
- We learn nothing when we have INF and INF(OVF) on both sides.
- Note that we do accept [-INF, -INF] and [+INF, +INF] without
- overflow. */
- if ((vrp_val_is_min (min) || is_overflow_infinity (min))
- && (vrp_val_is_max (max) || is_overflow_infinity (max)))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- cmp = compare_values (min, max);
- if (cmp == -2 || cmp == 1)
- {
- /* If the new range has its limits swapped around (MIN > MAX),
- then the operation caused one of them to wrap around, mark
- the new range VARYING. */
- set_value_range_to_varying (vr);
- }
- else
- set_value_range (vr, type, min, max, NULL);
-}
-
-/* Some quadruple precision helpers. */
-static int
-quad_int_cmp (double_int l0, double_int h0,
- double_int l1, double_int h1, bool uns)
-{
- int c = h0.cmp (h1, uns);
- if (c != 0) return c;
- return l0.ucmp (l1);
-}
-
-static void
-quad_int_pair_sort (double_int *l0, double_int *h0,
- double_int *l1, double_int *h1, bool uns)
-{
- if (quad_int_cmp (*l0, *h0, *l1, *h1, uns) > 0)
- {
- double_int tmp;
- tmp = *l0; *l0 = *l1; *l1 = tmp;
- tmp = *h0; *h0 = *h1; *h1 = tmp;
- }
-}
-
-/* Extract range information from a binary operation CODE based on
- the ranges of each of its operands, *VR0 and *VR1 with resulting
- type EXPR_TYPE. The resulting range is stored in *VR. */
-
-static void
-extract_range_from_binary_expr_1 (value_range_t *vr,
- enum tree_code code, tree expr_type,
- value_range_t *vr0_, value_range_t *vr1_)
-{
- value_range_t vr0 = *vr0_, vr1 = *vr1_;
- value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
- enum value_range_type type;
- tree min = NULL_TREE, max = NULL_TREE;
- int cmp;
-
- if (!INTEGRAL_TYPE_P (expr_type)
- && !POINTER_TYPE_P (expr_type))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* Not all binary expressions can be applied to ranges in a
- meaningful way. Handle only arithmetic operations. */
- if (code != PLUS_EXPR
- && code != MINUS_EXPR
- && code != POINTER_PLUS_EXPR
- && code != MULT_EXPR
- && code != TRUNC_DIV_EXPR
- && code != FLOOR_DIV_EXPR
- && code != CEIL_DIV_EXPR
- && code != EXACT_DIV_EXPR
- && code != ROUND_DIV_EXPR
- && code != TRUNC_MOD_EXPR
- && code != RSHIFT_EXPR
- && code != LSHIFT_EXPR
- && code != MIN_EXPR
- && code != MAX_EXPR
- && code != BIT_AND_EXPR
- && code != BIT_IOR_EXPR
- && code != BIT_XOR_EXPR)
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* If both ranges are UNDEFINED, so is the result. */
- if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
- {
- set_value_range_to_undefined (vr);
- return;
- }
- /* If one of the ranges is UNDEFINED drop it to VARYING for the following
- code. At some point we may want to special-case operations that
- have UNDEFINED result for all or some value-ranges of the not UNDEFINED
- operand. */
- else if (vr0.type == VR_UNDEFINED)
- set_value_range_to_varying (&vr0);
- else if (vr1.type == VR_UNDEFINED)
- set_value_range_to_varying (&vr1);
-
- /* Now canonicalize anti-ranges to ranges when they are not symbolic
- and express ~[] op X as ([]' op X) U ([]'' op X). */
- if (vr0.type == VR_ANTI_RANGE
- && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
- {
- extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
- if (vrtem1.type != VR_UNDEFINED)
- {
- value_range_t vrres = VR_INITIALIZER;
- extract_range_from_binary_expr_1 (&vrres, code, expr_type,
- &vrtem1, vr1_);
- vrp_meet (vr, &vrres);
- }
- return;
- }
- /* Likewise for X op ~[]. */
- if (vr1.type == VR_ANTI_RANGE
- && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
- {
- extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
- if (vrtem1.type != VR_UNDEFINED)
- {
- value_range_t vrres = VR_INITIALIZER;
- extract_range_from_binary_expr_1 (&vrres, code, expr_type,
- vr0_, &vrtem1);
- vrp_meet (vr, &vrres);
- }
- return;
- }
-
- /* The type of the resulting value range defaults to VR0.TYPE. */
- type = vr0.type;
-
- /* Refuse to operate on VARYING ranges, ranges of different kinds
- and symbolic ranges. As an exception, we allow BIT_AND_EXPR
- because we may be able to derive a useful range even if one of
- the operands is VR_VARYING or symbolic range. Similarly for
- divisions. TODO, we may be able to derive anti-ranges in
- some cases. */
- if (code != BIT_AND_EXPR
- && code != BIT_IOR_EXPR
- && code != TRUNC_DIV_EXPR
- && code != FLOOR_DIV_EXPR
- && code != CEIL_DIV_EXPR
- && code != EXACT_DIV_EXPR
- && code != ROUND_DIV_EXPR
- && code != TRUNC_MOD_EXPR
- && code != MIN_EXPR
- && code != MAX_EXPR
- && (vr0.type == VR_VARYING
- || vr1.type == VR_VARYING
- || vr0.type != vr1.type
- || symbolic_range_p (&vr0)
- || symbolic_range_p (&vr1)))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* Now evaluate the expression to determine the new range. */
- if (POINTER_TYPE_P (expr_type))
- {
- if (code == MIN_EXPR || code == MAX_EXPR)
- {
- /* For MIN/MAX expressions with pointers, we only care about
- nullness, if both are non null, then the result is nonnull.
- If both are null, then the result is null. Otherwise they
- are varying. */
- if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
- set_value_range_to_nonnull (vr, expr_type);
- else if (range_is_null (&vr0) && range_is_null (&vr1))
- set_value_range_to_null (vr, expr_type);
- else
- set_value_range_to_varying (vr);
- }
- else if (code == POINTER_PLUS_EXPR)
- {
- /* For pointer types, we are really only interested in asserting
- whether the expression evaluates to non-NULL. */
- if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
- set_value_range_to_nonnull (vr, expr_type);
- else if (range_is_null (&vr0) && range_is_null (&vr1))
- set_value_range_to_null (vr, expr_type);
- else
- set_value_range_to_varying (vr);
- }
- else if (code == BIT_AND_EXPR)
- {
- /* For pointer types, we are really only interested in asserting
- whether the expression evaluates to non-NULL. */
- if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
- set_value_range_to_nonnull (vr, expr_type);
- else if (range_is_null (&vr0) || range_is_null (&vr1))
- set_value_range_to_null (vr, expr_type);
- else
- set_value_range_to_varying (vr);
- }
- else
- set_value_range_to_varying (vr);
-
- return;
- }
-
- /* For integer ranges, apply the operation to each end of the
- range and see what we end up with. */
- if (code == PLUS_EXPR || code == MINUS_EXPR)
- {
- /* If we have a PLUS_EXPR with two VR_RANGE integer constant
- ranges compute the precise range for such case if possible. */
- if (range_int_cst_p (&vr0)
- && range_int_cst_p (&vr1)
- /* We need as many bits as the possibly unsigned inputs. */
- && TYPE_PRECISION (expr_type) <= HOST_BITS_PER_DOUBLE_INT)
- {
- double_int min0 = tree_to_double_int (vr0.min);
- double_int max0 = tree_to_double_int (vr0.max);
- double_int min1 = tree_to_double_int (vr1.min);
- double_int max1 = tree_to_double_int (vr1.max);
- bool uns = TYPE_UNSIGNED (expr_type);
- double_int type_min
- = double_int::min_value (TYPE_PRECISION (expr_type), uns);
- double_int type_max
- = double_int::max_value (TYPE_PRECISION (expr_type), uns);
- double_int dmin, dmax;
- int min_ovf = 0;
- int max_ovf = 0;
-
- if (code == PLUS_EXPR)
- {
- dmin = min0 + min1;
- dmax = max0 + max1;
-
- /* Check for overflow in double_int. */
- if (min1.cmp (double_int_zero, uns) != dmin.cmp (min0, uns))
- min_ovf = min0.cmp (dmin, uns);
- if (max1.cmp (double_int_zero, uns) != dmax.cmp (max0, uns))
- max_ovf = max0.cmp (dmax, uns);
- }
- else /* if (code == MINUS_EXPR) */
- {
- dmin = min0 - max1;
- dmax = max0 - min1;
-
- if (double_int_zero.cmp (max1, uns) != dmin.cmp (min0, uns))
- min_ovf = min0.cmp (max1, uns);
- if (double_int_zero.cmp (min1, uns) != dmax.cmp (max0, uns))
- max_ovf = max0.cmp (min1, uns);
- }
-
- /* For non-wrapping arithmetic look at possibly smaller
- value-ranges of the type. */
- if (!TYPE_OVERFLOW_WRAPS (expr_type))
- {
- if (vrp_val_min (expr_type))
- type_min = tree_to_double_int (vrp_val_min (expr_type));
- if (vrp_val_max (expr_type))
- type_max = tree_to_double_int (vrp_val_max (expr_type));
- }
-
- /* Check for type overflow. */
- if (min_ovf == 0)
- {
- if (dmin.cmp (type_min, uns) == -1)
- min_ovf = -1;
- else if (dmin.cmp (type_max, uns) == 1)
- min_ovf = 1;
- }
- if (max_ovf == 0)
- {
- if (dmax.cmp (type_min, uns) == -1)
- max_ovf = -1;
- else if (dmax.cmp (type_max, uns) == 1)
- max_ovf = 1;
- }
-
- if (TYPE_OVERFLOW_WRAPS (expr_type))
- {
- /* If overflow wraps, truncate the values and adjust the
- range kind and bounds appropriately. */
- double_int tmin
- = dmin.ext (TYPE_PRECISION (expr_type), uns);
- double_int tmax
- = dmax.ext (TYPE_PRECISION (expr_type), uns);
- if (min_ovf == max_ovf)
- {
- /* No overflow or both overflow or underflow. The
- range kind stays VR_RANGE. */
- min = double_int_to_tree (expr_type, tmin);
- max = double_int_to_tree (expr_type, tmax);
- }
- else if (min_ovf == -1
- && max_ovf == 1)
- {
- /* Underflow and overflow, drop to VR_VARYING. */
- set_value_range_to_varying (vr);
- return;
- }
- else
- {
- /* Min underflow or max overflow. The range kind
- changes to VR_ANTI_RANGE. */
- bool covers = false;
- double_int tem = tmin;
- gcc_assert ((min_ovf == -1 && max_ovf == 0)
- || (max_ovf == 1 && min_ovf == 0));
- type = VR_ANTI_RANGE;
- tmin = tmax + double_int_one;
- if (tmin.cmp (tmax, uns) < 0)
- covers = true;
- tmax = tem + double_int_minus_one;
- if (tmax.cmp (tem, uns) > 0)
- covers = true;
- /* If the anti-range would cover nothing, drop to varying.
- Likewise if the anti-range bounds are outside of the
- types values. */
- if (covers || tmin.cmp (tmax, uns) > 0)
- {
- set_value_range_to_varying (vr);
- return;
- }
- min = double_int_to_tree (expr_type, tmin);
- max = double_int_to_tree (expr_type, tmax);
- }
- }
- else
- {
- /* If overflow does not wrap, saturate to the types min/max
- value. */
- if (min_ovf == -1)
- {
- if (needs_overflow_infinity (expr_type)
- && supports_overflow_infinity (expr_type))
- min = negative_overflow_infinity (expr_type);
- else
- min = double_int_to_tree (expr_type, type_min);
- }
- else if (min_ovf == 1)
- {
- if (needs_overflow_infinity (expr_type)
- && supports_overflow_infinity (expr_type))
- min = positive_overflow_infinity (expr_type);
- else
- min = double_int_to_tree (expr_type, type_max);
- }
- else
- min = double_int_to_tree (expr_type, dmin);
-
- if (max_ovf == -1)
- {
- if (needs_overflow_infinity (expr_type)
- && supports_overflow_infinity (expr_type))
- max = negative_overflow_infinity (expr_type);
- else
- max = double_int_to_tree (expr_type, type_min);
- }
- else if (max_ovf == 1)
- {
- if (needs_overflow_infinity (expr_type)
- && supports_overflow_infinity (expr_type))
- max = positive_overflow_infinity (expr_type);
- else
- max = double_int_to_tree (expr_type, type_max);
- }
- else
- max = double_int_to_tree (expr_type, dmax);
- }
- if (needs_overflow_infinity (expr_type)
- && supports_overflow_infinity (expr_type))
- {
- if (is_negative_overflow_infinity (vr0.min)
- || (code == PLUS_EXPR
- ? is_negative_overflow_infinity (vr1.min)
- : is_positive_overflow_infinity (vr1.max)))
- min = negative_overflow_infinity (expr_type);
- if (is_positive_overflow_infinity (vr0.max)
- || (code == PLUS_EXPR
- ? is_positive_overflow_infinity (vr1.max)
- : is_negative_overflow_infinity (vr1.min)))
- max = positive_overflow_infinity (expr_type);
- }
- }
- else
- {
- /* For other cases, for example if we have a PLUS_EXPR with two
- VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
- to compute a precise range for such a case.
- ??? General even mixed range kind operations can be expressed
- by for example transforming ~[3, 5] + [1, 2] to range-only
- operations and a union primitive:
- [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
- [-INF+1, 4] U [6, +INF(OVF)]
- though usually the union is not exactly representable with
- a single range or anti-range as the above is
- [-INF+1, +INF(OVF)] intersected with ~[5, 5]
- but one could use a scheme similar to equivalences for this. */
- set_value_range_to_varying (vr);
- return;
- }
- }
- else if (code == MIN_EXPR
- || code == MAX_EXPR)
- {
- if (vr0.type == VR_RANGE
- && !symbolic_range_p (&vr0))
- {
- type = VR_RANGE;
- if (vr1.type == VR_RANGE
- && !symbolic_range_p (&vr1))
- {
- /* For operations that make the resulting range directly
- proportional to the original ranges, apply the operation to
- the same end of each range. */
- min = vrp_int_const_binop (code, vr0.min, vr1.min);
- max = vrp_int_const_binop (code, vr0.max, vr1.max);
- }
- else if (code == MIN_EXPR)
- {
- min = vrp_val_min (expr_type);
- max = vr0.max;
- }
- else if (code == MAX_EXPR)
- {
- min = vr0.min;
- max = vrp_val_max (expr_type);
- }
- }
- else if (vr1.type == VR_RANGE
- && !symbolic_range_p (&vr1))
- {
- type = VR_RANGE;
- if (code == MIN_EXPR)
- {
- min = vrp_val_min (expr_type);
- max = vr1.max;
- }
- else if (code == MAX_EXPR)
- {
- min = vr1.min;
- max = vrp_val_max (expr_type);
- }
- }
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
- else if (code == MULT_EXPR)
- {
- /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
- drop to varying. */
- if (range_int_cst_p (&vr0)
- && range_int_cst_p (&vr1)
- && TYPE_OVERFLOW_WRAPS (expr_type))
- {
- double_int min0, max0, min1, max1, sizem1, size;
- double_int prod0l, prod0h, prod1l, prod1h,
- prod2l, prod2h, prod3l, prod3h;
- bool uns0, uns1, uns;
-
- sizem1 = double_int::max_value (TYPE_PRECISION (expr_type), true);
- size = sizem1 + double_int_one;
-
- min0 = tree_to_double_int (vr0.min);
- max0 = tree_to_double_int (vr0.max);
- min1 = tree_to_double_int (vr1.min);
- max1 = tree_to_double_int (vr1.max);
-
- uns0 = TYPE_UNSIGNED (expr_type);
- uns1 = uns0;
-
- /* Canonicalize the intervals. */
- if (TYPE_UNSIGNED (expr_type))
- {
- double_int min2 = size - min0;
- if (!min2.is_zero () && min2.cmp (max0, true) < 0)
- {
- min0 = -min2;
- max0 -= size;
- uns0 = false;
- }
-
- min2 = size - min1;
- if (!min2.is_zero () && min2.cmp (max1, true) < 0)
- {
- min1 = -min2;
- max1 -= size;
- uns1 = false;
- }
- }
- uns = uns0 & uns1;
-
- bool overflow;
- prod0l = min0.wide_mul_with_sign (min1, true, &prod0h, &overflow);
- if (!uns0 && min0.is_negative ())
- prod0h -= min1;
- if (!uns1 && min1.is_negative ())
- prod0h -= min0;
-
- prod1l = min0.wide_mul_with_sign (max1, true, &prod1h, &overflow);
- if (!uns0 && min0.is_negative ())
- prod1h -= max1;
- if (!uns1 && max1.is_negative ())
- prod1h -= min0;
-
- prod2l = max0.wide_mul_with_sign (min1, true, &prod2h, &overflow);
- if (!uns0 && max0.is_negative ())
- prod2h -= min1;
- if (!uns1 && min1.is_negative ())
- prod2h -= max0;
-
- prod3l = max0.wide_mul_with_sign (max1, true, &prod3h, &overflow);
- if (!uns0 && max0.is_negative ())
- prod3h -= max1;
- if (!uns1 && max1.is_negative ())
- prod3h -= max0;
-
- /* Sort the 4 products. */
- quad_int_pair_sort (&prod0l, &prod0h, &prod3l, &prod3h, uns);
- quad_int_pair_sort (&prod1l, &prod1h, &prod2l, &prod2h, uns);
- quad_int_pair_sort (&prod0l, &prod0h, &prod1l, &prod1h, uns);
- quad_int_pair_sort (&prod2l, &prod2h, &prod3l, &prod3h, uns);
-
- /* Max - min. */
- if (prod0l.is_zero ())
- {
- prod1l = double_int_zero;
- prod1h = -prod0h;
- }
- else
- {
- prod1l = -prod0l;
- prod1h = ~prod0h;
- }
- prod2l = prod3l + prod1l;
- prod2h = prod3h + prod1h;
- if (prod2l.ult (prod3l))
- prod2h += double_int_one; /* carry */
-
- if (!prod2h.is_zero ()
- || prod2l.cmp (sizem1, true) >= 0)
- {
- /* the range covers all values. */
- set_value_range_to_varying (vr);
- return;
- }
-
- /* The following should handle the wrapping and selecting
- VR_ANTI_RANGE for us. */
- min = double_int_to_tree (expr_type, prod0l);
- max = double_int_to_tree (expr_type, prod3l);
- set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
- return;
- }
-
- /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
- drop to VR_VARYING. It would take more effort to compute a
- precise range for such a case. For example, if we have
- op0 == 65536 and op1 == 65536 with their ranges both being
- ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
- we cannot claim that the product is in ~[0,0]. Note that we
- are guaranteed to have vr0.type == vr1.type at this
- point. */
- if (vr0.type == VR_ANTI_RANGE
- && !TYPE_OVERFLOW_UNDEFINED (expr_type))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
- return;
- }
- else if (code == RSHIFT_EXPR
- || code == LSHIFT_EXPR)
- {
- /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
- then drop to VR_VARYING. Outside of this range we get undefined
- behavior from the shift operation. We cannot even trust
- SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
- shifts, and the operation at the tree level may be widened. */
- if (range_int_cst_p (&vr1)
- && compare_tree_int (vr1.min, 0) >= 0
- && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
- {
- if (code == RSHIFT_EXPR)
- {
- extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
- return;
- }
- /* We can map lshifts by constants to MULT_EXPR handling. */
- else if (code == LSHIFT_EXPR
- && range_int_cst_singleton_p (&vr1))
- {
- bool saved_flag_wrapv;
- value_range_t vr1p = VR_INITIALIZER;
- vr1p.type = VR_RANGE;
- vr1p.min
- = double_int_to_tree (expr_type,
- double_int_one
- .llshift (TREE_INT_CST_LOW (vr1.min),
- TYPE_PRECISION (expr_type)));
- vr1p.max = vr1p.min;
- /* We have to use a wrapping multiply though as signed overflow
- on lshifts is implementation defined in C89. */
- saved_flag_wrapv = flag_wrapv;
- flag_wrapv = 1;
- extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
- &vr0, &vr1p);
- flag_wrapv = saved_flag_wrapv;
- return;
- }
- else if (code == LSHIFT_EXPR
- && range_int_cst_p (&vr0))
- {
- int prec = TYPE_PRECISION (expr_type);
- int overflow_pos = prec;
- int bound_shift;
- double_int bound, complement, low_bound, high_bound;
- bool uns = TYPE_UNSIGNED (expr_type);
- bool in_bounds = false;
-
- if (!uns)
- overflow_pos -= 1;
-
- bound_shift = overflow_pos - TREE_INT_CST_LOW (vr1.max);
- /* If bound_shift == HOST_BITS_PER_DOUBLE_INT, the llshift can
- overflow. However, for that to happen, vr1.max needs to be
- zero, which means vr1 is a singleton range of zero, which
- means it should be handled by the previous LSHIFT_EXPR
- if-clause. */
- bound = double_int_one.llshift (bound_shift, prec);
- complement = ~(bound - double_int_one);
-
- if (uns)
- {
- low_bound = bound.zext (prec);
- high_bound = complement.zext (prec);
- if (tree_to_double_int (vr0.max).ult (low_bound))
- {
- /* [5, 6] << [1, 2] == [10, 24]. */
- /* We're shifting out only zeroes, the value increases
- monotonically. */
- in_bounds = true;
- }
- else if (high_bound.ult (tree_to_double_int (vr0.min)))
- {
- /* [0xffffff00, 0xffffffff] << [1, 2]
- == [0xfffffc00, 0xfffffffe]. */
- /* We're shifting out only ones, the value decreases
- monotonically. */
- in_bounds = true;
- }
- }
- else
- {
- /* [-1, 1] << [1, 2] == [-4, 4]. */
- low_bound = complement.sext (prec);
- high_bound = bound;
- if (tree_to_double_int (vr0.max).slt (high_bound)
- && low_bound.slt (tree_to_double_int (vr0.min)))
- {
- /* For non-negative numbers, we're shifting out only
- zeroes, the value increases monotonically.
- For negative numbers, we're shifting out only ones, the
- value decreases monotomically. */
- in_bounds = true;
- }
- }
-
- if (in_bounds)
- {
- extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
- return;
- }
- }
- }
- set_value_range_to_varying (vr);
- return;
- }
- else if (code == TRUNC_DIV_EXPR
- || code == FLOOR_DIV_EXPR
- || code == CEIL_DIV_EXPR
- || code == EXACT_DIV_EXPR
- || code == ROUND_DIV_EXPR)
- {
- if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
- {
- /* For division, if op1 has VR_RANGE but op0 does not, something
- can be deduced just from that range. Say [min, max] / [4, max]
- gives [min / 4, max / 4] range. */
- if (vr1.type == VR_RANGE
- && !symbolic_range_p (&vr1)
- && range_includes_zero_p (vr1.min, vr1.max) == 0)
- {
- vr0.type = type = VR_RANGE;
- vr0.min = vrp_val_min (expr_type);
- vr0.max = vrp_val_max (expr_type);
- }
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
-
- /* For divisions, if flag_non_call_exceptions is true, we must
- not eliminate a division by zero. */
- if (cfun->can_throw_non_call_exceptions
- && (vr1.type != VR_RANGE
- || range_includes_zero_p (vr1.min, vr1.max) != 0))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* For divisions, if op0 is VR_RANGE, we can deduce a range
- even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
- include 0. */
- if (vr0.type == VR_RANGE
- && (vr1.type != VR_RANGE
- || range_includes_zero_p (vr1.min, vr1.max) != 0))
- {
- tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
- int cmp;
-
- min = NULL_TREE;
- max = NULL_TREE;
- if (TYPE_UNSIGNED (expr_type)
- || value_range_nonnegative_p (&vr1))
- {
- /* For unsigned division or when divisor is known
- to be non-negative, the range has to cover
- all numbers from 0 to max for positive max
- and all numbers from min to 0 for negative min. */
- cmp = compare_values (vr0.max, zero);
- if (cmp == -1)
- max = zero;
- else if (cmp == 0 || cmp == 1)
- max = vr0.max;
- else
- type = VR_VARYING;
- cmp = compare_values (vr0.min, zero);
- if (cmp == 1)
- min = zero;
- else if (cmp == 0 || cmp == -1)
- min = vr0.min;
- else
- type = VR_VARYING;
- }
- else
- {
- /* Otherwise the range is -max .. max or min .. -min
- depending on which bound is bigger in absolute value,
- as the division can change the sign. */
- abs_extent_range (vr, vr0.min, vr0.max);
- return;
- }
- if (type == VR_VARYING)
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
- else
- {
- extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
- return;
- }
- }
- else if (code == TRUNC_MOD_EXPR)
- {
- if (vr1.type != VR_RANGE
- || range_includes_zero_p (vr1.min, vr1.max) != 0
- || vrp_val_is_min (vr1.min))
- {
- set_value_range_to_varying (vr);
- return;
- }
- type = VR_RANGE;
- /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
- max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
- if (tree_int_cst_lt (max, vr1.max))
- max = vr1.max;
- max = int_const_binop (MINUS_EXPR, max, integer_one_node);
- /* If the dividend is non-negative the modulus will be
- non-negative as well. */
- if (TYPE_UNSIGNED (expr_type)
- || value_range_nonnegative_p (&vr0))
- min = build_int_cst (TREE_TYPE (max), 0);
- else
- min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
- }
- else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
- {
- bool int_cst_range0, int_cst_range1;
- double_int may_be_nonzero0, may_be_nonzero1;
- double_int must_be_nonzero0, must_be_nonzero1;
-
- int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
- &must_be_nonzero0);
- int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
- &must_be_nonzero1);
-
- type = VR_RANGE;
- if (code == BIT_AND_EXPR)
- {
- double_int dmax;
- min = double_int_to_tree (expr_type,
- must_be_nonzero0 & must_be_nonzero1);
- dmax = may_be_nonzero0 & may_be_nonzero1;
- /* If both input ranges contain only negative values we can
- truncate the result range maximum to the minimum of the
- input range maxima. */
- if (int_cst_range0 && int_cst_range1
- && tree_int_cst_sgn (vr0.max) < 0
- && tree_int_cst_sgn (vr1.max) < 0)
- {
- dmax = dmax.min (tree_to_double_int (vr0.max),
- TYPE_UNSIGNED (expr_type));
- dmax = dmax.min (tree_to_double_int (vr1.max),
- TYPE_UNSIGNED (expr_type));
- }
- /* If either input range contains only non-negative values
- we can truncate the result range maximum to the respective
- maximum of the input range. */
- if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
- dmax = dmax.min (tree_to_double_int (vr0.max),
- TYPE_UNSIGNED (expr_type));
- if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
- dmax = dmax.min (tree_to_double_int (vr1.max),
- TYPE_UNSIGNED (expr_type));
- max = double_int_to_tree (expr_type, dmax);
- }
- else if (code == BIT_IOR_EXPR)
- {
- double_int dmin;
- max = double_int_to_tree (expr_type,
- may_be_nonzero0 | may_be_nonzero1);
- dmin = must_be_nonzero0 | must_be_nonzero1;
- /* If the input ranges contain only positive values we can
- truncate the minimum of the result range to the maximum
- of the input range minima. */
- if (int_cst_range0 && int_cst_range1
- && tree_int_cst_sgn (vr0.min) >= 0
- && tree_int_cst_sgn (vr1.min) >= 0)
- {
- dmin = dmin.max (tree_to_double_int (vr0.min),
- TYPE_UNSIGNED (expr_type));
- dmin = dmin.max (tree_to_double_int (vr1.min),
- TYPE_UNSIGNED (expr_type));
- }
- /* If either input range contains only negative values
- we can truncate the minimum of the result range to the
- respective minimum range. */
- if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
- dmin = dmin.max (tree_to_double_int (vr0.min),
- TYPE_UNSIGNED (expr_type));
- if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
- dmin = dmin.max (tree_to_double_int (vr1.min),
- TYPE_UNSIGNED (expr_type));
- min = double_int_to_tree (expr_type, dmin);
- }
- else if (code == BIT_XOR_EXPR)
- {
- double_int result_zero_bits, result_one_bits;
- result_zero_bits = (must_be_nonzero0 & must_be_nonzero1)
- | ~(may_be_nonzero0 | may_be_nonzero1);
- result_one_bits = must_be_nonzero0.and_not (may_be_nonzero1)
- | must_be_nonzero1.and_not (may_be_nonzero0);
- max = double_int_to_tree (expr_type, ~result_zero_bits);
- min = double_int_to_tree (expr_type, result_one_bits);
- /* If the range has all positive or all negative values the
- result is better than VARYING. */
- if (tree_int_cst_sgn (min) < 0
- || tree_int_cst_sgn (max) >= 0)
- ;
- else
- max = min = NULL_TREE;
- }
- }
- else
- gcc_unreachable ();
-
- /* If either MIN or MAX overflowed, then set the resulting range to
- VARYING. But we do accept an overflow infinity
- representation. */
- if (min == NULL_TREE
- || !is_gimple_min_invariant (min)
- || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
- || max == NULL_TREE
- || !is_gimple_min_invariant (max)
- || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* We punt if:
- 1) [-INF, +INF]
- 2) [-INF, +-INF(OVF)]
- 3) [+-INF(OVF), +INF]
- 4) [+-INF(OVF), +-INF(OVF)]
- We learn nothing when we have INF and INF(OVF) on both sides.
- Note that we do accept [-INF, -INF] and [+INF, +INF] without
- overflow. */
- if ((vrp_val_is_min (min) || is_overflow_infinity (min))
- && (vrp_val_is_max (max) || is_overflow_infinity (max)))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- cmp = compare_values (min, max);
- if (cmp == -2 || cmp == 1)
- {
- /* If the new range has its limits swapped around (MIN > MAX),
- then the operation caused one of them to wrap around, mark
- the new range VARYING. */
- set_value_range_to_varying (vr);
- }
- else
- set_value_range (vr, type, min, max, NULL);
-}
-
-/* Extract range information from a binary expression OP0 CODE OP1 based on
- the ranges of each of its operands with resulting type EXPR_TYPE.
- The resulting range is stored in *VR. */
-
-static void
-extract_range_from_binary_expr (value_range_t *vr,
- enum tree_code code,
- tree expr_type, tree op0, tree op1)
-{
- value_range_t vr0 = VR_INITIALIZER;
- value_range_t vr1 = VR_INITIALIZER;
-
- /* Get value ranges for each operand. For constant operands, create
- a new value range with the operand to simplify processing. */
- if (TREE_CODE (op0) == SSA_NAME)
- vr0 = *(get_value_range (op0));
- else if (is_gimple_min_invariant (op0))
- set_value_range_to_value (&vr0, op0, NULL);
- else
- set_value_range_to_varying (&vr0);
-
- if (TREE_CODE (op1) == SSA_NAME)
- vr1 = *(get_value_range (op1));
- else if (is_gimple_min_invariant (op1))
- set_value_range_to_value (&vr1, op1, NULL);
- else
- set_value_range_to_varying (&vr1);
-
- extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
-}
-
-/* Extract range information from a unary operation CODE based on
- the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
- The The resulting range is stored in *VR. */
-
-static void
-extract_range_from_unary_expr_1 (value_range_t *vr,
- enum tree_code code, tree type,
- value_range_t *vr0_, tree op0_type)
-{
- value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
-
- /* VRP only operates on integral and pointer types. */
- if (!(INTEGRAL_TYPE_P (op0_type)
- || POINTER_TYPE_P (op0_type))
- || !(INTEGRAL_TYPE_P (type)
- || POINTER_TYPE_P (type)))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* If VR0 is UNDEFINED, so is the result. */
- if (vr0.type == VR_UNDEFINED)
- {
- set_value_range_to_undefined (vr);
- return;
- }
-
- /* Handle operations that we express in terms of others. */
- if (code == PAREN_EXPR)
- {
- /* PAREN_EXPR is a simple copy. */
- copy_value_range (vr, &vr0);
- return;
- }
- else if (code == NEGATE_EXPR)
- {
- /* -X is simply 0 - X, so re-use existing code that also handles
- anti-ranges fine. */
- value_range_t zero = VR_INITIALIZER;
- set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
- extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
- return;
- }
- else if (code == BIT_NOT_EXPR)
- {
- /* ~X is simply -1 - X, so re-use existing code that also handles
- anti-ranges fine. */
- value_range_t minusone = VR_INITIALIZER;
- set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
- extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
- type, &minusone, &vr0);
- return;
- }
-
- /* Now canonicalize anti-ranges to ranges when they are not symbolic
- and express op ~[] as (op []') U (op []''). */
- if (vr0.type == VR_ANTI_RANGE
- && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
- {
- extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
- if (vrtem1.type != VR_UNDEFINED)
- {
- value_range_t vrres = VR_INITIALIZER;
- extract_range_from_unary_expr_1 (&vrres, code, type,
- &vrtem1, op0_type);
- vrp_meet (vr, &vrres);
- }
- return;
- }
-
- if (CONVERT_EXPR_CODE_P (code))
- {
- tree inner_type = op0_type;
- tree outer_type = type;
-
- /* If the expression evaluates to a pointer, we are only interested in
- determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
- if (POINTER_TYPE_P (type))
- {
- if (range_is_nonnull (&vr0))
- set_value_range_to_nonnull (vr, type);
- else if (range_is_null (&vr0))
- set_value_range_to_null (vr, type);
- else
- set_value_range_to_varying (vr);
- return;
- }
-
- /* If VR0 is varying and we increase the type precision, assume
- a full range for the following transformation. */
- if (vr0.type == VR_VARYING
- && INTEGRAL_TYPE_P (inner_type)
- && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
- {
- vr0.type = VR_RANGE;
- vr0.min = TYPE_MIN_VALUE (inner_type);
- vr0.max = TYPE_MAX_VALUE (inner_type);
- }
-
- /* If VR0 is a constant range or anti-range and the conversion is
- not truncating we can convert the min and max values and
- canonicalize the resulting range. Otherwise we can do the
- conversion if the size of the range is less than what the
- precision of the target type can represent and the range is
- not an anti-range. */
- if ((vr0.type == VR_RANGE
- || vr0.type == VR_ANTI_RANGE)
- && TREE_CODE (vr0.min) == INTEGER_CST
- && TREE_CODE (vr0.max) == INTEGER_CST
- && (!is_overflow_infinity (vr0.min)
- || (vr0.type == VR_RANGE
- && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
- && needs_overflow_infinity (outer_type)
- && supports_overflow_infinity (outer_type)))
- && (!is_overflow_infinity (vr0.max)
- || (vr0.type == VR_RANGE
- && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
- && needs_overflow_infinity (outer_type)
- && supports_overflow_infinity (outer_type)))
- && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
- || (vr0.type == VR_RANGE
- && integer_zerop (int_const_binop (RSHIFT_EXPR,
- int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
- size_int (TYPE_PRECISION (outer_type)))))))
- {
- tree new_min, new_max;
- if (is_overflow_infinity (vr0.min))
- new_min = negative_overflow_infinity (outer_type);
- else
- new_min = force_fit_type_double (outer_type,
- tree_to_double_int (vr0.min),
- 0, false);
- if (is_overflow_infinity (vr0.max))
- new_max = positive_overflow_infinity (outer_type);
- else
- new_max = force_fit_type_double (outer_type,
- tree_to_double_int (vr0.max),
- 0, false);
- set_and_canonicalize_value_range (vr, vr0.type,
- new_min, new_max, NULL);
- return;
- }
-
- set_value_range_to_varying (vr);
- return;
- }
- else if (code == ABS_EXPR)
- {
- tree min, max;
- int cmp;
-
- /* Pass through vr0 in the easy cases. */
- if (TYPE_UNSIGNED (type)
- || value_range_nonnegative_p (&vr0))
- {
- copy_value_range (vr, &vr0);
- return;
- }
-
- /* For the remaining varying or symbolic ranges we can't do anything
- useful. */
- if (vr0.type == VR_VARYING
- || symbolic_range_p (&vr0))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
- useful range. */
- if (!TYPE_OVERFLOW_UNDEFINED (type)
- && ((vr0.type == VR_RANGE
- && vrp_val_is_min (vr0.min))
- || (vr0.type == VR_ANTI_RANGE
- && !vrp_val_is_min (vr0.min))))
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- /* ABS_EXPR may flip the range around, if the original range
- included negative values. */
- if (is_overflow_infinity (vr0.min))
- min = positive_overflow_infinity (type);
- else if (!vrp_val_is_min (vr0.min))
- min = fold_unary_to_constant (code, type, vr0.min);
- else if (!needs_overflow_infinity (type))
- min = TYPE_MAX_VALUE (type);
- else if (supports_overflow_infinity (type))
- min = positive_overflow_infinity (type);
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- if (is_overflow_infinity (vr0.max))
- max = positive_overflow_infinity (type);
- else if (!vrp_val_is_min (vr0.max))
- max = fold_unary_to_constant (code, type, vr0.max);
- else if (!needs_overflow_infinity (type))
- max = TYPE_MAX_VALUE (type);
- else if (supports_overflow_infinity (type)
- /* We shouldn't generate [+INF, +INF] as set_value_range
- doesn't like this and ICEs. */
- && !is_positive_overflow_infinity (min))
- max = positive_overflow_infinity (type);
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
-
- cmp = compare_values (min, max);
-
- /* If a VR_ANTI_RANGEs contains zero, then we have
- ~[-INF, min(MIN, MAX)]. */
- if (vr0.type == VR_ANTI_RANGE)
- {
- if (range_includes_zero_p (vr0.min, vr0.max) == 1)
- {
- /* Take the lower of the two values. */
- if (cmp != 1)
- max = min;
-
- /* Create ~[-INF, min (abs(MIN), abs(MAX))]
- or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
- flag_wrapv is set and the original anti-range doesn't include
- TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
- if (TYPE_OVERFLOW_WRAPS (type))
- {
- tree type_min_value = TYPE_MIN_VALUE (type);
-
- min = (vr0.min != type_min_value
- ? int_const_binop (PLUS_EXPR, type_min_value,
- integer_one_node)
- : type_min_value);
- }
- else
- {
- if (overflow_infinity_range_p (&vr0))
- min = negative_overflow_infinity (type);
- else
- min = TYPE_MIN_VALUE (type);
- }
- }
- else
- {
- /* All else has failed, so create the range [0, INF], even for
- flag_wrapv since TYPE_MIN_VALUE is in the original
- anti-range. */
- vr0.type = VR_RANGE;
- min = build_int_cst (type, 0);
- if (needs_overflow_infinity (type))
- {
- if (supports_overflow_infinity (type))
- max = positive_overflow_infinity (type);
- else
- {
- set_value_range_to_varying (vr);
- return;
- }
- }
- else
- max = TYPE_MAX_VALUE (type);
- }
- }
-
- /* If the range contains zero then we know that the minimum value in the
- range will be zero. */
- else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
- {
- if (cmp == 1)
- max = min;
- min = build_int_cst (type, 0);
- }
- else
- {
- /* If the range was reversed, swap MIN and MAX. */
- if (cmp == 1)
- {
- tree t = min;
- min = max;
- max = t;
- }
- }
-
- cmp = compare_values (min, max);
- if (cmp == -2 || cmp == 1)
- {
- /* If the new range has its limits swapped around (MIN > MAX),
- then the operation caused one of them to wrap around, mark
- the new range VARYING. */
- set_value_range_to_varying (vr);
- }
- else
- set_value_range (vr, vr0.type, min, max, NULL);
- return;
- }
-
- /* For unhandled operations fall back to varying. */
- set_value_range_to_varying (vr);
- return;
-}
-
-
-/* Extract range information from a unary expression CODE OP0 based on
- the range of its operand with resulting type TYPE.
- The resulting range is stored in *VR. */
-
-static void
-extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
- tree type, tree op0)
-{
- value_range_t vr0 = VR_INITIALIZER;
-
- /* Get value ranges for the operand. For constant operands, create
- a new value range with the operand to simplify processing. */
- if (TREE_CODE (op0) == SSA_NAME)
- vr0 = *(get_value_range (op0));
- else if (is_gimple_min_invariant (op0))
- set_value_range_to_value (&vr0, op0, NULL);
- else
- set_value_range_to_varying (&vr0);
-
- extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
-}
-
-
-/* Extract range information from a conditional expression STMT based on
- the ranges of each of its operands and the expression code. */
-
-static void
-extract_range_from_cond_expr (value_range_t *vr, gimple stmt)
-{
- tree op0, op1;
- value_range_t vr0 = VR_INITIALIZER;
- value_range_t vr1 = VR_INITIALIZER;
-
- /* Get value ranges for each operand. For constant operands, create
- a new value range with the operand to simplify processing. */
- op0 = gimple_assign_rhs2 (stmt);
- if (TREE_CODE (op0) == SSA_NAME)
- vr0 = *(get_value_range (op0));
- else if (is_gimple_min_invariant (op0))
- set_value_range_to_value (&vr0, op0, NULL);
- else
- set_value_range_to_varying (&vr0);
-
- op1 = gimple_assign_rhs3 (stmt);
- if (TREE_CODE (op1) == SSA_NAME)
- vr1 = *(get_value_range (op1));
- else if (is_gimple_min_invariant (op1))
- set_value_range_to_value (&vr1, op1, NULL);
- else
- set_value_range_to_varying (&vr1);
-
- /* The resulting value range is the union of the operand ranges */
- copy_value_range (vr, &vr0);
- vrp_meet (vr, &vr1);
-}
-
-
-/* Extract range information from a comparison expression EXPR based
- on the range of its operand and the expression code. */
-
-static void
-extract_range_from_comparison (value_range_t *vr, enum tree_code code,
- tree type, tree op0, tree op1)
-{
- bool sop = false;
- tree val;
-
- val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
- NULL);
-
- /* A disadvantage of using a special infinity as an overflow
- representation is that we lose the ability to record overflow
- when we don't have an infinity. So we have to ignore a result
- which relies on overflow. */
-
- if (val && !is_overflow_infinity (val) && !sop)
- {
- /* Since this expression was found on the RHS of an assignment,
- its type may be different from _Bool. Convert VAL to EXPR's
- type. */
- val = fold_convert (type, val);
- if (is_gimple_min_invariant (val))
- set_value_range_to_value (vr, val, vr->equiv);
- else
- set_value_range (vr, VR_RANGE, val, val, vr->equiv);
- }
- else
- /* The result of a comparison is always true or false. */
- set_value_range_to_truthvalue (vr, type);
-}
-
-/* Try to derive a nonnegative or nonzero range out of STMT relying
- primarily on generic routines in fold in conjunction with range data.
- Store the result in *VR */
-
-static void
-extract_range_basic (value_range_t *vr, gimple stmt)
-{
- bool sop = false;
- tree type = gimple_expr_type (stmt);
-
- /* If the call is __builtin_constant_p and the argument is a
- function parameter resolve it to false. This avoids bogus
- array bound warnings.
- ??? We could do this as early as inlining is finished. */
- if (gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P))
- {
- tree arg = gimple_call_arg (stmt, 0);
- if (TREE_CODE (arg) == SSA_NAME
- && SSA_NAME_IS_DEFAULT_DEF (arg)
- && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
- set_value_range_to_null (vr, type);
- }
- else if (INTEGRAL_TYPE_P (type)
- && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
- set_value_range_to_nonnegative (vr, type,
- sop || stmt_overflow_infinity (stmt));
- else if (vrp_stmt_computes_nonzero (stmt, &sop)
- && !sop)
- set_value_range_to_nonnull (vr, type);
- else
- set_value_range_to_varying (vr);
-}
-
-
-/* Try to compute a useful range out of assignment STMT and store it
- in *VR. */
-
-static void
-extract_range_from_assignment (value_range_t *vr, gimple stmt)
-{
- enum tree_code code = gimple_assign_rhs_code (stmt);
-
- if (code == ASSERT_EXPR)
- extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
- else if (code == SSA_NAME)
- extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
- else if (TREE_CODE_CLASS (code) == tcc_binary)
- extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt));
- else if (TREE_CODE_CLASS (code) == tcc_unary)
- extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt));
- else if (code == COND_EXPR)
- extract_range_from_cond_expr (vr, stmt);
- else if (TREE_CODE_CLASS (code) == tcc_comparison)
- extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
- gimple_expr_type (stmt),
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt));
- else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
- && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
- set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
- else
- set_value_range_to_varying (vr);
-
- if (vr->type == VR_VARYING)
- extract_range_basic (vr, stmt);
-}
-
-/* Given a range VR, a LOOP and a variable VAR, determine whether it
- would be profitable to adjust VR using scalar evolution information
- for VAR. If so, update VR with the new limits. */
-
-static void
-adjust_range_with_scev (value_range_t *vr, struct loop *loop,
- gimple stmt, tree var)
-{
- tree init, step, chrec, tmin, tmax, min, max, type, tem;
- enum ev_direction dir;
-
- /* TODO. Don't adjust anti-ranges. An anti-range may provide
- better opportunities than a regular range, but I'm not sure. */
- if (vr->type == VR_ANTI_RANGE)
- return;
-
- chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
-
- /* Like in PR19590, scev can return a constant function. */
- if (is_gimple_min_invariant (chrec))
- {
- set_value_range_to_value (vr, chrec, vr->equiv);
- return;
- }
-
- if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
- return;
-
- init = initial_condition_in_loop_num (chrec, loop->num);
- tem = op_with_constant_singleton_value_range (init);
- if (tem)
- init = tem;
- step = evolution_part_in_loop_num (chrec, loop->num);
- tem = op_with_constant_singleton_value_range (step);
- if (tem)
- step = tem;
-
- /* If STEP is symbolic, we can't know whether INIT will be the
- minimum or maximum value in the range. Also, unless INIT is
- a simple expression, compare_values and possibly other functions
- in tree-vrp won't be able to handle it. */
- if (step == NULL_TREE
- || !is_gimple_min_invariant (step)
- || !valid_value_p (init))
- return;
-
- dir = scev_direction (chrec);
- if (/* Do not adjust ranges if we do not know whether the iv increases
- or decreases, ... */
- dir == EV_DIR_UNKNOWN
- /* ... or if it may wrap. */
- || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
- true))
- return;
-
- /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
- negative_overflow_infinity and positive_overflow_infinity,
- because we have concluded that the loop probably does not
- wrap. */
-
- type = TREE_TYPE (var);
- if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
- tmin = lower_bound_in_type (type, type);
- else
- tmin = TYPE_MIN_VALUE (type);
- if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
- tmax = upper_bound_in_type (type, type);
- else
- tmax = TYPE_MAX_VALUE (type);
-
- /* Try to use estimated number of iterations for the loop to constrain the
- final value in the evolution. */
- if (TREE_CODE (step) == INTEGER_CST
- && is_gimple_val (init)
- && (TREE_CODE (init) != SSA_NAME
- || get_value_range (init)->type == VR_RANGE))
- {
- double_int nit;
-
- /* We are only entering here for loop header PHI nodes, so using
- the number of latch executions is the correct thing to use. */
- if (max_loop_iterations (loop, &nit))
- {
- value_range_t maxvr = VR_INITIALIZER;
- double_int dtmp;
- bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
- bool overflow = false;
-
- dtmp = tree_to_double_int (step)
- .mul_with_sign (nit, unsigned_p, &overflow);
- /* If the multiplication overflowed we can't do a meaningful
- adjustment. Likewise if the result doesn't fit in the type
- of the induction variable. For a signed type we have to
- check whether the result has the expected signedness which
- is that of the step as number of iterations is unsigned. */
- if (!overflow
- && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
- && (unsigned_p
- || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
- {
- tem = double_int_to_tree (TREE_TYPE (init), dtmp);
- extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
- TREE_TYPE (init), init, tem);
- /* Likewise if the addition did. */
- if (maxvr.type == VR_RANGE)
- {
- tmin = maxvr.min;
- tmax = maxvr.max;
- }
- }
- }
- }
-
- if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
- {
- min = tmin;
- max = tmax;
-
- /* For VARYING or UNDEFINED ranges, just about anything we get
- from scalar evolutions should be better. */
-
- if (dir == EV_DIR_DECREASES)
- max = init;
- else
- min = init;
-
- /* If we would create an invalid range, then just assume we
- know absolutely nothing. This may be over-conservative,
- but it's clearly safe, and should happen only in unreachable
- parts of code, or for invalid programs. */
- if (compare_values (min, max) == 1)
- return;
-
- set_value_range (vr, VR_RANGE, min, max, vr->equiv);
- }
- else if (vr->type == VR_RANGE)
- {
- min = vr->min;
- max = vr->max;
-
- if (dir == EV_DIR_DECREASES)
- {
- /* INIT is the maximum value. If INIT is lower than VR->MAX
- but no smaller than VR->MIN, set VR->MAX to INIT. */
- if (compare_values (init, max) == -1)
- max = init;
-
- /* According to the loop information, the variable does not
- overflow. If we think it does, probably because of an
- overflow due to arithmetic on a different INF value,
- reset now. */
- if (is_negative_overflow_infinity (min)
- || compare_values (min, tmin) == -1)
- min = tmin;
-
- }
- else
- {
- /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
- if (compare_values (init, min) == 1)
- min = init;
-
- if (is_positive_overflow_infinity (max)
- || compare_values (tmax, max) == -1)
- max = tmax;
- }
-
- /* If we just created an invalid range with the minimum
- greater than the maximum, we fail conservatively.
- This should happen only in unreachable
- parts of code, or for invalid programs. */
- if (compare_values (min, max) == 1)
- return;
-
- set_value_range (vr, VR_RANGE, min, max, vr->equiv);
- }
-}
-
-/* Return true if VAR may overflow at STMT. This checks any available
- loop information to see if we can determine that VAR does not
- overflow. */
-
-static bool
-vrp_var_may_overflow (tree var, gimple stmt)
-{
- struct loop *l;
- tree chrec, init, step;
-
- if (current_loops == NULL)
- return true;
-
- l = loop_containing_stmt (stmt);
- if (l == NULL
- || !loop_outer (l))
- return true;
-
- chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
- if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
- return true;
-
- init = initial_condition_in_loop_num (chrec, l->num);
- step = evolution_part_in_loop_num (chrec, l->num);
-
- if (step == NULL_TREE
- || !is_gimple_min_invariant (step)
- || !valid_value_p (init))
- return true;
-
- /* If we get here, we know something useful about VAR based on the
- loop information. If it wraps, it may overflow. */
-
- if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
- true))
- return true;
-
- if (dump_file && (dump_flags & TDF_DETAILS) != 0)
- {
- print_generic_expr (dump_file, var, 0);
- fprintf (dump_file, ": loop information indicates does not overflow\n");
- }
-
- return false;
-}
-
-
-/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
-
- - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
- all the values in the ranges.
-
- - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
-
- - Return NULL_TREE if it is not always possible to determine the
- value of the comparison.
-
- Also set *STRICT_OVERFLOW_P to indicate whether a range with an
- overflow infinity was used in the test. */
-
-
-static tree
-compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
- bool *strict_overflow_p)
-{
- /* VARYING or UNDEFINED ranges cannot be compared. */
- if (vr0->type == VR_VARYING
- || vr0->type == VR_UNDEFINED
- || vr1->type == VR_VARYING
- || vr1->type == VR_UNDEFINED)
- return NULL_TREE;
-
- /* Anti-ranges need to be handled separately. */
- if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
- {
- /* If both are anti-ranges, then we cannot compute any
- comparison. */
- if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
- return NULL_TREE;
-
- /* These comparisons are never statically computable. */
- if (comp == GT_EXPR
- || comp == GE_EXPR
- || comp == LT_EXPR
- || comp == LE_EXPR)
- return NULL_TREE;
-
- /* Equality can be computed only between a range and an
- anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
- if (vr0->type == VR_RANGE)
- {
- /* To simplify processing, make VR0 the anti-range. */
- value_range_t *tmp = vr0;
- vr0 = vr1;
- vr1 = tmp;
- }
-
- gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
-
- if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
- && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
- return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
-
- return NULL_TREE;
- }
-
- if (!usable_range_p (vr0, strict_overflow_p)
- || !usable_range_p (vr1, strict_overflow_p))
- return NULL_TREE;
-
- /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
- operands around and change the comparison code. */
- if (comp == GT_EXPR || comp == GE_EXPR)
- {
- value_range_t *tmp;
- comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
- tmp = vr0;
- vr0 = vr1;
- vr1 = tmp;
- }
-
- if (comp == EQ_EXPR)
- {
- /* Equality may only be computed if both ranges represent
- exactly one value. */
- if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
- && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
- {
- int cmp_min = compare_values_warnv (vr0->min, vr1->min,
- strict_overflow_p);
- int cmp_max = compare_values_warnv (vr0->max, vr1->max,
- strict_overflow_p);
- if (cmp_min == 0 && cmp_max == 0)
- return boolean_true_node;
- else if (cmp_min != -2 && cmp_max != -2)
- return boolean_false_node;
- }
- /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
- else if (compare_values_warnv (vr0->min, vr1->max,
- strict_overflow_p) == 1
- || compare_values_warnv (vr1->min, vr0->max,
- strict_overflow_p) == 1)
- return boolean_false_node;
-
- return NULL_TREE;
- }
- else if (comp == NE_EXPR)
- {
- int cmp1, cmp2;
-
- /* If VR0 is completely to the left or completely to the right
- of VR1, they are always different. Notice that we need to
- make sure that both comparisons yield similar results to
- avoid comparing values that cannot be compared at
- compile-time. */
- cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
- cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
- if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
- return boolean_true_node;
-
- /* If VR0 and VR1 represent a single value and are identical,
- return false. */
- else if (compare_values_warnv (vr0->min, vr0->max,
- strict_overflow_p) == 0
- && compare_values_warnv (vr1->min, vr1->max,
- strict_overflow_p) == 0
- && compare_values_warnv (vr0->min, vr1->min,
- strict_overflow_p) == 0
- && compare_values_warnv (vr0->max, vr1->max,
- strict_overflow_p) == 0)
- return boolean_false_node;
-
- /* Otherwise, they may or may not be different. */
- else
- return NULL_TREE;
- }
- else if (comp == LT_EXPR || comp == LE_EXPR)
- {
- int tst;
-
- /* If VR0 is to the left of VR1, return true. */
- tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
- if ((comp == LT_EXPR && tst == -1)
- || (comp == LE_EXPR && (tst == -1 || tst == 0)))
- {
- if (overflow_infinity_range_p (vr0)
- || overflow_infinity_range_p (vr1))
- *strict_overflow_p = true;
- return boolean_true_node;
- }
-
- /* If VR0 is to the right of VR1, return false. */
- tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
- if ((comp == LT_EXPR && (tst == 0 || tst == 1))
- || (comp == LE_EXPR && tst == 1))
- {
- if (overflow_infinity_range_p (vr0)
- || overflow_infinity_range_p (vr1))
- *strict_overflow_p = true;
- return boolean_false_node;
- }
-
- /* Otherwise, we don't know. */
- return NULL_TREE;
- }
-
- gcc_unreachable ();
-}
-
-
-/* Given a value range VR, a value VAL and a comparison code COMP, return
- BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
- values in VR. Return BOOLEAN_FALSE_NODE if the comparison
- always returns false. Return NULL_TREE if it is not always
- possible to determine the value of the comparison. Also set
- *STRICT_OVERFLOW_P to indicate whether a range with an overflow
- infinity was used in the test. */
-
-static tree
-compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
- bool *strict_overflow_p)
-{
- if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
- return NULL_TREE;
-
- /* Anti-ranges need to be handled separately. */
- if (vr->type == VR_ANTI_RANGE)
- {
- /* For anti-ranges, the only predicates that we can compute at
- compile time are equality and inequality. */
- if (comp == GT_EXPR
- || comp == GE_EXPR
- || comp == LT_EXPR
- || comp == LE_EXPR)
- return NULL_TREE;
-
- /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
- if (value_inside_range (val, vr->min, vr->max) == 1)
- return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
-
- return NULL_TREE;
- }
-
- if (!usable_range_p (vr, strict_overflow_p))
- return NULL_TREE;
-
- if (comp == EQ_EXPR)
- {
- /* EQ_EXPR may only be computed if VR represents exactly
- one value. */
- if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
- {
- int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
- if (cmp == 0)
- return boolean_true_node;
- else if (cmp == -1 || cmp == 1 || cmp == 2)
- return boolean_false_node;
- }
- else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
- || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
- return boolean_false_node;
-
- return NULL_TREE;
- }
- else if (comp == NE_EXPR)
- {
- /* If VAL is not inside VR, then they are always different. */
- if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
- || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
- return boolean_true_node;
-
- /* If VR represents exactly one value equal to VAL, then return
- false. */
- if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
- && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
- return boolean_false_node;
-
- /* Otherwise, they may or may not be different. */
- return NULL_TREE;
- }
- else if (comp == LT_EXPR || comp == LE_EXPR)
- {
- int tst;
-
- /* If VR is to the left of VAL, return true. */
- tst = compare_values_warnv (vr->max, val, strict_overflow_p);
- if ((comp == LT_EXPR && tst == -1)
- || (comp == LE_EXPR && (tst == -1 || tst == 0)))
- {
- if (overflow_infinity_range_p (vr))
- *strict_overflow_p = true;
- return boolean_true_node;
- }
-
- /* If VR is to the right of VAL, return false. */
- tst = compare_values_warnv (vr->min, val, strict_overflow_p);
- if ((comp == LT_EXPR && (tst == 0 || tst == 1))
- || (comp == LE_EXPR && tst == 1))
- {
- if (overflow_infinity_range_p (vr))
- *strict_overflow_p = true;
- return boolean_false_node;
- }
-
- /* Otherwise, we don't know. */
- return NULL_TREE;
- }
- else if (comp == GT_EXPR || comp == GE_EXPR)
- {
- int tst;
-
- /* If VR is to the right of VAL, return true. */
- tst = compare_values_warnv (vr->min, val, strict_overflow_p);
- if ((comp == GT_EXPR && tst == 1)
- || (comp == GE_EXPR && (tst == 0 || tst == 1)))
- {
- if (overflow_infinity_range_p (vr))
- *strict_overflow_p = true;
- return boolean_true_node;
- }
-
- /* If VR is to the left of VAL, return false. */
- tst = compare_values_warnv (vr->max, val, strict_overflow_p);
- if ((comp == GT_EXPR && (tst == -1 || tst == 0))
- || (comp == GE_EXPR && tst == -1))
- {
- if (overflow_infinity_range_p (vr))
- *strict_overflow_p = true;
- return boolean_false_node;
- }
-
- /* Otherwise, we don't know. */
- return NULL_TREE;
- }
-
- gcc_unreachable ();
-}
-
-
-/* Debugging dumps. */
-
-void dump_value_range (FILE *, value_range_t *);
-void debug_value_range (value_range_t *);
-void dump_all_value_ranges (FILE *);
-void debug_all_value_ranges (void);
-void dump_vr_equiv (FILE *, bitmap);
-void debug_vr_equiv (bitmap);
-
-
-/* Dump value range VR to FILE. */
-
-void
-dump_value_range (FILE *file, value_range_t *vr)
-{
- if (vr == NULL)
- fprintf (file, "[]");
- else if (vr->type == VR_UNDEFINED)
- fprintf (file, "UNDEFINED");
- else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
- {
- tree type = TREE_TYPE (vr->min);
-
- fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
-
- if (is_negative_overflow_infinity (vr->min))
- fprintf (file, "-INF(OVF)");
- else if (INTEGRAL_TYPE_P (type)
- && !TYPE_UNSIGNED (type)
- && vrp_val_is_min (vr->min))
- fprintf (file, "-INF");
- else
- print_generic_expr (file, vr->min, 0);
-
- fprintf (file, ", ");
-
- if (is_positive_overflow_infinity (vr->max))
- fprintf (file, "+INF(OVF)");
- else if (INTEGRAL_TYPE_P (type)
- && vrp_val_is_max (vr->max))
- fprintf (file, "+INF");
- else
- print_generic_expr (file, vr->max, 0);
-
- fprintf (file, "]");
-
- if (vr->equiv)
- {
- bitmap_iterator bi;
- unsigned i, c = 0;
-
- fprintf (file, " EQUIVALENCES: { ");
-
- EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
- {
- print_generic_expr (file, ssa_name (i), 0);
- fprintf (file, " ");
- c++;
- }
-
- fprintf (file, "} (%u elements)", c);
- }
- }
- else if (vr->type == VR_VARYING)
- fprintf (file, "VARYING");
- else
- fprintf (file, "INVALID RANGE");
-}
-
-
-/* Dump value range VR to stderr. */
-
-DEBUG_FUNCTION void
-debug_value_range (value_range_t *vr)
-{
- dump_value_range (stderr, vr);
- fprintf (stderr, "\n");
-}
-
-
-/* Dump value ranges of all SSA_NAMEs to FILE. */
-
-void
-dump_all_value_ranges (FILE *file)
-{
- size_t i;
-
- for (i = 0; i < num_vr_values; i++)
- {
- if (vr_value[i])
- {
- print_generic_expr (file, ssa_name (i), 0);
- fprintf (file, ": ");
- dump_value_range (file, vr_value[i]);
- fprintf (file, "\n");
- }
- }
-
- fprintf (file, "\n");
-}
-
-
-/* Dump all value ranges to stderr. */
-
-DEBUG_FUNCTION void
-debug_all_value_ranges (void)
-{
- dump_all_value_ranges (stderr);
-}
-
-
-/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
- create a new SSA name N and return the assertion assignment
- 'V = ASSERT_EXPR <V, V OP W>'. */
-
-static gimple
-build_assert_expr_for (tree cond, tree v)
-{
- tree a;
- gimple assertion;
-
- gcc_assert (TREE_CODE (v) == SSA_NAME
- && COMPARISON_CLASS_P (cond));
-
- a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
- assertion = gimple_build_assign (NULL_TREE, a);
-
- /* The new ASSERT_EXPR, creates a new SSA name that replaces the
- operand of the ASSERT_EXPR. Create it so the new name and the old one
- are registered in the replacement table so that we can fix the SSA web
- after adding all the ASSERT_EXPRs. */
- create_new_def_for (v, assertion, NULL);
-
- return assertion;
-}
-
-
-/* Return false if EXPR is a predicate expression involving floating
- point values. */
-
-static inline bool
-fp_predicate (gimple stmt)
-{
- GIMPLE_CHECK (stmt, GIMPLE_COND);
-
- return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
-}
-
-
-/* If the range of values taken by OP can be inferred after STMT executes,
- return the comparison code (COMP_CODE_P) and value (VAL_P) that
- describes the inferred range. Return true if a range could be
- inferred. */
-
-static bool
-infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
-{
- *val_p = NULL_TREE;
- *comp_code_p = ERROR_MARK;
-
- /* Do not attempt to infer anything in names that flow through
- abnormal edges. */
- if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
- return false;
-
- /* Similarly, don't infer anything from statements that may throw
- exceptions. */
- if (stmt_could_throw_p (stmt))
- return false;
-
- /* If STMT is the last statement of a basic block with no
- successors, there is no point inferring anything about any of its
- operands. We would not be able to find a proper insertion point
- for the assertion, anyway. */
- if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
- return false;
-
- /* We can only assume that a pointer dereference will yield
- non-NULL if -fdelete-null-pointer-checks is enabled. */
- if (flag_delete_null_pointer_checks
- && POINTER_TYPE_P (TREE_TYPE (op))
- && gimple_code (stmt) != GIMPLE_ASM)
- {
- unsigned num_uses, num_loads, num_stores;
-
- count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
- if (num_loads + num_stores > 0)
- {
- *val_p = build_int_cst (TREE_TYPE (op), 0);
- *comp_code_p = NE_EXPR;
- return true;
- }
- }
-
- return false;
-}
-
-
-void dump_asserts_for (FILE *, tree);
-void debug_asserts_for (tree);
-void dump_all_asserts (FILE *);
-void debug_all_asserts (void);
-
-/* Dump all the registered assertions for NAME to FILE. */
-
-void
-dump_asserts_for (FILE *file, tree name)
-{
- assert_locus_t loc;
-
- fprintf (file, "Assertions to be inserted for ");
- print_generic_expr (file, name, 0);
- fprintf (file, "\n");
-
- loc = asserts_for[SSA_NAME_VERSION (name)];
- while (loc)
- {
- fprintf (file, "\t");
- print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
- fprintf (file, "\n\tBB #%d", loc->bb->index);
- if (loc->e)
- {
- fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
- loc->e->dest->index);
- dump_edge_info (file, loc->e, dump_flags, 0);
- }
- fprintf (file, "\n\tPREDICATE: ");
- print_generic_expr (file, name, 0);
- fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
- print_generic_expr (file, loc->val, 0);
- fprintf (file, "\n\n");
- loc = loc->next;
- }
-
- fprintf (file, "\n");
-}
-
-
-/* Dump all the registered assertions for NAME to stderr. */
-
-DEBUG_FUNCTION void
-debug_asserts_for (tree name)
-{
- dump_asserts_for (stderr, name);
-}
-
-
-/* Dump all the registered assertions for all the names to FILE. */
-
-void
-dump_all_asserts (FILE *file)
-{
- unsigned i;
- bitmap_iterator bi;
-
- fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
- EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
- dump_asserts_for (file, ssa_name (i));
- fprintf (file, "\n");
-}
-
-
-/* Dump all the registered assertions for all the names to stderr. */
-
-DEBUG_FUNCTION void
-debug_all_asserts (void)
-{
- dump_all_asserts (stderr);
-}
-
-
-/* If NAME doesn't have an ASSERT_EXPR registered for asserting
- 'EXPR COMP_CODE VAL' at a location that dominates block BB or
- E->DEST, then register this location as a possible insertion point
- for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
-
- BB, E and SI provide the exact insertion point for the new
- ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
- on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
- BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
- must not be NULL. */
-
-static void
-register_new_assert_for (tree name, tree expr,
- enum tree_code comp_code,
- tree val,
- basic_block bb,
- edge e,
- gimple_stmt_iterator si)
-{
- assert_locus_t n, loc, last_loc;
- basic_block dest_bb;
-
- gcc_checking_assert (bb == NULL || e == NULL);
-
- if (e == NULL)
- gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
- && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
-
- /* Never build an assert comparing against an integer constant with
- TREE_OVERFLOW set. This confuses our undefined overflow warning
- machinery. */
- if (TREE_CODE (val) == INTEGER_CST
- && TREE_OVERFLOW (val))
- val = build_int_cst_wide (TREE_TYPE (val),
- TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
-
- /* The new assertion A will be inserted at BB or E. We need to
- determine if the new location is dominated by a previously
- registered location for A. If we are doing an edge insertion,
- assume that A will be inserted at E->DEST. Note that this is not
- necessarily true.
-
- If E is a critical edge, it will be split. But even if E is
- split, the new block will dominate the same set of blocks that
- E->DEST dominates.
-
- The reverse, however, is not true, blocks dominated by E->DEST
- will not be dominated by the new block created to split E. So,
- if the insertion location is on a critical edge, we will not use
- the new location to move another assertion previously registered
- at a block dominated by E->DEST. */
- dest_bb = (bb) ? bb : e->dest;
-
- /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
- VAL at a block dominating DEST_BB, then we don't need to insert a new
- one. Similarly, if the same assertion already exists at a block
- dominated by DEST_BB and the new location is not on a critical
- edge, then update the existing location for the assertion (i.e.,
- move the assertion up in the dominance tree).
-
- Note, this is implemented as a simple linked list because there
- should not be more than a handful of assertions registered per
- name. If this becomes a performance problem, a table hashed by
- COMP_CODE and VAL could be implemented. */
- loc = asserts_for[SSA_NAME_VERSION (name)];
- last_loc = loc;
- while (loc)
- {
- if (loc->comp_code == comp_code
- && (loc->val == val
- || operand_equal_p (loc->val, val, 0))
- && (loc->expr == expr
- || operand_equal_p (loc->expr, expr, 0)))
- {
- /* If E is not a critical edge and DEST_BB
- dominates the existing location for the assertion, move
- the assertion up in the dominance tree by updating its
- location information. */
- if ((e == NULL || !EDGE_CRITICAL_P (e))
- && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
- {
- loc->bb = dest_bb;
- loc->e = e;
- loc->si = si;
- return;
- }
- }
-
- /* Update the last node of the list and move to the next one. */
- last_loc = loc;
- loc = loc->next;
- }
-
- /* If we didn't find an assertion already registered for
- NAME COMP_CODE VAL, add a new one at the end of the list of
- assertions associated with NAME. */
- n = XNEW (struct assert_locus_d);
- n->bb = dest_bb;
- n->e = e;
- n->si = si;
- n->comp_code = comp_code;
- n->val = val;
- n->expr = expr;
- n->next = NULL;
-
- if (last_loc)
- last_loc->next = n;
- else
- asserts_for[SSA_NAME_VERSION (name)] = n;
-
- bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
-}
-
-/* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
- Extract a suitable test code and value and store them into *CODE_P and
- *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
-
- If no extraction was possible, return FALSE, otherwise return TRUE.
-
- If INVERT is true, then we invert the result stored into *CODE_P. */
-
-static bool
-extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
- tree cond_op0, tree cond_op1,
- bool invert, enum tree_code *code_p,
- tree *val_p)
-{
- enum tree_code comp_code;
- tree val;
-
- /* Otherwise, we have a comparison of the form NAME COMP VAL
- or VAL COMP NAME. */
- if (name == cond_op1)
- {
- /* If the predicate is of the form VAL COMP NAME, flip
- COMP around because we need to register NAME as the
- first operand in the predicate. */
- comp_code = swap_tree_comparison (cond_code);
- val = cond_op0;
- }
- else
- {
- /* The comparison is of the form NAME COMP VAL, so the
- comparison code remains unchanged. */
- comp_code = cond_code;
- val = cond_op1;
- }
-
- /* Invert the comparison code as necessary. */
- if (invert)
- comp_code = invert_tree_comparison (comp_code, 0);
-
- /* VRP does not handle float types. */
- if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
- return false;
-
- /* Do not register always-false predicates.
- FIXME: this works around a limitation in fold() when dealing with
- enumerations. Given 'enum { N1, N2 } x;', fold will not
- fold 'if (x > N2)' to 'if (0)'. */
- if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
- && INTEGRAL_TYPE_P (TREE_TYPE (val)))
- {
- tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
- tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
-
- if (comp_code == GT_EXPR
- && (!max
- || compare_values (val, max) == 0))
- return false;
-
- if (comp_code == LT_EXPR
- && (!min
- || compare_values (val, min) == 0))
- return false;
- }
- *code_p = comp_code;
- *val_p = val;
- return true;
-}
-
-/* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
- (otherwise return VAL). VAL and MASK must be zero-extended for
- precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
- (to transform signed values into unsigned) and at the end xor
- SGNBIT back. */
-
-static double_int
-masked_increment (double_int val, double_int mask, double_int sgnbit,
- unsigned int prec)
-{
- double_int bit = double_int_one, res;
- unsigned int i;
-
- val ^= sgnbit;
- for (i = 0; i < prec; i++, bit += bit)
- {
- res = mask;
- if ((res & bit).is_zero ())
- continue;
- res = bit - double_int_one;
- res = (val + bit).and_not (res);
- res &= mask;
- if (res.ugt (val))
- return res ^ sgnbit;
- }
- return val ^ sgnbit;
-}
-
-/* Try to register an edge assertion for SSA name NAME on edge E for
- the condition COND contributing to the conditional jump pointed to by BSI.
- Invert the condition COND if INVERT is true.
- Return true if an assertion for NAME could be registered. */
-
-static bool
-register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
- enum tree_code cond_code,
- tree cond_op0, tree cond_op1, bool invert)
-{
- tree val;
- enum tree_code comp_code;
- bool retval = false;
-
- if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
- cond_op0,
- cond_op1,
- invert, &comp_code, &val))
- return false;
-
- /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
- reachable from E. */
- if (live_on_edge (e, name)
- && !has_single_use (name))
- {
- register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
- retval = true;
- }
-
- /* In the case of NAME <= CST and NAME being defined as
- NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
- and NAME2 <= CST - CST2. We can do the same for NAME > CST.
- This catches range and anti-range tests. */
- if ((comp_code == LE_EXPR
- || comp_code == GT_EXPR)
- && TREE_CODE (val) == INTEGER_CST
- && TYPE_UNSIGNED (TREE_TYPE (val)))
- {
- gimple def_stmt = SSA_NAME_DEF_STMT (name);
- tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
-
- /* Extract CST2 from the (optional) addition. */
- if (is_gimple_assign (def_stmt)
- && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
- {
- name2 = gimple_assign_rhs1 (def_stmt);
- cst2 = gimple_assign_rhs2 (def_stmt);
- if (TREE_CODE (name2) == SSA_NAME
- && TREE_CODE (cst2) == INTEGER_CST)
- def_stmt = SSA_NAME_DEF_STMT (name2);
- }
-
- /* Extract NAME2 from the (optional) sign-changing cast. */
- if (gimple_assign_cast_p (def_stmt))
- {
- if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
- && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
- && (TYPE_PRECISION (gimple_expr_type (def_stmt))
- == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
- name3 = gimple_assign_rhs1 (def_stmt);
- }
-
- /* If name3 is used later, create an ASSERT_EXPR for it. */
- if (name3 != NULL_TREE
- && TREE_CODE (name3) == SSA_NAME
- && (cst2 == NULL_TREE
- || TREE_CODE (cst2) == INTEGER_CST)
- && INTEGRAL_TYPE_P (TREE_TYPE (name3))
- && live_on_edge (e, name3)
- && !has_single_use (name3))
- {
- tree tmp;
-
- /* Build an expression for the range test. */
- tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
- if (cst2 != NULL_TREE)
- tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
-
- if (dump_file)
- {
- fprintf (dump_file, "Adding assert for ");
- print_generic_expr (dump_file, name3, 0);
- fprintf (dump_file, " from ");
- print_generic_expr (dump_file, tmp, 0);
- fprintf (dump_file, "\n");
- }
-
- register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
-
- retval = true;
- }
-
- /* If name2 is used later, create an ASSERT_EXPR for it. */
- if (name2 != NULL_TREE
- && TREE_CODE (name2) == SSA_NAME
- && TREE_CODE (cst2) == INTEGER_CST
- && INTEGRAL_TYPE_P (TREE_TYPE (name2))
- && live_on_edge (e, name2)
- && !has_single_use (name2))
- {
- tree tmp;
-
- /* Build an expression for the range test. */
- tmp = name2;
- if (TREE_TYPE (name) != TREE_TYPE (name2))
- tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
- if (cst2 != NULL_TREE)
- tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
-
- if (dump_file)
- {
- fprintf (dump_file, "Adding assert for ");
- print_generic_expr (dump_file, name2, 0);
- fprintf (dump_file, " from ");
- print_generic_expr (dump_file, tmp, 0);
- fprintf (dump_file, "\n");
- }
-
- register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
-
- retval = true;
- }
- }
-
- /* In the case of post-in/decrement tests like if (i++) ... and uses
- of the in/decremented value on the edge the extra name we want to
- assert for is not on the def chain of the name compared. Instead
- it is in the set of use stmts. */
- if ((comp_code == NE_EXPR
- || comp_code == EQ_EXPR)
- && TREE_CODE (val) == INTEGER_CST)
- {
- imm_use_iterator ui;
- gimple use_stmt;
- FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
- {
- /* Cut off to use-stmts that are in the predecessor. */
- if (gimple_bb (use_stmt) != e->src)
- continue;
-
- if (!is_gimple_assign (use_stmt))
- continue;
-
- enum tree_code code = gimple_assign_rhs_code (use_stmt);
- if (code != PLUS_EXPR
- && code != MINUS_EXPR)
- continue;
-
- tree cst = gimple_assign_rhs2 (use_stmt);
- if (TREE_CODE (cst) != INTEGER_CST)
- continue;
-
- tree name2 = gimple_assign_lhs (use_stmt);
- if (live_on_edge (e, name2))
- {
- cst = int_const_binop (code, val, cst);
- register_new_assert_for (name2, name2, comp_code, cst,
- NULL, e, bsi);
- retval = true;
- }
- }
- }
-
- if (TREE_CODE_CLASS (comp_code) == tcc_comparison
- && TREE_CODE (val) == INTEGER_CST)
- {
- gimple def_stmt = SSA_NAME_DEF_STMT (name);
- tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
- tree val2 = NULL_TREE;
- double_int mask = double_int_zero;
- unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
- unsigned int nprec = prec;
- enum tree_code rhs_code = ERROR_MARK;
-
- if (is_gimple_assign (def_stmt))
- rhs_code = gimple_assign_rhs_code (def_stmt);
-
- /* Add asserts for NAME cmp CST and NAME being defined
- as NAME = (int) NAME2. */
- if (!TYPE_UNSIGNED (TREE_TYPE (val))
- && (comp_code == LE_EXPR || comp_code == LT_EXPR
- || comp_code == GT_EXPR || comp_code == GE_EXPR)
- && gimple_assign_cast_p (def_stmt))
- {
- name2 = gimple_assign_rhs1 (def_stmt);
- if (CONVERT_EXPR_CODE_P (rhs_code)
- && INTEGRAL_TYPE_P (TREE_TYPE (name2))
- && TYPE_UNSIGNED (TREE_TYPE (name2))
- && prec == TYPE_PRECISION (TREE_TYPE (name2))
- && (comp_code == LE_EXPR || comp_code == GT_EXPR
- || !tree_int_cst_equal (val,
- TYPE_MIN_VALUE (TREE_TYPE (val))))
- && live_on_edge (e, name2)
- && !has_single_use (name2))
- {
- tree tmp, cst;
- enum tree_code new_comp_code = comp_code;
-
- cst = fold_convert (TREE_TYPE (name2),
- TYPE_MIN_VALUE (TREE_TYPE (val)));
- /* Build an expression for the range test. */
- tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
- cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
- fold_convert (TREE_TYPE (name2), val));
- if (comp_code == LT_EXPR || comp_code == GE_EXPR)
- {
- new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
- cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
- build_int_cst (TREE_TYPE (name2), 1));
- }
-
- if (dump_file)
- {
- fprintf (dump_file, "Adding assert for ");
- print_generic_expr (dump_file, name2, 0);
- fprintf (dump_file, " from ");
- print_generic_expr (dump_file, tmp, 0);
- fprintf (dump_file, "\n");
- }
-
- register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
- e, bsi);
-
- retval = true;
- }
- }
-
- /* Add asserts for NAME cmp CST and NAME being defined as
- NAME = NAME2 >> CST2.
-
- Extract CST2 from the right shift. */
- if (rhs_code == RSHIFT_EXPR)
- {
- name2 = gimple_assign_rhs1 (def_stmt);
- cst2 = gimple_assign_rhs2 (def_stmt);
- if (TREE_CODE (name2) == SSA_NAME
- && host_integerp (cst2, 1)
- && INTEGRAL_TYPE_P (TREE_TYPE (name2))
- && IN_RANGE (tree_low_cst (cst2, 1), 1, prec - 1)
- && prec <= HOST_BITS_PER_DOUBLE_INT
- && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
- && live_on_edge (e, name2)
- && !has_single_use (name2))
- {
- mask = double_int::mask (tree_low_cst (cst2, 1));
- val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
- }
- }
- if (val2 != NULL_TREE
- && TREE_CODE (val2) == INTEGER_CST
- && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
- TREE_TYPE (val),
- val2, cst2), val))
- {
- enum tree_code new_comp_code = comp_code;
- tree tmp, new_val;
-
- tmp = name2;
- if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
- {
- if (!TYPE_UNSIGNED (TREE_TYPE (val)))
- {
- tree type = build_nonstandard_integer_type (prec, 1);
- tmp = build1 (NOP_EXPR, type, name2);
- val2 = fold_convert (type, val2);
- }
- tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
- new_val = double_int_to_tree (TREE_TYPE (tmp), mask);
- new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
- }
- else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
- {
- double_int minval
- = double_int::min_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
- new_val = val2;
- if (minval == tree_to_double_int (new_val))
- new_val = NULL_TREE;
- }
- else
- {
- double_int maxval
- = double_int::max_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
- mask |= tree_to_double_int (val2);
- if (mask == maxval)
- new_val = NULL_TREE;
- else
- new_val = double_int_to_tree (TREE_TYPE (val2), mask);
- }
-
- if (new_val)
- {
- if (dump_file)
- {
- fprintf (dump_file, "Adding assert for ");
- print_generic_expr (dump_file, name2, 0);
- fprintf (dump_file, " from ");
- print_generic_expr (dump_file, tmp, 0);
- fprintf (dump_file, "\n");
- }
-
- register_new_assert_for (name2, tmp, new_comp_code, new_val,
- NULL, e, bsi);
- retval = true;
- }
- }
-
- /* Add asserts for NAME cmp CST and NAME being defined as
- NAME = NAME2 & CST2.
-
- Extract CST2 from the and.
-
- Also handle
- NAME = (unsigned) NAME2;
- casts where NAME's type is unsigned and has smaller precision
- than NAME2's type as if it was NAME = NAME2 & MASK. */
- names[0] = NULL_TREE;
- names[1] = NULL_TREE;
- cst2 = NULL_TREE;
- if (rhs_code == BIT_AND_EXPR
- || (CONVERT_EXPR_CODE_P (rhs_code)
- && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
- && TYPE_UNSIGNED (TREE_TYPE (val))
- && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
- > prec
- && !retval))
- {
- name2 = gimple_assign_rhs1 (def_stmt);
- if (rhs_code == BIT_AND_EXPR)
- cst2 = gimple_assign_rhs2 (def_stmt);
- else
- {
- cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
- nprec = TYPE_PRECISION (TREE_TYPE (name2));
- }
- if (TREE_CODE (name2) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (name2))
- && TREE_CODE (cst2) == INTEGER_CST
- && !integer_zerop (cst2)
- && nprec <= HOST_BITS_PER_DOUBLE_INT
- && (nprec > 1
- || TYPE_UNSIGNED (TREE_TYPE (val))))
- {
- gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
- if (gimple_assign_cast_p (def_stmt2))
- {
- names[1] = gimple_assign_rhs1 (def_stmt2);
- if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
- || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
- || (TYPE_PRECISION (TREE_TYPE (name2))
- != TYPE_PRECISION (TREE_TYPE (names[1])))
- || !live_on_edge (e, names[1])
- || has_single_use (names[1]))
- names[1] = NULL_TREE;
- }
- if (live_on_edge (e, name2)
- && !has_single_use (name2))
- names[0] = name2;
- }
- }
- if (names[0] || names[1])
- {
- double_int minv, maxv = double_int_zero, valv, cst2v;
- double_int tem, sgnbit;
- bool valid_p = false, valn = false, cst2n = false;
- enum tree_code ccode = comp_code;
-
- valv = tree_to_double_int (val).zext (nprec);
- cst2v = tree_to_double_int (cst2).zext (nprec);
- if (!TYPE_UNSIGNED (TREE_TYPE (val)))
- {
- valn = valv.sext (nprec).is_negative ();
- cst2n = cst2v.sext (nprec).is_negative ();
- }
- /* If CST2 doesn't have most significant bit set,
- but VAL is negative, we have comparison like
- if ((x & 0x123) > -4) (always true). Just give up. */
- if (!cst2n && valn)
- ccode = ERROR_MARK;
- if (cst2n)
- sgnbit = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
- else
- sgnbit = double_int_zero;
- minv = valv & cst2v;
- switch (ccode)
- {
- case EQ_EXPR:
- /* Minimum unsigned value for equality is VAL & CST2
- (should be equal to VAL, otherwise we probably should
- have folded the comparison into false) and
- maximum unsigned value is VAL | ~CST2. */
- maxv = valv | ~cst2v;
- maxv = maxv.zext (nprec);
- valid_p = true;
- break;
- case NE_EXPR:
- tem = valv | ~cst2v;
- tem = tem.zext (nprec);
- /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
- if (valv.is_zero ())
- {
- cst2n = false;
- sgnbit = double_int_zero;
- goto gt_expr;
- }
- /* If (VAL | ~CST2) is all ones, handle it as
- (X & CST2) < VAL. */
- if (tem == double_int::mask (nprec))
- {
- cst2n = false;
- valn = false;
- sgnbit = double_int_zero;
- goto lt_expr;
- }
- if (!cst2n
- && cst2v.sext (nprec).is_negative ())
- sgnbit
- = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
- if (!sgnbit.is_zero ())
- {
- if (valv == sgnbit)
- {
- cst2n = true;
- valn = true;
- goto gt_expr;
- }
- if (tem == double_int::mask (nprec - 1))
- {
- cst2n = true;
- goto lt_expr;
- }
- if (!cst2n)
- sgnbit = double_int_zero;
- }
- break;
- case GE_EXPR:
- /* Minimum unsigned value for >= if (VAL & CST2) == VAL
- is VAL and maximum unsigned value is ~0. For signed
- comparison, if CST2 doesn't have most significant bit
- set, handle it similarly. If CST2 has MSB set,
- the minimum is the same, and maximum is ~0U/2. */
- if (minv != valv)
- {
- /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
- VAL. */
- minv = masked_increment (valv, cst2v, sgnbit, nprec);
- if (minv == valv)
- break;
- }
- maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
- valid_p = true;
- break;
- case GT_EXPR:
- gt_expr:
- /* Find out smallest MINV where MINV > VAL
- && (MINV & CST2) == MINV, if any. If VAL is signed and
- CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
- minv = masked_increment (valv, cst2v, sgnbit, nprec);
- if (minv == valv)
- break;
- maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
- valid_p = true;
- break;
- case LE_EXPR:
- /* Minimum unsigned value for <= is 0 and maximum
- unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
- Otherwise, find smallest VAL2 where VAL2 > VAL
- && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
- as maximum.
- For signed comparison, if CST2 doesn't have most
- significant bit set, handle it similarly. If CST2 has
- MSB set, the maximum is the same and minimum is INT_MIN. */
- if (minv == valv)
- maxv = valv;
- else
- {
- maxv = masked_increment (valv, cst2v, sgnbit, nprec);
- if (maxv == valv)
- break;
- maxv -= double_int_one;
- }
- maxv |= ~cst2v;
- maxv = maxv.zext (nprec);
- minv = sgnbit;
- valid_p = true;
- break;
- case LT_EXPR:
- lt_expr:
- /* Minimum unsigned value for < is 0 and maximum
- unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
- Otherwise, find smallest VAL2 where VAL2 > VAL
- && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
- as maximum.
- For signed comparison, if CST2 doesn't have most
- significant bit set, handle it similarly. If CST2 has
- MSB set, the maximum is the same and minimum is INT_MIN. */
- if (minv == valv)
- {
- if (valv == sgnbit)
- break;
- maxv = valv;
- }
- else
- {
- maxv = masked_increment (valv, cst2v, sgnbit, nprec);
- if (maxv == valv)
- break;
- }
- maxv -= double_int_one;
- maxv |= ~cst2v;
- maxv = maxv.zext (nprec);
- minv = sgnbit;
- valid_p = true;
- break;
- default:
- break;
- }
- if (valid_p
- && (maxv - minv).zext (nprec) != double_int::mask (nprec))
- {
- tree tmp, new_val, type;
- int i;
-
- for (i = 0; i < 2; i++)
- if (names[i])
- {
- double_int maxv2 = maxv;
- tmp = names[i];
- type = TREE_TYPE (names[i]);
- if (!TYPE_UNSIGNED (type))
- {
- type = build_nonstandard_integer_type (nprec, 1);
- tmp = build1 (NOP_EXPR, type, names[i]);
- }
- if (!minv.is_zero ())
- {
- tmp = build2 (PLUS_EXPR, type, tmp,
- double_int_to_tree (type, -minv));
- maxv2 = maxv - minv;
- }
- new_val = double_int_to_tree (type, maxv2);
-
- if (dump_file)
- {
- fprintf (dump_file, "Adding assert for ");
- print_generic_expr (dump_file, names[i], 0);
- fprintf (dump_file, " from ");
- print_generic_expr (dump_file, tmp, 0);
- fprintf (dump_file, "\n");
- }
-
- register_new_assert_for (names[i], tmp, LE_EXPR,
- new_val, NULL, e, bsi);
- retval = true;
- }
- }
- }
- }
-
- return retval;
-}
-
-/* OP is an operand of a truth value expression which is known to have
- a particular value. Register any asserts for OP and for any
- operands in OP's defining statement.
-
- If CODE is EQ_EXPR, then we want to register OP is zero (false),
- if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
-
-static bool
-register_edge_assert_for_1 (tree op, enum tree_code code,
- edge e, gimple_stmt_iterator bsi)
-{
- bool retval = false;
- gimple op_def;
- tree val;
- enum tree_code rhs_code;
-
- /* We only care about SSA_NAMEs. */
- if (TREE_CODE (op) != SSA_NAME)
- return false;
-
- /* We know that OP will have a zero or nonzero value. If OP is used
- more than once go ahead and register an assert for OP.
-
- The FOUND_IN_SUBGRAPH support is not helpful in this situation as
- it will always be set for OP (because OP is used in a COND_EXPR in
- the subgraph). */
- if (!has_single_use (op))
- {
- val = build_int_cst (TREE_TYPE (op), 0);
- register_new_assert_for (op, op, code, val, NULL, e, bsi);
- retval = true;
- }
-
- /* Now look at how OP is set. If it's set from a comparison,
- a truth operation or some bit operations, then we may be able
- to register information about the operands of that assignment. */
- op_def = SSA_NAME_DEF_STMT (op);
- if (gimple_code (op_def) != GIMPLE_ASSIGN)
- return retval;
-
- rhs_code = gimple_assign_rhs_code (op_def);
-
- if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
- {
- bool invert = (code == EQ_EXPR ? true : false);
- tree op0 = gimple_assign_rhs1 (op_def);
- tree op1 = gimple_assign_rhs2 (op_def);
-
- if (TREE_CODE (op0) == SSA_NAME)
- retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
- invert);
- if (TREE_CODE (op1) == SSA_NAME)
- retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
- invert);
- }
- else if ((code == NE_EXPR
- && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
- || (code == EQ_EXPR
- && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
- {
- /* Recurse on each operand. */
- retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
- code, e, bsi);
- retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
- code, e, bsi);
- }
- else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
- && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
- {
- /* Recurse, flipping CODE. */
- code = invert_tree_comparison (code, false);
- retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
- code, e, bsi);
- }
- else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
- {
- /* Recurse through the copy. */
- retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
- code, e, bsi);
- }
- else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
- {
- /* Recurse through the type conversion. */
- retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
- code, e, bsi);
- }
-
- return retval;
-}
-
-/* Try to register an edge assertion for SSA name NAME on edge E for
- the condition COND contributing to the conditional jump pointed to by SI.
- Return true if an assertion for NAME could be registered. */
-
-static bool
-register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
- enum tree_code cond_code, tree cond_op0,
- tree cond_op1)
-{
- tree val;
- enum tree_code comp_code;
- bool retval = false;
- bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
-
- /* Do not attempt to infer anything in names that flow through
- abnormal edges. */
- if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
- return false;
-
- if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
- cond_op0, cond_op1,
- is_else_edge,
- &comp_code, &val))
- return false;
-
- /* Register ASSERT_EXPRs for name. */
- retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
- cond_op1, is_else_edge);
-
-
- /* If COND is effectively an equality test of an SSA_NAME against
- the value zero or one, then we may be able to assert values
- for SSA_NAMEs which flow into COND. */
-
- /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
- statement of NAME we can assert both operands of the BIT_AND_EXPR
- have nonzero value. */
- if (((comp_code == EQ_EXPR && integer_onep (val))
- || (comp_code == NE_EXPR && integer_zerop (val))))
- {
- gimple def_stmt = SSA_NAME_DEF_STMT (name);
-
- if (is_gimple_assign (def_stmt)
- && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
- {
- tree op0 = gimple_assign_rhs1 (def_stmt);
- tree op1 = gimple_assign_rhs2 (def_stmt);
- retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
- retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
- }
- }
-
- /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
- statement of NAME we can assert both operands of the BIT_IOR_EXPR
- have zero value. */
- if (((comp_code == EQ_EXPR && integer_zerop (val))
- || (comp_code == NE_EXPR && integer_onep (val))))
- {
- gimple def_stmt = SSA_NAME_DEF_STMT (name);
-
- /* For BIT_IOR_EXPR only if NAME == 0 both operands have
- necessarily zero value, or if type-precision is one. */
- if (is_gimple_assign (def_stmt)
- && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
- && (TYPE_PRECISION (TREE_TYPE (name)) == 1
- || comp_code == EQ_EXPR)))
- {
- tree op0 = gimple_assign_rhs1 (def_stmt);
- tree op1 = gimple_assign_rhs2 (def_stmt);
- retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
- retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
- }
- }
-
- return retval;
-}
-
-
-/* Determine whether the outgoing edges of BB should receive an
- ASSERT_EXPR for each of the operands of BB's LAST statement.
- The last statement of BB must be a COND_EXPR.
-
- If any of the sub-graphs rooted at BB have an interesting use of
- the predicate operands, an assert location node is added to the
- list of assertions for the corresponding operands. */
-
-static bool
-find_conditional_asserts (basic_block bb, gimple last)
-{
- bool need_assert;
- gimple_stmt_iterator bsi;
- tree op;
- edge_iterator ei;
- edge e;
- ssa_op_iter iter;
-
- need_assert = false;
- bsi = gsi_for_stmt (last);
-
- /* Look for uses of the operands in each of the sub-graphs
- rooted at BB. We need to check each of the outgoing edges
- separately, so that we know what kind of ASSERT_EXPR to
- insert. */
- FOR_EACH_EDGE (e, ei, bb->succs)
- {
- if (e->dest == bb)
- continue;
-
- /* Register the necessary assertions for each operand in the
- conditional predicate. */
- FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
- {
- need_assert |= register_edge_assert_for (op, e, bsi,
- gimple_cond_code (last),
- gimple_cond_lhs (last),
- gimple_cond_rhs (last));
- }
- }
-
- return need_assert;
-}
-
-struct case_info
-{
- tree expr;
- basic_block bb;
-};
-
-/* Compare two case labels sorting first by the destination bb index
- and then by the case value. */
-
-static int
-compare_case_labels (const void *p1, const void *p2)
-{
- const struct case_info *ci1 = (const struct case_info *) p1;
- const struct case_info *ci2 = (const struct case_info *) p2;
- int idx1 = ci1->bb->index;
- int idx2 = ci2->bb->index;
-
- if (idx1 < idx2)
- return -1;
- else if (idx1 == idx2)
- {
- /* Make sure the default label is first in a group. */
- if (!CASE_LOW (ci1->expr))
- return -1;
- else if (!CASE_LOW (ci2->expr))
- return 1;
- else
- return tree_int_cst_compare (CASE_LOW (ci1->expr),
- CASE_LOW (ci2->expr));
- }
- else
- return 1;
-}
-
-/* Determine whether the outgoing edges of BB should receive an
- ASSERT_EXPR for each of the operands of BB's LAST statement.
- The last statement of BB must be a SWITCH_EXPR.
-
- If any of the sub-graphs rooted at BB have an interesting use of
- the predicate operands, an assert location node is added to the
- list of assertions for the corresponding operands. */
-
-static bool
-find_switch_asserts (basic_block bb, gimple last)
-{
- bool need_assert;
- gimple_stmt_iterator bsi;
- tree op;
- edge e;
- struct case_info *ci;
- size_t n = gimple_switch_num_labels (last);
-#if GCC_VERSION >= 4000
- unsigned int idx;
-#else
- /* Work around GCC 3.4 bug (PR 37086). */
- volatile unsigned int idx;
-#endif
-
- need_assert = false;
- bsi = gsi_for_stmt (last);
- op = gimple_switch_index (last);
- if (TREE_CODE (op) != SSA_NAME)
- return false;
-
- /* Build a vector of case labels sorted by destination label. */
- ci = XNEWVEC (struct case_info, n);
- for (idx = 0; idx < n; ++idx)
- {
- ci[idx].expr = gimple_switch_label (last, idx);
- ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
- }
- qsort (ci, n, sizeof (struct case_info), compare_case_labels);
-
- for (idx = 0; idx < n; ++idx)
- {
- tree min, max;
- tree cl = ci[idx].expr;
- basic_block cbb = ci[idx].bb;
-
- min = CASE_LOW (cl);
- max = CASE_HIGH (cl);
-
- /* If there are multiple case labels with the same destination
- we need to combine them to a single value range for the edge. */
- if (idx + 1 < n && cbb == ci[idx + 1].bb)
- {
- /* Skip labels until the last of the group. */
- do {
- ++idx;
- } while (idx < n && cbb == ci[idx].bb);
- --idx;
-
- /* Pick up the maximum of the case label range. */
- if (CASE_HIGH (ci[idx].expr))
- max = CASE_HIGH (ci[idx].expr);
- else
- max = CASE_LOW (ci[idx].expr);
- }
-
- /* Nothing to do if the range includes the default label until we
- can register anti-ranges. */
- if (min == NULL_TREE)
- continue;
-
- /* Find the edge to register the assert expr on. */
- e = find_edge (bb, cbb);
-
- /* Register the necessary assertions for the operand in the
- SWITCH_EXPR. */
- need_assert |= register_edge_assert_for (op, e, bsi,
- max ? GE_EXPR : EQ_EXPR,
- op,
- fold_convert (TREE_TYPE (op),
- min));
- if (max)
- {
- need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
- op,
- fold_convert (TREE_TYPE (op),
- max));
- }
- }
-
- XDELETEVEC (ci);
- return need_assert;
-}
-
-
-/* Traverse all the statements in block BB looking for statements that
- may generate useful assertions for the SSA names in their operand.
- If a statement produces a useful assertion A for name N_i, then the
- list of assertions already generated for N_i is scanned to
- determine if A is actually needed.
-
- If N_i already had the assertion A at a location dominating the
- current location, then nothing needs to be done. Otherwise, the
- new location for A is recorded instead.
-
- 1- For every statement S in BB, all the variables used by S are
- added to bitmap FOUND_IN_SUBGRAPH.
-
- 2- If statement S uses an operand N in a way that exposes a known
- value range for N, then if N was not already generated by an
- ASSERT_EXPR, create a new assert location for N. For instance,
- if N is a pointer and the statement dereferences it, we can
- assume that N is not NULL.
-
- 3- COND_EXPRs are a special case of #2. We can derive range
- information from the predicate but need to insert different
- ASSERT_EXPRs for each of the sub-graphs rooted at the
- conditional block. If the last statement of BB is a conditional
- expression of the form 'X op Y', then
-
- a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
-
- b) If the conditional is the only entry point to the sub-graph
- corresponding to the THEN_CLAUSE, recurse into it. On
- return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
- an ASSERT_EXPR is added for the corresponding variable.
-
- c) Repeat step (b) on the ELSE_CLAUSE.
-
- d) Mark X and Y in FOUND_IN_SUBGRAPH.
-
- For instance,
-
- if (a == 9)
- b = a;
- else
- b = c + 1;
-
- In this case, an assertion on the THEN clause is useful to
- determine that 'a' is always 9 on that edge. However, an assertion
- on the ELSE clause would be unnecessary.
-
- 4- If BB does not end in a conditional expression, then we recurse
- into BB's dominator children.
-
- At the end of the recursive traversal, every SSA name will have a
- list of locations where ASSERT_EXPRs should be added. When a new
- location for name N is found, it is registered by calling
- register_new_assert_for. That function keeps track of all the
- registered assertions to prevent adding unnecessary assertions.
- For instance, if a pointer P_4 is dereferenced more than once in a
- dominator tree, only the location dominating all the dereference of
- P_4 will receive an ASSERT_EXPR.
-
- If this function returns true, then it means that there are names
- for which we need to generate ASSERT_EXPRs. Those assertions are
- inserted by process_assert_insertions. */
-
-static bool
-find_assert_locations_1 (basic_block bb, sbitmap live)
-{
- gimple_stmt_iterator si;
- gimple last;
- bool need_assert;
-
- need_assert = false;
- last = last_stmt (bb);
-
- /* If BB's last statement is a conditional statement involving integer
- operands, determine if we need to add ASSERT_EXPRs. */
- if (last
- && gimple_code (last) == GIMPLE_COND
- && !fp_predicate (last)
- && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
- need_assert |= find_conditional_asserts (bb, last);
-
- /* If BB's last statement is a switch statement involving integer
- operands, determine if we need to add ASSERT_EXPRs. */
- if (last
- && gimple_code (last) == GIMPLE_SWITCH
- && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
- need_assert |= find_switch_asserts (bb, last);
-
- /* Traverse all the statements in BB marking used names and looking
- for statements that may infer assertions for their used operands. */
- for (si = gsi_last_bb (bb); !gsi_end_p (si); gsi_prev (&si))
- {
- gimple stmt;
- tree op;
- ssa_op_iter i;
-
- stmt = gsi_stmt (si);
-
- if (is_gimple_debug (stmt))
- continue;
-
- /* See if we can derive an assertion for any of STMT's operands. */
- FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
- {
- tree value;
- enum tree_code comp_code;
-
- /* If op is not live beyond this stmt, do not bother to insert
- asserts for it. */
- if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
- continue;
-
- /* If OP is used in such a way that we can infer a value
- range for it, and we don't find a previous assertion for
- it, create a new assertion location node for OP. */
- if (infer_value_range (stmt, op, &comp_code, &value))
- {
- /* If we are able to infer a nonzero value range for OP,
- then walk backwards through the use-def chain to see if OP
- was set via a typecast.
-
- If so, then we can also infer a nonzero value range
- for the operand of the NOP_EXPR. */
- if (comp_code == NE_EXPR && integer_zerop (value))
- {
- tree t = op;
- gimple def_stmt = SSA_NAME_DEF_STMT (t);
-
- while (is_gimple_assign (def_stmt)
- && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
- && TREE_CODE
- (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
- && POINTER_TYPE_P
- (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
- {
- t = gimple_assign_rhs1 (def_stmt);
- def_stmt = SSA_NAME_DEF_STMT (t);
-
- /* Note we want to register the assert for the
- operand of the NOP_EXPR after SI, not after the
- conversion. */
- if (! has_single_use (t))
- {
- register_new_assert_for (t, t, comp_code, value,
- bb, NULL, si);
- need_assert = true;
- }
- }
- }
-
- register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
- need_assert = true;
- }
- }
-
- /* Update live. */
- FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
- bitmap_set_bit (live, SSA_NAME_VERSION (op));
- FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
- bitmap_clear_bit (live, SSA_NAME_VERSION (op));
- }
-
- /* Traverse all PHI nodes in BB, updating live. */
- for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
- {
- use_operand_p arg_p;
- ssa_op_iter i;
- gimple phi = gsi_stmt (si);
- tree res = gimple_phi_result (phi);
-
- if (virtual_operand_p (res))
- continue;
-
- FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
- {
- tree arg = USE_FROM_PTR (arg_p);
- if (TREE_CODE (arg) == SSA_NAME)
- bitmap_set_bit (live, SSA_NAME_VERSION (arg));
- }
-
- bitmap_clear_bit (live, SSA_NAME_VERSION (res));
- }
-
- return need_assert;
-}
-
-/* Do an RPO walk over the function computing SSA name liveness
- on-the-fly and deciding on assert expressions to insert.
- Returns true if there are assert expressions to be inserted. */
-
-static bool
-find_assert_locations (void)
-{
- int *rpo = XNEWVEC (int, last_basic_block);
- int *bb_rpo = XNEWVEC (int, last_basic_block);
- int *last_rpo = XCNEWVEC (int, last_basic_block);
- int rpo_cnt, i;
- bool need_asserts;
-
- live = XCNEWVEC (sbitmap, last_basic_block);
- rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
- for (i = 0; i < rpo_cnt; ++i)
- bb_rpo[rpo[i]] = i;
-
- need_asserts = false;
- for (i = rpo_cnt - 1; i >= 0; --i)
- {
- basic_block bb = BASIC_BLOCK (rpo[i]);
- edge e;
- edge_iterator ei;
-
- if (!live[rpo[i]])
- {
- live[rpo[i]] = sbitmap_alloc (num_ssa_names);
- bitmap_clear (live[rpo[i]]);
- }
-
- /* Process BB and update the live information with uses in
- this block. */
- need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
-
- /* Merge liveness into the predecessor blocks and free it. */
- if (!bitmap_empty_p (live[rpo[i]]))
- {
- int pred_rpo = i;
- FOR_EACH_EDGE (e, ei, bb->preds)
- {
- int pred = e->src->index;
- if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
- continue;
-
- if (!live[pred])
- {
- live[pred] = sbitmap_alloc (num_ssa_names);
- bitmap_clear (live[pred]);
- }
- bitmap_ior (live[pred], live[pred], live[rpo[i]]);
-
- if (bb_rpo[pred] < pred_rpo)
- pred_rpo = bb_rpo[pred];
- }
-
- /* Record the RPO number of the last visited block that needs
- live information from this block. */
- last_rpo[rpo[i]] = pred_rpo;
- }
- else
- {
- sbitmap_free (live[rpo[i]]);
- live[rpo[i]] = NULL;
- }
-
- /* We can free all successors live bitmaps if all their
- predecessors have been visited already. */
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (last_rpo[e->dest->index] == i
- && live[e->dest->index])
- {
- sbitmap_free (live[e->dest->index]);
- live[e->dest->index] = NULL;
- }
- }
-
- XDELETEVEC (rpo);
- XDELETEVEC (bb_rpo);
- XDELETEVEC (last_rpo);
- for (i = 0; i < last_basic_block; ++i)
- if (live[i])
- sbitmap_free (live[i]);
- XDELETEVEC (live);
-
- return need_asserts;
-}
-
-/* Create an ASSERT_EXPR for NAME and insert it in the location
- indicated by LOC. Return true if we made any edge insertions. */
-
-static bool
-process_assert_insertions_for (tree name, assert_locus_t loc)
-{
- /* Build the comparison expression NAME_i COMP_CODE VAL. */
- gimple stmt;
- tree cond;
- gimple assert_stmt;
- edge_iterator ei;
- edge e;
-
- /* If we have X <=> X do not insert an assert expr for that. */
- if (loc->expr == loc->val)
- return false;
-
- cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
- assert_stmt = build_assert_expr_for (cond, name);
- if (loc->e)
- {
- /* We have been asked to insert the assertion on an edge. This
- is used only by COND_EXPR and SWITCH_EXPR assertions. */
- gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
- || (gimple_code (gsi_stmt (loc->si))
- == GIMPLE_SWITCH));
-
- gsi_insert_on_edge (loc->e, assert_stmt);
- return true;
- }
-
- /* Otherwise, we can insert right after LOC->SI iff the
- statement must not be the last statement in the block. */
- stmt = gsi_stmt (loc->si);
- if (!stmt_ends_bb_p (stmt))
- {
- gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
- return false;
- }
-
- /* If STMT must be the last statement in BB, we can only insert new
- assertions on the non-abnormal edge out of BB. Note that since
- STMT is not control flow, there may only be one non-abnormal edge
- out of BB. */
- FOR_EACH_EDGE (e, ei, loc->bb->succs)
- if (!(e->flags & EDGE_ABNORMAL))
- {
- gsi_insert_on_edge (e, assert_stmt);
- return true;
- }
-
- gcc_unreachable ();
-}
-
-
-/* Process all the insertions registered for every name N_i registered
- in NEED_ASSERT_FOR. The list of assertions to be inserted are
- found in ASSERTS_FOR[i]. */
-
-static void
-process_assert_insertions (void)
-{
- unsigned i;
- bitmap_iterator bi;
- bool update_edges_p = false;
- int num_asserts = 0;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- dump_all_asserts (dump_file);
-
- EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
- {
- assert_locus_t loc = asserts_for[i];
- gcc_assert (loc);
-
- while (loc)
- {
- assert_locus_t next = loc->next;
- update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
- free (loc);
- loc = next;
- num_asserts++;
- }
- }
-
- if (update_edges_p)
- gsi_commit_edge_inserts ();
-
- statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
- num_asserts);
-}
-
-
-/* Traverse the flowgraph looking for conditional jumps to insert range
- expressions. These range expressions are meant to provide information
- to optimizations that need to reason in terms of value ranges. They
- will not be expanded into RTL. For instance, given:
-
- x = ...
- y = ...
- if (x < y)
- y = x - 2;
- else
- x = y + 3;
-
- this pass will transform the code into:
-
- x = ...
- y = ...
- if (x < y)
- {
- x = ASSERT_EXPR <x, x < y>
- y = x - 2
- }
- else
- {
- y = ASSERT_EXPR <y, x <= y>
- x = y + 3
- }
-
- The idea is that once copy and constant propagation have run, other
- optimizations will be able to determine what ranges of values can 'x'
- take in different paths of the code, simply by checking the reaching
- definition of 'x'. */
-
-static void
-insert_range_assertions (void)
-{
- need_assert_for = BITMAP_ALLOC (NULL);
- asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
-
- calculate_dominance_info (CDI_DOMINATORS);
-
- if (find_assert_locations ())
- {
- process_assert_insertions ();
- update_ssa (TODO_update_ssa_no_phi);
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
- dump_function_to_file (current_function_decl, dump_file, dump_flags);
- }
-
- free (asserts_for);
- BITMAP_FREE (need_assert_for);
-}
-
-/* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
- and "struct" hacks. If VRP can determine that the
- array subscript is a constant, check if it is outside valid
- range. If the array subscript is a RANGE, warn if it is
- non-overlapping with valid range.
- IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
-
-static void
-check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
-{
- value_range_t* vr = NULL;
- tree low_sub, up_sub;
- tree low_bound, up_bound, up_bound_p1;
- tree base;
-
- if (TREE_NO_WARNING (ref))
- return;
-
- low_sub = up_sub = TREE_OPERAND (ref, 1);
- up_bound = array_ref_up_bound (ref);
-
- /* Can not check flexible arrays. */
- if (!up_bound
- || TREE_CODE (up_bound) != INTEGER_CST)
- return;
-
- /* Accesses to trailing arrays via pointers may access storage
- beyond the types array bounds. */
- base = get_base_address (ref);
- if (base && TREE_CODE (base) == MEM_REF)
- {
- tree cref, next = NULL_TREE;
-
- if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
- return;
-
- cref = TREE_OPERAND (ref, 0);
- if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
- for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
- next && TREE_CODE (next) != FIELD_DECL;
- next = DECL_CHAIN (next))
- ;
-
- /* If this is the last field in a struct type or a field in a
- union type do not warn. */
- if (!next)
- return;
- }
-
- low_bound = array_ref_low_bound (ref);
- up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
-
- if (TREE_CODE (low_sub) == SSA_NAME)
- {
- vr = get_value_range (low_sub);
- if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
- {
- low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
- up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
- }
- }
-
- if (vr && vr->type == VR_ANTI_RANGE)
- {
- if (TREE_CODE (up_sub) == INTEGER_CST
- && tree_int_cst_lt (up_bound, up_sub)
- && TREE_CODE (low_sub) == INTEGER_CST
- && tree_int_cst_lt (low_sub, low_bound))
- {
- warning_at (location, OPT_Warray_bounds,
- "array subscript is outside array bounds");
- TREE_NO_WARNING (ref) = 1;
- }
- }
- else if (TREE_CODE (up_sub) == INTEGER_CST
- && (ignore_off_by_one
- ? (tree_int_cst_lt (up_bound, up_sub)
- && !tree_int_cst_equal (up_bound_p1, up_sub))
- : (tree_int_cst_lt (up_bound, up_sub)
- || tree_int_cst_equal (up_bound_p1, up_sub))))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Array bound warning for ");
- dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
- fprintf (dump_file, "\n");
- }
- warning_at (location, OPT_Warray_bounds,
- "array subscript is above array bounds");
- TREE_NO_WARNING (ref) = 1;
- }
- else if (TREE_CODE (low_sub) == INTEGER_CST
- && tree_int_cst_lt (low_sub, low_bound))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Array bound warning for ");
- dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
- fprintf (dump_file, "\n");
- }
- warning_at (location, OPT_Warray_bounds,
- "array subscript is below array bounds");
- TREE_NO_WARNING (ref) = 1;
- }
-}
-
-/* Searches if the expr T, located at LOCATION computes
- address of an ARRAY_REF, and call check_array_ref on it. */
-
-static void
-search_for_addr_array (tree t, location_t location)
-{
- while (TREE_CODE (t) == SSA_NAME)
- {
- gimple g = SSA_NAME_DEF_STMT (t);
-
- if (gimple_code (g) != GIMPLE_ASSIGN)
- return;
-
- if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
- != GIMPLE_SINGLE_RHS)
- return;
-
- t = gimple_assign_rhs1 (g);
- }
-
-
- /* We are only interested in addresses of ARRAY_REF's. */
- if (TREE_CODE (t) != ADDR_EXPR)
- return;
-
- /* Check each ARRAY_REFs in the reference chain. */
- do
- {
- if (TREE_CODE (t) == ARRAY_REF)
- check_array_ref (location, t, true /*ignore_off_by_one*/);
-
- t = TREE_OPERAND (t, 0);
- }
- while (handled_component_p (t));
-
- if (TREE_CODE (t) == MEM_REF
- && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
- && !TREE_NO_WARNING (t))
- {
- tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
- tree low_bound, up_bound, el_sz;
- double_int idx;
- if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
- || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
- || !TYPE_DOMAIN (TREE_TYPE (tem)))
- return;
-
- low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
- up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
- el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
- if (!low_bound
- || TREE_CODE (low_bound) != INTEGER_CST
- || !up_bound
- || TREE_CODE (up_bound) != INTEGER_CST
- || !el_sz
- || TREE_CODE (el_sz) != INTEGER_CST)
- return;
-
- idx = mem_ref_offset (t);
- idx = idx.sdiv (tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
- if (idx.slt (double_int_zero))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Array bound warning for ");
- dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
- fprintf (dump_file, "\n");
- }
- warning_at (location, OPT_Warray_bounds,
- "array subscript is below array bounds");
- TREE_NO_WARNING (t) = 1;
- }
- else if (idx.sgt (tree_to_double_int (up_bound)
- - tree_to_double_int (low_bound)
- + double_int_one))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Array bound warning for ");
- dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
- fprintf (dump_file, "\n");
- }
- warning_at (location, OPT_Warray_bounds,
- "array subscript is above array bounds");
- TREE_NO_WARNING (t) = 1;
- }
- }
-}
-
-/* walk_tree() callback that checks if *TP is
- an ARRAY_REF inside an ADDR_EXPR (in which an array
- subscript one outside the valid range is allowed). Call
- check_array_ref for each ARRAY_REF found. The location is
- passed in DATA. */
-
-static tree
-check_array_bounds (tree *tp, int *walk_subtree, void *data)
-{
- tree t = *tp;
- struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
- location_t location;
-
- if (EXPR_HAS_LOCATION (t))
- location = EXPR_LOCATION (t);
- else
- {
- location_t *locp = (location_t *) wi->info;
- location = *locp;
- }
-
- *walk_subtree = TRUE;
-
- if (TREE_CODE (t) == ARRAY_REF)
- check_array_ref (location, t, false /*ignore_off_by_one*/);
-
- if (TREE_CODE (t) == MEM_REF
- || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
- search_for_addr_array (TREE_OPERAND (t, 0), location);
-
- if (TREE_CODE (t) == ADDR_EXPR)
- *walk_subtree = FALSE;
-
- return NULL_TREE;
-}
-
-/* Walk over all statements of all reachable BBs and call check_array_bounds
- on them. */
-
-static void
-check_all_array_refs (void)
-{
- basic_block bb;
- gimple_stmt_iterator si;
-
- FOR_EACH_BB (bb)
- {
- edge_iterator ei;
- edge e;
- bool executable = false;
-
- /* Skip blocks that were found to be unreachable. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- executable |= !!(e->flags & EDGE_EXECUTABLE);
- if (!executable)
- continue;
-
- for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple stmt = gsi_stmt (si);
- struct walk_stmt_info wi;
- if (!gimple_has_location (stmt))
- continue;
-
- if (is_gimple_call (stmt))
- {
- size_t i;
- size_t n = gimple_call_num_args (stmt);
- for (i = 0; i < n; i++)
- {
- tree arg = gimple_call_arg (stmt, i);
- search_for_addr_array (arg, gimple_location (stmt));
- }
- }
- else
- {
- memset (&wi, 0, sizeof (wi));
- wi.info = CONST_CAST (void *, (const void *)
- gimple_location_ptr (stmt));
-
- walk_gimple_op (gsi_stmt (si),
- check_array_bounds,
- &wi);
- }
- }
- }
-}
-
-/* Convert range assertion expressions into the implied copies and
- copy propagate away the copies. Doing the trivial copy propagation
- here avoids the need to run the full copy propagation pass after
- VRP.
-
- FIXME, this will eventually lead to copy propagation removing the
- names that had useful range information attached to them. For
- instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
- then N_i will have the range [3, +INF].
-
- However, by converting the assertion into the implied copy
- operation N_i = N_j, we will then copy-propagate N_j into the uses
- of N_i and lose the range information. We may want to hold on to
- ASSERT_EXPRs a little while longer as the ranges could be used in
- things like jump threading.
-
- The problem with keeping ASSERT_EXPRs around is that passes after
- VRP need to handle them appropriately.
-
- Another approach would be to make the range information a first
- class property of the SSA_NAME so that it can be queried from
- any pass. This is made somewhat more complex by the need for
- multiple ranges to be associated with one SSA_NAME. */
-
-static void
-remove_range_assertions (void)
-{
- basic_block bb;
- gimple_stmt_iterator si;
-
- /* Note that the BSI iterator bump happens at the bottom of the
- loop and no bump is necessary if we're removing the statement
- referenced by the current BSI. */
- FOR_EACH_BB (bb)
- for (si = gsi_start_bb (bb); !gsi_end_p (si);)
- {
- gimple stmt = gsi_stmt (si);
- gimple use_stmt;
-
- if (is_gimple_assign (stmt)
- && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
- {
- tree rhs = gimple_assign_rhs1 (stmt);
- tree var;
- tree cond = fold (ASSERT_EXPR_COND (rhs));
- use_operand_p use_p;
- imm_use_iterator iter;
-
- gcc_assert (cond != boolean_false_node);
-
- /* Propagate the RHS into every use of the LHS. */
- var = ASSERT_EXPR_VAR (rhs);
- FOR_EACH_IMM_USE_STMT (use_stmt, iter,
- gimple_assign_lhs (stmt))
- FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
- {
- SET_USE (use_p, var);
- gcc_assert (TREE_CODE (var) == SSA_NAME);
- }
-
- /* And finally, remove the copy, it is not needed. */
- gsi_remove (&si, true);
- release_defs (stmt);
- }
- else
- gsi_next (&si);
- }
-}
-
-
-/* Return true if STMT is interesting for VRP. */
-
-static bool
-stmt_interesting_for_vrp (gimple stmt)
-{
- if (gimple_code (stmt) == GIMPLE_PHI)
- {
- tree res = gimple_phi_result (stmt);
- return (!virtual_operand_p (res)
- && (INTEGRAL_TYPE_P (TREE_TYPE (res))
- || POINTER_TYPE_P (TREE_TYPE (res))));
- }
- else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
- {
- tree lhs = gimple_get_lhs (stmt);
-
- /* In general, assignments with virtual operands are not useful
- for deriving ranges, with the obvious exception of calls to
- builtin functions. */
- if (lhs && TREE_CODE (lhs) == SSA_NAME
- && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
- || POINTER_TYPE_P (TREE_TYPE (lhs)))
- && ((is_gimple_call (stmt)
- && gimple_call_fndecl (stmt) != NULL_TREE
- && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
- || !gimple_vuse (stmt)))
- return true;
- }
- else if (gimple_code (stmt) == GIMPLE_COND
- || gimple_code (stmt) == GIMPLE_SWITCH)
- return true;
-
- return false;
-}
-
-
-/* Initialize local data structures for VRP. */
-
-static void
-vrp_initialize (void)
-{
- basic_block bb;
-
- values_propagated = false;
- num_vr_values = num_ssa_names;
- vr_value = XCNEWVEC (value_range_t *, num_vr_values);
- vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
-
- FOR_EACH_BB (bb)
- {
- gimple_stmt_iterator si;
-
- for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple phi = gsi_stmt (si);
- if (!stmt_interesting_for_vrp (phi))
- {
- tree lhs = PHI_RESULT (phi);
- set_value_range_to_varying (get_value_range (lhs));
- prop_set_simulate_again (phi, false);
- }
- else
- prop_set_simulate_again (phi, true);
- }
-
- for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple stmt = gsi_stmt (si);
-
- /* If the statement is a control insn, then we do not
- want to avoid simulating the statement once. Failure
- to do so means that those edges will never get added. */
- if (stmt_ends_bb_p (stmt))
- prop_set_simulate_again (stmt, true);
- else if (!stmt_interesting_for_vrp (stmt))
- {
- ssa_op_iter i;
- tree def;
- FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
- set_value_range_to_varying (get_value_range (def));
- prop_set_simulate_again (stmt, false);
- }
- else
- prop_set_simulate_again (stmt, true);
- }
- }
-}
-
-/* Return the singleton value-range for NAME or NAME. */
-
-static inline tree
-vrp_valueize (tree name)
-{
- if (TREE_CODE (name) == SSA_NAME)
- {
- value_range_t *vr = get_value_range (name);
- if (vr->type == VR_RANGE
- && (vr->min == vr->max
- || operand_equal_p (vr->min, vr->max, 0)))
- return vr->min;
- }
- return name;
-}
-
-/* Visit assignment STMT. If it produces an interesting range, record
- the SSA name in *OUTPUT_P. */
-
-static enum ssa_prop_result
-vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
-{
- tree def, lhs;
- ssa_op_iter iter;
- enum gimple_code code = gimple_code (stmt);
- lhs = gimple_get_lhs (stmt);
-
- /* We only keep track of ranges in integral and pointer types. */
- if (TREE_CODE (lhs) == SSA_NAME
- && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
- /* It is valid to have NULL MIN/MAX values on a type. See
- build_range_type. */
- && TYPE_MIN_VALUE (TREE_TYPE (lhs))
- && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
- || POINTER_TYPE_P (TREE_TYPE (lhs))))
- {
- value_range_t new_vr = VR_INITIALIZER;
-
- /* Try folding the statement to a constant first. */
- tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
- if (tem && !is_overflow_infinity (tem))
- set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
- /* Then dispatch to value-range extracting functions. */
- else if (code == GIMPLE_CALL)
- extract_range_basic (&new_vr, stmt);
- else
- extract_range_from_assignment (&new_vr, stmt);
-
- if (update_value_range (lhs, &new_vr))
- {
- *output_p = lhs;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Found new range for ");
- print_generic_expr (dump_file, lhs, 0);
- fprintf (dump_file, ": ");
- dump_value_range (dump_file, &new_vr);
- fprintf (dump_file, "\n\n");
- }
-
- if (new_vr.type == VR_VARYING)
- return SSA_PROP_VARYING;
-
- return SSA_PROP_INTERESTING;
- }
-
- return SSA_PROP_NOT_INTERESTING;
- }
-
- /* Every other statement produces no useful ranges. */
- FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
- set_value_range_to_varying (get_value_range (def));
-
- return SSA_PROP_VARYING;
-}
-
-/* Helper that gets the value range of the SSA_NAME with version I
- or a symbolic range containing the SSA_NAME only if the value range
- is varying or undefined. */
-
-static inline value_range_t
-get_vr_for_comparison (int i)
-{
- value_range_t vr = *get_value_range (ssa_name (i));
-
- /* If name N_i does not have a valid range, use N_i as its own
- range. This allows us to compare against names that may
- have N_i in their ranges. */
- if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
- {
- vr.type = VR_RANGE;
- vr.min = ssa_name (i);
- vr.max = ssa_name (i);
- }
-
- return vr;
-}
-
-/* Compare all the value ranges for names equivalent to VAR with VAL
- using comparison code COMP. Return the same value returned by
- compare_range_with_value, including the setting of
- *STRICT_OVERFLOW_P. */
-
-static tree
-compare_name_with_value (enum tree_code comp, tree var, tree val,
- bool *strict_overflow_p)
-{
- bitmap_iterator bi;
- unsigned i;
- bitmap e;
- tree retval, t;
- int used_strict_overflow;
- bool sop;
- value_range_t equiv_vr;
-
- /* Get the set of equivalences for VAR. */
- e = get_value_range (var)->equiv;
-
- /* Start at -1. Set it to 0 if we do a comparison without relying
- on overflow, or 1 if all comparisons rely on overflow. */
- used_strict_overflow = -1;
-
- /* Compare vars' value range with val. */
- equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
- sop = false;
- retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
- if (retval)
- used_strict_overflow = sop ? 1 : 0;
-
- /* If the equiv set is empty we have done all work we need to do. */
- if (e == NULL)
- {
- if (retval
- && used_strict_overflow > 0)
- *strict_overflow_p = true;
- return retval;
- }
-
- EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
- {
- equiv_vr = get_vr_for_comparison (i);
- sop = false;
- t = compare_range_with_value (comp, &equiv_vr, val, &sop);
- if (t)
- {
- /* If we get different answers from different members
- of the equivalence set this check must be in a dead
- code region. Folding it to a trap representation
- would be correct here. For now just return don't-know. */
- if (retval != NULL
- && t != retval)
- {
- retval = NULL_TREE;
- break;
- }
- retval = t;
-
- if (!sop)
- used_strict_overflow = 0;
- else if (used_strict_overflow < 0)
- used_strict_overflow = 1;
- }
- }
-
- if (retval
- && used_strict_overflow > 0)
- *strict_overflow_p = true;
-
- return retval;
-}
-
-
-/* Given a comparison code COMP and names N1 and N2, compare all the
- ranges equivalent to N1 against all the ranges equivalent to N2
- to determine the value of N1 COMP N2. Return the same value
- returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
- whether we relied on an overflow infinity in the comparison. */
-
-
-static tree
-compare_names (enum tree_code comp, tree n1, tree n2,
- bool *strict_overflow_p)
-{
- tree t, retval;
- bitmap e1, e2;
- bitmap_iterator bi1, bi2;
- unsigned i1, i2;
- int used_strict_overflow;
- static bitmap_obstack *s_obstack = NULL;
- static bitmap s_e1 = NULL, s_e2 = NULL;
-
- /* Compare the ranges of every name equivalent to N1 against the
- ranges of every name equivalent to N2. */
- e1 = get_value_range (n1)->equiv;
- e2 = get_value_range (n2)->equiv;
-
- /* Use the fake bitmaps if e1 or e2 are not available. */
- if (s_obstack == NULL)
- {
- s_obstack = XNEW (bitmap_obstack);
- bitmap_obstack_initialize (s_obstack);
- s_e1 = BITMAP_ALLOC (s_obstack);
- s_e2 = BITMAP_ALLOC (s_obstack);
- }
- if (e1 == NULL)
- e1 = s_e1;
- if (e2 == NULL)
- e2 = s_e2;
-
- /* Add N1 and N2 to their own set of equivalences to avoid
- duplicating the body of the loop just to check N1 and N2
- ranges. */
- bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
-
- /* If the equivalence sets have a common intersection, then the two
- names can be compared without checking their ranges. */
- if (bitmap_intersect_p (e1, e2))
- {
- bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
-
- return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
- ? boolean_true_node
- : boolean_false_node;
- }
-
- /* Start at -1. Set it to 0 if we do a comparison without relying
- on overflow, or 1 if all comparisons rely on overflow. */
- used_strict_overflow = -1;
-
- /* Otherwise, compare all the equivalent ranges. First, add N1 and
- N2 to their own set of equivalences to avoid duplicating the body
- of the loop just to check N1 and N2 ranges. */
- EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
- {
- value_range_t vr1 = get_vr_for_comparison (i1);
-
- t = retval = NULL_TREE;
- EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
- {
- bool sop = false;
-
- value_range_t vr2 = get_vr_for_comparison (i2);
-
- t = compare_ranges (comp, &vr1, &vr2, &sop);
- if (t)
- {
- /* If we get different answers from different members
- of the equivalence set this check must be in a dead
- code region. Folding it to a trap representation
- would be correct here. For now just return don't-know. */
- if (retval != NULL
- && t != retval)
- {
- bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
- return NULL_TREE;
- }
- retval = t;
-
- if (!sop)
- used_strict_overflow = 0;
- else if (used_strict_overflow < 0)
- used_strict_overflow = 1;
- }
- }
-
- if (retval)
- {
- bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
- if (used_strict_overflow > 0)
- *strict_overflow_p = true;
- return retval;
- }
- }
-
- /* None of the equivalent ranges are useful in computing this
- comparison. */
- bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
- bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
- return NULL_TREE;
-}
-
-/* Helper function for vrp_evaluate_conditional_warnv. */
-
-static tree
-vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
- tree op0, tree op1,
- bool * strict_overflow_p)
-{
- value_range_t *vr0, *vr1;
-
- vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
- vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
-
- if (vr0 && vr1)
- return compare_ranges (code, vr0, vr1, strict_overflow_p);
- else if (vr0 && vr1 == NULL)
- return compare_range_with_value (code, vr0, op1, strict_overflow_p);
- else if (vr0 == NULL && vr1)
- return (compare_range_with_value
- (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
- return NULL;
-}
-
-/* Helper function for vrp_evaluate_conditional_warnv. */
-
-static tree
-vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
- tree op1, bool use_equiv_p,
- bool *strict_overflow_p, bool *only_ranges)
-{
- tree ret;
- if (only_ranges)
- *only_ranges = true;
-
- /* We only deal with integral and pointer types. */
- if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
- && !POINTER_TYPE_P (TREE_TYPE (op0)))
- return NULL_TREE;
-
- if (use_equiv_p)
- {
- if (only_ranges
- && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
- (code, op0, op1, strict_overflow_p)))
- return ret;
- *only_ranges = false;
- if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
- return compare_names (code, op0, op1, strict_overflow_p);
- else if (TREE_CODE (op0) == SSA_NAME)
- return compare_name_with_value (code, op0, op1, strict_overflow_p);
- else if (TREE_CODE (op1) == SSA_NAME)
- return (compare_name_with_value
- (swap_tree_comparison (code), op1, op0, strict_overflow_p));
- }
- else
- return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
- strict_overflow_p);
- return NULL_TREE;
-}
-
-/* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
- information. Return NULL if the conditional can not be evaluated.
- The ranges of all the names equivalent with the operands in COND
- will be used when trying to compute the value. If the result is
- based on undefined signed overflow, issue a warning if
- appropriate. */
-
-static tree
-vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
-{
- bool sop;
- tree ret;
- bool only_ranges;
-
- /* Some passes and foldings leak constants with overflow flag set
- into the IL. Avoid doing wrong things with these and bail out. */
- if ((TREE_CODE (op0) == INTEGER_CST
- && TREE_OVERFLOW (op0))
- || (TREE_CODE (op1) == INTEGER_CST
- && TREE_OVERFLOW (op1)))
- return NULL_TREE;
-
- sop = false;
- ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
- &only_ranges);
-
- if (ret && sop)
- {
- enum warn_strict_overflow_code wc;
- const char* warnmsg;
-
- if (is_gimple_min_invariant (ret))
- {
- wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
- warnmsg = G_("assuming signed overflow does not occur when "
- "simplifying conditional to constant");
- }
- else
- {
- wc = WARN_STRICT_OVERFLOW_COMPARISON;
- warnmsg = G_("assuming signed overflow does not occur when "
- "simplifying conditional");
- }
-
- if (issue_strict_overflow_warning (wc))
- {
- location_t location;
-
- if (!gimple_has_location (stmt))
- location = input_location;
- else
- location = gimple_location (stmt);
- warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
- }
- }
-
- if (warn_type_limits
- && ret && only_ranges
- && TREE_CODE_CLASS (code) == tcc_comparison
- && TREE_CODE (op0) == SSA_NAME)
- {
- /* If the comparison is being folded and the operand on the LHS
- is being compared against a constant value that is outside of
- the natural range of OP0's type, then the predicate will
- always fold regardless of the value of OP0. If -Wtype-limits
- was specified, emit a warning. */
- tree type = TREE_TYPE (op0);
- value_range_t *vr0 = get_value_range (op0);
-
- if (vr0->type != VR_VARYING
- && INTEGRAL_TYPE_P (type)
- && vrp_val_is_min (vr0->min)
- && vrp_val_is_max (vr0->max)
- && is_gimple_min_invariant (op1))
- {
- location_t location;
-
- if (!gimple_has_location (stmt))
- location = input_location;
- else
- location = gimple_location (stmt);
-
- warning_at (location, OPT_Wtype_limits,
- integer_zerop (ret)
- ? G_("comparison always false "
- "due to limited range of data type")
- : G_("comparison always true "
- "due to limited range of data type"));
- }
- }
-
- return ret;
-}
-
-
-/* Visit conditional statement STMT. If we can determine which edge
- will be taken out of STMT's basic block, record it in
- *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
- SSA_PROP_VARYING. */
-
-static enum ssa_prop_result
-vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
-{
- tree val;
- bool sop;
-
- *taken_edge_p = NULL;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- tree use;
- ssa_op_iter i;
-
- fprintf (dump_file, "\nVisiting conditional with predicate: ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- fprintf (dump_file, "\nWith known ranges\n");
-
- FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
- {
- fprintf (dump_file, "\t");
- print_generic_expr (dump_file, use, 0);
- fprintf (dump_file, ": ");
- dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
- }
-
- fprintf (dump_file, "\n");
- }
-
- /* Compute the value of the predicate COND by checking the known
- ranges of each of its operands.
-
- Note that we cannot evaluate all the equivalent ranges here
- because those ranges may not yet be final and with the current
- propagation strategy, we cannot determine when the value ranges
- of the names in the equivalence set have changed.
-
- For instance, given the following code fragment
-
- i_5 = PHI <8, i_13>
- ...
- i_14 = ASSERT_EXPR <i_5, i_5 != 0>
- if (i_14 == 1)
- ...
-
- Assume that on the first visit to i_14, i_5 has the temporary
- range [8, 8] because the second argument to the PHI function is
- not yet executable. We derive the range ~[0, 0] for i_14 and the
- equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
- the first time, since i_14 is equivalent to the range [8, 8], we
- determine that the predicate is always false.
-
- On the next round of propagation, i_13 is determined to be
- VARYING, which causes i_5 to drop down to VARYING. So, another
- visit to i_14 is scheduled. In this second visit, we compute the
- exact same range and equivalence set for i_14, namely ~[0, 0] and
- { i_5 }. But we did not have the previous range for i_5
- registered, so vrp_visit_assignment thinks that the range for
- i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
- is not visited again, which stops propagation from visiting
- statements in the THEN clause of that if().
-
- To properly fix this we would need to keep the previous range
- value for the names in the equivalence set. This way we would've
- discovered that from one visit to the other i_5 changed from
- range [8, 8] to VR_VARYING.
-
- However, fixing this apparent limitation may not be worth the
- additional checking. Testing on several code bases (GCC, DLV,
- MICO, TRAMP3D and SPEC2000) showed that doing this results in
- 4 more predicates folded in SPEC. */
- sop = false;
-
- val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
- gimple_cond_lhs (stmt),
- gimple_cond_rhs (stmt),
- false, &sop, NULL);
- if (val)
- {
- if (!sop)
- *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
- else
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "\nIgnoring predicate evaluation because "
- "it assumes that signed overflow is undefined");
- val = NULL_TREE;
- }
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nPredicate evaluates to: ");
- if (val == NULL_TREE)
- fprintf (dump_file, "DON'T KNOW\n");
- else
- print_generic_stmt (dump_file, val, 0);
- }
-
- return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
-}
-
-/* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
- that includes the value VAL. The search is restricted to the range
- [START_IDX, n - 1] where n is the size of VEC.
-
- If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
- returned.
-
- If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
- it is placed in IDX and false is returned.
-
- If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
- returned. */
-
-static bool
-find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
-{
- size_t n = gimple_switch_num_labels (stmt);
- size_t low, high;
-
- /* Find case label for minimum of the value range or the next one.
- At each iteration we are searching in [low, high - 1]. */
-
- for (low = start_idx, high = n; high != low; )
- {
- tree t;
- int cmp;
- /* Note that i != high, so we never ask for n. */
- size_t i = (high + low) / 2;
- t = gimple_switch_label (stmt, i);
-
- /* Cache the result of comparing CASE_LOW and val. */
- cmp = tree_int_cst_compare (CASE_LOW (t), val);
-
- if (cmp == 0)
- {
- /* Ranges cannot be empty. */
- *idx = i;
- return true;
- }
- else if (cmp > 0)
- high = i;
- else
- {
- low = i + 1;
- if (CASE_HIGH (t) != NULL
- && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
- {
- *idx = i;
- return true;
- }
- }
- }
-
- *idx = high;
- return false;
-}
-
-/* Searches the case label vector VEC for the range of CASE_LABELs that is used
- for values between MIN and MAX. The first index is placed in MIN_IDX. The
- last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
- then MAX_IDX < MIN_IDX.
- Returns true if the default label is not needed. */
-
-static bool
-find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
- size_t *max_idx)
-{
- size_t i, j;
- bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
- bool max_take_default = !find_case_label_index (stmt, i, max, &j);
-
- if (i == j
- && min_take_default
- && max_take_default)
- {
- /* Only the default case label reached.
- Return an empty range. */
- *min_idx = 1;
- *max_idx = 0;
- return false;
- }
- else
- {
- bool take_default = min_take_default || max_take_default;
- tree low, high;
- size_t k;
-
- if (max_take_default)
- j--;
-
- /* If the case label range is continuous, we do not need
- the default case label. Verify that. */
- high = CASE_LOW (gimple_switch_label (stmt, i));
- if (CASE_HIGH (gimple_switch_label (stmt, i)))
- high = CASE_HIGH (gimple_switch_label (stmt, i));
- for (k = i + 1; k <= j; ++k)
- {
- low = CASE_LOW (gimple_switch_label (stmt, k));
- if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
- {
- take_default = true;
- break;
- }
- high = low;
- if (CASE_HIGH (gimple_switch_label (stmt, k)))
- high = CASE_HIGH (gimple_switch_label (stmt, k));
- }
-
- *min_idx = i;
- *max_idx = j;
- return !take_default;
- }
-}
-
-/* Searches the case label vector VEC for the ranges of CASE_LABELs that are
- used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
- MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
- Returns true if the default label is not needed. */
-
-static bool
-find_case_label_ranges (gimple stmt, value_range_t *vr, size_t *min_idx1,
- size_t *max_idx1, size_t *min_idx2,
- size_t *max_idx2)
-{
- size_t i, j, k, l;
- unsigned int n = gimple_switch_num_labels (stmt);
- bool take_default;
- tree case_low, case_high;
- tree min = vr->min, max = vr->max;
-
- gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
-
- take_default = !find_case_label_range (stmt, min, max, &i, &j);
-
- /* Set second range to emtpy. */
- *min_idx2 = 1;
- *max_idx2 = 0;
-
- if (vr->type == VR_RANGE)
- {
- *min_idx1 = i;
- *max_idx1 = j;
- return !take_default;
- }
-
- /* Set first range to all case labels. */
- *min_idx1 = 1;
- *max_idx1 = n - 1;
-
- if (i > j)
- return false;
-
- /* Make sure all the values of case labels [i , j] are contained in
- range [MIN, MAX]. */
- case_low = CASE_LOW (gimple_switch_label (stmt, i));
- case_high = CASE_HIGH (gimple_switch_label (stmt, j));
- if (tree_int_cst_compare (case_low, min) < 0)
- i += 1;
- if (case_high != NULL_TREE
- && tree_int_cst_compare (max, case_high) < 0)
- j -= 1;
-
- if (i > j)
- return false;
-
- /* If the range spans case labels [i, j], the corresponding anti-range spans
- the labels [1, i - 1] and [j + 1, n - 1]. */
- k = j + 1;
- l = n - 1;
- if (k > l)
- {
- k = 1;
- l = 0;
- }
-
- j = i - 1;
- i = 1;
- if (i > j)
- {
- i = k;
- j = l;
- k = 1;
- l = 0;
- }
-
- *min_idx1 = i;
- *max_idx1 = j;
- *min_idx2 = k;
- *max_idx2 = l;
- return false;
-}
-
-/* Visit switch statement STMT. If we can determine which edge
- will be taken out of STMT's basic block, record it in
- *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
- SSA_PROP_VARYING. */
-
-static enum ssa_prop_result
-vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
-{
- tree op, val;
- value_range_t *vr;
- size_t i = 0, j = 0, k, l;
- bool take_default;
-
- *taken_edge_p = NULL;
- op = gimple_switch_index (stmt);
- if (TREE_CODE (op) != SSA_NAME)
- return SSA_PROP_VARYING;
-
- vr = get_value_range (op);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nVisiting switch expression with operand ");
- print_generic_expr (dump_file, op, 0);
- fprintf (dump_file, " with known range ");
- dump_value_range (dump_file, vr);
- fprintf (dump_file, "\n");
- }
-
- if ((vr->type != VR_RANGE
- && vr->type != VR_ANTI_RANGE)
- || symbolic_range_p (vr))
- return SSA_PROP_VARYING;
-
- /* Find the single edge that is taken from the switch expression. */
- take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
-
- /* Check if the range spans no CASE_LABEL. If so, we only reach the default
- label */
- if (j < i)
- {
- gcc_assert (take_default);
- val = gimple_switch_default_label (stmt);
- }
- else
- {
- /* Check if labels with index i to j and maybe the default label
- are all reaching the same label. */
-
- val = gimple_switch_label (stmt, i);
- if (take_default
- && CASE_LABEL (gimple_switch_default_label (stmt))
- != CASE_LABEL (val))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " not a single destination for this "
- "range\n");
- return SSA_PROP_VARYING;
- }
- for (++i; i <= j; ++i)
- {
- if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " not a single destination for this "
- "range\n");
- return SSA_PROP_VARYING;
- }
- }
- for (; k <= l; ++k)
- {
- if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " not a single destination for this "
- "range\n");
- return SSA_PROP_VARYING;
- }
- }
- }
-
- *taken_edge_p = find_edge (gimple_bb (stmt),
- label_to_block (CASE_LABEL (val)));
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " will take edge to ");
- print_generic_stmt (dump_file, CASE_LABEL (val), 0);
- }
-
- return SSA_PROP_INTERESTING;
-}
-
-
-/* Evaluate statement STMT. If the statement produces a useful range,
- return SSA_PROP_INTERESTING and record the SSA name with the
- interesting range into *OUTPUT_P.
-
- If STMT is a conditional branch and we can determine its truth
- value, the taken edge is recorded in *TAKEN_EDGE_P.
-
- If STMT produces a varying value, return SSA_PROP_VARYING. */
-
-static enum ssa_prop_result
-vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
-{
- tree def;
- ssa_op_iter iter;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nVisiting statement:\n");
- print_gimple_stmt (dump_file, stmt, 0, dump_flags);
- fprintf (dump_file, "\n");
- }
-
- if (!stmt_interesting_for_vrp (stmt))
- gcc_assert (stmt_ends_bb_p (stmt));
- else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
- {
- /* In general, assignments with virtual operands are not useful
- for deriving ranges, with the obvious exception of calls to
- builtin functions. */
- if ((is_gimple_call (stmt)
- && gimple_call_fndecl (stmt) != NULL_TREE
- && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
- || !gimple_vuse (stmt))
- return vrp_visit_assignment_or_call (stmt, output_p);
- }
- else if (gimple_code (stmt) == GIMPLE_COND)
- return vrp_visit_cond_stmt (stmt, taken_edge_p);
- else if (gimple_code (stmt) == GIMPLE_SWITCH)
- return vrp_visit_switch_stmt (stmt, taken_edge_p);
-
- /* All other statements produce nothing of interest for VRP, so mark
- their outputs varying and prevent further simulation. */
- FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
- set_value_range_to_varying (get_value_range (def));
-
- return SSA_PROP_VARYING;
-}
-
-/* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
- { VR1TYPE, VR0MIN, VR0MAX } and store the result
- in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
- possible such range. The resulting range is not canonicalized. */
-
-static void
-union_ranges (enum value_range_type *vr0type,
- tree *vr0min, tree *vr0max,
- enum value_range_type vr1type,
- tree vr1min, tree vr1max)
-{
- bool mineq = operand_equal_p (*vr0min, vr1min, 0);
- bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
-
- /* [] is vr0, () is vr1 in the following classification comments. */
- if (mineq && maxeq)
- {
- /* [( )] */
- if (*vr0type == vr1type)
- /* Nothing to do for equal ranges. */
- ;
- else if ((*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- || (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE))
- {
- /* For anti-range with range union the result is varying. */
- goto give_up;
- }
- else
- gcc_unreachable ();
- }
- else if (operand_less_p (*vr0max, vr1min) == 1
- || operand_less_p (vr1max, *vr0min) == 1)
- {
- /* [ ] ( ) or ( ) [ ]
- If the ranges have an empty intersection, result of the union
- operation is the anti-range or if both are anti-ranges
- it covers all. */
- if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- goto give_up;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- ;
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- else if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- {
- /* The result is the convex hull of both ranges. */
- if (operand_less_p (*vr0max, vr1min) == 1)
- {
- /* If the result can be an anti-range, create one. */
- if (TREE_CODE (*vr0max) == INTEGER_CST
- && TREE_CODE (vr1min) == INTEGER_CST
- && vrp_val_is_min (*vr0min)
- && vrp_val_is_max (vr1max))
- {
- tree min = int_const_binop (PLUS_EXPR,
- *vr0max, integer_one_node);
- tree max = int_const_binop (MINUS_EXPR,
- vr1min, integer_one_node);
- if (!operand_less_p (max, min))
- {
- *vr0type = VR_ANTI_RANGE;
- *vr0min = min;
- *vr0max = max;
- }
- else
- *vr0max = vr1max;
- }
- else
- *vr0max = vr1max;
- }
- else
- {
- /* If the result can be an anti-range, create one. */
- if (TREE_CODE (vr1max) == INTEGER_CST
- && TREE_CODE (*vr0min) == INTEGER_CST
- && vrp_val_is_min (vr1min)
- && vrp_val_is_max (*vr0max))
- {
- tree min = int_const_binop (PLUS_EXPR,
- vr1max, integer_one_node);
- tree max = int_const_binop (MINUS_EXPR,
- *vr0min, integer_one_node);
- if (!operand_less_p (max, min))
- {
- *vr0type = VR_ANTI_RANGE;
- *vr0min = min;
- *vr0max = max;
- }
- else
- *vr0min = vr1min;
- }
- else
- *vr0min = vr1min;
- }
- }
- else
- gcc_unreachable ();
- }
- else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
- && (mineq || operand_less_p (*vr0min, vr1min) == 1))
- {
- /* [ ( ) ] or [( ) ] or [ ( )] */
- if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- ;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- /* Arbitrarily choose the right or left gap. */
- if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
- *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
- else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
- *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
- else
- goto give_up;
- }
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- /* The result covers everything. */
- goto give_up;
- else
- gcc_unreachable ();
- }
- else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
- && (mineq || operand_less_p (vr1min, *vr0min) == 1))
- {
- /* ( [ ] ) or ([ ] ) or ( [ ]) */
- if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- ;
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- *vr0type = VR_ANTI_RANGE;
- if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
- {
- *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
- *vr0min = vr1min;
- }
- else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
- {
- *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
- *vr0max = vr1max;
- }
- else
- goto give_up;
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- /* The result covers everything. */
- goto give_up;
- else
- gcc_unreachable ();
- }
- else if ((operand_less_p (vr1min, *vr0max) == 1
- || operand_equal_p (vr1min, *vr0max, 0))
- && operand_less_p (*vr0min, vr1min) == 1)
- {
- /* [ ( ] ) or [ ]( ) */
- if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- *vr0max = vr1max;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- *vr0min = vr1min;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- if (TREE_CODE (vr1min) == INTEGER_CST)
- *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
- else
- goto give_up;
- }
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- if (TREE_CODE (*vr0max) == INTEGER_CST)
- {
- *vr0type = vr1type;
- *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
- *vr0max = vr1max;
- }
- else
- goto give_up;
- }
- else
- gcc_unreachable ();
- }
- else if ((operand_less_p (*vr0min, vr1max) == 1
- || operand_equal_p (*vr0min, vr1max, 0))
- && operand_less_p (vr1min, *vr0min) == 1)
- {
- /* ( [ ) ] or ( )[ ] */
- if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- *vr0min = vr1min;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- *vr0max = vr1max;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- if (TREE_CODE (vr1max) == INTEGER_CST)
- *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
- else
- goto give_up;
- }
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- if (TREE_CODE (*vr0min) == INTEGER_CST)
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
- }
- else
- goto give_up;
- }
- else
- gcc_unreachable ();
- }
- else
- goto give_up;
-
- return;
-
-give_up:
- *vr0type = VR_VARYING;
- *vr0min = NULL_TREE;
- *vr0max = NULL_TREE;
-}
-
-/* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
- { VR1TYPE, VR0MIN, VR0MAX } and store the result
- in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
- possible such range. The resulting range is not canonicalized. */
-
-static void
-intersect_ranges (enum value_range_type *vr0type,
- tree *vr0min, tree *vr0max,
- enum value_range_type vr1type,
- tree vr1min, tree vr1max)
-{
- bool mineq = operand_equal_p (*vr0min, vr1min, 0);
- bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
-
- /* [] is vr0, () is vr1 in the following classification comments. */
- if (mineq && maxeq)
- {
- /* [( )] */
- if (*vr0type == vr1type)
- /* Nothing to do for equal ranges. */
- ;
- else if ((*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- || (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE))
- {
- /* For anti-range with range intersection the result is empty. */
- *vr0type = VR_UNDEFINED;
- *vr0min = NULL_TREE;
- *vr0max = NULL_TREE;
- }
- else
- gcc_unreachable ();
- }
- else if (operand_less_p (*vr0max, vr1min) == 1
- || operand_less_p (vr1max, *vr0min) == 1)
- {
- /* [ ] ( ) or ( ) [ ]
- If the ranges have an empty intersection, the result of the
- intersect operation is the range for intersecting an
- anti-range with a range or empty when intersecting two ranges. */
- if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- ;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- else if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- {
- *vr0type = VR_UNDEFINED;
- *vr0min = NULL_TREE;
- *vr0max = NULL_TREE;
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- /* If the anti-ranges are adjacent to each other merge them. */
- if (TREE_CODE (*vr0max) == INTEGER_CST
- && TREE_CODE (vr1min) == INTEGER_CST
- && operand_less_p (*vr0max, vr1min) == 1
- && integer_onep (int_const_binop (MINUS_EXPR,
- vr1min, *vr0max)))
- *vr0max = vr1max;
- else if (TREE_CODE (vr1max) == INTEGER_CST
- && TREE_CODE (*vr0min) == INTEGER_CST
- && operand_less_p (vr1max, *vr0min) == 1
- && integer_onep (int_const_binop (MINUS_EXPR,
- *vr0min, vr1max)))
- *vr0min = vr1min;
- /* Else arbitrarily take VR0. */
- }
- }
- else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
- && (mineq || operand_less_p (*vr0min, vr1min) == 1))
- {
- /* [ ( ) ] or [( ) ] or [ ( )] */
- if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- {
- /* If both are ranges the result is the inner one. */
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- /* Choose the right gap if the left one is empty. */
- if (mineq)
- {
- if (TREE_CODE (vr1max) == INTEGER_CST)
- *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
- else
- *vr0min = vr1max;
- }
- /* Choose the left gap if the right one is empty. */
- else if (maxeq)
- {
- if (TREE_CODE (vr1min) == INTEGER_CST)
- *vr0max = int_const_binop (MINUS_EXPR, vr1min,
- integer_one_node);
- else
- *vr0max = vr1min;
- }
- /* Choose the anti-range if the range is effectively varying. */
- else if (vrp_val_is_min (*vr0min)
- && vrp_val_is_max (*vr0max))
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- /* Else choose the range. */
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- /* If both are anti-ranges the result is the outer one. */
- ;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- /* The intersection is empty. */
- *vr0type = VR_UNDEFINED;
- *vr0min = NULL_TREE;
- *vr0max = NULL_TREE;
- }
- else
- gcc_unreachable ();
- }
- else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
- && (mineq || operand_less_p (vr1min, *vr0min) == 1))
- {
- /* ( [ ] ) or ([ ] ) or ( [ ]) */
- if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- /* Choose the inner range. */
- ;
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- /* Choose the right gap if the left is empty. */
- if (mineq)
- {
- *vr0type = VR_RANGE;
- if (TREE_CODE (*vr0max) == INTEGER_CST)
- *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
- integer_one_node);
- else
- *vr0min = *vr0max;
- *vr0max = vr1max;
- }
- /* Choose the left gap if the right is empty. */
- else if (maxeq)
- {
- *vr0type = VR_RANGE;
- if (TREE_CODE (*vr0min) == INTEGER_CST)
- *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
- integer_one_node);
- else
- *vr0max = *vr0min;
- *vr0min = vr1min;
- }
- /* Choose the anti-range if the range is effectively varying. */
- else if (vrp_val_is_min (vr1min)
- && vrp_val_is_max (vr1max))
- ;
- /* Else choose the range. */
- else
- {
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- /* If both are anti-ranges the result is the outer one. */
- *vr0type = vr1type;
- *vr0min = vr1min;
- *vr0max = vr1max;
- }
- else if (vr1type == VR_ANTI_RANGE
- && *vr0type == VR_RANGE)
- {
- /* The intersection is empty. */
- *vr0type = VR_UNDEFINED;
- *vr0min = NULL_TREE;
- *vr0max = NULL_TREE;
- }
- else
- gcc_unreachable ();
- }
- else if ((operand_less_p (vr1min, *vr0max) == 1
- || operand_equal_p (vr1min, *vr0max, 0))
- && operand_less_p (*vr0min, vr1min) == 1)
- {
- /* [ ( ] ) or [ ]( ) */
- if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- *vr0max = vr1max;
- else if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- *vr0min = vr1min;
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- if (TREE_CODE (vr1min) == INTEGER_CST)
- *vr0max = int_const_binop (MINUS_EXPR, vr1min,
- integer_one_node);
- else
- *vr0max = vr1min;
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- *vr0type = VR_RANGE;
- if (TREE_CODE (*vr0max) == INTEGER_CST)
- *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
- integer_one_node);
- else
- *vr0min = *vr0max;
- *vr0max = vr1max;
- }
- else
- gcc_unreachable ();
- }
- else if ((operand_less_p (*vr0min, vr1max) == 1
- || operand_equal_p (*vr0min, vr1max, 0))
- && operand_less_p (vr1min, *vr0min) == 1)
- {
- /* ( [ ) ] or ( )[ ] */
- if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_ANTI_RANGE)
- *vr0min = vr1min;
- else if (*vr0type == VR_RANGE
- && vr1type == VR_RANGE)
- *vr0max = vr1max;
- else if (*vr0type == VR_RANGE
- && vr1type == VR_ANTI_RANGE)
- {
- if (TREE_CODE (vr1max) == INTEGER_CST)
- *vr0min = int_const_binop (PLUS_EXPR, vr1max,
- integer_one_node);
- else
- *vr0min = vr1max;
- }
- else if (*vr0type == VR_ANTI_RANGE
- && vr1type == VR_RANGE)
- {
- *vr0type = VR_RANGE;
- if (TREE_CODE (*vr0min) == INTEGER_CST)
- *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
- integer_one_node);
- else
- *vr0max = *vr0min;
- *vr0min = vr1min;
- }
- else
- gcc_unreachable ();
- }
-
- /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
- result for the intersection. That's always a conservative
- correct estimate. */
-
- return;
-}
-
-
-/* Intersect the two value-ranges *VR0 and *VR1 and store the result
- in *VR0. This may not be the smallest possible such range. */
-
-static void
-vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
-{
- value_range_t saved;
-
- /* If either range is VR_VARYING the other one wins. */
- if (vr1->type == VR_VARYING)
- return;
- if (vr0->type == VR_VARYING)
- {
- copy_value_range (vr0, vr1);
- return;
- }
-
- /* When either range is VR_UNDEFINED the resulting range is
- VR_UNDEFINED, too. */
- if (vr0->type == VR_UNDEFINED)
- return;
- if (vr1->type == VR_UNDEFINED)
- {
- set_value_range_to_undefined (vr0);
- return;
- }
-
- /* Save the original vr0 so we can return it as conservative intersection
- result when our worker turns things to varying. */
- saved = *vr0;
- intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
- vr1->type, vr1->min, vr1->max);
- /* Make sure to canonicalize the result though as the inversion of a
- VR_RANGE can still be a VR_RANGE. */
- set_and_canonicalize_value_range (vr0, vr0->type,
- vr0->min, vr0->max, vr0->equiv);
- /* If that failed, use the saved original VR0. */
- if (vr0->type == VR_VARYING)
- {
- *vr0 = saved;
- return;
- }
- /* If the result is VR_UNDEFINED there is no need to mess with
- the equivalencies. */
- if (vr0->type == VR_UNDEFINED)
- return;
-
- /* The resulting set of equivalences for range intersection is the union of
- the two sets. */
- if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
- bitmap_ior_into (vr0->equiv, vr1->equiv);
- else if (vr1->equiv && !vr0->equiv)
- bitmap_copy (vr0->equiv, vr1->equiv);
-}
-
-static void
-vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
-{
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Intersecting\n ");
- dump_value_range (dump_file, vr0);
- fprintf (dump_file, "\nand\n ");
- dump_value_range (dump_file, vr1);
- fprintf (dump_file, "\n");
- }
- vrp_intersect_ranges_1 (vr0, vr1);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "to\n ");
- dump_value_range (dump_file, vr0);
- fprintf (dump_file, "\n");
- }
-}
-
-/* Meet operation for value ranges. Given two value ranges VR0 and
- VR1, store in VR0 a range that contains both VR0 and VR1. This
- may not be the smallest possible such range. */
-
-static void
-vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
-{
- value_range_t saved;
-
- if (vr0->type == VR_UNDEFINED)
- {
- set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
- return;
- }
-
- if (vr1->type == VR_UNDEFINED)
- {
- /* VR0 already has the resulting range. */
- return;
- }
-
- if (vr0->type == VR_VARYING)
- {
- /* Nothing to do. VR0 already has the resulting range. */
- return;
- }
-
- if (vr1->type == VR_VARYING)
- {
- set_value_range_to_varying (vr0);
- return;
- }
-
- saved = *vr0;
- union_ranges (&vr0->type, &vr0->min, &vr0->max,
- vr1->type, vr1->min, vr1->max);
- if (vr0->type == VR_VARYING)
- {
- /* Failed to find an efficient meet. Before giving up and setting
- the result to VARYING, see if we can at least derive a useful
- anti-range. FIXME, all this nonsense about distinguishing
- anti-ranges from ranges is necessary because of the odd
- semantics of range_includes_zero_p and friends. */
- if (((saved.type == VR_RANGE
- && range_includes_zero_p (saved.min, saved.max) == 0)
- || (saved.type == VR_ANTI_RANGE
- && range_includes_zero_p (saved.min, saved.max) == 1))
- && ((vr1->type == VR_RANGE
- && range_includes_zero_p (vr1->min, vr1->max) == 0)
- || (vr1->type == VR_ANTI_RANGE
- && range_includes_zero_p (vr1->min, vr1->max) == 1)))
- {
- set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
-
- /* Since this meet operation did not result from the meeting of
- two equivalent names, VR0 cannot have any equivalences. */
- if (vr0->equiv)
- bitmap_clear (vr0->equiv);
- return;
- }
-
- set_value_range_to_varying (vr0);
- return;
- }
- set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
- vr0->equiv);
- if (vr0->type == VR_VARYING)
- return;
-
- /* The resulting set of equivalences is always the intersection of
- the two sets. */
- if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
- bitmap_and_into (vr0->equiv, vr1->equiv);
- else if (vr0->equiv && !vr1->equiv)
- bitmap_clear (vr0->equiv);
-}
-
-static void
-vrp_meet (value_range_t *vr0, value_range_t *vr1)
-{
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Meeting\n ");
- dump_value_range (dump_file, vr0);
- fprintf (dump_file, "\nand\n ");
- dump_value_range (dump_file, vr1);
- fprintf (dump_file, "\n");
- }
- vrp_meet_1 (vr0, vr1);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "to\n ");
- dump_value_range (dump_file, vr0);
- fprintf (dump_file, "\n");
- }
-}
-
-
-/* Visit all arguments for PHI node PHI that flow through executable
- edges. If a valid value range can be derived from all the incoming
- value ranges, set a new range for the LHS of PHI. */
-
-static enum ssa_prop_result
-vrp_visit_phi_node (gimple phi)
-{
- size_t i;
- tree lhs = PHI_RESULT (phi);
- value_range_t *lhs_vr = get_value_range (lhs);
- value_range_t vr_result = VR_INITIALIZER;
- bool first = true;
- int edges, old_edges;
- struct loop *l;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nVisiting PHI node: ");
- print_gimple_stmt (dump_file, phi, 0, dump_flags);
- }
-
- edges = 0;
- for (i = 0; i < gimple_phi_num_args (phi); i++)
- {
- edge e = gimple_phi_arg_edge (phi, i);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file,
- "\n Argument #%d (%d -> %d %sexecutable)\n",
- (int) i, e->src->index, e->dest->index,
- (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
- }
-
- if (e->flags & EDGE_EXECUTABLE)
- {
- tree arg = PHI_ARG_DEF (phi, i);
- value_range_t vr_arg;
-
- ++edges;
-
- if (TREE_CODE (arg) == SSA_NAME)
- {
- vr_arg = *(get_value_range (arg));
- /* Do not allow equivalences or symbolic ranges to leak in from
- backedges. That creates invalid equivalencies.
- See PR53465 and PR54767. */
- if (e->flags & EDGE_DFS_BACK
- && (vr_arg.type == VR_RANGE
- || vr_arg.type == VR_ANTI_RANGE))
- {
- vr_arg.equiv = NULL;
- if (symbolic_range_p (&vr_arg))
- {
- vr_arg.type = VR_VARYING;
- vr_arg.min = NULL_TREE;
- vr_arg.max = NULL_TREE;
- }
- }
- }
- else
- {
- if (is_overflow_infinity (arg))
- {
- arg = copy_node (arg);
- TREE_OVERFLOW (arg) = 0;
- }
-
- vr_arg.type = VR_RANGE;
- vr_arg.min = arg;
- vr_arg.max = arg;
- vr_arg.equiv = NULL;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\t");
- print_generic_expr (dump_file, arg, dump_flags);
- fprintf (dump_file, "\n\tValue: ");
- dump_value_range (dump_file, &vr_arg);
- fprintf (dump_file, "\n");
- }
-
- if (first)
- copy_value_range (&vr_result, &vr_arg);
- else
- vrp_meet (&vr_result, &vr_arg);
- first = false;
-
- if (vr_result.type == VR_VARYING)
- break;
- }
- }
-
- if (vr_result.type == VR_VARYING)
- goto varying;
- else if (vr_result.type == VR_UNDEFINED)
- goto update_range;
-
- old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
- vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
-
- /* To prevent infinite iterations in the algorithm, derive ranges
- when the new value is slightly bigger or smaller than the
- previous one. We don't do this if we have seen a new executable
- edge; this helps us avoid an overflow infinity for conditionals
- which are not in a loop. If the old value-range was VR_UNDEFINED
- use the updated range and iterate one more time. */
- if (edges > 0
- && gimple_phi_num_args (phi) > 1
- && edges == old_edges
- && lhs_vr->type != VR_UNDEFINED)
- {
- int cmp_min = compare_values (lhs_vr->min, vr_result.min);
- int cmp_max = compare_values (lhs_vr->max, vr_result.max);
-
- /* For non VR_RANGE or for pointers fall back to varying if
- the range changed. */
- if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
- || POINTER_TYPE_P (TREE_TYPE (lhs)))
- && (cmp_min != 0 || cmp_max != 0))
- goto varying;
-
- /* If the new minimum is smaller or larger than the previous
- one, go all the way to -INF. In the first case, to avoid
- iterating millions of times to reach -INF, and in the
- other case to avoid infinite bouncing between different
- minimums. */
- if (cmp_min > 0 || cmp_min < 0)
- {
- if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
- || !vrp_var_may_overflow (lhs, phi))
- vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
- else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
- vr_result.min =
- negative_overflow_infinity (TREE_TYPE (vr_result.min));
- }
-
- /* Similarly, if the new maximum is smaller or larger than
- the previous one, go all the way to +INF. */
- if (cmp_max < 0 || cmp_max > 0)
- {
- if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
- || !vrp_var_may_overflow (lhs, phi))
- vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
- else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
- vr_result.max =
- positive_overflow_infinity (TREE_TYPE (vr_result.max));
- }
-
- /* If we dropped either bound to +-INF then if this is a loop
- PHI node SCEV may known more about its value-range. */
- if ((cmp_min > 0 || cmp_min < 0
- || cmp_max < 0 || cmp_max > 0)
- && current_loops
- && (l = loop_containing_stmt (phi))
- && l->header == gimple_bb (phi))
- adjust_range_with_scev (&vr_result, l, phi, lhs);
-
- /* If we will end up with a (-INF, +INF) range, set it to
- VARYING. Same if the previous max value was invalid for
- the type and we end up with vr_result.min > vr_result.max. */
- if ((vrp_val_is_max (vr_result.max)
- && vrp_val_is_min (vr_result.min))
- || compare_values (vr_result.min,
- vr_result.max) > 0)
- goto varying;
- }
-
- /* If the new range is different than the previous value, keep
- iterating. */
-update_range:
- if (update_value_range (lhs, &vr_result))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Found new range for ");
- print_generic_expr (dump_file, lhs, 0);
- fprintf (dump_file, ": ");
- dump_value_range (dump_file, &vr_result);
- fprintf (dump_file, "\n\n");
- }
-
- return SSA_PROP_INTERESTING;
- }
-
- /* Nothing changed, don't add outgoing edges. */
- return SSA_PROP_NOT_INTERESTING;
-
- /* No match found. Set the LHS to VARYING. */
-varying:
- set_value_range_to_varying (lhs_vr);
- return SSA_PROP_VARYING;
-}
-
-/* Simplify boolean operations if the source is known
- to be already a boolean. */
-static bool
-simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
-{
- enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
- tree lhs, op0, op1;
- bool need_conversion;
-
- /* We handle only !=/== case here. */
- gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
-
- op0 = gimple_assign_rhs1 (stmt);
- if (!op_with_boolean_value_range_p (op0))
- return false;
-
- op1 = gimple_assign_rhs2 (stmt);
- if (!op_with_boolean_value_range_p (op1))
- return false;
-
- /* Reduce number of cases to handle to NE_EXPR. As there is no
- BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
- if (rhs_code == EQ_EXPR)
- {
- if (TREE_CODE (op1) == INTEGER_CST)
- op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
- else
- return false;
- }
-
- lhs = gimple_assign_lhs (stmt);
- need_conversion
- = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
-
- /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
- if (need_conversion
- && !TYPE_UNSIGNED (TREE_TYPE (op0))
- && TYPE_PRECISION (TREE_TYPE (op0)) == 1
- && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
- return false;
-
- /* For A != 0 we can substitute A itself. */
- if (integer_zerop (op1))
- gimple_assign_set_rhs_with_ops (gsi,
- need_conversion
- ? NOP_EXPR : TREE_CODE (op0),
- op0, NULL_TREE);
- /* For A != B we substitute A ^ B. Either with conversion. */
- else if (need_conversion)
- {
- tree tem = make_ssa_name (TREE_TYPE (op0), NULL);
- gimple newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
- gsi_insert_before (gsi, newop, GSI_SAME_STMT);
- gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
- }
- /* Or without. */
- else
- gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
- update_stmt (gsi_stmt (*gsi));
-
- return true;
-}
-
-/* Simplify a division or modulo operator to a right shift or
- bitwise and if the first operand is unsigned or is greater
- than zero and the second operand is an exact power of two. */
-
-static bool
-simplify_div_or_mod_using_ranges (gimple stmt)
-{
- enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
- tree val = NULL;
- tree op0 = gimple_assign_rhs1 (stmt);
- tree op1 = gimple_assign_rhs2 (stmt);
- value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
-
- if (TYPE_UNSIGNED (TREE_TYPE (op0)))
- {
- val = integer_one_node;
- }
- else
- {
- bool sop = false;
-
- val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
-
- if (val
- && sop
- && integer_onep (val)
- && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
- {
- location_t location;
-
- if (!gimple_has_location (stmt))
- location = input_location;
- else
- location = gimple_location (stmt);
- warning_at (location, OPT_Wstrict_overflow,
- "assuming signed overflow does not occur when "
- "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
- }
- }
-
- if (val && integer_onep (val))
- {
- tree t;
-
- if (rhs_code == TRUNC_DIV_EXPR)
- {
- t = build_int_cst (integer_type_node, tree_log2 (op1));
- gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
- gimple_assign_set_rhs1 (stmt, op0);
- gimple_assign_set_rhs2 (stmt, t);
- }
- else
- {
- t = build_int_cst (TREE_TYPE (op1), 1);
- t = int_const_binop (MINUS_EXPR, op1, t);
- t = fold_convert (TREE_TYPE (op0), t);
-
- gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
- gimple_assign_set_rhs1 (stmt, op0);
- gimple_assign_set_rhs2 (stmt, t);
- }
-
- update_stmt (stmt);
- return true;
- }
-
- return false;
-}
-
-/* If the operand to an ABS_EXPR is >= 0, then eliminate the
- ABS_EXPR. If the operand is <= 0, then simplify the
- ABS_EXPR into a NEGATE_EXPR. */
-
-static bool
-simplify_abs_using_ranges (gimple stmt)
-{
- tree val = NULL;
- tree op = gimple_assign_rhs1 (stmt);
- tree type = TREE_TYPE (op);
- value_range_t *vr = get_value_range (op);
-
- if (TYPE_UNSIGNED (type))
- {
- val = integer_zero_node;
- }
- else if (vr)
- {
- bool sop = false;
-
- val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
- if (!val)
- {
- sop = false;
- val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
- &sop);
-
- if (val)
- {
- if (integer_zerop (val))
- val = integer_one_node;
- else if (integer_onep (val))
- val = integer_zero_node;
- }
- }
-
- if (val
- && (integer_onep (val) || integer_zerop (val)))
- {
- if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
- {
- location_t location;
-
- if (!gimple_has_location (stmt))
- location = input_location;
- else
- location = gimple_location (stmt);
- warning_at (location, OPT_Wstrict_overflow,
- "assuming signed overflow does not occur when "
- "simplifying %<abs (X)%> to %<X%> or %<-X%>");
- }
-
- gimple_assign_set_rhs1 (stmt, op);
- if (integer_onep (val))
- gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
- else
- gimple_assign_set_rhs_code (stmt, SSA_NAME);
- update_stmt (stmt);
- return true;
- }
- }
-
- return false;
-}
-
-/* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
- If all the bits that are being cleared by & are already
- known to be zero from VR, or all the bits that are being
- set by | are already known to be one from VR, the bit
- operation is redundant. */
-
-static bool
-simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
-{
- tree op0 = gimple_assign_rhs1 (stmt);
- tree op1 = gimple_assign_rhs2 (stmt);
- tree op = NULL_TREE;
- value_range_t vr0 = VR_INITIALIZER;
- value_range_t vr1 = VR_INITIALIZER;
- double_int may_be_nonzero0, may_be_nonzero1;
- double_int must_be_nonzero0, must_be_nonzero1;
- double_int mask;
-
- if (TREE_CODE (op0) == SSA_NAME)
- vr0 = *(get_value_range (op0));
- else if (is_gimple_min_invariant (op0))
- set_value_range_to_value (&vr0, op0, NULL);
- else
- return false;
-
- if (TREE_CODE (op1) == SSA_NAME)
- vr1 = *(get_value_range (op1));
- else if (is_gimple_min_invariant (op1))
- set_value_range_to_value (&vr1, op1, NULL);
- else
- return false;
-
- if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
- return false;
- if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
- return false;
-
- switch (gimple_assign_rhs_code (stmt))
- {
- case BIT_AND_EXPR:
- mask = may_be_nonzero0.and_not (must_be_nonzero1);
- if (mask.is_zero ())
- {
- op = op0;
- break;
- }
- mask = may_be_nonzero1.and_not (must_be_nonzero0);
- if (mask.is_zero ())
- {
- op = op1;
- break;
- }
- break;
- case BIT_IOR_EXPR:
- mask = may_be_nonzero0.and_not (must_be_nonzero1);
- if (mask.is_zero ())
- {
- op = op1;
- break;
- }
- mask = may_be_nonzero1.and_not (must_be_nonzero0);
- if (mask.is_zero ())
- {
- op = op0;
- break;
- }
- break;
- default:
- gcc_unreachable ();
- }
-
- if (op == NULL_TREE)
- return false;
-
- gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
- update_stmt (gsi_stmt (*gsi));
- return true;
-}
-
-/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
- a known value range VR.
-
- If there is one and only one value which will satisfy the
- conditional, then return that value. Else return NULL. */
-
-static tree
-test_for_singularity (enum tree_code cond_code, tree op0,
- tree op1, value_range_t *vr)
-{
- tree min = NULL;
- tree max = NULL;
-
- /* Extract minimum/maximum values which satisfy the
- the conditional as it was written. */
- if (cond_code == LE_EXPR || cond_code == LT_EXPR)
- {
- /* This should not be negative infinity; there is no overflow
- here. */
- min = TYPE_MIN_VALUE (TREE_TYPE (op0));
-
- max = op1;
- if (cond_code == LT_EXPR && !is_overflow_infinity (max))
- {
- tree one = build_int_cst (TREE_TYPE (op0), 1);
- max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
- if (EXPR_P (max))
- TREE_NO_WARNING (max) = 1;
- }
- }
- else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
- {
- /* This should not be positive infinity; there is no overflow
- here. */
- max = TYPE_MAX_VALUE (TREE_TYPE (op0));
-
- min = op1;
- if (cond_code == GT_EXPR && !is_overflow_infinity (min))
- {
- tree one = build_int_cst (TREE_TYPE (op0), 1);
- min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
- if (EXPR_P (min))
- TREE_NO_WARNING (min) = 1;
- }
- }
-
- /* Now refine the minimum and maximum values using any
- value range information we have for op0. */
- if (min && max)
- {
- if (compare_values (vr->min, min) == 1)
- min = vr->min;
- if (compare_values (vr->max, max) == -1)
- max = vr->max;
-
- /* If the new min/max values have converged to a single value,
- then there is only one value which can satisfy the condition,
- return that value. */
- if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
- return min;
- }
- return NULL;
-}
-
-/* Simplify a conditional using a relational operator to an equality
- test if the range information indicates only one value can satisfy
- the original conditional. */
-
-static bool
-simplify_cond_using_ranges (gimple stmt)
-{
- tree op0 = gimple_cond_lhs (stmt);
- tree op1 = gimple_cond_rhs (stmt);
- enum tree_code cond_code = gimple_cond_code (stmt);
-
- if (cond_code != NE_EXPR
- && cond_code != EQ_EXPR
- && TREE_CODE (op0) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (op0))
- && is_gimple_min_invariant (op1))
- {
- value_range_t *vr = get_value_range (op0);
-
- /* If we have range information for OP0, then we might be
- able to simplify this conditional. */
- if (vr->type == VR_RANGE)
- {
- tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
-
- if (new_tree)
- {
- if (dump_file)
- {
- fprintf (dump_file, "Simplified relational ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- fprintf (dump_file, " into ");
- }
-
- gimple_cond_set_code (stmt, EQ_EXPR);
- gimple_cond_set_lhs (stmt, op0);
- gimple_cond_set_rhs (stmt, new_tree);
-
- update_stmt (stmt);
-
- if (dump_file)
- {
- print_gimple_stmt (dump_file, stmt, 0, 0);
- fprintf (dump_file, "\n");
- }
-
- return true;
- }
-
- /* Try again after inverting the condition. We only deal
- with integral types here, so no need to worry about
- issues with inverting FP comparisons. */
- cond_code = invert_tree_comparison (cond_code, false);
- new_tree = test_for_singularity (cond_code, op0, op1, vr);
-
- if (new_tree)
- {
- if (dump_file)
- {
- fprintf (dump_file, "Simplified relational ");
- print_gimple_stmt (dump_file, stmt, 0, 0);
- fprintf (dump_file, " into ");
- }
-
- gimple_cond_set_code (stmt, NE_EXPR);
- gimple_cond_set_lhs (stmt, op0);
- gimple_cond_set_rhs (stmt, new_tree);
-
- update_stmt (stmt);
-
- if (dump_file)
- {
- print_gimple_stmt (dump_file, stmt, 0, 0);
- fprintf (dump_file, "\n");
- }
-
- return true;
- }
- }
- }
-
- return false;
-}
-
-/* Simplify a switch statement using the value range of the switch
- argument. */
-
-static bool
-simplify_switch_using_ranges (gimple stmt)
-{
- tree op = gimple_switch_index (stmt);
- value_range_t *vr;
- bool take_default;
- edge e;
- edge_iterator ei;
- size_t i = 0, j = 0, n, n2;
- tree vec2;
- switch_update su;
- size_t k = 1, l = 0;
-
- if (TREE_CODE (op) == SSA_NAME)
- {
- vr = get_value_range (op);
-
- /* We can only handle integer ranges. */
- if ((vr->type != VR_RANGE
- && vr->type != VR_ANTI_RANGE)
- || symbolic_range_p (vr))
- return false;
-
- /* Find case label for min/max of the value range. */
- take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
- }
- else if (TREE_CODE (op) == INTEGER_CST)
- {
- take_default = !find_case_label_index (stmt, 1, op, &i);
- if (take_default)
- {
- i = 1;
- j = 0;
- }
- else
- {
- j = i;
- }
- }
- else
- return false;
-
- n = gimple_switch_num_labels (stmt);
-
- /* Bail out if this is just all edges taken. */
- if (i == 1
- && j == n - 1
- && take_default)
- return false;
-
- /* Build a new vector of taken case labels. */
- vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
- n2 = 0;
-
- /* Add the default edge, if necessary. */
- if (take_default)
- TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
-
- for (; i <= j; ++i, ++n2)
- TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
-
- for (; k <= l; ++k, ++n2)
- TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
-
- /* Mark needed edges. */
- for (i = 0; i < n2; ++i)
- {
- e = find_edge (gimple_bb (stmt),
- label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
- e->aux = (void *)-1;
- }
-
- /* Queue not needed edges for later removal. */
- FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
- {
- if (e->aux == (void *)-1)
- {
- e->aux = NULL;
- continue;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "removing unreachable case label\n");
- }
- to_remove_edges.safe_push (e);
- e->flags &= ~EDGE_EXECUTABLE;
- }
-
- /* And queue an update for the stmt. */
- su.stmt = stmt;
- su.vec = vec2;
- to_update_switch_stmts.safe_push (su);
- return false;
-}
-
-/* Simplify an integral conversion from an SSA name in STMT. */
-
-static bool
-simplify_conversion_using_ranges (gimple stmt)
-{
- tree innerop, middleop, finaltype;
- gimple def_stmt;
- value_range_t *innervr;
- bool inner_unsigned_p, middle_unsigned_p, final_unsigned_p;
- unsigned inner_prec, middle_prec, final_prec;
- double_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
-
- finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
- if (!INTEGRAL_TYPE_P (finaltype))
- return false;
- middleop = gimple_assign_rhs1 (stmt);
- def_stmt = SSA_NAME_DEF_STMT (middleop);
- if (!is_gimple_assign (def_stmt)
- || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
- return false;
- innerop = gimple_assign_rhs1 (def_stmt);
- if (TREE_CODE (innerop) != SSA_NAME)
- return false;
-
- /* Get the value-range of the inner operand. */
- innervr = get_value_range (innerop);
- if (innervr->type != VR_RANGE
- || TREE_CODE (innervr->min) != INTEGER_CST
- || TREE_CODE (innervr->max) != INTEGER_CST)
- return false;
-
- /* Simulate the conversion chain to check if the result is equal if
- the middle conversion is removed. */
- innermin = tree_to_double_int (innervr->min);
- innermax = tree_to_double_int (innervr->max);
-
- inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
- middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
- final_prec = TYPE_PRECISION (finaltype);
-
- /* If the first conversion is not injective, the second must not
- be widening. */
- if ((innermax - innermin).ugt (double_int::mask (middle_prec))
- && middle_prec < final_prec)
- return false;
- /* We also want a medium value so that we can track the effect that
- narrowing conversions with sign change have. */
- inner_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (innerop));
- if (inner_unsigned_p)
- innermed = double_int::mask (inner_prec).lrshift (1, inner_prec);
- else
- innermed = double_int_zero;
- if (innermin.cmp (innermed, inner_unsigned_p) >= 0
- || innermed.cmp (innermax, inner_unsigned_p) >= 0)
- innermed = innermin;
-
- middle_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (middleop));
- middlemin = innermin.ext (middle_prec, middle_unsigned_p);
- middlemed = innermed.ext (middle_prec, middle_unsigned_p);
- middlemax = innermax.ext (middle_prec, middle_unsigned_p);
-
- /* Require that the final conversion applied to both the original
- and the intermediate range produces the same result. */
- final_unsigned_p = TYPE_UNSIGNED (finaltype);
- if (middlemin.ext (final_prec, final_unsigned_p)
- != innermin.ext (final_prec, final_unsigned_p)
- || middlemed.ext (final_prec, final_unsigned_p)
- != innermed.ext (final_prec, final_unsigned_p)
- || middlemax.ext (final_prec, final_unsigned_p)
- != innermax.ext (final_prec, final_unsigned_p))
- return false;
-
- gimple_assign_set_rhs1 (stmt, innerop);
- update_stmt (stmt);
- return true;
-}
-
-/* Return whether the value range *VR fits in an integer type specified
- by PRECISION and UNSIGNED_P. */
-
-static bool
-range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
-{
- tree src_type;
- unsigned src_precision;
- double_int tem;
-
- /* We can only handle integral and pointer types. */
- src_type = TREE_TYPE (vr->min);
- if (!INTEGRAL_TYPE_P (src_type)
- && !POINTER_TYPE_P (src_type))
- return false;
-
- /* An extension is fine unless VR is signed and unsigned_p,
- and so is an identity transform. */
- src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
- if ((src_precision < precision
- && !(unsigned_p && !TYPE_UNSIGNED (src_type)))
- || (src_precision == precision
- && TYPE_UNSIGNED (src_type) == unsigned_p))
- return true;
-
- /* Now we can only handle ranges with constant bounds. */
- if (vr->type != VR_RANGE
- || TREE_CODE (vr->min) != INTEGER_CST
- || TREE_CODE (vr->max) != INTEGER_CST)
- return false;
-
- /* For sign changes, the MSB of the double_int has to be clear.
- An unsigned value with its MSB set cannot be represented by
- a signed double_int, while a negative value cannot be represented
- by an unsigned double_int. */
- if (TYPE_UNSIGNED (src_type) != unsigned_p
- && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
- return false;
-
- /* Then we can perform the conversion on both ends and compare
- the result for equality. */
- tem = tree_to_double_int (vr->min).ext (precision, unsigned_p);
- if (tree_to_double_int (vr->min) != tem)
- return false;
- tem = tree_to_double_int (vr->max).ext (precision, unsigned_p);
- if (tree_to_double_int (vr->max) != tem)
- return false;
-
- return true;
-}
-
-/* Simplify a conversion from integral SSA name to float in STMT. */
-
-static bool
-simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
-{
- tree rhs1 = gimple_assign_rhs1 (stmt);
- value_range_t *vr = get_value_range (rhs1);
- enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
- enum machine_mode mode;
- tree tem;
- gimple conv;
-
- /* We can only handle constant ranges. */
- if (vr->type != VR_RANGE
- || TREE_CODE (vr->min) != INTEGER_CST
- || TREE_CODE (vr->max) != INTEGER_CST)
- return false;
-
- /* First check if we can use a signed type in place of an unsigned. */
- if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
- && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
- != CODE_FOR_nothing)
- && range_fits_type_p (vr, GET_MODE_PRECISION
- (TYPE_MODE (TREE_TYPE (rhs1))), 0))
- mode = TYPE_MODE (TREE_TYPE (rhs1));
- /* If we can do the conversion in the current input mode do nothing. */
- else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
- TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
- return false;
- /* Otherwise search for a mode we can use, starting from the narrowest
- integer mode available. */
- else
- {
- mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
- do
- {
- /* If we cannot do a signed conversion to float from mode
- or if the value-range does not fit in the signed type
- try with a wider mode. */
- if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
- && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
- break;
-
- mode = GET_MODE_WIDER_MODE (mode);
- /* But do not widen the input. Instead leave that to the
- optabs expansion code. */
- if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
- return false;
- }
- while (mode != VOIDmode);
- if (mode == VOIDmode)
- return false;
- }
-
- /* It works, insert a truncation or sign-change before the
- float conversion. */
- tem = make_ssa_name (build_nonstandard_integer_type
- (GET_MODE_PRECISION (mode), 0), NULL);
- conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
- gsi_insert_before (gsi, conv, GSI_SAME_STMT);
- gimple_assign_set_rhs1 (stmt, tem);
- update_stmt (stmt);
-
- return true;
-}
-
-/* Simplify STMT using ranges if possible. */
-
-static bool
-simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
-{
- gimple stmt = gsi_stmt (*gsi);
- if (is_gimple_assign (stmt))
- {
- enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
- tree rhs1 = gimple_assign_rhs1 (stmt);
-
- switch (rhs_code)
- {
- case EQ_EXPR:
- case NE_EXPR:
- /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
- if the RHS is zero or one, and the LHS are known to be boolean
- values. */
- if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
- return simplify_truth_ops_using_ranges (gsi, stmt);
- break;
-
- /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
- and BIT_AND_EXPR respectively if the first operand is greater
- than zero and the second operand is an exact power of two. */
- case TRUNC_DIV_EXPR:
- case TRUNC_MOD_EXPR:
- if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
- && integer_pow2p (gimple_assign_rhs2 (stmt)))
- return simplify_div_or_mod_using_ranges (stmt);
- break;
-
- /* Transform ABS (X) into X or -X as appropriate. */
- case ABS_EXPR:
- if (TREE_CODE (rhs1) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
- return simplify_abs_using_ranges (stmt);
- break;
-
- case BIT_AND_EXPR:
- case BIT_IOR_EXPR:
- /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
- if all the bits being cleared are already cleared or
- all the bits being set are already set. */
- if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
- return simplify_bit_ops_using_ranges (gsi, stmt);
- break;
-
- CASE_CONVERT:
- if (TREE_CODE (rhs1) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
- return simplify_conversion_using_ranges (stmt);
- break;
-
- case FLOAT_EXPR:
- if (TREE_CODE (rhs1) == SSA_NAME
- && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
- return simplify_float_conversion_using_ranges (gsi, stmt);
- break;
-
- default:
- break;
- }
- }
- else if (gimple_code (stmt) == GIMPLE_COND)
- return simplify_cond_using_ranges (stmt);
- else if (gimple_code (stmt) == GIMPLE_SWITCH)
- return simplify_switch_using_ranges (stmt);
-
- return false;
-}
-
-/* If the statement pointed by SI has a predicate whose value can be
- computed using the value range information computed by VRP, compute
- its value and return true. Otherwise, return false. */
-
-static bool
-fold_predicate_in (gimple_stmt_iterator *si)
-{
- bool assignment_p = false;
- tree val;
- gimple stmt = gsi_stmt (*si);
-
- if (is_gimple_assign (stmt)
- && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
- {
- assignment_p = true;
- val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt),
- stmt);
- }
- else if (gimple_code (stmt) == GIMPLE_COND)
- val = vrp_evaluate_conditional (gimple_cond_code (stmt),
- gimple_cond_lhs (stmt),
- gimple_cond_rhs (stmt),
- stmt);
- else
- return false;
-
- if (val)
- {
- if (assignment_p)
- val = fold_convert (gimple_expr_type (stmt), val);
-
- if (dump_file)
- {
- fprintf (dump_file, "Folding predicate ");
- print_gimple_expr (dump_file, stmt, 0, 0);
- fprintf (dump_file, " to ");
- print_generic_expr (dump_file, val, 0);
- fprintf (dump_file, "\n");
- }
-
- if (is_gimple_assign (stmt))
- gimple_assign_set_rhs_from_tree (si, val);
- else
- {
- gcc_assert (gimple_code (stmt) == GIMPLE_COND);
- if (integer_zerop (val))
- gimple_cond_make_false (stmt);
- else if (integer_onep (val))
- gimple_cond_make_true (stmt);
- else
- gcc_unreachable ();
- }
-
- return true;
- }
-
- return false;
-}
-
-/* Callback for substitute_and_fold folding the stmt at *SI. */
-
-static bool
-vrp_fold_stmt (gimple_stmt_iterator *si)
-{
- if (fold_predicate_in (si))
- return true;
-
- return simplify_stmt_using_ranges (si);
-}
-
-/* Stack of dest,src equivalency pairs that need to be restored after
- each attempt to thread a block's incoming edge to an outgoing edge.
-
- A NULL entry is used to mark the end of pairs which need to be
- restored. */
-static vec<tree> equiv_stack;
-
-/* A trivial wrapper so that we can present the generic jump threading
- code with a simple API for simplifying statements. STMT is the
- statement we want to simplify, WITHIN_STMT provides the location
- for any overflow warnings. */
-
-static tree
-simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
-{
- /* We only use VRP information to simplify conditionals. This is
- overly conservative, but it's unclear if doing more would be
- worth the compile time cost. */
- if (gimple_code (stmt) != GIMPLE_COND)
- return NULL;
-
- return vrp_evaluate_conditional (gimple_cond_code (stmt),
- gimple_cond_lhs (stmt),
- gimple_cond_rhs (stmt), within_stmt);
-}
-
-/* Blocks which have more than one predecessor and more than
- one successor present jump threading opportunities, i.e.,
- when the block is reached from a specific predecessor, we
- may be able to determine which of the outgoing edges will
- be traversed. When this optimization applies, we are able
- to avoid conditionals at runtime and we may expose secondary
- optimization opportunities.
-
- This routine is effectively a driver for the generic jump
- threading code. It basically just presents the generic code
- with edges that may be suitable for jump threading.
-
- Unlike DOM, we do not iterate VRP if jump threading was successful.
- While iterating may expose new opportunities for VRP, it is expected
- those opportunities would be very limited and the compile time cost
- to expose those opportunities would be significant.
-
- As jump threading opportunities are discovered, they are registered
- for later realization. */
-
-static void
-identify_jump_threads (void)
-{
- basic_block bb;
- gimple dummy;
- int i;
- edge e;
-
- /* Ugh. When substituting values earlier in this pass we can
- wipe the dominance information. So rebuild the dominator
- information as we need it within the jump threading code. */
- calculate_dominance_info (CDI_DOMINATORS);
-
- /* We do not allow VRP information to be used for jump threading
- across a back edge in the CFG. Otherwise it becomes too
- difficult to avoid eliminating loop exit tests. Of course
- EDGE_DFS_BACK is not accurate at this time so we have to
- recompute it. */
- mark_dfs_back_edges ();
-
- /* Do not thread across edges we are about to remove. Just marking
- them as EDGE_DFS_BACK will do. */
- FOR_EACH_VEC_ELT (to_remove_edges, i, e)
- e->flags |= EDGE_DFS_BACK;
-
- /* Allocate our unwinder stack to unwind any temporary equivalences
- that might be recorded. */
- equiv_stack.create (20);
-
- /* To avoid lots of silly node creation, we create a single
- conditional and just modify it in-place when attempting to
- thread jumps. */
- dummy = gimple_build_cond (EQ_EXPR,
- integer_zero_node, integer_zero_node,
- NULL, NULL);
-
- /* Walk through all the blocks finding those which present a
- potential jump threading opportunity. We could set this up
- as a dominator walker and record data during the walk, but
- I doubt it's worth the effort for the classes of jump
- threading opportunities we are trying to identify at this
- point in compilation. */
- FOR_EACH_BB (bb)
- {
- gimple last;
-
- /* If the generic jump threading code does not find this block
- interesting, then there is nothing to do. */
- if (! potentially_threadable_block (bb))
- continue;
-
- /* We only care about blocks ending in a COND_EXPR. While there
- may be some value in handling SWITCH_EXPR here, I doubt it's
- terribly important. */
- last = gsi_stmt (gsi_last_bb (bb));
-
- /* We're basically looking for a switch or any kind of conditional with
- integral or pointer type arguments. Note the type of the second
- argument will be the same as the first argument, so no need to
- check it explicitly. */
- if (gimple_code (last) == GIMPLE_SWITCH
- || (gimple_code (last) == GIMPLE_COND
- && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
- && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
- || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
- && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
- || is_gimple_min_invariant (gimple_cond_rhs (last)))))
- {
- edge_iterator ei;
-
- /* We've got a block with multiple predecessors and multiple
- successors which also ends in a suitable conditional or
- switch statement. For each predecessor, see if we can thread
- it to a specific successor. */
- FOR_EACH_EDGE (e, ei, bb->preds)
- {
- /* Do not thread across back edges or abnormal edges
- in the CFG. */
- if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
- continue;
-
- thread_across_edge (dummy, e, true, &equiv_stack,
- simplify_stmt_for_jump_threading);
- }
- }
- }
-
- /* We do not actually update the CFG or SSA graphs at this point as
- ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
- handle ASSERT_EXPRs gracefully. */
-}
-
-/* We identified all the jump threading opportunities earlier, but could
- not transform the CFG at that time. This routine transforms the
- CFG and arranges for the dominator tree to be rebuilt if necessary.
-
- Note the SSA graph update will occur during the normal TODO
- processing by the pass manager. */
-static void
-finalize_jump_threads (void)
-{
- thread_through_all_blocks (false);
- equiv_stack.release ();
-}
-
-
-/* Traverse all the blocks folding conditionals with known ranges. */
-
-static void
-vrp_finalize (void)
-{
- size_t i;
-
- values_propagated = true;
-
- if (dump_file)
- {
- fprintf (dump_file, "\nValue ranges after VRP:\n\n");
- dump_all_value_ranges (dump_file);
- fprintf (dump_file, "\n");
- }
-
- substitute_and_fold (op_with_constant_singleton_value_range,
- vrp_fold_stmt, false);
-
- if (warn_array_bounds)
- check_all_array_refs ();
-
- /* We must identify jump threading opportunities before we release
- the datastructures built by VRP. */
- identify_jump_threads ();
-
- /* Free allocated memory. */
- for (i = 0; i < num_vr_values; i++)
- if (vr_value[i])
- {
- BITMAP_FREE (vr_value[i]->equiv);
- free (vr_value[i]);
- }
-
- free (vr_value);
- free (vr_phi_edge_counts);
-
- /* So that we can distinguish between VRP data being available
- and not available. */
- vr_value = NULL;
- vr_phi_edge_counts = NULL;
-}
-
-
-/* Main entry point to VRP (Value Range Propagation). This pass is
- loosely based on J. R. C. Patterson, ``Accurate Static Branch
- Prediction by Value Range Propagation,'' in SIGPLAN Conference on
- Programming Language Design and Implementation, pp. 67-78, 1995.
- Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
-
- This is essentially an SSA-CCP pass modified to deal with ranges
- instead of constants.
-
- While propagating ranges, we may find that two or more SSA name
- have equivalent, though distinct ranges. For instance,
-
- 1 x_9 = p_3->a;
- 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
- 3 if (p_4 == q_2)
- 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
- 5 endif
- 6 if (q_2)
-
- In the code above, pointer p_5 has range [q_2, q_2], but from the
- code we can also determine that p_5 cannot be NULL and, if q_2 had
- a non-varying range, p_5's range should also be compatible with it.
-
- These equivalences are created by two expressions: ASSERT_EXPR and
- copy operations. Since p_5 is an assertion on p_4, and p_4 was the
- result of another assertion, then we can use the fact that p_5 and
- p_4 are equivalent when evaluating p_5's range.
-
- Together with value ranges, we also propagate these equivalences
- between names so that we can take advantage of information from
- multiple ranges when doing final replacement. Note that this
- equivalency relation is transitive but not symmetric.
-
- In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
- cannot assert that q_2 is equivalent to p_5 because q_2 may be used
- in contexts where that assertion does not hold (e.g., in line 6).
-
- TODO, the main difference between this pass and Patterson's is that
- we do not propagate edge probabilities. We only compute whether
- edges can be taken or not. That is, instead of having a spectrum
- of jump probabilities between 0 and 1, we only deal with 0, 1 and
- DON'T KNOW. In the future, it may be worthwhile to propagate
- probabilities to aid branch prediction. */
-
-static unsigned int
-execute_vrp (void)
-{
- int i;
- edge e;
- switch_update *su;
-
- loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
- rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
- scev_initialize ();
-
- /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
- Inserting assertions may split edges which will invalidate
- EDGE_DFS_BACK. */
- insert_range_assertions ();
-
- to_remove_edges.create (10);
- to_update_switch_stmts.create (5);
- threadedge_initialize_values ();
-
- /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
- mark_dfs_back_edges ();
-
- vrp_initialize ();
- ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
- vrp_finalize ();
-
- free_numbers_of_iterations_estimates ();
-
- /* ASSERT_EXPRs must be removed before finalizing jump threads
- as finalizing jump threads calls the CFG cleanup code which
- does not properly handle ASSERT_EXPRs. */
- remove_range_assertions ();
-
- /* If we exposed any new variables, go ahead and put them into
- SSA form now, before we handle jump threading. This simplifies
- interactions between rewriting of _DECL nodes into SSA form
- and rewriting SSA_NAME nodes into SSA form after block
- duplication and CFG manipulation. */
- update_ssa (TODO_update_ssa);
-
- finalize_jump_threads ();
-
- /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
- CFG in a broken state and requires a cfg_cleanup run. */
- FOR_EACH_VEC_ELT (to_remove_edges, i, e)
- remove_edge (e);
- /* Update SWITCH_EXPR case label vector. */
- FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
- {
- size_t j;
- size_t n = TREE_VEC_LENGTH (su->vec);
- tree label;
- gimple_switch_set_num_labels (su->stmt, n);
- for (j = 0; j < n; j++)
- gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
- /* As we may have replaced the default label with a regular one
- make sure to make it a real default label again. This ensures
- optimal expansion. */
- label = gimple_switch_label (su->stmt, 0);
- CASE_LOW (label) = NULL_TREE;
- CASE_HIGH (label) = NULL_TREE;
- }
-
- if (to_remove_edges.length () > 0)
- free_dominance_info (CDI_DOMINATORS);
-
- to_remove_edges.release ();
- to_update_switch_stmts.release ();
- threadedge_finalize_values ();
-
- scev_finalize ();
- loop_optimizer_finalize ();
- return 0;
-}
-
-static bool
-gate_vrp (void)
-{
- return flag_tree_vrp != 0;
-}
-
-struct gimple_opt_pass pass_vrp =
-{
- {
- GIMPLE_PASS,
- "vrp", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- gate_vrp, /* gate */
- execute_vrp, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_TREE_VRP, /* tv_id */
- PROP_ssa, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_cleanup_cfg
- | TODO_update_ssa
- | TODO_verify_ssa
- | TODO_verify_flow
- | TODO_ggc_collect /* todo_flags_finish */
- }
-};