aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/tree-ssa-loop-ivopts.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/tree-ssa-loop-ivopts.c')
-rw-r--r--gcc-4.8.1/gcc/tree-ssa-loop-ivopts.c6750
1 files changed, 0 insertions, 6750 deletions
diff --git a/gcc-4.8.1/gcc/tree-ssa-loop-ivopts.c b/gcc-4.8.1/gcc/tree-ssa-loop-ivopts.c
deleted file mode 100644
index 2940bf100..000000000
--- a/gcc-4.8.1/gcc/tree-ssa-loop-ivopts.c
+++ /dev/null
@@ -1,6750 +0,0 @@
-/* Induction variable optimizations.
- Copyright (C) 2003-2013 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it
-under the terms of the GNU General Public License as published by the
-Free Software Foundation; either version 3, or (at your option) any
-later version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT
-ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-/* This pass tries to find the optimal set of induction variables for the loop.
- It optimizes just the basic linear induction variables (although adding
- support for other types should not be too hard). It includes the
- optimizations commonly known as strength reduction, induction variable
- coalescing and induction variable elimination. It does it in the
- following steps:
-
- 1) The interesting uses of induction variables are found. This includes
-
- -- uses of induction variables in non-linear expressions
- -- addresses of arrays
- -- comparisons of induction variables
-
- 2) Candidates for the induction variables are found. This includes
-
- -- old induction variables
- -- the variables defined by expressions derived from the "interesting
- uses" above
-
- 3) The optimal (w.r. to a cost function) set of variables is chosen. The
- cost function assigns a cost to sets of induction variables and consists
- of three parts:
-
- -- The use costs. Each of the interesting uses chooses the best induction
- variable in the set and adds its cost to the sum. The cost reflects
- the time spent on modifying the induction variables value to be usable
- for the given purpose (adding base and offset for arrays, etc.).
- -- The variable costs. Each of the variables has a cost assigned that
- reflects the costs associated with incrementing the value of the
- variable. The original variables are somewhat preferred.
- -- The set cost. Depending on the size of the set, extra cost may be
- added to reflect register pressure.
-
- All the costs are defined in a machine-specific way, using the target
- hooks and machine descriptions to determine them.
-
- 4) The trees are transformed to use the new variables, the dead code is
- removed.
-
- All of this is done loop by loop. Doing it globally is theoretically
- possible, it might give a better performance and it might enable us
- to decide costs more precisely, but getting all the interactions right
- would be complicated. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "tm_p.h"
-#include "basic-block.h"
-#include "gimple-pretty-print.h"
-#include "tree-flow.h"
-#include "cfgloop.h"
-#include "tree-pass.h"
-#include "ggc.h"
-#include "insn-config.h"
-#include "pointer-set.h"
-#include "hashtab.h"
-#include "tree-chrec.h"
-#include "tree-scalar-evolution.h"
-#include "cfgloop.h"
-#include "params.h"
-#include "langhooks.h"
-#include "tree-affine.h"
-#include "target.h"
-#include "tree-inline.h"
-#include "tree-ssa-propagate.h"
-#include "expmed.h"
-
-/* FIXME: Expressions are expanded to RTL in this pass to determine the
- cost of different addressing modes. This should be moved to a TBD
- interface between the GIMPLE and RTL worlds. */
-#include "expr.h"
-#include "recog.h"
-
-/* The infinite cost. */
-#define INFTY 10000000
-
-#define AVG_LOOP_NITER(LOOP) 5
-
-/* Returns the expected number of loop iterations for LOOP.
- The average trip count is computed from profile data if it
- exists. */
-
-static inline HOST_WIDE_INT
-avg_loop_niter (struct loop *loop)
-{
- HOST_WIDE_INT niter = estimated_stmt_executions_int (loop);
- if (niter == -1)
- return AVG_LOOP_NITER (loop);
-
- return niter;
-}
-
-/* Representation of the induction variable. */
-struct iv
-{
- tree base; /* Initial value of the iv. */
- tree base_object; /* A memory object to that the induction variable points. */
- tree step; /* Step of the iv (constant only). */
- tree ssa_name; /* The ssa name with the value. */
- bool biv_p; /* Is it a biv? */
- bool have_use_for; /* Do we already have a use for it? */
- unsigned use_id; /* The identifier in the use if it is the case. */
-};
-
-/* Per-ssa version information (induction variable descriptions, etc.). */
-struct version_info
-{
- tree name; /* The ssa name. */
- struct iv *iv; /* Induction variable description. */
- bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
- an expression that is not an induction variable. */
- bool preserve_biv; /* For the original biv, whether to preserve it. */
- unsigned inv_id; /* Id of an invariant. */
-};
-
-/* Types of uses. */
-enum use_type
-{
- USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
- USE_ADDRESS, /* Use in an address. */
- USE_COMPARE /* Use is a compare. */
-};
-
-/* Cost of a computation. */
-typedef struct
-{
- int cost; /* The runtime cost. */
- unsigned complexity; /* The estimate of the complexity of the code for
- the computation (in no concrete units --
- complexity field should be larger for more
- complex expressions and addressing modes). */
-} comp_cost;
-
-static const comp_cost no_cost = {0, 0};
-static const comp_cost infinite_cost = {INFTY, INFTY};
-
-/* The candidate - cost pair. */
-struct cost_pair
-{
- struct iv_cand *cand; /* The candidate. */
- comp_cost cost; /* The cost. */
- bitmap depends_on; /* The list of invariants that have to be
- preserved. */
- tree value; /* For final value elimination, the expression for
- the final value of the iv. For iv elimination,
- the new bound to compare with. */
- enum tree_code comp; /* For iv elimination, the comparison. */
- int inv_expr_id; /* Loop invariant expression id. */
-};
-
-/* Use. */
-struct iv_use
-{
- unsigned id; /* The id of the use. */
- enum use_type type; /* Type of the use. */
- struct iv *iv; /* The induction variable it is based on. */
- gimple stmt; /* Statement in that it occurs. */
- tree *op_p; /* The place where it occurs. */
- bitmap related_cands; /* The set of "related" iv candidates, plus the common
- important ones. */
-
- unsigned n_map_members; /* Number of candidates in the cost_map list. */
- struct cost_pair *cost_map;
- /* The costs wrto the iv candidates. */
-
- struct iv_cand *selected;
- /* The selected candidate. */
-};
-
-/* The position where the iv is computed. */
-enum iv_position
-{
- IP_NORMAL, /* At the end, just before the exit condition. */
- IP_END, /* At the end of the latch block. */
- IP_BEFORE_USE, /* Immediately before a specific use. */
- IP_AFTER_USE, /* Immediately after a specific use. */
- IP_ORIGINAL /* The original biv. */
-};
-
-/* The induction variable candidate. */
-struct iv_cand
-{
- unsigned id; /* The number of the candidate. */
- bool important; /* Whether this is an "important" candidate, i.e. such
- that it should be considered by all uses. */
- ENUM_BITFIELD(iv_position) pos : 8; /* Where it is computed. */
- gimple incremented_at;/* For original biv, the statement where it is
- incremented. */
- tree var_before; /* The variable used for it before increment. */
- tree var_after; /* The variable used for it after increment. */
- struct iv *iv; /* The value of the candidate. NULL for
- "pseudocandidate" used to indicate the possibility
- to replace the final value of an iv by direct
- computation of the value. */
- unsigned cost; /* Cost of the candidate. */
- unsigned cost_step; /* Cost of the candidate's increment operation. */
- struct iv_use *ainc_use; /* For IP_{BEFORE,AFTER}_USE candidates, the place
- where it is incremented. */
- bitmap depends_on; /* The list of invariants that are used in step of the
- biv. */
-};
-
-/* Loop invariant expression hashtable entry. */
-struct iv_inv_expr_ent
-{
- tree expr;
- int id;
- hashval_t hash;
-};
-
-/* The data used by the induction variable optimizations. */
-
-typedef struct iv_use *iv_use_p;
-
-typedef struct iv_cand *iv_cand_p;
-
-struct ivopts_data
-{
- /* The currently optimized loop. */
- struct loop *current_loop;
-
- /* Numbers of iterations for all exits of the current loop. */
- struct pointer_map_t *niters;
-
- /* Number of registers used in it. */
- unsigned regs_used;
-
- /* The size of version_info array allocated. */
- unsigned version_info_size;
-
- /* The array of information for the ssa names. */
- struct version_info *version_info;
-
- /* The hashtable of loop invariant expressions created
- by ivopt. */
- htab_t inv_expr_tab;
-
- /* Loop invariant expression id. */
- int inv_expr_id;
-
- /* The bitmap of indices in version_info whose value was changed. */
- bitmap relevant;
-
- /* The uses of induction variables. */
- vec<iv_use_p> iv_uses;
-
- /* The candidates. */
- vec<iv_cand_p> iv_candidates;
-
- /* A bitmap of important candidates. */
- bitmap important_candidates;
-
- /* The maximum invariant id. */
- unsigned max_inv_id;
-
- /* Whether to consider just related and important candidates when replacing a
- use. */
- bool consider_all_candidates;
-
- /* Are we optimizing for speed? */
- bool speed;
-
- /* Whether the loop body includes any function calls. */
- bool body_includes_call;
-
- /* Whether the loop body can only be exited via single exit. */
- bool loop_single_exit_p;
-};
-
-/* An assignment of iv candidates to uses. */
-
-struct iv_ca
-{
- /* The number of uses covered by the assignment. */
- unsigned upto;
-
- /* Number of uses that cannot be expressed by the candidates in the set. */
- unsigned bad_uses;
-
- /* Candidate assigned to a use, together with the related costs. */
- struct cost_pair **cand_for_use;
-
- /* Number of times each candidate is used. */
- unsigned *n_cand_uses;
-
- /* The candidates used. */
- bitmap cands;
-
- /* The number of candidates in the set. */
- unsigned n_cands;
-
- /* Total number of registers needed. */
- unsigned n_regs;
-
- /* Total cost of expressing uses. */
- comp_cost cand_use_cost;
-
- /* Total cost of candidates. */
- unsigned cand_cost;
-
- /* Number of times each invariant is used. */
- unsigned *n_invariant_uses;
-
- /* The array holding the number of uses of each loop
- invariant expressions created by ivopt. */
- unsigned *used_inv_expr;
-
- /* The number of created loop invariants. */
- unsigned num_used_inv_expr;
-
- /* Total cost of the assignment. */
- comp_cost cost;
-};
-
-/* Difference of two iv candidate assignments. */
-
-struct iv_ca_delta
-{
- /* Changed use. */
- struct iv_use *use;
-
- /* An old assignment (for rollback purposes). */
- struct cost_pair *old_cp;
-
- /* A new assignment. */
- struct cost_pair *new_cp;
-
- /* Next change in the list. */
- struct iv_ca_delta *next_change;
-};
-
-/* Bound on number of candidates below that all candidates are considered. */
-
-#define CONSIDER_ALL_CANDIDATES_BOUND \
- ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
-
-/* If there are more iv occurrences, we just give up (it is quite unlikely that
- optimizing such a loop would help, and it would take ages). */
-
-#define MAX_CONSIDERED_USES \
- ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
-
-/* If there are at most this number of ivs in the set, try removing unnecessary
- ivs from the set always. */
-
-#define ALWAYS_PRUNE_CAND_SET_BOUND \
- ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
-
-/* The list of trees for that the decl_rtl field must be reset is stored
- here. */
-
-static vec<tree> decl_rtl_to_reset;
-
-static comp_cost force_expr_to_var_cost (tree, bool);
-
-/* Number of uses recorded in DATA. */
-
-static inline unsigned
-n_iv_uses (struct ivopts_data *data)
-{
- return data->iv_uses.length ();
-}
-
-/* Ith use recorded in DATA. */
-
-static inline struct iv_use *
-iv_use (struct ivopts_data *data, unsigned i)
-{
- return data->iv_uses[i];
-}
-
-/* Number of candidates recorded in DATA. */
-
-static inline unsigned
-n_iv_cands (struct ivopts_data *data)
-{
- return data->iv_candidates.length ();
-}
-
-/* Ith candidate recorded in DATA. */
-
-static inline struct iv_cand *
-iv_cand (struct ivopts_data *data, unsigned i)
-{
- return data->iv_candidates[i];
-}
-
-/* The single loop exit if it dominates the latch, NULL otherwise. */
-
-edge
-single_dom_exit (struct loop *loop)
-{
- edge exit = single_exit (loop);
-
- if (!exit)
- return NULL;
-
- if (!just_once_each_iteration_p (loop, exit->src))
- return NULL;
-
- return exit;
-}
-
-/* Dumps information about the induction variable IV to FILE. */
-
-extern void dump_iv (FILE *, struct iv *);
-void
-dump_iv (FILE *file, struct iv *iv)
-{
- if (iv->ssa_name)
- {
- fprintf (file, "ssa name ");
- print_generic_expr (file, iv->ssa_name, TDF_SLIM);
- fprintf (file, "\n");
- }
-
- fprintf (file, " type ");
- print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM);
- fprintf (file, "\n");
-
- if (iv->step)
- {
- fprintf (file, " base ");
- print_generic_expr (file, iv->base, TDF_SLIM);
- fprintf (file, "\n");
-
- fprintf (file, " step ");
- print_generic_expr (file, iv->step, TDF_SLIM);
- fprintf (file, "\n");
- }
- else
- {
- fprintf (file, " invariant ");
- print_generic_expr (file, iv->base, TDF_SLIM);
- fprintf (file, "\n");
- }
-
- if (iv->base_object)
- {
- fprintf (file, " base object ");
- print_generic_expr (file, iv->base_object, TDF_SLIM);
- fprintf (file, "\n");
- }
-
- if (iv->biv_p)
- fprintf (file, " is a biv\n");
-}
-
-/* Dumps information about the USE to FILE. */
-
-extern void dump_use (FILE *, struct iv_use *);
-void
-dump_use (FILE *file, struct iv_use *use)
-{
- fprintf (file, "use %d\n", use->id);
-
- switch (use->type)
- {
- case USE_NONLINEAR_EXPR:
- fprintf (file, " generic\n");
- break;
-
- case USE_ADDRESS:
- fprintf (file, " address\n");
- break;
-
- case USE_COMPARE:
- fprintf (file, " compare\n");
- break;
-
- default:
- gcc_unreachable ();
- }
-
- fprintf (file, " in statement ");
- print_gimple_stmt (file, use->stmt, 0, 0);
- fprintf (file, "\n");
-
- fprintf (file, " at position ");
- if (use->op_p)
- print_generic_expr (file, *use->op_p, TDF_SLIM);
- fprintf (file, "\n");
-
- dump_iv (file, use->iv);
-
- if (use->related_cands)
- {
- fprintf (file, " related candidates ");
- dump_bitmap (file, use->related_cands);
- }
-}
-
-/* Dumps information about the uses to FILE. */
-
-extern void dump_uses (FILE *, struct ivopts_data *);
-void
-dump_uses (FILE *file, struct ivopts_data *data)
-{
- unsigned i;
- struct iv_use *use;
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
-
- dump_use (file, use);
- fprintf (file, "\n");
- }
-}
-
-/* Dumps information about induction variable candidate CAND to FILE. */
-
-extern void dump_cand (FILE *, struct iv_cand *);
-void
-dump_cand (FILE *file, struct iv_cand *cand)
-{
- struct iv *iv = cand->iv;
-
- fprintf (file, "candidate %d%s\n",
- cand->id, cand->important ? " (important)" : "");
-
- if (cand->depends_on)
- {
- fprintf (file, " depends on ");
- dump_bitmap (file, cand->depends_on);
- }
-
- if (!iv)
- {
- fprintf (file, " final value replacement\n");
- return;
- }
-
- if (cand->var_before)
- {
- fprintf (file, " var_before ");
- print_generic_expr (file, cand->var_before, TDF_SLIM);
- fprintf (file, "\n");
- }
- if (cand->var_after)
- {
- fprintf (file, " var_after ");
- print_generic_expr (file, cand->var_after, TDF_SLIM);
- fprintf (file, "\n");
- }
-
- switch (cand->pos)
- {
- case IP_NORMAL:
- fprintf (file, " incremented before exit test\n");
- break;
-
- case IP_BEFORE_USE:
- fprintf (file, " incremented before use %d\n", cand->ainc_use->id);
- break;
-
- case IP_AFTER_USE:
- fprintf (file, " incremented after use %d\n", cand->ainc_use->id);
- break;
-
- case IP_END:
- fprintf (file, " incremented at end\n");
- break;
-
- case IP_ORIGINAL:
- fprintf (file, " original biv\n");
- break;
- }
-
- dump_iv (file, iv);
-}
-
-/* Returns the info for ssa version VER. */
-
-static inline struct version_info *
-ver_info (struct ivopts_data *data, unsigned ver)
-{
- return data->version_info + ver;
-}
-
-/* Returns the info for ssa name NAME. */
-
-static inline struct version_info *
-name_info (struct ivopts_data *data, tree name)
-{
- return ver_info (data, SSA_NAME_VERSION (name));
-}
-
-/* Returns true if STMT is after the place where the IP_NORMAL ivs will be
- emitted in LOOP. */
-
-static bool
-stmt_after_ip_normal_pos (struct loop *loop, gimple stmt)
-{
- basic_block bb = ip_normal_pos (loop), sbb = gimple_bb (stmt);
-
- gcc_assert (bb);
-
- if (sbb == loop->latch)
- return true;
-
- if (sbb != bb)
- return false;
-
- return stmt == last_stmt (bb);
-}
-
-/* Returns true if STMT if after the place where the original induction
- variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
- if the positions are identical. */
-
-static bool
-stmt_after_inc_pos (struct iv_cand *cand, gimple stmt, bool true_if_equal)
-{
- basic_block cand_bb = gimple_bb (cand->incremented_at);
- basic_block stmt_bb = gimple_bb (stmt);
-
- if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
- return false;
-
- if (stmt_bb != cand_bb)
- return true;
-
- if (true_if_equal
- && gimple_uid (stmt) == gimple_uid (cand->incremented_at))
- return true;
- return gimple_uid (stmt) > gimple_uid (cand->incremented_at);
-}
-
-/* Returns true if STMT if after the place where the induction variable
- CAND is incremented in LOOP. */
-
-static bool
-stmt_after_increment (struct loop *loop, struct iv_cand *cand, gimple stmt)
-{
- switch (cand->pos)
- {
- case IP_END:
- return false;
-
- case IP_NORMAL:
- return stmt_after_ip_normal_pos (loop, stmt);
-
- case IP_ORIGINAL:
- case IP_AFTER_USE:
- return stmt_after_inc_pos (cand, stmt, false);
-
- case IP_BEFORE_USE:
- return stmt_after_inc_pos (cand, stmt, true);
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
-
-static bool
-abnormal_ssa_name_p (tree exp)
-{
- if (!exp)
- return false;
-
- if (TREE_CODE (exp) != SSA_NAME)
- return false;
-
- return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp) != 0;
-}
-
-/* Returns false if BASE or INDEX contains a ssa name that occurs in an
- abnormal phi node. Callback for for_each_index. */
-
-static bool
-idx_contains_abnormal_ssa_name_p (tree base, tree *index,
- void *data ATTRIBUTE_UNUSED)
-{
- if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
- {
- if (abnormal_ssa_name_p (TREE_OPERAND (base, 2)))
- return false;
- if (abnormal_ssa_name_p (TREE_OPERAND (base, 3)))
- return false;
- }
-
- return !abnormal_ssa_name_p (*index);
-}
-
-/* Returns true if EXPR contains a ssa name that occurs in an
- abnormal phi node. */
-
-bool
-contains_abnormal_ssa_name_p (tree expr)
-{
- enum tree_code code;
- enum tree_code_class codeclass;
-
- if (!expr)
- return false;
-
- code = TREE_CODE (expr);
- codeclass = TREE_CODE_CLASS (code);
-
- if (code == SSA_NAME)
- return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr) != 0;
-
- if (code == INTEGER_CST
- || is_gimple_min_invariant (expr))
- return false;
-
- if (code == ADDR_EXPR)
- return !for_each_index (&TREE_OPERAND (expr, 0),
- idx_contains_abnormal_ssa_name_p,
- NULL);
-
- if (code == COND_EXPR)
- return contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0))
- || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1))
- || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 2));
-
- switch (codeclass)
- {
- case tcc_binary:
- case tcc_comparison:
- if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1)))
- return true;
-
- /* Fallthru. */
- case tcc_unary:
- if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0)))
- return true;
-
- break;
-
- default:
- gcc_unreachable ();
- }
-
- return false;
-}
-
-/* Returns the structure describing number of iterations determined from
- EXIT of DATA->current_loop, or NULL if something goes wrong. */
-
-static struct tree_niter_desc *
-niter_for_exit (struct ivopts_data *data, edge exit)
-{
- struct tree_niter_desc *desc;
- void **slot;
-
- if (!data->niters)
- {
- data->niters = pointer_map_create ();
- slot = NULL;
- }
- else
- slot = pointer_map_contains (data->niters, exit);
-
- if (!slot)
- {
- /* Try to determine number of iterations. We cannot safely work with ssa
- names that appear in phi nodes on abnormal edges, so that we do not
- create overlapping life ranges for them (PR 27283). */
- desc = XNEW (struct tree_niter_desc);
- if (!number_of_iterations_exit (data->current_loop,
- exit, desc, true)
- || contains_abnormal_ssa_name_p (desc->niter))
- {
- XDELETE (desc);
- desc = NULL;
- }
- slot = pointer_map_insert (data->niters, exit);
- *slot = desc;
- }
- else
- desc = (struct tree_niter_desc *) *slot;
-
- return desc;
-}
-
-/* Returns the structure describing number of iterations determined from
- single dominating exit of DATA->current_loop, or NULL if something
- goes wrong. */
-
-static struct tree_niter_desc *
-niter_for_single_dom_exit (struct ivopts_data *data)
-{
- edge exit = single_dom_exit (data->current_loop);
-
- if (!exit)
- return NULL;
-
- return niter_for_exit (data, exit);
-}
-
-/* Hash table equality function for expressions. */
-
-static int
-htab_inv_expr_eq (const void *ent1, const void *ent2)
-{
- const struct iv_inv_expr_ent *expr1 =
- (const struct iv_inv_expr_ent *)ent1;
- const struct iv_inv_expr_ent *expr2 =
- (const struct iv_inv_expr_ent *)ent2;
-
- return expr1->hash == expr2->hash
- && operand_equal_p (expr1->expr, expr2->expr, 0);
-}
-
-/* Hash function for loop invariant expressions. */
-
-static hashval_t
-htab_inv_expr_hash (const void *ent)
-{
- const struct iv_inv_expr_ent *expr =
- (const struct iv_inv_expr_ent *)ent;
- return expr->hash;
-}
-
-/* Initializes data structures used by the iv optimization pass, stored
- in DATA. */
-
-static void
-tree_ssa_iv_optimize_init (struct ivopts_data *data)
-{
- data->version_info_size = 2 * num_ssa_names;
- data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
- data->relevant = BITMAP_ALLOC (NULL);
- data->important_candidates = BITMAP_ALLOC (NULL);
- data->max_inv_id = 0;
- data->niters = NULL;
- data->iv_uses.create (20);
- data->iv_candidates.create (20);
- data->inv_expr_tab = htab_create (10, htab_inv_expr_hash,
- htab_inv_expr_eq, free);
- data->inv_expr_id = 0;
- decl_rtl_to_reset.create (20);
-}
-
-/* Returns a memory object to that EXPR points. In case we are able to
- determine that it does not point to any such object, NULL is returned. */
-
-static tree
-determine_base_object (tree expr)
-{
- enum tree_code code = TREE_CODE (expr);
- tree base, obj;
-
- /* If this is a pointer casted to any type, we need to determine
- the base object for the pointer; so handle conversions before
- throwing away non-pointer expressions. */
- if (CONVERT_EXPR_P (expr))
- return determine_base_object (TREE_OPERAND (expr, 0));
-
- if (!POINTER_TYPE_P (TREE_TYPE (expr)))
- return NULL_TREE;
-
- switch (code)
- {
- case INTEGER_CST:
- return NULL_TREE;
-
- case ADDR_EXPR:
- obj = TREE_OPERAND (expr, 0);
- base = get_base_address (obj);
-
- if (!base)
- return expr;
-
- if (TREE_CODE (base) == MEM_REF)
- return determine_base_object (TREE_OPERAND (base, 0));
-
- return fold_convert (ptr_type_node,
- build_fold_addr_expr (base));
-
- case POINTER_PLUS_EXPR:
- return determine_base_object (TREE_OPERAND (expr, 0));
-
- case PLUS_EXPR:
- case MINUS_EXPR:
- /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
- gcc_unreachable ();
-
- default:
- return fold_convert (ptr_type_node, expr);
- }
-}
-
-/* Allocates an induction variable with given initial value BASE and step STEP
- for loop LOOP. */
-
-static struct iv *
-alloc_iv (tree base, tree step)
-{
- struct iv *iv = XCNEW (struct iv);
- gcc_assert (step != NULL_TREE);
-
- iv->base = base;
- iv->base_object = determine_base_object (base);
- iv->step = step;
- iv->biv_p = false;
- iv->have_use_for = false;
- iv->use_id = 0;
- iv->ssa_name = NULL_TREE;
-
- return iv;
-}
-
-/* Sets STEP and BASE for induction variable IV. */
-
-static void
-set_iv (struct ivopts_data *data, tree iv, tree base, tree step)
-{
- struct version_info *info = name_info (data, iv);
-
- gcc_assert (!info->iv);
-
- bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
- info->iv = alloc_iv (base, step);
- info->iv->ssa_name = iv;
-}
-
-/* Finds induction variable declaration for VAR. */
-
-static struct iv *
-get_iv (struct ivopts_data *data, tree var)
-{
- basic_block bb;
- tree type = TREE_TYPE (var);
-
- if (!POINTER_TYPE_P (type)
- && !INTEGRAL_TYPE_P (type))
- return NULL;
-
- if (!name_info (data, var)->iv)
- {
- bb = gimple_bb (SSA_NAME_DEF_STMT (var));
-
- if (!bb
- || !flow_bb_inside_loop_p (data->current_loop, bb))
- set_iv (data, var, var, build_int_cst (type, 0));
- }
-
- return name_info (data, var)->iv;
-}
-
-/* Determines the step of a biv defined in PHI. Returns NULL if PHI does
- not define a simple affine biv with nonzero step. */
-
-static tree
-determine_biv_step (gimple phi)
-{
- struct loop *loop = gimple_bb (phi)->loop_father;
- tree name = PHI_RESULT (phi);
- affine_iv iv;
-
- if (virtual_operand_p (name))
- return NULL_TREE;
-
- if (!simple_iv (loop, loop, name, &iv, true))
- return NULL_TREE;
-
- return integer_zerop (iv.step) ? NULL_TREE : iv.step;
-}
-
-/* Finds basic ivs. */
-
-static bool
-find_bivs (struct ivopts_data *data)
-{
- gimple phi;
- tree step, type, base;
- bool found = false;
- struct loop *loop = data->current_loop;
- gimple_stmt_iterator psi;
-
- for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
- {
- phi = gsi_stmt (psi);
-
- if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
- continue;
-
- step = determine_biv_step (phi);
- if (!step)
- continue;
-
- base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
- base = expand_simple_operations (base);
- if (contains_abnormal_ssa_name_p (base)
- || contains_abnormal_ssa_name_p (step))
- continue;
-
- type = TREE_TYPE (PHI_RESULT (phi));
- base = fold_convert (type, base);
- if (step)
- {
- if (POINTER_TYPE_P (type))
- step = convert_to_ptrofftype (step);
- else
- step = fold_convert (type, step);
- }
-
- set_iv (data, PHI_RESULT (phi), base, step);
- found = true;
- }
-
- return found;
-}
-
-/* Marks basic ivs. */
-
-static void
-mark_bivs (struct ivopts_data *data)
-{
- gimple phi;
- tree var;
- struct iv *iv, *incr_iv;
- struct loop *loop = data->current_loop;
- basic_block incr_bb;
- gimple_stmt_iterator psi;
-
- for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
- {
- phi = gsi_stmt (psi);
-
- iv = get_iv (data, PHI_RESULT (phi));
- if (!iv)
- continue;
-
- var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
- incr_iv = get_iv (data, var);
- if (!incr_iv)
- continue;
-
- /* If the increment is in the subloop, ignore it. */
- incr_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
- if (incr_bb->loop_father != data->current_loop
- || (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
- continue;
-
- iv->biv_p = true;
- incr_iv->biv_p = true;
- }
-}
-
-/* Checks whether STMT defines a linear induction variable and stores its
- parameters to IV. */
-
-static bool
-find_givs_in_stmt_scev (struct ivopts_data *data, gimple stmt, affine_iv *iv)
-{
- tree lhs;
- struct loop *loop = data->current_loop;
-
- iv->base = NULL_TREE;
- iv->step = NULL_TREE;
-
- if (gimple_code (stmt) != GIMPLE_ASSIGN)
- return false;
-
- lhs = gimple_assign_lhs (stmt);
- if (TREE_CODE (lhs) != SSA_NAME)
- return false;
-
- if (!simple_iv (loop, loop_containing_stmt (stmt), lhs, iv, true))
- return false;
- iv->base = expand_simple_operations (iv->base);
-
- if (contains_abnormal_ssa_name_p (iv->base)
- || contains_abnormal_ssa_name_p (iv->step))
- return false;
-
- /* If STMT could throw, then do not consider STMT as defining a GIV.
- While this will suppress optimizations, we can not safely delete this
- GIV and associated statements, even if it appears it is not used. */
- if (stmt_could_throw_p (stmt))
- return false;
-
- return true;
-}
-
-/* Finds general ivs in statement STMT. */
-
-static void
-find_givs_in_stmt (struct ivopts_data *data, gimple stmt)
-{
- affine_iv iv;
-
- if (!find_givs_in_stmt_scev (data, stmt, &iv))
- return;
-
- set_iv (data, gimple_assign_lhs (stmt), iv.base, iv.step);
-}
-
-/* Finds general ivs in basic block BB. */
-
-static void
-find_givs_in_bb (struct ivopts_data *data, basic_block bb)
-{
- gimple_stmt_iterator bsi;
-
- for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
- find_givs_in_stmt (data, gsi_stmt (bsi));
-}
-
-/* Finds general ivs. */
-
-static void
-find_givs (struct ivopts_data *data)
-{
- struct loop *loop = data->current_loop;
- basic_block *body = get_loop_body_in_dom_order (loop);
- unsigned i;
-
- for (i = 0; i < loop->num_nodes; i++)
- find_givs_in_bb (data, body[i]);
- free (body);
-}
-
-/* For each ssa name defined in LOOP determines whether it is an induction
- variable and if so, its initial value and step. */
-
-static bool
-find_induction_variables (struct ivopts_data *data)
-{
- unsigned i;
- bitmap_iterator bi;
-
- if (!find_bivs (data))
- return false;
-
- find_givs (data);
- mark_bivs (data);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- struct tree_niter_desc *niter = niter_for_single_dom_exit (data);
-
- if (niter)
- {
- fprintf (dump_file, " number of iterations ");
- print_generic_expr (dump_file, niter->niter, TDF_SLIM);
- if (!integer_zerop (niter->may_be_zero))
- {
- fprintf (dump_file, "; zero if ");
- print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
- }
- fprintf (dump_file, "\n\n");
- };
-
- fprintf (dump_file, "Induction variables:\n\n");
-
- EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
- {
- if (ver_info (data, i)->iv)
- dump_iv (dump_file, ver_info (data, i)->iv);
- }
- }
-
- return true;
-}
-
-/* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV. */
-
-static struct iv_use *
-record_use (struct ivopts_data *data, tree *use_p, struct iv *iv,
- gimple stmt, enum use_type use_type)
-{
- struct iv_use *use = XCNEW (struct iv_use);
-
- use->id = n_iv_uses (data);
- use->type = use_type;
- use->iv = iv;
- use->stmt = stmt;
- use->op_p = use_p;
- use->related_cands = BITMAP_ALLOC (NULL);
-
- /* To avoid showing ssa name in the dumps, if it was not reset by the
- caller. */
- iv->ssa_name = NULL_TREE;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- dump_use (dump_file, use);
-
- data->iv_uses.safe_push (use);
-
- return use;
-}
-
-/* Checks whether OP is a loop-level invariant and if so, records it.
- NONLINEAR_USE is true if the invariant is used in a way we do not
- handle specially. */
-
-static void
-record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
-{
- basic_block bb;
- struct version_info *info;
-
- if (TREE_CODE (op) != SSA_NAME
- || virtual_operand_p (op))
- return;
-
- bb = gimple_bb (SSA_NAME_DEF_STMT (op));
- if (bb
- && flow_bb_inside_loop_p (data->current_loop, bb))
- return;
-
- info = name_info (data, op);
- info->name = op;
- info->has_nonlin_use |= nonlinear_use;
- if (!info->inv_id)
- info->inv_id = ++data->max_inv_id;
- bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
-}
-
-/* Checks whether the use OP is interesting and if so, records it. */
-
-static struct iv_use *
-find_interesting_uses_op (struct ivopts_data *data, tree op)
-{
- struct iv *iv;
- struct iv *civ;
- gimple stmt;
- struct iv_use *use;
-
- if (TREE_CODE (op) != SSA_NAME)
- return NULL;
-
- iv = get_iv (data, op);
- if (!iv)
- return NULL;
-
- if (iv->have_use_for)
- {
- use = iv_use (data, iv->use_id);
-
- gcc_assert (use->type == USE_NONLINEAR_EXPR);
- return use;
- }
-
- if (integer_zerop (iv->step))
- {
- record_invariant (data, op, true);
- return NULL;
- }
- iv->have_use_for = true;
-
- civ = XNEW (struct iv);
- *civ = *iv;
-
- stmt = SSA_NAME_DEF_STMT (op);
- gcc_assert (gimple_code (stmt) == GIMPLE_PHI
- || is_gimple_assign (stmt));
-
- use = record_use (data, NULL, civ, stmt, USE_NONLINEAR_EXPR);
- iv->use_id = use->id;
-
- return use;
-}
-
-/* Given a condition in statement STMT, checks whether it is a compare
- of an induction variable and an invariant. If this is the case,
- CONTROL_VAR is set to location of the iv, BOUND to the location of
- the invariant, IV_VAR and IV_BOUND are set to the corresponding
- induction variable descriptions, and true is returned. If this is not
- the case, CONTROL_VAR and BOUND are set to the arguments of the
- condition and false is returned. */
-
-static bool
-extract_cond_operands (struct ivopts_data *data, gimple stmt,
- tree **control_var, tree **bound,
- struct iv **iv_var, struct iv **iv_bound)
-{
- /* The objects returned when COND has constant operands. */
- static struct iv const_iv;
- static tree zero;
- tree *op0 = &zero, *op1 = &zero, *tmp_op;
- struct iv *iv0 = &const_iv, *iv1 = &const_iv, *tmp_iv;
- bool ret = false;
-
- if (gimple_code (stmt) == GIMPLE_COND)
- {
- op0 = gimple_cond_lhs_ptr (stmt);
- op1 = gimple_cond_rhs_ptr (stmt);
- }
- else
- {
- op0 = gimple_assign_rhs1_ptr (stmt);
- op1 = gimple_assign_rhs2_ptr (stmt);
- }
-
- zero = integer_zero_node;
- const_iv.step = integer_zero_node;
-
- if (TREE_CODE (*op0) == SSA_NAME)
- iv0 = get_iv (data, *op0);
- if (TREE_CODE (*op1) == SSA_NAME)
- iv1 = get_iv (data, *op1);
-
- /* Exactly one of the compared values must be an iv, and the other one must
- be an invariant. */
- if (!iv0 || !iv1)
- goto end;
-
- if (integer_zerop (iv0->step))
- {
- /* Control variable may be on the other side. */
- tmp_op = op0; op0 = op1; op1 = tmp_op;
- tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
- }
- ret = !integer_zerop (iv0->step) && integer_zerop (iv1->step);
-
-end:
- if (control_var)
- *control_var = op0;;
- if (iv_var)
- *iv_var = iv0;;
- if (bound)
- *bound = op1;
- if (iv_bound)
- *iv_bound = iv1;
-
- return ret;
-}
-
-/* Checks whether the condition in STMT is interesting and if so,
- records it. */
-
-static void
-find_interesting_uses_cond (struct ivopts_data *data, gimple stmt)
-{
- tree *var_p, *bound_p;
- struct iv *var_iv, *civ;
-
- if (!extract_cond_operands (data, stmt, &var_p, &bound_p, &var_iv, NULL))
- {
- find_interesting_uses_op (data, *var_p);
- find_interesting_uses_op (data, *bound_p);
- return;
- }
-
- civ = XNEW (struct iv);
- *civ = *var_iv;
- record_use (data, NULL, civ, stmt, USE_COMPARE);
-}
-
-/* Returns true if expression EXPR is obviously invariant in LOOP,
- i.e. if all its operands are defined outside of the LOOP. LOOP
- should not be the function body. */
-
-bool
-expr_invariant_in_loop_p (struct loop *loop, tree expr)
-{
- basic_block def_bb;
- unsigned i, len;
-
- gcc_assert (loop_depth (loop) > 0);
-
- if (is_gimple_min_invariant (expr))
- return true;
-
- if (TREE_CODE (expr) == SSA_NAME)
- {
- def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
- if (def_bb
- && flow_bb_inside_loop_p (loop, def_bb))
- return false;
-
- return true;
- }
-
- if (!EXPR_P (expr))
- return false;
-
- len = TREE_OPERAND_LENGTH (expr);
- for (i = 0; i < len; i++)
- if (TREE_OPERAND (expr, i)
- && !expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i)))
- return false;
-
- return true;
-}
-
-/* Returns true if statement STMT is obviously invariant in LOOP,
- i.e. if all its operands on the RHS are defined outside of the LOOP.
- LOOP should not be the function body. */
-
-bool
-stmt_invariant_in_loop_p (struct loop *loop, gimple stmt)
-{
- unsigned i;
- tree lhs;
-
- gcc_assert (loop_depth (loop) > 0);
-
- lhs = gimple_get_lhs (stmt);
- for (i = 0; i < gimple_num_ops (stmt); i++)
- {
- tree op = gimple_op (stmt, i);
- if (op != lhs && !expr_invariant_in_loop_p (loop, op))
- return false;
- }
-
- return true;
-}
-
-/* Cumulates the steps of indices into DATA and replaces their values with the
- initial ones. Returns false when the value of the index cannot be determined.
- Callback for for_each_index. */
-
-struct ifs_ivopts_data
-{
- struct ivopts_data *ivopts_data;
- gimple stmt;
- tree step;
-};
-
-static bool
-idx_find_step (tree base, tree *idx, void *data)
-{
- struct ifs_ivopts_data *dta = (struct ifs_ivopts_data *) data;
- struct iv *iv;
- tree step, iv_base, iv_step, lbound, off;
- struct loop *loop = dta->ivopts_data->current_loop;
-
- /* If base is a component ref, require that the offset of the reference
- be invariant. */
- if (TREE_CODE (base) == COMPONENT_REF)
- {
- off = component_ref_field_offset (base);
- return expr_invariant_in_loop_p (loop, off);
- }
-
- /* If base is array, first check whether we will be able to move the
- reference out of the loop (in order to take its address in strength
- reduction). In order for this to work we need both lower bound
- and step to be loop invariants. */
- if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
- {
- /* Moreover, for a range, the size needs to be invariant as well. */
- if (TREE_CODE (base) == ARRAY_RANGE_REF
- && !expr_invariant_in_loop_p (loop, TYPE_SIZE (TREE_TYPE (base))))
- return false;
-
- step = array_ref_element_size (base);
- lbound = array_ref_low_bound (base);
-
- if (!expr_invariant_in_loop_p (loop, step)
- || !expr_invariant_in_loop_p (loop, lbound))
- return false;
- }
-
- if (TREE_CODE (*idx) != SSA_NAME)
- return true;
-
- iv = get_iv (dta->ivopts_data, *idx);
- if (!iv)
- return false;
-
- /* XXX We produce for a base of *D42 with iv->base being &x[0]
- *&x[0], which is not folded and does not trigger the
- ARRAY_REF path below. */
- *idx = iv->base;
-
- if (integer_zerop (iv->step))
- return true;
-
- if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
- {
- step = array_ref_element_size (base);
-
- /* We only handle addresses whose step is an integer constant. */
- if (TREE_CODE (step) != INTEGER_CST)
- return false;
- }
- else
- /* The step for pointer arithmetics already is 1 byte. */
- step = size_one_node;
-
- iv_base = iv->base;
- iv_step = iv->step;
- if (!convert_affine_scev (dta->ivopts_data->current_loop,
- sizetype, &iv_base, &iv_step, dta->stmt,
- false))
- {
- /* The index might wrap. */
- return false;
- }
-
- step = fold_build2 (MULT_EXPR, sizetype, step, iv_step);
- dta->step = fold_build2 (PLUS_EXPR, sizetype, dta->step, step);
-
- return true;
-}
-
-/* Records use in index IDX. Callback for for_each_index. Ivopts data
- object is passed to it in DATA. */
-
-static bool
-idx_record_use (tree base, tree *idx,
- void *vdata)
-{
- struct ivopts_data *data = (struct ivopts_data *) vdata;
- find_interesting_uses_op (data, *idx);
- if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
- {
- find_interesting_uses_op (data, array_ref_element_size (base));
- find_interesting_uses_op (data, array_ref_low_bound (base));
- }
- return true;
-}
-
-/* If we can prove that TOP = cst * BOT for some constant cst,
- store cst to MUL and return true. Otherwise return false.
- The returned value is always sign-extended, regardless of the
- signedness of TOP and BOT. */
-
-static bool
-constant_multiple_of (tree top, tree bot, double_int *mul)
-{
- tree mby;
- enum tree_code code;
- double_int res, p0, p1;
- unsigned precision = TYPE_PRECISION (TREE_TYPE (top));
-
- STRIP_NOPS (top);
- STRIP_NOPS (bot);
-
- if (operand_equal_p (top, bot, 0))
- {
- *mul = double_int_one;
- return true;
- }
-
- code = TREE_CODE (top);
- switch (code)
- {
- case MULT_EXPR:
- mby = TREE_OPERAND (top, 1);
- if (TREE_CODE (mby) != INTEGER_CST)
- return false;
-
- if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
- return false;
-
- *mul = (res * tree_to_double_int (mby)).sext (precision);
- return true;
-
- case PLUS_EXPR:
- case MINUS_EXPR:
- if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0)
- || !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1))
- return false;
-
- if (code == MINUS_EXPR)
- p1 = -p1;
- *mul = (p0 + p1).sext (precision);
- return true;
-
- case INTEGER_CST:
- if (TREE_CODE (bot) != INTEGER_CST)
- return false;
-
- p0 = tree_to_double_int (top).sext (precision);
- p1 = tree_to_double_int (bot).sext (precision);
- if (p1.is_zero ())
- return false;
- *mul = p0.sdivmod (p1, FLOOR_DIV_EXPR, &res).sext (precision);
- return res.is_zero ();
-
- default:
- return false;
- }
-}
-
-/* Returns true if memory reference REF with step STEP may be unaligned. */
-
-static bool
-may_be_unaligned_p (tree ref, tree step)
-{
- tree base;
- tree base_type;
- HOST_WIDE_INT bitsize;
- HOST_WIDE_INT bitpos;
- tree toffset;
- enum machine_mode mode;
- int unsignedp, volatilep;
- unsigned base_align;
-
- /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
- thus they are not misaligned. */
- if (TREE_CODE (ref) == TARGET_MEM_REF)
- return false;
-
- /* The test below is basically copy of what expr.c:normal_inner_ref
- does to check whether the object must be loaded by parts when
- STRICT_ALIGNMENT is true. */
- base = get_inner_reference (ref, &bitsize, &bitpos, &toffset, &mode,
- &unsignedp, &volatilep, true);
- base_type = TREE_TYPE (base);
- base_align = get_object_alignment (base);
- base_align = MAX (base_align, TYPE_ALIGN (base_type));
-
- if (mode != BLKmode)
- {
- unsigned mode_align = GET_MODE_ALIGNMENT (mode);
-
- if (base_align < mode_align
- || (bitpos % mode_align) != 0
- || (bitpos % BITS_PER_UNIT) != 0)
- return true;
-
- if (toffset
- && (highest_pow2_factor (toffset) * BITS_PER_UNIT) < mode_align)
- return true;
-
- if ((highest_pow2_factor (step) * BITS_PER_UNIT) < mode_align)
- return true;
- }
-
- return false;
-}
-
-/* Return true if EXPR may be non-addressable. */
-
-bool
-may_be_nonaddressable_p (tree expr)
-{
- switch (TREE_CODE (expr))
- {
- case TARGET_MEM_REF:
- /* TARGET_MEM_REFs are translated directly to valid MEMs on the
- target, thus they are always addressable. */
- return false;
-
- case COMPONENT_REF:
- return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))
- || may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
-
- case VIEW_CONVERT_EXPR:
- /* This kind of view-conversions may wrap non-addressable objects
- and make them look addressable. After some processing the
- non-addressability may be uncovered again, causing ADDR_EXPRs
- of inappropriate objects to be built. */
- if (is_gimple_reg (TREE_OPERAND (expr, 0))
- || !is_gimple_addressable (TREE_OPERAND (expr, 0)))
- return true;
-
- /* ... fall through ... */
-
- case ARRAY_REF:
- case ARRAY_RANGE_REF:
- return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
-
- CASE_CONVERT:
- return true;
-
- default:
- break;
- }
-
- return false;
-}
-
-/* Finds addresses in *OP_P inside STMT. */
-
-static void
-find_interesting_uses_address (struct ivopts_data *data, gimple stmt, tree *op_p)
-{
- tree base = *op_p, step = size_zero_node;
- struct iv *civ;
- struct ifs_ivopts_data ifs_ivopts_data;
-
- /* Do not play with volatile memory references. A bit too conservative,
- perhaps, but safe. */
- if (gimple_has_volatile_ops (stmt))
- goto fail;
-
- /* Ignore bitfields for now. Not really something terribly complicated
- to handle. TODO. */
- if (TREE_CODE (base) == BIT_FIELD_REF)
- goto fail;
-
- base = unshare_expr (base);
-
- if (TREE_CODE (base) == TARGET_MEM_REF)
- {
- tree type = build_pointer_type (TREE_TYPE (base));
- tree astep;
-
- if (TMR_BASE (base)
- && TREE_CODE (TMR_BASE (base)) == SSA_NAME)
- {
- civ = get_iv (data, TMR_BASE (base));
- if (!civ)
- goto fail;
-
- TMR_BASE (base) = civ->base;
- step = civ->step;
- }
- if (TMR_INDEX2 (base)
- && TREE_CODE (TMR_INDEX2 (base)) == SSA_NAME)
- {
- civ = get_iv (data, TMR_INDEX2 (base));
- if (!civ)
- goto fail;
-
- TMR_INDEX2 (base) = civ->base;
- step = civ->step;
- }
- if (TMR_INDEX (base)
- && TREE_CODE (TMR_INDEX (base)) == SSA_NAME)
- {
- civ = get_iv (data, TMR_INDEX (base));
- if (!civ)
- goto fail;
-
- TMR_INDEX (base) = civ->base;
- astep = civ->step;
-
- if (astep)
- {
- if (TMR_STEP (base))
- astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep);
-
- step = fold_build2 (PLUS_EXPR, type, step, astep);
- }
- }
-
- if (integer_zerop (step))
- goto fail;
- base = tree_mem_ref_addr (type, base);
- }
- else
- {
- ifs_ivopts_data.ivopts_data = data;
- ifs_ivopts_data.stmt = stmt;
- ifs_ivopts_data.step = size_zero_node;
- if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
- || integer_zerop (ifs_ivopts_data.step))
- goto fail;
- step = ifs_ivopts_data.step;
-
- /* Check that the base expression is addressable. This needs
- to be done after substituting bases of IVs into it. */
- if (may_be_nonaddressable_p (base))
- goto fail;
-
- /* Moreover, on strict alignment platforms, check that it is
- sufficiently aligned. */
- if (STRICT_ALIGNMENT && may_be_unaligned_p (base, step))
- goto fail;
-
- base = build_fold_addr_expr (base);
-
- /* Substituting bases of IVs into the base expression might
- have caused folding opportunities. */
- if (TREE_CODE (base) == ADDR_EXPR)
- {
- tree *ref = &TREE_OPERAND (base, 0);
- while (handled_component_p (*ref))
- ref = &TREE_OPERAND (*ref, 0);
- if (TREE_CODE (*ref) == MEM_REF)
- {
- tree tem = fold_binary (MEM_REF, TREE_TYPE (*ref),
- TREE_OPERAND (*ref, 0),
- TREE_OPERAND (*ref, 1));
- if (tem)
- *ref = tem;
- }
- }
- }
-
- civ = alloc_iv (base, step);
- record_use (data, op_p, civ, stmt, USE_ADDRESS);
- return;
-
-fail:
- for_each_index (op_p, idx_record_use, data);
-}
-
-/* Finds and records invariants used in STMT. */
-
-static void
-find_invariants_stmt (struct ivopts_data *data, gimple stmt)
-{
- ssa_op_iter iter;
- use_operand_p use_p;
- tree op;
-
- FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
- {
- op = USE_FROM_PTR (use_p);
- record_invariant (data, op, false);
- }
-}
-
-/* Finds interesting uses of induction variables in the statement STMT. */
-
-static void
-find_interesting_uses_stmt (struct ivopts_data *data, gimple stmt)
-{
- struct iv *iv;
- tree op, *lhs, *rhs;
- ssa_op_iter iter;
- use_operand_p use_p;
- enum tree_code code;
-
- find_invariants_stmt (data, stmt);
-
- if (gimple_code (stmt) == GIMPLE_COND)
- {
- find_interesting_uses_cond (data, stmt);
- return;
- }
-
- if (is_gimple_assign (stmt))
- {
- lhs = gimple_assign_lhs_ptr (stmt);
- rhs = gimple_assign_rhs1_ptr (stmt);
-
- if (TREE_CODE (*lhs) == SSA_NAME)
- {
- /* If the statement defines an induction variable, the uses are not
- interesting by themselves. */
-
- iv = get_iv (data, *lhs);
-
- if (iv && !integer_zerop (iv->step))
- return;
- }
-
- code = gimple_assign_rhs_code (stmt);
- if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
- && (REFERENCE_CLASS_P (*rhs)
- || is_gimple_val (*rhs)))
- {
- if (REFERENCE_CLASS_P (*rhs))
- find_interesting_uses_address (data, stmt, rhs);
- else
- find_interesting_uses_op (data, *rhs);
-
- if (REFERENCE_CLASS_P (*lhs))
- find_interesting_uses_address (data, stmt, lhs);
- return;
- }
- else if (TREE_CODE_CLASS (code) == tcc_comparison)
- {
- find_interesting_uses_cond (data, stmt);
- return;
- }
-
- /* TODO -- we should also handle address uses of type
-
- memory = call (whatever);
-
- and
-
- call (memory). */
- }
-
- if (gimple_code (stmt) == GIMPLE_PHI
- && gimple_bb (stmt) == data->current_loop->header)
- {
- iv = get_iv (data, PHI_RESULT (stmt));
-
- if (iv && !integer_zerop (iv->step))
- return;
- }
-
- FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
- {
- op = USE_FROM_PTR (use_p);
-
- if (TREE_CODE (op) != SSA_NAME)
- continue;
-
- iv = get_iv (data, op);
- if (!iv)
- continue;
-
- find_interesting_uses_op (data, op);
- }
-}
-
-/* Finds interesting uses of induction variables outside of loops
- on loop exit edge EXIT. */
-
-static void
-find_interesting_uses_outside (struct ivopts_data *data, edge exit)
-{
- gimple phi;
- gimple_stmt_iterator psi;
- tree def;
-
- for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
- {
- phi = gsi_stmt (psi);
- def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
- if (!virtual_operand_p (def))
- find_interesting_uses_op (data, def);
- }
-}
-
-/* Finds uses of the induction variables that are interesting. */
-
-static void
-find_interesting_uses (struct ivopts_data *data)
-{
- basic_block bb;
- gimple_stmt_iterator bsi;
- basic_block *body = get_loop_body (data->current_loop);
- unsigned i;
- struct version_info *info;
- edge e;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Uses:\n\n");
-
- for (i = 0; i < data->current_loop->num_nodes; i++)
- {
- edge_iterator ei;
- bb = body[i];
-
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (e->dest != EXIT_BLOCK_PTR
- && !flow_bb_inside_loop_p (data->current_loop, e->dest))
- find_interesting_uses_outside (data, e);
-
- for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
- find_interesting_uses_stmt (data, gsi_stmt (bsi));
- for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
- if (!is_gimple_debug (gsi_stmt (bsi)))
- find_interesting_uses_stmt (data, gsi_stmt (bsi));
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- bitmap_iterator bi;
-
- fprintf (dump_file, "\n");
-
- EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
- {
- info = ver_info (data, i);
- if (info->inv_id)
- {
- fprintf (dump_file, " ");
- print_generic_expr (dump_file, info->name, TDF_SLIM);
- fprintf (dump_file, " is invariant (%d)%s\n",
- info->inv_id, info->has_nonlin_use ? "" : ", eliminable");
- }
- }
-
- fprintf (dump_file, "\n");
- }
-
- free (body);
-}
-
-/* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
- is true, assume we are inside an address. If TOP_COMPREF is true, assume
- we are at the top-level of the processed address. */
-
-static tree
-strip_offset_1 (tree expr, bool inside_addr, bool top_compref,
- unsigned HOST_WIDE_INT *offset)
-{
- tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step;
- enum tree_code code;
- tree type, orig_type = TREE_TYPE (expr);
- unsigned HOST_WIDE_INT off0, off1, st;
- tree orig_expr = expr;
-
- STRIP_NOPS (expr);
-
- type = TREE_TYPE (expr);
- code = TREE_CODE (expr);
- *offset = 0;
-
- switch (code)
- {
- case INTEGER_CST:
- if (!cst_and_fits_in_hwi (expr)
- || integer_zerop (expr))
- return orig_expr;
-
- *offset = int_cst_value (expr);
- return build_int_cst (orig_type, 0);
-
- case POINTER_PLUS_EXPR:
- case PLUS_EXPR:
- case MINUS_EXPR:
- op0 = TREE_OPERAND (expr, 0);
- op1 = TREE_OPERAND (expr, 1);
-
- op0 = strip_offset_1 (op0, false, false, &off0);
- op1 = strip_offset_1 (op1, false, false, &off1);
-
- *offset = (code == MINUS_EXPR ? off0 - off1 : off0 + off1);
- if (op0 == TREE_OPERAND (expr, 0)
- && op1 == TREE_OPERAND (expr, 1))
- return orig_expr;
-
- if (integer_zerop (op1))
- expr = op0;
- else if (integer_zerop (op0))
- {
- if (code == MINUS_EXPR)
- expr = fold_build1 (NEGATE_EXPR, type, op1);
- else
- expr = op1;
- }
- else
- expr = fold_build2 (code, type, op0, op1);
-
- return fold_convert (orig_type, expr);
-
- case MULT_EXPR:
- op1 = TREE_OPERAND (expr, 1);
- if (!cst_and_fits_in_hwi (op1))
- return orig_expr;
-
- op0 = TREE_OPERAND (expr, 0);
- op0 = strip_offset_1 (op0, false, false, &off0);
- if (op0 == TREE_OPERAND (expr, 0))
- return orig_expr;
-
- *offset = off0 * int_cst_value (op1);
- if (integer_zerop (op0))
- expr = op0;
- else
- expr = fold_build2 (MULT_EXPR, type, op0, op1);
-
- return fold_convert (orig_type, expr);
-
- case ARRAY_REF:
- case ARRAY_RANGE_REF:
- if (!inside_addr)
- return orig_expr;
-
- step = array_ref_element_size (expr);
- if (!cst_and_fits_in_hwi (step))
- break;
-
- st = int_cst_value (step);
- op1 = TREE_OPERAND (expr, 1);
- op1 = strip_offset_1 (op1, false, false, &off1);
- *offset = off1 * st;
-
- if (top_compref
- && integer_zerop (op1))
- {
- /* Strip the component reference completely. */
- op0 = TREE_OPERAND (expr, 0);
- op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
- *offset += off0;
- return op0;
- }
- break;
-
- case COMPONENT_REF:
- if (!inside_addr)
- return orig_expr;
-
- tmp = component_ref_field_offset (expr);
- if (top_compref
- && cst_and_fits_in_hwi (tmp))
- {
- /* Strip the component reference completely. */
- op0 = TREE_OPERAND (expr, 0);
- op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
- *offset = off0 + int_cst_value (tmp);
- return op0;
- }
- break;
-
- case ADDR_EXPR:
- op0 = TREE_OPERAND (expr, 0);
- op0 = strip_offset_1 (op0, true, true, &off0);
- *offset += off0;
-
- if (op0 == TREE_OPERAND (expr, 0))
- return orig_expr;
-
- expr = build_fold_addr_expr (op0);
- return fold_convert (orig_type, expr);
-
- case MEM_REF:
- /* ??? Offset operand? */
- inside_addr = false;
- break;
-
- default:
- return orig_expr;
- }
-
- /* Default handling of expressions for that we want to recurse into
- the first operand. */
- op0 = TREE_OPERAND (expr, 0);
- op0 = strip_offset_1 (op0, inside_addr, false, &off0);
- *offset += off0;
-
- if (op0 == TREE_OPERAND (expr, 0)
- && (!op1 || op1 == TREE_OPERAND (expr, 1)))
- return orig_expr;
-
- expr = copy_node (expr);
- TREE_OPERAND (expr, 0) = op0;
- if (op1)
- TREE_OPERAND (expr, 1) = op1;
-
- /* Inside address, we might strip the top level component references,
- thus changing type of the expression. Handling of ADDR_EXPR
- will fix that. */
- expr = fold_convert (orig_type, expr);
-
- return expr;
-}
-
-/* Strips constant offsets from EXPR and stores them to OFFSET. */
-
-static tree
-strip_offset (tree expr, unsigned HOST_WIDE_INT *offset)
-{
- return strip_offset_1 (expr, false, false, offset);
-}
-
-/* Returns variant of TYPE that can be used as base for different uses.
- We return unsigned type with the same precision, which avoids problems
- with overflows. */
-
-static tree
-generic_type_for (tree type)
-{
- if (POINTER_TYPE_P (type))
- return unsigned_type_for (type);
-
- if (TYPE_UNSIGNED (type))
- return type;
-
- return unsigned_type_for (type);
-}
-
-/* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
- the bitmap to that we should store it. */
-
-static struct ivopts_data *fd_ivopts_data;
-static tree
-find_depends (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
-{
- bitmap *depends_on = (bitmap *) data;
- struct version_info *info;
-
- if (TREE_CODE (*expr_p) != SSA_NAME)
- return NULL_TREE;
- info = name_info (fd_ivopts_data, *expr_p);
-
- if (!info->inv_id || info->has_nonlin_use)
- return NULL_TREE;
-
- if (!*depends_on)
- *depends_on = BITMAP_ALLOC (NULL);
- bitmap_set_bit (*depends_on, info->inv_id);
-
- return NULL_TREE;
-}
-
-/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
- position to POS. If USE is not NULL, the candidate is set as related to
- it. If both BASE and STEP are NULL, we add a pseudocandidate for the
- replacement of the final value of the iv by a direct computation. */
-
-static struct iv_cand *
-add_candidate_1 (struct ivopts_data *data,
- tree base, tree step, bool important, enum iv_position pos,
- struct iv_use *use, gimple incremented_at)
-{
- unsigned i;
- struct iv_cand *cand = NULL;
- tree type, orig_type;
-
- /* For non-original variables, make sure their values are computed in a type
- that does not invoke undefined behavior on overflows (since in general,
- we cannot prove that these induction variables are non-wrapping). */
- if (pos != IP_ORIGINAL)
- {
- orig_type = TREE_TYPE (base);
- type = generic_type_for (orig_type);
- if (type != orig_type)
- {
- base = fold_convert (type, base);
- step = fold_convert (type, step);
- }
- }
-
- for (i = 0; i < n_iv_cands (data); i++)
- {
- cand = iv_cand (data, i);
-
- if (cand->pos != pos)
- continue;
-
- if (cand->incremented_at != incremented_at
- || ((pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
- && cand->ainc_use != use))
- continue;
-
- if (!cand->iv)
- {
- if (!base && !step)
- break;
-
- continue;
- }
-
- if (!base && !step)
- continue;
-
- if (operand_equal_p (base, cand->iv->base, 0)
- && operand_equal_p (step, cand->iv->step, 0)
- && (TYPE_PRECISION (TREE_TYPE (base))
- == TYPE_PRECISION (TREE_TYPE (cand->iv->base))))
- break;
- }
-
- if (i == n_iv_cands (data))
- {
- cand = XCNEW (struct iv_cand);
- cand->id = i;
-
- if (!base && !step)
- cand->iv = NULL;
- else
- cand->iv = alloc_iv (base, step);
-
- cand->pos = pos;
- if (pos != IP_ORIGINAL && cand->iv)
- {
- cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
- cand->var_after = cand->var_before;
- }
- cand->important = important;
- cand->incremented_at = incremented_at;
- data->iv_candidates.safe_push (cand);
-
- if (step
- && TREE_CODE (step) != INTEGER_CST)
- {
- fd_ivopts_data = data;
- walk_tree (&step, find_depends, &cand->depends_on, NULL);
- }
-
- if (pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
- cand->ainc_use = use;
- else
- cand->ainc_use = NULL;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- dump_cand (dump_file, cand);
- }
-
- if (important && !cand->important)
- {
- cand->important = true;
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Candidate %d is important\n", cand->id);
- }
-
- if (use)
- {
- bitmap_set_bit (use->related_cands, i);
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Candidate %d is related to use %d\n",
- cand->id, use->id);
- }
-
- return cand;
-}
-
-/* Returns true if incrementing the induction variable at the end of the LOOP
- is allowed.
-
- The purpose is to avoid splitting latch edge with a biv increment, thus
- creating a jump, possibly confusing other optimization passes and leaving
- less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
- is not available (so we do not have a better alternative), or if the latch
- edge is already nonempty. */
-
-static bool
-allow_ip_end_pos_p (struct loop *loop)
-{
- if (!ip_normal_pos (loop))
- return true;
-
- if (!empty_block_p (ip_end_pos (loop)))
- return true;
-
- return false;
-}
-
-/* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
- Important field is set to IMPORTANT. */
-
-static void
-add_autoinc_candidates (struct ivopts_data *data, tree base, tree step,
- bool important, struct iv_use *use)
-{
- basic_block use_bb = gimple_bb (use->stmt);
- enum machine_mode mem_mode;
- unsigned HOST_WIDE_INT cstepi;
-
- /* If we insert the increment in any position other than the standard
- ones, we must ensure that it is incremented once per iteration.
- It must not be in an inner nested loop, or one side of an if
- statement. */
- if (use_bb->loop_father != data->current_loop
- || !dominated_by_p (CDI_DOMINATORS, data->current_loop->latch, use_bb)
- || stmt_could_throw_p (use->stmt)
- || !cst_and_fits_in_hwi (step))
- return;
-
- cstepi = int_cst_value (step);
-
- mem_mode = TYPE_MODE (TREE_TYPE (*use->op_p));
- if (((USE_LOAD_PRE_INCREMENT (mem_mode)
- || USE_STORE_PRE_INCREMENT (mem_mode))
- && GET_MODE_SIZE (mem_mode) == cstepi)
- || ((USE_LOAD_PRE_DECREMENT (mem_mode)
- || USE_STORE_PRE_DECREMENT (mem_mode))
- && GET_MODE_SIZE (mem_mode) == -cstepi))
- {
- enum tree_code code = MINUS_EXPR;
- tree new_base;
- tree new_step = step;
-
- if (POINTER_TYPE_P (TREE_TYPE (base)))
- {
- new_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
- code = POINTER_PLUS_EXPR;
- }
- else
- new_step = fold_convert (TREE_TYPE (base), new_step);
- new_base = fold_build2 (code, TREE_TYPE (base), base, new_step);
- add_candidate_1 (data, new_base, step, important, IP_BEFORE_USE, use,
- use->stmt);
- }
- if (((USE_LOAD_POST_INCREMENT (mem_mode)
- || USE_STORE_POST_INCREMENT (mem_mode))
- && GET_MODE_SIZE (mem_mode) == cstepi)
- || ((USE_LOAD_POST_DECREMENT (mem_mode)
- || USE_STORE_POST_DECREMENT (mem_mode))
- && GET_MODE_SIZE (mem_mode) == -cstepi))
- {
- add_candidate_1 (data, base, step, important, IP_AFTER_USE, use,
- use->stmt);
- }
-}
-
-/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
- position to POS. If USE is not NULL, the candidate is set as related to
- it. The candidate computation is scheduled on all available positions. */
-
-static void
-add_candidate (struct ivopts_data *data,
- tree base, tree step, bool important, struct iv_use *use)
-{
- if (ip_normal_pos (data->current_loop))
- add_candidate_1 (data, base, step, important, IP_NORMAL, use, NULL);
- if (ip_end_pos (data->current_loop)
- && allow_ip_end_pos_p (data->current_loop))
- add_candidate_1 (data, base, step, important, IP_END, use, NULL);
-
- if (use != NULL && use->type == USE_ADDRESS)
- add_autoinc_candidates (data, base, step, important, use);
-}
-
-/* Adds standard iv candidates. */
-
-static void
-add_standard_iv_candidates (struct ivopts_data *data)
-{
- add_candidate (data, integer_zero_node, integer_one_node, true, NULL);
-
- /* The same for a double-integer type if it is still fast enough. */
- if (TYPE_PRECISION
- (long_integer_type_node) > TYPE_PRECISION (integer_type_node)
- && TYPE_PRECISION (long_integer_type_node) <= BITS_PER_WORD)
- add_candidate (data, build_int_cst (long_integer_type_node, 0),
- build_int_cst (long_integer_type_node, 1), true, NULL);
-
- /* The same for a double-integer type if it is still fast enough. */
- if (TYPE_PRECISION
- (long_long_integer_type_node) > TYPE_PRECISION (long_integer_type_node)
- && TYPE_PRECISION (long_long_integer_type_node) <= BITS_PER_WORD)
- add_candidate (data, build_int_cst (long_long_integer_type_node, 0),
- build_int_cst (long_long_integer_type_node, 1), true, NULL);
-}
-
-
-/* Adds candidates bases on the old induction variable IV. */
-
-static void
-add_old_iv_candidates (struct ivopts_data *data, struct iv *iv)
-{
- gimple phi;
- tree def;
- struct iv_cand *cand;
-
- add_candidate (data, iv->base, iv->step, true, NULL);
-
- /* The same, but with initial value zero. */
- if (POINTER_TYPE_P (TREE_TYPE (iv->base)))
- add_candidate (data, size_int (0), iv->step, true, NULL);
- else
- add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0),
- iv->step, true, NULL);
-
- phi = SSA_NAME_DEF_STMT (iv->ssa_name);
- if (gimple_code (phi) == GIMPLE_PHI)
- {
- /* Additionally record the possibility of leaving the original iv
- untouched. */
- def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop));
- cand = add_candidate_1 (data,
- iv->base, iv->step, true, IP_ORIGINAL, NULL,
- SSA_NAME_DEF_STMT (def));
- cand->var_before = iv->ssa_name;
- cand->var_after = def;
- }
-}
-
-/* Adds candidates based on the old induction variables. */
-
-static void
-add_old_ivs_candidates (struct ivopts_data *data)
-{
- unsigned i;
- struct iv *iv;
- bitmap_iterator bi;
-
- EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
- {
- iv = ver_info (data, i)->iv;
- if (iv && iv->biv_p && !integer_zerop (iv->step))
- add_old_iv_candidates (data, iv);
- }
-}
-
-/* Adds candidates based on the value of the induction variable IV and USE. */
-
-static void
-add_iv_value_candidates (struct ivopts_data *data,
- struct iv *iv, struct iv_use *use)
-{
- unsigned HOST_WIDE_INT offset;
- tree base;
- tree basetype;
-
- add_candidate (data, iv->base, iv->step, false, use);
-
- /* The same, but with initial value zero. Make such variable important,
- since it is generic enough so that possibly many uses may be based
- on it. */
- basetype = TREE_TYPE (iv->base);
- if (POINTER_TYPE_P (basetype))
- basetype = sizetype;
- add_candidate (data, build_int_cst (basetype, 0),
- iv->step, true, use);
-
- /* Third, try removing the constant offset. Make sure to even
- add a candidate for &a[0] vs. (T *)&a. */
- base = strip_offset (iv->base, &offset);
- if (offset
- || base != iv->base)
- add_candidate (data, base, iv->step, false, use);
-}
-
-/* Adds candidates based on the uses. */
-
-static void
-add_derived_ivs_candidates (struct ivopts_data *data)
-{
- unsigned i;
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- struct iv_use *use = iv_use (data, i);
-
- if (!use)
- continue;
-
- switch (use->type)
- {
- case USE_NONLINEAR_EXPR:
- case USE_COMPARE:
- case USE_ADDRESS:
- /* Just add the ivs based on the value of the iv used here. */
- add_iv_value_candidates (data, use->iv, use);
- break;
-
- default:
- gcc_unreachable ();
- }
- }
-}
-
-/* Record important candidates and add them to related_cands bitmaps
- if needed. */
-
-static void
-record_important_candidates (struct ivopts_data *data)
-{
- unsigned i;
- struct iv_use *use;
-
- for (i = 0; i < n_iv_cands (data); i++)
- {
- struct iv_cand *cand = iv_cand (data, i);
-
- if (cand->important)
- bitmap_set_bit (data->important_candidates, i);
- }
-
- data->consider_all_candidates = (n_iv_cands (data)
- <= CONSIDER_ALL_CANDIDATES_BOUND);
-
- if (data->consider_all_candidates)
- {
- /* We will not need "related_cands" bitmaps in this case,
- so release them to decrease peak memory consumption. */
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
- BITMAP_FREE (use->related_cands);
- }
- }
- else
- {
- /* Add important candidates to the related_cands bitmaps. */
- for (i = 0; i < n_iv_uses (data); i++)
- bitmap_ior_into (iv_use (data, i)->related_cands,
- data->important_candidates);
- }
-}
-
-/* Allocates the data structure mapping the (use, candidate) pairs to costs.
- If consider_all_candidates is true, we use a two-dimensional array, otherwise
- we allocate a simple list to every use. */
-
-static void
-alloc_use_cost_map (struct ivopts_data *data)
-{
- unsigned i, size, s;
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- struct iv_use *use = iv_use (data, i);
-
- if (data->consider_all_candidates)
- size = n_iv_cands (data);
- else
- {
- s = bitmap_count_bits (use->related_cands);
-
- /* Round up to the power of two, so that moduling by it is fast. */
- size = s ? (1 << ceil_log2 (s)) : 1;
- }
-
- use->n_map_members = size;
- use->cost_map = XCNEWVEC (struct cost_pair, size);
- }
-}
-
-/* Returns description of computation cost of expression whose runtime
- cost is RUNTIME and complexity corresponds to COMPLEXITY. */
-
-static comp_cost
-new_cost (unsigned runtime, unsigned complexity)
-{
- comp_cost cost;
-
- cost.cost = runtime;
- cost.complexity = complexity;
-
- return cost;
-}
-
-/* Adds costs COST1 and COST2. */
-
-static comp_cost
-add_costs (comp_cost cost1, comp_cost cost2)
-{
- cost1.cost += cost2.cost;
- cost1.complexity += cost2.complexity;
-
- return cost1;
-}
-/* Subtracts costs COST1 and COST2. */
-
-static comp_cost
-sub_costs (comp_cost cost1, comp_cost cost2)
-{
- cost1.cost -= cost2.cost;
- cost1.complexity -= cost2.complexity;
-
- return cost1;
-}
-
-/* Returns a negative number if COST1 < COST2, a positive number if
- COST1 > COST2, and 0 if COST1 = COST2. */
-
-static int
-compare_costs (comp_cost cost1, comp_cost cost2)
-{
- if (cost1.cost == cost2.cost)
- return cost1.complexity - cost2.complexity;
-
- return cost1.cost - cost2.cost;
-}
-
-/* Returns true if COST is infinite. */
-
-static bool
-infinite_cost_p (comp_cost cost)
-{
- return cost.cost == INFTY;
-}
-
-/* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
- on invariants DEPENDS_ON and that the value used in expressing it
- is VALUE, and in case of iv elimination the comparison operator is COMP. */
-
-static void
-set_use_iv_cost (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand,
- comp_cost cost, bitmap depends_on, tree value,
- enum tree_code comp, int inv_expr_id)
-{
- unsigned i, s;
-
- if (infinite_cost_p (cost))
- {
- BITMAP_FREE (depends_on);
- return;
- }
-
- if (data->consider_all_candidates)
- {
- use->cost_map[cand->id].cand = cand;
- use->cost_map[cand->id].cost = cost;
- use->cost_map[cand->id].depends_on = depends_on;
- use->cost_map[cand->id].value = value;
- use->cost_map[cand->id].comp = comp;
- use->cost_map[cand->id].inv_expr_id = inv_expr_id;
- return;
- }
-
- /* n_map_members is a power of two, so this computes modulo. */
- s = cand->id & (use->n_map_members - 1);
- for (i = s; i < use->n_map_members; i++)
- if (!use->cost_map[i].cand)
- goto found;
- for (i = 0; i < s; i++)
- if (!use->cost_map[i].cand)
- goto found;
-
- gcc_unreachable ();
-
-found:
- use->cost_map[i].cand = cand;
- use->cost_map[i].cost = cost;
- use->cost_map[i].depends_on = depends_on;
- use->cost_map[i].value = value;
- use->cost_map[i].comp = comp;
- use->cost_map[i].inv_expr_id = inv_expr_id;
-}
-
-/* Gets cost of (USE, CANDIDATE) pair. */
-
-static struct cost_pair *
-get_use_iv_cost (struct ivopts_data *data, struct iv_use *use,
- struct iv_cand *cand)
-{
- unsigned i, s;
- struct cost_pair *ret;
-
- if (!cand)
- return NULL;
-
- if (data->consider_all_candidates)
- {
- ret = use->cost_map + cand->id;
- if (!ret->cand)
- return NULL;
-
- return ret;
- }
-
- /* n_map_members is a power of two, so this computes modulo. */
- s = cand->id & (use->n_map_members - 1);
- for (i = s; i < use->n_map_members; i++)
- if (use->cost_map[i].cand == cand)
- return use->cost_map + i;
- else if (use->cost_map[i].cand == NULL)
- return NULL;
- for (i = 0; i < s; i++)
- if (use->cost_map[i].cand == cand)
- return use->cost_map + i;
- else if (use->cost_map[i].cand == NULL)
- return NULL;
-
- return NULL;
-}
-
-/* Returns estimate on cost of computing SEQ. */
-
-static unsigned
-seq_cost (rtx seq, bool speed)
-{
- unsigned cost = 0;
- rtx set;
-
- for (; seq; seq = NEXT_INSN (seq))
- {
- set = single_set (seq);
- if (set)
- cost += set_src_cost (SET_SRC (set), speed);
- else
- cost++;
- }
-
- return cost;
-}
-
-/* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
-static rtx
-produce_memory_decl_rtl (tree obj, int *regno)
-{
- addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (obj));
- enum machine_mode address_mode = targetm.addr_space.address_mode (as);
- rtx x;
-
- gcc_assert (obj);
- if (TREE_STATIC (obj) || DECL_EXTERNAL (obj))
- {
- const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
- x = gen_rtx_SYMBOL_REF (address_mode, name);
- SET_SYMBOL_REF_DECL (x, obj);
- x = gen_rtx_MEM (DECL_MODE (obj), x);
- set_mem_addr_space (x, as);
- targetm.encode_section_info (obj, x, true);
- }
- else
- {
- x = gen_raw_REG (address_mode, (*regno)++);
- x = gen_rtx_MEM (DECL_MODE (obj), x);
- set_mem_addr_space (x, as);
- }
-
- return x;
-}
-
-/* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
- walk_tree. DATA contains the actual fake register number. */
-
-static tree
-prepare_decl_rtl (tree *expr_p, int *ws, void *data)
-{
- tree obj = NULL_TREE;
- rtx x = NULL_RTX;
- int *regno = (int *) data;
-
- switch (TREE_CODE (*expr_p))
- {
- case ADDR_EXPR:
- for (expr_p = &TREE_OPERAND (*expr_p, 0);
- handled_component_p (*expr_p);
- expr_p = &TREE_OPERAND (*expr_p, 0))
- continue;
- obj = *expr_p;
- if (DECL_P (obj) && HAS_RTL_P (obj) && !DECL_RTL_SET_P (obj))
- x = produce_memory_decl_rtl (obj, regno);
- break;
-
- case SSA_NAME:
- *ws = 0;
- obj = SSA_NAME_VAR (*expr_p);
- /* Defer handling of anonymous SSA_NAMEs to the expander. */
- if (!obj)
- return NULL_TREE;
- if (!DECL_RTL_SET_P (obj))
- x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
- break;
-
- case VAR_DECL:
- case PARM_DECL:
- case RESULT_DECL:
- *ws = 0;
- obj = *expr_p;
-
- if (DECL_RTL_SET_P (obj))
- break;
-
- if (DECL_MODE (obj) == BLKmode)
- x = produce_memory_decl_rtl (obj, regno);
- else
- x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
-
- break;
-
- default:
- break;
- }
-
- if (x)
- {
- decl_rtl_to_reset.safe_push (obj);
- SET_DECL_RTL (obj, x);
- }
-
- return NULL_TREE;
-}
-
-/* Determines cost of the computation of EXPR. */
-
-static unsigned
-computation_cost (tree expr, bool speed)
-{
- rtx seq, rslt;
- tree type = TREE_TYPE (expr);
- unsigned cost;
- /* Avoid using hard regs in ways which may be unsupported. */
- int regno = LAST_VIRTUAL_REGISTER + 1;
- struct cgraph_node *node = cgraph_get_node (current_function_decl);
- enum node_frequency real_frequency = node->frequency;
-
- node->frequency = NODE_FREQUENCY_NORMAL;
- crtl->maybe_hot_insn_p = speed;
- walk_tree (&expr, prepare_decl_rtl, &regno, NULL);
- start_sequence ();
- rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
- seq = get_insns ();
- end_sequence ();
- default_rtl_profile ();
- node->frequency = real_frequency;
-
- cost = seq_cost (seq, speed);
- if (MEM_P (rslt))
- cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type),
- TYPE_ADDR_SPACE (type), speed);
- else if (!REG_P (rslt))
- cost += set_src_cost (rslt, speed);
-
- return cost;
-}
-
-/* Returns variable containing the value of candidate CAND at statement AT. */
-
-static tree
-var_at_stmt (struct loop *loop, struct iv_cand *cand, gimple stmt)
-{
- if (stmt_after_increment (loop, cand, stmt))
- return cand->var_after;
- else
- return cand->var_before;
-}
-
-/* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
- same precision that is at least as wide as the precision of TYPE, stores
- BA to A and BB to B, and returns the type of BA. Otherwise, returns the
- type of A and B. */
-
-static tree
-determine_common_wider_type (tree *a, tree *b)
-{
- tree wider_type = NULL;
- tree suba, subb;
- tree atype = TREE_TYPE (*a);
-
- if (CONVERT_EXPR_P (*a))
- {
- suba = TREE_OPERAND (*a, 0);
- wider_type = TREE_TYPE (suba);
- if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype))
- return atype;
- }
- else
- return atype;
-
- if (CONVERT_EXPR_P (*b))
- {
- subb = TREE_OPERAND (*b, 0);
- if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb)))
- return atype;
- }
- else
- return atype;
-
- *a = suba;
- *b = subb;
- return wider_type;
-}
-
-/* Determines the expression by that USE is expressed from induction variable
- CAND at statement AT in LOOP. The expression is stored in a decomposed
- form into AFF. Returns false if USE cannot be expressed using CAND. */
-
-static bool
-get_computation_aff (struct loop *loop,
- struct iv_use *use, struct iv_cand *cand, gimple at,
- struct affine_tree_combination *aff)
-{
- tree ubase = use->iv->base;
- tree ustep = use->iv->step;
- tree cbase = cand->iv->base;
- tree cstep = cand->iv->step, cstep_common;
- tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
- tree common_type, var;
- tree uutype;
- aff_tree cbase_aff, var_aff;
- double_int rat;
-
- if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
- {
- /* We do not have a precision to express the values of use. */
- return false;
- }
-
- var = var_at_stmt (loop, cand, at);
- uutype = unsigned_type_for (utype);
-
- /* If the conversion is not noop, perform it. */
- if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
- {
- cstep = fold_convert (uutype, cstep);
- cbase = fold_convert (uutype, cbase);
- var = fold_convert (uutype, var);
- }
-
- if (!constant_multiple_of (ustep, cstep, &rat))
- return false;
-
- /* In case both UBASE and CBASE are shortened to UUTYPE from some common
- type, we achieve better folding by computing their difference in this
- wider type, and cast the result to UUTYPE. We do not need to worry about
- overflows, as all the arithmetics will in the end be performed in UUTYPE
- anyway. */
- common_type = determine_common_wider_type (&ubase, &cbase);
-
- /* use = ubase - ratio * cbase + ratio * var. */
- tree_to_aff_combination (ubase, common_type, aff);
- tree_to_aff_combination (cbase, common_type, &cbase_aff);
- tree_to_aff_combination (var, uutype, &var_aff);
-
- /* We need to shift the value if we are after the increment. */
- if (stmt_after_increment (loop, cand, at))
- {
- aff_tree cstep_aff;
-
- if (common_type != uutype)
- cstep_common = fold_convert (common_type, cstep);
- else
- cstep_common = cstep;
-
- tree_to_aff_combination (cstep_common, common_type, &cstep_aff);
- aff_combination_add (&cbase_aff, &cstep_aff);
- }
-
- aff_combination_scale (&cbase_aff, -rat);
- aff_combination_add (aff, &cbase_aff);
- if (common_type != uutype)
- aff_combination_convert (aff, uutype);
-
- aff_combination_scale (&var_aff, rat);
- aff_combination_add (aff, &var_aff);
-
- return true;
-}
-
-/* Return the type of USE. */
-
-static tree
-get_use_type (struct iv_use *use)
-{
- tree base_type = TREE_TYPE (use->iv->base);
- tree type;
-
- if (use->type == USE_ADDRESS)
- {
- /* The base_type may be a void pointer. Create a pointer type based on
- the mem_ref instead. */
- type = build_pointer_type (TREE_TYPE (*use->op_p));
- gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type))
- == TYPE_ADDR_SPACE (TREE_TYPE (base_type)));
- }
- else
- type = base_type;
-
- return type;
-}
-
-/* Determines the expression by that USE is expressed from induction variable
- CAND at statement AT in LOOP. The computation is unshared. */
-
-static tree
-get_computation_at (struct loop *loop,
- struct iv_use *use, struct iv_cand *cand, gimple at)
-{
- aff_tree aff;
- tree type = get_use_type (use);
-
- if (!get_computation_aff (loop, use, cand, at, &aff))
- return NULL_TREE;
- unshare_aff_combination (&aff);
- return fold_convert (type, aff_combination_to_tree (&aff));
-}
-
-/* Determines the expression by that USE is expressed from induction variable
- CAND in LOOP. The computation is unshared. */
-
-static tree
-get_computation (struct loop *loop, struct iv_use *use, struct iv_cand *cand)
-{
- return get_computation_at (loop, use, cand, use->stmt);
-}
-
-/* Adjust the cost COST for being in loop setup rather than loop body.
- If we're optimizing for space, the loop setup overhead is constant;
- if we're optimizing for speed, amortize it over the per-iteration cost. */
-static unsigned
-adjust_setup_cost (struct ivopts_data *data, unsigned cost)
-{
- if (cost == INFTY)
- return cost;
- else if (optimize_loop_for_speed_p (data->current_loop))
- return cost / avg_loop_niter (data->current_loop);
- else
- return cost;
-}
-
-/* Returns true if multiplying by RATIO is allowed in an address. Test the
- validity for a memory reference accessing memory of mode MODE in
- address space AS. */
-
-
-bool
-multiplier_allowed_in_address_p (HOST_WIDE_INT ratio, enum machine_mode mode,
- addr_space_t as)
-{
-#define MAX_RATIO 128
- unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mode;
- static vec<sbitmap> valid_mult_list;
- sbitmap valid_mult;
-
- if (data_index >= valid_mult_list.length ())
- valid_mult_list.safe_grow_cleared (data_index + 1);
-
- valid_mult = valid_mult_list[data_index];
- if (!valid_mult)
- {
- enum machine_mode address_mode = targetm.addr_space.address_mode (as);
- rtx reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
- rtx addr;
- HOST_WIDE_INT i;
-
- valid_mult = sbitmap_alloc (2 * MAX_RATIO + 1);
- bitmap_clear (valid_mult);
- addr = gen_rtx_fmt_ee (MULT, address_mode, reg1, NULL_RTX);
- for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
- {
- XEXP (addr, 1) = gen_int_mode (i, address_mode);
- if (memory_address_addr_space_p (mode, addr, as))
- bitmap_set_bit (valid_mult, i + MAX_RATIO);
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " allowed multipliers:");
- for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
- if (bitmap_bit_p (valid_mult, i + MAX_RATIO))
- fprintf (dump_file, " %d", (int) i);
- fprintf (dump_file, "\n");
- fprintf (dump_file, "\n");
- }
-
- valid_mult_list[data_index] = valid_mult;
- }
-
- if (ratio > MAX_RATIO || ratio < -MAX_RATIO)
- return false;
-
- return bitmap_bit_p (valid_mult, ratio + MAX_RATIO);
-}
-
-/* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
- If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
- variable is omitted. Compute the cost for a memory reference that accesses
- a memory location of mode MEM_MODE in address space AS.
-
- MAY_AUTOINC is set to true if the autoincrement (increasing index by
- size of MEM_MODE / RATIO) is available. To make this determination, we
- look at the size of the increment to be made, which is given in CSTEP.
- CSTEP may be zero if the step is unknown.
- STMT_AFTER_INC is true iff the statement we're looking at is after the
- increment of the original biv.
-
- TODO -- there must be some better way. This all is quite crude. */
-
-typedef struct address_cost_data_s
-{
- HOST_WIDE_INT min_offset, max_offset;
- unsigned costs[2][2][2][2];
-} *address_cost_data;
-
-
-static comp_cost
-get_address_cost (bool symbol_present, bool var_present,
- unsigned HOST_WIDE_INT offset, HOST_WIDE_INT ratio,
- HOST_WIDE_INT cstep, enum machine_mode mem_mode,
- addr_space_t as, bool speed,
- bool stmt_after_inc, bool *may_autoinc)
-{
- enum machine_mode address_mode = targetm.addr_space.address_mode (as);
- static vec<address_cost_data> address_cost_data_list;
- unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mem_mode;
- address_cost_data data;
- static bool has_preinc[MAX_MACHINE_MODE], has_postinc[MAX_MACHINE_MODE];
- static bool has_predec[MAX_MACHINE_MODE], has_postdec[MAX_MACHINE_MODE];
- unsigned cost, acost, complexity;
- bool offset_p, ratio_p, autoinc;
- HOST_WIDE_INT s_offset, autoinc_offset, msize;
- unsigned HOST_WIDE_INT mask;
- unsigned bits;
-
- if (data_index >= address_cost_data_list.length ())
- address_cost_data_list.safe_grow_cleared (data_index + 1);
-
- data = address_cost_data_list[data_index];
- if (!data)
- {
- HOST_WIDE_INT i;
- HOST_WIDE_INT rat, off = 0;
- int old_cse_not_expected, width;
- unsigned sym_p, var_p, off_p, rat_p, add_c;
- rtx seq, addr, base;
- rtx reg0, reg1;
-
- data = (address_cost_data) xcalloc (1, sizeof (*data));
-
- reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
-
- width = GET_MODE_BITSIZE (address_mode) - 1;
- if (width > (HOST_BITS_PER_WIDE_INT - 1))
- width = HOST_BITS_PER_WIDE_INT - 1;
- addr = gen_rtx_fmt_ee (PLUS, address_mode, reg1, NULL_RTX);
-
- for (i = width; i >= 0; i--)
- {
- off = -((unsigned HOST_WIDE_INT) 1 << i);
- XEXP (addr, 1) = gen_int_mode (off, address_mode);
- if (memory_address_addr_space_p (mem_mode, addr, as))
- break;
- }
- data->min_offset = (i == -1? 0 : off);
-
- for (i = width; i >= 0; i--)
- {
- off = ((unsigned HOST_WIDE_INT) 1 << i) - 1;
- XEXP (addr, 1) = gen_int_mode (off, address_mode);
- if (memory_address_addr_space_p (mem_mode, addr, as))
- break;
- }
- if (i == -1)
- off = 0;
- data->max_offset = off;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "get_address_cost:\n");
- fprintf (dump_file, " min offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
- GET_MODE_NAME (mem_mode),
- data->min_offset);
- fprintf (dump_file, " max offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
- GET_MODE_NAME (mem_mode),
- data->max_offset);
- }
-
- rat = 1;
- for (i = 2; i <= MAX_RATIO; i++)
- if (multiplier_allowed_in_address_p (i, mem_mode, as))
- {
- rat = i;
- break;
- }
-
- /* Compute the cost of various addressing modes. */
- acost = 0;
- reg0 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
- reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2);
-
- if (USE_LOAD_PRE_DECREMENT (mem_mode)
- || USE_STORE_PRE_DECREMENT (mem_mode))
- {
- addr = gen_rtx_PRE_DEC (address_mode, reg0);
- has_predec[mem_mode]
- = memory_address_addr_space_p (mem_mode, addr, as);
- }
- if (USE_LOAD_POST_DECREMENT (mem_mode)
- || USE_STORE_POST_DECREMENT (mem_mode))
- {
- addr = gen_rtx_POST_DEC (address_mode, reg0);
- has_postdec[mem_mode]
- = memory_address_addr_space_p (mem_mode, addr, as);
- }
- if (USE_LOAD_PRE_INCREMENT (mem_mode)
- || USE_STORE_PRE_DECREMENT (mem_mode))
- {
- addr = gen_rtx_PRE_INC (address_mode, reg0);
- has_preinc[mem_mode]
- = memory_address_addr_space_p (mem_mode, addr, as);
- }
- if (USE_LOAD_POST_INCREMENT (mem_mode)
- || USE_STORE_POST_INCREMENT (mem_mode))
- {
- addr = gen_rtx_POST_INC (address_mode, reg0);
- has_postinc[mem_mode]
- = memory_address_addr_space_p (mem_mode, addr, as);
- }
- for (i = 0; i < 16; i++)
- {
- sym_p = i & 1;
- var_p = (i >> 1) & 1;
- off_p = (i >> 2) & 1;
- rat_p = (i >> 3) & 1;
-
- addr = reg0;
- if (rat_p)
- addr = gen_rtx_fmt_ee (MULT, address_mode, addr,
- gen_int_mode (rat, address_mode));
-
- if (var_p)
- addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, reg1);
-
- if (sym_p)
- {
- base = gen_rtx_SYMBOL_REF (address_mode, ggc_strdup (""));
- /* ??? We can run into trouble with some backends by presenting
- it with symbols which haven't been properly passed through
- targetm.encode_section_info. By setting the local bit, we
- enhance the probability of things working. */
- SYMBOL_REF_FLAGS (base) = SYMBOL_FLAG_LOCAL;
-
- if (off_p)
- base = gen_rtx_fmt_e (CONST, address_mode,
- gen_rtx_fmt_ee
- (PLUS, address_mode, base,
- gen_int_mode (off, address_mode)));
- }
- else if (off_p)
- base = gen_int_mode (off, address_mode);
- else
- base = NULL_RTX;
-
- if (base)
- addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, base);
-
- start_sequence ();
- /* To avoid splitting addressing modes, pretend that no cse will
- follow. */
- old_cse_not_expected = cse_not_expected;
- cse_not_expected = true;
- addr = memory_address_addr_space (mem_mode, addr, as);
- cse_not_expected = old_cse_not_expected;
- seq = get_insns ();
- end_sequence ();
-
- acost = seq_cost (seq, speed);
- acost += address_cost (addr, mem_mode, as, speed);
-
- if (!acost)
- acost = 1;
- data->costs[sym_p][var_p][off_p][rat_p] = acost;
- }
-
- /* On some targets, it is quite expensive to load symbol to a register,
- which makes addresses that contain symbols look much more expensive.
- However, the symbol will have to be loaded in any case before the
- loop (and quite likely we have it in register already), so it does not
- make much sense to penalize them too heavily. So make some final
- tweaks for the SYMBOL_PRESENT modes:
-
- If VAR_PRESENT is false, and the mode obtained by changing symbol to
- var is cheaper, use this mode with small penalty.
- If VAR_PRESENT is true, try whether the mode with
- SYMBOL_PRESENT = false is cheaper even with cost of addition, and
- if this is the case, use it. */
- add_c = add_cost (speed, address_mode);
- for (i = 0; i < 8; i++)
- {
- var_p = i & 1;
- off_p = (i >> 1) & 1;
- rat_p = (i >> 2) & 1;
-
- acost = data->costs[0][1][off_p][rat_p] + 1;
- if (var_p)
- acost += add_c;
-
- if (acost < data->costs[1][var_p][off_p][rat_p])
- data->costs[1][var_p][off_p][rat_p] = acost;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Address costs:\n");
-
- for (i = 0; i < 16; i++)
- {
- sym_p = i & 1;
- var_p = (i >> 1) & 1;
- off_p = (i >> 2) & 1;
- rat_p = (i >> 3) & 1;
-
- fprintf (dump_file, " ");
- if (sym_p)
- fprintf (dump_file, "sym + ");
- if (var_p)
- fprintf (dump_file, "var + ");
- if (off_p)
- fprintf (dump_file, "cst + ");
- if (rat_p)
- fprintf (dump_file, "rat * ");
-
- acost = data->costs[sym_p][var_p][off_p][rat_p];
- fprintf (dump_file, "index costs %d\n", acost);
- }
- if (has_predec[mem_mode] || has_postdec[mem_mode]
- || has_preinc[mem_mode] || has_postinc[mem_mode])
- fprintf (dump_file, " May include autoinc/dec\n");
- fprintf (dump_file, "\n");
- }
-
- address_cost_data_list[data_index] = data;
- }
-
- bits = GET_MODE_BITSIZE (address_mode);
- mask = ~(~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
- offset &= mask;
- if ((offset >> (bits - 1) & 1))
- offset |= ~mask;
- s_offset = offset;
-
- autoinc = false;
- msize = GET_MODE_SIZE (mem_mode);
- autoinc_offset = offset;
- if (stmt_after_inc)
- autoinc_offset += ratio * cstep;
- if (symbol_present || var_present || ratio != 1)
- autoinc = false;
- else if ((has_postinc[mem_mode] && autoinc_offset == 0
- && msize == cstep)
- || (has_postdec[mem_mode] && autoinc_offset == 0
- && msize == -cstep)
- || (has_preinc[mem_mode] && autoinc_offset == msize
- && msize == cstep)
- || (has_predec[mem_mode] && autoinc_offset == -msize
- && msize == -cstep))
- autoinc = true;
-
- cost = 0;
- offset_p = (s_offset != 0
- && data->min_offset <= s_offset
- && s_offset <= data->max_offset);
- ratio_p = (ratio != 1
- && multiplier_allowed_in_address_p (ratio, mem_mode, as));
-
- if (ratio != 1 && !ratio_p)
- cost += mult_by_coeff_cost (ratio, address_mode, speed);
-
- if (s_offset && !offset_p && !symbol_present)
- cost += add_cost (speed, address_mode);
-
- if (may_autoinc)
- *may_autoinc = autoinc;
- acost = data->costs[symbol_present][var_present][offset_p][ratio_p];
- complexity = (symbol_present != 0) + (var_present != 0) + offset_p + ratio_p;
- return new_cost (cost + acost, complexity);
-}
-
- /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
- the EXPR operand holding the shift. COST0 and COST1 are the costs for
- calculating the operands of EXPR. Returns true if successful, and returns
- the cost in COST. */
-
-static bool
-get_shiftadd_cost (tree expr, enum machine_mode mode, comp_cost cost0,
- comp_cost cost1, tree mult, bool speed, comp_cost *cost)
-{
- comp_cost res;
- tree op1 = TREE_OPERAND (expr, 1);
- tree cst = TREE_OPERAND (mult, 1);
- tree multop = TREE_OPERAND (mult, 0);
- int m = exact_log2 (int_cst_value (cst));
- int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
- int sa_cost;
-
- if (!(m >= 0 && m < maxm))
- return false;
-
- sa_cost = (TREE_CODE (expr) != MINUS_EXPR
- ? shiftadd_cost (speed, mode, m)
- : (mult == op1
- ? shiftsub1_cost (speed, mode, m)
- : shiftsub0_cost (speed, mode, m)));
- res = new_cost (sa_cost, 0);
- res = add_costs (res, mult == op1 ? cost0 : cost1);
-
- STRIP_NOPS (multop);
- if (!is_gimple_val (multop))
- res = add_costs (res, force_expr_to_var_cost (multop, speed));
-
- *cost = res;
- return true;
-}
-
-/* Estimates cost of forcing expression EXPR into a variable. */
-
-static comp_cost
-force_expr_to_var_cost (tree expr, bool speed)
-{
- static bool costs_initialized = false;
- static unsigned integer_cost [2];
- static unsigned symbol_cost [2];
- static unsigned address_cost [2];
- tree op0, op1;
- comp_cost cost0, cost1, cost;
- enum machine_mode mode;
-
- if (!costs_initialized)
- {
- tree type = build_pointer_type (integer_type_node);
- tree var, addr;
- rtx x;
- int i;
-
- var = create_tmp_var_raw (integer_type_node, "test_var");
- TREE_STATIC (var) = 1;
- x = produce_memory_decl_rtl (var, NULL);
- SET_DECL_RTL (var, x);
-
- addr = build1 (ADDR_EXPR, type, var);
-
-
- for (i = 0; i < 2; i++)
- {
- integer_cost[i] = computation_cost (build_int_cst (integer_type_node,
- 2000), i);
-
- symbol_cost[i] = computation_cost (addr, i) + 1;
-
- address_cost[i]
- = computation_cost (fold_build_pointer_plus_hwi (addr, 2000), i) + 1;
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "force_expr_to_var_cost %s costs:\n", i ? "speed" : "size");
- fprintf (dump_file, " integer %d\n", (int) integer_cost[i]);
- fprintf (dump_file, " symbol %d\n", (int) symbol_cost[i]);
- fprintf (dump_file, " address %d\n", (int) address_cost[i]);
- fprintf (dump_file, " other %d\n", (int) target_spill_cost[i]);
- fprintf (dump_file, "\n");
- }
- }
-
- costs_initialized = true;
- }
-
- STRIP_NOPS (expr);
-
- if (SSA_VAR_P (expr))
- return no_cost;
-
- if (is_gimple_min_invariant (expr))
- {
- if (TREE_CODE (expr) == INTEGER_CST)
- return new_cost (integer_cost [speed], 0);
-
- if (TREE_CODE (expr) == ADDR_EXPR)
- {
- tree obj = TREE_OPERAND (expr, 0);
-
- if (TREE_CODE (obj) == VAR_DECL
- || TREE_CODE (obj) == PARM_DECL
- || TREE_CODE (obj) == RESULT_DECL)
- return new_cost (symbol_cost [speed], 0);
- }
-
- return new_cost (address_cost [speed], 0);
- }
-
- switch (TREE_CODE (expr))
- {
- case POINTER_PLUS_EXPR:
- case PLUS_EXPR:
- case MINUS_EXPR:
- case MULT_EXPR:
- op0 = TREE_OPERAND (expr, 0);
- op1 = TREE_OPERAND (expr, 1);
- STRIP_NOPS (op0);
- STRIP_NOPS (op1);
-
- if (is_gimple_val (op0))
- cost0 = no_cost;
- else
- cost0 = force_expr_to_var_cost (op0, speed);
-
- if (is_gimple_val (op1))
- cost1 = no_cost;
- else
- cost1 = force_expr_to_var_cost (op1, speed);
-
- break;
-
- case NEGATE_EXPR:
- op0 = TREE_OPERAND (expr, 0);
- STRIP_NOPS (op0);
- op1 = NULL_TREE;
-
- if (is_gimple_val (op0))
- cost0 = no_cost;
- else
- cost0 = force_expr_to_var_cost (op0, speed);
-
- cost1 = no_cost;
- break;
-
- default:
- /* Just an arbitrary value, FIXME. */
- return new_cost (target_spill_cost[speed], 0);
- }
-
- mode = TYPE_MODE (TREE_TYPE (expr));
- switch (TREE_CODE (expr))
- {
- case POINTER_PLUS_EXPR:
- case PLUS_EXPR:
- case MINUS_EXPR:
- case NEGATE_EXPR:
- cost = new_cost (add_cost (speed, mode), 0);
- if (TREE_CODE (expr) != NEGATE_EXPR)
- {
- tree mult = NULL_TREE;
- comp_cost sa_cost;
- if (TREE_CODE (op1) == MULT_EXPR)
- mult = op1;
- else if (TREE_CODE (op0) == MULT_EXPR)
- mult = op0;
-
- if (mult != NULL_TREE
- && cst_and_fits_in_hwi (TREE_OPERAND (mult, 1))
- && get_shiftadd_cost (expr, mode, cost0, cost1, mult,
- speed, &sa_cost))
- return sa_cost;
- }
- break;
-
- case MULT_EXPR:
- if (cst_and_fits_in_hwi (op0))
- cost = new_cost (mult_by_coeff_cost (int_cst_value (op0),
- mode, speed), 0);
- else if (cst_and_fits_in_hwi (op1))
- cost = new_cost (mult_by_coeff_cost (int_cst_value (op1),
- mode, speed), 0);
- else
- return new_cost (target_spill_cost [speed], 0);
- break;
-
- default:
- gcc_unreachable ();
- }
-
- cost = add_costs (cost, cost0);
- cost = add_costs (cost, cost1);
-
- /* Bound the cost by target_spill_cost. The parts of complicated
- computations often are either loop invariant or at least can
- be shared between several iv uses, so letting this grow without
- limits would not give reasonable results. */
- if (cost.cost > (int) target_spill_cost [speed])
- cost.cost = target_spill_cost [speed];
-
- return cost;
-}
-
-/* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
- invariants the computation depends on. */
-
-static comp_cost
-force_var_cost (struct ivopts_data *data,
- tree expr, bitmap *depends_on)
-{
- if (depends_on)
- {
- fd_ivopts_data = data;
- walk_tree (&expr, find_depends, depends_on, NULL);
- }
-
- return force_expr_to_var_cost (expr, data->speed);
-}
-
-/* Estimates cost of expressing address ADDR as var + symbol + offset. The
- value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
- to false if the corresponding part is missing. DEPENDS_ON is a set of the
- invariants the computation depends on. */
-
-static comp_cost
-split_address_cost (struct ivopts_data *data,
- tree addr, bool *symbol_present, bool *var_present,
- unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
-{
- tree core;
- HOST_WIDE_INT bitsize;
- HOST_WIDE_INT bitpos;
- tree toffset;
- enum machine_mode mode;
- int unsignedp, volatilep;
-
- core = get_inner_reference (addr, &bitsize, &bitpos, &toffset, &mode,
- &unsignedp, &volatilep, false);
-
- if (toffset != 0
- || bitpos % BITS_PER_UNIT != 0
- || TREE_CODE (core) != VAR_DECL)
- {
- *symbol_present = false;
- *var_present = true;
- fd_ivopts_data = data;
- walk_tree (&addr, find_depends, depends_on, NULL);
- return new_cost (target_spill_cost[data->speed], 0);
- }
-
- *offset += bitpos / BITS_PER_UNIT;
- if (TREE_STATIC (core)
- || DECL_EXTERNAL (core))
- {
- *symbol_present = true;
- *var_present = false;
- return no_cost;
- }
-
- *symbol_present = false;
- *var_present = true;
- return no_cost;
-}
-
-/* Estimates cost of expressing difference of addresses E1 - E2 as
- var + symbol + offset. The value of offset is added to OFFSET,
- SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
- part is missing. DEPENDS_ON is a set of the invariants the computation
- depends on. */
-
-static comp_cost
-ptr_difference_cost (struct ivopts_data *data,
- tree e1, tree e2, bool *symbol_present, bool *var_present,
- unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
-{
- HOST_WIDE_INT diff = 0;
- aff_tree aff_e1, aff_e2;
- tree type;
-
- gcc_assert (TREE_CODE (e1) == ADDR_EXPR);
-
- if (ptr_difference_const (e1, e2, &diff))
- {
- *offset += diff;
- *symbol_present = false;
- *var_present = false;
- return no_cost;
- }
-
- if (integer_zerop (e2))
- return split_address_cost (data, TREE_OPERAND (e1, 0),
- symbol_present, var_present, offset, depends_on);
-
- *symbol_present = false;
- *var_present = true;
-
- type = signed_type_for (TREE_TYPE (e1));
- tree_to_aff_combination (e1, type, &aff_e1);
- tree_to_aff_combination (e2, type, &aff_e2);
- aff_combination_scale (&aff_e2, double_int_minus_one);
- aff_combination_add (&aff_e1, &aff_e2);
-
- return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
-}
-
-/* Estimates cost of expressing difference E1 - E2 as
- var + symbol + offset. The value of offset is added to OFFSET,
- SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
- part is missing. DEPENDS_ON is a set of the invariants the computation
- depends on. */
-
-static comp_cost
-difference_cost (struct ivopts_data *data,
- tree e1, tree e2, bool *symbol_present, bool *var_present,
- unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
-{
- enum machine_mode mode = TYPE_MODE (TREE_TYPE (e1));
- unsigned HOST_WIDE_INT off1, off2;
- aff_tree aff_e1, aff_e2;
- tree type;
-
- e1 = strip_offset (e1, &off1);
- e2 = strip_offset (e2, &off2);
- *offset += off1 - off2;
-
- STRIP_NOPS (e1);
- STRIP_NOPS (e2);
-
- if (TREE_CODE (e1) == ADDR_EXPR)
- return ptr_difference_cost (data, e1, e2, symbol_present, var_present,
- offset, depends_on);
- *symbol_present = false;
-
- if (operand_equal_p (e1, e2, 0))
- {
- *var_present = false;
- return no_cost;
- }
-
- *var_present = true;
-
- if (integer_zerop (e2))
- return force_var_cost (data, e1, depends_on);
-
- if (integer_zerop (e1))
- {
- comp_cost cost = force_var_cost (data, e2, depends_on);
- cost.cost += mult_by_coeff_cost (-1, mode, data->speed);
- return cost;
- }
-
- type = signed_type_for (TREE_TYPE (e1));
- tree_to_aff_combination (e1, type, &aff_e1);
- tree_to_aff_combination (e2, type, &aff_e2);
- aff_combination_scale (&aff_e2, double_int_minus_one);
- aff_combination_add (&aff_e1, &aff_e2);
-
- return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
-}
-
-/* Returns true if AFF1 and AFF2 are identical. */
-
-static bool
-compare_aff_trees (aff_tree *aff1, aff_tree *aff2)
-{
- unsigned i;
-
- if (aff1->n != aff2->n)
- return false;
-
- for (i = 0; i < aff1->n; i++)
- {
- if (aff1->elts[i].coef != aff2->elts[i].coef)
- return false;
-
- if (!operand_equal_p (aff1->elts[i].val, aff2->elts[i].val, 0))
- return false;
- }
- return true;
-}
-
-/* Stores EXPR in DATA->inv_expr_tab, and assigns it an inv_expr_id. */
-
-static int
-get_expr_id (struct ivopts_data *data, tree expr)
-{
- struct iv_inv_expr_ent ent;
- struct iv_inv_expr_ent **slot;
-
- ent.expr = expr;
- ent.hash = iterative_hash_expr (expr, 0);
- slot = (struct iv_inv_expr_ent **) htab_find_slot (data->inv_expr_tab,
- &ent, INSERT);
- if (*slot)
- return (*slot)->id;
-
- *slot = XNEW (struct iv_inv_expr_ent);
- (*slot)->expr = expr;
- (*slot)->hash = ent.hash;
- (*slot)->id = data->inv_expr_id++;
- return (*slot)->id;
-}
-
-/* Returns the pseudo expr id if expression UBASE - RATIO * CBASE
- requires a new compiler generated temporary. Returns -1 otherwise.
- ADDRESS_P is a flag indicating if the expression is for address
- computation. */
-
-static int
-get_loop_invariant_expr_id (struct ivopts_data *data, tree ubase,
- tree cbase, HOST_WIDE_INT ratio,
- bool address_p)
-{
- aff_tree ubase_aff, cbase_aff;
- tree expr, ub, cb;
-
- STRIP_NOPS (ubase);
- STRIP_NOPS (cbase);
- ub = ubase;
- cb = cbase;
-
- if ((TREE_CODE (ubase) == INTEGER_CST)
- && (TREE_CODE (cbase) == INTEGER_CST))
- return -1;
-
- /* Strips the constant part. */
- if (TREE_CODE (ubase) == PLUS_EXPR
- || TREE_CODE (ubase) == MINUS_EXPR
- || TREE_CODE (ubase) == POINTER_PLUS_EXPR)
- {
- if (TREE_CODE (TREE_OPERAND (ubase, 1)) == INTEGER_CST)
- ubase = TREE_OPERAND (ubase, 0);
- }
-
- /* Strips the constant part. */
- if (TREE_CODE (cbase) == PLUS_EXPR
- || TREE_CODE (cbase) == MINUS_EXPR
- || TREE_CODE (cbase) == POINTER_PLUS_EXPR)
- {
- if (TREE_CODE (TREE_OPERAND (cbase, 1)) == INTEGER_CST)
- cbase = TREE_OPERAND (cbase, 0);
- }
-
- if (address_p)
- {
- if (((TREE_CODE (ubase) == SSA_NAME)
- || (TREE_CODE (ubase) == ADDR_EXPR
- && is_gimple_min_invariant (ubase)))
- && (TREE_CODE (cbase) == INTEGER_CST))
- return -1;
-
- if (((TREE_CODE (cbase) == SSA_NAME)
- || (TREE_CODE (cbase) == ADDR_EXPR
- && is_gimple_min_invariant (cbase)))
- && (TREE_CODE (ubase) == INTEGER_CST))
- return -1;
- }
-
- if (ratio == 1)
- {
- if(operand_equal_p (ubase, cbase, 0))
- return -1;
-
- if (TREE_CODE (ubase) == ADDR_EXPR
- && TREE_CODE (cbase) == ADDR_EXPR)
- {
- tree usym, csym;
-
- usym = TREE_OPERAND (ubase, 0);
- csym = TREE_OPERAND (cbase, 0);
- if (TREE_CODE (usym) == ARRAY_REF)
- {
- tree ind = TREE_OPERAND (usym, 1);
- if (TREE_CODE (ind) == INTEGER_CST
- && host_integerp (ind, 0)
- && TREE_INT_CST_LOW (ind) == 0)
- usym = TREE_OPERAND (usym, 0);
- }
- if (TREE_CODE (csym) == ARRAY_REF)
- {
- tree ind = TREE_OPERAND (csym, 1);
- if (TREE_CODE (ind) == INTEGER_CST
- && host_integerp (ind, 0)
- && TREE_INT_CST_LOW (ind) == 0)
- csym = TREE_OPERAND (csym, 0);
- }
- if (operand_equal_p (usym, csym, 0))
- return -1;
- }
- /* Now do more complex comparison */
- tree_to_aff_combination (ubase, TREE_TYPE (ubase), &ubase_aff);
- tree_to_aff_combination (cbase, TREE_TYPE (cbase), &cbase_aff);
- if (compare_aff_trees (&ubase_aff, &cbase_aff))
- return -1;
- }
-
- tree_to_aff_combination (ub, TREE_TYPE (ub), &ubase_aff);
- tree_to_aff_combination (cb, TREE_TYPE (cb), &cbase_aff);
-
- aff_combination_scale (&cbase_aff, double_int::from_shwi (-1 * ratio));
- aff_combination_add (&ubase_aff, &cbase_aff);
- expr = aff_combination_to_tree (&ubase_aff);
- return get_expr_id (data, expr);
-}
-
-
-
-/* Determines the cost of the computation by that USE is expressed
- from induction variable CAND. If ADDRESS_P is true, we just need
- to create an address from it, otherwise we want to get it into
- register. A set of invariants we depend on is stored in
- DEPENDS_ON. AT is the statement at that the value is computed.
- If CAN_AUTOINC is nonnull, use it to record whether autoinc
- addressing is likely. */
-
-static comp_cost
-get_computation_cost_at (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand,
- bool address_p, bitmap *depends_on, gimple at,
- bool *can_autoinc,
- int *inv_expr_id)
-{
- tree ubase = use->iv->base, ustep = use->iv->step;
- tree cbase, cstep;
- tree utype = TREE_TYPE (ubase), ctype;
- unsigned HOST_WIDE_INT cstepi, offset = 0;
- HOST_WIDE_INT ratio, aratio;
- bool var_present, symbol_present, stmt_is_after_inc;
- comp_cost cost;
- double_int rat;
- bool speed = optimize_bb_for_speed_p (gimple_bb (at));
- enum machine_mode mem_mode = (address_p
- ? TYPE_MODE (TREE_TYPE (*use->op_p))
- : VOIDmode);
-
- *depends_on = NULL;
-
- /* Only consider real candidates. */
- if (!cand->iv)
- return infinite_cost;
-
- cbase = cand->iv->base;
- cstep = cand->iv->step;
- ctype = TREE_TYPE (cbase);
-
- if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
- {
- /* We do not have a precision to express the values of use. */
- return infinite_cost;
- }
-
- if (address_p
- || (use->iv->base_object
- && cand->iv->base_object
- && POINTER_TYPE_P (TREE_TYPE (use->iv->base_object))
- && POINTER_TYPE_P (TREE_TYPE (cand->iv->base_object))))
- {
- /* Do not try to express address of an object with computation based
- on address of a different object. This may cause problems in rtl
- level alias analysis (that does not expect this to be happening,
- as this is illegal in C), and would be unlikely to be useful
- anyway. */
- if (use->iv->base_object
- && cand->iv->base_object
- && !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0))
- return infinite_cost;
- }
-
- if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
- {
- /* TODO -- add direct handling of this case. */
- goto fallback;
- }
-
- /* CSTEPI is removed from the offset in case statement is after the
- increment. If the step is not constant, we use zero instead.
- This is a bit imprecise (there is the extra addition), but
- redundancy elimination is likely to transform the code so that
- it uses value of the variable before increment anyway,
- so it is not that much unrealistic. */
- if (cst_and_fits_in_hwi (cstep))
- cstepi = int_cst_value (cstep);
- else
- cstepi = 0;
-
- if (!constant_multiple_of (ustep, cstep, &rat))
- return infinite_cost;
-
- if (rat.fits_shwi ())
- ratio = rat.to_shwi ();
- else
- return infinite_cost;
-
- STRIP_NOPS (cbase);
- ctype = TREE_TYPE (cbase);
-
- stmt_is_after_inc = stmt_after_increment (data->current_loop, cand, at);
-
- /* use = ubase + ratio * (var - cbase). If either cbase is a constant
- or ratio == 1, it is better to handle this like
-
- ubase - ratio * cbase + ratio * var
-
- (also holds in the case ratio == -1, TODO. */
-
- if (cst_and_fits_in_hwi (cbase))
- {
- offset = - ratio * int_cst_value (cbase);
- cost = difference_cost (data,
- ubase, build_int_cst (utype, 0),
- &symbol_present, &var_present, &offset,
- depends_on);
- cost.cost /= avg_loop_niter (data->current_loop);
- }
- else if (ratio == 1)
- {
- tree real_cbase = cbase;
-
- /* Check to see if any adjustment is needed. */
- if (cstepi == 0 && stmt_is_after_inc)
- {
- aff_tree real_cbase_aff;
- aff_tree cstep_aff;
-
- tree_to_aff_combination (cbase, TREE_TYPE (real_cbase),
- &real_cbase_aff);
- tree_to_aff_combination (cstep, TREE_TYPE (cstep), &cstep_aff);
-
- aff_combination_add (&real_cbase_aff, &cstep_aff);
- real_cbase = aff_combination_to_tree (&real_cbase_aff);
- }
-
- cost = difference_cost (data,
- ubase, real_cbase,
- &symbol_present, &var_present, &offset,
- depends_on);
- cost.cost /= avg_loop_niter (data->current_loop);
- }
- else if (address_p
- && !POINTER_TYPE_P (ctype)
- && multiplier_allowed_in_address_p
- (ratio, mem_mode,
- TYPE_ADDR_SPACE (TREE_TYPE (utype))))
- {
- cbase
- = fold_build2 (MULT_EXPR, ctype, cbase, build_int_cst (ctype, ratio));
- cost = difference_cost (data,
- ubase, cbase,
- &symbol_present, &var_present, &offset,
- depends_on);
- cost.cost /= avg_loop_niter (data->current_loop);
- }
- else
- {
- cost = force_var_cost (data, cbase, depends_on);
- cost = add_costs (cost,
- difference_cost (data,
- ubase, build_int_cst (utype, 0),
- &symbol_present, &var_present,
- &offset, depends_on));
- cost.cost /= avg_loop_niter (data->current_loop);
- cost.cost += add_cost (data->speed, TYPE_MODE (ctype));
- }
-
- if (inv_expr_id)
- {
- *inv_expr_id =
- get_loop_invariant_expr_id (data, ubase, cbase, ratio, address_p);
- /* Clear depends on. */
- if (*inv_expr_id != -1 && depends_on && *depends_on)
- bitmap_clear (*depends_on);
- }
-
- /* If we are after the increment, the value of the candidate is higher by
- one iteration. */
- if (stmt_is_after_inc)
- offset -= ratio * cstepi;
-
- /* Now the computation is in shape symbol + var1 + const + ratio * var2.
- (symbol/var1/const parts may be omitted). If we are looking for an
- address, find the cost of addressing this. */
- if (address_p)
- return add_costs (cost,
- get_address_cost (symbol_present, var_present,
- offset, ratio, cstepi,
- mem_mode,
- TYPE_ADDR_SPACE (TREE_TYPE (utype)),
- speed, stmt_is_after_inc,
- can_autoinc));
-
- /* Otherwise estimate the costs for computing the expression. */
- if (!symbol_present && !var_present && !offset)
- {
- if (ratio != 1)
- cost.cost += mult_by_coeff_cost (ratio, TYPE_MODE (ctype), speed);
- return cost;
- }
-
- /* Symbol + offset should be compile-time computable so consider that they
- are added once to the variable, if present. */
- if (var_present && (symbol_present || offset))
- cost.cost += adjust_setup_cost (data,
- add_cost (speed, TYPE_MODE (ctype)));
-
- /* Having offset does not affect runtime cost in case it is added to
- symbol, but it increases complexity. */
- if (offset)
- cost.complexity++;
-
- cost.cost += add_cost (speed, TYPE_MODE (ctype));
-
- aratio = ratio > 0 ? ratio : -ratio;
- if (aratio != 1)
- cost.cost += mult_by_coeff_cost (aratio, TYPE_MODE (ctype), speed);
- return cost;
-
-fallback:
- if (can_autoinc)
- *can_autoinc = false;
-
- {
- /* Just get the expression, expand it and measure the cost. */
- tree comp = get_computation_at (data->current_loop, use, cand, at);
-
- if (!comp)
- return infinite_cost;
-
- if (address_p)
- comp = build_simple_mem_ref (comp);
-
- return new_cost (computation_cost (comp, speed), 0);
- }
-}
-
-/* Determines the cost of the computation by that USE is expressed
- from induction variable CAND. If ADDRESS_P is true, we just need
- to create an address from it, otherwise we want to get it into
- register. A set of invariants we depend on is stored in
- DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
- autoinc addressing is likely. */
-
-static comp_cost
-get_computation_cost (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand,
- bool address_p, bitmap *depends_on,
- bool *can_autoinc, int *inv_expr_id)
-{
- return get_computation_cost_at (data,
- use, cand, address_p, depends_on, use->stmt,
- can_autoinc, inv_expr_id);
-}
-
-/* Determines cost of basing replacement of USE on CAND in a generic
- expression. */
-
-static bool
-determine_use_iv_cost_generic (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- bitmap depends_on;
- comp_cost cost;
- int inv_expr_id = -1;
-
- /* The simple case first -- if we need to express value of the preserved
- original biv, the cost is 0. This also prevents us from counting the
- cost of increment twice -- once at this use and once in the cost of
- the candidate. */
- if (cand->pos == IP_ORIGINAL
- && cand->incremented_at == use->stmt)
- {
- set_use_iv_cost (data, use, cand, no_cost, NULL, NULL_TREE,
- ERROR_MARK, -1);
- return true;
- }
-
- cost = get_computation_cost (data, use, cand, false, &depends_on,
- NULL, &inv_expr_id);
-
- set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE, ERROR_MARK,
- inv_expr_id);
-
- return !infinite_cost_p (cost);
-}
-
-/* Determines cost of basing replacement of USE on CAND in an address. */
-
-static bool
-determine_use_iv_cost_address (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- bitmap depends_on;
- bool can_autoinc;
- int inv_expr_id = -1;
- comp_cost cost = get_computation_cost (data, use, cand, true, &depends_on,
- &can_autoinc, &inv_expr_id);
-
- if (cand->ainc_use == use)
- {
- if (can_autoinc)
- cost.cost -= cand->cost_step;
- /* If we generated the candidate solely for exploiting autoincrement
- opportunities, and it turns out it can't be used, set the cost to
- infinity to make sure we ignore it. */
- else if (cand->pos == IP_AFTER_USE || cand->pos == IP_BEFORE_USE)
- cost = infinite_cost;
- }
- set_use_iv_cost (data, use, cand, cost, depends_on, NULL_TREE, ERROR_MARK,
- inv_expr_id);
-
- return !infinite_cost_p (cost);
-}
-
-/* Computes value of candidate CAND at position AT in iteration NITER, and
- stores it to VAL. */
-
-static void
-cand_value_at (struct loop *loop, struct iv_cand *cand, gimple at, tree niter,
- aff_tree *val)
-{
- aff_tree step, delta, nit;
- struct iv *iv = cand->iv;
- tree type = TREE_TYPE (iv->base);
- tree steptype = type;
- if (POINTER_TYPE_P (type))
- steptype = sizetype;
-
- tree_to_aff_combination (iv->step, steptype, &step);
- tree_to_aff_combination (niter, TREE_TYPE (niter), &nit);
- aff_combination_convert (&nit, steptype);
- aff_combination_mult (&nit, &step, &delta);
- if (stmt_after_increment (loop, cand, at))
- aff_combination_add (&delta, &step);
-
- tree_to_aff_combination (iv->base, type, val);
- aff_combination_add (val, &delta);
-}
-
-/* Returns period of induction variable iv. */
-
-static tree
-iv_period (struct iv *iv)
-{
- tree step = iv->step, period, type;
- tree pow2div;
-
- gcc_assert (step && TREE_CODE (step) == INTEGER_CST);
-
- type = unsigned_type_for (TREE_TYPE (step));
- /* Period of the iv is lcm (step, type_range)/step -1,
- i.e., N*type_range/step - 1. Since type range is power
- of two, N == (step >> num_of_ending_zeros_binary (step),
- so the final result is
-
- (type_range >> num_of_ending_zeros_binary (step)) - 1
-
- */
- pow2div = num_ending_zeros (step);
-
- period = build_low_bits_mask (type,
- (TYPE_PRECISION (type)
- - tree_low_cst (pow2div, 1)));
-
- return period;
-}
-
-/* Returns the comparison operator used when eliminating the iv USE. */
-
-static enum tree_code
-iv_elimination_compare (struct ivopts_data *data, struct iv_use *use)
-{
- struct loop *loop = data->current_loop;
- basic_block ex_bb;
- edge exit;
-
- ex_bb = gimple_bb (use->stmt);
- exit = EDGE_SUCC (ex_bb, 0);
- if (flow_bb_inside_loop_p (loop, exit->dest))
- exit = EDGE_SUCC (ex_bb, 1);
-
- return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR);
-}
-
-static tree
-strip_wrap_conserving_type_conversions (tree exp)
-{
- while (tree_ssa_useless_type_conversion (exp)
- && (nowrap_type_p (TREE_TYPE (exp))
- == nowrap_type_p (TREE_TYPE (TREE_OPERAND (exp, 0)))))
- exp = TREE_OPERAND (exp, 0);
- return exp;
-}
-
-/* Walk the SSA form and check whether E == WHAT. Fairly simplistic, we
- check for an exact match. */
-
-static bool
-expr_equal_p (tree e, tree what)
-{
- gimple stmt;
- enum tree_code code;
-
- e = strip_wrap_conserving_type_conversions (e);
- what = strip_wrap_conserving_type_conversions (what);
-
- code = TREE_CODE (what);
- if (TREE_TYPE (e) != TREE_TYPE (what))
- return false;
-
- if (operand_equal_p (e, what, 0))
- return true;
-
- if (TREE_CODE (e) != SSA_NAME)
- return false;
-
- stmt = SSA_NAME_DEF_STMT (e);
- if (gimple_code (stmt) != GIMPLE_ASSIGN
- || gimple_assign_rhs_code (stmt) != code)
- return false;
-
- switch (get_gimple_rhs_class (code))
- {
- case GIMPLE_BINARY_RHS:
- if (!expr_equal_p (gimple_assign_rhs2 (stmt), TREE_OPERAND (what, 1)))
- return false;
- /* Fallthru. */
-
- case GIMPLE_UNARY_RHS:
- case GIMPLE_SINGLE_RHS:
- return expr_equal_p (gimple_assign_rhs1 (stmt), TREE_OPERAND (what, 0));
- default:
- return false;
- }
-}
-
-/* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
- we only detect the situation that BASE = SOMETHING + OFFSET, where the
- calculation is performed in non-wrapping type.
-
- TODO: More generally, we could test for the situation that
- BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
- This would require knowing the sign of OFFSET.
-
- Also, we only look for the first addition in the computation of BASE.
- More complex analysis would be better, but introducing it just for
- this optimization seems like an overkill. */
-
-static bool
-difference_cannot_overflow_p (tree base, tree offset)
-{
- enum tree_code code;
- tree e1, e2;
-
- if (!nowrap_type_p (TREE_TYPE (base)))
- return false;
-
- base = expand_simple_operations (base);
-
- if (TREE_CODE (base) == SSA_NAME)
- {
- gimple stmt = SSA_NAME_DEF_STMT (base);
-
- if (gimple_code (stmt) != GIMPLE_ASSIGN)
- return false;
-
- code = gimple_assign_rhs_code (stmt);
- if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
- return false;
-
- e1 = gimple_assign_rhs1 (stmt);
- e2 = gimple_assign_rhs2 (stmt);
- }
- else
- {
- code = TREE_CODE (base);
- if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
- return false;
- e1 = TREE_OPERAND (base, 0);
- e2 = TREE_OPERAND (base, 1);
- }
-
- /* TODO: deeper inspection may be necessary to prove the equality. */
- switch (code)
- {
- case PLUS_EXPR:
- return expr_equal_p (e1, offset) || expr_equal_p (e2, offset);
- case POINTER_PLUS_EXPR:
- return expr_equal_p (e2, offset);
-
- default:
- return false;
- }
-}
-
-/* Tries to replace loop exit by one formulated in terms of a LT_EXPR
- comparison with CAND. NITER describes the number of iterations of
- the loops. If successful, the comparison in COMP_P is altered accordingly.
-
- We aim to handle the following situation:
-
- sometype *base, *p;
- int a, b, i;
-
- i = a;
- p = p_0 = base + a;
-
- do
- {
- bla (*p);
- p++;
- i++;
- }
- while (i < b);
-
- Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
- We aim to optimize this to
-
- p = p_0 = base + a;
- do
- {
- bla (*p);
- p++;
- }
- while (p < p_0 - a + b);
-
- This preserves the correctness, since the pointer arithmetics does not
- overflow. More precisely:
-
- 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
- overflow in computing it or the values of p.
- 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
- overflow. To prove this, we use the fact that p_0 = base + a. */
-
-static bool
-iv_elimination_compare_lt (struct ivopts_data *data,
- struct iv_cand *cand, enum tree_code *comp_p,
- struct tree_niter_desc *niter)
-{
- tree cand_type, a, b, mbz, nit_type = TREE_TYPE (niter->niter), offset;
- struct affine_tree_combination nit, tmpa, tmpb;
- enum tree_code comp;
- HOST_WIDE_INT step;
-
- /* We need to know that the candidate induction variable does not overflow.
- While more complex analysis may be used to prove this, for now just
- check that the variable appears in the original program and that it
- is computed in a type that guarantees no overflows. */
- cand_type = TREE_TYPE (cand->iv->base);
- if (cand->pos != IP_ORIGINAL || !nowrap_type_p (cand_type))
- return false;
-
- /* Make sure that the loop iterates till the loop bound is hit, as otherwise
- the calculation of the BOUND could overflow, making the comparison
- invalid. */
- if (!data->loop_single_exit_p)
- return false;
-
- /* We need to be able to decide whether candidate is increasing or decreasing
- in order to choose the right comparison operator. */
- if (!cst_and_fits_in_hwi (cand->iv->step))
- return false;
- step = int_cst_value (cand->iv->step);
-
- /* Check that the number of iterations matches the expected pattern:
- a + 1 > b ? 0 : b - a - 1. */
- mbz = niter->may_be_zero;
- if (TREE_CODE (mbz) == GT_EXPR)
- {
- /* Handle a + 1 > b. */
- tree op0 = TREE_OPERAND (mbz, 0);
- if (TREE_CODE (op0) == PLUS_EXPR && integer_onep (TREE_OPERAND (op0, 1)))
- {
- a = TREE_OPERAND (op0, 0);
- b = TREE_OPERAND (mbz, 1);
- }
- else
- return false;
- }
- else if (TREE_CODE (mbz) == LT_EXPR)
- {
- tree op1 = TREE_OPERAND (mbz, 1);
-
- /* Handle b < a + 1. */
- if (TREE_CODE (op1) == PLUS_EXPR && integer_onep (TREE_OPERAND (op1, 1)))
- {
- a = TREE_OPERAND (op1, 0);
- b = TREE_OPERAND (mbz, 0);
- }
- else
- return false;
- }
- else
- return false;
-
- /* Expected number of iterations is B - A - 1. Check that it matches
- the actual number, i.e., that B - A - NITER = 1. */
- tree_to_aff_combination (niter->niter, nit_type, &nit);
- tree_to_aff_combination (fold_convert (nit_type, a), nit_type, &tmpa);
- tree_to_aff_combination (fold_convert (nit_type, b), nit_type, &tmpb);
- aff_combination_scale (&nit, double_int_minus_one);
- aff_combination_scale (&tmpa, double_int_minus_one);
- aff_combination_add (&tmpb, &tmpa);
- aff_combination_add (&tmpb, &nit);
- if (tmpb.n != 0 || tmpb.offset != double_int_one)
- return false;
-
- /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
- overflow. */
- offset = fold_build2 (MULT_EXPR, TREE_TYPE (cand->iv->step),
- cand->iv->step,
- fold_convert (TREE_TYPE (cand->iv->step), a));
- if (!difference_cannot_overflow_p (cand->iv->base, offset))
- return false;
-
- /* Determine the new comparison operator. */
- comp = step < 0 ? GT_EXPR : LT_EXPR;
- if (*comp_p == NE_EXPR)
- *comp_p = comp;
- else if (*comp_p == EQ_EXPR)
- *comp_p = invert_tree_comparison (comp, false);
- else
- gcc_unreachable ();
-
- return true;
-}
-
-/* Check whether it is possible to express the condition in USE by comparison
- of candidate CAND. If so, store the value compared with to BOUND, and the
- comparison operator to COMP. */
-
-static bool
-may_eliminate_iv (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand, tree *bound,
- enum tree_code *comp)
-{
- basic_block ex_bb;
- edge exit;
- tree period;
- struct loop *loop = data->current_loop;
- aff_tree bnd;
- struct tree_niter_desc *desc = NULL;
-
- if (TREE_CODE (cand->iv->step) != INTEGER_CST)
- return false;
-
- /* For now works only for exits that dominate the loop latch.
- TODO: extend to other conditions inside loop body. */
- ex_bb = gimple_bb (use->stmt);
- if (use->stmt != last_stmt (ex_bb)
- || gimple_code (use->stmt) != GIMPLE_COND
- || !dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb))
- return false;
-
- exit = EDGE_SUCC (ex_bb, 0);
- if (flow_bb_inside_loop_p (loop, exit->dest))
- exit = EDGE_SUCC (ex_bb, 1);
- if (flow_bb_inside_loop_p (loop, exit->dest))
- return false;
-
- desc = niter_for_exit (data, exit);
- if (!desc)
- return false;
-
- /* Determine whether we can use the variable to test the exit condition.
- This is the case iff the period of the induction variable is greater
- than the number of iterations for which the exit condition is true. */
- period = iv_period (cand->iv);
-
- /* If the number of iterations is constant, compare against it directly. */
- if (TREE_CODE (desc->niter) == INTEGER_CST)
- {
- /* See cand_value_at. */
- if (stmt_after_increment (loop, cand, use->stmt))
- {
- if (!tree_int_cst_lt (desc->niter, period))
- return false;
- }
- else
- {
- if (tree_int_cst_lt (period, desc->niter))
- return false;
- }
- }
-
- /* If not, and if this is the only possible exit of the loop, see whether
- we can get a conservative estimate on the number of iterations of the
- entire loop and compare against that instead. */
- else
- {
- double_int period_value, max_niter;
-
- max_niter = desc->max;
- if (stmt_after_increment (loop, cand, use->stmt))
- max_niter += double_int_one;
- period_value = tree_to_double_int (period);
- if (max_niter.ugt (period_value))
- {
- /* See if we can take advantage of inferred loop bound information. */
- if (data->loop_single_exit_p)
- {
- if (!max_loop_iterations (loop, &max_niter))
- return false;
- /* The loop bound is already adjusted by adding 1. */
- if (max_niter.ugt (period_value))
- return false;
- }
- else
- return false;
- }
- }
-
- cand_value_at (loop, cand, use->stmt, desc->niter, &bnd);
-
- *bound = aff_combination_to_tree (&bnd);
- *comp = iv_elimination_compare (data, use);
-
- /* It is unlikely that computing the number of iterations using division
- would be more profitable than keeping the original induction variable. */
- if (expression_expensive_p (*bound))
- return false;
-
- /* Sometimes, it is possible to handle the situation that the number of
- iterations may be zero unless additional assumtions by using <
- instead of != in the exit condition.
-
- TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
- base the exit condition on it. However, that is often too
- expensive. */
- if (!integer_zerop (desc->may_be_zero))
- return iv_elimination_compare_lt (data, cand, comp, desc);
-
- return true;
-}
-
- /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
- be copied, if is is used in the loop body and DATA->body_includes_call. */
-
-static int
-parm_decl_cost (struct ivopts_data *data, tree bound)
-{
- tree sbound = bound;
- STRIP_NOPS (sbound);
-
- if (TREE_CODE (sbound) == SSA_NAME
- && SSA_NAME_IS_DEFAULT_DEF (sbound)
- && TREE_CODE (SSA_NAME_VAR (sbound)) == PARM_DECL
- && data->body_includes_call)
- return COSTS_N_INSNS (1);
-
- return 0;
-}
-
-/* Determines cost of basing replacement of USE on CAND in a condition. */
-
-static bool
-determine_use_iv_cost_condition (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- tree bound = NULL_TREE;
- struct iv *cmp_iv;
- bitmap depends_on_elim = NULL, depends_on_express = NULL, depends_on;
- comp_cost elim_cost, express_cost, cost, bound_cost;
- bool ok;
- int elim_inv_expr_id = -1, express_inv_expr_id = -1, inv_expr_id;
- tree *control_var, *bound_cst;
- enum tree_code comp = ERROR_MARK;
-
- /* Only consider real candidates. */
- if (!cand->iv)
- {
- set_use_iv_cost (data, use, cand, infinite_cost, NULL, NULL_TREE,
- ERROR_MARK, -1);
- return false;
- }
-
- /* Try iv elimination. */
- if (may_eliminate_iv (data, use, cand, &bound, &comp))
- {
- elim_cost = force_var_cost (data, bound, &depends_on_elim);
- if (elim_cost.cost == 0)
- elim_cost.cost = parm_decl_cost (data, bound);
- else if (TREE_CODE (bound) == INTEGER_CST)
- elim_cost.cost = 0;
- /* If we replace a loop condition 'i < n' with 'p < base + n',
- depends_on_elim will have 'base' and 'n' set, which implies
- that both 'base' and 'n' will be live during the loop. More likely,
- 'base + n' will be loop invariant, resulting in only one live value
- during the loop. So in that case we clear depends_on_elim and set
- elim_inv_expr_id instead. */
- if (depends_on_elim && bitmap_count_bits (depends_on_elim) > 1)
- {
- elim_inv_expr_id = get_expr_id (data, bound);
- bitmap_clear (depends_on_elim);
- }
- /* The bound is a loop invariant, so it will be only computed
- once. */
- elim_cost.cost = adjust_setup_cost (data, elim_cost.cost);
- }
- else
- elim_cost = infinite_cost;
-
- /* Try expressing the original giv. If it is compared with an invariant,
- note that we cannot get rid of it. */
- ok = extract_cond_operands (data, use->stmt, &control_var, &bound_cst,
- NULL, &cmp_iv);
- gcc_assert (ok);
-
- /* When the condition is a comparison of the candidate IV against
- zero, prefer this IV.
-
- TODO: The constant that we're subtracting from the cost should
- be target-dependent. This information should be added to the
- target costs for each backend. */
- if (!infinite_cost_p (elim_cost) /* Do not try to decrease infinite! */
- && integer_zerop (*bound_cst)
- && (operand_equal_p (*control_var, cand->var_after, 0)
- || operand_equal_p (*control_var, cand->var_before, 0)))
- elim_cost.cost -= 1;
-
- express_cost = get_computation_cost (data, use, cand, false,
- &depends_on_express, NULL,
- &express_inv_expr_id);
- fd_ivopts_data = data;
- walk_tree (&cmp_iv->base, find_depends, &depends_on_express, NULL);
-
- /* Count the cost of the original bound as well. */
- bound_cost = force_var_cost (data, *bound_cst, NULL);
- if (bound_cost.cost == 0)
- bound_cost.cost = parm_decl_cost (data, *bound_cst);
- else if (TREE_CODE (*bound_cst) == INTEGER_CST)
- bound_cost.cost = 0;
- express_cost.cost += bound_cost.cost;
-
- /* Choose the better approach, preferring the eliminated IV. */
- if (compare_costs (elim_cost, express_cost) <= 0)
- {
- cost = elim_cost;
- depends_on = depends_on_elim;
- depends_on_elim = NULL;
- inv_expr_id = elim_inv_expr_id;
- }
- else
- {
- cost = express_cost;
- depends_on = depends_on_express;
- depends_on_express = NULL;
- bound = NULL_TREE;
- comp = ERROR_MARK;
- inv_expr_id = express_inv_expr_id;
- }
-
- set_use_iv_cost (data, use, cand, cost, depends_on, bound, comp, inv_expr_id);
-
- if (depends_on_elim)
- BITMAP_FREE (depends_on_elim);
- if (depends_on_express)
- BITMAP_FREE (depends_on_express);
-
- return !infinite_cost_p (cost);
-}
-
-/* Determines cost of basing replacement of USE on CAND. Returns false
- if USE cannot be based on CAND. */
-
-static bool
-determine_use_iv_cost (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- switch (use->type)
- {
- case USE_NONLINEAR_EXPR:
- return determine_use_iv_cost_generic (data, use, cand);
-
- case USE_ADDRESS:
- return determine_use_iv_cost_address (data, use, cand);
-
- case USE_COMPARE:
- return determine_use_iv_cost_condition (data, use, cand);
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Return true if get_computation_cost indicates that autoincrement is
- a possibility for the pair of USE and CAND, false otherwise. */
-
-static bool
-autoinc_possible_for_pair (struct ivopts_data *data, struct iv_use *use,
- struct iv_cand *cand)
-{
- bitmap depends_on;
- bool can_autoinc;
- comp_cost cost;
-
- if (use->type != USE_ADDRESS)
- return false;
-
- cost = get_computation_cost (data, use, cand, true, &depends_on,
- &can_autoinc, NULL);
-
- BITMAP_FREE (depends_on);
-
- return !infinite_cost_p (cost) && can_autoinc;
-}
-
-/* Examine IP_ORIGINAL candidates to see if they are incremented next to a
- use that allows autoincrement, and set their AINC_USE if possible. */
-
-static void
-set_autoinc_for_original_candidates (struct ivopts_data *data)
-{
- unsigned i, j;
-
- for (i = 0; i < n_iv_cands (data); i++)
- {
- struct iv_cand *cand = iv_cand (data, i);
- struct iv_use *closest = NULL;
- if (cand->pos != IP_ORIGINAL)
- continue;
- for (j = 0; j < n_iv_uses (data); j++)
- {
- struct iv_use *use = iv_use (data, j);
- unsigned uid = gimple_uid (use->stmt);
- if (gimple_bb (use->stmt) != gimple_bb (cand->incremented_at)
- || uid > gimple_uid (cand->incremented_at))
- continue;
- if (closest == NULL || uid > gimple_uid (closest->stmt))
- closest = use;
- }
- if (closest == NULL || !autoinc_possible_for_pair (data, closest, cand))
- continue;
- cand->ainc_use = closest;
- }
-}
-
-/* Finds the candidates for the induction variables. */
-
-static void
-find_iv_candidates (struct ivopts_data *data)
-{
- /* Add commonly used ivs. */
- add_standard_iv_candidates (data);
-
- /* Add old induction variables. */
- add_old_ivs_candidates (data);
-
- /* Add induction variables derived from uses. */
- add_derived_ivs_candidates (data);
-
- set_autoinc_for_original_candidates (data);
-
- /* Record the important candidates. */
- record_important_candidates (data);
-}
-
-/* Determines costs of basing the use of the iv on an iv candidate. */
-
-static void
-determine_use_iv_costs (struct ivopts_data *data)
-{
- unsigned i, j;
- struct iv_use *use;
- struct iv_cand *cand;
- bitmap to_clear = BITMAP_ALLOC (NULL);
-
- alloc_use_cost_map (data);
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
-
- if (data->consider_all_candidates)
- {
- for (j = 0; j < n_iv_cands (data); j++)
- {
- cand = iv_cand (data, j);
- determine_use_iv_cost (data, use, cand);
- }
- }
- else
- {
- bitmap_iterator bi;
-
- EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, bi)
- {
- cand = iv_cand (data, j);
- if (!determine_use_iv_cost (data, use, cand))
- bitmap_set_bit (to_clear, j);
- }
-
- /* Remove the candidates for that the cost is infinite from
- the list of related candidates. */
- bitmap_and_compl_into (use->related_cands, to_clear);
- bitmap_clear (to_clear);
- }
- }
-
- BITMAP_FREE (to_clear);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Use-candidate costs:\n");
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
-
- fprintf (dump_file, "Use %d:\n", i);
- fprintf (dump_file, " cand\tcost\tcompl.\tdepends on\n");
- for (j = 0; j < use->n_map_members; j++)
- {
- if (!use->cost_map[j].cand
- || infinite_cost_p (use->cost_map[j].cost))
- continue;
-
- fprintf (dump_file, " %d\t%d\t%d\t",
- use->cost_map[j].cand->id,
- use->cost_map[j].cost.cost,
- use->cost_map[j].cost.complexity);
- if (use->cost_map[j].depends_on)
- bitmap_print (dump_file,
- use->cost_map[j].depends_on, "","");
- if (use->cost_map[j].inv_expr_id != -1)
- fprintf (dump_file, " inv_expr:%d", use->cost_map[j].inv_expr_id);
- fprintf (dump_file, "\n");
- }
-
- fprintf (dump_file, "\n");
- }
- fprintf (dump_file, "\n");
- }
-}
-
-/* Determines cost of the candidate CAND. */
-
-static void
-determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
-{
- comp_cost cost_base;
- unsigned cost, cost_step;
- tree base;
-
- if (!cand->iv)
- {
- cand->cost = 0;
- return;
- }
-
- /* There are two costs associated with the candidate -- its increment
- and its initialization. The second is almost negligible for any loop
- that rolls enough, so we take it just very little into account. */
-
- base = cand->iv->base;
- cost_base = force_var_cost (data, base, NULL);
- /* It will be exceptional that the iv register happens to be initialized with
- the proper value at no cost. In general, there will at least be a regcopy
- or a const set. */
- if (cost_base.cost == 0)
- cost_base.cost = COSTS_N_INSNS (1);
- cost_step = add_cost (data->speed, TYPE_MODE (TREE_TYPE (base)));
-
- cost = cost_step + adjust_setup_cost (data, cost_base.cost);
-
- /* Prefer the original ivs unless we may gain something by replacing it.
- The reason is to make debugging simpler; so this is not relevant for
- artificial ivs created by other optimization passes. */
- if (cand->pos != IP_ORIGINAL
- || !SSA_NAME_VAR (cand->var_before)
- || DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before)))
- cost++;
-
- /* Prefer not to insert statements into latch unless there are some
- already (so that we do not create unnecessary jumps). */
- if (cand->pos == IP_END
- && empty_block_p (ip_end_pos (data->current_loop)))
- cost++;
-
- cand->cost = cost;
- cand->cost_step = cost_step;
-}
-
-/* Determines costs of computation of the candidates. */
-
-static void
-determine_iv_costs (struct ivopts_data *data)
-{
- unsigned i;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Candidate costs:\n");
- fprintf (dump_file, " cand\tcost\n");
- }
-
- for (i = 0; i < n_iv_cands (data); i++)
- {
- struct iv_cand *cand = iv_cand (data, i);
-
- determine_iv_cost (data, cand);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " %d\t%d\n", i, cand->cost);
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "\n");
-}
-
-/* Calculates cost for having SIZE induction variables. */
-
-static unsigned
-ivopts_global_cost_for_size (struct ivopts_data *data, unsigned size)
-{
- /* We add size to the cost, so that we prefer eliminating ivs
- if possible. */
- return size + estimate_reg_pressure_cost (size, data->regs_used, data->speed,
- data->body_includes_call);
-}
-
-/* For each size of the induction variable set determine the penalty. */
-
-static void
-determine_set_costs (struct ivopts_data *data)
-{
- unsigned j, n;
- gimple phi;
- gimple_stmt_iterator psi;
- tree op;
- struct loop *loop = data->current_loop;
- bitmap_iterator bi;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Global costs:\n");
- fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs);
- fprintf (dump_file, " target_clobbered_regs %d\n", target_clobbered_regs);
- fprintf (dump_file, " target_reg_cost %d\n", target_reg_cost[data->speed]);
- fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost[data->speed]);
- }
-
- n = 0;
- for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
- {
- phi = gsi_stmt (psi);
- op = PHI_RESULT (phi);
-
- if (virtual_operand_p (op))
- continue;
-
- if (get_iv (data, op))
- continue;
-
- n++;
- }
-
- EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
- {
- struct version_info *info = ver_info (data, j);
-
- if (info->inv_id && info->has_nonlin_use)
- n++;
- }
-
- data->regs_used = n;
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " regs_used %d\n", n);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " cost for size:\n");
- fprintf (dump_file, " ivs\tcost\n");
- for (j = 0; j <= 2 * target_avail_regs; j++)
- fprintf (dump_file, " %d\t%d\n", j,
- ivopts_global_cost_for_size (data, j));
- fprintf (dump_file, "\n");
- }
-}
-
-/* Returns true if A is a cheaper cost pair than B. */
-
-static bool
-cheaper_cost_pair (struct cost_pair *a, struct cost_pair *b)
-{
- int cmp;
-
- if (!a)
- return false;
-
- if (!b)
- return true;
-
- cmp = compare_costs (a->cost, b->cost);
- if (cmp < 0)
- return true;
-
- if (cmp > 0)
- return false;
-
- /* In case the costs are the same, prefer the cheaper candidate. */
- if (a->cand->cost < b->cand->cost)
- return true;
-
- return false;
-}
-
-
-/* Returns candidate by that USE is expressed in IVS. */
-
-static struct cost_pair *
-iv_ca_cand_for_use (struct iv_ca *ivs, struct iv_use *use)
-{
- return ivs->cand_for_use[use->id];
-}
-
-/* Computes the cost field of IVS structure. */
-
-static void
-iv_ca_recount_cost (struct ivopts_data *data, struct iv_ca *ivs)
-{
- comp_cost cost = ivs->cand_use_cost;
-
- cost.cost += ivs->cand_cost;
-
- cost.cost += ivopts_global_cost_for_size (data,
- ivs->n_regs + ivs->num_used_inv_expr);
-
- ivs->cost = cost;
-}
-
-/* Remove invariants in set INVS to set IVS. */
-
-static void
-iv_ca_set_remove_invariants (struct iv_ca *ivs, bitmap invs)
-{
- bitmap_iterator bi;
- unsigned iid;
-
- if (!invs)
- return;
-
- EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
- {
- ivs->n_invariant_uses[iid]--;
- if (ivs->n_invariant_uses[iid] == 0)
- ivs->n_regs--;
- }
-}
-
-/* Set USE not to be expressed by any candidate in IVS. */
-
-static void
-iv_ca_set_no_cp (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_use *use)
-{
- unsigned uid = use->id, cid;
- struct cost_pair *cp;
-
- cp = ivs->cand_for_use[uid];
- if (!cp)
- return;
- cid = cp->cand->id;
-
- ivs->bad_uses++;
- ivs->cand_for_use[uid] = NULL;
- ivs->n_cand_uses[cid]--;
-
- if (ivs->n_cand_uses[cid] == 0)
- {
- bitmap_clear_bit (ivs->cands, cid);
- /* Do not count the pseudocandidates. */
- if (cp->cand->iv)
- ivs->n_regs--;
- ivs->n_cands--;
- ivs->cand_cost -= cp->cand->cost;
-
- iv_ca_set_remove_invariants (ivs, cp->cand->depends_on);
- }
-
- ivs->cand_use_cost = sub_costs (ivs->cand_use_cost, cp->cost);
-
- iv_ca_set_remove_invariants (ivs, cp->depends_on);
-
- if (cp->inv_expr_id != -1)
- {
- ivs->used_inv_expr[cp->inv_expr_id]--;
- if (ivs->used_inv_expr[cp->inv_expr_id] == 0)
- ivs->num_used_inv_expr--;
- }
- iv_ca_recount_cost (data, ivs);
-}
-
-/* Add invariants in set INVS to set IVS. */
-
-static void
-iv_ca_set_add_invariants (struct iv_ca *ivs, bitmap invs)
-{
- bitmap_iterator bi;
- unsigned iid;
-
- if (!invs)
- return;
-
- EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
- {
- ivs->n_invariant_uses[iid]++;
- if (ivs->n_invariant_uses[iid] == 1)
- ivs->n_regs++;
- }
-}
-
-/* Set cost pair for USE in set IVS to CP. */
-
-static void
-iv_ca_set_cp (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_use *use, struct cost_pair *cp)
-{
- unsigned uid = use->id, cid;
-
- if (ivs->cand_for_use[uid] == cp)
- return;
-
- if (ivs->cand_for_use[uid])
- iv_ca_set_no_cp (data, ivs, use);
-
- if (cp)
- {
- cid = cp->cand->id;
-
- ivs->bad_uses--;
- ivs->cand_for_use[uid] = cp;
- ivs->n_cand_uses[cid]++;
- if (ivs->n_cand_uses[cid] == 1)
- {
- bitmap_set_bit (ivs->cands, cid);
- /* Do not count the pseudocandidates. */
- if (cp->cand->iv)
- ivs->n_regs++;
- ivs->n_cands++;
- ivs->cand_cost += cp->cand->cost;
-
- iv_ca_set_add_invariants (ivs, cp->cand->depends_on);
- }
-
- ivs->cand_use_cost = add_costs (ivs->cand_use_cost, cp->cost);
- iv_ca_set_add_invariants (ivs, cp->depends_on);
-
- if (cp->inv_expr_id != -1)
- {
- ivs->used_inv_expr[cp->inv_expr_id]++;
- if (ivs->used_inv_expr[cp->inv_expr_id] == 1)
- ivs->num_used_inv_expr++;
- }
- iv_ca_recount_cost (data, ivs);
- }
-}
-
-/* Extend set IVS by expressing USE by some of the candidates in it
- if possible. All important candidates will be considered
- if IMPORTANT_CANDIDATES is true. */
-
-static void
-iv_ca_add_use (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_use *use, bool important_candidates)
-{
- struct cost_pair *best_cp = NULL, *cp;
- bitmap_iterator bi;
- bitmap cands;
- unsigned i;
-
- gcc_assert (ivs->upto >= use->id);
-
- if (ivs->upto == use->id)
- {
- ivs->upto++;
- ivs->bad_uses++;
- }
-
- cands = (important_candidates ? data->important_candidates : ivs->cands);
- EXECUTE_IF_SET_IN_BITMAP (cands, 0, i, bi)
- {
- struct iv_cand *cand = iv_cand (data, i);
-
- cp = get_use_iv_cost (data, use, cand);
-
- if (cheaper_cost_pair (cp, best_cp))
- best_cp = cp;
- }
-
- iv_ca_set_cp (data, ivs, use, best_cp);
-}
-
-/* Get cost for assignment IVS. */
-
-static comp_cost
-iv_ca_cost (struct iv_ca *ivs)
-{
- /* This was a conditional expression but it triggered a bug in
- Sun C 5.5. */
- if (ivs->bad_uses)
- return infinite_cost;
- else
- return ivs->cost;
-}
-
-/* Returns true if all dependences of CP are among invariants in IVS. */
-
-static bool
-iv_ca_has_deps (struct iv_ca *ivs, struct cost_pair *cp)
-{
- unsigned i;
- bitmap_iterator bi;
-
- if (!cp->depends_on)
- return true;
-
- EXECUTE_IF_SET_IN_BITMAP (cp->depends_on, 0, i, bi)
- {
- if (ivs->n_invariant_uses[i] == 0)
- return false;
- }
-
- return true;
-}
-
-/* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
- it before NEXT_CHANGE. */
-
-static struct iv_ca_delta *
-iv_ca_delta_add (struct iv_use *use, struct cost_pair *old_cp,
- struct cost_pair *new_cp, struct iv_ca_delta *next_change)
-{
- struct iv_ca_delta *change = XNEW (struct iv_ca_delta);
-
- change->use = use;
- change->old_cp = old_cp;
- change->new_cp = new_cp;
- change->next_change = next_change;
-
- return change;
-}
-
-/* Joins two lists of changes L1 and L2. Destructive -- old lists
- are rewritten. */
-
-static struct iv_ca_delta *
-iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2)
-{
- struct iv_ca_delta *last;
-
- if (!l2)
- return l1;
-
- if (!l1)
- return l2;
-
- for (last = l1; last->next_change; last = last->next_change)
- continue;
- last->next_change = l2;
-
- return l1;
-}
-
-/* Reverse the list of changes DELTA, forming the inverse to it. */
-
-static struct iv_ca_delta *
-iv_ca_delta_reverse (struct iv_ca_delta *delta)
-{
- struct iv_ca_delta *act, *next, *prev = NULL;
- struct cost_pair *tmp;
-
- for (act = delta; act; act = next)
- {
- next = act->next_change;
- act->next_change = prev;
- prev = act;
-
- tmp = act->old_cp;
- act->old_cp = act->new_cp;
- act->new_cp = tmp;
- }
-
- return prev;
-}
-
-/* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
- reverted instead. */
-
-static void
-iv_ca_delta_commit (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_ca_delta *delta, bool forward)
-{
- struct cost_pair *from, *to;
- struct iv_ca_delta *act;
-
- if (!forward)
- delta = iv_ca_delta_reverse (delta);
-
- for (act = delta; act; act = act->next_change)
- {
- from = act->old_cp;
- to = act->new_cp;
- gcc_assert (iv_ca_cand_for_use (ivs, act->use) == from);
- iv_ca_set_cp (data, ivs, act->use, to);
- }
-
- if (!forward)
- iv_ca_delta_reverse (delta);
-}
-
-/* Returns true if CAND is used in IVS. */
-
-static bool
-iv_ca_cand_used_p (struct iv_ca *ivs, struct iv_cand *cand)
-{
- return ivs->n_cand_uses[cand->id] > 0;
-}
-
-/* Returns number of induction variable candidates in the set IVS. */
-
-static unsigned
-iv_ca_n_cands (struct iv_ca *ivs)
-{
- return ivs->n_cands;
-}
-
-/* Free the list of changes DELTA. */
-
-static void
-iv_ca_delta_free (struct iv_ca_delta **delta)
-{
- struct iv_ca_delta *act, *next;
-
- for (act = *delta; act; act = next)
- {
- next = act->next_change;
- free (act);
- }
-
- *delta = NULL;
-}
-
-/* Allocates new iv candidates assignment. */
-
-static struct iv_ca *
-iv_ca_new (struct ivopts_data *data)
-{
- struct iv_ca *nw = XNEW (struct iv_ca);
-
- nw->upto = 0;
- nw->bad_uses = 0;
- nw->cand_for_use = XCNEWVEC (struct cost_pair *, n_iv_uses (data));
- nw->n_cand_uses = XCNEWVEC (unsigned, n_iv_cands (data));
- nw->cands = BITMAP_ALLOC (NULL);
- nw->n_cands = 0;
- nw->n_regs = 0;
- nw->cand_use_cost = no_cost;
- nw->cand_cost = 0;
- nw->n_invariant_uses = XCNEWVEC (unsigned, data->max_inv_id + 1);
- nw->cost = no_cost;
- nw->used_inv_expr = XCNEWVEC (unsigned, data->inv_expr_id + 1);
- nw->num_used_inv_expr = 0;
-
- return nw;
-}
-
-/* Free memory occupied by the set IVS. */
-
-static void
-iv_ca_free (struct iv_ca **ivs)
-{
- free ((*ivs)->cand_for_use);
- free ((*ivs)->n_cand_uses);
- BITMAP_FREE ((*ivs)->cands);
- free ((*ivs)->n_invariant_uses);
- free ((*ivs)->used_inv_expr);
- free (*ivs);
- *ivs = NULL;
-}
-
-/* Dumps IVS to FILE. */
-
-static void
-iv_ca_dump (struct ivopts_data *data, FILE *file, struct iv_ca *ivs)
-{
- const char *pref = " invariants ";
- unsigned i;
- comp_cost cost = iv_ca_cost (ivs);
-
- fprintf (file, " cost: %d (complexity %d)\n", cost.cost, cost.complexity);
- fprintf (file, " cand_cost: %d\n cand_use_cost: %d (complexity %d)\n",
- ivs->cand_cost, ivs->cand_use_cost.cost, ivs->cand_use_cost.complexity);
- bitmap_print (file, ivs->cands, " candidates: ","\n");
-
- for (i = 0; i < ivs->upto; i++)
- {
- struct iv_use *use = iv_use (data, i);
- struct cost_pair *cp = iv_ca_cand_for_use (ivs, use);
- if (cp)
- fprintf (file, " use:%d --> iv_cand:%d, cost=(%d,%d)\n",
- use->id, cp->cand->id, cp->cost.cost, cp->cost.complexity);
- else
- fprintf (file, " use:%d --> ??\n", use->id);
- }
-
- for (i = 1; i <= data->max_inv_id; i++)
- if (ivs->n_invariant_uses[i])
- {
- fprintf (file, "%s%d", pref, i);
- pref = ", ";
- }
- fprintf (file, "\n\n");
-}
-
-/* Try changing candidate in IVS to CAND for each use. Return cost of the
- new set, and store differences in DELTA. Number of induction variables
- in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
- the function will try to find a solution with mimimal iv candidates. */
-
-static comp_cost
-iv_ca_extend (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_cand *cand, struct iv_ca_delta **delta,
- unsigned *n_ivs, bool min_ncand)
-{
- unsigned i;
- comp_cost cost;
- struct iv_use *use;
- struct cost_pair *old_cp, *new_cp;
-
- *delta = NULL;
- for (i = 0; i < ivs->upto; i++)
- {
- use = iv_use (data, i);
- old_cp = iv_ca_cand_for_use (ivs, use);
-
- if (old_cp
- && old_cp->cand == cand)
- continue;
-
- new_cp = get_use_iv_cost (data, use, cand);
- if (!new_cp)
- continue;
-
- if (!min_ncand && !iv_ca_has_deps (ivs, new_cp))
- continue;
-
- if (!min_ncand && !cheaper_cost_pair (new_cp, old_cp))
- continue;
-
- *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
- }
-
- iv_ca_delta_commit (data, ivs, *delta, true);
- cost = iv_ca_cost (ivs);
- if (n_ivs)
- *n_ivs = iv_ca_n_cands (ivs);
- iv_ca_delta_commit (data, ivs, *delta, false);
-
- return cost;
-}
-
-/* Try narrowing set IVS by removing CAND. Return the cost of
- the new set and store the differences in DELTA. */
-
-static comp_cost
-iv_ca_narrow (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_cand *cand, struct iv_ca_delta **delta)
-{
- unsigned i, ci;
- struct iv_use *use;
- struct cost_pair *old_cp, *new_cp, *cp;
- bitmap_iterator bi;
- struct iv_cand *cnd;
- comp_cost cost;
-
- *delta = NULL;
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
-
- old_cp = iv_ca_cand_for_use (ivs, use);
- if (old_cp->cand != cand)
- continue;
-
- new_cp = NULL;
-
- if (data->consider_all_candidates)
- {
- EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi)
- {
- if (ci == cand->id)
- continue;
-
- cnd = iv_cand (data, ci);
-
- cp = get_use_iv_cost (data, use, cnd);
- if (!cp)
- continue;
-
- if (!iv_ca_has_deps (ivs, cp))
- continue;
-
- if (!cheaper_cost_pair (cp, new_cp))
- continue;
-
- new_cp = cp;
- }
- }
- else
- {
- EXECUTE_IF_AND_IN_BITMAP (use->related_cands, ivs->cands, 0, ci, bi)
- {
- if (ci == cand->id)
- continue;
-
- cnd = iv_cand (data, ci);
-
- cp = get_use_iv_cost (data, use, cnd);
- if (!cp)
- continue;
- if (!iv_ca_has_deps (ivs, cp))
- continue;
-
- if (!cheaper_cost_pair (cp, new_cp))
- continue;
-
- new_cp = cp;
- }
- }
-
- if (!new_cp)
- {
- iv_ca_delta_free (delta);
- return infinite_cost;
- }
-
- *delta = iv_ca_delta_add (use, old_cp, new_cp, *delta);
- }
-
- iv_ca_delta_commit (data, ivs, *delta, true);
- cost = iv_ca_cost (ivs);
- iv_ca_delta_commit (data, ivs, *delta, false);
-
- return cost;
-}
-
-/* Try optimizing the set of candidates IVS by removing candidates different
- from to EXCEPT_CAND from it. Return cost of the new set, and store
- differences in DELTA. */
-
-static comp_cost
-iv_ca_prune (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_cand *except_cand, struct iv_ca_delta **delta)
-{
- bitmap_iterator bi;
- struct iv_ca_delta *act_delta, *best_delta;
- unsigned i;
- comp_cost best_cost, acost;
- struct iv_cand *cand;
-
- best_delta = NULL;
- best_cost = iv_ca_cost (ivs);
-
- EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
- {
- cand = iv_cand (data, i);
-
- if (cand == except_cand)
- continue;
-
- acost = iv_ca_narrow (data, ivs, cand, &act_delta);
-
- if (compare_costs (acost, best_cost) < 0)
- {
- best_cost = acost;
- iv_ca_delta_free (&best_delta);
- best_delta = act_delta;
- }
- else
- iv_ca_delta_free (&act_delta);
- }
-
- if (!best_delta)
- {
- *delta = NULL;
- return best_cost;
- }
-
- /* Recurse to possibly remove other unnecessary ivs. */
- iv_ca_delta_commit (data, ivs, best_delta, true);
- best_cost = iv_ca_prune (data, ivs, except_cand, delta);
- iv_ca_delta_commit (data, ivs, best_delta, false);
- *delta = iv_ca_delta_join (best_delta, *delta);
- return best_cost;
-}
-
-/* Tries to extend the sets IVS in the best possible way in order
- to express the USE. If ORIGINALP is true, prefer candidates from
- the original set of IVs, otherwise favor important candidates not
- based on any memory object. */
-
-static bool
-try_add_cand_for (struct ivopts_data *data, struct iv_ca *ivs,
- struct iv_use *use, bool originalp)
-{
- comp_cost best_cost, act_cost;
- unsigned i;
- bitmap_iterator bi;
- struct iv_cand *cand;
- struct iv_ca_delta *best_delta = NULL, *act_delta;
- struct cost_pair *cp;
-
- iv_ca_add_use (data, ivs, use, false);
- best_cost = iv_ca_cost (ivs);
-
- cp = iv_ca_cand_for_use (ivs, use);
- if (!cp)
- {
- ivs->upto--;
- ivs->bad_uses--;
- iv_ca_add_use (data, ivs, use, true);
- best_cost = iv_ca_cost (ivs);
- cp = iv_ca_cand_for_use (ivs, use);
- }
- if (cp)
- {
- best_delta = iv_ca_delta_add (use, NULL, cp, NULL);
- iv_ca_set_no_cp (data, ivs, use);
- }
-
- /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
- first try important candidates not based on any memory object. Only if
- this fails, try the specific ones. Rationale -- in loops with many
- variables the best choice often is to use just one generic biv. If we
- added here many ivs specific to the uses, the optimization algorithm later
- would be likely to get stuck in a local minimum, thus causing us to create
- too many ivs. The approach from few ivs to more seems more likely to be
- successful -- starting from few ivs, replacing an expensive use by a
- specific iv should always be a win. */
- EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
- {
- cand = iv_cand (data, i);
-
- if (originalp && cand->pos !=IP_ORIGINAL)
- continue;
-
- if (!originalp && cand->iv->base_object != NULL_TREE)
- continue;
-
- if (iv_ca_cand_used_p (ivs, cand))
- continue;
-
- cp = get_use_iv_cost (data, use, cand);
- if (!cp)
- continue;
-
- iv_ca_set_cp (data, ivs, use, cp);
- act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL,
- true);
- iv_ca_set_no_cp (data, ivs, use);
- act_delta = iv_ca_delta_add (use, NULL, cp, act_delta);
-
- if (compare_costs (act_cost, best_cost) < 0)
- {
- best_cost = act_cost;
-
- iv_ca_delta_free (&best_delta);
- best_delta = act_delta;
- }
- else
- iv_ca_delta_free (&act_delta);
- }
-
- if (infinite_cost_p (best_cost))
- {
- for (i = 0; i < use->n_map_members; i++)
- {
- cp = use->cost_map + i;
- cand = cp->cand;
- if (!cand)
- continue;
-
- /* Already tried this. */
- if (cand->important)
- {
- if (originalp && cand->pos == IP_ORIGINAL)
- continue;
- if (!originalp && cand->iv->base_object == NULL_TREE)
- continue;
- }
-
- if (iv_ca_cand_used_p (ivs, cand))
- continue;
-
- act_delta = NULL;
- iv_ca_set_cp (data, ivs, use, cp);
- act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL, true);
- iv_ca_set_no_cp (data, ivs, use);
- act_delta = iv_ca_delta_add (use, iv_ca_cand_for_use (ivs, use),
- cp, act_delta);
-
- if (compare_costs (act_cost, best_cost) < 0)
- {
- best_cost = act_cost;
-
- if (best_delta)
- iv_ca_delta_free (&best_delta);
- best_delta = act_delta;
- }
- else
- iv_ca_delta_free (&act_delta);
- }
- }
-
- iv_ca_delta_commit (data, ivs, best_delta, true);
- iv_ca_delta_free (&best_delta);
-
- return !infinite_cost_p (best_cost);
-}
-
-/* Finds an initial assignment of candidates to uses. */
-
-static struct iv_ca *
-get_initial_solution (struct ivopts_data *data, bool originalp)
-{
- struct iv_ca *ivs = iv_ca_new (data);
- unsigned i;
-
- for (i = 0; i < n_iv_uses (data); i++)
- if (!try_add_cand_for (data, ivs, iv_use (data, i), originalp))
- {
- iv_ca_free (&ivs);
- return NULL;
- }
-
- return ivs;
-}
-
-/* Tries to improve set of induction variables IVS. */
-
-static bool
-try_improve_iv_set (struct ivopts_data *data, struct iv_ca *ivs)
-{
- unsigned i, n_ivs;
- comp_cost acost, best_cost = iv_ca_cost (ivs);
- struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta;
- struct iv_cand *cand;
-
- /* Try extending the set of induction variables by one. */
- for (i = 0; i < n_iv_cands (data); i++)
- {
- cand = iv_cand (data, i);
-
- if (iv_ca_cand_used_p (ivs, cand))
- continue;
-
- acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs, false);
- if (!act_delta)
- continue;
-
- /* If we successfully added the candidate and the set is small enough,
- try optimizing it by removing other candidates. */
- if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND)
- {
- iv_ca_delta_commit (data, ivs, act_delta, true);
- acost = iv_ca_prune (data, ivs, cand, &tmp_delta);
- iv_ca_delta_commit (data, ivs, act_delta, false);
- act_delta = iv_ca_delta_join (act_delta, tmp_delta);
- }
-
- if (compare_costs (acost, best_cost) < 0)
- {
- best_cost = acost;
- iv_ca_delta_free (&best_delta);
- best_delta = act_delta;
- }
- else
- iv_ca_delta_free (&act_delta);
- }
-
- if (!best_delta)
- {
- /* Try removing the candidates from the set instead. */
- best_cost = iv_ca_prune (data, ivs, NULL, &best_delta);
-
- /* Nothing more we can do. */
- if (!best_delta)
- return false;
- }
-
- iv_ca_delta_commit (data, ivs, best_delta, true);
- gcc_assert (compare_costs (best_cost, iv_ca_cost (ivs)) == 0);
- iv_ca_delta_free (&best_delta);
- return true;
-}
-
-/* Attempts to find the optimal set of induction variables. We do simple
- greedy heuristic -- we try to replace at most one candidate in the selected
- solution and remove the unused ivs while this improves the cost. */
-
-static struct iv_ca *
-find_optimal_iv_set_1 (struct ivopts_data *data, bool originalp)
-{
- struct iv_ca *set;
-
- /* Get the initial solution. */
- set = get_initial_solution (data, originalp);
- if (!set)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
- return NULL;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Initial set of candidates:\n");
- iv_ca_dump (data, dump_file, set);
- }
-
- while (try_improve_iv_set (data, set))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Improved to:\n");
- iv_ca_dump (data, dump_file, set);
- }
- }
-
- return set;
-}
-
-static struct iv_ca *
-find_optimal_iv_set (struct ivopts_data *data)
-{
- unsigned i;
- struct iv_ca *set, *origset;
- struct iv_use *use;
- comp_cost cost, origcost;
-
- /* Determine the cost based on a strategy that starts with original IVs,
- and try again using a strategy that prefers candidates not based
- on any IVs. */
- origset = find_optimal_iv_set_1 (data, true);
- set = find_optimal_iv_set_1 (data, false);
-
- if (!origset && !set)
- return NULL;
-
- origcost = origset ? iv_ca_cost (origset) : infinite_cost;
- cost = set ? iv_ca_cost (set) : infinite_cost;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Original cost %d (complexity %d)\n\n",
- origcost.cost, origcost.complexity);
- fprintf (dump_file, "Final cost %d (complexity %d)\n\n",
- cost.cost, cost.complexity);
- }
-
- /* Choose the one with the best cost. */
- if (compare_costs (origcost, cost) <= 0)
- {
- if (set)
- iv_ca_free (&set);
- set = origset;
- }
- else if (origset)
- iv_ca_free (&origset);
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
- use->selected = iv_ca_cand_for_use (set, use)->cand;
- }
-
- return set;
-}
-
-/* Creates a new induction variable corresponding to CAND. */
-
-static void
-create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
-{
- gimple_stmt_iterator incr_pos;
- tree base;
- bool after = false;
-
- if (!cand->iv)
- return;
-
- switch (cand->pos)
- {
- case IP_NORMAL:
- incr_pos = gsi_last_bb (ip_normal_pos (data->current_loop));
- break;
-
- case IP_END:
- incr_pos = gsi_last_bb (ip_end_pos (data->current_loop));
- after = true;
- break;
-
- case IP_AFTER_USE:
- after = true;
- /* fall through */
- case IP_BEFORE_USE:
- incr_pos = gsi_for_stmt (cand->incremented_at);
- break;
-
- case IP_ORIGINAL:
- /* Mark that the iv is preserved. */
- name_info (data, cand->var_before)->preserve_biv = true;
- name_info (data, cand->var_after)->preserve_biv = true;
-
- /* Rewrite the increment so that it uses var_before directly. */
- find_interesting_uses_op (data, cand->var_after)->selected = cand;
- return;
- }
-
- gimple_add_tmp_var (cand->var_before);
-
- base = unshare_expr (cand->iv->base);
-
- create_iv (base, unshare_expr (cand->iv->step),
- cand->var_before, data->current_loop,
- &incr_pos, after, &cand->var_before, &cand->var_after);
-}
-
-/* Creates new induction variables described in SET. */
-
-static void
-create_new_ivs (struct ivopts_data *data, struct iv_ca *set)
-{
- unsigned i;
- struct iv_cand *cand;
- bitmap_iterator bi;
-
- EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
- {
- cand = iv_cand (data, i);
- create_new_iv (data, cand);
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nSelected IV set: \n");
- EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
- {
- cand = iv_cand (data, i);
- dump_cand (dump_file, cand);
- }
- fprintf (dump_file, "\n");
- }
-}
-
-/* Rewrites USE (definition of iv used in a nonlinear expression)
- using candidate CAND. */
-
-static void
-rewrite_use_nonlinear_expr (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- tree comp;
- tree op, tgt;
- gimple ass;
- gimple_stmt_iterator bsi;
-
- /* An important special case -- if we are asked to express value of
- the original iv by itself, just exit; there is no need to
- introduce a new computation (that might also need casting the
- variable to unsigned and back). */
- if (cand->pos == IP_ORIGINAL
- && cand->incremented_at == use->stmt)
- {
- enum tree_code stmt_code;
-
- gcc_assert (is_gimple_assign (use->stmt));
- gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
-
- /* Check whether we may leave the computation unchanged.
- This is the case only if it does not rely on other
- computations in the loop -- otherwise, the computation
- we rely upon may be removed in remove_unused_ivs,
- thus leading to ICE. */
- stmt_code = gimple_assign_rhs_code (use->stmt);
- if (stmt_code == PLUS_EXPR
- || stmt_code == MINUS_EXPR
- || stmt_code == POINTER_PLUS_EXPR)
- {
- if (gimple_assign_rhs1 (use->stmt) == cand->var_before)
- op = gimple_assign_rhs2 (use->stmt);
- else if (gimple_assign_rhs2 (use->stmt) == cand->var_before)
- op = gimple_assign_rhs1 (use->stmt);
- else
- op = NULL_TREE;
- }
- else
- op = NULL_TREE;
-
- if (op && expr_invariant_in_loop_p (data->current_loop, op))
- return;
- }
-
- comp = get_computation (data->current_loop, use, cand);
- gcc_assert (comp != NULL_TREE);
-
- switch (gimple_code (use->stmt))
- {
- case GIMPLE_PHI:
- tgt = PHI_RESULT (use->stmt);
-
- /* If we should keep the biv, do not replace it. */
- if (name_info (data, tgt)->preserve_biv)
- return;
-
- bsi = gsi_after_labels (gimple_bb (use->stmt));
- break;
-
- case GIMPLE_ASSIGN:
- tgt = gimple_assign_lhs (use->stmt);
- bsi = gsi_for_stmt (use->stmt);
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (!valid_gimple_rhs_p (comp)
- || (gimple_code (use->stmt) != GIMPLE_PHI
- /* We can't allow re-allocating the stmt as it might be pointed
- to still. */
- && (get_gimple_rhs_num_ops (TREE_CODE (comp))
- >= gimple_num_ops (gsi_stmt (bsi)))))
- {
- comp = force_gimple_operand_gsi (&bsi, comp, true, NULL_TREE,
- true, GSI_SAME_STMT);
- if (POINTER_TYPE_P (TREE_TYPE (tgt)))
- {
- duplicate_ssa_name_ptr_info (comp, SSA_NAME_PTR_INFO (tgt));
- /* As this isn't a plain copy we have to reset alignment
- information. */
- if (SSA_NAME_PTR_INFO (comp))
- mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp));
- }
- }
-
- if (gimple_code (use->stmt) == GIMPLE_PHI)
- {
- ass = gimple_build_assign (tgt, comp);
- gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
-
- bsi = gsi_for_stmt (use->stmt);
- remove_phi_node (&bsi, false);
- }
- else
- {
- gimple_assign_set_rhs_from_tree (&bsi, comp);
- use->stmt = gsi_stmt (bsi);
- }
-}
-
-/* Performs a peephole optimization to reorder the iv update statement with
- a mem ref to enable instruction combining in later phases. The mem ref uses
- the iv value before the update, so the reordering transformation requires
- adjustment of the offset. CAND is the selected IV_CAND.
-
- Example:
-
- t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
- iv2 = iv1 + 1;
-
- if (t < val) (1)
- goto L;
- goto Head;
-
-
- directly propagating t over to (1) will introduce overlapping live range
- thus increase register pressure. This peephole transform it into:
-
-
- iv2 = iv1 + 1;
- t = MEM_REF (base, iv2, 8, 8);
- if (t < val)
- goto L;
- goto Head;
-*/
-
-static void
-adjust_iv_update_pos (struct iv_cand *cand, struct iv_use *use)
-{
- tree var_after;
- gimple iv_update, stmt;
- basic_block bb;
- gimple_stmt_iterator gsi, gsi_iv;
-
- if (cand->pos != IP_NORMAL)
- return;
-
- var_after = cand->var_after;
- iv_update = SSA_NAME_DEF_STMT (var_after);
-
- bb = gimple_bb (iv_update);
- gsi = gsi_last_nondebug_bb (bb);
- stmt = gsi_stmt (gsi);
-
- /* Only handle conditional statement for now. */
- if (gimple_code (stmt) != GIMPLE_COND)
- return;
-
- gsi_prev_nondebug (&gsi);
- stmt = gsi_stmt (gsi);
- if (stmt != iv_update)
- return;
-
- gsi_prev_nondebug (&gsi);
- if (gsi_end_p (gsi))
- return;
-
- stmt = gsi_stmt (gsi);
- if (gimple_code (stmt) != GIMPLE_ASSIGN)
- return;
-
- if (stmt != use->stmt)
- return;
-
- if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
- return;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Reordering \n");
- print_gimple_stmt (dump_file, iv_update, 0, 0);
- print_gimple_stmt (dump_file, use->stmt, 0, 0);
- fprintf (dump_file, "\n");
- }
-
- gsi = gsi_for_stmt (use->stmt);
- gsi_iv = gsi_for_stmt (iv_update);
- gsi_move_before (&gsi_iv, &gsi);
-
- cand->pos = IP_BEFORE_USE;
- cand->incremented_at = use->stmt;
-}
-
-/* Rewrites USE (address that is an iv) using candidate CAND. */
-
-static void
-rewrite_use_address (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- aff_tree aff;
- gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
- tree base_hint = NULL_TREE;
- tree ref, iv;
- bool ok;
-
- adjust_iv_update_pos (cand, use);
- ok = get_computation_aff (data->current_loop, use, cand, use->stmt, &aff);
- gcc_assert (ok);
- unshare_aff_combination (&aff);
-
- /* To avoid undefined overflow problems, all IV candidates use unsigned
- integer types. The drawback is that this makes it impossible for
- create_mem_ref to distinguish an IV that is based on a memory object
- from one that represents simply an offset.
-
- To work around this problem, we pass a hint to create_mem_ref that
- indicates which variable (if any) in aff is an IV based on a memory
- object. Note that we only consider the candidate. If this is not
- based on an object, the base of the reference is in some subexpression
- of the use -- but these will use pointer types, so they are recognized
- by the create_mem_ref heuristics anyway. */
- if (cand->iv->base_object)
- base_hint = var_at_stmt (data->current_loop, cand, use->stmt);
-
- iv = var_at_stmt (data->current_loop, cand, use->stmt);
- ref = create_mem_ref (&bsi, TREE_TYPE (*use->op_p), &aff,
- reference_alias_ptr_type (*use->op_p),
- iv, base_hint, data->speed);
- copy_ref_info (ref, *use->op_p);
- *use->op_p = ref;
-}
-
-/* Rewrites USE (the condition such that one of the arguments is an iv) using
- candidate CAND. */
-
-static void
-rewrite_use_compare (struct ivopts_data *data,
- struct iv_use *use, struct iv_cand *cand)
-{
- tree comp, *var_p, op, bound;
- gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
- enum tree_code compare;
- struct cost_pair *cp = get_use_iv_cost (data, use, cand);
- bool ok;
-
- bound = cp->value;
- if (bound)
- {
- tree var = var_at_stmt (data->current_loop, cand, use->stmt);
- tree var_type = TREE_TYPE (var);
- gimple_seq stmts;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Replacing exit test: ");
- print_gimple_stmt (dump_file, use->stmt, 0, TDF_SLIM);
- }
- compare = cp->comp;
- bound = unshare_expr (fold_convert (var_type, bound));
- op = force_gimple_operand (bound, &stmts, true, NULL_TREE);
- if (stmts)
- gsi_insert_seq_on_edge_immediate (
- loop_preheader_edge (data->current_loop),
- stmts);
-
- gimple_cond_set_lhs (use->stmt, var);
- gimple_cond_set_code (use->stmt, compare);
- gimple_cond_set_rhs (use->stmt, op);
- return;
- }
-
- /* The induction variable elimination failed; just express the original
- giv. */
- comp = get_computation (data->current_loop, use, cand);
- gcc_assert (comp != NULL_TREE);
-
- ok = extract_cond_operands (data, use->stmt, &var_p, NULL, NULL, NULL);
- gcc_assert (ok);
-
- *var_p = force_gimple_operand_gsi (&bsi, comp, true, SSA_NAME_VAR (*var_p),
- true, GSI_SAME_STMT);
-}
-
-/* Rewrites USE using candidate CAND. */
-
-static void
-rewrite_use (struct ivopts_data *data, struct iv_use *use, struct iv_cand *cand)
-{
- switch (use->type)
- {
- case USE_NONLINEAR_EXPR:
- rewrite_use_nonlinear_expr (data, use, cand);
- break;
-
- case USE_ADDRESS:
- rewrite_use_address (data, use, cand);
- break;
-
- case USE_COMPARE:
- rewrite_use_compare (data, use, cand);
- break;
-
- default:
- gcc_unreachable ();
- }
-
- update_stmt (use->stmt);
-}
-
-/* Rewrite the uses using the selected induction variables. */
-
-static void
-rewrite_uses (struct ivopts_data *data)
-{
- unsigned i;
- struct iv_cand *cand;
- struct iv_use *use;
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- use = iv_use (data, i);
- cand = use->selected;
- gcc_assert (cand);
-
- rewrite_use (data, use, cand);
- }
-}
-
-/* Removes the ivs that are not used after rewriting. */
-
-static void
-remove_unused_ivs (struct ivopts_data *data)
-{
- unsigned j;
- bitmap_iterator bi;
- bitmap toremove = BITMAP_ALLOC (NULL);
-
- /* Figure out an order in which to release SSA DEFs so that we don't
- release something that we'd have to propagate into a debug stmt
- afterwards. */
- EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
- {
- struct version_info *info;
-
- info = ver_info (data, j);
- if (info->iv
- && !integer_zerop (info->iv->step)
- && !info->inv_id
- && !info->iv->have_use_for
- && !info->preserve_biv)
- {
- bitmap_set_bit (toremove, SSA_NAME_VERSION (info->iv->ssa_name));
-
- tree def = info->iv->ssa_name;
-
- if (MAY_HAVE_DEBUG_STMTS && SSA_NAME_DEF_STMT (def))
- {
- imm_use_iterator imm_iter;
- use_operand_p use_p;
- gimple stmt;
- int count = 0;
-
- FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
- {
- if (!gimple_debug_bind_p (stmt))
- continue;
-
- /* We just want to determine whether to do nothing
- (count == 0), to substitute the computed
- expression into a single use of the SSA DEF by
- itself (count == 1), or to use a debug temp
- because the SSA DEF is used multiple times or as
- part of a larger expression (count > 1). */
- count++;
- if (gimple_debug_bind_get_value (stmt) != def)
- count++;
-
- if (count > 1)
- BREAK_FROM_IMM_USE_STMT (imm_iter);
- }
-
- if (!count)
- continue;
-
- struct iv_use dummy_use;
- struct iv_cand *best_cand = NULL, *cand;
- unsigned i, best_pref = 0, cand_pref;
-
- memset (&dummy_use, 0, sizeof (dummy_use));
- dummy_use.iv = info->iv;
- for (i = 0; i < n_iv_uses (data) && i < 64; i++)
- {
- cand = iv_use (data, i)->selected;
- if (cand == best_cand)
- continue;
- cand_pref = operand_equal_p (cand->iv->step,
- info->iv->step, 0)
- ? 4 : 0;
- cand_pref
- += TYPE_MODE (TREE_TYPE (cand->iv->base))
- == TYPE_MODE (TREE_TYPE (info->iv->base))
- ? 2 : 0;
- cand_pref
- += TREE_CODE (cand->iv->base) == INTEGER_CST
- ? 1 : 0;
- if (best_cand == NULL || best_pref < cand_pref)
- {
- best_cand = cand;
- best_pref = cand_pref;
- }
- }
-
- if (!best_cand)
- continue;
-
- tree comp = get_computation_at (data->current_loop,
- &dummy_use, best_cand,
- SSA_NAME_DEF_STMT (def));
- if (!comp)
- continue;
-
- if (count > 1)
- {
- tree vexpr = make_node (DEBUG_EXPR_DECL);
- DECL_ARTIFICIAL (vexpr) = 1;
- TREE_TYPE (vexpr) = TREE_TYPE (comp);
- if (SSA_NAME_VAR (def))
- DECL_MODE (vexpr) = DECL_MODE (SSA_NAME_VAR (def));
- else
- DECL_MODE (vexpr) = TYPE_MODE (TREE_TYPE (vexpr));
- gimple def_temp = gimple_build_debug_bind (vexpr, comp, NULL);
- gimple_stmt_iterator gsi;
-
- if (gimple_code (SSA_NAME_DEF_STMT (def)) == GIMPLE_PHI)
- gsi = gsi_after_labels (gimple_bb
- (SSA_NAME_DEF_STMT (def)));
- else
- gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (def));
-
- gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
- comp = vexpr;
- }
-
- FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
- {
- if (!gimple_debug_bind_p (stmt))
- continue;
-
- FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
- SET_USE (use_p, comp);
-
- update_stmt (stmt);
- }
- }
- }
- }
-
- release_defs_bitset (toremove);
-
- BITMAP_FREE (toremove);
-}
-
-/* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
- for pointer_map_traverse. */
-
-static bool
-free_tree_niter_desc (const void *key ATTRIBUTE_UNUSED, void **value,
- void *data ATTRIBUTE_UNUSED)
-{
- struct tree_niter_desc *const niter = (struct tree_niter_desc *) *value;
-
- free (niter);
- return true;
-}
-
-/* Frees data allocated by the optimization of a single loop. */
-
-static void
-free_loop_data (struct ivopts_data *data)
-{
- unsigned i, j;
- bitmap_iterator bi;
- tree obj;
-
- if (data->niters)
- {
- pointer_map_traverse (data->niters, free_tree_niter_desc, NULL);
- pointer_map_destroy (data->niters);
- data->niters = NULL;
- }
-
- EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
- {
- struct version_info *info;
-
- info = ver_info (data, i);
- free (info->iv);
- info->iv = NULL;
- info->has_nonlin_use = false;
- info->preserve_biv = false;
- info->inv_id = 0;
- }
- bitmap_clear (data->relevant);
- bitmap_clear (data->important_candidates);
-
- for (i = 0; i < n_iv_uses (data); i++)
- {
- struct iv_use *use = iv_use (data, i);
-
- free (use->iv);
- BITMAP_FREE (use->related_cands);
- for (j = 0; j < use->n_map_members; j++)
- if (use->cost_map[j].depends_on)
- BITMAP_FREE (use->cost_map[j].depends_on);
- free (use->cost_map);
- free (use);
- }
- data->iv_uses.truncate (0);
-
- for (i = 0; i < n_iv_cands (data); i++)
- {
- struct iv_cand *cand = iv_cand (data, i);
-
- free (cand->iv);
- if (cand->depends_on)
- BITMAP_FREE (cand->depends_on);
- free (cand);
- }
- data->iv_candidates.truncate (0);
-
- if (data->version_info_size < num_ssa_names)
- {
- data->version_info_size = 2 * num_ssa_names;
- free (data->version_info);
- data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
- }
-
- data->max_inv_id = 0;
-
- FOR_EACH_VEC_ELT (decl_rtl_to_reset, i, obj)
- SET_DECL_RTL (obj, NULL_RTX);
-
- decl_rtl_to_reset.truncate (0);
-
- htab_empty (data->inv_expr_tab);
- data->inv_expr_id = 0;
-}
-
-/* Finalizes data structures used by the iv optimization pass. LOOPS is the
- loop tree. */
-
-static void
-tree_ssa_iv_optimize_finalize (struct ivopts_data *data)
-{
- free_loop_data (data);
- free (data->version_info);
- BITMAP_FREE (data->relevant);
- BITMAP_FREE (data->important_candidates);
-
- decl_rtl_to_reset.release ();
- data->iv_uses.release ();
- data->iv_candidates.release ();
- htab_delete (data->inv_expr_tab);
-}
-
-/* Returns true if the loop body BODY includes any function calls. */
-
-static bool
-loop_body_includes_call (basic_block *body, unsigned num_nodes)
-{
- gimple_stmt_iterator gsi;
- unsigned i;
-
- for (i = 0; i < num_nodes; i++)
- for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple stmt = gsi_stmt (gsi);
- if (is_gimple_call (stmt)
- && !is_inexpensive_builtin (gimple_call_fndecl (stmt)))
- return true;
- }
- return false;
-}
-
-/* Optimizes the LOOP. Returns true if anything changed. */
-
-static bool
-tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop)
-{
- bool changed = false;
- struct iv_ca *iv_ca;
- edge exit = single_dom_exit (loop);
- basic_block *body;
-
- gcc_assert (!data->niters);
- data->current_loop = loop;
- data->speed = optimize_loop_for_speed_p (loop);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Processing loop %d\n", loop->num);
-
- if (exit)
- {
- fprintf (dump_file, " single exit %d -> %d, exit condition ",
- exit->src->index, exit->dest->index);
- print_gimple_stmt (dump_file, last_stmt (exit->src), 0, TDF_SLIM);
- fprintf (dump_file, "\n");
- }
-
- fprintf (dump_file, "\n");
- }
-
- body = get_loop_body (loop);
- data->body_includes_call = loop_body_includes_call (body, loop->num_nodes);
- renumber_gimple_stmt_uids_in_blocks (body, loop->num_nodes);
- free (body);
-
- data->loop_single_exit_p = exit != NULL && loop_only_exit_p (loop, exit);
-
- /* For each ssa name determines whether it behaves as an induction variable
- in some loop. */
- if (!find_induction_variables (data))
- goto finish;
-
- /* Finds interesting uses (item 1). */
- find_interesting_uses (data);
- if (n_iv_uses (data) > MAX_CONSIDERED_USES)
- goto finish;
-
- /* Finds candidates for the induction variables (item 2). */
- find_iv_candidates (data);
-
- /* Calculates the costs (item 3, part 1). */
- determine_iv_costs (data);
- determine_use_iv_costs (data);
- determine_set_costs (data);
-
- /* Find the optimal set of induction variables (item 3, part 2). */
- iv_ca = find_optimal_iv_set (data);
- if (!iv_ca)
- goto finish;
- changed = true;
-
- /* Create the new induction variables (item 4, part 1). */
- create_new_ivs (data, iv_ca);
- iv_ca_free (&iv_ca);
-
- /* Rewrite the uses (item 4, part 2). */
- rewrite_uses (data);
-
- /* Remove the ivs that are unused after rewriting. */
- remove_unused_ivs (data);
-
- /* We have changed the structure of induction variables; it might happen
- that definitions in the scev database refer to some of them that were
- eliminated. */
- scev_reset ();
-
-finish:
- free_loop_data (data);
-
- return changed;
-}
-
-/* Main entry point. Optimizes induction variables in loops. */
-
-void
-tree_ssa_iv_optimize (void)
-{
- struct loop *loop;
- struct ivopts_data data;
- loop_iterator li;
-
- tree_ssa_iv_optimize_init (&data);
-
- /* Optimize the loops starting with the innermost ones. */
- FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- flow_loop_dump (loop, dump_file, NULL, 1);
-
- tree_ssa_iv_optimize_loop (&data, loop);
- }
-
- tree_ssa_iv_optimize_finalize (&data);
-}