aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/tree-ssa-ccp.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/tree-ssa-ccp.c')
-rw-r--r--gcc-4.8.1/gcc/tree-ssa-ccp.c2528
1 files changed, 0 insertions, 2528 deletions
diff --git a/gcc-4.8.1/gcc/tree-ssa-ccp.c b/gcc-4.8.1/gcc/tree-ssa-ccp.c
deleted file mode 100644
index a64bffcae..000000000
--- a/gcc-4.8.1/gcc/tree-ssa-ccp.c
+++ /dev/null
@@ -1,2528 +0,0 @@
-/* Conditional constant propagation pass for the GNU compiler.
- Copyright (C) 2000-2013 Free Software Foundation, Inc.
- Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
- Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it
-under the terms of the GNU General Public License as published by the
-Free Software Foundation; either version 3, or (at your option) any
-later version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT
-ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-/* Conditional constant propagation (CCP) is based on the SSA
- propagation engine (tree-ssa-propagate.c). Constant assignments of
- the form VAR = CST are propagated from the assignments into uses of
- VAR, which in turn may generate new constants. The simulation uses
- a four level lattice to keep track of constant values associated
- with SSA names. Given an SSA name V_i, it may take one of the
- following values:
-
- UNINITIALIZED -> the initial state of the value. This value
- is replaced with a correct initial value
- the first time the value is used, so the
- rest of the pass does not need to care about
- it. Using this value simplifies initialization
- of the pass, and prevents us from needlessly
- scanning statements that are never reached.
-
- UNDEFINED -> V_i is a local variable whose definition
- has not been processed yet. Therefore we
- don't yet know if its value is a constant
- or not.
-
- CONSTANT -> V_i has been found to hold a constant
- value C.
-
- VARYING -> V_i cannot take a constant value, or if it
- does, it is not possible to determine it
- at compile time.
-
- The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
-
- 1- In ccp_visit_stmt, we are interested in assignments whose RHS
- evaluates into a constant and conditional jumps whose predicate
- evaluates into a boolean true or false. When an assignment of
- the form V_i = CONST is found, V_i's lattice value is set to
- CONSTANT and CONST is associated with it. This causes the
- propagation engine to add all the SSA edges coming out the
- assignment into the worklists, so that statements that use V_i
- can be visited.
-
- If the statement is a conditional with a constant predicate, we
- mark the outgoing edges as executable or not executable
- depending on the predicate's value. This is then used when
- visiting PHI nodes to know when a PHI argument can be ignored.
-
-
- 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
- same constant C, then the LHS of the PHI is set to C. This
- evaluation is known as the "meet operation". Since one of the
- goals of this evaluation is to optimistically return constant
- values as often as possible, it uses two main short cuts:
-
- - If an argument is flowing in through a non-executable edge, it
- is ignored. This is useful in cases like this:
-
- if (PRED)
- a_9 = 3;
- else
- a_10 = 100;
- a_11 = PHI (a_9, a_10)
-
- If PRED is known to always evaluate to false, then we can
- assume that a_11 will always take its value from a_10, meaning
- that instead of consider it VARYING (a_9 and a_10 have
- different values), we can consider it CONSTANT 100.
-
- - If an argument has an UNDEFINED value, then it does not affect
- the outcome of the meet operation. If a variable V_i has an
- UNDEFINED value, it means that either its defining statement
- hasn't been visited yet or V_i has no defining statement, in
- which case the original symbol 'V' is being used
- uninitialized. Since 'V' is a local variable, the compiler
- may assume any initial value for it.
-
-
- After propagation, every variable V_i that ends up with a lattice
- value of CONSTANT will have the associated constant value in the
- array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
- final substitution and folding.
-
- References:
-
- Constant propagation with conditional branches,
- Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
-
- Building an Optimizing Compiler,
- Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
-
- Advanced Compiler Design and Implementation,
- Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "flags.h"
-#include "tm_p.h"
-#include "basic-block.h"
-#include "function.h"
-#include "gimple-pretty-print.h"
-#include "tree-flow.h"
-#include "tree-pass.h"
-#include "tree-ssa-propagate.h"
-#include "value-prof.h"
-#include "langhooks.h"
-#include "target.h"
-#include "diagnostic-core.h"
-#include "dbgcnt.h"
-#include "gimple-fold.h"
-#include "params.h"
-#include "hash-table.h"
-
-
-/* Possible lattice values. */
-typedef enum
-{
- UNINITIALIZED,
- UNDEFINED,
- CONSTANT,
- VARYING
-} ccp_lattice_t;
-
-struct prop_value_d {
- /* Lattice value. */
- ccp_lattice_t lattice_val;
-
- /* Propagated value. */
- tree value;
-
- /* Mask that applies to the propagated value during CCP. For
- X with a CONSTANT lattice value X & ~mask == value & ~mask. */
- double_int mask;
-};
-
-typedef struct prop_value_d prop_value_t;
-
-/* Array of propagated constant values. After propagation,
- CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
- the constant is held in an SSA name representing a memory store
- (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
- memory reference used to store (i.e., the LHS of the assignment
- doing the store). */
-static prop_value_t *const_val;
-static unsigned n_const_val;
-
-static void canonicalize_float_value (prop_value_t *);
-static bool ccp_fold_stmt (gimple_stmt_iterator *);
-
-/* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
-
-static void
-dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
-{
- switch (val.lattice_val)
- {
- case UNINITIALIZED:
- fprintf (outf, "%sUNINITIALIZED", prefix);
- break;
- case UNDEFINED:
- fprintf (outf, "%sUNDEFINED", prefix);
- break;
- case VARYING:
- fprintf (outf, "%sVARYING", prefix);
- break;
- case CONSTANT:
- if (TREE_CODE (val.value) != INTEGER_CST
- || val.mask.is_zero ())
- {
- fprintf (outf, "%sCONSTANT ", prefix);
- print_generic_expr (outf, val.value, dump_flags);
- }
- else
- {
- double_int cval = tree_to_double_int (val.value).and_not (val.mask);
- fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
- prefix, cval.high, cval.low);
- fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
- val.mask.high, val.mask.low);
- }
- break;
- default:
- gcc_unreachable ();
- }
-}
-
-
-/* Print lattice value VAL to stderr. */
-
-void debug_lattice_value (prop_value_t val);
-
-DEBUG_FUNCTION void
-debug_lattice_value (prop_value_t val)
-{
- dump_lattice_value (stderr, "", val);
- fprintf (stderr, "\n");
-}
-
-
-/* Compute a default value for variable VAR and store it in the
- CONST_VAL array. The following rules are used to get default
- values:
-
- 1- Global and static variables that are declared constant are
- considered CONSTANT.
-
- 2- Any other value is considered UNDEFINED. This is useful when
- considering PHI nodes. PHI arguments that are undefined do not
- change the constant value of the PHI node, which allows for more
- constants to be propagated.
-
- 3- Variables defined by statements other than assignments and PHI
- nodes are considered VARYING.
-
- 4- Initial values of variables that are not GIMPLE registers are
- considered VARYING. */
-
-static prop_value_t
-get_default_value (tree var)
-{
- prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
- gimple stmt;
-
- stmt = SSA_NAME_DEF_STMT (var);
-
- if (gimple_nop_p (stmt))
- {
- /* Variables defined by an empty statement are those used
- before being initialized. If VAR is a local variable, we
- can assume initially that it is UNDEFINED, otherwise we must
- consider it VARYING. */
- if (!virtual_operand_p (var)
- && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
- val.lattice_val = UNDEFINED;
- else
- {
- val.lattice_val = VARYING;
- val.mask = double_int_minus_one;
- }
- }
- else if (is_gimple_assign (stmt)
- /* Value-returning GIMPLE_CALL statements assign to
- a variable, and are treated similarly to GIMPLE_ASSIGN. */
- || (is_gimple_call (stmt)
- && gimple_call_lhs (stmt) != NULL_TREE)
- || gimple_code (stmt) == GIMPLE_PHI)
- {
- tree cst;
- if (gimple_assign_single_p (stmt)
- && DECL_P (gimple_assign_rhs1 (stmt))
- && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
- {
- val.lattice_val = CONSTANT;
- val.value = cst;
- }
- else
- /* Any other variable defined by an assignment or a PHI node
- is considered UNDEFINED. */
- val.lattice_val = UNDEFINED;
- }
- else
- {
- /* Otherwise, VAR will never take on a constant value. */
- val.lattice_val = VARYING;
- val.mask = double_int_minus_one;
- }
-
- return val;
-}
-
-
-/* Get the constant value associated with variable VAR. */
-
-static inline prop_value_t *
-get_value (tree var)
-{
- prop_value_t *val;
-
- if (const_val == NULL
- || SSA_NAME_VERSION (var) >= n_const_val)
- return NULL;
-
- val = &const_val[SSA_NAME_VERSION (var)];
- if (val->lattice_val == UNINITIALIZED)
- *val = get_default_value (var);
-
- canonicalize_float_value (val);
-
- return val;
-}
-
-/* Return the constant tree value associated with VAR. */
-
-static inline tree
-get_constant_value (tree var)
-{
- prop_value_t *val;
- if (TREE_CODE (var) != SSA_NAME)
- {
- if (is_gimple_min_invariant (var))
- return var;
- return NULL_TREE;
- }
- val = get_value (var);
- if (val
- && val->lattice_val == CONSTANT
- && (TREE_CODE (val->value) != INTEGER_CST
- || val->mask.is_zero ()))
- return val->value;
- return NULL_TREE;
-}
-
-/* Sets the value associated with VAR to VARYING. */
-
-static inline void
-set_value_varying (tree var)
-{
- prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
-
- val->lattice_val = VARYING;
- val->value = NULL_TREE;
- val->mask = double_int_minus_one;
-}
-
-/* For float types, modify the value of VAL to make ccp work correctly
- for non-standard values (-0, NaN):
-
- If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
- If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
- This is to fix the following problem (see PR 29921): Suppose we have
-
- x = 0.0 * y
-
- and we set value of y to NaN. This causes value of x to be set to NaN.
- When we later determine that y is in fact VARYING, fold uses the fact
- that HONOR_NANS is false, and we try to change the value of x to 0,
- causing an ICE. With HONOR_NANS being false, the real appearance of
- NaN would cause undefined behavior, though, so claiming that y (and x)
- are UNDEFINED initially is correct. */
-
-static void
-canonicalize_float_value (prop_value_t *val)
-{
- enum machine_mode mode;
- tree type;
- REAL_VALUE_TYPE d;
-
- if (val->lattice_val != CONSTANT
- || TREE_CODE (val->value) != REAL_CST)
- return;
-
- d = TREE_REAL_CST (val->value);
- type = TREE_TYPE (val->value);
- mode = TYPE_MODE (type);
-
- if (!HONOR_SIGNED_ZEROS (mode)
- && REAL_VALUE_MINUS_ZERO (d))
- {
- val->value = build_real (type, dconst0);
- return;
- }
-
- if (!HONOR_NANS (mode)
- && REAL_VALUE_ISNAN (d))
- {
- val->lattice_val = UNDEFINED;
- val->value = NULL;
- return;
- }
-}
-
-/* Return whether the lattice transition is valid. */
-
-static bool
-valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
-{
- /* Lattice transitions must always be monotonically increasing in
- value. */
- if (old_val.lattice_val < new_val.lattice_val)
- return true;
-
- if (old_val.lattice_val != new_val.lattice_val)
- return false;
-
- if (!old_val.value && !new_val.value)
- return true;
-
- /* Now both lattice values are CONSTANT. */
-
- /* Allow transitioning from PHI <&x, not executable> == &x
- to PHI <&x, &y> == common alignment. */
- if (TREE_CODE (old_val.value) != INTEGER_CST
- && TREE_CODE (new_val.value) == INTEGER_CST)
- return true;
-
- /* Bit-lattices have to agree in the still valid bits. */
- if (TREE_CODE (old_val.value) == INTEGER_CST
- && TREE_CODE (new_val.value) == INTEGER_CST)
- return tree_to_double_int (old_val.value).and_not (new_val.mask)
- == tree_to_double_int (new_val.value).and_not (new_val.mask);
-
- /* Otherwise constant values have to agree. */
- return operand_equal_p (old_val.value, new_val.value, 0);
-}
-
-/* Set the value for variable VAR to NEW_VAL. Return true if the new
- value is different from VAR's previous value. */
-
-static bool
-set_lattice_value (tree var, prop_value_t new_val)
-{
- /* We can deal with old UNINITIALIZED values just fine here. */
- prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
-
- canonicalize_float_value (&new_val);
-
- /* We have to be careful to not go up the bitwise lattice
- represented by the mask.
- ??? This doesn't seem to be the best place to enforce this. */
- if (new_val.lattice_val == CONSTANT
- && old_val->lattice_val == CONSTANT
- && TREE_CODE (new_val.value) == INTEGER_CST
- && TREE_CODE (old_val->value) == INTEGER_CST)
- {
- double_int diff;
- diff = tree_to_double_int (new_val.value)
- ^ tree_to_double_int (old_val->value);
- new_val.mask = new_val.mask | old_val->mask | diff;
- }
-
- gcc_assert (valid_lattice_transition (*old_val, new_val));
-
- /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
- caller that this was a non-transition. */
- if (old_val->lattice_val != new_val.lattice_val
- || (new_val.lattice_val == CONSTANT
- && TREE_CODE (new_val.value) == INTEGER_CST
- && (TREE_CODE (old_val->value) != INTEGER_CST
- || new_val.mask != old_val->mask)))
- {
- /* ??? We would like to delay creation of INTEGER_CSTs from
- partially constants here. */
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
- fprintf (dump_file, ". Adding SSA edges to worklist.\n");
- }
-
- *old_val = new_val;
-
- gcc_assert (new_val.lattice_val != UNINITIALIZED);
- return true;
- }
-
- return false;
-}
-
-static prop_value_t get_value_for_expr (tree, bool);
-static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
-static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
- tree, double_int, double_int,
- tree, double_int, double_int);
-
-/* Return a double_int that can be used for bitwise simplifications
- from VAL. */
-
-static double_int
-value_to_double_int (prop_value_t val)
-{
- if (val.value
- && TREE_CODE (val.value) == INTEGER_CST)
- return tree_to_double_int (val.value);
- else
- return double_int_zero;
-}
-
-/* Return the value for the address expression EXPR based on alignment
- information. */
-
-static prop_value_t
-get_value_from_alignment (tree expr)
-{
- tree type = TREE_TYPE (expr);
- prop_value_t val;
- unsigned HOST_WIDE_INT bitpos;
- unsigned int align;
-
- gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
-
- get_pointer_alignment_1 (expr, &align, &bitpos);
- val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
- ? double_int::mask (TYPE_PRECISION (type))
- : double_int_minus_one)
- .and_not (double_int::from_uhwi (align / BITS_PER_UNIT - 1));
- val.lattice_val = val.mask.is_minus_one () ? VARYING : CONSTANT;
- if (val.lattice_val == CONSTANT)
- val.value
- = double_int_to_tree (type,
- double_int::from_uhwi (bitpos / BITS_PER_UNIT));
- else
- val.value = NULL_TREE;
-
- return val;
-}
-
-/* Return the value for the tree operand EXPR. If FOR_BITS_P is true
- return constant bits extracted from alignment information for
- invariant addresses. */
-
-static prop_value_t
-get_value_for_expr (tree expr, bool for_bits_p)
-{
- prop_value_t val;
-
- if (TREE_CODE (expr) == SSA_NAME)
- {
- val = *get_value (expr);
- if (for_bits_p
- && val.lattice_val == CONSTANT
- && TREE_CODE (val.value) == ADDR_EXPR)
- val = get_value_from_alignment (val.value);
- }
- else if (is_gimple_min_invariant (expr)
- && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
- {
- val.lattice_val = CONSTANT;
- val.value = expr;
- val.mask = double_int_zero;
- canonicalize_float_value (&val);
- }
- else if (TREE_CODE (expr) == ADDR_EXPR)
- val = get_value_from_alignment (expr);
- else
- {
- val.lattice_val = VARYING;
- val.mask = double_int_minus_one;
- val.value = NULL_TREE;
- }
- return val;
-}
-
-/* Return the likely CCP lattice value for STMT.
-
- If STMT has no operands, then return CONSTANT.
-
- Else if undefinedness of operands of STMT cause its value to be
- undefined, then return UNDEFINED.
-
- Else if any operands of STMT are constants, then return CONSTANT.
-
- Else return VARYING. */
-
-static ccp_lattice_t
-likely_value (gimple stmt)
-{
- bool has_constant_operand, has_undefined_operand, all_undefined_operands;
- tree use;
- ssa_op_iter iter;
- unsigned i;
-
- enum gimple_code code = gimple_code (stmt);
-
- /* This function appears to be called only for assignments, calls,
- conditionals, and switches, due to the logic in visit_stmt. */
- gcc_assert (code == GIMPLE_ASSIGN
- || code == GIMPLE_CALL
- || code == GIMPLE_COND
- || code == GIMPLE_SWITCH);
-
- /* If the statement has volatile operands, it won't fold to a
- constant value. */
- if (gimple_has_volatile_ops (stmt))
- return VARYING;
-
- /* Arrive here for more complex cases. */
- has_constant_operand = false;
- has_undefined_operand = false;
- all_undefined_operands = true;
- FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
- {
- prop_value_t *val = get_value (use);
-
- if (val->lattice_val == UNDEFINED)
- has_undefined_operand = true;
- else
- all_undefined_operands = false;
-
- if (val->lattice_val == CONSTANT)
- has_constant_operand = true;
- }
-
- /* There may be constants in regular rhs operands. For calls we
- have to ignore lhs, fndecl and static chain, otherwise only
- the lhs. */
- for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
- i < gimple_num_ops (stmt); ++i)
- {
- tree op = gimple_op (stmt, i);
- if (!op || TREE_CODE (op) == SSA_NAME)
- continue;
- if (is_gimple_min_invariant (op))
- has_constant_operand = true;
- }
-
- if (has_constant_operand)
- all_undefined_operands = false;
-
- /* If the operation combines operands like COMPLEX_EXPR make sure to
- not mark the result UNDEFINED if only one part of the result is
- undefined. */
- if (has_undefined_operand && all_undefined_operands)
- return UNDEFINED;
- else if (code == GIMPLE_ASSIGN && has_undefined_operand)
- {
- switch (gimple_assign_rhs_code (stmt))
- {
- /* Unary operators are handled with all_undefined_operands. */
- case PLUS_EXPR:
- case MINUS_EXPR:
- case POINTER_PLUS_EXPR:
- /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
- Not bitwise operators, one VARYING operand may specify the
- result completely. Not logical operators for the same reason.
- Not COMPLEX_EXPR as one VARYING operand makes the result partly
- not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
- the undefined operand may be promoted. */
- return UNDEFINED;
-
- case ADDR_EXPR:
- /* If any part of an address is UNDEFINED, like the index
- of an ARRAY_EXPR, then treat the result as UNDEFINED. */
- return UNDEFINED;
-
- default:
- ;
- }
- }
- /* If there was an UNDEFINED operand but the result may be not UNDEFINED
- fall back to CONSTANT. During iteration UNDEFINED may still drop
- to CONSTANT. */
- if (has_undefined_operand)
- return CONSTANT;
-
- /* We do not consider virtual operands here -- load from read-only
- memory may have only VARYING virtual operands, but still be
- constant. */
- if (has_constant_operand
- || gimple_references_memory_p (stmt))
- return CONSTANT;
-
- return VARYING;
-}
-
-/* Returns true if STMT cannot be constant. */
-
-static bool
-surely_varying_stmt_p (gimple stmt)
-{
- /* If the statement has operands that we cannot handle, it cannot be
- constant. */
- if (gimple_has_volatile_ops (stmt))
- return true;
-
- /* If it is a call and does not return a value or is not a
- builtin and not an indirect call, it is varying. */
- if (is_gimple_call (stmt))
- {
- tree fndecl;
- if (!gimple_call_lhs (stmt)
- || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
- && !DECL_BUILT_IN (fndecl)))
- return true;
- }
-
- /* Any other store operation is not interesting. */
- else if (gimple_vdef (stmt))
- return true;
-
- /* Anything other than assignments and conditional jumps are not
- interesting for CCP. */
- if (gimple_code (stmt) != GIMPLE_ASSIGN
- && gimple_code (stmt) != GIMPLE_COND
- && gimple_code (stmt) != GIMPLE_SWITCH
- && gimple_code (stmt) != GIMPLE_CALL)
- return true;
-
- return false;
-}
-
-/* Initialize local data structures for CCP. */
-
-static void
-ccp_initialize (void)
-{
- basic_block bb;
-
- n_const_val = num_ssa_names;
- const_val = XCNEWVEC (prop_value_t, n_const_val);
-
- /* Initialize simulation flags for PHI nodes and statements. */
- FOR_EACH_BB (bb)
- {
- gimple_stmt_iterator i;
-
- for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
- {
- gimple stmt = gsi_stmt (i);
- bool is_varying;
-
- /* If the statement is a control insn, then we do not
- want to avoid simulating the statement once. Failure
- to do so means that those edges will never get added. */
- if (stmt_ends_bb_p (stmt))
- is_varying = false;
- else
- is_varying = surely_varying_stmt_p (stmt);
-
- if (is_varying)
- {
- tree def;
- ssa_op_iter iter;
-
- /* If the statement will not produce a constant, mark
- all its outputs VARYING. */
- FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
- set_value_varying (def);
- }
- prop_set_simulate_again (stmt, !is_varying);
- }
- }
-
- /* Now process PHI nodes. We never clear the simulate_again flag on
- phi nodes, since we do not know which edges are executable yet,
- except for phi nodes for virtual operands when we do not do store ccp. */
- FOR_EACH_BB (bb)
- {
- gimple_stmt_iterator i;
-
- for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
- {
- gimple phi = gsi_stmt (i);
-
- if (virtual_operand_p (gimple_phi_result (phi)))
- prop_set_simulate_again (phi, false);
- else
- prop_set_simulate_again (phi, true);
- }
- }
-}
-
-/* Debug count support. Reset the values of ssa names
- VARYING when the total number ssa names analyzed is
- beyond the debug count specified. */
-
-static void
-do_dbg_cnt (void)
-{
- unsigned i;
- for (i = 0; i < num_ssa_names; i++)
- {
- if (!dbg_cnt (ccp))
- {
- const_val[i].lattice_val = VARYING;
- const_val[i].mask = double_int_minus_one;
- const_val[i].value = NULL_TREE;
- }
- }
-}
-
-
-/* Do final substitution of propagated values, cleanup the flowgraph and
- free allocated storage.
-
- Return TRUE when something was optimized. */
-
-static bool
-ccp_finalize (void)
-{
- bool something_changed;
- unsigned i;
-
- do_dbg_cnt ();
-
- /* Derive alignment and misalignment information from partially
- constant pointers in the lattice. */
- for (i = 1; i < num_ssa_names; ++i)
- {
- tree name = ssa_name (i);
- prop_value_t *val;
- unsigned int tem, align;
-
- if (!name
- || !POINTER_TYPE_P (TREE_TYPE (name)))
- continue;
-
- val = get_value (name);
- if (val->lattice_val != CONSTANT
- || TREE_CODE (val->value) != INTEGER_CST)
- continue;
-
- /* Trailing constant bits specify the alignment, trailing value
- bits the misalignment. */
- tem = val->mask.low;
- align = (tem & -tem);
- if (align > 1)
- set_ptr_info_alignment (get_ptr_info (name), align,
- TREE_INT_CST_LOW (val->value) & (align - 1));
- }
-
- /* Perform substitutions based on the known constant values. */
- something_changed = substitute_and_fold (get_constant_value,
- ccp_fold_stmt, true);
-
- free (const_val);
- const_val = NULL;
- return something_changed;;
-}
-
-
-/* Compute the meet operator between *VAL1 and *VAL2. Store the result
- in VAL1.
-
- any M UNDEFINED = any
- any M VARYING = VARYING
- Ci M Cj = Ci if (i == j)
- Ci M Cj = VARYING if (i != j)
- */
-
-static void
-ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
-{
- if (val1->lattice_val == UNDEFINED)
- {
- /* UNDEFINED M any = any */
- *val1 = *val2;
- }
- else if (val2->lattice_val == UNDEFINED)
- {
- /* any M UNDEFINED = any
- Nothing to do. VAL1 already contains the value we want. */
- ;
- }
- else if (val1->lattice_val == VARYING
- || val2->lattice_val == VARYING)
- {
- /* any M VARYING = VARYING. */
- val1->lattice_val = VARYING;
- val1->mask = double_int_minus_one;
- val1->value = NULL_TREE;
- }
- else if (val1->lattice_val == CONSTANT
- && val2->lattice_val == CONSTANT
- && TREE_CODE (val1->value) == INTEGER_CST
- && TREE_CODE (val2->value) == INTEGER_CST)
- {
- /* Ci M Cj = Ci if (i == j)
- Ci M Cj = VARYING if (i != j)
-
- For INTEGER_CSTs mask unequal bits. If no equal bits remain,
- drop to varying. */
- val1->mask = val1->mask | val2->mask
- | (tree_to_double_int (val1->value)
- ^ tree_to_double_int (val2->value));
- if (val1->mask.is_minus_one ())
- {
- val1->lattice_val = VARYING;
- val1->value = NULL_TREE;
- }
- }
- else if (val1->lattice_val == CONSTANT
- && val2->lattice_val == CONSTANT
- && simple_cst_equal (val1->value, val2->value) == 1)
- {
- /* Ci M Cj = Ci if (i == j)
- Ci M Cj = VARYING if (i != j)
-
- VAL1 already contains the value we want for equivalent values. */
- }
- else if (val1->lattice_val == CONSTANT
- && val2->lattice_val == CONSTANT
- && (TREE_CODE (val1->value) == ADDR_EXPR
- || TREE_CODE (val2->value) == ADDR_EXPR))
- {
- /* When not equal addresses are involved try meeting for
- alignment. */
- prop_value_t tem = *val2;
- if (TREE_CODE (val1->value) == ADDR_EXPR)
- *val1 = get_value_for_expr (val1->value, true);
- if (TREE_CODE (val2->value) == ADDR_EXPR)
- tem = get_value_for_expr (val2->value, true);
- ccp_lattice_meet (val1, &tem);
- }
- else
- {
- /* Any other combination is VARYING. */
- val1->lattice_val = VARYING;
- val1->mask = double_int_minus_one;
- val1->value = NULL_TREE;
- }
-}
-
-
-/* Loop through the PHI_NODE's parameters for BLOCK and compare their
- lattice values to determine PHI_NODE's lattice value. The value of a
- PHI node is determined calling ccp_lattice_meet with all the arguments
- of the PHI node that are incoming via executable edges. */
-
-static enum ssa_prop_result
-ccp_visit_phi_node (gimple phi)
-{
- unsigned i;
- prop_value_t *old_val, new_val;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nVisiting PHI node: ");
- print_gimple_stmt (dump_file, phi, 0, dump_flags);
- }
-
- old_val = get_value (gimple_phi_result (phi));
- switch (old_val->lattice_val)
- {
- case VARYING:
- return SSA_PROP_VARYING;
-
- case CONSTANT:
- new_val = *old_val;
- break;
-
- case UNDEFINED:
- new_val.lattice_val = UNDEFINED;
- new_val.value = NULL_TREE;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- for (i = 0; i < gimple_phi_num_args (phi); i++)
- {
- /* Compute the meet operator over all the PHI arguments flowing
- through executable edges. */
- edge e = gimple_phi_arg_edge (phi, i);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file,
- "\n Argument #%d (%d -> %d %sexecutable)\n",
- i, e->src->index, e->dest->index,
- (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
- }
-
- /* If the incoming edge is executable, Compute the meet operator for
- the existing value of the PHI node and the current PHI argument. */
- if (e->flags & EDGE_EXECUTABLE)
- {
- tree arg = gimple_phi_arg (phi, i)->def;
- prop_value_t arg_val = get_value_for_expr (arg, false);
-
- ccp_lattice_meet (&new_val, &arg_val);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\t");
- print_generic_expr (dump_file, arg, dump_flags);
- dump_lattice_value (dump_file, "\tValue: ", arg_val);
- fprintf (dump_file, "\n");
- }
-
- if (new_val.lattice_val == VARYING)
- break;
- }
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
- fprintf (dump_file, "\n\n");
- }
-
- /* Make the transition to the new value. */
- if (set_lattice_value (gimple_phi_result (phi), new_val))
- {
- if (new_val.lattice_val == VARYING)
- return SSA_PROP_VARYING;
- else
- return SSA_PROP_INTERESTING;
- }
- else
- return SSA_PROP_NOT_INTERESTING;
-}
-
-/* Return the constant value for OP or OP otherwise. */
-
-static tree
-valueize_op (tree op)
-{
- if (TREE_CODE (op) == SSA_NAME)
- {
- tree tem = get_constant_value (op);
- if (tem)
- return tem;
- }
- return op;
-}
-
-/* CCP specific front-end to the non-destructive constant folding
- routines.
-
- Attempt to simplify the RHS of STMT knowing that one or more
- operands are constants.
-
- If simplification is possible, return the simplified RHS,
- otherwise return the original RHS or NULL_TREE. */
-
-static tree
-ccp_fold (gimple stmt)
-{
- location_t loc = gimple_location (stmt);
- switch (gimple_code (stmt))
- {
- case GIMPLE_COND:
- {
- /* Handle comparison operators that can appear in GIMPLE form. */
- tree op0 = valueize_op (gimple_cond_lhs (stmt));
- tree op1 = valueize_op (gimple_cond_rhs (stmt));
- enum tree_code code = gimple_cond_code (stmt);
- return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
- }
-
- case GIMPLE_SWITCH:
- {
- /* Return the constant switch index. */
- return valueize_op (gimple_switch_index (stmt));
- }
-
- case GIMPLE_ASSIGN:
- case GIMPLE_CALL:
- return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Apply the operation CODE in type TYPE to the value, mask pair
- RVAL and RMASK representing a value of type RTYPE and set
- the value, mask pair *VAL and *MASK to the result. */
-
-static void
-bit_value_unop_1 (enum tree_code code, tree type,
- double_int *val, double_int *mask,
- tree rtype, double_int rval, double_int rmask)
-{
- switch (code)
- {
- case BIT_NOT_EXPR:
- *mask = rmask;
- *val = ~rval;
- break;
-
- case NEGATE_EXPR:
- {
- double_int temv, temm;
- /* Return ~rval + 1. */
- bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
- bit_value_binop_1 (PLUS_EXPR, type, val, mask,
- type, temv, temm,
- type, double_int_one, double_int_zero);
- break;
- }
-
- CASE_CONVERT:
- {
- bool uns;
-
- /* First extend mask and value according to the original type. */
- uns = TYPE_UNSIGNED (rtype);
- *mask = rmask.ext (TYPE_PRECISION (rtype), uns);
- *val = rval.ext (TYPE_PRECISION (rtype), uns);
-
- /* Then extend mask and value according to the target type. */
- uns = TYPE_UNSIGNED (type);
- *mask = (*mask).ext (TYPE_PRECISION (type), uns);
- *val = (*val).ext (TYPE_PRECISION (type), uns);
- break;
- }
-
- default:
- *mask = double_int_minus_one;
- break;
- }
-}
-
-/* Apply the operation CODE in type TYPE to the value, mask pairs
- R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
- and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
-
-static void
-bit_value_binop_1 (enum tree_code code, tree type,
- double_int *val, double_int *mask,
- tree r1type, double_int r1val, double_int r1mask,
- tree r2type, double_int r2val, double_int r2mask)
-{
- bool uns = TYPE_UNSIGNED (type);
- /* Assume we'll get a constant result. Use an initial varying value,
- we fall back to varying in the end if necessary. */
- *mask = double_int_minus_one;
- switch (code)
- {
- case BIT_AND_EXPR:
- /* The mask is constant where there is a known not
- set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
- *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
- *val = r1val & r2val;
- break;
-
- case BIT_IOR_EXPR:
- /* The mask is constant where there is a known
- set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
- *mask = (r1mask | r2mask)
- .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
- *val = r1val | r2val;
- break;
-
- case BIT_XOR_EXPR:
- /* m1 | m2 */
- *mask = r1mask | r2mask;
- *val = r1val ^ r2val;
- break;
-
- case LROTATE_EXPR:
- case RROTATE_EXPR:
- if (r2mask.is_zero ())
- {
- HOST_WIDE_INT shift = r2val.low;
- if (code == RROTATE_EXPR)
- shift = -shift;
- *mask = r1mask.lrotate (shift, TYPE_PRECISION (type));
- *val = r1val.lrotate (shift, TYPE_PRECISION (type));
- }
- break;
-
- case LSHIFT_EXPR:
- case RSHIFT_EXPR:
- /* ??? We can handle partially known shift counts if we know
- its sign. That way we can tell that (x << (y | 8)) & 255
- is zero. */
- if (r2mask.is_zero ())
- {
- HOST_WIDE_INT shift = r2val.low;
- if (code == RSHIFT_EXPR)
- shift = -shift;
- /* We need to know if we are doing a left or a right shift
- to properly shift in zeros for left shift and unsigned
- right shifts and the sign bit for signed right shifts.
- For signed right shifts we shift in varying in case
- the sign bit was varying. */
- if (shift > 0)
- {
- *mask = r1mask.llshift (shift, TYPE_PRECISION (type));
- *val = r1val.llshift (shift, TYPE_PRECISION (type));
- }
- else if (shift < 0)
- {
- shift = -shift;
- *mask = r1mask.rshift (shift, TYPE_PRECISION (type), !uns);
- *val = r1val.rshift (shift, TYPE_PRECISION (type), !uns);
- }
- else
- {
- *mask = r1mask;
- *val = r1val;
- }
- }
- break;
-
- case PLUS_EXPR:
- case POINTER_PLUS_EXPR:
- {
- double_int lo, hi;
- /* Do the addition with unknown bits set to zero, to give carry-ins of
- zero wherever possible. */
- lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
- lo = lo.ext (TYPE_PRECISION (type), uns);
- /* Do the addition with unknown bits set to one, to give carry-ins of
- one wherever possible. */
- hi = (r1val | r1mask) + (r2val | r2mask);
- hi = hi.ext (TYPE_PRECISION (type), uns);
- /* Each bit in the result is known if (a) the corresponding bits in
- both inputs are known, and (b) the carry-in to that bit position
- is known. We can check condition (b) by seeing if we got the same
- result with minimised carries as with maximised carries. */
- *mask = r1mask | r2mask | (lo ^ hi);
- *mask = (*mask).ext (TYPE_PRECISION (type), uns);
- /* It shouldn't matter whether we choose lo or hi here. */
- *val = lo;
- break;
- }
-
- case MINUS_EXPR:
- {
- double_int temv, temm;
- bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
- r2type, r2val, r2mask);
- bit_value_binop_1 (PLUS_EXPR, type, val, mask,
- r1type, r1val, r1mask,
- r2type, temv, temm);
- break;
- }
-
- case MULT_EXPR:
- {
- /* Just track trailing zeros in both operands and transfer
- them to the other. */
- int r1tz = (r1val | r1mask).trailing_zeros ();
- int r2tz = (r2val | r2mask).trailing_zeros ();
- if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
- {
- *mask = double_int_zero;
- *val = double_int_zero;
- }
- else if (r1tz + r2tz > 0)
- {
- *mask = ~double_int::mask (r1tz + r2tz);
- *mask = (*mask).ext (TYPE_PRECISION (type), uns);
- *val = double_int_zero;
- }
- break;
- }
-
- case EQ_EXPR:
- case NE_EXPR:
- {
- double_int m = r1mask | r2mask;
- if (r1val.and_not (m) != r2val.and_not (m))
- {
- *mask = double_int_zero;
- *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
- }
- else
- {
- /* We know the result of a comparison is always one or zero. */
- *mask = double_int_one;
- *val = double_int_zero;
- }
- break;
- }
-
- case GE_EXPR:
- case GT_EXPR:
- {
- double_int tem = r1val;
- r1val = r2val;
- r2val = tem;
- tem = r1mask;
- r1mask = r2mask;
- r2mask = tem;
- code = swap_tree_comparison (code);
- }
- /* Fallthru. */
- case LT_EXPR:
- case LE_EXPR:
- {
- int minmax, maxmin;
- /* If the most significant bits are not known we know nothing. */
- if (r1mask.is_negative () || r2mask.is_negative ())
- break;
-
- /* For comparisons the signedness is in the comparison operands. */
- uns = TYPE_UNSIGNED (r1type);
-
- /* If we know the most significant bits we know the values
- value ranges by means of treating varying bits as zero
- or one. Do a cross comparison of the max/min pairs. */
- maxmin = (r1val | r1mask).cmp (r2val.and_not (r2mask), uns);
- minmax = r1val.and_not (r1mask).cmp (r2val | r2mask, uns);
- if (maxmin < 0) /* r1 is less than r2. */
- {
- *mask = double_int_zero;
- *val = double_int_one;
- }
- else if (minmax > 0) /* r1 is not less or equal to r2. */
- {
- *mask = double_int_zero;
- *val = double_int_zero;
- }
- else if (maxmin == minmax) /* r1 and r2 are equal. */
- {
- /* This probably should never happen as we'd have
- folded the thing during fully constant value folding. */
- *mask = double_int_zero;
- *val = (code == LE_EXPR ? double_int_one : double_int_zero);
- }
- else
- {
- /* We know the result of a comparison is always one or zero. */
- *mask = double_int_one;
- *val = double_int_zero;
- }
- break;
- }
-
- default:;
- }
-}
-
-/* Return the propagation value when applying the operation CODE to
- the value RHS yielding type TYPE. */
-
-static prop_value_t
-bit_value_unop (enum tree_code code, tree type, tree rhs)
-{
- prop_value_t rval = get_value_for_expr (rhs, true);
- double_int value, mask;
- prop_value_t val;
-
- if (rval.lattice_val == UNDEFINED)
- return rval;
-
- gcc_assert ((rval.lattice_val == CONSTANT
- && TREE_CODE (rval.value) == INTEGER_CST)
- || rval.mask.is_minus_one ());
- bit_value_unop_1 (code, type, &value, &mask,
- TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
- if (!mask.is_minus_one ())
- {
- val.lattice_val = CONSTANT;
- val.mask = mask;
- /* ??? Delay building trees here. */
- val.value = double_int_to_tree (type, value);
- }
- else
- {
- val.lattice_val = VARYING;
- val.value = NULL_TREE;
- val.mask = double_int_minus_one;
- }
- return val;
-}
-
-/* Return the propagation value when applying the operation CODE to
- the values RHS1 and RHS2 yielding type TYPE. */
-
-static prop_value_t
-bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
-{
- prop_value_t r1val = get_value_for_expr (rhs1, true);
- prop_value_t r2val = get_value_for_expr (rhs2, true);
- double_int value, mask;
- prop_value_t val;
-
- if (r1val.lattice_val == UNDEFINED
- || r2val.lattice_val == UNDEFINED)
- {
- val.lattice_val = VARYING;
- val.value = NULL_TREE;
- val.mask = double_int_minus_one;
- return val;
- }
-
- gcc_assert ((r1val.lattice_val == CONSTANT
- && TREE_CODE (r1val.value) == INTEGER_CST)
- || r1val.mask.is_minus_one ());
- gcc_assert ((r2val.lattice_val == CONSTANT
- && TREE_CODE (r2val.value) == INTEGER_CST)
- || r2val.mask.is_minus_one ());
- bit_value_binop_1 (code, type, &value, &mask,
- TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
- TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
- if (!mask.is_minus_one ())
- {
- val.lattice_val = CONSTANT;
- val.mask = mask;
- /* ??? Delay building trees here. */
- val.value = double_int_to_tree (type, value);
- }
- else
- {
- val.lattice_val = VARYING;
- val.value = NULL_TREE;
- val.mask = double_int_minus_one;
- }
- return val;
-}
-
-/* Return the propagation value when applying __builtin_assume_aligned to
- its arguments. */
-
-static prop_value_t
-bit_value_assume_aligned (gimple stmt)
-{
- tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE;
- tree type = TREE_TYPE (ptr);
- unsigned HOST_WIDE_INT aligni, misaligni = 0;
- prop_value_t ptrval = get_value_for_expr (ptr, true);
- prop_value_t alignval;
- double_int value, mask;
- prop_value_t val;
- if (ptrval.lattice_val == UNDEFINED)
- return ptrval;
- gcc_assert ((ptrval.lattice_val == CONSTANT
- && TREE_CODE (ptrval.value) == INTEGER_CST)
- || ptrval.mask.is_minus_one ());
- align = gimple_call_arg (stmt, 1);
- if (!host_integerp (align, 1))
- return ptrval;
- aligni = tree_low_cst (align, 1);
- if (aligni <= 1
- || (aligni & (aligni - 1)) != 0)
- return ptrval;
- if (gimple_call_num_args (stmt) > 2)
- {
- misalign = gimple_call_arg (stmt, 2);
- if (!host_integerp (misalign, 1))
- return ptrval;
- misaligni = tree_low_cst (misalign, 1);
- if (misaligni >= aligni)
- return ptrval;
- }
- align = build_int_cst_type (type, -aligni);
- alignval = get_value_for_expr (align, true);
- bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask,
- type, value_to_double_int (ptrval), ptrval.mask,
- type, value_to_double_int (alignval), alignval.mask);
- if (!mask.is_minus_one ())
- {
- val.lattice_val = CONSTANT;
- val.mask = mask;
- gcc_assert ((mask.low & (aligni - 1)) == 0);
- gcc_assert ((value.low & (aligni - 1)) == 0);
- value.low |= misaligni;
- /* ??? Delay building trees here. */
- val.value = double_int_to_tree (type, value);
- }
- else
- {
- val.lattice_val = VARYING;
- val.value = NULL_TREE;
- val.mask = double_int_minus_one;
- }
- return val;
-}
-
-/* Evaluate statement STMT.
- Valid only for assignments, calls, conditionals, and switches. */
-
-static prop_value_t
-evaluate_stmt (gimple stmt)
-{
- prop_value_t val;
- tree simplified = NULL_TREE;
- ccp_lattice_t likelyvalue = likely_value (stmt);
- bool is_constant = false;
- unsigned int align;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "which is likely ");
- switch (likelyvalue)
- {
- case CONSTANT:
- fprintf (dump_file, "CONSTANT");
- break;
- case UNDEFINED:
- fprintf (dump_file, "UNDEFINED");
- break;
- case VARYING:
- fprintf (dump_file, "VARYING");
- break;
- default:;
- }
- fprintf (dump_file, "\n");
- }
-
- /* If the statement is likely to have a CONSTANT result, then try
- to fold the statement to determine the constant value. */
- /* FIXME. This is the only place that we call ccp_fold.
- Since likely_value never returns CONSTANT for calls, we will
- not attempt to fold them, including builtins that may profit. */
- if (likelyvalue == CONSTANT)
- {
- fold_defer_overflow_warnings ();
- simplified = ccp_fold (stmt);
- is_constant = simplified && is_gimple_min_invariant (simplified);
- fold_undefer_overflow_warnings (is_constant, stmt, 0);
- if (is_constant)
- {
- /* The statement produced a constant value. */
- val.lattice_val = CONSTANT;
- val.value = simplified;
- val.mask = double_int_zero;
- }
- }
- /* If the statement is likely to have a VARYING result, then do not
- bother folding the statement. */
- else if (likelyvalue == VARYING)
- {
- enum gimple_code code = gimple_code (stmt);
- if (code == GIMPLE_ASSIGN)
- {
- enum tree_code subcode = gimple_assign_rhs_code (stmt);
-
- /* Other cases cannot satisfy is_gimple_min_invariant
- without folding. */
- if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
- simplified = gimple_assign_rhs1 (stmt);
- }
- else if (code == GIMPLE_SWITCH)
- simplified = gimple_switch_index (stmt);
- else
- /* These cannot satisfy is_gimple_min_invariant without folding. */
- gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
- is_constant = simplified && is_gimple_min_invariant (simplified);
- if (is_constant)
- {
- /* The statement produced a constant value. */
- val.lattice_val = CONSTANT;
- val.value = simplified;
- val.mask = double_int_zero;
- }
- }
-
- /* Resort to simplification for bitwise tracking. */
- if (flag_tree_bit_ccp
- && (likelyvalue == CONSTANT || is_gimple_call (stmt))
- && !is_constant)
- {
- enum gimple_code code = gimple_code (stmt);
- val.lattice_val = VARYING;
- val.value = NULL_TREE;
- val.mask = double_int_minus_one;
- if (code == GIMPLE_ASSIGN)
- {
- enum tree_code subcode = gimple_assign_rhs_code (stmt);
- tree rhs1 = gimple_assign_rhs1 (stmt);
- switch (get_gimple_rhs_class (subcode))
- {
- case GIMPLE_SINGLE_RHS:
- if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
- || POINTER_TYPE_P (TREE_TYPE (rhs1)))
- val = get_value_for_expr (rhs1, true);
- break;
-
- case GIMPLE_UNARY_RHS:
- if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
- || POINTER_TYPE_P (TREE_TYPE (rhs1)))
- && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
- || POINTER_TYPE_P (gimple_expr_type (stmt))))
- val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
- break;
-
- case GIMPLE_BINARY_RHS:
- if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
- || POINTER_TYPE_P (TREE_TYPE (rhs1)))
- {
- tree lhs = gimple_assign_lhs (stmt);
- tree rhs2 = gimple_assign_rhs2 (stmt);
- val = bit_value_binop (subcode,
- TREE_TYPE (lhs), rhs1, rhs2);
- }
- break;
-
- default:;
- }
- }
- else if (code == GIMPLE_COND)
- {
- enum tree_code code = gimple_cond_code (stmt);
- tree rhs1 = gimple_cond_lhs (stmt);
- tree rhs2 = gimple_cond_rhs (stmt);
- if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
- || POINTER_TYPE_P (TREE_TYPE (rhs1)))
- val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
- }
- else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
- {
- tree fndecl = gimple_call_fndecl (stmt);
- switch (DECL_FUNCTION_CODE (fndecl))
- {
- case BUILT_IN_MALLOC:
- case BUILT_IN_REALLOC:
- case BUILT_IN_CALLOC:
- case BUILT_IN_STRDUP:
- case BUILT_IN_STRNDUP:
- val.lattice_val = CONSTANT;
- val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
- val.mask = double_int::from_shwi
- (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
- / BITS_PER_UNIT - 1));
- break;
-
- case BUILT_IN_ALLOCA:
- case BUILT_IN_ALLOCA_WITH_ALIGN:
- align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
- ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
- : BIGGEST_ALIGNMENT);
- val.lattice_val = CONSTANT;
- val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
- val.mask = double_int::from_shwi (~(((HOST_WIDE_INT) align)
- / BITS_PER_UNIT - 1));
- break;
-
- /* These builtins return their first argument, unmodified. */
- case BUILT_IN_MEMCPY:
- case BUILT_IN_MEMMOVE:
- case BUILT_IN_MEMSET:
- case BUILT_IN_STRCPY:
- case BUILT_IN_STRNCPY:
- case BUILT_IN_MEMCPY_CHK:
- case BUILT_IN_MEMMOVE_CHK:
- case BUILT_IN_MEMSET_CHK:
- case BUILT_IN_STRCPY_CHK:
- case BUILT_IN_STRNCPY_CHK:
- val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
- break;
-
- case BUILT_IN_ASSUME_ALIGNED:
- val = bit_value_assume_aligned (stmt);
- break;
-
- default:;
- }
- }
- is_constant = (val.lattice_val == CONSTANT);
- }
-
- if (!is_constant)
- {
- /* The statement produced a nonconstant value. If the statement
- had UNDEFINED operands, then the result of the statement
- should be UNDEFINED. Otherwise, the statement is VARYING. */
- if (likelyvalue == UNDEFINED)
- {
- val.lattice_val = likelyvalue;
- val.mask = double_int_zero;
- }
- else
- {
- val.lattice_val = VARYING;
- val.mask = double_int_minus_one;
- }
-
- val.value = NULL_TREE;
- }
-
- return val;
-}
-
-typedef hash_table <pointer_hash <gimple_statement_d> > gimple_htab;
-
-/* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
- each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
-
-static void
-insert_clobber_before_stack_restore (tree saved_val, tree var,
- gimple_htab *visited)
-{
- gimple stmt, clobber_stmt;
- tree clobber;
- imm_use_iterator iter;
- gimple_stmt_iterator i;
- gimple *slot;
-
- FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
- if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
- {
- clobber = build_constructor (TREE_TYPE (var),
- NULL);
- TREE_THIS_VOLATILE (clobber) = 1;
- clobber_stmt = gimple_build_assign (var, clobber);
-
- i = gsi_for_stmt (stmt);
- gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
- }
- else if (gimple_code (stmt) == GIMPLE_PHI)
- {
- if (!visited->is_created ())
- visited->create (10);
-
- slot = visited->find_slot (stmt, INSERT);
- if (*slot != NULL)
- continue;
-
- *slot = stmt;
- insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
- visited);
- }
- else
- gcc_assert (is_gimple_debug (stmt));
-}
-
-/* Advance the iterator to the previous non-debug gimple statement in the same
- or dominating basic block. */
-
-static inline void
-gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
-{
- basic_block dom;
-
- gsi_prev_nondebug (i);
- while (gsi_end_p (*i))
- {
- dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
- if (dom == NULL || dom == ENTRY_BLOCK_PTR)
- return;
-
- *i = gsi_last_bb (dom);
- }
-}
-
-/* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
- a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
-
- It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
- previous pass (such as DOM) duplicated it along multiple paths to a BB. In
- that case the function gives up without inserting the clobbers. */
-
-static void
-insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
-{
- gimple stmt;
- tree saved_val;
- gimple_htab visited;
-
- for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
- {
- stmt = gsi_stmt (i);
-
- if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
- continue;
-
- saved_val = gimple_call_lhs (stmt);
- if (saved_val == NULL_TREE)
- continue;
-
- insert_clobber_before_stack_restore (saved_val, var, &visited);
- break;
- }
-
- if (visited.is_created ())
- visited.dispose ();
-}
-
-/* Detects a __builtin_alloca_with_align with constant size argument. Declares
- fixed-size array and returns the address, if found, otherwise returns
- NULL_TREE. */
-
-static tree
-fold_builtin_alloca_with_align (gimple stmt)
-{
- unsigned HOST_WIDE_INT size, threshold, n_elem;
- tree lhs, arg, block, var, elem_type, array_type;
-
- /* Get lhs. */
- lhs = gimple_call_lhs (stmt);
- if (lhs == NULL_TREE)
- return NULL_TREE;
-
- /* Detect constant argument. */
- arg = get_constant_value (gimple_call_arg (stmt, 0));
- if (arg == NULL_TREE
- || TREE_CODE (arg) != INTEGER_CST
- || !host_integerp (arg, 1))
- return NULL_TREE;
-
- size = TREE_INT_CST_LOW (arg);
-
- /* Heuristic: don't fold large allocas. */
- threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
- /* In case the alloca is located at function entry, it has the same lifetime
- as a declared array, so we allow a larger size. */
- block = gimple_block (stmt);
- if (!(cfun->after_inlining
- && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
- threshold /= 10;
- if (size > threshold)
- return NULL_TREE;
-
- /* Declare array. */
- elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
- n_elem = size * 8 / BITS_PER_UNIT;
- array_type = build_array_type_nelts (elem_type, n_elem);
- var = create_tmp_var (array_type, NULL);
- DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
- {
- struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
- if (pi != NULL && !pi->pt.anything)
- {
- bool singleton_p;
- unsigned uid;
- singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
- gcc_assert (singleton_p);
- SET_DECL_PT_UID (var, uid);
- }
- }
-
- /* Fold alloca to the address of the array. */
- return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
-}
-
-/* Fold the stmt at *GSI with CCP specific information that propagating
- and regular folding does not catch. */
-
-static bool
-ccp_fold_stmt (gimple_stmt_iterator *gsi)
-{
- gimple stmt = gsi_stmt (*gsi);
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_COND:
- {
- prop_value_t val;
- /* Statement evaluation will handle type mismatches in constants
- more gracefully than the final propagation. This allows us to
- fold more conditionals here. */
- val = evaluate_stmt (stmt);
- if (val.lattice_val != CONSTANT
- || !val.mask.is_zero ())
- return false;
-
- if (dump_file)
- {
- fprintf (dump_file, "Folding predicate ");
- print_gimple_expr (dump_file, stmt, 0, 0);
- fprintf (dump_file, " to ");
- print_generic_expr (dump_file, val.value, 0);
- fprintf (dump_file, "\n");
- }
-
- if (integer_zerop (val.value))
- gimple_cond_make_false (stmt);
- else
- gimple_cond_make_true (stmt);
-
- return true;
- }
-
- case GIMPLE_CALL:
- {
- tree lhs = gimple_call_lhs (stmt);
- int flags = gimple_call_flags (stmt);
- tree val;
- tree argt;
- bool changed = false;
- unsigned i;
-
- /* If the call was folded into a constant make sure it goes
- away even if we cannot propagate into all uses because of
- type issues. */
- if (lhs
- && TREE_CODE (lhs) == SSA_NAME
- && (val = get_constant_value (lhs))
- /* Don't optimize away calls that have side-effects. */
- && (flags & (ECF_CONST|ECF_PURE)) != 0
- && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
- {
- tree new_rhs = unshare_expr (val);
- bool res;
- if (!useless_type_conversion_p (TREE_TYPE (lhs),
- TREE_TYPE (new_rhs)))
- new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
- res = update_call_from_tree (gsi, new_rhs);
- gcc_assert (res);
- return true;
- }
-
- /* Internal calls provide no argument types, so the extra laxity
- for normal calls does not apply. */
- if (gimple_call_internal_p (stmt))
- return false;
-
- /* The heuristic of fold_builtin_alloca_with_align differs before and
- after inlining, so we don't require the arg to be changed into a
- constant for folding, but just to be constant. */
- if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
- {
- tree new_rhs = fold_builtin_alloca_with_align (stmt);
- if (new_rhs)
- {
- bool res = update_call_from_tree (gsi, new_rhs);
- tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
- gcc_assert (res);
- insert_clobbers_for_var (*gsi, var);
- return true;
- }
- }
-
- /* Propagate into the call arguments. Compared to replace_uses_in
- this can use the argument slot types for type verification
- instead of the current argument type. We also can safely
- drop qualifiers here as we are dealing with constants anyway. */
- argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
- for (i = 0; i < gimple_call_num_args (stmt) && argt;
- ++i, argt = TREE_CHAIN (argt))
- {
- tree arg = gimple_call_arg (stmt, i);
- if (TREE_CODE (arg) == SSA_NAME
- && (val = get_constant_value (arg))
- && useless_type_conversion_p
- (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
- TYPE_MAIN_VARIANT (TREE_TYPE (val))))
- {
- gimple_call_set_arg (stmt, i, unshare_expr (val));
- changed = true;
- }
- }
-
- return changed;
- }
-
- case GIMPLE_ASSIGN:
- {
- tree lhs = gimple_assign_lhs (stmt);
- tree val;
-
- /* If we have a load that turned out to be constant replace it
- as we cannot propagate into all uses in all cases. */
- if (gimple_assign_single_p (stmt)
- && TREE_CODE (lhs) == SSA_NAME
- && (val = get_constant_value (lhs)))
- {
- tree rhs = unshare_expr (val);
- if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
- rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
- gimple_assign_set_rhs_from_tree (gsi, rhs);
- return true;
- }
-
- return false;
- }
-
- default:
- return false;
- }
-}
-
-/* Visit the assignment statement STMT. Set the value of its LHS to the
- value computed by the RHS and store LHS in *OUTPUT_P. If STMT
- creates virtual definitions, set the value of each new name to that
- of the RHS (if we can derive a constant out of the RHS).
- Value-returning call statements also perform an assignment, and
- are handled here. */
-
-static enum ssa_prop_result
-visit_assignment (gimple stmt, tree *output_p)
-{
- prop_value_t val;
- enum ssa_prop_result retval;
-
- tree lhs = gimple_get_lhs (stmt);
-
- gcc_assert (gimple_code (stmt) != GIMPLE_CALL
- || gimple_call_lhs (stmt) != NULL_TREE);
-
- if (gimple_assign_single_p (stmt)
- && gimple_assign_rhs_code (stmt) == SSA_NAME)
- /* For a simple copy operation, we copy the lattice values. */
- val = *get_value (gimple_assign_rhs1 (stmt));
- else
- /* Evaluate the statement, which could be
- either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
- val = evaluate_stmt (stmt);
-
- retval = SSA_PROP_NOT_INTERESTING;
-
- /* Set the lattice value of the statement's output. */
- if (TREE_CODE (lhs) == SSA_NAME)
- {
- /* If STMT is an assignment to an SSA_NAME, we only have one
- value to set. */
- if (set_lattice_value (lhs, val))
- {
- *output_p = lhs;
- if (val.lattice_val == VARYING)
- retval = SSA_PROP_VARYING;
- else
- retval = SSA_PROP_INTERESTING;
- }
- }
-
- return retval;
-}
-
-
-/* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
- if it can determine which edge will be taken. Otherwise, return
- SSA_PROP_VARYING. */
-
-static enum ssa_prop_result
-visit_cond_stmt (gimple stmt, edge *taken_edge_p)
-{
- prop_value_t val;
- basic_block block;
-
- block = gimple_bb (stmt);
- val = evaluate_stmt (stmt);
- if (val.lattice_val != CONSTANT
- || !val.mask.is_zero ())
- return SSA_PROP_VARYING;
-
- /* Find which edge out of the conditional block will be taken and add it
- to the worklist. If no single edge can be determined statically,
- return SSA_PROP_VARYING to feed all the outgoing edges to the
- propagation engine. */
- *taken_edge_p = find_taken_edge (block, val.value);
- if (*taken_edge_p)
- return SSA_PROP_INTERESTING;
- else
- return SSA_PROP_VARYING;
-}
-
-
-/* Evaluate statement STMT. If the statement produces an output value and
- its evaluation changes the lattice value of its output, return
- SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
- output value.
-
- If STMT is a conditional branch and we can determine its truth
- value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
- value, return SSA_PROP_VARYING. */
-
-static enum ssa_prop_result
-ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
-{
- tree def;
- ssa_op_iter iter;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "\nVisiting statement:\n");
- print_gimple_stmt (dump_file, stmt, 0, dump_flags);
- }
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_ASSIGN:
- /* If the statement is an assignment that produces a single
- output value, evaluate its RHS to see if the lattice value of
- its output has changed. */
- return visit_assignment (stmt, output_p);
-
- case GIMPLE_CALL:
- /* A value-returning call also performs an assignment. */
- if (gimple_call_lhs (stmt) != NULL_TREE)
- return visit_assignment (stmt, output_p);
- break;
-
- case GIMPLE_COND:
- case GIMPLE_SWITCH:
- /* If STMT is a conditional branch, see if we can determine
- which branch will be taken. */
- /* FIXME. It appears that we should be able to optimize
- computed GOTOs here as well. */
- return visit_cond_stmt (stmt, taken_edge_p);
-
- default:
- break;
- }
-
- /* Any other kind of statement is not interesting for constant
- propagation and, therefore, not worth simulating. */
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
-
- /* Definitions made by statements other than assignments to
- SSA_NAMEs represent unknown modifications to their outputs.
- Mark them VARYING. */
- FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
- {
- prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
- set_lattice_value (def, v);
- }
-
- return SSA_PROP_VARYING;
-}
-
-
-/* Main entry point for SSA Conditional Constant Propagation. */
-
-static unsigned int
-do_ssa_ccp (void)
-{
- unsigned int todo = 0;
- calculate_dominance_info (CDI_DOMINATORS);
- ccp_initialize ();
- ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
- if (ccp_finalize ())
- todo = (TODO_cleanup_cfg | TODO_update_ssa);
- free_dominance_info (CDI_DOMINATORS);
- return todo;
-}
-
-
-static bool
-gate_ccp (void)
-{
- return flag_tree_ccp != 0;
-}
-
-
-struct gimple_opt_pass pass_ccp =
-{
- {
- GIMPLE_PASS,
- "ccp", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- gate_ccp, /* gate */
- do_ssa_ccp, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_TREE_CCP, /* tv_id */
- PROP_cfg | PROP_ssa, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_verify_ssa
- | TODO_update_address_taken
- | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
- }
-};
-
-
-
-/* Try to optimize out __builtin_stack_restore. Optimize it out
- if there is another __builtin_stack_restore in the same basic
- block and no calls or ASM_EXPRs are in between, or if this block's
- only outgoing edge is to EXIT_BLOCK and there are no calls or
- ASM_EXPRs after this __builtin_stack_restore. */
-
-static tree
-optimize_stack_restore (gimple_stmt_iterator i)
-{
- tree callee;
- gimple stmt;
-
- basic_block bb = gsi_bb (i);
- gimple call = gsi_stmt (i);
-
- if (gimple_code (call) != GIMPLE_CALL
- || gimple_call_num_args (call) != 1
- || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
- || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
- return NULL_TREE;
-
- for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
- {
- stmt = gsi_stmt (i);
- if (gimple_code (stmt) == GIMPLE_ASM)
- return NULL_TREE;
- if (gimple_code (stmt) != GIMPLE_CALL)
- continue;
-
- callee = gimple_call_fndecl (stmt);
- if (!callee
- || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
- /* All regular builtins are ok, just obviously not alloca. */
- || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
- || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
- return NULL_TREE;
-
- if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
- goto second_stack_restore;
- }
-
- if (!gsi_end_p (i))
- return NULL_TREE;
-
- /* Allow one successor of the exit block, or zero successors. */
- switch (EDGE_COUNT (bb->succs))
- {
- case 0:
- break;
- case 1:
- if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
- return NULL_TREE;
- break;
- default:
- return NULL_TREE;
- }
- second_stack_restore:
-
- /* If there's exactly one use, then zap the call to __builtin_stack_save.
- If there are multiple uses, then the last one should remove the call.
- In any case, whether the call to __builtin_stack_save can be removed
- or not is irrelevant to removing the call to __builtin_stack_restore. */
- if (has_single_use (gimple_call_arg (call, 0)))
- {
- gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
- if (is_gimple_call (stack_save))
- {
- callee = gimple_call_fndecl (stack_save);
- if (callee
- && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
- && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
- {
- gimple_stmt_iterator stack_save_gsi;
- tree rhs;
-
- stack_save_gsi = gsi_for_stmt (stack_save);
- rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
- update_call_from_tree (&stack_save_gsi, rhs);
- }
- }
- }
-
- /* No effect, so the statement will be deleted. */
- return integer_zero_node;
-}
-
-/* If va_list type is a simple pointer and nothing special is needed,
- optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
- __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
- pointer assignment. */
-
-static tree
-optimize_stdarg_builtin (gimple call)
-{
- tree callee, lhs, rhs, cfun_va_list;
- bool va_list_simple_ptr;
- location_t loc = gimple_location (call);
-
- if (gimple_code (call) != GIMPLE_CALL)
- return NULL_TREE;
-
- callee = gimple_call_fndecl (call);
-
- cfun_va_list = targetm.fn_abi_va_list (callee);
- va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
- && (TREE_TYPE (cfun_va_list) == void_type_node
- || TREE_TYPE (cfun_va_list) == char_type_node);
-
- switch (DECL_FUNCTION_CODE (callee))
- {
- case BUILT_IN_VA_START:
- if (!va_list_simple_ptr
- || targetm.expand_builtin_va_start != NULL
- || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
- return NULL_TREE;
-
- if (gimple_call_num_args (call) != 2)
- return NULL_TREE;
-
- lhs = gimple_call_arg (call, 0);
- if (!POINTER_TYPE_P (TREE_TYPE (lhs))
- || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
- != TYPE_MAIN_VARIANT (cfun_va_list))
- return NULL_TREE;
-
- lhs = build_fold_indirect_ref_loc (loc, lhs);
- rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
- 1, integer_zero_node);
- rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
- return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
-
- case BUILT_IN_VA_COPY:
- if (!va_list_simple_ptr)
- return NULL_TREE;
-
- if (gimple_call_num_args (call) != 2)
- return NULL_TREE;
-
- lhs = gimple_call_arg (call, 0);
- if (!POINTER_TYPE_P (TREE_TYPE (lhs))
- || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
- != TYPE_MAIN_VARIANT (cfun_va_list))
- return NULL_TREE;
-
- lhs = build_fold_indirect_ref_loc (loc, lhs);
- rhs = gimple_call_arg (call, 1);
- if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
- != TYPE_MAIN_VARIANT (cfun_va_list))
- return NULL_TREE;
-
- rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
- return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
-
- case BUILT_IN_VA_END:
- /* No effect, so the statement will be deleted. */
- return integer_zero_node;
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Attemp to make the block of __builtin_unreachable I unreachable by changing
- the incoming jumps. Return true if at least one jump was changed. */
-
-static bool
-optimize_unreachable (gimple_stmt_iterator i)
-{
- basic_block bb = gsi_bb (i);
- gimple_stmt_iterator gsi;
- gimple stmt;
- edge_iterator ei;
- edge e;
- bool ret;
-
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- stmt = gsi_stmt (gsi);
-
- if (is_gimple_debug (stmt))
- continue;
-
- if (gimple_code (stmt) == GIMPLE_LABEL)
- {
- /* Verify we do not need to preserve the label. */
- if (FORCED_LABEL (gimple_label_label (stmt)))
- return false;
-
- continue;
- }
-
- /* Only handle the case that __builtin_unreachable is the first statement
- in the block. We rely on DCE to remove stmts without side-effects
- before __builtin_unreachable. */
- if (gsi_stmt (gsi) != gsi_stmt (i))
- return false;
- }
-
- ret = false;
- FOR_EACH_EDGE (e, ei, bb->preds)
- {
- gsi = gsi_last_bb (e->src);
- if (gsi_end_p (gsi))
- continue;
-
- stmt = gsi_stmt (gsi);
- if (gimple_code (stmt) == GIMPLE_COND)
- {
- if (e->flags & EDGE_TRUE_VALUE)
- gimple_cond_make_false (stmt);
- else if (e->flags & EDGE_FALSE_VALUE)
- gimple_cond_make_true (stmt);
- else
- gcc_unreachable ();
- update_stmt (stmt);
- }
- else
- {
- /* Todo: handle other cases, f.i. switch statement. */
- continue;
- }
-
- ret = true;
- }
-
- return ret;
-}
-
-/* A simple pass that attempts to fold all builtin functions. This pass
- is run after we've propagated as many constants as we can. */
-
-static unsigned int
-execute_fold_all_builtins (void)
-{
- bool cfg_changed = false;
- basic_block bb;
- unsigned int todoflags = 0;
-
- FOR_EACH_BB (bb)
- {
- gimple_stmt_iterator i;
- for (i = gsi_start_bb (bb); !gsi_end_p (i); )
- {
- gimple stmt, old_stmt;
- tree callee, result;
- enum built_in_function fcode;
-
- stmt = gsi_stmt (i);
-
- if (gimple_code (stmt) != GIMPLE_CALL)
- {
- gsi_next (&i);
- continue;
- }
- callee = gimple_call_fndecl (stmt);
- if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
- {
- gsi_next (&i);
- continue;
- }
- fcode = DECL_FUNCTION_CODE (callee);
-
- result = gimple_fold_builtin (stmt);
-
- if (result)
- gimple_remove_stmt_histograms (cfun, stmt);
-
- if (!result)
- switch (DECL_FUNCTION_CODE (callee))
- {
- case BUILT_IN_CONSTANT_P:
- /* Resolve __builtin_constant_p. If it hasn't been
- folded to integer_one_node by now, it's fairly
- certain that the value simply isn't constant. */
- result = integer_zero_node;
- break;
-
- case BUILT_IN_ASSUME_ALIGNED:
- /* Remove __builtin_assume_aligned. */
- result = gimple_call_arg (stmt, 0);
- break;
-
- case BUILT_IN_STACK_RESTORE:
- result = optimize_stack_restore (i);
- if (result)
- break;
- gsi_next (&i);
- continue;
-
- case BUILT_IN_UNREACHABLE:
- if (optimize_unreachable (i))
- cfg_changed = true;
- break;
-
- case BUILT_IN_VA_START:
- case BUILT_IN_VA_END:
- case BUILT_IN_VA_COPY:
- /* These shouldn't be folded before pass_stdarg. */
- result = optimize_stdarg_builtin (stmt);
- if (result)
- break;
- /* FALLTHRU */
-
- default:
- gsi_next (&i);
- continue;
- }
-
- if (result == NULL_TREE)
- break;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Simplified\n ");
- print_gimple_stmt (dump_file, stmt, 0, dump_flags);
- }
-
- old_stmt = stmt;
- if (!update_call_from_tree (&i, result))
- {
- gimplify_and_update_call_from_tree (&i, result);
- todoflags |= TODO_update_address_taken;
- }
-
- stmt = gsi_stmt (i);
- update_stmt (stmt);
-
- if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
- && gimple_purge_dead_eh_edges (bb))
- cfg_changed = true;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "to\n ");
- print_gimple_stmt (dump_file, stmt, 0, dump_flags);
- fprintf (dump_file, "\n");
- }
-
- /* Retry the same statement if it changed into another
- builtin, there might be new opportunities now. */
- if (gimple_code (stmt) != GIMPLE_CALL)
- {
- gsi_next (&i);
- continue;
- }
- callee = gimple_call_fndecl (stmt);
- if (!callee
- || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
- || DECL_FUNCTION_CODE (callee) == fcode)
- gsi_next (&i);
- }
- }
-
- /* Delete unreachable blocks. */
- if (cfg_changed)
- todoflags |= TODO_cleanup_cfg;
-
- return todoflags;
-}
-
-
-struct gimple_opt_pass pass_fold_builtins =
-{
- {
- GIMPLE_PASS,
- "fab", /* name */
- OPTGROUP_NONE, /* optinfo_flags */
- NULL, /* gate */
- execute_fold_all_builtins, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_NONE, /* tv_id */
- PROP_cfg | PROP_ssa, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_verify_ssa
- | TODO_update_ssa /* todo_flags_finish */
- }
-};