aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/gimple-fold.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/gimple-fold.c')
-rw-r--r--gcc-4.8.1/gcc/gimple-fold.c3283
1 files changed, 0 insertions, 3283 deletions
diff --git a/gcc-4.8.1/gcc/gimple-fold.c b/gcc-4.8.1/gcc/gimple-fold.c
deleted file mode 100644
index b9211a9ad..000000000
--- a/gcc-4.8.1/gcc/gimple-fold.c
+++ /dev/null
@@ -1,3283 +0,0 @@
-/* Statement simplification on GIMPLE.
- Copyright (C) 2010-2013 Free Software Foundation, Inc.
- Split out from tree-ssa-ccp.c.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it
-under the terms of the GNU General Public License as published by the
-Free Software Foundation; either version 3, or (at your option) any
-later version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT
-ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "flags.h"
-#include "function.h"
-#include "dumpfile.h"
-#include "tree-flow.h"
-#include "tree-ssa-propagate.h"
-#include "target.h"
-#include "gimple-fold.h"
-
-/* Return true when DECL can be referenced from current unit.
- FROM_DECL (if non-null) specify constructor of variable DECL was taken from.
- We can get declarations that are not possible to reference for various
- reasons:
-
- 1) When analyzing C++ virtual tables.
- C++ virtual tables do have known constructors even
- when they are keyed to other compilation unit.
- Those tables can contain pointers to methods and vars
- in other units. Those methods have both STATIC and EXTERNAL
- set.
- 2) In WHOPR mode devirtualization might lead to reference
- to method that was partitioned elsehwere.
- In this case we have static VAR_DECL or FUNCTION_DECL
- that has no corresponding callgraph/varpool node
- declaring the body.
- 3) COMDAT functions referred by external vtables that
- we devirtualize only during final copmilation stage.
- At this time we already decided that we will not output
- the function body and thus we can't reference the symbol
- directly. */
-
-static bool
-can_refer_decl_in_current_unit_p (tree decl, tree from_decl)
-{
- struct varpool_node *vnode;
- struct cgraph_node *node;
- symtab_node snode;
-
- /* We will later output the initializer, so we can refer to it.
- So we are concerned only when DECL comes from initializer of
- external var. */
- if (!from_decl
- || TREE_CODE (from_decl) != VAR_DECL
- || !DECL_EXTERNAL (from_decl)
- || (flag_ltrans
- && symtab_get_node (from_decl)->symbol.in_other_partition))
- return true;
- /* We are concerned only about static/external vars and functions. */
- if ((!TREE_STATIC (decl) && !DECL_EXTERNAL (decl))
- || (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL))
- return true;
- /* Weakrefs have somewhat confusing DECL_EXTERNAL flag set; they
- are always safe. */
- if (DECL_EXTERNAL (decl)
- && lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
- return true;
- /* We are folding reference from external vtable. The vtable may reffer
- to a symbol keyed to other compilation unit. The other compilation
- unit may be in separate DSO and the symbol may be hidden. */
- if (DECL_VISIBILITY_SPECIFIED (decl)
- && DECL_EXTERNAL (decl)
- && (!(snode = symtab_get_node (decl)) || !snode->symbol.in_other_partition))
- return false;
- /* When function is public, we always can introduce new reference.
- Exception are the COMDAT functions where introducing a direct
- reference imply need to include function body in the curren tunit. */
- if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl))
- return true;
- /* We are not at ltrans stage; so don't worry about WHOPR.
- Also when still gimplifying all referred comdat functions will be
- produced.
-
- As observed in PR20991 for already optimized out comdat virtual functions
- it may be tempting to not necessarily give up because the copy will be
- output elsewhere when corresponding vtable is output.
- This is however not possible - ABI specify that COMDATs are output in
- units where they are used and when the other unit was compiled with LTO
- it is possible that vtable was kept public while the function itself
- was privatized. */
- if (!flag_ltrans && (!DECL_COMDAT (decl) || !cgraph_function_flags_ready))
- return true;
-
- /* OK we are seeing either COMDAT or static variable. In this case we must
- check that the definition is still around so we can refer it. */
- if (TREE_CODE (decl) == FUNCTION_DECL)
- {
- node = cgraph_get_node (decl);
- /* Check that we still have function body and that we didn't took
- the decision to eliminate offline copy of the function yet.
- The second is important when devirtualization happens during final
- compilation stage when making a new reference no longer makes callee
- to be compiled. */
- if (!node || !node->analyzed || node->global.inlined_to)
- {
- gcc_checking_assert (!TREE_ASM_WRITTEN (decl));
- return false;
- }
- }
- else if (TREE_CODE (decl) == VAR_DECL)
- {
- vnode = varpool_get_node (decl);
- if (!vnode || !vnode->analyzed)
- {
- gcc_checking_assert (!TREE_ASM_WRITTEN (decl));
- return false;
- }
- }
- return true;
-}
-
-/* CVAL is value taken from DECL_INITIAL of variable. Try to transform it into
- acceptable form for is_gimple_min_invariant.
- FROM_DECL (if non-NULL) specify variable whose constructor contains CVAL. */
-
-tree
-canonicalize_constructor_val (tree cval, tree from_decl)
-{
- tree orig_cval = cval;
- STRIP_NOPS (cval);
- if (TREE_CODE (cval) == POINTER_PLUS_EXPR
- && TREE_CODE (TREE_OPERAND (cval, 1)) == INTEGER_CST)
- {
- tree ptr = TREE_OPERAND (cval, 0);
- if (is_gimple_min_invariant (ptr))
- cval = build1_loc (EXPR_LOCATION (cval),
- ADDR_EXPR, TREE_TYPE (ptr),
- fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (ptr)),
- ptr,
- fold_convert (ptr_type_node,
- TREE_OPERAND (cval, 1))));
- }
- if (TREE_CODE (cval) == ADDR_EXPR)
- {
- tree base = NULL_TREE;
- if (TREE_CODE (TREE_OPERAND (cval, 0)) == COMPOUND_LITERAL_EXPR)
- {
- base = COMPOUND_LITERAL_EXPR_DECL (TREE_OPERAND (cval, 0));
- if (base)
- TREE_OPERAND (cval, 0) = base;
- }
- else
- base = get_base_address (TREE_OPERAND (cval, 0));
- if (!base)
- return NULL_TREE;
-
- if ((TREE_CODE (base) == VAR_DECL
- || TREE_CODE (base) == FUNCTION_DECL)
- && !can_refer_decl_in_current_unit_p (base, from_decl))
- return NULL_TREE;
- if (TREE_CODE (base) == VAR_DECL)
- TREE_ADDRESSABLE (base) = 1;
- else if (TREE_CODE (base) == FUNCTION_DECL)
- {
- /* Make sure we create a cgraph node for functions we'll reference.
- They can be non-existent if the reference comes from an entry
- of an external vtable for example. */
- cgraph_get_create_node (base);
- }
- /* Fixup types in global initializers. */
- if (TREE_TYPE (TREE_TYPE (cval)) != TREE_TYPE (TREE_OPERAND (cval, 0)))
- cval = build_fold_addr_expr (TREE_OPERAND (cval, 0));
-
- if (!useless_type_conversion_p (TREE_TYPE (orig_cval), TREE_TYPE (cval)))
- cval = fold_convert (TREE_TYPE (orig_cval), cval);
- return cval;
- }
- return orig_cval;
-}
-
-/* If SYM is a constant variable with known value, return the value.
- NULL_TREE is returned otherwise. */
-
-tree
-get_symbol_constant_value (tree sym)
-{
- if (const_value_known_p (sym))
- {
- tree val = DECL_INITIAL (sym);
- if (val)
- {
- val = canonicalize_constructor_val (unshare_expr (val), sym);
- if (val && is_gimple_min_invariant (val))
- return val;
- else
- return NULL_TREE;
- }
- /* Variables declared 'const' without an initializer
- have zero as the initializer if they may not be
- overridden at link or run time. */
- if (!val
- && (INTEGRAL_TYPE_P (TREE_TYPE (sym))
- || SCALAR_FLOAT_TYPE_P (TREE_TYPE (sym))))
- return build_zero_cst (TREE_TYPE (sym));
- }
-
- return NULL_TREE;
-}
-
-
-
-/* Subroutine of fold_stmt. We perform several simplifications of the
- memory reference tree EXPR and make sure to re-gimplify them properly
- after propagation of constant addresses. IS_LHS is true if the
- reference is supposed to be an lvalue. */
-
-static tree
-maybe_fold_reference (tree expr, bool is_lhs)
-{
- tree *t = &expr;
- tree result;
-
- if ((TREE_CODE (expr) == VIEW_CONVERT_EXPR
- || TREE_CODE (expr) == REALPART_EXPR
- || TREE_CODE (expr) == IMAGPART_EXPR)
- && CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
- return fold_unary_loc (EXPR_LOCATION (expr),
- TREE_CODE (expr),
- TREE_TYPE (expr),
- TREE_OPERAND (expr, 0));
- else if (TREE_CODE (expr) == BIT_FIELD_REF
- && CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
- return fold_ternary_loc (EXPR_LOCATION (expr),
- TREE_CODE (expr),
- TREE_TYPE (expr),
- TREE_OPERAND (expr, 0),
- TREE_OPERAND (expr, 1),
- TREE_OPERAND (expr, 2));
-
- while (handled_component_p (*t))
- t = &TREE_OPERAND (*t, 0);
-
- /* Canonicalize MEM_REFs invariant address operand. Do this first
- to avoid feeding non-canonical MEM_REFs elsewhere. */
- if (TREE_CODE (*t) == MEM_REF
- && !is_gimple_mem_ref_addr (TREE_OPERAND (*t, 0)))
- {
- bool volatile_p = TREE_THIS_VOLATILE (*t);
- tree tem = fold_binary (MEM_REF, TREE_TYPE (*t),
- TREE_OPERAND (*t, 0),
- TREE_OPERAND (*t, 1));
- if (tem)
- {
- TREE_THIS_VOLATILE (tem) = volatile_p;
- *t = tem;
- tem = maybe_fold_reference (expr, is_lhs);
- if (tem)
- return tem;
- return expr;
- }
- }
-
- if (!is_lhs
- && (result = fold_const_aggregate_ref (expr))
- && is_gimple_min_invariant (result))
- return result;
-
- /* Fold back MEM_REFs to reference trees. */
- if (TREE_CODE (*t) == MEM_REF
- && TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR
- && integer_zerop (TREE_OPERAND (*t, 1))
- && (TREE_THIS_VOLATILE (*t)
- == TREE_THIS_VOLATILE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0)))
- && !TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (TREE_OPERAND (*t, 1)))
- && (TYPE_MAIN_VARIANT (TREE_TYPE (*t))
- == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (TREE_OPERAND (*t, 1)))))
- /* We have to look out here to not drop a required conversion
- from the rhs to the lhs if is_lhs, but we don't have the
- rhs here to verify that. Thus require strict type
- compatibility. */
- && types_compatible_p (TREE_TYPE (*t),
- TREE_TYPE (TREE_OPERAND
- (TREE_OPERAND (*t, 0), 0))))
- {
- tree tem;
- *t = TREE_OPERAND (TREE_OPERAND (*t, 0), 0);
- tem = maybe_fold_reference (expr, is_lhs);
- if (tem)
- return tem;
- return expr;
- }
- else if (TREE_CODE (*t) == TARGET_MEM_REF)
- {
- tree tem = maybe_fold_tmr (*t);
- if (tem)
- {
- *t = tem;
- tem = maybe_fold_reference (expr, is_lhs);
- if (tem)
- return tem;
- return expr;
- }
- }
-
- return NULL_TREE;
-}
-
-
-/* Attempt to fold an assignment statement pointed-to by SI. Returns a
- replacement rhs for the statement or NULL_TREE if no simplification
- could be made. It is assumed that the operands have been previously
- folded. */
-
-static tree
-fold_gimple_assign (gimple_stmt_iterator *si)
-{
- gimple stmt = gsi_stmt (*si);
- enum tree_code subcode = gimple_assign_rhs_code (stmt);
- location_t loc = gimple_location (stmt);
-
- tree result = NULL_TREE;
-
- switch (get_gimple_rhs_class (subcode))
- {
- case GIMPLE_SINGLE_RHS:
- {
- tree rhs = gimple_assign_rhs1 (stmt);
-
- if (REFERENCE_CLASS_P (rhs))
- return maybe_fold_reference (rhs, false);
-
- else if (TREE_CODE (rhs) == ADDR_EXPR)
- {
- tree ref = TREE_OPERAND (rhs, 0);
- tree tem = maybe_fold_reference (ref, true);
- if (tem
- && TREE_CODE (tem) == MEM_REF
- && integer_zerop (TREE_OPERAND (tem, 1)))
- result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (tem, 0));
- else if (tem)
- result = fold_convert (TREE_TYPE (rhs),
- build_fold_addr_expr_loc (loc, tem));
- else if (TREE_CODE (ref) == MEM_REF
- && integer_zerop (TREE_OPERAND (ref, 1)))
- result = fold_convert (TREE_TYPE (rhs), TREE_OPERAND (ref, 0));
- }
-
- else if (TREE_CODE (rhs) == CONSTRUCTOR
- && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
- && (CONSTRUCTOR_NELTS (rhs)
- == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
- {
- /* Fold a constant vector CONSTRUCTOR to VECTOR_CST. */
- unsigned i;
- tree val;
-
- FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
- if (TREE_CODE (val) != INTEGER_CST
- && TREE_CODE (val) != REAL_CST
- && TREE_CODE (val) != FIXED_CST)
- return NULL_TREE;
-
- return build_vector_from_ctor (TREE_TYPE (rhs),
- CONSTRUCTOR_ELTS (rhs));
- }
-
- else if (DECL_P (rhs))
- return get_symbol_constant_value (rhs);
-
- /* If we couldn't fold the RHS, hand over to the generic
- fold routines. */
- if (result == NULL_TREE)
- result = fold (rhs);
-
- /* Strip away useless type conversions. Both the NON_LVALUE_EXPR
- that may have been added by fold, and "useless" type
- conversions that might now be apparent due to propagation. */
- STRIP_USELESS_TYPE_CONVERSION (result);
-
- if (result != rhs && valid_gimple_rhs_p (result))
- return result;
-
- return NULL_TREE;
- }
- break;
-
- case GIMPLE_UNARY_RHS:
- {
- tree rhs = gimple_assign_rhs1 (stmt);
-
- result = fold_unary_loc (loc, subcode, gimple_expr_type (stmt), rhs);
- if (result)
- {
- /* If the operation was a conversion do _not_ mark a
- resulting constant with TREE_OVERFLOW if the original
- constant was not. These conversions have implementation
- defined behavior and retaining the TREE_OVERFLOW flag
- here would confuse later passes such as VRP. */
- if (CONVERT_EXPR_CODE_P (subcode)
- && TREE_CODE (result) == INTEGER_CST
- && TREE_CODE (rhs) == INTEGER_CST)
- TREE_OVERFLOW (result) = TREE_OVERFLOW (rhs);
-
- STRIP_USELESS_TYPE_CONVERSION (result);
- if (valid_gimple_rhs_p (result))
- return result;
- }
- }
- break;
-
- case GIMPLE_BINARY_RHS:
- /* Try to canonicalize for boolean-typed X the comparisons
- X == 0, X == 1, X != 0, and X != 1. */
- if (gimple_assign_rhs_code (stmt) == EQ_EXPR
- || gimple_assign_rhs_code (stmt) == NE_EXPR)
- {
- tree lhs = gimple_assign_lhs (stmt);
- tree op1 = gimple_assign_rhs1 (stmt);
- tree op2 = gimple_assign_rhs2 (stmt);
- tree type = TREE_TYPE (op1);
-
- /* Check whether the comparison operands are of the same boolean
- type as the result type is.
- Check that second operand is an integer-constant with value
- one or zero. */
- if (TREE_CODE (op2) == INTEGER_CST
- && (integer_zerop (op2) || integer_onep (op2))
- && useless_type_conversion_p (TREE_TYPE (lhs), type))
- {
- enum tree_code cmp_code = gimple_assign_rhs_code (stmt);
- bool is_logical_not = false;
-
- /* X == 0 and X != 1 is a logical-not.of X
- X == 1 and X != 0 is X */
- if ((cmp_code == EQ_EXPR && integer_zerop (op2))
- || (cmp_code == NE_EXPR && integer_onep (op2)))
- is_logical_not = true;
-
- if (is_logical_not == false)
- result = op1;
- /* Only for one-bit precision typed X the transformation
- !X -> ~X is valied. */
- else if (TYPE_PRECISION (type) == 1)
- result = build1_loc (gimple_location (stmt), BIT_NOT_EXPR,
- type, op1);
- /* Otherwise we use !X -> X ^ 1. */
- else
- result = build2_loc (gimple_location (stmt), BIT_XOR_EXPR,
- type, op1, build_int_cst (type, 1));
-
- }
- }
-
- if (!result)
- result = fold_binary_loc (loc, subcode,
- TREE_TYPE (gimple_assign_lhs (stmt)),
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt));
-
- if (result)
- {
- STRIP_USELESS_TYPE_CONVERSION (result);
- if (valid_gimple_rhs_p (result))
- return result;
- }
- break;
-
- case GIMPLE_TERNARY_RHS:
- /* Try to fold a conditional expression. */
- if (gimple_assign_rhs_code (stmt) == COND_EXPR)
- {
- tree op0 = gimple_assign_rhs1 (stmt);
- tree tem;
- bool set = false;
- location_t cond_loc = gimple_location (stmt);
-
- if (COMPARISON_CLASS_P (op0))
- {
- fold_defer_overflow_warnings ();
- tem = fold_binary_loc (cond_loc,
- TREE_CODE (op0), TREE_TYPE (op0),
- TREE_OPERAND (op0, 0),
- TREE_OPERAND (op0, 1));
- /* This is actually a conditional expression, not a GIMPLE
- conditional statement, however, the valid_gimple_rhs_p
- test still applies. */
- set = (tem && is_gimple_condexpr (tem)
- && valid_gimple_rhs_p (tem));
- fold_undefer_overflow_warnings (set, stmt, 0);
- }
- else if (is_gimple_min_invariant (op0))
- {
- tem = op0;
- set = true;
- }
- else
- return NULL_TREE;
-
- if (set)
- result = fold_build3_loc (cond_loc, COND_EXPR,
- TREE_TYPE (gimple_assign_lhs (stmt)), tem,
- gimple_assign_rhs2 (stmt),
- gimple_assign_rhs3 (stmt));
- }
-
- if (!result)
- result = fold_ternary_loc (loc, subcode,
- TREE_TYPE (gimple_assign_lhs (stmt)),
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt),
- gimple_assign_rhs3 (stmt));
-
- if (result)
- {
- STRIP_USELESS_TYPE_CONVERSION (result);
- if (valid_gimple_rhs_p (result))
- return result;
- }
- break;
-
- case GIMPLE_INVALID_RHS:
- gcc_unreachable ();
- }
-
- return NULL_TREE;
-}
-
-/* Attempt to fold a conditional statement. Return true if any changes were
- made. We only attempt to fold the condition expression, and do not perform
- any transformation that would require alteration of the cfg. It is
- assumed that the operands have been previously folded. */
-
-static bool
-fold_gimple_cond (gimple stmt)
-{
- tree result = fold_binary_loc (gimple_location (stmt),
- gimple_cond_code (stmt),
- boolean_type_node,
- gimple_cond_lhs (stmt),
- gimple_cond_rhs (stmt));
-
- if (result)
- {
- STRIP_USELESS_TYPE_CONVERSION (result);
- if (is_gimple_condexpr (result) && valid_gimple_rhs_p (result))
- {
- gimple_cond_set_condition_from_tree (stmt, result);
- return true;
- }
- }
-
- return false;
-}
-
-/* Convert EXPR into a GIMPLE value suitable for substitution on the
- RHS of an assignment. Insert the necessary statements before
- iterator *SI_P. The statement at *SI_P, which must be a GIMPLE_CALL
- is replaced. If the call is expected to produces a result, then it
- is replaced by an assignment of the new RHS to the result variable.
- If the result is to be ignored, then the call is replaced by a
- GIMPLE_NOP. A proper VDEF chain is retained by making the first
- VUSE and the last VDEF of the whole sequence be the same as the replaced
- statement and using new SSA names for stores in between. */
-
-void
-gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
-{
- tree lhs;
- gimple stmt, new_stmt;
- gimple_stmt_iterator i;
- gimple_seq stmts = NULL;
- struct gimplify_ctx gctx;
- gimple laststore;
- tree reaching_vuse;
-
- stmt = gsi_stmt (*si_p);
-
- gcc_assert (is_gimple_call (stmt));
-
- push_gimplify_context (&gctx);
- gctx.into_ssa = gimple_in_ssa_p (cfun);
-
- lhs = gimple_call_lhs (stmt);
- if (lhs == NULL_TREE)
- {
- gimplify_and_add (expr, &stmts);
- /* We can end up with folding a memcpy of an empty class assignment
- which gets optimized away by C++ gimplification. */
- if (gimple_seq_empty_p (stmts))
- {
- pop_gimplify_context (NULL);
- if (gimple_in_ssa_p (cfun))
- {
- unlink_stmt_vdef (stmt);
- release_defs (stmt);
- }
- gsi_replace (si_p, gimple_build_nop (), true);
- return;
- }
- }
- else
- {
- tree tmp = get_initialized_tmp_var (expr, &stmts, NULL);
- new_stmt = gimple_build_assign (lhs, tmp);
- i = gsi_last (stmts);
- gsi_insert_after_without_update (&i, new_stmt,
- GSI_CONTINUE_LINKING);
- }
-
- pop_gimplify_context (NULL);
-
- if (gimple_has_location (stmt))
- annotate_all_with_location (stmts, gimple_location (stmt));
-
- /* First iterate over the replacement statements backward, assigning
- virtual operands to their defining statements. */
- laststore = NULL;
- for (i = gsi_last (stmts); !gsi_end_p (i); gsi_prev (&i))
- {
- new_stmt = gsi_stmt (i);
- if ((gimple_assign_single_p (new_stmt)
- && !is_gimple_reg (gimple_assign_lhs (new_stmt)))
- || (is_gimple_call (new_stmt)
- && (gimple_call_flags (new_stmt)
- & (ECF_NOVOPS | ECF_PURE | ECF_CONST | ECF_NORETURN)) == 0))
- {
- tree vdef;
- if (!laststore)
- vdef = gimple_vdef (stmt);
- else
- vdef = make_ssa_name (gimple_vop (cfun), new_stmt);
- gimple_set_vdef (new_stmt, vdef);
- if (vdef && TREE_CODE (vdef) == SSA_NAME)
- SSA_NAME_DEF_STMT (vdef) = new_stmt;
- laststore = new_stmt;
- }
- }
-
- /* Second iterate over the statements forward, assigning virtual
- operands to their uses. */
- reaching_vuse = gimple_vuse (stmt);
- for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
- {
- new_stmt = gsi_stmt (i);
- /* If the new statement possibly has a VUSE, update it with exact SSA
- name we know will reach this one. */
- if (gimple_has_mem_ops (new_stmt))
- gimple_set_vuse (new_stmt, reaching_vuse);
- gimple_set_modified (new_stmt, true);
- if (gimple_vdef (new_stmt))
- reaching_vuse = gimple_vdef (new_stmt);
- }
-
- /* If the new sequence does not do a store release the virtual
- definition of the original statement. */
- if (reaching_vuse
- && reaching_vuse == gimple_vuse (stmt))
- {
- tree vdef = gimple_vdef (stmt);
- if (vdef
- && TREE_CODE (vdef) == SSA_NAME)
- {
- unlink_stmt_vdef (stmt);
- release_ssa_name (vdef);
- }
- }
-
- /* Finally replace the original statement with the sequence. */
- gsi_replace_with_seq (si_p, stmts, false);
-}
-
-/* Return the string length, maximum string length or maximum value of
- ARG in LENGTH.
- If ARG is an SSA name variable, follow its use-def chains. If LENGTH
- is not NULL and, for TYPE == 0, its value is not equal to the length
- we determine or if we are unable to determine the length or value,
- return false. VISITED is a bitmap of visited variables.
- TYPE is 0 if string length should be returned, 1 for maximum string
- length and 2 for maximum value ARG can have. */
-
-static bool
-get_maxval_strlen (tree arg, tree *length, bitmap visited, int type)
-{
- tree var, val;
- gimple def_stmt;
-
- if (TREE_CODE (arg) != SSA_NAME)
- {
- /* We can end up with &(*iftmp_1)[0] here as well, so handle it. */
- if (TREE_CODE (arg) == ADDR_EXPR
- && TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF
- && integer_zerop (TREE_OPERAND (TREE_OPERAND (arg, 0), 1)))
- {
- tree aop0 = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
- if (TREE_CODE (aop0) == INDIRECT_REF
- && TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME)
- return get_maxval_strlen (TREE_OPERAND (aop0, 0),
- length, visited, type);
- }
-
- if (type == 2)
- {
- val = arg;
- if (TREE_CODE (val) != INTEGER_CST
- || tree_int_cst_sgn (val) < 0)
- return false;
- }
- else
- val = c_strlen (arg, 1);
- if (!val)
- return false;
-
- if (*length)
- {
- if (type > 0)
- {
- if (TREE_CODE (*length) != INTEGER_CST
- || TREE_CODE (val) != INTEGER_CST)
- return false;
-
- if (tree_int_cst_lt (*length, val))
- *length = val;
- return true;
- }
- else if (simple_cst_equal (val, *length) != 1)
- return false;
- }
-
- *length = val;
- return true;
- }
-
- /* If ARG is registered for SSA update we cannot look at its defining
- statement. */
- if (name_registered_for_update_p (arg))
- return false;
-
- /* If we were already here, break the infinite cycle. */
- if (!bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
- return true;
-
- var = arg;
- def_stmt = SSA_NAME_DEF_STMT (var);
-
- switch (gimple_code (def_stmt))
- {
- case GIMPLE_ASSIGN:
- /* The RHS of the statement defining VAR must either have a
- constant length or come from another SSA_NAME with a constant
- length. */
- if (gimple_assign_single_p (def_stmt)
- || gimple_assign_unary_nop_p (def_stmt))
- {
- tree rhs = gimple_assign_rhs1 (def_stmt);
- return get_maxval_strlen (rhs, length, visited, type);
- }
- else if (gimple_assign_rhs_code (def_stmt) == COND_EXPR)
- {
- tree op2 = gimple_assign_rhs2 (def_stmt);
- tree op3 = gimple_assign_rhs3 (def_stmt);
- return get_maxval_strlen (op2, length, visited, type)
- && get_maxval_strlen (op3, length, visited, type);
- }
- return false;
-
- case GIMPLE_PHI:
- {
- /* All the arguments of the PHI node must have the same constant
- length. */
- unsigned i;
-
- for (i = 0; i < gimple_phi_num_args (def_stmt); i++)
- {
- tree arg = gimple_phi_arg (def_stmt, i)->def;
-
- /* If this PHI has itself as an argument, we cannot
- determine the string length of this argument. However,
- if we can find a constant string length for the other
- PHI args then we can still be sure that this is a
- constant string length. So be optimistic and just
- continue with the next argument. */
- if (arg == gimple_phi_result (def_stmt))
- continue;
-
- if (!get_maxval_strlen (arg, length, visited, type))
- return false;
- }
- }
- return true;
-
- default:
- return false;
- }
-}
-
-
-/* Fold builtin call in statement STMT. Returns a simplified tree.
- We may return a non-constant expression, including another call
- to a different function and with different arguments, e.g.,
- substituting memcpy for strcpy when the string length is known.
- Note that some builtins expand into inline code that may not
- be valid in GIMPLE. Callers must take care. */
-
-tree
-gimple_fold_builtin (gimple stmt)
-{
- tree result, val[3];
- tree callee, a;
- int arg_idx, type;
- bitmap visited;
- bool ignore;
- int nargs;
- location_t loc = gimple_location (stmt);
-
- gcc_assert (is_gimple_call (stmt));
-
- ignore = (gimple_call_lhs (stmt) == NULL);
-
- /* First try the generic builtin folder. If that succeeds, return the
- result directly. */
- result = fold_call_stmt (stmt, ignore);
- if (result)
- {
- if (ignore)
- STRIP_NOPS (result);
- return result;
- }
-
- /* Ignore MD builtins. */
- callee = gimple_call_fndecl (stmt);
- if (DECL_BUILT_IN_CLASS (callee) == BUILT_IN_MD)
- return NULL_TREE;
-
- /* Give up for always_inline inline builtins until they are
- inlined. */
- if (avoid_folding_inline_builtin (callee))
- return NULL_TREE;
-
- /* If the builtin could not be folded, and it has no argument list,
- we're done. */
- nargs = gimple_call_num_args (stmt);
- if (nargs == 0)
- return NULL_TREE;
-
- /* Limit the work only for builtins we know how to simplify. */
- switch (DECL_FUNCTION_CODE (callee))
- {
- case BUILT_IN_STRLEN:
- case BUILT_IN_FPUTS:
- case BUILT_IN_FPUTS_UNLOCKED:
- arg_idx = 0;
- type = 0;
- break;
- case BUILT_IN_STRCPY:
- case BUILT_IN_STRNCPY:
- arg_idx = 1;
- type = 0;
- break;
- case BUILT_IN_MEMCPY_CHK:
- case BUILT_IN_MEMPCPY_CHK:
- case BUILT_IN_MEMMOVE_CHK:
- case BUILT_IN_MEMSET_CHK:
- case BUILT_IN_STRNCPY_CHK:
- case BUILT_IN_STPNCPY_CHK:
- arg_idx = 2;
- type = 2;
- break;
- case BUILT_IN_STRCPY_CHK:
- case BUILT_IN_STPCPY_CHK:
- arg_idx = 1;
- type = 1;
- break;
- case BUILT_IN_SNPRINTF_CHK:
- case BUILT_IN_VSNPRINTF_CHK:
- arg_idx = 1;
- type = 2;
- break;
- default:
- return NULL_TREE;
- }
-
- if (arg_idx >= nargs)
- return NULL_TREE;
-
- /* Try to use the dataflow information gathered by the CCP process. */
- visited = BITMAP_ALLOC (NULL);
- bitmap_clear (visited);
-
- memset (val, 0, sizeof (val));
- a = gimple_call_arg (stmt, arg_idx);
- if (!get_maxval_strlen (a, &val[arg_idx], visited, type))
- val[arg_idx] = NULL_TREE;
-
- BITMAP_FREE (visited);
-
- result = NULL_TREE;
- switch (DECL_FUNCTION_CODE (callee))
- {
- case BUILT_IN_STRLEN:
- if (val[0] && nargs == 1)
- {
- tree new_val =
- fold_convert (TREE_TYPE (gimple_call_lhs (stmt)), val[0]);
-
- /* If the result is not a valid gimple value, or not a cast
- of a valid gimple value, then we cannot use the result. */
- if (is_gimple_val (new_val)
- || (CONVERT_EXPR_P (new_val)
- && is_gimple_val (TREE_OPERAND (new_val, 0))))
- return new_val;
- }
- break;
-
- case BUILT_IN_STRCPY:
- if (val[1] && is_gimple_val (val[1]) && nargs == 2)
- result = fold_builtin_strcpy (loc, callee,
- gimple_call_arg (stmt, 0),
- gimple_call_arg (stmt, 1),
- val[1]);
- break;
-
- case BUILT_IN_STRNCPY:
- if (val[1] && is_gimple_val (val[1]) && nargs == 3)
- result = fold_builtin_strncpy (loc, callee,
- gimple_call_arg (stmt, 0),
- gimple_call_arg (stmt, 1),
- gimple_call_arg (stmt, 2),
- val[1]);
- break;
-
- case BUILT_IN_FPUTS:
- if (nargs == 2)
- result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
- gimple_call_arg (stmt, 1),
- ignore, false, val[0]);
- break;
-
- case BUILT_IN_FPUTS_UNLOCKED:
- if (nargs == 2)
- result = fold_builtin_fputs (loc, gimple_call_arg (stmt, 0),
- gimple_call_arg (stmt, 1),
- ignore, true, val[0]);
- break;
-
- case BUILT_IN_MEMCPY_CHK:
- case BUILT_IN_MEMPCPY_CHK:
- case BUILT_IN_MEMMOVE_CHK:
- case BUILT_IN_MEMSET_CHK:
- if (val[2] && is_gimple_val (val[2]) && nargs == 4)
- result = fold_builtin_memory_chk (loc, callee,
- gimple_call_arg (stmt, 0),
- gimple_call_arg (stmt, 1),
- gimple_call_arg (stmt, 2),
- gimple_call_arg (stmt, 3),
- val[2], ignore,
- DECL_FUNCTION_CODE (callee));
- break;
-
- case BUILT_IN_STRCPY_CHK:
- case BUILT_IN_STPCPY_CHK:
- if (val[1] && is_gimple_val (val[1]) && nargs == 3)
- result = fold_builtin_stxcpy_chk (loc, callee,
- gimple_call_arg (stmt, 0),
- gimple_call_arg (stmt, 1),
- gimple_call_arg (stmt, 2),
- val[1], ignore,
- DECL_FUNCTION_CODE (callee));
- break;
-
- case BUILT_IN_STRNCPY_CHK:
- case BUILT_IN_STPNCPY_CHK:
- if (val[2] && is_gimple_val (val[2]) && nargs == 4)
- result = fold_builtin_stxncpy_chk (loc, gimple_call_arg (stmt, 0),
- gimple_call_arg (stmt, 1),
- gimple_call_arg (stmt, 2),
- gimple_call_arg (stmt, 3),
- val[2], ignore,
- DECL_FUNCTION_CODE (callee));
- break;
-
- case BUILT_IN_SNPRINTF_CHK:
- case BUILT_IN_VSNPRINTF_CHK:
- if (val[1] && is_gimple_val (val[1]))
- result = gimple_fold_builtin_snprintf_chk (stmt, val[1],
- DECL_FUNCTION_CODE (callee));
- break;
-
- default:
- gcc_unreachable ();
- }
-
- if (result && ignore)
- result = fold_ignored_result (result);
- return result;
-}
-
-
-/* Return a binfo to be used for devirtualization of calls based on an object
- represented by a declaration (i.e. a global or automatically allocated one)
- or NULL if it cannot be found or is not safe. CST is expected to be an
- ADDR_EXPR of such object or the function will return NULL. Currently it is
- safe to use such binfo only if it has no base binfo (i.e. no ancestors). */
-
-tree
-gimple_extract_devirt_binfo_from_cst (tree cst)
-{
- HOST_WIDE_INT offset, size, max_size;
- tree base, type, expected_type, binfo;
- bool last_artificial = false;
-
- if (!flag_devirtualize
- || TREE_CODE (cst) != ADDR_EXPR
- || TREE_CODE (TREE_TYPE (TREE_TYPE (cst))) != RECORD_TYPE)
- return NULL_TREE;
-
- cst = TREE_OPERAND (cst, 0);
- expected_type = TREE_TYPE (cst);
- base = get_ref_base_and_extent (cst, &offset, &size, &max_size);
- type = TREE_TYPE (base);
- if (!DECL_P (base)
- || max_size == -1
- || max_size != size
- || TREE_CODE (type) != RECORD_TYPE)
- return NULL_TREE;
-
- /* Find the sub-object the constant actually refers to and mark whether it is
- an artificial one (as opposed to a user-defined one). */
- while (true)
- {
- HOST_WIDE_INT pos, size;
- tree fld;
-
- if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (expected_type))
- break;
- if (offset < 0)
- return NULL_TREE;
-
- for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
- {
- if (TREE_CODE (fld) != FIELD_DECL)
- continue;
-
- pos = int_bit_position (fld);
- size = tree_low_cst (DECL_SIZE (fld), 1);
- if (pos <= offset && (pos + size) > offset)
- break;
- }
- if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
- return NULL_TREE;
-
- last_artificial = DECL_ARTIFICIAL (fld);
- type = TREE_TYPE (fld);
- offset -= pos;
- }
- /* Artificial sub-objects are ancestors, we do not want to use them for
- devirtualization, at least not here. */
- if (last_artificial)
- return NULL_TREE;
- binfo = TYPE_BINFO (type);
- if (!binfo || BINFO_N_BASE_BINFOS (binfo) > 0)
- return NULL_TREE;
- else
- return binfo;
-}
-
-/* Attempt to fold a call statement referenced by the statement iterator GSI.
- The statement may be replaced by another statement, e.g., if the call
- simplifies to a constant value. Return true if any changes were made.
- It is assumed that the operands have been previously folded. */
-
-static bool
-gimple_fold_call (gimple_stmt_iterator *gsi, bool inplace)
-{
- gimple stmt = gsi_stmt (*gsi);
- tree callee;
- bool changed = false;
- unsigned i;
-
- /* Fold *& in call arguments. */
- for (i = 0; i < gimple_call_num_args (stmt); ++i)
- if (REFERENCE_CLASS_P (gimple_call_arg (stmt, i)))
- {
- tree tmp = maybe_fold_reference (gimple_call_arg (stmt, i), false);
- if (tmp)
- {
- gimple_call_set_arg (stmt, i, tmp);
- changed = true;
- }
- }
-
- /* Check for virtual calls that became direct calls. */
- callee = gimple_call_fn (stmt);
- if (callee && TREE_CODE (callee) == OBJ_TYPE_REF)
- {
- if (gimple_call_addr_fndecl (OBJ_TYPE_REF_EXPR (callee)) != NULL_TREE)
- {
- gimple_call_set_fn (stmt, OBJ_TYPE_REF_EXPR (callee));
- changed = true;
- }
- else
- {
- tree obj = OBJ_TYPE_REF_OBJECT (callee);
- tree binfo = gimple_extract_devirt_binfo_from_cst (obj);
- if (binfo)
- {
- HOST_WIDE_INT token
- = TREE_INT_CST_LOW (OBJ_TYPE_REF_TOKEN (callee));
- tree fndecl = gimple_get_virt_method_for_binfo (token, binfo);
- if (fndecl)
- {
- gimple_call_set_fndecl (stmt, fndecl);
- changed = true;
- }
- }
- }
- }
-
- if (inplace)
- return changed;
-
- /* Check for builtins that CCP can handle using information not
- available in the generic fold routines. */
- callee = gimple_call_fndecl (stmt);
- if (callee && DECL_BUILT_IN (callee))
- {
- tree result = gimple_fold_builtin (stmt);
- if (result)
- {
- if (!update_call_from_tree (gsi, result))
- gimplify_and_update_call_from_tree (gsi, result);
- changed = true;
- }
- }
-
- return changed;
-}
-
-/* Worker for both fold_stmt and fold_stmt_inplace. The INPLACE argument
- distinguishes both cases. */
-
-static bool
-fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace)
-{
- bool changed = false;
- gimple stmt = gsi_stmt (*gsi);
- unsigned i;
-
- /* Fold the main computation performed by the statement. */
- switch (gimple_code (stmt))
- {
- case GIMPLE_ASSIGN:
- {
- unsigned old_num_ops = gimple_num_ops (stmt);
- enum tree_code subcode = gimple_assign_rhs_code (stmt);
- tree lhs = gimple_assign_lhs (stmt);
- tree new_rhs;
- /* First canonicalize operand order. This avoids building new
- trees if this is the only thing fold would later do. */
- if ((commutative_tree_code (subcode)
- || commutative_ternary_tree_code (subcode))
- && tree_swap_operands_p (gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt), false))
- {
- tree tem = gimple_assign_rhs1 (stmt);
- gimple_assign_set_rhs1 (stmt, gimple_assign_rhs2 (stmt));
- gimple_assign_set_rhs2 (stmt, tem);
- changed = true;
- }
- new_rhs = fold_gimple_assign (gsi);
- if (new_rhs
- && !useless_type_conversion_p (TREE_TYPE (lhs),
- TREE_TYPE (new_rhs)))
- new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
- if (new_rhs
- && (!inplace
- || get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops))
- {
- gimple_assign_set_rhs_from_tree (gsi, new_rhs);
- changed = true;
- }
- break;
- }
-
- case GIMPLE_COND:
- changed |= fold_gimple_cond (stmt);
- break;
-
- case GIMPLE_CALL:
- changed |= gimple_fold_call (gsi, inplace);
- break;
-
- case GIMPLE_ASM:
- /* Fold *& in asm operands. */
- {
- size_t noutputs;
- const char **oconstraints;
- const char *constraint;
- bool allows_mem, allows_reg;
-
- noutputs = gimple_asm_noutputs (stmt);
- oconstraints = XALLOCAVEC (const char *, noutputs);
-
- for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
- {
- tree link = gimple_asm_output_op (stmt, i);
- tree op = TREE_VALUE (link);
- oconstraints[i]
- = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
- if (REFERENCE_CLASS_P (op)
- && (op = maybe_fold_reference (op, true)) != NULL_TREE)
- {
- TREE_VALUE (link) = op;
- changed = true;
- }
- }
- for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
- {
- tree link = gimple_asm_input_op (stmt, i);
- tree op = TREE_VALUE (link);
- constraint
- = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
- parse_input_constraint (&constraint, 0, 0, noutputs, 0,
- oconstraints, &allows_mem, &allows_reg);
- if (REFERENCE_CLASS_P (op)
- && (op = maybe_fold_reference (op, !allows_reg && allows_mem))
- != NULL_TREE)
- {
- TREE_VALUE (link) = op;
- changed = true;
- }
- }
- }
- break;
-
- case GIMPLE_DEBUG:
- if (gimple_debug_bind_p (stmt))
- {
- tree val = gimple_debug_bind_get_value (stmt);
- if (val
- && REFERENCE_CLASS_P (val))
- {
- tree tem = maybe_fold_reference (val, false);
- if (tem)
- {
- gimple_debug_bind_set_value (stmt, tem);
- changed = true;
- }
- }
- else if (val
- && TREE_CODE (val) == ADDR_EXPR)
- {
- tree ref = TREE_OPERAND (val, 0);
- tree tem = maybe_fold_reference (ref, false);
- if (tem)
- {
- tem = build_fold_addr_expr_with_type (tem, TREE_TYPE (val));
- gimple_debug_bind_set_value (stmt, tem);
- changed = true;
- }
- }
- }
- break;
-
- default:;
- }
-
- stmt = gsi_stmt (*gsi);
-
- /* Fold *& on the lhs. */
- if (gimple_has_lhs (stmt))
- {
- tree lhs = gimple_get_lhs (stmt);
- if (lhs && REFERENCE_CLASS_P (lhs))
- {
- tree new_lhs = maybe_fold_reference (lhs, true);
- if (new_lhs)
- {
- gimple_set_lhs (stmt, new_lhs);
- changed = true;
- }
- }
- }
-
- return changed;
-}
-
-/* Fold the statement pointed to by GSI. In some cases, this function may
- replace the whole statement with a new one. Returns true iff folding
- makes any changes.
- The statement pointed to by GSI should be in valid gimple form but may
- be in unfolded state as resulting from for example constant propagation
- which can produce *&x = 0. */
-
-bool
-fold_stmt (gimple_stmt_iterator *gsi)
-{
- return fold_stmt_1 (gsi, false);
-}
-
-/* Perform the minimal folding on statement *GSI. Only operations like
- *&x created by constant propagation are handled. The statement cannot
- be replaced with a new one. Return true if the statement was
- changed, false otherwise.
- The statement *GSI should be in valid gimple form but may
- be in unfolded state as resulting from for example constant propagation
- which can produce *&x = 0. */
-
-bool
-fold_stmt_inplace (gimple_stmt_iterator *gsi)
-{
- gimple stmt = gsi_stmt (*gsi);
- bool changed = fold_stmt_1 (gsi, true);
- gcc_assert (gsi_stmt (*gsi) == stmt);
- return changed;
-}
-
-/* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE
- if EXPR is null or we don't know how.
- If non-null, the result always has boolean type. */
-
-static tree
-canonicalize_bool (tree expr, bool invert)
-{
- if (!expr)
- return NULL_TREE;
- else if (invert)
- {
- if (integer_nonzerop (expr))
- return boolean_false_node;
- else if (integer_zerop (expr))
- return boolean_true_node;
- else if (TREE_CODE (expr) == SSA_NAME)
- return fold_build2 (EQ_EXPR, boolean_type_node, expr,
- build_int_cst (TREE_TYPE (expr), 0));
- else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
- return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false),
- boolean_type_node,
- TREE_OPERAND (expr, 0),
- TREE_OPERAND (expr, 1));
- else
- return NULL_TREE;
- }
- else
- {
- if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
- return expr;
- if (integer_nonzerop (expr))
- return boolean_true_node;
- else if (integer_zerop (expr))
- return boolean_false_node;
- else if (TREE_CODE (expr) == SSA_NAME)
- return fold_build2 (NE_EXPR, boolean_type_node, expr,
- build_int_cst (TREE_TYPE (expr), 0));
- else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
- return fold_build2 (TREE_CODE (expr),
- boolean_type_node,
- TREE_OPERAND (expr, 0),
- TREE_OPERAND (expr, 1));
- else
- return NULL_TREE;
- }
-}
-
-/* Check to see if a boolean expression EXPR is logically equivalent to the
- comparison (OP1 CODE OP2). Check for various identities involving
- SSA_NAMEs. */
-
-static bool
-same_bool_comparison_p (const_tree expr, enum tree_code code,
- const_tree op1, const_tree op2)
-{
- gimple s;
-
- /* The obvious case. */
- if (TREE_CODE (expr) == code
- && operand_equal_p (TREE_OPERAND (expr, 0), op1, 0)
- && operand_equal_p (TREE_OPERAND (expr, 1), op2, 0))
- return true;
-
- /* Check for comparing (name, name != 0) and the case where expr
- is an SSA_NAME with a definition matching the comparison. */
- if (TREE_CODE (expr) == SSA_NAME
- && TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
- {
- if (operand_equal_p (expr, op1, 0))
- return ((code == NE_EXPR && integer_zerop (op2))
- || (code == EQ_EXPR && integer_nonzerop (op2)));
- s = SSA_NAME_DEF_STMT (expr);
- if (is_gimple_assign (s)
- && gimple_assign_rhs_code (s) == code
- && operand_equal_p (gimple_assign_rhs1 (s), op1, 0)
- && operand_equal_p (gimple_assign_rhs2 (s), op2, 0))
- return true;
- }
-
- /* If op1 is of the form (name != 0) or (name == 0), and the definition
- of name is a comparison, recurse. */
- if (TREE_CODE (op1) == SSA_NAME
- && TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE)
- {
- s = SSA_NAME_DEF_STMT (op1);
- if (is_gimple_assign (s)
- && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
- {
- enum tree_code c = gimple_assign_rhs_code (s);
- if ((c == NE_EXPR && integer_zerop (op2))
- || (c == EQ_EXPR && integer_nonzerop (op2)))
- return same_bool_comparison_p (expr, c,
- gimple_assign_rhs1 (s),
- gimple_assign_rhs2 (s));
- if ((c == EQ_EXPR && integer_zerop (op2))
- || (c == NE_EXPR && integer_nonzerop (op2)))
- return same_bool_comparison_p (expr,
- invert_tree_comparison (c, false),
- gimple_assign_rhs1 (s),
- gimple_assign_rhs2 (s));
- }
- }
- return false;
-}
-
-/* Check to see if two boolean expressions OP1 and OP2 are logically
- equivalent. */
-
-static bool
-same_bool_result_p (const_tree op1, const_tree op2)
-{
- /* Simple cases first. */
- if (operand_equal_p (op1, op2, 0))
- return true;
-
- /* Check the cases where at least one of the operands is a comparison.
- These are a bit smarter than operand_equal_p in that they apply some
- identifies on SSA_NAMEs. */
- if (TREE_CODE_CLASS (TREE_CODE (op2)) == tcc_comparison
- && same_bool_comparison_p (op1, TREE_CODE (op2),
- TREE_OPERAND (op2, 0),
- TREE_OPERAND (op2, 1)))
- return true;
- if (TREE_CODE_CLASS (TREE_CODE (op1)) == tcc_comparison
- && same_bool_comparison_p (op2, TREE_CODE (op1),
- TREE_OPERAND (op1, 0),
- TREE_OPERAND (op1, 1)))
- return true;
-
- /* Default case. */
- return false;
-}
-
-/* Forward declarations for some mutually recursive functions. */
-
-static tree
-and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
- enum tree_code code2, tree op2a, tree op2b);
-static tree
-and_var_with_comparison (tree var, bool invert,
- enum tree_code code2, tree op2a, tree op2b);
-static tree
-and_var_with_comparison_1 (gimple stmt,
- enum tree_code code2, tree op2a, tree op2b);
-static tree
-or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
- enum tree_code code2, tree op2a, tree op2b);
-static tree
-or_var_with_comparison (tree var, bool invert,
- enum tree_code code2, tree op2a, tree op2b);
-static tree
-or_var_with_comparison_1 (gimple stmt,
- enum tree_code code2, tree op2a, tree op2b);
-
-/* Helper function for and_comparisons_1: try to simplify the AND of the
- ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
- If INVERT is true, invert the value of the VAR before doing the AND.
- Return NULL_EXPR if we can't simplify this to a single expression. */
-
-static tree
-and_var_with_comparison (tree var, bool invert,
- enum tree_code code2, tree op2a, tree op2b)
-{
- tree t;
- gimple stmt = SSA_NAME_DEF_STMT (var);
-
- /* We can only deal with variables whose definitions are assignments. */
- if (!is_gimple_assign (stmt))
- return NULL_TREE;
-
- /* If we have an inverted comparison, apply DeMorgan's law and rewrite
- !var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b))
- Then we only have to consider the simpler non-inverted cases. */
- if (invert)
- t = or_var_with_comparison_1 (stmt,
- invert_tree_comparison (code2, false),
- op2a, op2b);
- else
- t = and_var_with_comparison_1 (stmt, code2, op2a, op2b);
- return canonicalize_bool (t, invert);
-}
-
-/* Try to simplify the AND of the ssa variable defined by the assignment
- STMT with the comparison specified by (OP2A CODE2 OP2B).
- Return NULL_EXPR if we can't simplify this to a single expression. */
-
-static tree
-and_var_with_comparison_1 (gimple stmt,
- enum tree_code code2, tree op2a, tree op2b)
-{
- tree var = gimple_assign_lhs (stmt);
- tree true_test_var = NULL_TREE;
- tree false_test_var = NULL_TREE;
- enum tree_code innercode = gimple_assign_rhs_code (stmt);
-
- /* Check for identities like (var AND (var == 0)) => false. */
- if (TREE_CODE (op2a) == SSA_NAME
- && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
- {
- if ((code2 == NE_EXPR && integer_zerop (op2b))
- || (code2 == EQ_EXPR && integer_nonzerop (op2b)))
- {
- true_test_var = op2a;
- if (var == true_test_var)
- return var;
- }
- else if ((code2 == EQ_EXPR && integer_zerop (op2b))
- || (code2 == NE_EXPR && integer_nonzerop (op2b)))
- {
- false_test_var = op2a;
- if (var == false_test_var)
- return boolean_false_node;
- }
- }
-
- /* If the definition is a comparison, recurse on it. */
- if (TREE_CODE_CLASS (innercode) == tcc_comparison)
- {
- tree t = and_comparisons_1 (innercode,
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt),
- code2,
- op2a,
- op2b);
- if (t)
- return t;
- }
-
- /* If the definition is an AND or OR expression, we may be able to
- simplify by reassociating. */
- if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
- && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
- {
- tree inner1 = gimple_assign_rhs1 (stmt);
- tree inner2 = gimple_assign_rhs2 (stmt);
- gimple s;
- tree t;
- tree partial = NULL_TREE;
- bool is_and = (innercode == BIT_AND_EXPR);
-
- /* Check for boolean identities that don't require recursive examination
- of inner1/inner2:
- inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var
- inner1 AND (inner1 OR inner2) => inner1
- !inner1 AND (inner1 AND inner2) => false
- !inner1 AND (inner1 OR inner2) => !inner1 AND inner2
- Likewise for similar cases involving inner2. */
- if (inner1 == true_test_var)
- return (is_and ? var : inner1);
- else if (inner2 == true_test_var)
- return (is_and ? var : inner2);
- else if (inner1 == false_test_var)
- return (is_and
- ? boolean_false_node
- : and_var_with_comparison (inner2, false, code2, op2a, op2b));
- else if (inner2 == false_test_var)
- return (is_and
- ? boolean_false_node
- : and_var_with_comparison (inner1, false, code2, op2a, op2b));
-
- /* Next, redistribute/reassociate the AND across the inner tests.
- Compute the first partial result, (inner1 AND (op2a code op2b)) */
- if (TREE_CODE (inner1) == SSA_NAME
- && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
- && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
- && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
- gimple_assign_rhs1 (s),
- gimple_assign_rhs2 (s),
- code2, op2a, op2b)))
- {
- /* Handle the AND case, where we are reassociating:
- (inner1 AND inner2) AND (op2a code2 op2b)
- => (t AND inner2)
- If the partial result t is a constant, we win. Otherwise
- continue on to try reassociating with the other inner test. */
- if (is_and)
- {
- if (integer_onep (t))
- return inner2;
- else if (integer_zerop (t))
- return boolean_false_node;
- }
-
- /* Handle the OR case, where we are redistributing:
- (inner1 OR inner2) AND (op2a code2 op2b)
- => (t OR (inner2 AND (op2a code2 op2b))) */
- else if (integer_onep (t))
- return boolean_true_node;
-
- /* Save partial result for later. */
- partial = t;
- }
-
- /* Compute the second partial result, (inner2 AND (op2a code op2b)) */
- if (TREE_CODE (inner2) == SSA_NAME
- && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
- && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
- && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
- gimple_assign_rhs1 (s),
- gimple_assign_rhs2 (s),
- code2, op2a, op2b)))
- {
- /* Handle the AND case, where we are reassociating:
- (inner1 AND inner2) AND (op2a code2 op2b)
- => (inner1 AND t) */
- if (is_and)
- {
- if (integer_onep (t))
- return inner1;
- else if (integer_zerop (t))
- return boolean_false_node;
- /* If both are the same, we can apply the identity
- (x AND x) == x. */
- else if (partial && same_bool_result_p (t, partial))
- return t;
- }
-
- /* Handle the OR case. where we are redistributing:
- (inner1 OR inner2) AND (op2a code2 op2b)
- => (t OR (inner1 AND (op2a code2 op2b)))
- => (t OR partial) */
- else
- {
- if (integer_onep (t))
- return boolean_true_node;
- else if (partial)
- {
- /* We already got a simplification for the other
- operand to the redistributed OR expression. The
- interesting case is when at least one is false.
- Or, if both are the same, we can apply the identity
- (x OR x) == x. */
- if (integer_zerop (partial))
- return t;
- else if (integer_zerop (t))
- return partial;
- else if (same_bool_result_p (t, partial))
- return t;
- }
- }
- }
- }
- return NULL_TREE;
-}
-
-/* Try to simplify the AND of two comparisons defined by
- (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
- If this can be done without constructing an intermediate value,
- return the resulting tree; otherwise NULL_TREE is returned.
- This function is deliberately asymmetric as it recurses on SSA_DEFs
- in the first comparison but not the second. */
-
-static tree
-and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
- enum tree_code code2, tree op2a, tree op2b)
-{
- tree truth_type = truth_type_for (TREE_TYPE (op1a));
-
- /* First check for ((x CODE1 y) AND (x CODE2 y)). */
- if (operand_equal_p (op1a, op2a, 0)
- && operand_equal_p (op1b, op2b, 0))
- {
- /* Result will be either NULL_TREE, or a combined comparison. */
- tree t = combine_comparisons (UNKNOWN_LOCATION,
- TRUTH_ANDIF_EXPR, code1, code2,
- truth_type, op1a, op1b);
- if (t)
- return t;
- }
-
- /* Likewise the swapped case of the above. */
- if (operand_equal_p (op1a, op2b, 0)
- && operand_equal_p (op1b, op2a, 0))
- {
- /* Result will be either NULL_TREE, or a combined comparison. */
- tree t = combine_comparisons (UNKNOWN_LOCATION,
- TRUTH_ANDIF_EXPR, code1,
- swap_tree_comparison (code2),
- truth_type, op1a, op1b);
- if (t)
- return t;
- }
-
- /* If both comparisons are of the same value against constants, we might
- be able to merge them. */
- if (operand_equal_p (op1a, op2a, 0)
- && TREE_CODE (op1b) == INTEGER_CST
- && TREE_CODE (op2b) == INTEGER_CST)
- {
- int cmp = tree_int_cst_compare (op1b, op2b);
-
- /* If we have (op1a == op1b), we should either be able to
- return that or FALSE, depending on whether the constant op1b
- also satisfies the other comparison against op2b. */
- if (code1 == EQ_EXPR)
- {
- bool done = true;
- bool val;
- switch (code2)
- {
- case EQ_EXPR: val = (cmp == 0); break;
- case NE_EXPR: val = (cmp != 0); break;
- case LT_EXPR: val = (cmp < 0); break;
- case GT_EXPR: val = (cmp > 0); break;
- case LE_EXPR: val = (cmp <= 0); break;
- case GE_EXPR: val = (cmp >= 0); break;
- default: done = false;
- }
- if (done)
- {
- if (val)
- return fold_build2 (code1, boolean_type_node, op1a, op1b);
- else
- return boolean_false_node;
- }
- }
- /* Likewise if the second comparison is an == comparison. */
- else if (code2 == EQ_EXPR)
- {
- bool done = true;
- bool val;
- switch (code1)
- {
- case EQ_EXPR: val = (cmp == 0); break;
- case NE_EXPR: val = (cmp != 0); break;
- case LT_EXPR: val = (cmp > 0); break;
- case GT_EXPR: val = (cmp < 0); break;
- case LE_EXPR: val = (cmp >= 0); break;
- case GE_EXPR: val = (cmp <= 0); break;
- default: done = false;
- }
- if (done)
- {
- if (val)
- return fold_build2 (code2, boolean_type_node, op2a, op2b);
- else
- return boolean_false_node;
- }
- }
-
- /* Same business with inequality tests. */
- else if (code1 == NE_EXPR)
- {
- bool val;
- switch (code2)
- {
- case EQ_EXPR: val = (cmp != 0); break;
- case NE_EXPR: val = (cmp == 0); break;
- case LT_EXPR: val = (cmp >= 0); break;
- case GT_EXPR: val = (cmp <= 0); break;
- case LE_EXPR: val = (cmp > 0); break;
- case GE_EXPR: val = (cmp < 0); break;
- default:
- val = false;
- }
- if (val)
- return fold_build2 (code2, boolean_type_node, op2a, op2b);
- }
- else if (code2 == NE_EXPR)
- {
- bool val;
- switch (code1)
- {
- case EQ_EXPR: val = (cmp == 0); break;
- case NE_EXPR: val = (cmp != 0); break;
- case LT_EXPR: val = (cmp <= 0); break;
- case GT_EXPR: val = (cmp >= 0); break;
- case LE_EXPR: val = (cmp < 0); break;
- case GE_EXPR: val = (cmp > 0); break;
- default:
- val = false;
- }
- if (val)
- return fold_build2 (code1, boolean_type_node, op1a, op1b);
- }
-
- /* Chose the more restrictive of two < or <= comparisons. */
- else if ((code1 == LT_EXPR || code1 == LE_EXPR)
- && (code2 == LT_EXPR || code2 == LE_EXPR))
- {
- if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
- return fold_build2 (code1, boolean_type_node, op1a, op1b);
- else
- return fold_build2 (code2, boolean_type_node, op2a, op2b);
- }
-
- /* Likewise chose the more restrictive of two > or >= comparisons. */
- else if ((code1 == GT_EXPR || code1 == GE_EXPR)
- && (code2 == GT_EXPR || code2 == GE_EXPR))
- {
- if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
- return fold_build2 (code1, boolean_type_node, op1a, op1b);
- else
- return fold_build2 (code2, boolean_type_node, op2a, op2b);
- }
-
- /* Check for singleton ranges. */
- else if (cmp == 0
- && ((code1 == LE_EXPR && code2 == GE_EXPR)
- || (code1 == GE_EXPR && code2 == LE_EXPR)))
- return fold_build2 (EQ_EXPR, boolean_type_node, op1a, op2b);
-
- /* Check for disjoint ranges. */
- else if (cmp <= 0
- && (code1 == LT_EXPR || code1 == LE_EXPR)
- && (code2 == GT_EXPR || code2 == GE_EXPR))
- return boolean_false_node;
- else if (cmp >= 0
- && (code1 == GT_EXPR || code1 == GE_EXPR)
- && (code2 == LT_EXPR || code2 == LE_EXPR))
- return boolean_false_node;
- }
-
- /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
- NAME's definition is a truth value. See if there are any simplifications
- that can be done against the NAME's definition. */
- if (TREE_CODE (op1a) == SSA_NAME
- && (code1 == NE_EXPR || code1 == EQ_EXPR)
- && (integer_zerop (op1b) || integer_onep (op1b)))
- {
- bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
- || (code1 == NE_EXPR && integer_onep (op1b)));
- gimple stmt = SSA_NAME_DEF_STMT (op1a);
- switch (gimple_code (stmt))
- {
- case GIMPLE_ASSIGN:
- /* Try to simplify by copy-propagating the definition. */
- return and_var_with_comparison (op1a, invert, code2, op2a, op2b);
-
- case GIMPLE_PHI:
- /* If every argument to the PHI produces the same result when
- ANDed with the second comparison, we win.
- Do not do this unless the type is bool since we need a bool
- result here anyway. */
- if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
- {
- tree result = NULL_TREE;
- unsigned i;
- for (i = 0; i < gimple_phi_num_args (stmt); i++)
- {
- tree arg = gimple_phi_arg_def (stmt, i);
-
- /* If this PHI has itself as an argument, ignore it.
- If all the other args produce the same result,
- we're still OK. */
- if (arg == gimple_phi_result (stmt))
- continue;
- else if (TREE_CODE (arg) == INTEGER_CST)
- {
- if (invert ? integer_nonzerop (arg) : integer_zerop (arg))
- {
- if (!result)
- result = boolean_false_node;
- else if (!integer_zerop (result))
- return NULL_TREE;
- }
- else if (!result)
- result = fold_build2 (code2, boolean_type_node,
- op2a, op2b);
- else if (!same_bool_comparison_p (result,
- code2, op2a, op2b))
- return NULL_TREE;
- }
- else if (TREE_CODE (arg) == SSA_NAME
- && !SSA_NAME_IS_DEFAULT_DEF (arg))
- {
- tree temp;
- gimple def_stmt = SSA_NAME_DEF_STMT (arg);
- /* In simple cases we can look through PHI nodes,
- but we have to be careful with loops.
- See PR49073. */
- if (! dom_info_available_p (CDI_DOMINATORS)
- || gimple_bb (def_stmt) == gimple_bb (stmt)
- || dominated_by_p (CDI_DOMINATORS,
- gimple_bb (def_stmt),
- gimple_bb (stmt)))
- return NULL_TREE;
- temp = and_var_with_comparison (arg, invert, code2,
- op2a, op2b);
- if (!temp)
- return NULL_TREE;
- else if (!result)
- result = temp;
- else if (!same_bool_result_p (result, temp))
- return NULL_TREE;
- }
- else
- return NULL_TREE;
- }
- return result;
- }
-
- default:
- break;
- }
- }
- return NULL_TREE;
-}
-
-/* Try to simplify the AND of two comparisons, specified by
- (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
- If this can be simplified to a single expression (without requiring
- introducing more SSA variables to hold intermediate values),
- return the resulting tree. Otherwise return NULL_TREE.
- If the result expression is non-null, it has boolean type. */
-
-tree
-maybe_fold_and_comparisons (enum tree_code code1, tree op1a, tree op1b,
- enum tree_code code2, tree op2a, tree op2b)
-{
- tree t = and_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
- if (t)
- return t;
- else
- return and_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
-}
-
-/* Helper function for or_comparisons_1: try to simplify the OR of the
- ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
- If INVERT is true, invert the value of VAR before doing the OR.
- Return NULL_EXPR if we can't simplify this to a single expression. */
-
-static tree
-or_var_with_comparison (tree var, bool invert,
- enum tree_code code2, tree op2a, tree op2b)
-{
- tree t;
- gimple stmt = SSA_NAME_DEF_STMT (var);
-
- /* We can only deal with variables whose definitions are assignments. */
- if (!is_gimple_assign (stmt))
- return NULL_TREE;
-
- /* If we have an inverted comparison, apply DeMorgan's law and rewrite
- !var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b))
- Then we only have to consider the simpler non-inverted cases. */
- if (invert)
- t = and_var_with_comparison_1 (stmt,
- invert_tree_comparison (code2, false),
- op2a, op2b);
- else
- t = or_var_with_comparison_1 (stmt, code2, op2a, op2b);
- return canonicalize_bool (t, invert);
-}
-
-/* Try to simplify the OR of the ssa variable defined by the assignment
- STMT with the comparison specified by (OP2A CODE2 OP2B).
- Return NULL_EXPR if we can't simplify this to a single expression. */
-
-static tree
-or_var_with_comparison_1 (gimple stmt,
- enum tree_code code2, tree op2a, tree op2b)
-{
- tree var = gimple_assign_lhs (stmt);
- tree true_test_var = NULL_TREE;
- tree false_test_var = NULL_TREE;
- enum tree_code innercode = gimple_assign_rhs_code (stmt);
-
- /* Check for identities like (var OR (var != 0)) => true . */
- if (TREE_CODE (op2a) == SSA_NAME
- && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
- {
- if ((code2 == NE_EXPR && integer_zerop (op2b))
- || (code2 == EQ_EXPR && integer_nonzerop (op2b)))
- {
- true_test_var = op2a;
- if (var == true_test_var)
- return var;
- }
- else if ((code2 == EQ_EXPR && integer_zerop (op2b))
- || (code2 == NE_EXPR && integer_nonzerop (op2b)))
- {
- false_test_var = op2a;
- if (var == false_test_var)
- return boolean_true_node;
- }
- }
-
- /* If the definition is a comparison, recurse on it. */
- if (TREE_CODE_CLASS (innercode) == tcc_comparison)
- {
- tree t = or_comparisons_1 (innercode,
- gimple_assign_rhs1 (stmt),
- gimple_assign_rhs2 (stmt),
- code2,
- op2a,
- op2b);
- if (t)
- return t;
- }
-
- /* If the definition is an AND or OR expression, we may be able to
- simplify by reassociating. */
- if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
- && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
- {
- tree inner1 = gimple_assign_rhs1 (stmt);
- tree inner2 = gimple_assign_rhs2 (stmt);
- gimple s;
- tree t;
- tree partial = NULL_TREE;
- bool is_or = (innercode == BIT_IOR_EXPR);
-
- /* Check for boolean identities that don't require recursive examination
- of inner1/inner2:
- inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var
- inner1 OR (inner1 AND inner2) => inner1
- !inner1 OR (inner1 OR inner2) => true
- !inner1 OR (inner1 AND inner2) => !inner1 OR inner2
- */
- if (inner1 == true_test_var)
- return (is_or ? var : inner1);
- else if (inner2 == true_test_var)
- return (is_or ? var : inner2);
- else if (inner1 == false_test_var)
- return (is_or
- ? boolean_true_node
- : or_var_with_comparison (inner2, false, code2, op2a, op2b));
- else if (inner2 == false_test_var)
- return (is_or
- ? boolean_true_node
- : or_var_with_comparison (inner1, false, code2, op2a, op2b));
-
- /* Next, redistribute/reassociate the OR across the inner tests.
- Compute the first partial result, (inner1 OR (op2a code op2b)) */
- if (TREE_CODE (inner1) == SSA_NAME
- && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
- && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
- && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
- gimple_assign_rhs1 (s),
- gimple_assign_rhs2 (s),
- code2, op2a, op2b)))
- {
- /* Handle the OR case, where we are reassociating:
- (inner1 OR inner2) OR (op2a code2 op2b)
- => (t OR inner2)
- If the partial result t is a constant, we win. Otherwise
- continue on to try reassociating with the other inner test. */
- if (is_or)
- {
- if (integer_onep (t))
- return boolean_true_node;
- else if (integer_zerop (t))
- return inner2;
- }
-
- /* Handle the AND case, where we are redistributing:
- (inner1 AND inner2) OR (op2a code2 op2b)
- => (t AND (inner2 OR (op2a code op2b))) */
- else if (integer_zerop (t))
- return boolean_false_node;
-
- /* Save partial result for later. */
- partial = t;
- }
-
- /* Compute the second partial result, (inner2 OR (op2a code op2b)) */
- if (TREE_CODE (inner2) == SSA_NAME
- && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
- && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
- && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
- gimple_assign_rhs1 (s),
- gimple_assign_rhs2 (s),
- code2, op2a, op2b)))
- {
- /* Handle the OR case, where we are reassociating:
- (inner1 OR inner2) OR (op2a code2 op2b)
- => (inner1 OR t)
- => (t OR partial) */
- if (is_or)
- {
- if (integer_zerop (t))
- return inner1;
- else if (integer_onep (t))
- return boolean_true_node;
- /* If both are the same, we can apply the identity
- (x OR x) == x. */
- else if (partial && same_bool_result_p (t, partial))
- return t;
- }
-
- /* Handle the AND case, where we are redistributing:
- (inner1 AND inner2) OR (op2a code2 op2b)
- => (t AND (inner1 OR (op2a code2 op2b)))
- => (t AND partial) */
- else
- {
- if (integer_zerop (t))
- return boolean_false_node;
- else if (partial)
- {
- /* We already got a simplification for the other
- operand to the redistributed AND expression. The
- interesting case is when at least one is true.
- Or, if both are the same, we can apply the identity
- (x AND x) == x. */
- if (integer_onep (partial))
- return t;
- else if (integer_onep (t))
- return partial;
- else if (same_bool_result_p (t, partial))
- return t;
- }
- }
- }
- }
- return NULL_TREE;
-}
-
-/* Try to simplify the OR of two comparisons defined by
- (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
- If this can be done without constructing an intermediate value,
- return the resulting tree; otherwise NULL_TREE is returned.
- This function is deliberately asymmetric as it recurses on SSA_DEFs
- in the first comparison but not the second. */
-
-static tree
-or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
- enum tree_code code2, tree op2a, tree op2b)
-{
- tree truth_type = truth_type_for (TREE_TYPE (op1a));
-
- /* First check for ((x CODE1 y) OR (x CODE2 y)). */
- if (operand_equal_p (op1a, op2a, 0)
- && operand_equal_p (op1b, op2b, 0))
- {
- /* Result will be either NULL_TREE, or a combined comparison. */
- tree t = combine_comparisons (UNKNOWN_LOCATION,
- TRUTH_ORIF_EXPR, code1, code2,
- truth_type, op1a, op1b);
- if (t)
- return t;
- }
-
- /* Likewise the swapped case of the above. */
- if (operand_equal_p (op1a, op2b, 0)
- && operand_equal_p (op1b, op2a, 0))
- {
- /* Result will be either NULL_TREE, or a combined comparison. */
- tree t = combine_comparisons (UNKNOWN_LOCATION,
- TRUTH_ORIF_EXPR, code1,
- swap_tree_comparison (code2),
- truth_type, op1a, op1b);
- if (t)
- return t;
- }
-
- /* If both comparisons are of the same value against constants, we might
- be able to merge them. */
- if (operand_equal_p (op1a, op2a, 0)
- && TREE_CODE (op1b) == INTEGER_CST
- && TREE_CODE (op2b) == INTEGER_CST)
- {
- int cmp = tree_int_cst_compare (op1b, op2b);
-
- /* If we have (op1a != op1b), we should either be able to
- return that or TRUE, depending on whether the constant op1b
- also satisfies the other comparison against op2b. */
- if (code1 == NE_EXPR)
- {
- bool done = true;
- bool val;
- switch (code2)
- {
- case EQ_EXPR: val = (cmp == 0); break;
- case NE_EXPR: val = (cmp != 0); break;
- case LT_EXPR: val = (cmp < 0); break;
- case GT_EXPR: val = (cmp > 0); break;
- case LE_EXPR: val = (cmp <= 0); break;
- case GE_EXPR: val = (cmp >= 0); break;
- default: done = false;
- }
- if (done)
- {
- if (val)
- return boolean_true_node;
- else
- return fold_build2 (code1, boolean_type_node, op1a, op1b);
- }
- }
- /* Likewise if the second comparison is a != comparison. */
- else if (code2 == NE_EXPR)
- {
- bool done = true;
- bool val;
- switch (code1)
- {
- case EQ_EXPR: val = (cmp == 0); break;
- case NE_EXPR: val = (cmp != 0); break;
- case LT_EXPR: val = (cmp > 0); break;
- case GT_EXPR: val = (cmp < 0); break;
- case LE_EXPR: val = (cmp >= 0); break;
- case GE_EXPR: val = (cmp <= 0); break;
- default: done = false;
- }
- if (done)
- {
- if (val)
- return boolean_true_node;
- else
- return fold_build2 (code2, boolean_type_node, op2a, op2b);
- }
- }
-
- /* See if an equality test is redundant with the other comparison. */
- else if (code1 == EQ_EXPR)
- {
- bool val;
- switch (code2)
- {
- case EQ_EXPR: val = (cmp == 0); break;
- case NE_EXPR: val = (cmp != 0); break;
- case LT_EXPR: val = (cmp < 0); break;
- case GT_EXPR: val = (cmp > 0); break;
- case LE_EXPR: val = (cmp <= 0); break;
- case GE_EXPR: val = (cmp >= 0); break;
- default:
- val = false;
- }
- if (val)
- return fold_build2 (code2, boolean_type_node, op2a, op2b);
- }
- else if (code2 == EQ_EXPR)
- {
- bool val;
- switch (code1)
- {
- case EQ_EXPR: val = (cmp == 0); break;
- case NE_EXPR: val = (cmp != 0); break;
- case LT_EXPR: val = (cmp > 0); break;
- case GT_EXPR: val = (cmp < 0); break;
- case LE_EXPR: val = (cmp >= 0); break;
- case GE_EXPR: val = (cmp <= 0); break;
- default:
- val = false;
- }
- if (val)
- return fold_build2 (code1, boolean_type_node, op1a, op1b);
- }
-
- /* Chose the less restrictive of two < or <= comparisons. */
- else if ((code1 == LT_EXPR || code1 == LE_EXPR)
- && (code2 == LT_EXPR || code2 == LE_EXPR))
- {
- if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
- return fold_build2 (code2, boolean_type_node, op2a, op2b);
- else
- return fold_build2 (code1, boolean_type_node, op1a, op1b);
- }
-
- /* Likewise chose the less restrictive of two > or >= comparisons. */
- else if ((code1 == GT_EXPR || code1 == GE_EXPR)
- && (code2 == GT_EXPR || code2 == GE_EXPR))
- {
- if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
- return fold_build2 (code2, boolean_type_node, op2a, op2b);
- else
- return fold_build2 (code1, boolean_type_node, op1a, op1b);
- }
-
- /* Check for singleton ranges. */
- else if (cmp == 0
- && ((code1 == LT_EXPR && code2 == GT_EXPR)
- || (code1 == GT_EXPR && code2 == LT_EXPR)))
- return fold_build2 (NE_EXPR, boolean_type_node, op1a, op2b);
-
- /* Check for less/greater pairs that don't restrict the range at all. */
- else if (cmp >= 0
- && (code1 == LT_EXPR || code1 == LE_EXPR)
- && (code2 == GT_EXPR || code2 == GE_EXPR))
- return boolean_true_node;
- else if (cmp <= 0
- && (code1 == GT_EXPR || code1 == GE_EXPR)
- && (code2 == LT_EXPR || code2 == LE_EXPR))
- return boolean_true_node;
- }
-
- /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
- NAME's definition is a truth value. See if there are any simplifications
- that can be done against the NAME's definition. */
- if (TREE_CODE (op1a) == SSA_NAME
- && (code1 == NE_EXPR || code1 == EQ_EXPR)
- && (integer_zerop (op1b) || integer_onep (op1b)))
- {
- bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
- || (code1 == NE_EXPR && integer_onep (op1b)));
- gimple stmt = SSA_NAME_DEF_STMT (op1a);
- switch (gimple_code (stmt))
- {
- case GIMPLE_ASSIGN:
- /* Try to simplify by copy-propagating the definition. */
- return or_var_with_comparison (op1a, invert, code2, op2a, op2b);
-
- case GIMPLE_PHI:
- /* If every argument to the PHI produces the same result when
- ORed with the second comparison, we win.
- Do not do this unless the type is bool since we need a bool
- result here anyway. */
- if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
- {
- tree result = NULL_TREE;
- unsigned i;
- for (i = 0; i < gimple_phi_num_args (stmt); i++)
- {
- tree arg = gimple_phi_arg_def (stmt, i);
-
- /* If this PHI has itself as an argument, ignore it.
- If all the other args produce the same result,
- we're still OK. */
- if (arg == gimple_phi_result (stmt))
- continue;
- else if (TREE_CODE (arg) == INTEGER_CST)
- {
- if (invert ? integer_zerop (arg) : integer_nonzerop (arg))
- {
- if (!result)
- result = boolean_true_node;
- else if (!integer_onep (result))
- return NULL_TREE;
- }
- else if (!result)
- result = fold_build2 (code2, boolean_type_node,
- op2a, op2b);
- else if (!same_bool_comparison_p (result,
- code2, op2a, op2b))
- return NULL_TREE;
- }
- else if (TREE_CODE (arg) == SSA_NAME
- && !SSA_NAME_IS_DEFAULT_DEF (arg))
- {
- tree temp;
- gimple def_stmt = SSA_NAME_DEF_STMT (arg);
- /* In simple cases we can look through PHI nodes,
- but we have to be careful with loops.
- See PR49073. */
- if (! dom_info_available_p (CDI_DOMINATORS)
- || gimple_bb (def_stmt) == gimple_bb (stmt)
- || dominated_by_p (CDI_DOMINATORS,
- gimple_bb (def_stmt),
- gimple_bb (stmt)))
- return NULL_TREE;
- temp = or_var_with_comparison (arg, invert, code2,
- op2a, op2b);
- if (!temp)
- return NULL_TREE;
- else if (!result)
- result = temp;
- else if (!same_bool_result_p (result, temp))
- return NULL_TREE;
- }
- else
- return NULL_TREE;
- }
- return result;
- }
-
- default:
- break;
- }
- }
- return NULL_TREE;
-}
-
-/* Try to simplify the OR of two comparisons, specified by
- (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
- If this can be simplified to a single expression (without requiring
- introducing more SSA variables to hold intermediate values),
- return the resulting tree. Otherwise return NULL_TREE.
- If the result expression is non-null, it has boolean type. */
-
-tree
-maybe_fold_or_comparisons (enum tree_code code1, tree op1a, tree op1b,
- enum tree_code code2, tree op2a, tree op2b)
-{
- tree t = or_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
- if (t)
- return t;
- else
- return or_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
-}
-
-
-/* Fold STMT to a constant using VALUEIZE to valueize SSA names.
-
- Either NULL_TREE, a simplified but non-constant or a constant
- is returned.
-
- ??? This should go into a gimple-fold-inline.h file to be eventually
- privatized with the single valueize function used in the various TUs
- to avoid the indirect function call overhead. */
-
-tree
-gimple_fold_stmt_to_constant_1 (gimple stmt, tree (*valueize) (tree))
-{
- location_t loc = gimple_location (stmt);
- switch (gimple_code (stmt))
- {
- case GIMPLE_ASSIGN:
- {
- enum tree_code subcode = gimple_assign_rhs_code (stmt);
-
- switch (get_gimple_rhs_class (subcode))
- {
- case GIMPLE_SINGLE_RHS:
- {
- tree rhs = gimple_assign_rhs1 (stmt);
- enum tree_code_class kind = TREE_CODE_CLASS (subcode);
-
- if (TREE_CODE (rhs) == SSA_NAME)
- {
- /* If the RHS is an SSA_NAME, return its known constant value,
- if any. */
- return (*valueize) (rhs);
- }
- /* Handle propagating invariant addresses into address
- operations. */
- else if (TREE_CODE (rhs) == ADDR_EXPR
- && !is_gimple_min_invariant (rhs))
- {
- HOST_WIDE_INT offset = 0;
- tree base;
- base = get_addr_base_and_unit_offset_1 (TREE_OPERAND (rhs, 0),
- &offset,
- valueize);
- if (base
- && (CONSTANT_CLASS_P (base)
- || decl_address_invariant_p (base)))
- return build_invariant_address (TREE_TYPE (rhs),
- base, offset);
- }
- else if (TREE_CODE (rhs) == CONSTRUCTOR
- && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
- && (CONSTRUCTOR_NELTS (rhs)
- == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
- {
- unsigned i;
- tree val, *vec;
-
- vec = XALLOCAVEC (tree,
- TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)));
- FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
- {
- val = (*valueize) (val);
- if (TREE_CODE (val) == INTEGER_CST
- || TREE_CODE (val) == REAL_CST
- || TREE_CODE (val) == FIXED_CST)
- vec[i] = val;
- else
- return NULL_TREE;
- }
-
- return build_vector (TREE_TYPE (rhs), vec);
- }
-
- if (kind == tcc_reference)
- {
- if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR
- || TREE_CODE (rhs) == REALPART_EXPR
- || TREE_CODE (rhs) == IMAGPART_EXPR)
- && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
- {
- tree val = (*valueize) (TREE_OPERAND (rhs, 0));
- return fold_unary_loc (EXPR_LOCATION (rhs),
- TREE_CODE (rhs),
- TREE_TYPE (rhs), val);
- }
- else if (TREE_CODE (rhs) == BIT_FIELD_REF
- && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
- {
- tree val = (*valueize) (TREE_OPERAND (rhs, 0));
- return fold_ternary_loc (EXPR_LOCATION (rhs),
- TREE_CODE (rhs),
- TREE_TYPE (rhs), val,
- TREE_OPERAND (rhs, 1),
- TREE_OPERAND (rhs, 2));
- }
- else if (TREE_CODE (rhs) == MEM_REF
- && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
- {
- tree val = (*valueize) (TREE_OPERAND (rhs, 0));
- if (TREE_CODE (val) == ADDR_EXPR
- && is_gimple_min_invariant (val))
- {
- tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs),
- unshare_expr (val),
- TREE_OPERAND (rhs, 1));
- if (tem)
- rhs = tem;
- }
- }
- return fold_const_aggregate_ref_1 (rhs, valueize);
- }
- else if (kind == tcc_declaration)
- return get_symbol_constant_value (rhs);
- return rhs;
- }
-
- case GIMPLE_UNARY_RHS:
- {
- /* Handle unary operators that can appear in GIMPLE form.
- Note that we know the single operand must be a constant,
- so this should almost always return a simplified RHS. */
- tree lhs = gimple_assign_lhs (stmt);
- tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
-
- /* Conversions are useless for CCP purposes if they are
- value-preserving. Thus the restrictions that
- useless_type_conversion_p places for restrict qualification
- of pointer types should not apply here.
- Substitution later will only substitute to allowed places. */
- if (CONVERT_EXPR_CODE_P (subcode)
- && POINTER_TYPE_P (TREE_TYPE (lhs))
- && POINTER_TYPE_P (TREE_TYPE (op0))
- && TYPE_ADDR_SPACE (TREE_TYPE (lhs))
- == TYPE_ADDR_SPACE (TREE_TYPE (op0))
- && TYPE_MODE (TREE_TYPE (lhs))
- == TYPE_MODE (TREE_TYPE (op0)))
- return op0;
-
- return
- fold_unary_ignore_overflow_loc (loc, subcode,
- gimple_expr_type (stmt), op0);
- }
-
- case GIMPLE_BINARY_RHS:
- {
- /* Handle binary operators that can appear in GIMPLE form. */
- tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
- tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
-
- /* Translate &x + CST into an invariant form suitable for
- further propagation. */
- if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
- && TREE_CODE (op0) == ADDR_EXPR
- && TREE_CODE (op1) == INTEGER_CST)
- {
- tree off = fold_convert (ptr_type_node, op1);
- return build_fold_addr_expr_loc
- (loc,
- fold_build2 (MEM_REF,
- TREE_TYPE (TREE_TYPE (op0)),
- unshare_expr (op0), off));
- }
-
- return fold_binary_loc (loc, subcode,
- gimple_expr_type (stmt), op0, op1);
- }
-
- case GIMPLE_TERNARY_RHS:
- {
- /* Handle ternary operators that can appear in GIMPLE form. */
- tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
- tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
- tree op2 = (*valueize) (gimple_assign_rhs3 (stmt));
-
- /* Fold embedded expressions in ternary codes. */
- if ((subcode == COND_EXPR
- || subcode == VEC_COND_EXPR)
- && COMPARISON_CLASS_P (op0))
- {
- tree op00 = (*valueize) (TREE_OPERAND (op0, 0));
- tree op01 = (*valueize) (TREE_OPERAND (op0, 1));
- tree tem = fold_binary_loc (loc, TREE_CODE (op0),
- TREE_TYPE (op0), op00, op01);
- if (tem)
- op0 = tem;
- }
-
- return fold_ternary_loc (loc, subcode,
- gimple_expr_type (stmt), op0, op1, op2);
- }
-
- default:
- gcc_unreachable ();
- }
- }
-
- case GIMPLE_CALL:
- {
- tree fn;
-
- if (gimple_call_internal_p (stmt))
- /* No folding yet for these functions. */
- return NULL_TREE;
-
- fn = (*valueize) (gimple_call_fn (stmt));
- if (TREE_CODE (fn) == ADDR_EXPR
- && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
- && DECL_BUILT_IN (TREE_OPERAND (fn, 0)))
- {
- tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt));
- tree call, retval;
- unsigned i;
- for (i = 0; i < gimple_call_num_args (stmt); ++i)
- args[i] = (*valueize) (gimple_call_arg (stmt, i));
- call = build_call_array_loc (loc,
- gimple_call_return_type (stmt),
- fn, gimple_call_num_args (stmt), args);
- retval = fold_call_expr (EXPR_LOCATION (call), call, false);
- if (retval)
- /* fold_call_expr wraps the result inside a NOP_EXPR. */
- STRIP_NOPS (retval);
- return retval;
- }
- return NULL_TREE;
- }
-
- default:
- return NULL_TREE;
- }
-}
-
-/* Fold STMT to a constant using VALUEIZE to valueize SSA names.
- Returns NULL_TREE if folding to a constant is not possible, otherwise
- returns a constant according to is_gimple_min_invariant. */
-
-tree
-gimple_fold_stmt_to_constant (gimple stmt, tree (*valueize) (tree))
-{
- tree res = gimple_fold_stmt_to_constant_1 (stmt, valueize);
- if (res && is_gimple_min_invariant (res))
- return res;
- return NULL_TREE;
-}
-
-
-/* The following set of functions are supposed to fold references using
- their constant initializers. */
-
-static tree fold_ctor_reference (tree type, tree ctor,
- unsigned HOST_WIDE_INT offset,
- unsigned HOST_WIDE_INT size, tree);
-
-/* See if we can find constructor defining value of BASE.
- When we know the consructor with constant offset (such as
- base is array[40] and we do know constructor of array), then
- BIT_OFFSET is adjusted accordingly.
-
- As a special case, return error_mark_node when constructor
- is not explicitly available, but it is known to be zero
- such as 'static const int a;'. */
-static tree
-get_base_constructor (tree base, HOST_WIDE_INT *bit_offset,
- tree (*valueize)(tree))
-{
- HOST_WIDE_INT bit_offset2, size, max_size;
- if (TREE_CODE (base) == MEM_REF)
- {
- if (!integer_zerop (TREE_OPERAND (base, 1)))
- {
- if (!host_integerp (TREE_OPERAND (base, 1), 0))
- return NULL_TREE;
- *bit_offset += (mem_ref_offset (base).low
- * BITS_PER_UNIT);
- }
-
- if (valueize
- && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
- base = valueize (TREE_OPERAND (base, 0));
- if (!base || TREE_CODE (base) != ADDR_EXPR)
- return NULL_TREE;
- base = TREE_OPERAND (base, 0);
- }
-
- /* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
- DECL_INITIAL. If BASE is a nested reference into another
- ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
- the inner reference. */
- switch (TREE_CODE (base))
- {
- case VAR_DECL:
- if (!const_value_known_p (base))
- return NULL_TREE;
-
- /* Fallthru. */
- case CONST_DECL:
- if (!DECL_INITIAL (base)
- && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
- return error_mark_node;
- /* Do not return an error_mark_node DECL_INITIAL. LTO uses this
- as special marker (_not_ zero ...) for its own purposes. */
- if (DECL_INITIAL (base) == error_mark_node)
- return NULL_TREE;
- return DECL_INITIAL (base);
-
- case ARRAY_REF:
- case COMPONENT_REF:
- base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size);
- if (max_size == -1 || size != max_size)
- return NULL_TREE;
- *bit_offset += bit_offset2;
- return get_base_constructor (base, bit_offset, valueize);
-
- case STRING_CST:
- case CONSTRUCTOR:
- return base;
-
- default:
- return NULL_TREE;
- }
-}
-
-/* CTOR is STRING_CST. Fold reference of type TYPE and size SIZE
- to the memory at bit OFFSET.
-
- We do only simple job of folding byte accesses. */
-
-static tree
-fold_string_cst_ctor_reference (tree type, tree ctor,
- unsigned HOST_WIDE_INT offset,
- unsigned HOST_WIDE_INT size)
-{
- if (INTEGRAL_TYPE_P (type)
- && (TYPE_MODE (type)
- == TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
- && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor))))
- == MODE_INT)
- && GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (ctor)))) == 1
- && size == BITS_PER_UNIT
- && !(offset % BITS_PER_UNIT))
- {
- offset /= BITS_PER_UNIT;
- if (offset < (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (ctor))
- return build_int_cst_type (type, (TREE_STRING_POINTER (ctor)
- [offset]));
- /* Folding
- const char a[20]="hello";
- return a[10];
-
- might lead to offset greater than string length. In this case we
- know value is either initialized to 0 or out of bounds. Return 0
- in both cases. */
- return build_zero_cst (type);
- }
- return NULL_TREE;
-}
-
-/* CTOR is CONSTRUCTOR of an array type. Fold reference of type TYPE and size
- SIZE to the memory at bit OFFSET. */
-
-static tree
-fold_array_ctor_reference (tree type, tree ctor,
- unsigned HOST_WIDE_INT offset,
- unsigned HOST_WIDE_INT size,
- tree from_decl)
-{
- unsigned HOST_WIDE_INT cnt;
- tree cfield, cval;
- double_int low_bound, elt_size;
- double_int index, max_index;
- double_int access_index;
- tree domain_type = NULL_TREE, index_type = NULL_TREE;
- HOST_WIDE_INT inner_offset;
-
- /* Compute low bound and elt size. */
- if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
- domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
- if (domain_type && TYPE_MIN_VALUE (domain_type))
- {
- /* Static constructors for variably sized objects makes no sense. */
- gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
- index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
- low_bound = tree_to_double_int (TYPE_MIN_VALUE (domain_type));
- }
- else
- low_bound = double_int_zero;
- /* Static constructors for variably sized objects makes no sense. */
- gcc_assert (TREE_CODE(TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))))
- == INTEGER_CST);
- elt_size =
- tree_to_double_int (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))));
-
-
- /* We can handle only constantly sized accesses that are known to not
- be larger than size of array element. */
- if (!TYPE_SIZE_UNIT (type)
- || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
- || elt_size.slt (tree_to_double_int (TYPE_SIZE_UNIT (type))))
- return NULL_TREE;
-
- /* Compute the array index we look for. */
- access_index = double_int::from_uhwi (offset / BITS_PER_UNIT)
- .udiv (elt_size, TRUNC_DIV_EXPR);
- access_index += low_bound;
- if (index_type)
- access_index = access_index.ext (TYPE_PRECISION (index_type),
- TYPE_UNSIGNED (index_type));
-
- /* And offset within the access. */
- inner_offset = offset % (elt_size.to_uhwi () * BITS_PER_UNIT);
-
- /* See if the array field is large enough to span whole access. We do not
- care to fold accesses spanning multiple array indexes. */
- if (inner_offset + size > elt_size.to_uhwi () * BITS_PER_UNIT)
- return NULL_TREE;
-
- index = low_bound - double_int_one;
- if (index_type)
- index = index.ext (TYPE_PRECISION (index_type), TYPE_UNSIGNED (index_type));
-
- FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
- {
- /* Array constructor might explicitely set index, or specify range
- or leave index NULL meaning that it is next index after previous
- one. */
- if (cfield)
- {
- if (TREE_CODE (cfield) == INTEGER_CST)
- max_index = index = tree_to_double_int (cfield);
- else
- {
- gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
- index = tree_to_double_int (TREE_OPERAND (cfield, 0));
- max_index = tree_to_double_int (TREE_OPERAND (cfield, 1));
- }
- }
- else
- {
- index += double_int_one;
- if (index_type)
- index = index.ext (TYPE_PRECISION (index_type),
- TYPE_UNSIGNED (index_type));
- max_index = index;
- }
-
- /* Do we have match? */
- if (access_index.cmp (index, 1) >= 0
- && access_index.cmp (max_index, 1) <= 0)
- return fold_ctor_reference (type, cval, inner_offset, size,
- from_decl);
- }
- /* When memory is not explicitely mentioned in constructor,
- it is 0 (or out of range). */
- return build_zero_cst (type);
-}
-
-/* CTOR is CONSTRUCTOR of an aggregate or vector.
- Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */
-
-static tree
-fold_nonarray_ctor_reference (tree type, tree ctor,
- unsigned HOST_WIDE_INT offset,
- unsigned HOST_WIDE_INT size,
- tree from_decl)
-{
- unsigned HOST_WIDE_INT cnt;
- tree cfield, cval;
-
- FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield,
- cval)
- {
- tree byte_offset = DECL_FIELD_OFFSET (cfield);
- tree field_offset = DECL_FIELD_BIT_OFFSET (cfield);
- tree field_size = DECL_SIZE (cfield);
- double_int bitoffset;
- double_int byte_offset_cst = tree_to_double_int (byte_offset);
- double_int bits_per_unit_cst = double_int::from_uhwi (BITS_PER_UNIT);
- double_int bitoffset_end, access_end;
-
- /* Variable sized objects in static constructors makes no sense,
- but field_size can be NULL for flexible array members. */
- gcc_assert (TREE_CODE (field_offset) == INTEGER_CST
- && TREE_CODE (byte_offset) == INTEGER_CST
- && (field_size != NULL_TREE
- ? TREE_CODE (field_size) == INTEGER_CST
- : TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE));
-
- /* Compute bit offset of the field. */
- bitoffset = tree_to_double_int (field_offset)
- + byte_offset_cst * bits_per_unit_cst;
- /* Compute bit offset where the field ends. */
- if (field_size != NULL_TREE)
- bitoffset_end = bitoffset + tree_to_double_int (field_size);
- else
- bitoffset_end = double_int_zero;
-
- access_end = double_int::from_uhwi (offset)
- + double_int::from_uhwi (size);
-
- /* Is there any overlap between [OFFSET, OFFSET+SIZE) and
- [BITOFFSET, BITOFFSET_END)? */
- if (access_end.cmp (bitoffset, 0) > 0
- && (field_size == NULL_TREE
- || double_int::from_uhwi (offset).slt (bitoffset_end)))
- {
- double_int inner_offset = double_int::from_uhwi (offset) - bitoffset;
- /* We do have overlap. Now see if field is large enough to
- cover the access. Give up for accesses spanning multiple
- fields. */
- if (access_end.cmp (bitoffset_end, 0) > 0)
- return NULL_TREE;
- if (double_int::from_uhwi (offset).slt (bitoffset))
- return NULL_TREE;
- return fold_ctor_reference (type, cval,
- inner_offset.to_uhwi (), size,
- from_decl);
- }
- }
- /* When memory is not explicitely mentioned in constructor, it is 0. */
- return build_zero_cst (type);
-}
-
-/* CTOR is value initializing memory, fold reference of type TYPE and size SIZE
- to the memory at bit OFFSET. */
-
-static tree
-fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset,
- unsigned HOST_WIDE_INT size, tree from_decl)
-{
- tree ret;
-
- /* We found the field with exact match. */
- if (useless_type_conversion_p (type, TREE_TYPE (ctor))
- && !offset)
- return canonicalize_constructor_val (unshare_expr (ctor), from_decl);
-
- /* We are at the end of walk, see if we can view convert the
- result. */
- if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset
- /* VIEW_CONVERT_EXPR is defined only for matching sizes. */
- && operand_equal_p (TYPE_SIZE (type),
- TYPE_SIZE (TREE_TYPE (ctor)), 0))
- {
- ret = canonicalize_constructor_val (unshare_expr (ctor), from_decl);
- ret = fold_unary (VIEW_CONVERT_EXPR, type, ret);
- if (ret)
- STRIP_NOPS (ret);
- return ret;
- }
- if (TREE_CODE (ctor) == STRING_CST)
- return fold_string_cst_ctor_reference (type, ctor, offset, size);
- if (TREE_CODE (ctor) == CONSTRUCTOR)
- {
-
- if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE
- || TREE_CODE (TREE_TYPE (ctor)) == VECTOR_TYPE)
- return fold_array_ctor_reference (type, ctor, offset, size,
- from_decl);
- else
- return fold_nonarray_ctor_reference (type, ctor, offset, size,
- from_decl);
- }
-
- return NULL_TREE;
-}
-
-/* Return the tree representing the element referenced by T if T is an
- ARRAY_REF or COMPONENT_REF into constant aggregates valuezing SSA
- names using VALUEIZE. Return NULL_TREE otherwise. */
-
-tree
-fold_const_aggregate_ref_1 (tree t, tree (*valueize) (tree))
-{
- tree ctor, idx, base;
- HOST_WIDE_INT offset, size, max_size;
- tree tem;
-
- if (TREE_THIS_VOLATILE (t))
- return NULL_TREE;
-
- if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_declaration)
- return get_symbol_constant_value (t);
-
- tem = fold_read_from_constant_string (t);
- if (tem)
- return tem;
-
- switch (TREE_CODE (t))
- {
- case ARRAY_REF:
- case ARRAY_RANGE_REF:
- /* Constant indexes are handled well by get_base_constructor.
- Only special case variable offsets.
- FIXME: This code can't handle nested references with variable indexes
- (they will be handled only by iteration of ccp). Perhaps we can bring
- get_ref_base_and_extent here and make it use a valueize callback. */
- if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME
- && valueize
- && (idx = (*valueize) (TREE_OPERAND (t, 1)))
- && TREE_CODE (idx) == INTEGER_CST)
- {
- tree low_bound, unit_size;
- double_int doffset;
-
- /* If the resulting bit-offset is constant, track it. */
- if ((low_bound = array_ref_low_bound (t),
- TREE_CODE (low_bound) == INTEGER_CST)
- && (unit_size = array_ref_element_size (t),
- host_integerp (unit_size, 1))
- && (doffset = (TREE_INT_CST (idx) - TREE_INT_CST (low_bound))
- .sext (TYPE_PRECISION (TREE_TYPE (idx))),
- doffset.fits_shwi ()))
- {
- offset = doffset.to_shwi ();
- offset *= TREE_INT_CST_LOW (unit_size);
- offset *= BITS_PER_UNIT;
-
- base = TREE_OPERAND (t, 0);
- ctor = get_base_constructor (base, &offset, valueize);
- /* Empty constructor. Always fold to 0. */
- if (ctor == error_mark_node)
- return build_zero_cst (TREE_TYPE (t));
- /* Out of bound array access. Value is undefined,
- but don't fold. */
- if (offset < 0)
- return NULL_TREE;
- /* We can not determine ctor. */
- if (!ctor)
- return NULL_TREE;
- return fold_ctor_reference (TREE_TYPE (t), ctor, offset,
- TREE_INT_CST_LOW (unit_size)
- * BITS_PER_UNIT,
- base);
- }
- }
- /* Fallthru. */
-
- case COMPONENT_REF:
- case BIT_FIELD_REF:
- case TARGET_MEM_REF:
- case MEM_REF:
- base = get_ref_base_and_extent (t, &offset, &size, &max_size);
- ctor = get_base_constructor (base, &offset, valueize);
-
- /* Empty constructor. Always fold to 0. */
- if (ctor == error_mark_node)
- return build_zero_cst (TREE_TYPE (t));
- /* We do not know precise address. */
- if (max_size == -1 || max_size != size)
- return NULL_TREE;
- /* We can not determine ctor. */
- if (!ctor)
- return NULL_TREE;
-
- /* Out of bound array access. Value is undefined, but don't fold. */
- if (offset < 0)
- return NULL_TREE;
-
- return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size,
- base);
-
- case REALPART_EXPR:
- case IMAGPART_EXPR:
- {
- tree c = fold_const_aggregate_ref_1 (TREE_OPERAND (t, 0), valueize);
- if (c && TREE_CODE (c) == COMPLEX_CST)
- return fold_build1_loc (EXPR_LOCATION (t),
- TREE_CODE (t), TREE_TYPE (t), c);
- break;
- }
-
- default:
- break;
- }
-
- return NULL_TREE;
-}
-
-tree
-fold_const_aggregate_ref (tree t)
-{
- return fold_const_aggregate_ref_1 (t, NULL);
-}
-
-/* Return a declaration of a function which an OBJ_TYPE_REF references. TOKEN
- is integer form of OBJ_TYPE_REF_TOKEN of the reference expression.
- KNOWN_BINFO carries the binfo describing the true type of
- OBJ_TYPE_REF_OBJECT(REF). */
-
-tree
-gimple_get_virt_method_for_binfo (HOST_WIDE_INT token, tree known_binfo)
-{
- unsigned HOST_WIDE_INT offset, size;
- tree v, fn, vtable;
-
- vtable = v = BINFO_VTABLE (known_binfo);
- /* If there is no virtual methods table, leave the OBJ_TYPE_REF alone. */
- if (!v)
- return NULL_TREE;
-
- if (TREE_CODE (v) == POINTER_PLUS_EXPR)
- {
- offset = tree_low_cst (TREE_OPERAND (v, 1), 1) * BITS_PER_UNIT;
- v = TREE_OPERAND (v, 0);
- }
- else
- offset = 0;
-
- if (TREE_CODE (v) != ADDR_EXPR)
- return NULL_TREE;
- v = TREE_OPERAND (v, 0);
-
- if (TREE_CODE (v) != VAR_DECL
- || !DECL_VIRTUAL_P (v)
- || !DECL_INITIAL (v)
- || DECL_INITIAL (v) == error_mark_node)
- return NULL_TREE;
- gcc_checking_assert (TREE_CODE (TREE_TYPE (v)) == ARRAY_TYPE);
- size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (v))), 1);
- offset += token * size;
- fn = fold_ctor_reference (TREE_TYPE (TREE_TYPE (v)), DECL_INITIAL (v),
- offset, size, vtable);
- if (!fn || integer_zerop (fn))
- return NULL_TREE;
- gcc_assert (TREE_CODE (fn) == ADDR_EXPR
- || TREE_CODE (fn) == FDESC_EXPR);
- fn = TREE_OPERAND (fn, 0);
- gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
-
- /* When cgraph node is missing and function is not public, we cannot
- devirtualize. This can happen in WHOPR when the actual method
- ends up in other partition, because we found devirtualization
- possibility too late. */
- if (!can_refer_decl_in_current_unit_p (fn, vtable))
- return NULL_TREE;
-
- /* Make sure we create a cgraph node for functions we'll reference.
- They can be non-existent if the reference comes from an entry
- of an external vtable for example. */
- cgraph_get_create_node (fn);
-
- return fn;
-}
-
-/* Return true iff VAL is a gimple expression that is known to be
- non-negative. Restricted to floating-point inputs. */
-
-bool
-gimple_val_nonnegative_real_p (tree val)
-{
- gimple def_stmt;
-
- gcc_assert (val && SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)));
-
- /* Use existing logic for non-gimple trees. */
- if (tree_expr_nonnegative_p (val))
- return true;
-
- if (TREE_CODE (val) != SSA_NAME)
- return false;
-
- /* Currently we look only at the immediately defining statement
- to make this determination, since recursion on defining
- statements of operands can lead to quadratic behavior in the
- worst case. This is expected to catch almost all occurrences
- in practice. It would be possible to implement limited-depth
- recursion if important cases are lost. Alternatively, passes
- that need this information (such as the pow/powi lowering code
- in the cse_sincos pass) could be revised to provide it through
- dataflow propagation. */
-
- def_stmt = SSA_NAME_DEF_STMT (val);
-
- if (is_gimple_assign (def_stmt))
- {
- tree op0, op1;
-
- /* See fold-const.c:tree_expr_nonnegative_p for additional
- cases that could be handled with recursion. */
-
- switch (gimple_assign_rhs_code (def_stmt))
- {
- case ABS_EXPR:
- /* Always true for floating-point operands. */
- return true;
-
- case MULT_EXPR:
- /* True if the two operands are identical (since we are
- restricted to floating-point inputs). */
- op0 = gimple_assign_rhs1 (def_stmt);
- op1 = gimple_assign_rhs2 (def_stmt);
-
- if (op0 == op1
- || operand_equal_p (op0, op1, 0))
- return true;
-
- default:
- return false;
- }
- }
- else if (is_gimple_call (def_stmt))
- {
- tree fndecl = gimple_call_fndecl (def_stmt);
- if (fndecl
- && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
- {
- tree arg1;
-
- switch (DECL_FUNCTION_CODE (fndecl))
- {
- CASE_FLT_FN (BUILT_IN_ACOS):
- CASE_FLT_FN (BUILT_IN_ACOSH):
- CASE_FLT_FN (BUILT_IN_CABS):
- CASE_FLT_FN (BUILT_IN_COSH):
- CASE_FLT_FN (BUILT_IN_ERFC):
- CASE_FLT_FN (BUILT_IN_EXP):
- CASE_FLT_FN (BUILT_IN_EXP10):
- CASE_FLT_FN (BUILT_IN_EXP2):
- CASE_FLT_FN (BUILT_IN_FABS):
- CASE_FLT_FN (BUILT_IN_FDIM):
- CASE_FLT_FN (BUILT_IN_HYPOT):
- CASE_FLT_FN (BUILT_IN_POW10):
- return true;
-
- CASE_FLT_FN (BUILT_IN_SQRT):
- /* sqrt(-0.0) is -0.0, and sqrt is not defined over other
- nonnegative inputs. */
- if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (val))))
- return true;
-
- break;
-
- CASE_FLT_FN (BUILT_IN_POWI):
- /* True if the second argument is an even integer. */
- arg1 = gimple_call_arg (def_stmt, 1);
-
- if (TREE_CODE (arg1) == INTEGER_CST
- && (TREE_INT_CST_LOW (arg1) & 1) == 0)
- return true;
-
- break;
-
- CASE_FLT_FN (BUILT_IN_POW):
- /* True if the second argument is an even integer-valued
- real. */
- arg1 = gimple_call_arg (def_stmt, 1);
-
- if (TREE_CODE (arg1) == REAL_CST)
- {
- REAL_VALUE_TYPE c;
- HOST_WIDE_INT n;
-
- c = TREE_REAL_CST (arg1);
- n = real_to_integer (&c);
-
- if ((n & 1) == 0)
- {
- REAL_VALUE_TYPE cint;
- real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
- if (real_identical (&c, &cint))
- return true;
- }
- }
-
- break;
-
- default:
- return false;
- }
- }
- }
-
- return false;
-}