aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/fortran/interface.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/fortran/interface.c')
-rw-r--r--gcc-4.8.1/gcc/fortran/interface.c4170
1 files changed, 0 insertions, 4170 deletions
diff --git a/gcc-4.8.1/gcc/fortran/interface.c b/gcc-4.8.1/gcc/fortran/interface.c
deleted file mode 100644
index 5ea62757f..000000000
--- a/gcc-4.8.1/gcc/fortran/interface.c
+++ /dev/null
@@ -1,4170 +0,0 @@
-/* Deal with interfaces.
- Copyright (C) 2000-2013 Free Software Foundation, Inc.
- Contributed by Andy Vaught
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-
-/* Deal with interfaces. An explicit interface is represented as a
- singly linked list of formal argument structures attached to the
- relevant symbols. For an implicit interface, the arguments don't
- point to symbols. Explicit interfaces point to namespaces that
- contain the symbols within that interface.
-
- Implicit interfaces are linked together in a singly linked list
- along the next_if member of symbol nodes. Since a particular
- symbol can only have a single explicit interface, the symbol cannot
- be part of multiple lists and a single next-member suffices.
-
- This is not the case for general classes, though. An operator
- definition is independent of just about all other uses and has it's
- own head pointer.
-
- Nameless interfaces:
- Nameless interfaces create symbols with explicit interfaces within
- the current namespace. They are otherwise unlinked.
-
- Generic interfaces:
- The generic name points to a linked list of symbols. Each symbol
- has an explicit interface. Each explicit interface has its own
- namespace containing the arguments. Module procedures are symbols in
- which the interface is added later when the module procedure is parsed.
-
- User operators:
- User-defined operators are stored in a their own set of symtrees
- separate from regular symbols. The symtrees point to gfc_user_op
- structures which in turn head up a list of relevant interfaces.
-
- Extended intrinsics and assignment:
- The head of these interface lists are stored in the containing namespace.
-
- Implicit interfaces:
- An implicit interface is represented as a singly linked list of
- formal argument list structures that don't point to any symbol
- nodes -- they just contain types.
-
-
- When a subprogram is defined, the program unit's name points to an
- interface as usual, but the link to the namespace is NULL and the
- formal argument list points to symbols within the same namespace as
- the program unit name. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "gfortran.h"
-#include "match.h"
-#include "arith.h"
-
-/* The current_interface structure holds information about the
- interface currently being parsed. This structure is saved and
- restored during recursive interfaces. */
-
-gfc_interface_info current_interface;
-
-
-/* Free a singly linked list of gfc_interface structures. */
-
-void
-gfc_free_interface (gfc_interface *intr)
-{
- gfc_interface *next;
-
- for (; intr; intr = next)
- {
- next = intr->next;
- free (intr);
- }
-}
-
-
-/* Change the operators unary plus and minus into binary plus and
- minus respectively, leaving the rest unchanged. */
-
-static gfc_intrinsic_op
-fold_unary_intrinsic (gfc_intrinsic_op op)
-{
- switch (op)
- {
- case INTRINSIC_UPLUS:
- op = INTRINSIC_PLUS;
- break;
- case INTRINSIC_UMINUS:
- op = INTRINSIC_MINUS;
- break;
- default:
- break;
- }
-
- return op;
-}
-
-
-/* Match a generic specification. Depending on which type of
- interface is found, the 'name' or 'op' pointers may be set.
- This subroutine doesn't return MATCH_NO. */
-
-match
-gfc_match_generic_spec (interface_type *type,
- char *name,
- gfc_intrinsic_op *op)
-{
- char buffer[GFC_MAX_SYMBOL_LEN + 1];
- match m;
- gfc_intrinsic_op i;
-
- if (gfc_match (" assignment ( = )") == MATCH_YES)
- {
- *type = INTERFACE_INTRINSIC_OP;
- *op = INTRINSIC_ASSIGN;
- return MATCH_YES;
- }
-
- if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
- { /* Operator i/f */
- *type = INTERFACE_INTRINSIC_OP;
- *op = fold_unary_intrinsic (i);
- return MATCH_YES;
- }
-
- *op = INTRINSIC_NONE;
- if (gfc_match (" operator ( ") == MATCH_YES)
- {
- m = gfc_match_defined_op_name (buffer, 1);
- if (m == MATCH_NO)
- goto syntax;
- if (m != MATCH_YES)
- return MATCH_ERROR;
-
- m = gfc_match_char (')');
- if (m == MATCH_NO)
- goto syntax;
- if (m != MATCH_YES)
- return MATCH_ERROR;
-
- strcpy (name, buffer);
- *type = INTERFACE_USER_OP;
- return MATCH_YES;
- }
-
- if (gfc_match_name (buffer) == MATCH_YES)
- {
- strcpy (name, buffer);
- *type = INTERFACE_GENERIC;
- return MATCH_YES;
- }
-
- *type = INTERFACE_NAMELESS;
- return MATCH_YES;
-
-syntax:
- gfc_error ("Syntax error in generic specification at %C");
- return MATCH_ERROR;
-}
-
-
-/* Match one of the five F95 forms of an interface statement. The
- matcher for the abstract interface follows. */
-
-match
-gfc_match_interface (void)
-{
- char name[GFC_MAX_SYMBOL_LEN + 1];
- interface_type type;
- gfc_symbol *sym;
- gfc_intrinsic_op op;
- match m;
-
- m = gfc_match_space ();
-
- if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
- return MATCH_ERROR;
-
- /* If we're not looking at the end of the statement now, or if this
- is not a nameless interface but we did not see a space, punt. */
- if (gfc_match_eos () != MATCH_YES
- || (type != INTERFACE_NAMELESS && m != MATCH_YES))
- {
- gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
- "at %C");
- return MATCH_ERROR;
- }
-
- current_interface.type = type;
-
- switch (type)
- {
- case INTERFACE_GENERIC:
- if (gfc_get_symbol (name, NULL, &sym))
- return MATCH_ERROR;
-
- if (!sym->attr.generic
- && gfc_add_generic (&sym->attr, sym->name, NULL) == FAILURE)
- return MATCH_ERROR;
-
- if (sym->attr.dummy)
- {
- gfc_error ("Dummy procedure '%s' at %C cannot have a "
- "generic interface", sym->name);
- return MATCH_ERROR;
- }
-
- current_interface.sym = gfc_new_block = sym;
- break;
-
- case INTERFACE_USER_OP:
- current_interface.uop = gfc_get_uop (name);
- break;
-
- case INTERFACE_INTRINSIC_OP:
- current_interface.op = op;
- break;
-
- case INTERFACE_NAMELESS:
- case INTERFACE_ABSTRACT:
- break;
- }
-
- return MATCH_YES;
-}
-
-
-
-/* Match a F2003 abstract interface. */
-
-match
-gfc_match_abstract_interface (void)
-{
- match m;
-
- if (gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C")
- == FAILURE)
- return MATCH_ERROR;
-
- m = gfc_match_eos ();
-
- if (m != MATCH_YES)
- {
- gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
- return MATCH_ERROR;
- }
-
- current_interface.type = INTERFACE_ABSTRACT;
-
- return m;
-}
-
-
-/* Match the different sort of generic-specs that can be present after
- the END INTERFACE itself. */
-
-match
-gfc_match_end_interface (void)
-{
- char name[GFC_MAX_SYMBOL_LEN + 1];
- interface_type type;
- gfc_intrinsic_op op;
- match m;
-
- m = gfc_match_space ();
-
- if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
- return MATCH_ERROR;
-
- /* If we're not looking at the end of the statement now, or if this
- is not a nameless interface but we did not see a space, punt. */
- if (gfc_match_eos () != MATCH_YES
- || (type != INTERFACE_NAMELESS && m != MATCH_YES))
- {
- gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
- "statement at %C");
- return MATCH_ERROR;
- }
-
- m = MATCH_YES;
-
- switch (current_interface.type)
- {
- case INTERFACE_NAMELESS:
- case INTERFACE_ABSTRACT:
- if (type != INTERFACE_NAMELESS)
- {
- gfc_error ("Expected a nameless interface at %C");
- m = MATCH_ERROR;
- }
-
- break;
-
- case INTERFACE_INTRINSIC_OP:
- if (type != current_interface.type || op != current_interface.op)
- {
-
- if (current_interface.op == INTRINSIC_ASSIGN)
- {
- m = MATCH_ERROR;
- gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C");
- }
- else
- {
- const char *s1, *s2;
- s1 = gfc_op2string (current_interface.op);
- s2 = gfc_op2string (op);
-
- /* The following if-statements are used to enforce C1202
- from F2003. */
- if ((strcmp(s1, "==") == 0 && strcmp(s2, ".eq.") == 0)
- || (strcmp(s1, ".eq.") == 0 && strcmp(s2, "==") == 0))
- break;
- if ((strcmp(s1, "/=") == 0 && strcmp(s2, ".ne.") == 0)
- || (strcmp(s1, ".ne.") == 0 && strcmp(s2, "/=") == 0))
- break;
- if ((strcmp(s1, "<=") == 0 && strcmp(s2, ".le.") == 0)
- || (strcmp(s1, ".le.") == 0 && strcmp(s2, "<=") == 0))
- break;
- if ((strcmp(s1, "<") == 0 && strcmp(s2, ".lt.") == 0)
- || (strcmp(s1, ".lt.") == 0 && strcmp(s2, "<") == 0))
- break;
- if ((strcmp(s1, ">=") == 0 && strcmp(s2, ".ge.") == 0)
- || (strcmp(s1, ".ge.") == 0 && strcmp(s2, ">=") == 0))
- break;
- if ((strcmp(s1, ">") == 0 && strcmp(s2, ".gt.") == 0)
- || (strcmp(s1, ".gt.") == 0 && strcmp(s2, ">") == 0))
- break;
-
- m = MATCH_ERROR;
- gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C, "
- "but got %s", s1, s2);
- }
-
- }
-
- break;
-
- case INTERFACE_USER_OP:
- /* Comparing the symbol node names is OK because only use-associated
- symbols can be renamed. */
- if (type != current_interface.type
- || strcmp (current_interface.uop->name, name) != 0)
- {
- gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C",
- current_interface.uop->name);
- m = MATCH_ERROR;
- }
-
- break;
-
- case INTERFACE_GENERIC:
- if (type != current_interface.type
- || strcmp (current_interface.sym->name, name) != 0)
- {
- gfc_error ("Expecting 'END INTERFACE %s' at %C",
- current_interface.sym->name);
- m = MATCH_ERROR;
- }
-
- break;
- }
-
- return m;
-}
-
-
-/* Compare two derived types using the criteria in 4.4.2 of the standard,
- recursing through gfc_compare_types for the components. */
-
-int
-gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
-{
- gfc_component *dt1, *dt2;
-
- if (derived1 == derived2)
- return 1;
-
- gcc_assert (derived1 && derived2);
-
- /* Special case for comparing derived types across namespaces. If the
- true names and module names are the same and the module name is
- nonnull, then they are equal. */
- if (strcmp (derived1->name, derived2->name) == 0
- && derived1->module != NULL && derived2->module != NULL
- && strcmp (derived1->module, derived2->module) == 0)
- return 1;
-
- /* Compare type via the rules of the standard. Both types must have
- the SEQUENCE or BIND(C) attribute to be equal. */
-
- if (strcmp (derived1->name, derived2->name))
- return 0;
-
- if (derived1->component_access == ACCESS_PRIVATE
- || derived2->component_access == ACCESS_PRIVATE)
- return 0;
-
- if (!(derived1->attr.sequence && derived2->attr.sequence)
- && !(derived1->attr.is_bind_c && derived2->attr.is_bind_c))
- return 0;
-
- dt1 = derived1->components;
- dt2 = derived2->components;
-
- /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
- simple test can speed things up. Otherwise, lots of things have to
- match. */
- for (;;)
- {
- if (strcmp (dt1->name, dt2->name) != 0)
- return 0;
-
- if (dt1->attr.access != dt2->attr.access)
- return 0;
-
- if (dt1->attr.pointer != dt2->attr.pointer)
- return 0;
-
- if (dt1->attr.dimension != dt2->attr.dimension)
- return 0;
-
- if (dt1->attr.allocatable != dt2->attr.allocatable)
- return 0;
-
- if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
- return 0;
-
- /* Make sure that link lists do not put this function into an
- endless recursive loop! */
- if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
- && !(dt2->ts.type == BT_DERIVED && derived2 == dt2->ts.u.derived)
- && gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
- return 0;
-
- else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
- && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
- return 0;
-
- else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
- && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
- return 0;
-
- dt1 = dt1->next;
- dt2 = dt2->next;
-
- if (dt1 == NULL && dt2 == NULL)
- break;
- if (dt1 == NULL || dt2 == NULL)
- return 0;
- }
-
- return 1;
-}
-
-
-/* Compare two typespecs, recursively if necessary. */
-
-int
-gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
-{
- /* See if one of the typespecs is a BT_VOID, which is what is being used
- to allow the funcs like c_f_pointer to accept any pointer type.
- TODO: Possibly should narrow this to just the one typespec coming in
- that is for the formal arg, but oh well. */
- if (ts1->type == BT_VOID || ts2->type == BT_VOID)
- return 1;
-
- if (ts1->type == BT_CLASS
- && ts1->u.derived->components->ts.u.derived->attr.unlimited_polymorphic)
- return 1;
-
- /* F2003: C717 */
- if (ts2->type == BT_CLASS && ts1->type == BT_DERIVED
- && ts2->u.derived->components->ts.u.derived->attr.unlimited_polymorphic
- && (ts1->u.derived->attr.sequence || ts1->u.derived->attr.is_bind_c))
- return 1;
-
- if (ts1->type != ts2->type
- && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
- || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
- return 0;
- if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
- return (ts1->kind == ts2->kind);
-
- /* Compare derived types. */
- if (gfc_type_compatible (ts1, ts2))
- return 1;
-
- return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived);
-}
-
-
-/* Given two symbols that are formal arguments, compare their ranks
- and types. Returns nonzero if they have the same rank and type,
- zero otherwise. */
-
-static int
-compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
-{
- gfc_array_spec *as1, *as2;
- int r1, r2;
-
- as1 = (s1->ts.type == BT_CLASS) ? CLASS_DATA (s1)->as : s1->as;
- as2 = (s2->ts.type == BT_CLASS) ? CLASS_DATA (s2)->as : s2->as;
-
- r1 = as1 ? as1->rank : 0;
- r2 = as2 ? as2->rank : 0;
-
- if (r1 != r2
- && (!as1 || as1->type != AS_ASSUMED_RANK)
- && (!as2 || as2->type != AS_ASSUMED_RANK))
- return 0; /* Ranks differ. */
-
- return gfc_compare_types (&s1->ts, &s2->ts)
- || s1->ts.type == BT_ASSUMED || s2->ts.type == BT_ASSUMED;
-}
-
-
-/* Given two symbols that are formal arguments, compare their types
- and rank and their formal interfaces if they are both dummy
- procedures. Returns nonzero if the same, zero if different. */
-
-static int
-compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
-{
- if (s1 == NULL || s2 == NULL)
- return s1 == s2 ? 1 : 0;
-
- if (s1 == s2)
- return 1;
-
- if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
- return compare_type_rank (s1, s2);
-
- if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
- return 0;
-
- /* At this point, both symbols are procedures. It can happen that
- external procedures are compared, where one is identified by usage
- to be a function or subroutine but the other is not. Check TKR
- nonetheless for these cases. */
- if (s1->attr.function == 0 && s1->attr.subroutine == 0)
- return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
-
- if (s2->attr.function == 0 && s2->attr.subroutine == 0)
- return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
-
- /* Now the type of procedure has been identified. */
- if (s1->attr.function != s2->attr.function
- || s1->attr.subroutine != s2->attr.subroutine)
- return 0;
-
- if (s1->attr.function && compare_type_rank (s1, s2) == 0)
- return 0;
-
- /* Originally, gfortran recursed here to check the interfaces of passed
- procedures. This is explicitly not required by the standard. */
- return 1;
-}
-
-
-/* Given a formal argument list and a keyword name, search the list
- for that keyword. Returns the correct symbol node if found, NULL
- if not found. */
-
-static gfc_symbol *
-find_keyword_arg (const char *name, gfc_formal_arglist *f)
-{
- for (; f; f = f->next)
- if (strcmp (f->sym->name, name) == 0)
- return f->sym;
-
- return NULL;
-}
-
-
-/******** Interface checking subroutines **********/
-
-
-/* Given an operator interface and the operator, make sure that all
- interfaces for that operator are legal. */
-
-bool
-gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
- locus opwhere)
-{
- gfc_formal_arglist *formal;
- sym_intent i1, i2;
- bt t1, t2;
- int args, r1, r2, k1, k2;
-
- gcc_assert (sym);
-
- args = 0;
- t1 = t2 = BT_UNKNOWN;
- i1 = i2 = INTENT_UNKNOWN;
- r1 = r2 = -1;
- k1 = k2 = -1;
-
- for (formal = gfc_sym_get_dummy_args (sym); formal; formal = formal->next)
- {
- gfc_symbol *fsym = formal->sym;
- if (fsym == NULL)
- {
- gfc_error ("Alternate return cannot appear in operator "
- "interface at %L", &sym->declared_at);
- return false;
- }
- if (args == 0)
- {
- t1 = fsym->ts.type;
- i1 = fsym->attr.intent;
- r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
- k1 = fsym->ts.kind;
- }
- if (args == 1)
- {
- t2 = fsym->ts.type;
- i2 = fsym->attr.intent;
- r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
- k2 = fsym->ts.kind;
- }
- args++;
- }
-
- /* Only +, - and .not. can be unary operators.
- .not. cannot be a binary operator. */
- if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
- && op != INTRINSIC_MINUS
- && op != INTRINSIC_NOT)
- || (args == 2 && op == INTRINSIC_NOT))
- {
- if (op == INTRINSIC_ASSIGN)
- gfc_error ("Assignment operator interface at %L must have "
- "two arguments", &sym->declared_at);
- else
- gfc_error ("Operator interface at %L has the wrong number of arguments",
- &sym->declared_at);
- return false;
- }
-
- /* Check that intrinsics are mapped to functions, except
- INTRINSIC_ASSIGN which should map to a subroutine. */
- if (op == INTRINSIC_ASSIGN)
- {
- gfc_formal_arglist *dummy_args;
-
- if (!sym->attr.subroutine)
- {
- gfc_error ("Assignment operator interface at %L must be "
- "a SUBROUTINE", &sym->declared_at);
- return false;
- }
-
- /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
- - First argument an array with different rank than second,
- - First argument is a scalar and second an array,
- - Types and kinds do not conform, or
- - First argument is of derived type. */
- dummy_args = gfc_sym_get_dummy_args (sym);
- if (dummy_args->sym->ts.type != BT_DERIVED
- && dummy_args->sym->ts.type != BT_CLASS
- && (r2 == 0 || r1 == r2)
- && (dummy_args->sym->ts.type == dummy_args->next->sym->ts.type
- || (gfc_numeric_ts (&dummy_args->sym->ts)
- && gfc_numeric_ts (&dummy_args->next->sym->ts))))
- {
- gfc_error ("Assignment operator interface at %L must not redefine "
- "an INTRINSIC type assignment", &sym->declared_at);
- return false;
- }
- }
- else
- {
- if (!sym->attr.function)
- {
- gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
- &sym->declared_at);
- return false;
- }
- }
-
- /* Check intents on operator interfaces. */
- if (op == INTRINSIC_ASSIGN)
- {
- if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
- {
- gfc_error ("First argument of defined assignment at %L must be "
- "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
- return false;
- }
-
- if (i2 != INTENT_IN)
- {
- gfc_error ("Second argument of defined assignment at %L must be "
- "INTENT(IN)", &sym->declared_at);
- return false;
- }
- }
- else
- {
- if (i1 != INTENT_IN)
- {
- gfc_error ("First argument of operator interface at %L must be "
- "INTENT(IN)", &sym->declared_at);
- return false;
- }
-
- if (args == 2 && i2 != INTENT_IN)
- {
- gfc_error ("Second argument of operator interface at %L must be "
- "INTENT(IN)", &sym->declared_at);
- return false;
- }
- }
-
- /* From now on, all we have to do is check that the operator definition
- doesn't conflict with an intrinsic operator. The rules for this
- game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
- as well as 12.3.2.1.1 of Fortran 2003:
-
- "If the operator is an intrinsic-operator (R310), the number of
- function arguments shall be consistent with the intrinsic uses of
- that operator, and the types, kind type parameters, or ranks of the
- dummy arguments shall differ from those required for the intrinsic
- operation (7.1.2)." */
-
-#define IS_NUMERIC_TYPE(t) \
- ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
-
- /* Unary ops are easy, do them first. */
- if (op == INTRINSIC_NOT)
- {
- if (t1 == BT_LOGICAL)
- goto bad_repl;
- else
- return true;
- }
-
- if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
- {
- if (IS_NUMERIC_TYPE (t1))
- goto bad_repl;
- else
- return true;
- }
-
- /* Character intrinsic operators have same character kind, thus
- operator definitions with operands of different character kinds
- are always safe. */
- if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
- return true;
-
- /* Intrinsic operators always perform on arguments of same rank,
- so different ranks is also always safe. (rank == 0) is an exception
- to that, because all intrinsic operators are elemental. */
- if (r1 != r2 && r1 != 0 && r2 != 0)
- return true;
-
- switch (op)
- {
- case INTRINSIC_EQ:
- case INTRINSIC_EQ_OS:
- case INTRINSIC_NE:
- case INTRINSIC_NE_OS:
- if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
- goto bad_repl;
- /* Fall through. */
-
- case INTRINSIC_PLUS:
- case INTRINSIC_MINUS:
- case INTRINSIC_TIMES:
- case INTRINSIC_DIVIDE:
- case INTRINSIC_POWER:
- if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
- goto bad_repl;
- break;
-
- case INTRINSIC_GT:
- case INTRINSIC_GT_OS:
- case INTRINSIC_GE:
- case INTRINSIC_GE_OS:
- case INTRINSIC_LT:
- case INTRINSIC_LT_OS:
- case INTRINSIC_LE:
- case INTRINSIC_LE_OS:
- if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
- goto bad_repl;
- if ((t1 == BT_INTEGER || t1 == BT_REAL)
- && (t2 == BT_INTEGER || t2 == BT_REAL))
- goto bad_repl;
- break;
-
- case INTRINSIC_CONCAT:
- if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
- goto bad_repl;
- break;
-
- case INTRINSIC_AND:
- case INTRINSIC_OR:
- case INTRINSIC_EQV:
- case INTRINSIC_NEQV:
- if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
- goto bad_repl;
- break;
-
- default:
- break;
- }
-
- return true;
-
-#undef IS_NUMERIC_TYPE
-
-bad_repl:
- gfc_error ("Operator interface at %L conflicts with intrinsic interface",
- &opwhere);
- return false;
-}
-
-
-/* Given a pair of formal argument lists, we see if the two lists can
- be distinguished by counting the number of nonoptional arguments of
- a given type/rank in f1 and seeing if there are less then that
- number of those arguments in f2 (including optional arguments).
- Since this test is asymmetric, it has to be called twice to make it
- symmetric. Returns nonzero if the argument lists are incompatible
- by this test. This subroutine implements rule 1 of section F03:16.2.3.
- 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
-
-static int
-count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
- const char *p1, const char *p2)
-{
- int rc, ac1, ac2, i, j, k, n1;
- gfc_formal_arglist *f;
-
- typedef struct
- {
- int flag;
- gfc_symbol *sym;
- }
- arginfo;
-
- arginfo *arg;
-
- n1 = 0;
-
- for (f = f1; f; f = f->next)
- n1++;
-
- /* Build an array of integers that gives the same integer to
- arguments of the same type/rank. */
- arg = XCNEWVEC (arginfo, n1);
-
- f = f1;
- for (i = 0; i < n1; i++, f = f->next)
- {
- arg[i].flag = -1;
- arg[i].sym = f->sym;
- }
-
- k = 0;
-
- for (i = 0; i < n1; i++)
- {
- if (arg[i].flag != -1)
- continue;
-
- if (arg[i].sym && (arg[i].sym->attr.optional
- || (p1 && strcmp (arg[i].sym->name, p1) == 0)))
- continue; /* Skip OPTIONAL and PASS arguments. */
-
- arg[i].flag = k;
-
- /* Find other non-optional, non-pass arguments of the same type/rank. */
- for (j = i + 1; j < n1; j++)
- if ((arg[j].sym == NULL
- || !(arg[j].sym->attr.optional
- || (p1 && strcmp (arg[j].sym->name, p1) == 0)))
- && (compare_type_rank_if (arg[i].sym, arg[j].sym)
- || compare_type_rank_if (arg[j].sym, arg[i].sym)))
- arg[j].flag = k;
-
- k++;
- }
-
- /* Now loop over each distinct type found in f1. */
- k = 0;
- rc = 0;
-
- for (i = 0; i < n1; i++)
- {
- if (arg[i].flag != k)
- continue;
-
- ac1 = 1;
- for (j = i + 1; j < n1; j++)
- if (arg[j].flag == k)
- ac1++;
-
- /* Count the number of non-pass arguments in f2 with that type,
- including those that are optional. */
- ac2 = 0;
-
- for (f = f2; f; f = f->next)
- if ((!p2 || strcmp (f->sym->name, p2) != 0)
- && (compare_type_rank_if (arg[i].sym, f->sym)
- || compare_type_rank_if (f->sym, arg[i].sym)))
- ac2++;
-
- if (ac1 > ac2)
- {
- rc = 1;
- break;
- }
-
- k++;
- }
-
- free (arg);
-
- return rc;
-}
-
-
-/* Perform the correspondence test in rule (3) of F08:C1215.
- Returns zero if no argument is found that satisfies this rule,
- nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures
- (if applicable).
-
- This test is also not symmetric in f1 and f2 and must be called
- twice. This test finds problems caused by sorting the actual
- argument list with keywords. For example:
-
- INTERFACE FOO
- SUBROUTINE F1(A, B)
- INTEGER :: A ; REAL :: B
- END SUBROUTINE F1
-
- SUBROUTINE F2(B, A)
- INTEGER :: A ; REAL :: B
- END SUBROUTINE F1
- END INTERFACE FOO
-
- At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
-
-static int
-generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
- const char *p1, const char *p2)
-{
- gfc_formal_arglist *f2_save, *g;
- gfc_symbol *sym;
-
- f2_save = f2;
-
- while (f1)
- {
- if (f1->sym->attr.optional)
- goto next;
-
- if (p1 && strcmp (f1->sym->name, p1) == 0)
- f1 = f1->next;
- if (f2 && p2 && strcmp (f2->sym->name, p2) == 0)
- f2 = f2->next;
-
- if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym)
- || compare_type_rank (f2->sym, f1->sym))
- && !((gfc_option.allow_std & GFC_STD_F2008)
- && ((f1->sym->attr.allocatable && f2->sym->attr.pointer)
- || (f2->sym->attr.allocatable && f1->sym->attr.pointer))))
- goto next;
-
- /* Now search for a disambiguating keyword argument starting at
- the current non-match. */
- for (g = f1; g; g = g->next)
- {
- if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0))
- continue;
-
- sym = find_keyword_arg (g->sym->name, f2_save);
- if (sym == NULL || !compare_type_rank (g->sym, sym)
- || ((gfc_option.allow_std & GFC_STD_F2008)
- && ((sym->attr.allocatable && g->sym->attr.pointer)
- || (sym->attr.pointer && g->sym->attr.allocatable))))
- return 1;
- }
-
- next:
- if (f1 != NULL)
- f1 = f1->next;
- if (f2 != NULL)
- f2 = f2->next;
- }
-
- return 0;
-}
-
-
-/* Check if the characteristics of two dummy arguments match,
- cf. F08:12.3.2. */
-
-static gfc_try
-check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2,
- bool type_must_agree, char *errmsg, int err_len)
-{
- /* Check type and rank. */
- if (type_must_agree && !compare_type_rank (s2, s1))
- {
- snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'",
- s1->name);
- return FAILURE;
- }
-
- /* Check INTENT. */
- if (s1->attr.intent != s2->attr.intent)
- {
- snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
- s1->name);
- return FAILURE;
- }
-
- /* Check OPTIONAL attribute. */
- if (s1->attr.optional != s2->attr.optional)
- {
- snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
- s1->name);
- return FAILURE;
- }
-
- /* Check ALLOCATABLE attribute. */
- if (s1->attr.allocatable != s2->attr.allocatable)
- {
- snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'",
- s1->name);
- return FAILURE;
- }
-
- /* Check POINTER attribute. */
- if (s1->attr.pointer != s2->attr.pointer)
- {
- snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'",
- s1->name);
- return FAILURE;
- }
-
- /* Check TARGET attribute. */
- if (s1->attr.target != s2->attr.target)
- {
- snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'",
- s1->name);
- return FAILURE;
- }
-
- /* FIXME: Do more comprehensive testing of attributes, like e.g.
- ASYNCHRONOUS, CONTIGUOUS, VALUE, VOLATILE, etc. */
-
- /* Check interface of dummy procedures. */
- if (s1->attr.flavor == FL_PROCEDURE)
- {
- char err[200];
- if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err),
- NULL, NULL))
- {
- snprintf (errmsg, err_len, "Interface mismatch in dummy procedure "
- "'%s': %s", s1->name, err);
- return FAILURE;
- }
- }
-
- /* Check string length. */
- if (s1->ts.type == BT_CHARACTER
- && s1->ts.u.cl && s1->ts.u.cl->length
- && s2->ts.u.cl && s2->ts.u.cl->length)
- {
- int compval = gfc_dep_compare_expr (s1->ts.u.cl->length,
- s2->ts.u.cl->length);
- switch (compval)
- {
- case -1:
- case 1:
- case -3:
- snprintf (errmsg, err_len, "Character length mismatch "
- "in argument '%s'", s1->name);
- return FAILURE;
-
- case -2:
- /* FIXME: Implement a warning for this case.
- gfc_warning ("Possible character length mismatch in argument '%s'",
- s1->name);*/
- break;
-
- case 0:
- break;
-
- default:
- gfc_internal_error ("check_dummy_characteristics: Unexpected result "
- "%i of gfc_dep_compare_expr", compval);
- break;
- }
- }
-
- /* Check array shape. */
- if (s1->as && s2->as)
- {
- int i, compval;
- gfc_expr *shape1, *shape2;
-
- if (s1->as->type != s2->as->type)
- {
- snprintf (errmsg, err_len, "Shape mismatch in argument '%s'",
- s1->name);
- return FAILURE;
- }
-
- if (s1->as->type == AS_EXPLICIT)
- for (i = 0; i < s1->as->rank + s1->as->corank; i++)
- {
- shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]),
- gfc_copy_expr (s1->as->lower[i]));
- shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]),
- gfc_copy_expr (s2->as->lower[i]));
- compval = gfc_dep_compare_expr (shape1, shape2);
- gfc_free_expr (shape1);
- gfc_free_expr (shape2);
- switch (compval)
- {
- case -1:
- case 1:
- case -3:
- snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
- "argument '%s'", i + 1, s1->name);
- return FAILURE;
-
- case -2:
- /* FIXME: Implement a warning for this case.
- gfc_warning ("Possible shape mismatch in argument '%s'",
- s1->name);*/
- break;
-
- case 0:
- break;
-
- default:
- gfc_internal_error ("check_dummy_characteristics: Unexpected "
- "result %i of gfc_dep_compare_expr",
- compval);
- break;
- }
- }
- }
-
- return SUCCESS;
-}
-
-
-/* Check if the characteristics of two function results match,
- cf. F08:12.3.3. */
-
-static gfc_try
-check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2,
- char *errmsg, int err_len)
-{
- gfc_symbol *r1, *r2;
-
- if (s1->ts.interface && s1->ts.interface->result)
- r1 = s1->ts.interface->result;
- else
- r1 = s1->result ? s1->result : s1;
-
- if (s2->ts.interface && s2->ts.interface->result)
- r2 = s2->ts.interface->result;
- else
- r2 = s2->result ? s2->result : s2;
-
- if (r1->ts.type == BT_UNKNOWN)
- return SUCCESS;
-
- /* Check type and rank. */
- if (!compare_type_rank (r1, r2))
- {
- snprintf (errmsg, err_len, "Type/rank mismatch in function result");
- return FAILURE;
- }
-
- /* Check ALLOCATABLE attribute. */
- if (r1->attr.allocatable != r2->attr.allocatable)
- {
- snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in "
- "function result");
- return FAILURE;
- }
-
- /* Check POINTER attribute. */
- if (r1->attr.pointer != r2->attr.pointer)
- {
- snprintf (errmsg, err_len, "POINTER attribute mismatch in "
- "function result");
- return FAILURE;
- }
-
- /* Check CONTIGUOUS attribute. */
- if (r1->attr.contiguous != r2->attr.contiguous)
- {
- snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in "
- "function result");
- return FAILURE;
- }
-
- /* Check PROCEDURE POINTER attribute. */
- if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer)
- {
- snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in "
- "function result");
- return FAILURE;
- }
-
- /* Check string length. */
- if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl)
- {
- if (r1->ts.deferred != r2->ts.deferred)
- {
- snprintf (errmsg, err_len, "Character length mismatch "
- "in function result");
- return FAILURE;
- }
-
- if (r1->ts.u.cl->length)
- {
- int compval = gfc_dep_compare_expr (r1->ts.u.cl->length,
- r2->ts.u.cl->length);
- switch (compval)
- {
- case -1:
- case 1:
- case -3:
- snprintf (errmsg, err_len, "Character length mismatch "
- "in function result");
- return FAILURE;
-
- case -2:
- /* FIXME: Implement a warning for this case.
- snprintf (errmsg, err_len, "Possible character length mismatch "
- "in function result");*/
- break;
-
- case 0:
- break;
-
- default:
- gfc_internal_error ("check_result_characteristics (1): Unexpected "
- "result %i of gfc_dep_compare_expr", compval);
- break;
- }
- }
- }
-
- /* Check array shape. */
- if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as)
- {
- int i, compval;
- gfc_expr *shape1, *shape2;
-
- if (r1->as->type != r2->as->type)
- {
- snprintf (errmsg, err_len, "Shape mismatch in function result");
- return FAILURE;
- }
-
- if (r1->as->type == AS_EXPLICIT)
- for (i = 0; i < r1->as->rank + r1->as->corank; i++)
- {
- shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]),
- gfc_copy_expr (r1->as->lower[i]));
- shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]),
- gfc_copy_expr (r2->as->lower[i]));
- compval = gfc_dep_compare_expr (shape1, shape2);
- gfc_free_expr (shape1);
- gfc_free_expr (shape2);
- switch (compval)
- {
- case -1:
- case 1:
- case -3:
- snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
- "function result", i + 1);
- return FAILURE;
-
- case -2:
- /* FIXME: Implement a warning for this case.
- gfc_warning ("Possible shape mismatch in return value");*/
- break;
-
- case 0:
- break;
-
- default:
- gfc_internal_error ("check_result_characteristics (2): "
- "Unexpected result %i of "
- "gfc_dep_compare_expr", compval);
- break;
- }
- }
- }
-
- return SUCCESS;
-}
-
-
-/* 'Compare' two formal interfaces associated with a pair of symbols.
- We return nonzero if there exists an actual argument list that
- would be ambiguous between the two interfaces, zero otherwise.
- 'strict_flag' specifies whether all the characteristics are
- required to match, which is not the case for ambiguity checks.
- 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
-
-int
-gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
- int generic_flag, int strict_flag,
- char *errmsg, int err_len,
- const char *p1, const char *p2)
-{
- gfc_formal_arglist *f1, *f2;
-
- gcc_assert (name2 != NULL);
-
- if (s1->attr.function && (s2->attr.subroutine
- || (!s2->attr.function && s2->ts.type == BT_UNKNOWN
- && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
- {
- if (errmsg != NULL)
- snprintf (errmsg, err_len, "'%s' is not a function", name2);
- return 0;
- }
-
- if (s1->attr.subroutine && s2->attr.function)
- {
- if (errmsg != NULL)
- snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
- return 0;
- }
-
- /* Do strict checks on all characteristics
- (for dummy procedures and procedure pointer assignments). */
- if (!generic_flag && strict_flag)
- {
- if (s1->attr.function && s2->attr.function)
- {
- /* If both are functions, check result characteristics. */
- if (check_result_characteristics (s1, s2, errmsg, err_len)
- == FAILURE)
- return 0;
- }
-
- if (s1->attr.pure && !s2->attr.pure)
- {
- snprintf (errmsg, err_len, "Mismatch in PURE attribute");
- return 0;
- }
- if (s1->attr.elemental && !s2->attr.elemental)
- {
- snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute");
- return 0;
- }
- }
-
- if (s1->attr.if_source == IFSRC_UNKNOWN
- || s2->attr.if_source == IFSRC_UNKNOWN)
- return 1;
-
- f1 = gfc_sym_get_dummy_args (s1);
- f2 = gfc_sym_get_dummy_args (s2);
-
- if (f1 == NULL && f2 == NULL)
- return 1; /* Special case: No arguments. */
-
- if (generic_flag)
- {
- if (count_types_test (f1, f2, p1, p2)
- || count_types_test (f2, f1, p2, p1))
- return 0;
- if (generic_correspondence (f1, f2, p1, p2)
- || generic_correspondence (f2, f1, p2, p1))
- return 0;
- }
- else
- /* Perform the abbreviated correspondence test for operators (the
- arguments cannot be optional and are always ordered correctly).
- This is also done when comparing interfaces for dummy procedures and in
- procedure pointer assignments. */
-
- for (;;)
- {
- /* Check existence. */
- if (f1 == NULL && f2 == NULL)
- break;
- if (f1 == NULL || f2 == NULL)
- {
- if (errmsg != NULL)
- snprintf (errmsg, err_len, "'%s' has the wrong number of "
- "arguments", name2);
- return 0;
- }
-
- if (UNLIMITED_POLY (f1->sym))
- goto next;
-
- if (strict_flag)
- {
- /* Check all characteristics. */
- if (check_dummy_characteristics (f1->sym, f2->sym,
- true, errmsg, err_len) == FAILURE)
- return 0;
- }
- else if (!compare_type_rank (f2->sym, f1->sym))
- {
- /* Only check type and rank. */
- if (errmsg != NULL)
- snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'",
- f1->sym->name);
- return 0;
- }
-next:
- f1 = f1->next;
- f2 = f2->next;
- }
-
- return 1;
-}
-
-
-/* Given a pointer to an interface pointer, remove duplicate
- interfaces and make sure that all symbols are either functions
- or subroutines, and all of the same kind. Returns nonzero if
- something goes wrong. */
-
-static int
-check_interface0 (gfc_interface *p, const char *interface_name)
-{
- gfc_interface *psave, *q, *qlast;
-
- psave = p;
- for (; p; p = p->next)
- {
- /* Make sure all symbols in the interface have been defined as
- functions or subroutines. */
- if (((!p->sym->attr.function && !p->sym->attr.subroutine)
- || !p->sym->attr.if_source)
- && p->sym->attr.flavor != FL_DERIVED)
- {
- if (p->sym->attr.external)
- gfc_error ("Procedure '%s' in %s at %L has no explicit interface",
- p->sym->name, interface_name, &p->sym->declared_at);
- else
- gfc_error ("Procedure '%s' in %s at %L is neither function nor "
- "subroutine", p->sym->name, interface_name,
- &p->sym->declared_at);
- return 1;
- }
-
- /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */
- if ((psave->sym->attr.function && !p->sym->attr.function
- && p->sym->attr.flavor != FL_DERIVED)
- || (psave->sym->attr.subroutine && !p->sym->attr.subroutine))
- {
- if (p->sym->attr.flavor != FL_DERIVED)
- gfc_error ("In %s at %L procedures must be either all SUBROUTINEs"
- " or all FUNCTIONs", interface_name,
- &p->sym->declared_at);
- else
- gfc_error ("In %s at %L procedures must be all FUNCTIONs as the "
- "generic name is also the name of a derived type",
- interface_name, &p->sym->declared_at);
- return 1;
- }
-
- /* F2003, C1207. F2008, C1207. */
- if (p->sym->attr.proc == PROC_INTERNAL
- && gfc_notify_std (GFC_STD_F2008, "Internal procedure "
- "'%s' in %s at %L", p->sym->name, interface_name,
- &p->sym->declared_at) == FAILURE)
- return 1;
- }
- p = psave;
-
- /* Remove duplicate interfaces in this interface list. */
- for (; p; p = p->next)
- {
- qlast = p;
-
- for (q = p->next; q;)
- {
- if (p->sym != q->sym)
- {
- qlast = q;
- q = q->next;
- }
- else
- {
- /* Duplicate interface. */
- qlast->next = q->next;
- free (q);
- q = qlast->next;
- }
- }
- }
-
- return 0;
-}
-
-
-/* Check lists of interfaces to make sure that no two interfaces are
- ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
-
-static int
-check_interface1 (gfc_interface *p, gfc_interface *q0,
- int generic_flag, const char *interface_name,
- bool referenced)
-{
- gfc_interface *q;
- for (; p; p = p->next)
- for (q = q0; q; q = q->next)
- {
- if (p->sym == q->sym)
- continue; /* Duplicates OK here. */
-
- if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
- continue;
-
- if (p->sym->attr.flavor != FL_DERIVED
- && q->sym->attr.flavor != FL_DERIVED
- && gfc_compare_interfaces (p->sym, q->sym, q->sym->name,
- generic_flag, 0, NULL, 0, NULL, NULL))
- {
- if (referenced)
- gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L",
- p->sym->name, q->sym->name, interface_name,
- &p->where);
- else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
- gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L",
- p->sym->name, q->sym->name, interface_name,
- &p->where);
- else
- gfc_warning ("Although not referenced, '%s' has ambiguous "
- "interfaces at %L", interface_name, &p->where);
- return 1;
- }
- }
- return 0;
-}
-
-
-/* Check the generic and operator interfaces of symbols to make sure
- that none of the interfaces conflict. The check has to be done
- after all of the symbols are actually loaded. */
-
-static void
-check_sym_interfaces (gfc_symbol *sym)
-{
- char interface_name[100];
- gfc_interface *p;
-
- if (sym->ns != gfc_current_ns)
- return;
-
- if (sym->generic != NULL)
- {
- sprintf (interface_name, "generic interface '%s'", sym->name);
- if (check_interface0 (sym->generic, interface_name))
- return;
-
- for (p = sym->generic; p; p = p->next)
- {
- if (p->sym->attr.mod_proc
- && (p->sym->attr.if_source != IFSRC_DECL
- || p->sym->attr.procedure))
- {
- gfc_error ("'%s' at %L is not a module procedure",
- p->sym->name, &p->where);
- return;
- }
- }
-
- /* Originally, this test was applied to host interfaces too;
- this is incorrect since host associated symbols, from any
- source, cannot be ambiguous with local symbols. */
- check_interface1 (sym->generic, sym->generic, 1, interface_name,
- sym->attr.referenced || !sym->attr.use_assoc);
- }
-}
-
-
-static void
-check_uop_interfaces (gfc_user_op *uop)
-{
- char interface_name[100];
- gfc_user_op *uop2;
- gfc_namespace *ns;
-
- sprintf (interface_name, "operator interface '%s'", uop->name);
- if (check_interface0 (uop->op, interface_name))
- return;
-
- for (ns = gfc_current_ns; ns; ns = ns->parent)
- {
- uop2 = gfc_find_uop (uop->name, ns);
- if (uop2 == NULL)
- continue;
-
- check_interface1 (uop->op, uop2->op, 0,
- interface_name, true);
- }
-}
-
-/* Given an intrinsic op, return an equivalent op if one exists,
- or INTRINSIC_NONE otherwise. */
-
-gfc_intrinsic_op
-gfc_equivalent_op (gfc_intrinsic_op op)
-{
- switch(op)
- {
- case INTRINSIC_EQ:
- return INTRINSIC_EQ_OS;
-
- case INTRINSIC_EQ_OS:
- return INTRINSIC_EQ;
-
- case INTRINSIC_NE:
- return INTRINSIC_NE_OS;
-
- case INTRINSIC_NE_OS:
- return INTRINSIC_NE;
-
- case INTRINSIC_GT:
- return INTRINSIC_GT_OS;
-
- case INTRINSIC_GT_OS:
- return INTRINSIC_GT;
-
- case INTRINSIC_GE:
- return INTRINSIC_GE_OS;
-
- case INTRINSIC_GE_OS:
- return INTRINSIC_GE;
-
- case INTRINSIC_LT:
- return INTRINSIC_LT_OS;
-
- case INTRINSIC_LT_OS:
- return INTRINSIC_LT;
-
- case INTRINSIC_LE:
- return INTRINSIC_LE_OS;
-
- case INTRINSIC_LE_OS:
- return INTRINSIC_LE;
-
- default:
- return INTRINSIC_NONE;
- }
-}
-
-/* For the namespace, check generic, user operator and intrinsic
- operator interfaces for consistency and to remove duplicate
- interfaces. We traverse the whole namespace, counting on the fact
- that most symbols will not have generic or operator interfaces. */
-
-void
-gfc_check_interfaces (gfc_namespace *ns)
-{
- gfc_namespace *old_ns, *ns2;
- char interface_name[100];
- int i;
-
- old_ns = gfc_current_ns;
- gfc_current_ns = ns;
-
- gfc_traverse_ns (ns, check_sym_interfaces);
-
- gfc_traverse_user_op (ns, check_uop_interfaces);
-
- for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
- {
- if (i == INTRINSIC_USER)
- continue;
-
- if (i == INTRINSIC_ASSIGN)
- strcpy (interface_name, "intrinsic assignment operator");
- else
- sprintf (interface_name, "intrinsic '%s' operator",
- gfc_op2string ((gfc_intrinsic_op) i));
-
- if (check_interface0 (ns->op[i], interface_name))
- continue;
-
- if (ns->op[i])
- gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
- ns->op[i]->where);
-
- for (ns2 = ns; ns2; ns2 = ns2->parent)
- {
- gfc_intrinsic_op other_op;
-
- if (check_interface1 (ns->op[i], ns2->op[i], 0,
- interface_name, true))
- goto done;
-
- /* i should be gfc_intrinsic_op, but has to be int with this cast
- here for stupid C++ compatibility rules. */
- other_op = gfc_equivalent_op ((gfc_intrinsic_op) i);
- if (other_op != INTRINSIC_NONE
- && check_interface1 (ns->op[i], ns2->op[other_op],
- 0, interface_name, true))
- goto done;
- }
- }
-
-done:
- gfc_current_ns = old_ns;
-}
-
-
-static int
-symbol_rank (gfc_symbol *sym)
-{
- if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
- return CLASS_DATA (sym)->as->rank;
-
- return (sym->as == NULL) ? 0 : sym->as->rank;
-}
-
-
-/* Given a symbol of a formal argument list and an expression, if the
- formal argument is allocatable, check that the actual argument is
- allocatable. Returns nonzero if compatible, zero if not compatible. */
-
-static int
-compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
-{
- symbol_attribute attr;
-
- if (formal->attr.allocatable
- || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable))
- {
- attr = gfc_expr_attr (actual);
- if (!attr.allocatable)
- return 0;
- }
-
- return 1;
-}
-
-
-/* Given a symbol of a formal argument list and an expression, if the
- formal argument is a pointer, see if the actual argument is a
- pointer. Returns nonzero if compatible, zero if not compatible. */
-
-static int
-compare_pointer (gfc_symbol *formal, gfc_expr *actual)
-{
- symbol_attribute attr;
-
- if (formal->attr.pointer
- || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)
- && CLASS_DATA (formal)->attr.class_pointer))
- {
- attr = gfc_expr_attr (actual);
-
- /* Fortran 2008 allows non-pointer actual arguments. */
- if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN)
- return 2;
-
- if (!attr.pointer)
- return 0;
- }
-
- return 1;
-}
-
-
-/* Emit clear error messages for rank mismatch. */
-
-static void
-argument_rank_mismatch (const char *name, locus *where,
- int rank1, int rank2)
-{
-
- /* TS 29113, C407b. */
- if (rank2 == -1)
- {
- gfc_error ("The assumed-rank array at %L requires that the dummy argument"
- " '%s' has assumed-rank", where, name);
- }
- else if (rank1 == 0)
- {
- gfc_error ("Rank mismatch in argument '%s' at %L "
- "(scalar and rank-%d)", name, where, rank2);
- }
- else if (rank2 == 0)
- {
- gfc_error ("Rank mismatch in argument '%s' at %L "
- "(rank-%d and scalar)", name, where, rank1);
- }
- else
- {
- gfc_error ("Rank mismatch in argument '%s' at %L "
- "(rank-%d and rank-%d)", name, where, rank1, rank2);
- }
-}
-
-
-/* Given a symbol of a formal argument list and an expression, see if
- the two are compatible as arguments. Returns nonzero if
- compatible, zero if not compatible. */
-
-static int
-compare_parameter (gfc_symbol *formal, gfc_expr *actual,
- int ranks_must_agree, int is_elemental, locus *where)
-{
- gfc_ref *ref;
- bool rank_check, is_pointer;
-
- /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
- procs c_f_pointer or c_f_procpointer, and we need to accept most
- pointers the user could give us. This should allow that. */
- if (formal->ts.type == BT_VOID)
- return 1;
-
- if (formal->ts.type == BT_DERIVED
- && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
- && actual->ts.type == BT_DERIVED
- && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
- return 1;
-
- if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED)
- /* Make sure the vtab symbol is present when
- the module variables are generated. */
- gfc_find_derived_vtab (actual->ts.u.derived);
-
- if (actual->ts.type == BT_PROCEDURE)
- {
- char err[200];
- gfc_symbol *act_sym = actual->symtree->n.sym;
-
- if (formal->attr.flavor != FL_PROCEDURE)
- {
- if (where)
- gfc_error ("Invalid procedure argument at %L", &actual->where);
- return 0;
- }
-
- if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
- sizeof(err), NULL, NULL))
- {
- if (where)
- gfc_error ("Interface mismatch in dummy procedure '%s' at %L: %s",
- formal->name, &actual->where, err);
- return 0;
- }
-
- if (formal->attr.function && !act_sym->attr.function)
- {
- gfc_add_function (&act_sym->attr, act_sym->name,
- &act_sym->declared_at);
- if (act_sym->ts.type == BT_UNKNOWN
- && gfc_set_default_type (act_sym, 1, act_sym->ns) == FAILURE)
- return 0;
- }
- else if (formal->attr.subroutine && !act_sym->attr.subroutine)
- gfc_add_subroutine (&act_sym->attr, act_sym->name,
- &act_sym->declared_at);
-
- return 1;
- }
-
- /* F2008, C1241. */
- if (formal->attr.pointer && formal->attr.contiguous
- && !gfc_is_simply_contiguous (actual, true))
- {
- if (where)
- gfc_error ("Actual argument to contiguous pointer dummy '%s' at %L "
- "must be simply contiguous", formal->name, &actual->where);
- return 0;
- }
-
- if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
- && actual->ts.type != BT_HOLLERITH
- && formal->ts.type != BT_ASSUMED
- && !gfc_compare_types (&formal->ts, &actual->ts)
- && !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS
- && gfc_compare_derived_types (formal->ts.u.derived,
- CLASS_DATA (actual)->ts.u.derived)))
- {
- if (where)
- gfc_error ("Type mismatch in argument '%s' at %L; passed %s to %s",
- formal->name, &actual->where, gfc_typename (&actual->ts),
- gfc_typename (&formal->ts));
- return 0;
- }
-
- /* F2008, 12.5.2.5; IR F08/0073. */
- if (formal->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL
- && ((CLASS_DATA (formal)->attr.class_pointer
- && !formal->attr.intent == INTENT_IN)
- || CLASS_DATA (formal)->attr.allocatable))
- {
- if (actual->ts.type != BT_CLASS)
- {
- if (where)
- gfc_error ("Actual argument to '%s' at %L must be polymorphic",
- formal->name, &actual->where);
- return 0;
- }
- if (!gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived,
- CLASS_DATA (formal)->ts.u.derived))
- {
- if (where)
- gfc_error ("Actual argument to '%s' at %L must have the same "
- "declared type", formal->name, &actual->where);
- return 0;
- }
- }
-
- /* F08: 12.5.2.5 Allocatable and pointer dummy variables. However, this
- is necessary also for F03, so retain error for both.
- NOTE: Other type/kind errors pre-empt this error. Since they are F03
- compatible, no attempt has been made to channel to this one. */
- if (UNLIMITED_POLY (formal) && !UNLIMITED_POLY (actual)
- && (CLASS_DATA (formal)->attr.allocatable
- ||CLASS_DATA (formal)->attr.class_pointer))
- {
- if (where)
- gfc_error ("Actual argument to '%s' at %L must be unlimited "
- "polymorphic since the formal argument is a "
- "pointer or allocatable unlimited polymorphic "
- "entity [F2008: 12.5.2.5]", formal->name,
- &actual->where);
- return 0;
- }
-
- if (formal->attr.codimension && !gfc_is_coarray (actual))
- {
- if (where)
- gfc_error ("Actual argument to '%s' at %L must be a coarray",
- formal->name, &actual->where);
- return 0;
- }
-
- if (formal->attr.codimension && formal->attr.allocatable)
- {
- gfc_ref *last = NULL;
-
- for (ref = actual->ref; ref; ref = ref->next)
- if (ref->type == REF_COMPONENT)
- last = ref;
-
- /* F2008, 12.5.2.6. */
- if ((last && last->u.c.component->as->corank != formal->as->corank)
- || (!last
- && actual->symtree->n.sym->as->corank != formal->as->corank))
- {
- if (where)
- gfc_error ("Corank mismatch in argument '%s' at %L (%d and %d)",
- formal->name, &actual->where, formal->as->corank,
- last ? last->u.c.component->as->corank
- : actual->symtree->n.sym->as->corank);
- return 0;
- }
- }
-
- if (formal->attr.codimension)
- {
- /* F2008, 12.5.2.8. */
- if (formal->attr.dimension
- && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE)
- && gfc_expr_attr (actual).dimension
- && !gfc_is_simply_contiguous (actual, true))
- {
- if (where)
- gfc_error ("Actual argument to '%s' at %L must be simply "
- "contiguous", formal->name, &actual->where);
- return 0;
- }
-
- /* F2008, C1303 and C1304. */
- if (formal->attr.intent != INTENT_INOUT
- && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
- && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
- && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
- || formal->attr.lock_comp))
-
- {
- if (where)
- gfc_error ("Actual argument to non-INTENT(INOUT) dummy '%s' at %L, "
- "which is LOCK_TYPE or has a LOCK_TYPE component",
- formal->name, &actual->where);
- return 0;
- }
- }
-
- /* F2008, C1239/C1240. */
- if (actual->expr_type == EXPR_VARIABLE
- && (actual->symtree->n.sym->attr.asynchronous
- || actual->symtree->n.sym->attr.volatile_)
- && (formal->attr.asynchronous || formal->attr.volatile_)
- && actual->rank && !gfc_is_simply_contiguous (actual, true)
- && ((formal->as->type != AS_ASSUMED_SHAPE && !formal->attr.pointer)
- || formal->attr.contiguous))
- {
- if (where)
- gfc_error ("Dummy argument '%s' has to be a pointer or assumed-shape "
- "array without CONTIGUOUS attribute - as actual argument at"
- " %L is not simply contiguous and both are ASYNCHRONOUS "
- "or VOLATILE", formal->name, &actual->where);
- return 0;
- }
-
- if (formal->attr.allocatable && !formal->attr.codimension
- && gfc_expr_attr (actual).codimension)
- {
- if (formal->attr.intent == INTENT_OUT)
- {
- if (where)
- gfc_error ("Passing coarray at %L to allocatable, noncoarray, "
- "INTENT(OUT) dummy argument '%s'", &actual->where,
- formal->name);
- return 0;
- }
- else if (gfc_option.warn_surprising && where
- && formal->attr.intent != INTENT_IN)
- gfc_warning ("Passing coarray at %L to allocatable, noncoarray dummy "
- "argument '%s', which is invalid if the allocation status"
- " is modified", &actual->where, formal->name);
- }
-
- /* If the rank is the same or the formal argument has assumed-rank. */
- if (symbol_rank (formal) == actual->rank || symbol_rank (formal) == -1)
- return 1;
-
- if (actual->ts.type == BT_CLASS && CLASS_DATA (actual)->as
- && CLASS_DATA (actual)->as->rank == symbol_rank (formal))
- return 1;
-
- rank_check = where != NULL && !is_elemental && formal->as
- && (formal->as->type == AS_ASSUMED_SHAPE
- || formal->as->type == AS_DEFERRED)
- && actual->expr_type != EXPR_NULL;
-
- /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
- if (rank_check || ranks_must_agree
- || (formal->attr.pointer && actual->expr_type != EXPR_NULL)
- || (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
- || (actual->rank == 0
- && ((formal->ts.type == BT_CLASS
- && CLASS_DATA (formal)->as->type == AS_ASSUMED_SHAPE)
- || (formal->ts.type != BT_CLASS
- && formal->as->type == AS_ASSUMED_SHAPE))
- && actual->expr_type != EXPR_NULL)
- || (actual->rank == 0 && formal->attr.dimension
- && gfc_is_coindexed (actual)))
- {
- if (where)
- argument_rank_mismatch (formal->name, &actual->where,
- symbol_rank (formal), actual->rank);
- return 0;
- }
- else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
- return 1;
-
- /* At this point, we are considering a scalar passed to an array. This
- is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4),
- - if the actual argument is (a substring of) an element of a
- non-assumed-shape/non-pointer/non-polymorphic array; or
- - (F2003) if the actual argument is of type character of default/c_char
- kind. */
-
- is_pointer = actual->expr_type == EXPR_VARIABLE
- ? actual->symtree->n.sym->attr.pointer : false;
-
- for (ref = actual->ref; ref; ref = ref->next)
- {
- if (ref->type == REF_COMPONENT)
- is_pointer = ref->u.c.component->attr.pointer;
- else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
- && ref->u.ar.dimen > 0
- && (!ref->next
- || (ref->next->type == REF_SUBSTRING && !ref->next->next)))
- break;
- }
-
- if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL)
- {
- if (where)
- gfc_error ("Polymorphic scalar passed to array dummy argument '%s' "
- "at %L", formal->name, &actual->where);
- return 0;
- }
-
- if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER
- && (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
- {
- if (where)
- gfc_error ("Element of assumed-shaped or pointer "
- "array passed to array dummy argument '%s' at %L",
- formal->name, &actual->where);
- return 0;
- }
-
- if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL
- && (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
- {
- if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0)
- {
- if (where)
- gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind "
- "CHARACTER actual argument with array dummy argument "
- "'%s' at %L", formal->name, &actual->where);
- return 0;
- }
-
- if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
- {
- gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
- "array dummy argument '%s' at %L",
- formal->name, &actual->where);
- return 0;
- }
- else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
- return 0;
- else
- return 1;
- }
-
- if (ref == NULL && actual->expr_type != EXPR_NULL)
- {
- if (where)
- argument_rank_mismatch (formal->name, &actual->where,
- symbol_rank (formal), actual->rank);
- return 0;
- }
-
- return 1;
-}
-
-
-/* Returns the storage size of a symbol (formal argument) or
- zero if it cannot be determined. */
-
-static unsigned long
-get_sym_storage_size (gfc_symbol *sym)
-{
- int i;
- unsigned long strlen, elements;
-
- if (sym->ts.type == BT_CHARACTER)
- {
- if (sym->ts.u.cl && sym->ts.u.cl->length
- && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
- strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
- else
- return 0;
- }
- else
- strlen = 1;
-
- if (symbol_rank (sym) == 0)
- return strlen;
-
- elements = 1;
- if (sym->as->type != AS_EXPLICIT)
- return 0;
- for (i = 0; i < sym->as->rank; i++)
- {
- if (sym->as->upper[i]->expr_type != EXPR_CONSTANT
- || sym->as->lower[i]->expr_type != EXPR_CONSTANT)
- return 0;
-
- elements *= mpz_get_si (sym->as->upper[i]->value.integer)
- - mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
- }
-
- return strlen*elements;
-}
-
-
-/* Returns the storage size of an expression (actual argument) or
- zero if it cannot be determined. For an array element, it returns
- the remaining size as the element sequence consists of all storage
- units of the actual argument up to the end of the array. */
-
-static unsigned long
-get_expr_storage_size (gfc_expr *e)
-{
- int i;
- long int strlen, elements;
- long int substrlen = 0;
- bool is_str_storage = false;
- gfc_ref *ref;
-
- if (e == NULL)
- return 0;
-
- if (e->ts.type == BT_CHARACTER)
- {
- if (e->ts.u.cl && e->ts.u.cl->length
- && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
- strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
- else if (e->expr_type == EXPR_CONSTANT
- && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
- strlen = e->value.character.length;
- else
- return 0;
- }
- else
- strlen = 1; /* Length per element. */
-
- if (e->rank == 0 && !e->ref)
- return strlen;
-
- elements = 1;
- if (!e->ref)
- {
- if (!e->shape)
- return 0;
- for (i = 0; i < e->rank; i++)
- elements *= mpz_get_si (e->shape[i]);
- return elements*strlen;
- }
-
- for (ref = e->ref; ref; ref = ref->next)
- {
- if (ref->type == REF_SUBSTRING && ref->u.ss.start
- && ref->u.ss.start->expr_type == EXPR_CONSTANT)
- {
- if (is_str_storage)
- {
- /* The string length is the substring length.
- Set now to full string length. */
- if (!ref->u.ss.length || !ref->u.ss.length->length
- || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
- return 0;
-
- strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
- }
- substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
- continue;
- }
-
- if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
- for (i = 0; i < ref->u.ar.dimen; i++)
- {
- long int start, end, stride;
- stride = 1;
-
- if (ref->u.ar.stride[i])
- {
- if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
- stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
- else
- return 0;
- }
-
- if (ref->u.ar.start[i])
- {
- if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
- start = mpz_get_si (ref->u.ar.start[i]->value.integer);
- else
- return 0;
- }
- else if (ref->u.ar.as->lower[i]
- && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
- start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
- else
- return 0;
-
- if (ref->u.ar.end[i])
- {
- if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
- end = mpz_get_si (ref->u.ar.end[i]->value.integer);
- else
- return 0;
- }
- else if (ref->u.ar.as->upper[i]
- && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
- end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
- else
- return 0;
-
- elements *= (end - start)/stride + 1L;
- }
- else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL)
- for (i = 0; i < ref->u.ar.as->rank; i++)
- {
- if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
- && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
- && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
- elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
- - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
- + 1L;
- else
- return 0;
- }
- else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
- && e->expr_type == EXPR_VARIABLE)
- {
- if (ref->u.ar.as->type == AS_ASSUMED_SHAPE
- || e->symtree->n.sym->attr.pointer)
- {
- elements = 1;
- continue;
- }
-
- /* Determine the number of remaining elements in the element
- sequence for array element designators. */
- is_str_storage = true;
- for (i = ref->u.ar.dimen - 1; i >= 0; i--)
- {
- if (ref->u.ar.start[i] == NULL
- || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
- || ref->u.ar.as->upper[i] == NULL
- || ref->u.ar.as->lower[i] == NULL
- || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
- || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
- return 0;
-
- elements
- = elements
- * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
- - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
- + 1L)
- - (mpz_get_si (ref->u.ar.start[i]->value.integer)
- - mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
- }
- }
- }
-
- if (substrlen)
- return (is_str_storage) ? substrlen + (elements-1)*strlen
- : elements*strlen;
- else
- return elements*strlen;
-}
-
-
-/* Given an expression, check whether it is an array section
- which has a vector subscript. If it has, one is returned,
- otherwise zero. */
-
-int
-gfc_has_vector_subscript (gfc_expr *e)
-{
- int i;
- gfc_ref *ref;
-
- if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
- return 0;
-
- for (ref = e->ref; ref; ref = ref->next)
- if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
- for (i = 0; i < ref->u.ar.dimen; i++)
- if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
- return 1;
-
- return 0;
-}
-
-
-/* Given formal and actual argument lists, see if they are compatible.
- If they are compatible, the actual argument list is sorted to
- correspond with the formal list, and elements for missing optional
- arguments are inserted. If WHERE pointer is nonnull, then we issue
- errors when things don't match instead of just returning the status
- code. */
-
-static int
-compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
- int ranks_must_agree, int is_elemental, locus *where)
-{
- gfc_actual_arglist **new_arg, *a, *actual, temp;
- gfc_formal_arglist *f;
- int i, n, na;
- unsigned long actual_size, formal_size;
- bool full_array = false;
-
- actual = *ap;
-
- if (actual == NULL && formal == NULL)
- return 1;
-
- n = 0;
- for (f = formal; f; f = f->next)
- n++;
-
- new_arg = XALLOCAVEC (gfc_actual_arglist *, n);
-
- for (i = 0; i < n; i++)
- new_arg[i] = NULL;
-
- na = 0;
- f = formal;
- i = 0;
-
- for (a = actual; a; a = a->next, f = f->next)
- {
- /* Look for keywords but ignore g77 extensions like %VAL. */
- if (a->name != NULL && a->name[0] != '%')
- {
- i = 0;
- for (f = formal; f; f = f->next, i++)
- {
- if (f->sym == NULL)
- continue;
- if (strcmp (f->sym->name, a->name) == 0)
- break;
- }
-
- if (f == NULL)
- {
- if (where)
- gfc_error ("Keyword argument '%s' at %L is not in "
- "the procedure", a->name, &a->expr->where);
- return 0;
- }
-
- if (new_arg[i] != NULL)
- {
- if (where)
- gfc_error ("Keyword argument '%s' at %L is already associated "
- "with another actual argument", a->name,
- &a->expr->where);
- return 0;
- }
- }
-
- if (f == NULL)
- {
- if (where)
- gfc_error ("More actual than formal arguments in procedure "
- "call at %L", where);
-
- return 0;
- }
-
- if (f->sym == NULL && a->expr == NULL)
- goto match;
-
- if (f->sym == NULL)
- {
- if (where)
- gfc_error ("Missing alternate return spec in subroutine call "
- "at %L", where);
- return 0;
- }
-
- if (a->expr == NULL)
- {
- if (where)
- gfc_error ("Unexpected alternate return spec in subroutine "
- "call at %L", where);
- return 0;
- }
-
- /* Make sure that intrinsic vtables exist for calls to unlimited
- polymorphic formal arguments. */
- if (UNLIMITED_POLY(f->sym)
- && a->expr->ts.type != BT_DERIVED
- && a->expr->ts.type != BT_CLASS)
- gfc_find_intrinsic_vtab (&a->expr->ts);
-
- if (a->expr->expr_type == EXPR_NULL
- && ((f->sym->ts.type != BT_CLASS && !f->sym->attr.pointer
- && (f->sym->attr.allocatable || !f->sym->attr.optional
- || (gfc_option.allow_std & GFC_STD_F2008) == 0))
- || (f->sym->ts.type == BT_CLASS
- && !CLASS_DATA (f->sym)->attr.class_pointer
- && (CLASS_DATA (f->sym)->attr.allocatable
- || !f->sym->attr.optional
- || (gfc_option.allow_std & GFC_STD_F2008) == 0))))
- {
- if (where
- && (!f->sym->attr.optional
- || (f->sym->ts.type != BT_CLASS && f->sym->attr.allocatable)
- || (f->sym->ts.type == BT_CLASS
- && CLASS_DATA (f->sym)->attr.allocatable)))
- gfc_error ("Unexpected NULL() intrinsic at %L to dummy '%s'",
- where, f->sym->name);
- else if (where)
- gfc_error ("Fortran 2008: Null pointer at %L to non-pointer "
- "dummy '%s'", where, f->sym->name);
-
- return 0;
- }
-
- if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
- is_elemental, where))
- return 0;
-
- /* TS 29113, 6.3p2. */
- if (f->sym->ts.type == BT_ASSUMED
- && (a->expr->ts.type == BT_DERIVED
- || (a->expr->ts.type == BT_CLASS && CLASS_DATA (a->expr))))
- {
- gfc_namespace *f2k_derived;
-
- f2k_derived = a->expr->ts.type == BT_DERIVED
- ? a->expr->ts.u.derived->f2k_derived
- : CLASS_DATA (a->expr)->ts.u.derived->f2k_derived;
-
- if (f2k_derived
- && (f2k_derived->finalizers || f2k_derived->tb_sym_root))
- {
- gfc_error ("Actual argument at %L to assumed-type dummy is of "
- "derived type with type-bound or FINAL procedures",
- &a->expr->where);
- return FAILURE;
- }
- }
-
- /* Special case for character arguments. For allocatable, pointer
- and assumed-shape dummies, the string length needs to match
- exactly. */
- if (a->expr->ts.type == BT_CHARACTER
- && a->expr->ts.u.cl && a->expr->ts.u.cl->length
- && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
- && f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length
- && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
- && (f->sym->attr.pointer || f->sym->attr.allocatable
- || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
- && (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
- f->sym->ts.u.cl->length->value.integer) != 0))
- {
- if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
- gfc_warning ("Character length mismatch (%ld/%ld) between actual "
- "argument and pointer or allocatable dummy argument "
- "'%s' at %L",
- mpz_get_si (a->expr->ts.u.cl->length->value.integer),
- mpz_get_si (f->sym->ts.u.cl->length->value.integer),
- f->sym->name, &a->expr->where);
- else if (where)
- gfc_warning ("Character length mismatch (%ld/%ld) between actual "
- "argument and assumed-shape dummy argument '%s' "
- "at %L",
- mpz_get_si (a->expr->ts.u.cl->length->value.integer),
- mpz_get_si (f->sym->ts.u.cl->length->value.integer),
- f->sym->name, &a->expr->where);
- return 0;
- }
-
- if ((f->sym->attr.pointer || f->sym->attr.allocatable)
- && f->sym->ts.deferred != a->expr->ts.deferred
- && a->expr->ts.type == BT_CHARACTER)
- {
- if (where)
- gfc_error ("Actual argument at %L to allocatable or "
- "pointer dummy argument '%s' must have a deferred "
- "length type parameter if and only if the dummy has one",
- &a->expr->where, f->sym->name);
- return 0;
- }
-
- if (f->sym->ts.type == BT_CLASS)
- goto skip_size_check;
-
- actual_size = get_expr_storage_size (a->expr);
- formal_size = get_sym_storage_size (f->sym);
- if (actual_size != 0 && actual_size < formal_size
- && a->expr->ts.type != BT_PROCEDURE
- && f->sym->attr.flavor != FL_PROCEDURE)
- {
- if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
- gfc_warning ("Character length of actual argument shorter "
- "than of dummy argument '%s' (%lu/%lu) at %L",
- f->sym->name, actual_size, formal_size,
- &a->expr->where);
- else if (where)
- gfc_warning ("Actual argument contains too few "
- "elements for dummy argument '%s' (%lu/%lu) at %L",
- f->sym->name, actual_size, formal_size,
- &a->expr->where);
- return 0;
- }
-
- skip_size_check:
-
- /* Satisfy F03:12.4.1.3 by ensuring that a procedure pointer actual
- argument is provided for a procedure pointer formal argument. */
- if (f->sym->attr.proc_pointer
- && !((a->expr->expr_type == EXPR_VARIABLE
- && a->expr->symtree->n.sym->attr.proc_pointer)
- || (a->expr->expr_type == EXPR_FUNCTION
- && a->expr->symtree->n.sym->result->attr.proc_pointer)
- || gfc_is_proc_ptr_comp (a->expr)))
- {
- if (where)
- gfc_error ("Expected a procedure pointer for argument '%s' at %L",
- f->sym->name, &a->expr->where);
- return 0;
- }
-
- /* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is
- provided for a procedure formal argument. */
- if (f->sym->attr.flavor == FL_PROCEDURE
- && gfc_expr_attr (a->expr).flavor != FL_PROCEDURE)
- {
- if (where)
- gfc_error ("Expected a procedure for argument '%s' at %L",
- f->sym->name, &a->expr->where);
- return 0;
- }
-
- if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
- && a->expr->expr_type == EXPR_VARIABLE
- && a->expr->symtree->n.sym->as
- && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
- && (a->expr->ref == NULL
- || (a->expr->ref->type == REF_ARRAY
- && a->expr->ref->u.ar.type == AR_FULL)))
- {
- if (where)
- gfc_error ("Actual argument for '%s' cannot be an assumed-size"
- " array at %L", f->sym->name, where);
- return 0;
- }
-
- if (a->expr->expr_type != EXPR_NULL
- && compare_pointer (f->sym, a->expr) == 0)
- {
- if (where)
- gfc_error ("Actual argument for '%s' must be a pointer at %L",
- f->sym->name, &a->expr->where);
- return 0;
- }
-
- if (a->expr->expr_type != EXPR_NULL
- && (gfc_option.allow_std & GFC_STD_F2008) == 0
- && compare_pointer (f->sym, a->expr) == 2)
- {
- if (where)
- gfc_error ("Fortran 2008: Non-pointer actual argument at %L to "
- "pointer dummy '%s'", &a->expr->where,f->sym->name);
- return 0;
- }
-
-
- /* Fortran 2008, C1242. */
- if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
- {
- if (where)
- gfc_error ("Coindexed actual argument at %L to pointer "
- "dummy '%s'",
- &a->expr->where, f->sym->name);
- return 0;
- }
-
- /* Fortran 2008, 12.5.2.5 (no constraint). */
- if (a->expr->expr_type == EXPR_VARIABLE
- && f->sym->attr.intent != INTENT_IN
- && f->sym->attr.allocatable
- && gfc_is_coindexed (a->expr))
- {
- if (where)
- gfc_error ("Coindexed actual argument at %L to allocatable "
- "dummy '%s' requires INTENT(IN)",
- &a->expr->where, f->sym->name);
- return 0;
- }
-
- /* Fortran 2008, C1237. */
- if (a->expr->expr_type == EXPR_VARIABLE
- && (f->sym->attr.asynchronous || f->sym->attr.volatile_)
- && gfc_is_coindexed (a->expr)
- && (a->expr->symtree->n.sym->attr.volatile_
- || a->expr->symtree->n.sym->attr.asynchronous))
- {
- if (where)
- gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
- "%L requires that dummy '%s' has neither "
- "ASYNCHRONOUS nor VOLATILE", &a->expr->where,
- f->sym->name);
- return 0;
- }
-
- /* Fortran 2008, 12.5.2.4 (no constraint). */
- if (a->expr->expr_type == EXPR_VARIABLE
- && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
- && gfc_is_coindexed (a->expr)
- && gfc_has_ultimate_allocatable (a->expr))
- {
- if (where)
- gfc_error ("Coindexed actual argument at %L with allocatable "
- "ultimate component to dummy '%s' requires either VALUE "
- "or INTENT(IN)", &a->expr->where, f->sym->name);
- return 0;
- }
-
- if (f->sym->ts.type == BT_CLASS
- && CLASS_DATA (f->sym)->attr.allocatable
- && gfc_is_class_array_ref (a->expr, &full_array)
- && !full_array)
- {
- if (where)
- gfc_error ("Actual CLASS array argument for '%s' must be a full "
- "array at %L", f->sym->name, &a->expr->where);
- return 0;
- }
-
-
- if (a->expr->expr_type != EXPR_NULL
- && compare_allocatable (f->sym, a->expr) == 0)
- {
- if (where)
- gfc_error ("Actual argument for '%s' must be ALLOCATABLE at %L",
- f->sym->name, &a->expr->where);
- return 0;
- }
-
- /* Check intent = OUT/INOUT for definable actual argument. */
- if ((f->sym->attr.intent == INTENT_OUT
- || f->sym->attr.intent == INTENT_INOUT))
- {
- const char* context = (where
- ? _("actual argument to INTENT = OUT/INOUT")
- : NULL);
-
- if (((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
- && CLASS_DATA (f->sym)->attr.class_pointer)
- || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
- && gfc_check_vardef_context (a->expr, true, false, false, context)
- == FAILURE)
- return 0;
- if (gfc_check_vardef_context (a->expr, false, false, false, context)
- == FAILURE)
- return 0;
- }
-
- if ((f->sym->attr.intent == INTENT_OUT
- || f->sym->attr.intent == INTENT_INOUT
- || f->sym->attr.volatile_
- || f->sym->attr.asynchronous)
- && gfc_has_vector_subscript (a->expr))
- {
- if (where)
- gfc_error ("Array-section actual argument with vector "
- "subscripts at %L is incompatible with INTENT(OUT), "
- "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute "
- "of the dummy argument '%s'",
- &a->expr->where, f->sym->name);
- return 0;
- }
-
- /* C1232 (R1221) For an actual argument which is an array section or
- an assumed-shape array, the dummy argument shall be an assumed-
- shape array, if the dummy argument has the VOLATILE attribute. */
-
- if (f->sym->attr.volatile_
- && a->expr->symtree->n.sym->as
- && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
- && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
- {
- if (where)
- gfc_error ("Assumed-shape actual argument at %L is "
- "incompatible with the non-assumed-shape "
- "dummy argument '%s' due to VOLATILE attribute",
- &a->expr->where,f->sym->name);
- return 0;
- }
-
- if (f->sym->attr.volatile_
- && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
- && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
- {
- if (where)
- gfc_error ("Array-section actual argument at %L is "
- "incompatible with the non-assumed-shape "
- "dummy argument '%s' due to VOLATILE attribute",
- &a->expr->where,f->sym->name);
- return 0;
- }
-
- /* C1233 (R1221) For an actual argument which is a pointer array, the
- dummy argument shall be an assumed-shape or pointer array, if the
- dummy argument has the VOLATILE attribute. */
-
- if (f->sym->attr.volatile_
- && a->expr->symtree->n.sym->attr.pointer
- && a->expr->symtree->n.sym->as
- && !(f->sym->as
- && (f->sym->as->type == AS_ASSUMED_SHAPE
- || f->sym->attr.pointer)))
- {
- if (where)
- gfc_error ("Pointer-array actual argument at %L requires "
- "an assumed-shape or pointer-array dummy "
- "argument '%s' due to VOLATILE attribute",
- &a->expr->where,f->sym->name);
- return 0;
- }
-
- match:
- if (a == actual)
- na = i;
-
- new_arg[i++] = a;
- }
-
- /* Make sure missing actual arguments are optional. */
- i = 0;
- for (f = formal; f; f = f->next, i++)
- {
- if (new_arg[i] != NULL)
- continue;
- if (f->sym == NULL)
- {
- if (where)
- gfc_error ("Missing alternate return spec in subroutine call "
- "at %L", where);
- return 0;
- }
- if (!f->sym->attr.optional)
- {
- if (where)
- gfc_error ("Missing actual argument for argument '%s' at %L",
- f->sym->name, where);
- return 0;
- }
- }
-
- /* The argument lists are compatible. We now relink a new actual
- argument list with null arguments in the right places. The head
- of the list remains the head. */
- for (i = 0; i < n; i++)
- if (new_arg[i] == NULL)
- new_arg[i] = gfc_get_actual_arglist ();
-
- if (na != 0)
- {
- temp = *new_arg[0];
- *new_arg[0] = *actual;
- *actual = temp;
-
- a = new_arg[0];
- new_arg[0] = new_arg[na];
- new_arg[na] = a;
- }
-
- for (i = 0; i < n - 1; i++)
- new_arg[i]->next = new_arg[i + 1];
-
- new_arg[i]->next = NULL;
-
- if (*ap == NULL && n > 0)
- *ap = new_arg[0];
-
- /* Note the types of omitted optional arguments. */
- for (a = *ap, f = formal; a; a = a->next, f = f->next)
- if (a->expr == NULL && a->label == NULL)
- a->missing_arg_type = f->sym->ts.type;
-
- return 1;
-}
-
-
-typedef struct
-{
- gfc_formal_arglist *f;
- gfc_actual_arglist *a;
-}
-argpair;
-
-/* qsort comparison function for argument pairs, with the following
- order:
- - p->a->expr == NULL
- - p->a->expr->expr_type != EXPR_VARIABLE
- - growing p->a->expr->symbol. */
-
-static int
-pair_cmp (const void *p1, const void *p2)
-{
- const gfc_actual_arglist *a1, *a2;
-
- /* *p1 and *p2 are elements of the to-be-sorted array. */
- a1 = ((const argpair *) p1)->a;
- a2 = ((const argpair *) p2)->a;
- if (!a1->expr)
- {
- if (!a2->expr)
- return 0;
- return -1;
- }
- if (!a2->expr)
- return 1;
- if (a1->expr->expr_type != EXPR_VARIABLE)
- {
- if (a2->expr->expr_type != EXPR_VARIABLE)
- return 0;
- return -1;
- }
- if (a2->expr->expr_type != EXPR_VARIABLE)
- return 1;
- return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
-}
-
-
-/* Given two expressions from some actual arguments, test whether they
- refer to the same expression. The analysis is conservative.
- Returning FAILURE will produce no warning. */
-
-static gfc_try
-compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
-{
- const gfc_ref *r1, *r2;
-
- if (!e1 || !e2
- || e1->expr_type != EXPR_VARIABLE
- || e2->expr_type != EXPR_VARIABLE
- || e1->symtree->n.sym != e2->symtree->n.sym)
- return FAILURE;
-
- /* TODO: improve comparison, see expr.c:show_ref(). */
- for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
- {
- if (r1->type != r2->type)
- return FAILURE;
- switch (r1->type)
- {
- case REF_ARRAY:
- if (r1->u.ar.type != r2->u.ar.type)
- return FAILURE;
- /* TODO: At the moment, consider only full arrays;
- we could do better. */
- if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
- return FAILURE;
- break;
-
- case REF_COMPONENT:
- if (r1->u.c.component != r2->u.c.component)
- return FAILURE;
- break;
-
- case REF_SUBSTRING:
- return FAILURE;
-
- default:
- gfc_internal_error ("compare_actual_expr(): Bad component code");
- }
- }
- if (!r1 && !r2)
- return SUCCESS;
- return FAILURE;
-}
-
-
-/* Given formal and actual argument lists that correspond to one
- another, check that identical actual arguments aren't not
- associated with some incompatible INTENTs. */
-
-static gfc_try
-check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
-{
- sym_intent f1_intent, f2_intent;
- gfc_formal_arglist *f1;
- gfc_actual_arglist *a1;
- size_t n, i, j;
- argpair *p;
- gfc_try t = SUCCESS;
-
- n = 0;
- for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
- {
- if (f1 == NULL && a1 == NULL)
- break;
- if (f1 == NULL || a1 == NULL)
- gfc_internal_error ("check_some_aliasing(): List mismatch");
- n++;
- }
- if (n == 0)
- return t;
- p = XALLOCAVEC (argpair, n);
-
- for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
- {
- p[i].f = f1;
- p[i].a = a1;
- }
-
- qsort (p, n, sizeof (argpair), pair_cmp);
-
- for (i = 0; i < n; i++)
- {
- if (!p[i].a->expr
- || p[i].a->expr->expr_type != EXPR_VARIABLE
- || p[i].a->expr->ts.type == BT_PROCEDURE)
- continue;
- f1_intent = p[i].f->sym->attr.intent;
- for (j = i + 1; j < n; j++)
- {
- /* Expected order after the sort. */
- if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
- gfc_internal_error ("check_some_aliasing(): corrupted data");
-
- /* Are the expression the same? */
- if (compare_actual_expr (p[i].a->expr, p[j].a->expr) == FAILURE)
- break;
- f2_intent = p[j].f->sym->attr.intent;
- if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
- || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN))
- {
- gfc_warning ("Same actual argument associated with INTENT(%s) "
- "argument '%s' and INTENT(%s) argument '%s' at %L",
- gfc_intent_string (f1_intent), p[i].f->sym->name,
- gfc_intent_string (f2_intent), p[j].f->sym->name,
- &p[i].a->expr->where);
- t = FAILURE;
- }
- }
- }
-
- return t;
-}
-
-
-/* Given formal and actual argument lists that correspond to one
- another, check that they are compatible in the sense that intents
- are not mismatched. */
-
-static gfc_try
-check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
-{
- sym_intent f_intent;
-
- for (;; f = f->next, a = a->next)
- {
- if (f == NULL && a == NULL)
- break;
- if (f == NULL || a == NULL)
- gfc_internal_error ("check_intents(): List mismatch");
-
- if (a->expr == NULL || a->expr->expr_type != EXPR_VARIABLE)
- continue;
-
- f_intent = f->sym->attr.intent;
-
- if (gfc_pure (NULL) && gfc_impure_variable (a->expr->symtree->n.sym))
- {
- if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
- && CLASS_DATA (f->sym)->attr.class_pointer)
- || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
- {
- gfc_error ("Procedure argument at %L is local to a PURE "
- "procedure and has the POINTER attribute",
- &a->expr->where);
- return FAILURE;
- }
- }
-
- /* Fortran 2008, C1283. */
- if (gfc_pure (NULL) && gfc_is_coindexed (a->expr))
- {
- if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
- {
- gfc_error ("Coindexed actual argument at %L in PURE procedure "
- "is passed to an INTENT(%s) argument",
- &a->expr->where, gfc_intent_string (f_intent));
- return FAILURE;
- }
-
- if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
- && CLASS_DATA (f->sym)->attr.class_pointer)
- || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
- {
- gfc_error ("Coindexed actual argument at %L in PURE procedure "
- "is passed to a POINTER dummy argument",
- &a->expr->where);
- return FAILURE;
- }
- }
-
- /* F2008, Section 12.5.2.4. */
- if (a->expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
- && gfc_is_coindexed (a->expr))
- {
- gfc_error ("Coindexed polymorphic actual argument at %L is passed "
- "polymorphic dummy argument '%s'",
- &a->expr->where, f->sym->name);
- return FAILURE;
- }
- }
-
- return SUCCESS;
-}
-
-
-/* Check how a procedure is used against its interface. If all goes
- well, the actual argument list will also end up being properly
- sorted. */
-
-gfc_try
-gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
-{
- gfc_formal_arglist *dummy_args;
-
- /* Warn about calls with an implicit interface. Special case
- for calling a ISO_C_BINDING becase c_loc and c_funloc
- are pseudo-unknown. Additionally, warn about procedures not
- explicitly declared at all if requested. */
- if (sym->attr.if_source == IFSRC_UNKNOWN && ! sym->attr.is_iso_c)
- {
- if (gfc_option.warn_implicit_interface)
- gfc_warning ("Procedure '%s' called with an implicit interface at %L",
- sym->name, where);
- else if (gfc_option.warn_implicit_procedure
- && sym->attr.proc == PROC_UNKNOWN)
- gfc_warning ("Procedure '%s' called at %L is not explicitly declared",
- sym->name, where);
- }
-
- if (sym->attr.if_source == IFSRC_UNKNOWN)
- {
- gfc_actual_arglist *a;
-
- if (sym->attr.pointer)
- {
- gfc_error("The pointer object '%s' at %L must have an explicit "
- "function interface or be declared as array",
- sym->name, where);
- return FAILURE;
- }
-
- if (sym->attr.allocatable && !sym->attr.external)
- {
- gfc_error("The allocatable object '%s' at %L must have an explicit "
- "function interface or be declared as array",
- sym->name, where);
- return FAILURE;
- }
-
- if (sym->attr.allocatable)
- {
- gfc_error("Allocatable function '%s' at %L must have an explicit "
- "function interface", sym->name, where);
- return FAILURE;
- }
-
- for (a = *ap; a; a = a->next)
- {
- /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
- if (a->name != NULL && a->name[0] != '%')
- {
- gfc_error("Keyword argument requires explicit interface "
- "for procedure '%s' at %L", sym->name, &a->expr->where);
- break;
- }
-
- /* TS 29113, 6.2. */
- if (a->expr && a->expr->ts.type == BT_ASSUMED
- && sym->intmod_sym_id != ISOCBINDING_LOC)
- {
- gfc_error ("Assumed-type argument %s at %L requires an explicit "
- "interface", a->expr->symtree->n.sym->name,
- &a->expr->where);
- break;
- }
-
- /* F2008, C1303 and C1304. */
- if (a->expr
- && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
- && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
- && a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
- || gfc_expr_attr (a->expr).lock_comp))
- {
- gfc_error("Actual argument of LOCK_TYPE or with LOCK_TYPE "
- "component at %L requires an explicit interface for "
- "procedure '%s'", &a->expr->where, sym->name);
- break;
- }
-
- if (a->expr && a->expr->expr_type == EXPR_NULL
- && a->expr->ts.type == BT_UNKNOWN)
- {
- gfc_error ("MOLD argument to NULL required at %L", &a->expr->where);
- return FAILURE;
- }
-
- /* TS 29113, C407b. */
- if (a->expr && a->expr->expr_type == EXPR_VARIABLE
- && symbol_rank (a->expr->symtree->n.sym) == -1)
- {
- gfc_error ("Assumed-rank argument requires an explicit interface "
- "at %L", &a->expr->where);
- return FAILURE;
- }
- }
-
- return SUCCESS;
- }
-
- dummy_args = gfc_sym_get_dummy_args (sym);
-
- if (!compare_actual_formal (ap, dummy_args, 0, sym->attr.elemental, where))
- return FAILURE;
-
- if (check_intents (dummy_args, *ap) == FAILURE)
- return FAILURE;
-
- if (gfc_option.warn_aliasing)
- check_some_aliasing (dummy_args, *ap);
-
- return SUCCESS;
-}
-
-
-/* Check how a procedure pointer component is used against its interface.
- If all goes well, the actual argument list will also end up being properly
- sorted. Completely analogous to gfc_procedure_use. */
-
-void
-gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
-{
- /* Warn about calls with an implicit interface. Special case
- for calling a ISO_C_BINDING becase c_loc and c_funloc
- are pseudo-unknown. */
- if (gfc_option.warn_implicit_interface
- && comp->attr.if_source == IFSRC_UNKNOWN
- && !comp->attr.is_iso_c)
- gfc_warning ("Procedure pointer component '%s' called with an implicit "
- "interface at %L", comp->name, where);
-
- if (comp->attr.if_source == IFSRC_UNKNOWN)
- {
- gfc_actual_arglist *a;
- for (a = *ap; a; a = a->next)
- {
- /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
- if (a->name != NULL && a->name[0] != '%')
- {
- gfc_error("Keyword argument requires explicit interface "
- "for procedure pointer component '%s' at %L",
- comp->name, &a->expr->where);
- break;
- }
- }
-
- return;
- }
-
- if (!compare_actual_formal (ap, comp->ts.interface->formal, 0,
- comp->attr.elemental, where))
- return;
-
- check_intents (comp->ts.interface->formal, *ap);
- if (gfc_option.warn_aliasing)
- check_some_aliasing (comp->ts.interface->formal, *ap);
-}
-
-
-/* Try if an actual argument list matches the formal list of a symbol,
- respecting the symbol's attributes like ELEMENTAL. This is used for
- GENERIC resolution. */
-
-bool
-gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
-{
- gfc_formal_arglist *dummy_args;
- bool r;
-
- gcc_assert (sym->attr.flavor == FL_PROCEDURE);
-
- dummy_args = gfc_sym_get_dummy_args (sym);
-
- r = !sym->attr.elemental;
- if (compare_actual_formal (args, dummy_args, r, !r, NULL))
- {
- check_intents (dummy_args, *args);
- if (gfc_option.warn_aliasing)
- check_some_aliasing (dummy_args, *args);
- return true;
- }
-
- return false;
-}
-
-
-/* Given an interface pointer and an actual argument list, search for
- a formal argument list that matches the actual. If found, returns
- a pointer to the symbol of the correct interface. Returns NULL if
- not found. */
-
-gfc_symbol *
-gfc_search_interface (gfc_interface *intr, int sub_flag,
- gfc_actual_arglist **ap)
-{
- gfc_symbol *elem_sym = NULL;
- gfc_symbol *null_sym = NULL;
- locus null_expr_loc;
- gfc_actual_arglist *a;
- bool has_null_arg = false;
-
- for (a = *ap; a; a = a->next)
- if (a->expr && a->expr->expr_type == EXPR_NULL
- && a->expr->ts.type == BT_UNKNOWN)
- {
- has_null_arg = true;
- null_expr_loc = a->expr->where;
- break;
- }
-
- for (; intr; intr = intr->next)
- {
- if (intr->sym->attr.flavor == FL_DERIVED)
- continue;
- if (sub_flag && intr->sym->attr.function)
- continue;
- if (!sub_flag && intr->sym->attr.subroutine)
- continue;
-
- if (gfc_arglist_matches_symbol (ap, intr->sym))
- {
- if (has_null_arg && null_sym)
- {
- gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity "
- "between specific functions %s and %s",
- &null_expr_loc, null_sym->name, intr->sym->name);
- return NULL;
- }
- else if (has_null_arg)
- {
- null_sym = intr->sym;
- continue;
- }
-
- /* Satisfy 12.4.4.1 such that an elemental match has lower
- weight than a non-elemental match. */
- if (intr->sym->attr.elemental)
- {
- elem_sym = intr->sym;
- continue;
- }
- return intr->sym;
- }
- }
-
- if (null_sym)
- return null_sym;
-
- return elem_sym ? elem_sym : NULL;
-}
-
-
-/* Do a brute force recursive search for a symbol. */
-
-static gfc_symtree *
-find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
-{
- gfc_symtree * st;
-
- if (root->n.sym == sym)
- return root;
-
- st = NULL;
- if (root->left)
- st = find_symtree0 (root->left, sym);
- if (root->right && ! st)
- st = find_symtree0 (root->right, sym);
- return st;
-}
-
-
-/* Find a symtree for a symbol. */
-
-gfc_symtree *
-gfc_find_sym_in_symtree (gfc_symbol *sym)
-{
- gfc_symtree *st;
- gfc_namespace *ns;
-
- /* First try to find it by name. */
- gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
- if (st && st->n.sym == sym)
- return st;
-
- /* If it's been renamed, resort to a brute-force search. */
- /* TODO: avoid having to do this search. If the symbol doesn't exist
- in the symtree for the current namespace, it should probably be added. */
- for (ns = gfc_current_ns; ns; ns = ns->parent)
- {
- st = find_symtree0 (ns->sym_root, sym);
- if (st)
- return st;
- }
- gfc_internal_error ("Unable to find symbol %s", sym->name);
- /* Not reached. */
-}
-
-
-/* See if the arglist to an operator-call contains a derived-type argument
- with a matching type-bound operator. If so, return the matching specific
- procedure defined as operator-target as well as the base-object to use
- (which is the found derived-type argument with operator). The generic
- name, if any, is transmitted to the final expression via 'gname'. */
-
-static gfc_typebound_proc*
-matching_typebound_op (gfc_expr** tb_base,
- gfc_actual_arglist* args,
- gfc_intrinsic_op op, const char* uop,
- const char ** gname)
-{
- gfc_actual_arglist* base;
-
- for (base = args; base; base = base->next)
- if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
- {
- gfc_typebound_proc* tb;
- gfc_symbol* derived;
- gfc_try result;
-
- while (base->expr->expr_type == EXPR_OP
- && base->expr->value.op.op == INTRINSIC_PARENTHESES)
- base->expr = base->expr->value.op.op1;
-
- if (base->expr->ts.type == BT_CLASS)
- {
- if (CLASS_DATA (base->expr) == NULL
- || !gfc_expr_attr (base->expr).class_ok)
- continue;
- derived = CLASS_DATA (base->expr)->ts.u.derived;
- }
- else
- derived = base->expr->ts.u.derived;
-
- if (op == INTRINSIC_USER)
- {
- gfc_symtree* tb_uop;
-
- gcc_assert (uop);
- tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
- false, NULL);
-
- if (tb_uop)
- tb = tb_uop->n.tb;
- else
- tb = NULL;
- }
- else
- tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
- false, NULL);
-
- /* This means we hit a PRIVATE operator which is use-associated and
- should thus not be seen. */
- if (result == FAILURE)
- tb = NULL;
-
- /* Look through the super-type hierarchy for a matching specific
- binding. */
- for (; tb; tb = tb->overridden)
- {
- gfc_tbp_generic* g;
-
- gcc_assert (tb->is_generic);
- for (g = tb->u.generic; g; g = g->next)
- {
- gfc_symbol* target;
- gfc_actual_arglist* argcopy;
- bool matches;
-
- gcc_assert (g->specific);
- if (g->specific->error)
- continue;
-
- target = g->specific->u.specific->n.sym;
-
- /* Check if this arglist matches the formal. */
- argcopy = gfc_copy_actual_arglist (args);
- matches = gfc_arglist_matches_symbol (&argcopy, target);
- gfc_free_actual_arglist (argcopy);
-
- /* Return if we found a match. */
- if (matches)
- {
- *tb_base = base->expr;
- *gname = g->specific_st->name;
- return g->specific;
- }
- }
- }
- }
-
- return NULL;
-}
-
-
-/* For the 'actual arglist' of an operator call and a specific typebound
- procedure that has been found the target of a type-bound operator, build the
- appropriate EXPR_COMPCALL and resolve it. We take this indirection over
- type-bound procedures rather than resolving type-bound operators 'directly'
- so that we can reuse the existing logic. */
-
-static void
-build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
- gfc_expr* base, gfc_typebound_proc* target,
- const char *gname)
-{
- e->expr_type = EXPR_COMPCALL;
- e->value.compcall.tbp = target;
- e->value.compcall.name = gname ? gname : "$op";
- e->value.compcall.actual = actual;
- e->value.compcall.base_object = base;
- e->value.compcall.ignore_pass = 1;
- e->value.compcall.assign = 0;
- if (e->ts.type == BT_UNKNOWN
- && target->function)
- {
- if (target->is_generic)
- e->ts = target->u.generic->specific->u.specific->n.sym->ts;
- else
- e->ts = target->u.specific->n.sym->ts;
- }
-}
-
-
-/* This subroutine is called when an expression is being resolved.
- The expression node in question is either a user defined operator
- or an intrinsic operator with arguments that aren't compatible
- with the operator. This subroutine builds an actual argument list
- corresponding to the operands, then searches for a compatible
- interface. If one is found, the expression node is replaced with
- the appropriate function call. We use the 'match' enum to specify
- whether a replacement has been made or not, or if an error occurred. */
-
-match
-gfc_extend_expr (gfc_expr *e)
-{
- gfc_actual_arglist *actual;
- gfc_symbol *sym;
- gfc_namespace *ns;
- gfc_user_op *uop;
- gfc_intrinsic_op i;
- const char *gname;
-
- sym = NULL;
-
- actual = gfc_get_actual_arglist ();
- actual->expr = e->value.op.op1;
-
- gname = NULL;
-
- if (e->value.op.op2 != NULL)
- {
- actual->next = gfc_get_actual_arglist ();
- actual->next->expr = e->value.op.op2;
- }
-
- i = fold_unary_intrinsic (e->value.op.op);
-
- if (i == INTRINSIC_USER)
- {
- for (ns = gfc_current_ns; ns; ns = ns->parent)
- {
- uop = gfc_find_uop (e->value.op.uop->name, ns);
- if (uop == NULL)
- continue;
-
- sym = gfc_search_interface (uop->op, 0, &actual);
- if (sym != NULL)
- break;
- }
- }
- else
- {
- for (ns = gfc_current_ns; ns; ns = ns->parent)
- {
- /* Due to the distinction between '==' and '.eq.' and friends, one has
- to check if either is defined. */
- switch (i)
- {
-#define CHECK_OS_COMPARISON(comp) \
- case INTRINSIC_##comp: \
- case INTRINSIC_##comp##_OS: \
- sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
- if (!sym) \
- sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
- break;
- CHECK_OS_COMPARISON(EQ)
- CHECK_OS_COMPARISON(NE)
- CHECK_OS_COMPARISON(GT)
- CHECK_OS_COMPARISON(GE)
- CHECK_OS_COMPARISON(LT)
- CHECK_OS_COMPARISON(LE)
-#undef CHECK_OS_COMPARISON
-
- default:
- sym = gfc_search_interface (ns->op[i], 0, &actual);
- }
-
- if (sym != NULL)
- break;
- }
- }
-
- /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
- found rather than just taking the first one and not checking further. */
-
- if (sym == NULL)
- {
- gfc_typebound_proc* tbo;
- gfc_expr* tb_base;
-
- /* See if we find a matching type-bound operator. */
- if (i == INTRINSIC_USER)
- tbo = matching_typebound_op (&tb_base, actual,
- i, e->value.op.uop->name, &gname);
- else
- switch (i)
- {
-#define CHECK_OS_COMPARISON(comp) \
- case INTRINSIC_##comp: \
- case INTRINSIC_##comp##_OS: \
- tbo = matching_typebound_op (&tb_base, actual, \
- INTRINSIC_##comp, NULL, &gname); \
- if (!tbo) \
- tbo = matching_typebound_op (&tb_base, actual, \
- INTRINSIC_##comp##_OS, NULL, &gname); \
- break;
- CHECK_OS_COMPARISON(EQ)
- CHECK_OS_COMPARISON(NE)
- CHECK_OS_COMPARISON(GT)
- CHECK_OS_COMPARISON(GE)
- CHECK_OS_COMPARISON(LT)
- CHECK_OS_COMPARISON(LE)
-#undef CHECK_OS_COMPARISON
-
- default:
- tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname);
- break;
- }
-
- /* If there is a matching typebound-operator, replace the expression with
- a call to it and succeed. */
- if (tbo)
- {
- gfc_try result;
-
- gcc_assert (tb_base);
- build_compcall_for_operator (e, actual, tb_base, tbo, gname);
-
- result = gfc_resolve_expr (e);
- if (result == FAILURE)
- return MATCH_ERROR;
-
- return MATCH_YES;
- }
-
- /* Don't use gfc_free_actual_arglist(). */
- free (actual->next);
- free (actual);
-
- return MATCH_NO;
- }
-
- /* Change the expression node to a function call. */
- e->expr_type = EXPR_FUNCTION;
- e->symtree = gfc_find_sym_in_symtree (sym);
- e->value.function.actual = actual;
- e->value.function.esym = NULL;
- e->value.function.isym = NULL;
- e->value.function.name = NULL;
- e->user_operator = 1;
-
- if (gfc_resolve_expr (e) == FAILURE)
- return MATCH_ERROR;
-
- return MATCH_YES;
-}
-
-
-/* Tries to replace an assignment code node with a subroutine call to
- the subroutine associated with the assignment operator. Return
- SUCCESS if the node was replaced. On FAILURE, no error is
- generated. */
-
-gfc_try
-gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
-{
- gfc_actual_arglist *actual;
- gfc_expr *lhs, *rhs;
- gfc_symbol *sym;
- const char *gname;
-
- gname = NULL;
-
- lhs = c->expr1;
- rhs = c->expr2;
-
- /* Don't allow an intrinsic assignment to be replaced. */
- if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
- && (rhs->rank == 0 || rhs->rank == lhs->rank)
- && (lhs->ts.type == rhs->ts.type
- || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
- return FAILURE;
-
- actual = gfc_get_actual_arglist ();
- actual->expr = lhs;
-
- actual->next = gfc_get_actual_arglist ();
- actual->next->expr = rhs;
-
- sym = NULL;
-
- for (; ns; ns = ns->parent)
- {
- sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
- if (sym != NULL)
- break;
- }
-
- /* TODO: Ambiguity-check, see above for gfc_extend_expr. */
-
- if (sym == NULL)
- {
- gfc_typebound_proc* tbo;
- gfc_expr* tb_base;
-
- /* See if we find a matching type-bound assignment. */
- tbo = matching_typebound_op (&tb_base, actual,
- INTRINSIC_ASSIGN, NULL, &gname);
-
- /* If there is one, replace the expression with a call to it and
- succeed. */
- if (tbo)
- {
- gcc_assert (tb_base);
- c->expr1 = gfc_get_expr ();
- build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname);
- c->expr1->value.compcall.assign = 1;
- c->expr1->where = c->loc;
- c->expr2 = NULL;
- c->op = EXEC_COMPCALL;
-
- /* c is resolved from the caller, so no need to do it here. */
-
- return SUCCESS;
- }
-
- free (actual->next);
- free (actual);
- return FAILURE;
- }
-
- /* Replace the assignment with the call. */
- c->op = EXEC_ASSIGN_CALL;
- c->symtree = gfc_find_sym_in_symtree (sym);
- c->expr1 = NULL;
- c->expr2 = NULL;
- c->ext.actual = actual;
-
- return SUCCESS;
-}
-
-
-/* Make sure that the interface just parsed is not already present in
- the given interface list. Ambiguity isn't checked yet since module
- procedures can be present without interfaces. */
-
-gfc_try
-gfc_check_new_interface (gfc_interface *base, gfc_symbol *new_sym, locus loc)
-{
- gfc_interface *ip;
-
- for (ip = base; ip; ip = ip->next)
- {
- if (ip->sym == new_sym)
- {
- gfc_error ("Entity '%s' at %L is already present in the interface",
- new_sym->name, &loc);
- return FAILURE;
- }
- }
-
- return SUCCESS;
-}
-
-
-/* Add a symbol to the current interface. */
-
-gfc_try
-gfc_add_interface (gfc_symbol *new_sym)
-{
- gfc_interface **head, *intr;
- gfc_namespace *ns;
- gfc_symbol *sym;
-
- switch (current_interface.type)
- {
- case INTERFACE_NAMELESS:
- case INTERFACE_ABSTRACT:
- return SUCCESS;
-
- case INTERFACE_INTRINSIC_OP:
- for (ns = current_interface.ns; ns; ns = ns->parent)
- switch (current_interface.op)
- {
- case INTRINSIC_EQ:
- case INTRINSIC_EQ_OS:
- if (gfc_check_new_interface (ns->op[INTRINSIC_EQ], new_sym,
- gfc_current_locus) == FAILURE
- || gfc_check_new_interface (ns->op[INTRINSIC_EQ_OS], new_sym,
- gfc_current_locus) == FAILURE)
- return FAILURE;
- break;
-
- case INTRINSIC_NE:
- case INTRINSIC_NE_OS:
- if (gfc_check_new_interface (ns->op[INTRINSIC_NE], new_sym,
- gfc_current_locus) == FAILURE
- || gfc_check_new_interface (ns->op[INTRINSIC_NE_OS], new_sym,
- gfc_current_locus) == FAILURE)
- return FAILURE;
- break;
-
- case INTRINSIC_GT:
- case INTRINSIC_GT_OS:
- if (gfc_check_new_interface (ns->op[INTRINSIC_GT], new_sym,
- gfc_current_locus) == FAILURE
- || gfc_check_new_interface (ns->op[INTRINSIC_GT_OS], new_sym,
- gfc_current_locus) == FAILURE)
- return FAILURE;
- break;
-
- case INTRINSIC_GE:
- case INTRINSIC_GE_OS:
- if (gfc_check_new_interface (ns->op[INTRINSIC_GE], new_sym,
- gfc_current_locus) == FAILURE
- || gfc_check_new_interface (ns->op[INTRINSIC_GE_OS], new_sym,
- gfc_current_locus) == FAILURE)
- return FAILURE;
- break;
-
- case INTRINSIC_LT:
- case INTRINSIC_LT_OS:
- if (gfc_check_new_interface (ns->op[INTRINSIC_LT], new_sym,
- gfc_current_locus) == FAILURE
- || gfc_check_new_interface (ns->op[INTRINSIC_LT_OS], new_sym,
- gfc_current_locus) == FAILURE)
- return FAILURE;
- break;
-
- case INTRINSIC_LE:
- case INTRINSIC_LE_OS:
- if (gfc_check_new_interface (ns->op[INTRINSIC_LE], new_sym,
- gfc_current_locus) == FAILURE
- || gfc_check_new_interface (ns->op[INTRINSIC_LE_OS], new_sym,
- gfc_current_locus) == FAILURE)
- return FAILURE;
- break;
-
- default:
- if (gfc_check_new_interface (ns->op[current_interface.op], new_sym,
- gfc_current_locus) == FAILURE)
- return FAILURE;
- }
-
- head = &current_interface.ns->op[current_interface.op];
- break;
-
- case INTERFACE_GENERIC:
- for (ns = current_interface.ns; ns; ns = ns->parent)
- {
- gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
- if (sym == NULL)
- continue;
-
- if (gfc_check_new_interface (sym->generic, new_sym, gfc_current_locus)
- == FAILURE)
- return FAILURE;
- }
-
- head = &current_interface.sym->generic;
- break;
-
- case INTERFACE_USER_OP:
- if (gfc_check_new_interface (current_interface.uop->op, new_sym,
- gfc_current_locus) == FAILURE)
- return FAILURE;
-
- head = &current_interface.uop->op;
- break;
-
- default:
- gfc_internal_error ("gfc_add_interface(): Bad interface type");
- }
-
- intr = gfc_get_interface ();
- intr->sym = new_sym;
- intr->where = gfc_current_locus;
-
- intr->next = *head;
- *head = intr;
-
- return SUCCESS;
-}
-
-
-gfc_interface *
-gfc_current_interface_head (void)
-{
- switch (current_interface.type)
- {
- case INTERFACE_INTRINSIC_OP:
- return current_interface.ns->op[current_interface.op];
- break;
-
- case INTERFACE_GENERIC:
- return current_interface.sym->generic;
- break;
-
- case INTERFACE_USER_OP:
- return current_interface.uop->op;
- break;
-
- default:
- gcc_unreachable ();
- }
-}
-
-
-void
-gfc_set_current_interface_head (gfc_interface *i)
-{
- switch (current_interface.type)
- {
- case INTERFACE_INTRINSIC_OP:
- current_interface.ns->op[current_interface.op] = i;
- break;
-
- case INTERFACE_GENERIC:
- current_interface.sym->generic = i;
- break;
-
- case INTERFACE_USER_OP:
- current_interface.uop->op = i;
- break;
-
- default:
- gcc_unreachable ();
- }
-}
-
-
-/* Gets rid of a formal argument list. We do not free symbols.
- Symbols are freed when a namespace is freed. */
-
-void
-gfc_free_formal_arglist (gfc_formal_arglist *p)
-{
- gfc_formal_arglist *q;
-
- for (; p; p = q)
- {
- q = p->next;
- free (p);
- }
-}
-
-
-/* Check that it is ok for the type-bound procedure 'proc' to override the
- procedure 'old', cf. F08:4.5.7.3. */
-
-gfc_try
-gfc_check_typebound_override (gfc_symtree* proc, gfc_symtree* old)
-{
- locus where;
- gfc_symbol *proc_target, *old_target;
- unsigned proc_pass_arg, old_pass_arg, argpos;
- gfc_formal_arglist *proc_formal, *old_formal;
- bool check_type;
- char err[200];
-
- /* This procedure should only be called for non-GENERIC proc. */
- gcc_assert (!proc->n.tb->is_generic);
-
- /* If the overwritten procedure is GENERIC, this is an error. */
- if (old->n.tb->is_generic)
- {
- gfc_error ("Can't overwrite GENERIC '%s' at %L",
- old->name, &proc->n.tb->where);
- return FAILURE;
- }
-
- where = proc->n.tb->where;
- proc_target = proc->n.tb->u.specific->n.sym;
- old_target = old->n.tb->u.specific->n.sym;
-
- /* Check that overridden binding is not NON_OVERRIDABLE. */
- if (old->n.tb->non_overridable)
- {
- gfc_error ("'%s' at %L overrides a procedure binding declared"
- " NON_OVERRIDABLE", proc->name, &where);
- return FAILURE;
- }
-
- /* It's an error to override a non-DEFERRED procedure with a DEFERRED one. */
- if (!old->n.tb->deferred && proc->n.tb->deferred)
- {
- gfc_error ("'%s' at %L must not be DEFERRED as it overrides a"
- " non-DEFERRED binding", proc->name, &where);
- return FAILURE;
- }
-
- /* If the overridden binding is PURE, the overriding must be, too. */
- if (old_target->attr.pure && !proc_target->attr.pure)
- {
- gfc_error ("'%s' at %L overrides a PURE procedure and must also be PURE",
- proc->name, &where);
- return FAILURE;
- }
-
- /* If the overridden binding is ELEMENTAL, the overriding must be, too. If it
- is not, the overriding must not be either. */
- if (old_target->attr.elemental && !proc_target->attr.elemental)
- {
- gfc_error ("'%s' at %L overrides an ELEMENTAL procedure and must also be"
- " ELEMENTAL", proc->name, &where);
- return FAILURE;
- }
- if (!old_target->attr.elemental && proc_target->attr.elemental)
- {
- gfc_error ("'%s' at %L overrides a non-ELEMENTAL procedure and must not"
- " be ELEMENTAL, either", proc->name, &where);
- return FAILURE;
- }
-
- /* If the overridden binding is a SUBROUTINE, the overriding must also be a
- SUBROUTINE. */
- if (old_target->attr.subroutine && !proc_target->attr.subroutine)
- {
- gfc_error ("'%s' at %L overrides a SUBROUTINE and must also be a"
- " SUBROUTINE", proc->name, &where);
- return FAILURE;
- }
-
- /* If the overridden binding is a FUNCTION, the overriding must also be a
- FUNCTION and have the same characteristics. */
- if (old_target->attr.function)
- {
- if (!proc_target->attr.function)
- {
- gfc_error ("'%s' at %L overrides a FUNCTION and must also be a"
- " FUNCTION", proc->name, &where);
- return FAILURE;
- }
-
- if (check_result_characteristics (proc_target, old_target,
- err, sizeof(err)) == FAILURE)
- {
- gfc_error ("Result mismatch for the overriding procedure "
- "'%s' at %L: %s", proc->name, &where, err);
- return FAILURE;
- }
- }
-
- /* If the overridden binding is PUBLIC, the overriding one must not be
- PRIVATE. */
- if (old->n.tb->access == ACCESS_PUBLIC
- && proc->n.tb->access == ACCESS_PRIVATE)
- {
- gfc_error ("'%s' at %L overrides a PUBLIC procedure and must not be"
- " PRIVATE", proc->name, &where);
- return FAILURE;
- }
-
- /* Compare the formal argument lists of both procedures. This is also abused
- to find the position of the passed-object dummy arguments of both
- bindings as at least the overridden one might not yet be resolved and we
- need those positions in the check below. */
- proc_pass_arg = old_pass_arg = 0;
- if (!proc->n.tb->nopass && !proc->n.tb->pass_arg)
- proc_pass_arg = 1;
- if (!old->n.tb->nopass && !old->n.tb->pass_arg)
- old_pass_arg = 1;
- argpos = 1;
- proc_formal = gfc_sym_get_dummy_args (proc_target);
- old_formal = gfc_sym_get_dummy_args (old_target);
- for ( ; proc_formal && old_formal;
- proc_formal = proc_formal->next, old_formal = old_formal->next)
- {
- if (proc->n.tb->pass_arg
- && !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name))
- proc_pass_arg = argpos;
- if (old->n.tb->pass_arg
- && !strcmp (old->n.tb->pass_arg, old_formal->sym->name))
- old_pass_arg = argpos;
-
- /* Check that the names correspond. */
- if (strcmp (proc_formal->sym->name, old_formal->sym->name))
- {
- gfc_error ("Dummy argument '%s' of '%s' at %L should be named '%s' as"
- " to match the corresponding argument of the overridden"
- " procedure", proc_formal->sym->name, proc->name, &where,
- old_formal->sym->name);
- return FAILURE;
- }
-
- check_type = proc_pass_arg != argpos && old_pass_arg != argpos;
- if (check_dummy_characteristics (proc_formal->sym, old_formal->sym,
- check_type, err, sizeof(err)) == FAILURE)
- {
- gfc_error ("Argument mismatch for the overriding procedure "
- "'%s' at %L: %s", proc->name, &where, err);
- return FAILURE;
- }
-
- ++argpos;
- }
- if (proc_formal || old_formal)
- {
- gfc_error ("'%s' at %L must have the same number of formal arguments as"
- " the overridden procedure", proc->name, &where);
- return FAILURE;
- }
-
- /* If the overridden binding is NOPASS, the overriding one must also be
- NOPASS. */
- if (old->n.tb->nopass && !proc->n.tb->nopass)
- {
- gfc_error ("'%s' at %L overrides a NOPASS binding and must also be"
- " NOPASS", proc->name, &where);
- return FAILURE;
- }
-
- /* If the overridden binding is PASS(x), the overriding one must also be
- PASS and the passed-object dummy arguments must correspond. */
- if (!old->n.tb->nopass)
- {
- if (proc->n.tb->nopass)
- {
- gfc_error ("'%s' at %L overrides a binding with PASS and must also be"
- " PASS", proc->name, &where);
- return FAILURE;
- }
-
- if (proc_pass_arg != old_pass_arg)
- {
- gfc_error ("Passed-object dummy argument of '%s' at %L must be at"
- " the same position as the passed-object dummy argument of"
- " the overridden procedure", proc->name, &where);
- return FAILURE;
- }
- }
-
- return SUCCESS;
-}