aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/explow.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/explow.c')
-rw-r--r--gcc-4.8.1/gcc/explow.c1931
1 files changed, 0 insertions, 1931 deletions
diff --git a/gcc-4.8.1/gcc/explow.c b/gcc-4.8.1/gcc/explow.c
deleted file mode 100644
index 08a66537b..000000000
--- a/gcc-4.8.1/gcc/explow.c
+++ /dev/null
@@ -1,1931 +0,0 @@
-/* Subroutines for manipulating rtx's in semantically interesting ways.
- Copyright (C) 1987-2013 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "diagnostic-core.h"
-#include "rtl.h"
-#include "tree.h"
-#include "tm_p.h"
-#include "flags.h"
-#include "except.h"
-#include "function.h"
-#include "expr.h"
-#include "optabs.h"
-#include "libfuncs.h"
-#include "hard-reg-set.h"
-#include "insn-config.h"
-#include "ggc.h"
-#include "recog.h"
-#include "langhooks.h"
-#include "target.h"
-#include "common/common-target.h"
-#include "output.h"
-
-static rtx break_out_memory_refs (rtx);
-
-
-/* Truncate and perhaps sign-extend C as appropriate for MODE. */
-
-HOST_WIDE_INT
-trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
-{
- int width = GET_MODE_PRECISION (mode);
-
- /* You want to truncate to a _what_? */
- gcc_assert (SCALAR_INT_MODE_P (mode));
-
- /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
- if (mode == BImode)
- return c & 1 ? STORE_FLAG_VALUE : 0;
-
- /* Sign-extend for the requested mode. */
-
- if (width < HOST_BITS_PER_WIDE_INT)
- {
- HOST_WIDE_INT sign = 1;
- sign <<= width - 1;
- c &= (sign << 1) - 1;
- c ^= sign;
- c -= sign;
- }
-
- return c;
-}
-
-/* Return an rtx for the sum of X and the integer C, given that X has
- mode MODE. */
-
-rtx
-plus_constant (enum machine_mode mode, rtx x, HOST_WIDE_INT c)
-{
- RTX_CODE code;
- rtx y;
- rtx tem;
- int all_constant = 0;
-
- gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
-
- if (c == 0)
- return x;
-
- restart:
-
- code = GET_CODE (x);
- y = x;
-
- switch (code)
- {
- case CONST_INT:
- if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
- {
- double_int di_x = double_int::from_shwi (INTVAL (x));
- double_int di_c = double_int::from_shwi (c);
-
- bool overflow;
- double_int v = di_x.add_with_sign (di_c, false, &overflow);
- if (overflow)
- gcc_unreachable ();
-
- return immed_double_int_const (v, VOIDmode);
- }
-
- return GEN_INT (INTVAL (x) + c);
-
- case CONST_DOUBLE:
- {
- double_int di_x = double_int::from_pair (CONST_DOUBLE_HIGH (x),
- CONST_DOUBLE_LOW (x));
- double_int di_c = double_int::from_shwi (c);
-
- bool overflow;
- double_int v = di_x.add_with_sign (di_c, false, &overflow);
- if (overflow)
- /* Sorry, we have no way to represent overflows this wide.
- To fix, add constant support wider than CONST_DOUBLE. */
- gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT);
-
- return immed_double_int_const (v, VOIDmode);
- }
-
- case MEM:
- /* If this is a reference to the constant pool, try replacing it with
- a reference to a new constant. If the resulting address isn't
- valid, don't return it because we have no way to validize it. */
- if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
- {
- tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
- tem = force_const_mem (GET_MODE (x), tem);
- if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
- return tem;
- }
- break;
-
- case CONST:
- /* If adding to something entirely constant, set a flag
- so that we can add a CONST around the result. */
- x = XEXP (x, 0);
- all_constant = 1;
- goto restart;
-
- case SYMBOL_REF:
- case LABEL_REF:
- all_constant = 1;
- break;
-
- case PLUS:
- /* The interesting case is adding the integer to a sum. Look
- for constant term in the sum and combine with C. For an
- integer constant term or a constant term that is not an
- explicit integer, we combine or group them together anyway.
-
- We may not immediately return from the recursive call here, lest
- all_constant gets lost. */
-
- if (CONSTANT_P (XEXP (x, 1)))
- {
- x = gen_rtx_PLUS (mode, XEXP (x, 0),
- plus_constant (mode, XEXP (x, 1), c));
- c = 0;
- }
- else if (find_constant_term_loc (&y))
- {
- /* We need to be careful since X may be shared and we can't
- modify it in place. */
- rtx copy = copy_rtx (x);
- rtx *const_loc = find_constant_term_loc (&copy);
-
- *const_loc = plus_constant (mode, *const_loc, c);
- x = copy;
- c = 0;
- }
- break;
-
- default:
- break;
- }
-
- if (c != 0)
- x = gen_rtx_PLUS (mode, x, GEN_INT (c));
-
- if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
- return x;
- else if (all_constant)
- return gen_rtx_CONST (mode, x);
- else
- return x;
-}
-
-/* If X is a sum, return a new sum like X but lacking any constant terms.
- Add all the removed constant terms into *CONSTPTR.
- X itself is not altered. The result != X if and only if
- it is not isomorphic to X. */
-
-rtx
-eliminate_constant_term (rtx x, rtx *constptr)
-{
- rtx x0, x1;
- rtx tem;
-
- if (GET_CODE (x) != PLUS)
- return x;
-
- /* First handle constants appearing at this level explicitly. */
- if (CONST_INT_P (XEXP (x, 1))
- && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
- XEXP (x, 1)))
- && CONST_INT_P (tem))
- {
- *constptr = tem;
- return eliminate_constant_term (XEXP (x, 0), constptr);
- }
-
- tem = const0_rtx;
- x0 = eliminate_constant_term (XEXP (x, 0), &tem);
- x1 = eliminate_constant_term (XEXP (x, 1), &tem);
- if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
- && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
- *constptr, tem))
- && CONST_INT_P (tem))
- {
- *constptr = tem;
- return gen_rtx_PLUS (GET_MODE (x), x0, x1);
- }
-
- return x;
-}
-
-/* Return an rtx for the size in bytes of the value of EXP. */
-
-rtx
-expr_size (tree exp)
-{
- tree size;
-
- if (TREE_CODE (exp) == WITH_SIZE_EXPR)
- size = TREE_OPERAND (exp, 1);
- else
- {
- size = tree_expr_size (exp);
- gcc_assert (size);
- gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
- }
-
- return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
-}
-
-/* Return a wide integer for the size in bytes of the value of EXP, or -1
- if the size can vary or is larger than an integer. */
-
-HOST_WIDE_INT
-int_expr_size (tree exp)
-{
- tree size;
-
- if (TREE_CODE (exp) == WITH_SIZE_EXPR)
- size = TREE_OPERAND (exp, 1);
- else
- {
- size = tree_expr_size (exp);
- gcc_assert (size);
- }
-
- if (size == 0 || !host_integerp (size, 0))
- return -1;
-
- return tree_low_cst (size, 0);
-}
-
-/* Return a copy of X in which all memory references
- and all constants that involve symbol refs
- have been replaced with new temporary registers.
- Also emit code to load the memory locations and constants
- into those registers.
-
- If X contains no such constants or memory references,
- X itself (not a copy) is returned.
-
- If a constant is found in the address that is not a legitimate constant
- in an insn, it is left alone in the hope that it might be valid in the
- address.
-
- X may contain no arithmetic except addition, subtraction and multiplication.
- Values returned by expand_expr with 1 for sum_ok fit this constraint. */
-
-static rtx
-break_out_memory_refs (rtx x)
-{
- if (MEM_P (x)
- || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
- && GET_MODE (x) != VOIDmode))
- x = force_reg (GET_MODE (x), x);
- else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
- || GET_CODE (x) == MULT)
- {
- rtx op0 = break_out_memory_refs (XEXP (x, 0));
- rtx op1 = break_out_memory_refs (XEXP (x, 1));
-
- if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
- x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
- }
-
- return x;
-}
-
-/* Given X, a memory address in address space AS' pointer mode, convert it to
- an address in the address space's address mode, or vice versa (TO_MODE says
- which way). We take advantage of the fact that pointers are not allowed to
- overflow by commuting arithmetic operations over conversions so that address
- arithmetic insns can be used. */
-
-rtx
-convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
- rtx x, addr_space_t as ATTRIBUTE_UNUSED)
-{
-#ifndef POINTERS_EXTEND_UNSIGNED
- gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
- return x;
-#else /* defined(POINTERS_EXTEND_UNSIGNED) */
- enum machine_mode pointer_mode, address_mode, from_mode;
- rtx temp;
- enum rtx_code code;
-
- /* If X already has the right mode, just return it. */
- if (GET_MODE (x) == to_mode)
- return x;
-
- pointer_mode = targetm.addr_space.pointer_mode (as);
- address_mode = targetm.addr_space.address_mode (as);
- from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
-
- /* Here we handle some special cases. If none of them apply, fall through
- to the default case. */
- switch (GET_CODE (x))
- {
- CASE_CONST_SCALAR_INT:
- if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
- code = TRUNCATE;
- else if (POINTERS_EXTEND_UNSIGNED < 0)
- break;
- else if (POINTERS_EXTEND_UNSIGNED > 0)
- code = ZERO_EXTEND;
- else
- code = SIGN_EXTEND;
- temp = simplify_unary_operation (code, to_mode, x, from_mode);
- if (temp)
- return temp;
- break;
-
- case SUBREG:
- if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
- && GET_MODE (SUBREG_REG (x)) == to_mode)
- return SUBREG_REG (x);
- break;
-
- case LABEL_REF:
- temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
- LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
- return temp;
- break;
-
- case SYMBOL_REF:
- temp = shallow_copy_rtx (x);
- PUT_MODE (temp, to_mode);
- return temp;
- break;
-
- case CONST:
- return gen_rtx_CONST (to_mode,
- convert_memory_address_addr_space
- (to_mode, XEXP (x, 0), as));
- break;
-
- case PLUS:
- case MULT:
- /* FIXME: For addition, we used to permute the conversion and
- addition operation only if one operand is a constant and
- converting the constant does not change it or if one operand
- is a constant and we are using a ptr_extend instruction
- (POINTERS_EXTEND_UNSIGNED < 0) even if the resulting address
- may overflow/underflow. We relax the condition to include
- zero-extend (POINTERS_EXTEND_UNSIGNED > 0) since the other
- parts of the compiler depend on it. See PR 49721.
-
- We can always safely permute them if we are making the address
- narrower. */
- if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
- || (GET_CODE (x) == PLUS
- && CONST_INT_P (XEXP (x, 1))
- && (POINTERS_EXTEND_UNSIGNED != 0
- || XEXP (x, 1) == convert_memory_address_addr_space
- (to_mode, XEXP (x, 1), as))))
- return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
- convert_memory_address_addr_space
- (to_mode, XEXP (x, 0), as),
- XEXP (x, 1));
- break;
-
- default:
- break;
- }
-
- return convert_modes (to_mode, from_mode,
- x, POINTERS_EXTEND_UNSIGNED);
-#endif /* defined(POINTERS_EXTEND_UNSIGNED) */
-}
-
-/* Return something equivalent to X but valid as a memory address for something
- of mode MODE in the named address space AS. When X is not itself valid,
- this works by copying X or subexpressions of it into registers. */
-
-rtx
-memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
-{
- rtx oldx = x;
- enum machine_mode address_mode = targetm.addr_space.address_mode (as);
-
- x = convert_memory_address_addr_space (address_mode, x, as);
-
- /* By passing constant addresses through registers
- we get a chance to cse them. */
- if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
- x = force_reg (address_mode, x);
-
- /* We get better cse by rejecting indirect addressing at this stage.
- Let the combiner create indirect addresses where appropriate.
- For now, generate the code so that the subexpressions useful to share
- are visible. But not if cse won't be done! */
- else
- {
- if (! cse_not_expected && !REG_P (x))
- x = break_out_memory_refs (x);
-
- /* At this point, any valid address is accepted. */
- if (memory_address_addr_space_p (mode, x, as))
- goto done;
-
- /* If it was valid before but breaking out memory refs invalidated it,
- use it the old way. */
- if (memory_address_addr_space_p (mode, oldx, as))
- {
- x = oldx;
- goto done;
- }
-
- /* Perform machine-dependent transformations on X
- in certain cases. This is not necessary since the code
- below can handle all possible cases, but machine-dependent
- transformations can make better code. */
- {
- rtx orig_x = x;
- x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
- if (orig_x != x && memory_address_addr_space_p (mode, x, as))
- goto done;
- }
-
- /* PLUS and MULT can appear in special ways
- as the result of attempts to make an address usable for indexing.
- Usually they are dealt with by calling force_operand, below.
- But a sum containing constant terms is special
- if removing them makes the sum a valid address:
- then we generate that address in a register
- and index off of it. We do this because it often makes
- shorter code, and because the addresses thus generated
- in registers often become common subexpressions. */
- if (GET_CODE (x) == PLUS)
- {
- rtx constant_term = const0_rtx;
- rtx y = eliminate_constant_term (x, &constant_term);
- if (constant_term == const0_rtx
- || ! memory_address_addr_space_p (mode, y, as))
- x = force_operand (x, NULL_RTX);
- else
- {
- y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
- if (! memory_address_addr_space_p (mode, y, as))
- x = force_operand (x, NULL_RTX);
- else
- x = y;
- }
- }
-
- else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
- x = force_operand (x, NULL_RTX);
-
- /* If we have a register that's an invalid address,
- it must be a hard reg of the wrong class. Copy it to a pseudo. */
- else if (REG_P (x))
- x = copy_to_reg (x);
-
- /* Last resort: copy the value to a register, since
- the register is a valid address. */
- else
- x = force_reg (address_mode, x);
- }
-
- done:
-
- gcc_assert (memory_address_addr_space_p (mode, x, as));
- /* If we didn't change the address, we are done. Otherwise, mark
- a reg as a pointer if we have REG or REG + CONST_INT. */
- if (oldx == x)
- return x;
- else if (REG_P (x))
- mark_reg_pointer (x, BITS_PER_UNIT);
- else if (GET_CODE (x) == PLUS
- && REG_P (XEXP (x, 0))
- && CONST_INT_P (XEXP (x, 1)))
- mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
-
- /* OLDX may have been the address on a temporary. Update the address
- to indicate that X is now used. */
- update_temp_slot_address (oldx, x);
-
- return x;
-}
-
-/* Convert a mem ref into one with a valid memory address.
- Pass through anything else unchanged. */
-
-rtx
-validize_mem (rtx ref)
-{
- if (!MEM_P (ref))
- return ref;
- ref = use_anchored_address (ref);
- if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
- MEM_ADDR_SPACE (ref)))
- return ref;
-
- /* Don't alter REF itself, since that is probably a stack slot. */
- return replace_equiv_address (ref, XEXP (ref, 0));
-}
-
-/* If X is a memory reference to a member of an object block, try rewriting
- it to use an anchor instead. Return the new memory reference on success
- and the old one on failure. */
-
-rtx
-use_anchored_address (rtx x)
-{
- rtx base;
- HOST_WIDE_INT offset;
- enum machine_mode mode;
-
- if (!flag_section_anchors)
- return x;
-
- if (!MEM_P (x))
- return x;
-
- /* Split the address into a base and offset. */
- base = XEXP (x, 0);
- offset = 0;
- if (GET_CODE (base) == CONST
- && GET_CODE (XEXP (base, 0)) == PLUS
- && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
- {
- offset += INTVAL (XEXP (XEXP (base, 0), 1));
- base = XEXP (XEXP (base, 0), 0);
- }
-
- /* Check whether BASE is suitable for anchors. */
- if (GET_CODE (base) != SYMBOL_REF
- || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
- || SYMBOL_REF_ANCHOR_P (base)
- || SYMBOL_REF_BLOCK (base) == NULL
- || !targetm.use_anchors_for_symbol_p (base))
- return x;
-
- /* Decide where BASE is going to be. */
- place_block_symbol (base);
-
- /* Get the anchor we need to use. */
- offset += SYMBOL_REF_BLOCK_OFFSET (base);
- base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
- SYMBOL_REF_TLS_MODEL (base));
-
- /* Work out the offset from the anchor. */
- offset -= SYMBOL_REF_BLOCK_OFFSET (base);
-
- /* If we're going to run a CSE pass, force the anchor into a register.
- We will then be able to reuse registers for several accesses, if the
- target costs say that that's worthwhile. */
- mode = GET_MODE (base);
- if (!cse_not_expected)
- base = force_reg (mode, base);
-
- return replace_equiv_address (x, plus_constant (mode, base, offset));
-}
-
-/* Copy the value or contents of X to a new temp reg and return that reg. */
-
-rtx
-copy_to_reg (rtx x)
-{
- rtx temp = gen_reg_rtx (GET_MODE (x));
-
- /* If not an operand, must be an address with PLUS and MULT so
- do the computation. */
- if (! general_operand (x, VOIDmode))
- x = force_operand (x, temp);
-
- if (x != temp)
- emit_move_insn (temp, x);
-
- return temp;
-}
-
-/* Like copy_to_reg but always give the new register mode Pmode
- in case X is a constant. */
-
-rtx
-copy_addr_to_reg (rtx x)
-{
- return copy_to_mode_reg (Pmode, x);
-}
-
-/* Like copy_to_reg but always give the new register mode MODE
- in case X is a constant. */
-
-rtx
-copy_to_mode_reg (enum machine_mode mode, rtx x)
-{
- rtx temp = gen_reg_rtx (mode);
-
- /* If not an operand, must be an address with PLUS and MULT so
- do the computation. */
- if (! general_operand (x, VOIDmode))
- x = force_operand (x, temp);
-
- gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
- if (x != temp)
- emit_move_insn (temp, x);
- return temp;
-}
-
-/* Load X into a register if it is not already one.
- Use mode MODE for the register.
- X should be valid for mode MODE, but it may be a constant which
- is valid for all integer modes; that's why caller must specify MODE.
-
- The caller must not alter the value in the register we return,
- since we mark it as a "constant" register. */
-
-rtx
-force_reg (enum machine_mode mode, rtx x)
-{
- rtx temp, insn, set;
-
- if (REG_P (x))
- return x;
-
- if (general_operand (x, mode))
- {
- temp = gen_reg_rtx (mode);
- insn = emit_move_insn (temp, x);
- }
- else
- {
- temp = force_operand (x, NULL_RTX);
- if (REG_P (temp))
- insn = get_last_insn ();
- else
- {
- rtx temp2 = gen_reg_rtx (mode);
- insn = emit_move_insn (temp2, temp);
- temp = temp2;
- }
- }
-
- /* Let optimizers know that TEMP's value never changes
- and that X can be substituted for it. Don't get confused
- if INSN set something else (such as a SUBREG of TEMP). */
- if (CONSTANT_P (x)
- && (set = single_set (insn)) != 0
- && SET_DEST (set) == temp
- && ! rtx_equal_p (x, SET_SRC (set)))
- set_unique_reg_note (insn, REG_EQUAL, x);
-
- /* Let optimizers know that TEMP is a pointer, and if so, the
- known alignment of that pointer. */
- {
- unsigned align = 0;
- if (GET_CODE (x) == SYMBOL_REF)
- {
- align = BITS_PER_UNIT;
- if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
- align = DECL_ALIGN (SYMBOL_REF_DECL (x));
- }
- else if (GET_CODE (x) == LABEL_REF)
- align = BITS_PER_UNIT;
- else if (GET_CODE (x) == CONST
- && GET_CODE (XEXP (x, 0)) == PLUS
- && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
- && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
- {
- rtx s = XEXP (XEXP (x, 0), 0);
- rtx c = XEXP (XEXP (x, 0), 1);
- unsigned sa, ca;
-
- sa = BITS_PER_UNIT;
- if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
- sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
-
- if (INTVAL (c) == 0)
- align = sa;
- else
- {
- ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
- align = MIN (sa, ca);
- }
- }
-
- if (align || (MEM_P (x) && MEM_POINTER (x)))
- mark_reg_pointer (temp, align);
- }
-
- return temp;
-}
-
-/* If X is a memory ref, copy its contents to a new temp reg and return
- that reg. Otherwise, return X. */
-
-rtx
-force_not_mem (rtx x)
-{
- rtx temp;
-
- if (!MEM_P (x) || GET_MODE (x) == BLKmode)
- return x;
-
- temp = gen_reg_rtx (GET_MODE (x));
-
- if (MEM_POINTER (x))
- REG_POINTER (temp) = 1;
-
- emit_move_insn (temp, x);
- return temp;
-}
-
-/* Copy X to TARGET (if it's nonzero and a reg)
- or to a new temp reg and return that reg.
- MODE is the mode to use for X in case it is a constant. */
-
-rtx
-copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
-{
- rtx temp;
-
- if (target && REG_P (target))
- temp = target;
- else
- temp = gen_reg_rtx (mode);
-
- emit_move_insn (temp, x);
- return temp;
-}
-
-/* Return the mode to use to pass or return a scalar of TYPE and MODE.
- PUNSIGNEDP points to the signedness of the type and may be adjusted
- to show what signedness to use on extension operations.
-
- FOR_RETURN is nonzero if the caller is promoting the return value
- of FNDECL, else it is for promoting args. */
-
-enum machine_mode
-promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
- const_tree funtype, int for_return)
-{
- /* Called without a type node for a libcall. */
- if (type == NULL_TREE)
- {
- if (INTEGRAL_MODE_P (mode))
- return targetm.calls.promote_function_mode (NULL_TREE, mode,
- punsignedp, funtype,
- for_return);
- else
- return mode;
- }
-
- switch (TREE_CODE (type))
- {
- case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
- case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
- case POINTER_TYPE: case REFERENCE_TYPE:
- return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
- for_return);
-
- default:
- return mode;
- }
-}
-/* Return the mode to use to store a scalar of TYPE and MODE.
- PUNSIGNEDP points to the signedness of the type and may be adjusted
- to show what signedness to use on extension operations. */
-
-enum machine_mode
-promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
- int *punsignedp ATTRIBUTE_UNUSED)
-{
-#ifdef PROMOTE_MODE
- enum tree_code code;
- int unsignedp;
-#endif
-
- /* For libcalls this is invoked without TYPE from the backends
- TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
- case. */
- if (type == NULL_TREE)
- return mode;
-
- /* FIXME: this is the same logic that was there until GCC 4.4, but we
- probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
- is not defined. The affected targets are M32C, S390, SPARC. */
-#ifdef PROMOTE_MODE
- code = TREE_CODE (type);
- unsignedp = *punsignedp;
-
- switch (code)
- {
- case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
- case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
- PROMOTE_MODE (mode, unsignedp, type);
- *punsignedp = unsignedp;
- return mode;
- break;
-
-#ifdef POINTERS_EXTEND_UNSIGNED
- case REFERENCE_TYPE:
- case POINTER_TYPE:
- *punsignedp = POINTERS_EXTEND_UNSIGNED;
- return targetm.addr_space.address_mode
- (TYPE_ADDR_SPACE (TREE_TYPE (type)));
- break;
-#endif
-
- default:
- return mode;
- }
-#else
- return mode;
-#endif
-}
-
-
-/* Use one of promote_mode or promote_function_mode to find the promoted
- mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
- of DECL after promotion. */
-
-enum machine_mode
-promote_decl_mode (const_tree decl, int *punsignedp)
-{
- tree type = TREE_TYPE (decl);
- int unsignedp = TYPE_UNSIGNED (type);
- enum machine_mode mode = DECL_MODE (decl);
- enum machine_mode pmode;
-
- if (TREE_CODE (decl) == RESULT_DECL
- || TREE_CODE (decl) == PARM_DECL)
- pmode = promote_function_mode (type, mode, &unsignedp,
- TREE_TYPE (current_function_decl), 2);
- else
- pmode = promote_mode (type, mode, &unsignedp);
-
- if (punsignedp)
- *punsignedp = unsignedp;
- return pmode;
-}
-
-
-/* Controls the behaviour of {anti_,}adjust_stack. */
-static bool suppress_reg_args_size;
-
-/* A helper for adjust_stack and anti_adjust_stack. */
-
-static void
-adjust_stack_1 (rtx adjust, bool anti_p)
-{
- rtx temp, insn;
-
-#ifndef STACK_GROWS_DOWNWARD
- /* Hereafter anti_p means subtract_p. */
- anti_p = !anti_p;
-#endif
-
- temp = expand_binop (Pmode,
- anti_p ? sub_optab : add_optab,
- stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
- OPTAB_LIB_WIDEN);
-
- if (temp != stack_pointer_rtx)
- insn = emit_move_insn (stack_pointer_rtx, temp);
- else
- {
- insn = get_last_insn ();
- temp = single_set (insn);
- gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
- }
-
- if (!suppress_reg_args_size)
- add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
-}
-
-/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
- This pops when ADJUST is positive. ADJUST need not be constant. */
-
-void
-adjust_stack (rtx adjust)
-{
- if (adjust == const0_rtx)
- return;
-
- /* We expect all variable sized adjustments to be multiple of
- PREFERRED_STACK_BOUNDARY. */
- if (CONST_INT_P (adjust))
- stack_pointer_delta -= INTVAL (adjust);
-
- adjust_stack_1 (adjust, false);
-}
-
-/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
- This pushes when ADJUST is positive. ADJUST need not be constant. */
-
-void
-anti_adjust_stack (rtx adjust)
-{
- if (adjust == const0_rtx)
- return;
-
- /* We expect all variable sized adjustments to be multiple of
- PREFERRED_STACK_BOUNDARY. */
- if (CONST_INT_P (adjust))
- stack_pointer_delta += INTVAL (adjust);
-
- adjust_stack_1 (adjust, true);
-}
-
-/* Round the size of a block to be pushed up to the boundary required
- by this machine. SIZE is the desired size, which need not be constant. */
-
-static rtx
-round_push (rtx size)
-{
- rtx align_rtx, alignm1_rtx;
-
- if (!SUPPORTS_STACK_ALIGNMENT
- || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
- {
- int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
-
- if (align == 1)
- return size;
-
- if (CONST_INT_P (size))
- {
- HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
-
- if (INTVAL (size) != new_size)
- size = GEN_INT (new_size);
- return size;
- }
-
- align_rtx = GEN_INT (align);
- alignm1_rtx = GEN_INT (align - 1);
- }
- else
- {
- /* If crtl->preferred_stack_boundary might still grow, use
- virtual_preferred_stack_boundary_rtx instead. This will be
- substituted by the right value in vregs pass and optimized
- during combine. */
- align_rtx = virtual_preferred_stack_boundary_rtx;
- alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
- NULL_RTX);
- }
-
- /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
- but we know it can't. So add ourselves and then do
- TRUNC_DIV_EXPR. */
- size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
- size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
- NULL_RTX, 1);
- size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
-
- return size;
-}
-
-/* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
- to a previously-created save area. If no save area has been allocated,
- this function will allocate one. If a save area is specified, it
- must be of the proper mode. */
-
-void
-emit_stack_save (enum save_level save_level, rtx *psave)
-{
- rtx sa = *psave;
- /* The default is that we use a move insn and save in a Pmode object. */
- rtx (*fcn) (rtx, rtx) = gen_move_insn;
- enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
-
- /* See if this machine has anything special to do for this kind of save. */
- switch (save_level)
- {
-#ifdef HAVE_save_stack_block
- case SAVE_BLOCK:
- if (HAVE_save_stack_block)
- fcn = gen_save_stack_block;
- break;
-#endif
-#ifdef HAVE_save_stack_function
- case SAVE_FUNCTION:
- if (HAVE_save_stack_function)
- fcn = gen_save_stack_function;
- break;
-#endif
-#ifdef HAVE_save_stack_nonlocal
- case SAVE_NONLOCAL:
- if (HAVE_save_stack_nonlocal)
- fcn = gen_save_stack_nonlocal;
- break;
-#endif
- default:
- break;
- }
-
- /* If there is no save area and we have to allocate one, do so. Otherwise
- verify the save area is the proper mode. */
-
- if (sa == 0)
- {
- if (mode != VOIDmode)
- {
- if (save_level == SAVE_NONLOCAL)
- *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
- else
- *psave = sa = gen_reg_rtx (mode);
- }
- }
-
- do_pending_stack_adjust ();
- if (sa != 0)
- sa = validize_mem (sa);
- emit_insn (fcn (sa, stack_pointer_rtx));
-}
-
-/* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
- area made by emit_stack_save. If it is zero, we have nothing to do. */
-
-void
-emit_stack_restore (enum save_level save_level, rtx sa)
-{
- /* The default is that we use a move insn. */
- rtx (*fcn) (rtx, rtx) = gen_move_insn;
-
- /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
- STACK_POINTER and HARD_FRAME_POINTER.
- If stack_realign_fp, the x86 backend emits a prologue that aligns only
- STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
- aligned variables, which is reflected in ix86_can_eliminate.
- We normally still have the realigned STACK_POINTER that we can use.
- But if there is a stack restore still present at reload, it can trigger
- mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
- FRAME_POINTER into a hard reg.
- To prevent this situation, we force need_drap if we emit a stack
- restore. */
- if (SUPPORTS_STACK_ALIGNMENT)
- crtl->need_drap = true;
-
- /* See if this machine has anything special to do for this kind of save. */
- switch (save_level)
- {
-#ifdef HAVE_restore_stack_block
- case SAVE_BLOCK:
- if (HAVE_restore_stack_block)
- fcn = gen_restore_stack_block;
- break;
-#endif
-#ifdef HAVE_restore_stack_function
- case SAVE_FUNCTION:
- if (HAVE_restore_stack_function)
- fcn = gen_restore_stack_function;
- break;
-#endif
-#ifdef HAVE_restore_stack_nonlocal
- case SAVE_NONLOCAL:
- if (HAVE_restore_stack_nonlocal)
- fcn = gen_restore_stack_nonlocal;
- break;
-#endif
- default:
- break;
- }
-
- if (sa != 0)
- {
- sa = validize_mem (sa);
- /* These clobbers prevent the scheduler from moving
- references to variable arrays below the code
- that deletes (pops) the arrays. */
- emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
- emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
- }
-
- discard_pending_stack_adjust ();
-
- emit_insn (fcn (stack_pointer_rtx, sa));
-}
-
-/* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
- function. This function should be called whenever we allocate or
- deallocate dynamic stack space. */
-
-void
-update_nonlocal_goto_save_area (void)
-{
- tree t_save;
- rtx r_save;
-
- /* The nonlocal_goto_save_area object is an array of N pointers. The
- first one is used for the frame pointer save; the rest are sized by
- STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
- of the stack save area slots. */
- t_save = build4 (ARRAY_REF,
- TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
- cfun->nonlocal_goto_save_area,
- integer_one_node, NULL_TREE, NULL_TREE);
- r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
-
- emit_stack_save (SAVE_NONLOCAL, &r_save);
-}
-
-/* Return an rtx representing the address of an area of memory dynamically
- pushed on the stack.
-
- Any required stack pointer alignment is preserved.
-
- SIZE is an rtx representing the size of the area.
-
- SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
- parameter may be zero. If so, a proper value will be extracted
- from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
-
- REQUIRED_ALIGN is the alignment (in bits) required for the region
- of memory.
-
- If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
- stack space allocated by the generated code cannot be added with itself
- in the course of the execution of the function. It is always safe to
- pass FALSE here and the following criterion is sufficient in order to
- pass TRUE: every path in the CFG that starts at the allocation point and
- loops to it executes the associated deallocation code. */
-
-rtx
-allocate_dynamic_stack_space (rtx size, unsigned size_align,
- unsigned required_align, bool cannot_accumulate)
-{
- HOST_WIDE_INT stack_usage_size = -1;
- rtx final_label, final_target, target;
- unsigned extra_align = 0;
- bool must_align;
-
- /* If we're asking for zero bytes, it doesn't matter what we point
- to since we can't dereference it. But return a reasonable
- address anyway. */
- if (size == const0_rtx)
- return virtual_stack_dynamic_rtx;
-
- /* Otherwise, show we're calling alloca or equivalent. */
- cfun->calls_alloca = 1;
-
- /* If stack usage info is requested, look into the size we are passed.
- We need to do so this early to avoid the obfuscation that may be
- introduced later by the various alignment operations. */
- if (flag_stack_usage_info)
- {
- if (CONST_INT_P (size))
- stack_usage_size = INTVAL (size);
- else if (REG_P (size))
- {
- /* Look into the last emitted insn and see if we can deduce
- something for the register. */
- rtx insn, set, note;
- insn = get_last_insn ();
- if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
- {
- if (CONST_INT_P (SET_SRC (set)))
- stack_usage_size = INTVAL (SET_SRC (set));
- else if ((note = find_reg_equal_equiv_note (insn))
- && CONST_INT_P (XEXP (note, 0)))
- stack_usage_size = INTVAL (XEXP (note, 0));
- }
- }
-
- /* If the size is not constant, we can't say anything. */
- if (stack_usage_size == -1)
- {
- current_function_has_unbounded_dynamic_stack_size = 1;
- stack_usage_size = 0;
- }
- }
-
- /* Ensure the size is in the proper mode. */
- if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
- size = convert_to_mode (Pmode, size, 1);
-
- /* Adjust SIZE_ALIGN, if needed. */
- if (CONST_INT_P (size))
- {
- unsigned HOST_WIDE_INT lsb;
-
- lsb = INTVAL (size);
- lsb &= -lsb;
-
- /* Watch out for overflow truncating to "unsigned". */
- if (lsb > UINT_MAX / BITS_PER_UNIT)
- size_align = 1u << (HOST_BITS_PER_INT - 1);
- else
- size_align = (unsigned)lsb * BITS_PER_UNIT;
- }
- else if (size_align < BITS_PER_UNIT)
- size_align = BITS_PER_UNIT;
-
- /* We can't attempt to minimize alignment necessary, because we don't
- know the final value of preferred_stack_boundary yet while executing
- this code. */
- if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
- crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
-
- /* We will need to ensure that the address we return is aligned to
- REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
- always know its final value at this point in the compilation (it
- might depend on the size of the outgoing parameter lists, for
- example), so we must align the value to be returned in that case.
- (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
- STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
- We must also do an alignment operation on the returned value if
- the stack pointer alignment is less strict than REQUIRED_ALIGN.
-
- If we have to align, we must leave space in SIZE for the hole
- that might result from the alignment operation. */
-
- must_align = (crtl->preferred_stack_boundary < required_align);
- if (must_align)
- {
- if (required_align > PREFERRED_STACK_BOUNDARY)
- extra_align = PREFERRED_STACK_BOUNDARY;
- else if (required_align > STACK_BOUNDARY)
- extra_align = STACK_BOUNDARY;
- else
- extra_align = BITS_PER_UNIT;
- }
-
- /* ??? STACK_POINTER_OFFSET is always defined now. */
-#if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
- must_align = true;
- extra_align = BITS_PER_UNIT;
-#endif
-
- if (must_align)
- {
- unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
-
- size = plus_constant (Pmode, size, extra);
- size = force_operand (size, NULL_RTX);
-
- if (flag_stack_usage_info)
- stack_usage_size += extra;
-
- if (extra && size_align > extra_align)
- size_align = extra_align;
- }
-
- /* Round the size to a multiple of the required stack alignment.
- Since the stack if presumed to be rounded before this allocation,
- this will maintain the required alignment.
-
- If the stack grows downward, we could save an insn by subtracting
- SIZE from the stack pointer and then aligning the stack pointer.
- The problem with this is that the stack pointer may be unaligned
- between the execution of the subtraction and alignment insns and
- some machines do not allow this. Even on those that do, some
- signal handlers malfunction if a signal should occur between those
- insns. Since this is an extremely rare event, we have no reliable
- way of knowing which systems have this problem. So we avoid even
- momentarily mis-aligning the stack. */
- if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
- {
- size = round_push (size);
-
- if (flag_stack_usage_info)
- {
- int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
- stack_usage_size = (stack_usage_size + align - 1) / align * align;
- }
- }
-
- target = gen_reg_rtx (Pmode);
-
- /* The size is supposed to be fully adjusted at this point so record it
- if stack usage info is requested. */
- if (flag_stack_usage_info)
- {
- current_function_dynamic_stack_size += stack_usage_size;
-
- /* ??? This is gross but the only safe stance in the absence
- of stack usage oriented flow analysis. */
- if (!cannot_accumulate)
- current_function_has_unbounded_dynamic_stack_size = 1;
- }
-
- final_label = NULL_RTX;
- final_target = NULL_RTX;
-
- /* If we are splitting the stack, we need to ask the backend whether
- there is enough room on the current stack. If there isn't, or if
- the backend doesn't know how to tell is, then we need to call a
- function to allocate memory in some other way. This memory will
- be released when we release the current stack segment. The
- effect is that stack allocation becomes less efficient, but at
- least it doesn't cause a stack overflow. */
- if (flag_split_stack)
- {
- rtx available_label, ask, space, func;
-
- available_label = NULL_RTX;
-
-#ifdef HAVE_split_stack_space_check
- if (HAVE_split_stack_space_check)
- {
- available_label = gen_label_rtx ();
-
- /* This instruction will branch to AVAILABLE_LABEL if there
- are SIZE bytes available on the stack. */
- emit_insn (gen_split_stack_space_check (size, available_label));
- }
-#endif
-
- /* The __morestack_allocate_stack_space function will allocate
- memory using malloc. If the alignment of the memory returned
- by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
- make sure we allocate enough space. */
- if (MALLOC_ABI_ALIGNMENT >= required_align)
- ask = size;
- else
- {
- ask = expand_binop (Pmode, add_optab, size,
- GEN_INT (required_align / BITS_PER_UNIT - 1),
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
- must_align = true;
- }
-
- func = init_one_libfunc ("__morestack_allocate_stack_space");
-
- space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
- 1, ask, Pmode);
-
- if (available_label == NULL_RTX)
- return space;
-
- final_target = gen_reg_rtx (Pmode);
-
- emit_move_insn (final_target, space);
-
- final_label = gen_label_rtx ();
- emit_jump (final_label);
-
- emit_label (available_label);
- }
-
- do_pending_stack_adjust ();
-
- /* We ought to be called always on the toplevel and stack ought to be aligned
- properly. */
- gcc_assert (!(stack_pointer_delta
- % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
-
- /* If needed, check that we have the required amount of stack. Take into
- account what has already been checked. */
- if (STACK_CHECK_MOVING_SP)
- ;
- else if (flag_stack_check == GENERIC_STACK_CHECK)
- probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
- size);
- else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
- probe_stack_range (STACK_CHECK_PROTECT, size);
-
- /* Don't let anti_adjust_stack emit notes. */
- suppress_reg_args_size = true;
-
- /* Perform the required allocation from the stack. Some systems do
- this differently than simply incrementing/decrementing from the
- stack pointer, such as acquiring the space by calling malloc(). */
-#ifdef HAVE_allocate_stack
- if (HAVE_allocate_stack)
- {
- struct expand_operand ops[2];
- /* We don't have to check against the predicate for operand 0 since
- TARGET is known to be a pseudo of the proper mode, which must
- be valid for the operand. */
- create_fixed_operand (&ops[0], target);
- create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
- expand_insn (CODE_FOR_allocate_stack, 2, ops);
- }
- else
-#endif
- {
- int saved_stack_pointer_delta;
-
-#ifndef STACK_GROWS_DOWNWARD
- emit_move_insn (target, virtual_stack_dynamic_rtx);
-#endif
-
- /* Check stack bounds if necessary. */
- if (crtl->limit_stack)
- {
- rtx available;
- rtx space_available = gen_label_rtx ();
-#ifdef STACK_GROWS_DOWNWARD
- available = expand_binop (Pmode, sub_optab,
- stack_pointer_rtx, stack_limit_rtx,
- NULL_RTX, 1, OPTAB_WIDEN);
-#else
- available = expand_binop (Pmode, sub_optab,
- stack_limit_rtx, stack_pointer_rtx,
- NULL_RTX, 1, OPTAB_WIDEN);
-#endif
- emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
- space_available);
-#ifdef HAVE_trap
- if (HAVE_trap)
- emit_insn (gen_trap ());
- else
-#endif
- error ("stack limits not supported on this target");
- emit_barrier ();
- emit_label (space_available);
- }
-
- saved_stack_pointer_delta = stack_pointer_delta;
-
- if (flag_stack_check && STACK_CHECK_MOVING_SP)
- anti_adjust_stack_and_probe (size, false);
- else
- anti_adjust_stack (size);
-
- /* Even if size is constant, don't modify stack_pointer_delta.
- The constant size alloca should preserve
- crtl->preferred_stack_boundary alignment. */
- stack_pointer_delta = saved_stack_pointer_delta;
-
-#ifdef STACK_GROWS_DOWNWARD
- emit_move_insn (target, virtual_stack_dynamic_rtx);
-#endif
- }
-
- suppress_reg_args_size = false;
-
- /* Finish up the split stack handling. */
- if (final_label != NULL_RTX)
- {
- gcc_assert (flag_split_stack);
- emit_move_insn (final_target, target);
- emit_label (final_label);
- target = final_target;
- }
-
- if (must_align)
- {
- /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
- but we know it can't. So add ourselves and then do
- TRUNC_DIV_EXPR. */
- target = expand_binop (Pmode, add_optab, target,
- GEN_INT (required_align / BITS_PER_UNIT - 1),
- NULL_RTX, 1, OPTAB_LIB_WIDEN);
- target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
- GEN_INT (required_align / BITS_PER_UNIT),
- NULL_RTX, 1);
- target = expand_mult (Pmode, target,
- GEN_INT (required_align / BITS_PER_UNIT),
- NULL_RTX, 1);
- }
-
- /* Now that we've committed to a return value, mark its alignment. */
- mark_reg_pointer (target, required_align);
-
- /* Record the new stack level for nonlocal gotos. */
- if (cfun->nonlocal_goto_save_area != 0)
- update_nonlocal_goto_save_area ();
-
- return target;
-}
-
-/* A front end may want to override GCC's stack checking by providing a
- run-time routine to call to check the stack, so provide a mechanism for
- calling that routine. */
-
-static GTY(()) rtx stack_check_libfunc;
-
-void
-set_stack_check_libfunc (const char *libfunc_name)
-{
- gcc_assert (stack_check_libfunc == NULL_RTX);
- stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
-}
-
-/* Emit one stack probe at ADDRESS, an address within the stack. */
-
-void
-emit_stack_probe (rtx address)
-{
-#ifdef HAVE_probe_stack_address
- if (HAVE_probe_stack_address)
- emit_insn (gen_probe_stack_address (address));
- else
-#endif
- {
- rtx memref = gen_rtx_MEM (word_mode, address);
-
- MEM_VOLATILE_P (memref) = 1;
-
- /* See if we have an insn to probe the stack. */
-#ifdef HAVE_probe_stack
- if (HAVE_probe_stack)
- emit_insn (gen_probe_stack (memref));
- else
-#endif
- emit_move_insn (memref, const0_rtx);
- }
-}
-
-/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
- FIRST is a constant and size is a Pmode RTX. These are offsets from
- the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
- or subtract them from the stack pointer. */
-
-#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
-
-#ifdef STACK_GROWS_DOWNWARD
-#define STACK_GROW_OP MINUS
-#define STACK_GROW_OPTAB sub_optab
-#define STACK_GROW_OFF(off) -(off)
-#else
-#define STACK_GROW_OP PLUS
-#define STACK_GROW_OPTAB add_optab
-#define STACK_GROW_OFF(off) (off)
-#endif
-
-void
-probe_stack_range (HOST_WIDE_INT first, rtx size)
-{
- /* First ensure SIZE is Pmode. */
- if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
- size = convert_to_mode (Pmode, size, 1);
-
- /* Next see if we have a function to check the stack. */
- if (stack_check_libfunc)
- {
- rtx addr = memory_address (Pmode,
- gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
- stack_pointer_rtx,
- plus_constant (Pmode,
- size, first)));
- emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
- Pmode);
- }
-
- /* Next see if we have an insn to check the stack. */
-#ifdef HAVE_check_stack
- else if (HAVE_check_stack)
- {
- struct expand_operand ops[1];
- rtx addr = memory_address (Pmode,
- gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
- stack_pointer_rtx,
- plus_constant (Pmode,
- size, first)));
- bool success;
- create_input_operand (&ops[0], addr, Pmode);
- success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
- gcc_assert (success);
- }
-#endif
-
- /* Otherwise we have to generate explicit probes. If we have a constant
- small number of them to generate, that's the easy case. */
- else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
- {
- HOST_WIDE_INT isize = INTVAL (size), i;
- rtx addr;
-
- /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
- it exceeds SIZE. If only one probe is needed, this will not
- generate any code. Then probe at FIRST + SIZE. */
- for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
- {
- addr = memory_address (Pmode,
- plus_constant (Pmode, stack_pointer_rtx,
- STACK_GROW_OFF (first + i)));
- emit_stack_probe (addr);
- }
-
- addr = memory_address (Pmode,
- plus_constant (Pmode, stack_pointer_rtx,
- STACK_GROW_OFF (first + isize)));
- emit_stack_probe (addr);
- }
-
- /* In the variable case, do the same as above, but in a loop. Note that we
- must be extra careful with variables wrapping around because we might be
- at the very top (or the very bottom) of the address space and we have to
- be able to handle this case properly; in particular, we use an equality
- test for the loop condition. */
- else
- {
- rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
- rtx loop_lab = gen_label_rtx ();
- rtx end_lab = gen_label_rtx ();
-
-
- /* Step 1: round SIZE to the previous multiple of the interval. */
-
- /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
- rounded_size
- = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
- rounded_size_op = force_operand (rounded_size, NULL_RTX);
-
-
- /* Step 2: compute initial and final value of the loop counter. */
-
- /* TEST_ADDR = SP + FIRST. */
- test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
- stack_pointer_rtx,
- GEN_INT (first)), NULL_RTX);
-
- /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
- last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
- test_addr,
- rounded_size_op), NULL_RTX);
-
-
- /* Step 3: the loop
-
- while (TEST_ADDR != LAST_ADDR)
- {
- TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
- probe at TEST_ADDR
- }
-
- probes at FIRST + N * PROBE_INTERVAL for values of N from 1
- until it is equal to ROUNDED_SIZE. */
-
- emit_label (loop_lab);
-
- /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
- emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
- end_lab);
-
- /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
- temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
- GEN_INT (PROBE_INTERVAL), test_addr,
- 1, OPTAB_WIDEN);
-
- gcc_assert (temp == test_addr);
-
- /* Probe at TEST_ADDR. */
- emit_stack_probe (test_addr);
-
- emit_jump (loop_lab);
-
- emit_label (end_lab);
-
-
- /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
- that SIZE is equal to ROUNDED_SIZE. */
-
- /* TEMP = SIZE - ROUNDED_SIZE. */
- temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
- if (temp != const0_rtx)
- {
- rtx addr;
-
- if (CONST_INT_P (temp))
- {
- /* Use [base + disp} addressing mode if supported. */
- HOST_WIDE_INT offset = INTVAL (temp);
- addr = memory_address (Pmode,
- plus_constant (Pmode, last_addr,
- STACK_GROW_OFF (offset)));
- }
- else
- {
- /* Manual CSE if the difference is not known at compile-time. */
- temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
- addr = memory_address (Pmode,
- gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
- last_addr, temp));
- }
-
- emit_stack_probe (addr);
- }
- }
-}
-
-/* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
- while probing it. This pushes when SIZE is positive. SIZE need not
- be constant. If ADJUST_BACK is true, adjust back the stack pointer
- by plus SIZE at the end. */
-
-void
-anti_adjust_stack_and_probe (rtx size, bool adjust_back)
-{
- /* We skip the probe for the first interval + a small dope of 4 words and
- probe that many bytes past the specified size to maintain a protection
- area at the botton of the stack. */
- const int dope = 4 * UNITS_PER_WORD;
-
- /* First ensure SIZE is Pmode. */
- if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
- size = convert_to_mode (Pmode, size, 1);
-
- /* If we have a constant small number of probes to generate, that's the
- easy case. */
- if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
- {
- HOST_WIDE_INT isize = INTVAL (size), i;
- bool first_probe = true;
-
- /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
- values of N from 1 until it exceeds SIZE. If only one probe is
- needed, this will not generate any code. Then adjust and probe
- to PROBE_INTERVAL + SIZE. */
- for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
- {
- if (first_probe)
- {
- anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
- first_probe = false;
- }
- else
- anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
- emit_stack_probe (stack_pointer_rtx);
- }
-
- if (first_probe)
- anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
- else
- anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
- emit_stack_probe (stack_pointer_rtx);
- }
-
- /* In the variable case, do the same as above, but in a loop. Note that we
- must be extra careful with variables wrapping around because we might be
- at the very top (or the very bottom) of the address space and we have to
- be able to handle this case properly; in particular, we use an equality
- test for the loop condition. */
- else
- {
- rtx rounded_size, rounded_size_op, last_addr, temp;
- rtx loop_lab = gen_label_rtx ();
- rtx end_lab = gen_label_rtx ();
-
-
- /* Step 1: round SIZE to the previous multiple of the interval. */
-
- /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
- rounded_size
- = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
- rounded_size_op = force_operand (rounded_size, NULL_RTX);
-
-
- /* Step 2: compute initial and final value of the loop counter. */
-
- /* SP = SP_0 + PROBE_INTERVAL. */
- anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
-
- /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
- last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
- stack_pointer_rtx,
- rounded_size_op), NULL_RTX);
-
-
- /* Step 3: the loop
-
- while (SP != LAST_ADDR)
- {
- SP = SP + PROBE_INTERVAL
- probe at SP
- }
-
- adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
- values of N from 1 until it is equal to ROUNDED_SIZE. */
-
- emit_label (loop_lab);
-
- /* Jump to END_LAB if SP == LAST_ADDR. */
- emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
- Pmode, 1, end_lab);
-
- /* SP = SP + PROBE_INTERVAL and probe at SP. */
- anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
- emit_stack_probe (stack_pointer_rtx);
-
- emit_jump (loop_lab);
-
- emit_label (end_lab);
-
-
- /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
- assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
-
- /* TEMP = SIZE - ROUNDED_SIZE. */
- temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
- if (temp != const0_rtx)
- {
- /* Manual CSE if the difference is not known at compile-time. */
- if (GET_CODE (temp) != CONST_INT)
- temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
- anti_adjust_stack (temp);
- emit_stack_probe (stack_pointer_rtx);
- }
- }
-
- /* Adjust back and account for the additional first interval. */
- if (adjust_back)
- adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
- else
- adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
-}
-
-/* Return an rtx representing the register or memory location
- in which a scalar value of data type VALTYPE
- was returned by a function call to function FUNC.
- FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
- function is known, otherwise 0.
- OUTGOING is 1 if on a machine with register windows this function
- should return the register in which the function will put its result
- and 0 otherwise. */
-
-rtx
-hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
- int outgoing ATTRIBUTE_UNUSED)
-{
- rtx val;
-
- val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
-
- if (REG_P (val)
- && GET_MODE (val) == BLKmode)
- {
- unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
- enum machine_mode tmpmode;
-
- /* int_size_in_bytes can return -1. We don't need a check here
- since the value of bytes will then be large enough that no
- mode will match anyway. */
-
- for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
- tmpmode != VOIDmode;
- tmpmode = GET_MODE_WIDER_MODE (tmpmode))
- {
- /* Have we found a large enough mode? */
- if (GET_MODE_SIZE (tmpmode) >= bytes)
- break;
- }
-
- /* No suitable mode found. */
- gcc_assert (tmpmode != VOIDmode);
-
- PUT_MODE (val, tmpmode);
- }
- return val;
-}
-
-/* Return an rtx representing the register or memory location
- in which a scalar value of mode MODE was returned by a library call. */
-
-rtx
-hard_libcall_value (enum machine_mode mode, rtx fun)
-{
- return targetm.calls.libcall_value (mode, fun);
-}
-
-/* Look up the tree code for a given rtx code
- to provide the arithmetic operation for REAL_ARITHMETIC.
- The function returns an int because the caller may not know
- what `enum tree_code' means. */
-
-int
-rtx_to_tree_code (enum rtx_code code)
-{
- enum tree_code tcode;
-
- switch (code)
- {
- case PLUS:
- tcode = PLUS_EXPR;
- break;
- case MINUS:
- tcode = MINUS_EXPR;
- break;
- case MULT:
- tcode = MULT_EXPR;
- break;
- case DIV:
- tcode = RDIV_EXPR;
- break;
- case SMIN:
- tcode = MIN_EXPR;
- break;
- case SMAX:
- tcode = MAX_EXPR;
- break;
- default:
- tcode = LAST_AND_UNUSED_TREE_CODE;
- break;
- }
- return ((int) tcode);
-}
-
-#include "gt-explow.h"