aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/cp/class.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/cp/class.c')
-rw-r--r--gcc-4.8.1/gcc/cp/class.c9202
1 files changed, 0 insertions, 9202 deletions
diff --git a/gcc-4.8.1/gcc/cp/class.c b/gcc-4.8.1/gcc/cp/class.c
deleted file mode 100644
index 37aea5c27..000000000
--- a/gcc-4.8.1/gcc/cp/class.c
+++ /dev/null
@@ -1,9202 +0,0 @@
-/* Functions related to building classes and their related objects.
- Copyright (C) 1987-2013 Free Software Foundation, Inc.
- Contributed by Michael Tiemann (tiemann@cygnus.com)
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 3, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-
-/* High-level class interface. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "cp-tree.h"
-#include "flags.h"
-#include "toplev.h"
-#include "target.h"
-#include "convert.h"
-#include "cgraph.h"
-#include "dumpfile.h"
-#include "splay-tree.h"
-#include "pointer-set.h"
-#include "hash-table.h"
-
-/* The number of nested classes being processed. If we are not in the
- scope of any class, this is zero. */
-
-int current_class_depth;
-
-/* In order to deal with nested classes, we keep a stack of classes.
- The topmost entry is the innermost class, and is the entry at index
- CURRENT_CLASS_DEPTH */
-
-typedef struct class_stack_node {
- /* The name of the class. */
- tree name;
-
- /* The _TYPE node for the class. */
- tree type;
-
- /* The access specifier pending for new declarations in the scope of
- this class. */
- tree access;
-
- /* If were defining TYPE, the names used in this class. */
- splay_tree names_used;
-
- /* Nonzero if this class is no longer open, because of a call to
- push_to_top_level. */
- size_t hidden;
-}* class_stack_node_t;
-
-typedef struct vtbl_init_data_s
-{
- /* The base for which we're building initializers. */
- tree binfo;
- /* The type of the most-derived type. */
- tree derived;
- /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
- unless ctor_vtbl_p is true. */
- tree rtti_binfo;
- /* The negative-index vtable initializers built up so far. These
- are in order from least negative index to most negative index. */
- vec<constructor_elt, va_gc> *inits;
- /* The binfo for the virtual base for which we're building
- vcall offset initializers. */
- tree vbase;
- /* The functions in vbase for which we have already provided vcall
- offsets. */
- vec<tree, va_gc> *fns;
- /* The vtable index of the next vcall or vbase offset. */
- tree index;
- /* Nonzero if we are building the initializer for the primary
- vtable. */
- int primary_vtbl_p;
- /* Nonzero if we are building the initializer for a construction
- vtable. */
- int ctor_vtbl_p;
- /* True when adding vcall offset entries to the vtable. False when
- merely computing the indices. */
- bool generate_vcall_entries;
-} vtbl_init_data;
-
-/* The type of a function passed to walk_subobject_offsets. */
-typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
-
-/* The stack itself. This is a dynamically resized array. The
- number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
-static int current_class_stack_size;
-static class_stack_node_t current_class_stack;
-
-/* The size of the largest empty class seen in this translation unit. */
-static GTY (()) tree sizeof_biggest_empty_class;
-
-/* An array of all local classes present in this translation unit, in
- declaration order. */
-vec<tree, va_gc> *local_classes;
-
-static tree get_vfield_name (tree);
-static void finish_struct_anon (tree);
-static tree get_vtable_name (tree);
-static tree get_basefndecls (tree, tree);
-static int build_primary_vtable (tree, tree);
-static int build_secondary_vtable (tree);
-static void finish_vtbls (tree);
-static void modify_vtable_entry (tree, tree, tree, tree, tree *);
-static void finish_struct_bits (tree);
-static int alter_access (tree, tree, tree);
-static void handle_using_decl (tree, tree);
-static tree dfs_modify_vtables (tree, void *);
-static tree modify_all_vtables (tree, tree);
-static void determine_primary_bases (tree);
-static void finish_struct_methods (tree);
-static void maybe_warn_about_overly_private_class (tree);
-static int method_name_cmp (const void *, const void *);
-static int resort_method_name_cmp (const void *, const void *);
-static void add_implicitly_declared_members (tree, tree*, int, int);
-static tree fixed_type_or_null (tree, int *, int *);
-static tree build_simple_base_path (tree expr, tree binfo);
-static tree build_vtbl_ref_1 (tree, tree);
-static void build_vtbl_initializer (tree, tree, tree, tree, int *,
- vec<constructor_elt, va_gc> **);
-static int count_fields (tree);
-static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
-static void insert_into_classtype_sorted_fields (tree, tree, int);
-static bool check_bitfield_decl (tree);
-static void check_field_decl (tree, tree, int *, int *, int *);
-static void check_field_decls (tree, tree *, int *, int *);
-static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
-static void build_base_fields (record_layout_info, splay_tree, tree *);
-static void check_methods (tree);
-static void remove_zero_width_bit_fields (tree);
-static void check_bases (tree, int *, int *);
-static void check_bases_and_members (tree);
-static tree create_vtable_ptr (tree, tree *);
-static void include_empty_classes (record_layout_info);
-static void layout_class_type (tree, tree *);
-static void propagate_binfo_offsets (tree, tree);
-static void layout_virtual_bases (record_layout_info, splay_tree);
-static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
-static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
-static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
-static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
-static void add_vcall_offset (tree, tree, vtbl_init_data *);
-static void layout_vtable_decl (tree, int);
-static tree dfs_find_final_overrider_pre (tree, void *);
-static tree dfs_find_final_overrider_post (tree, void *);
-static tree find_final_overrider (tree, tree, tree);
-static int make_new_vtable (tree, tree);
-static tree get_primary_binfo (tree);
-static int maybe_indent_hierarchy (FILE *, int, int);
-static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
-static void dump_class_hierarchy (tree);
-static void dump_class_hierarchy_1 (FILE *, int, tree);
-static void dump_array (FILE *, tree);
-static void dump_vtable (tree, tree, tree);
-static void dump_vtt (tree, tree);
-static void dump_thunk (FILE *, int, tree);
-static tree build_vtable (tree, tree, tree);
-static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
-static void layout_nonempty_base_or_field (record_layout_info,
- tree, tree, splay_tree);
-static tree end_of_class (tree, int);
-static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
-static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
- vec<constructor_elt, va_gc> **);
-static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
- vec<constructor_elt, va_gc> **);
-static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
-static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
-static void clone_constructors_and_destructors (tree);
-static tree build_clone (tree, tree);
-static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
-static void build_ctor_vtbl_group (tree, tree);
-static void build_vtt (tree);
-static tree binfo_ctor_vtable (tree);
-static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
- tree *);
-static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
-static tree dfs_fixup_binfo_vtbls (tree, void *);
-static int record_subobject_offset (tree, tree, splay_tree);
-static int check_subobject_offset (tree, tree, splay_tree);
-static int walk_subobject_offsets (tree, subobject_offset_fn,
- tree, splay_tree, tree, int);
-static void record_subobject_offsets (tree, tree, splay_tree, bool);
-static int layout_conflict_p (tree, tree, splay_tree, int);
-static int splay_tree_compare_integer_csts (splay_tree_key k1,
- splay_tree_key k2);
-static void warn_about_ambiguous_bases (tree);
-static bool type_requires_array_cookie (tree);
-static bool contains_empty_class_p (tree);
-static bool base_derived_from (tree, tree);
-static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
-static tree end_of_base (tree);
-static tree get_vcall_index (tree, tree);
-
-/* Variables shared between class.c and call.c. */
-
-int n_vtables = 0;
-int n_vtable_entries = 0;
-int n_vtable_searches = 0;
-int n_vtable_elems = 0;
-int n_convert_harshness = 0;
-int n_compute_conversion_costs = 0;
-int n_inner_fields_searched = 0;
-
-/* Convert to or from a base subobject. EXPR is an expression of type
- `A' or `A*', an expression of type `B' or `B*' is returned. To
- convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
- the B base instance within A. To convert base A to derived B, CODE
- is MINUS_EXPR and BINFO is the binfo for the A instance within B.
- In this latter case, A must not be a morally virtual base of B.
- NONNULL is true if EXPR is known to be non-NULL (this is only
- needed when EXPR is of pointer type). CV qualifiers are preserved
- from EXPR. */
-
-tree
-build_base_path (enum tree_code code,
- tree expr,
- tree binfo,
- int nonnull,
- tsubst_flags_t complain)
-{
- tree v_binfo = NULL_TREE;
- tree d_binfo = NULL_TREE;
- tree probe;
- tree offset;
- tree target_type;
- tree null_test = NULL;
- tree ptr_target_type;
- int fixed_type_p;
- int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
- bool has_empty = false;
- bool virtual_access;
-
- if (expr == error_mark_node || binfo == error_mark_node || !binfo)
- return error_mark_node;
-
- for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
- {
- d_binfo = probe;
- if (is_empty_class (BINFO_TYPE (probe)))
- has_empty = true;
- if (!v_binfo && BINFO_VIRTUAL_P (probe))
- v_binfo = probe;
- }
-
- probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
- if (want_pointer)
- probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
-
- if (code == PLUS_EXPR
- && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
- {
- /* This can happen when adjust_result_of_qualified_name_lookup can't
- find a unique base binfo in a call to a member function. We
- couldn't give the diagnostic then since we might have been calling
- a static member function, so we do it now. */
- if (complain & tf_error)
- {
- tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
- ba_unique, NULL, complain);
- gcc_assert (base == error_mark_node);
- }
- return error_mark_node;
- }
-
- gcc_assert ((code == MINUS_EXPR
- && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
- || code == PLUS_EXPR);
-
- if (binfo == d_binfo)
- /* Nothing to do. */
- return expr;
-
- if (code == MINUS_EXPR && v_binfo)
- {
- if (complain & tf_error)
- error ("cannot convert from base %qT to derived type %qT via "
- "virtual base %qT", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
- BINFO_TYPE (v_binfo));
- return error_mark_node;
- }
-
- if (!want_pointer)
- /* This must happen before the call to save_expr. */
- expr = cp_build_addr_expr (expr, complain);
- else
- expr = mark_rvalue_use (expr);
-
- offset = BINFO_OFFSET (binfo);
- fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
- target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
- /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
- cv-unqualified. Extract the cv-qualifiers from EXPR so that the
- expression returned matches the input. */
- target_type = cp_build_qualified_type
- (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
- ptr_target_type = build_pointer_type (target_type);
-
- /* Do we need to look in the vtable for the real offset? */
- virtual_access = (v_binfo && fixed_type_p <= 0);
-
- /* Don't bother with the calculations inside sizeof; they'll ICE if the
- source type is incomplete and the pointer value doesn't matter. In a
- template (even in fold_non_dependent_expr), we don't have vtables set
- up properly yet, and the value doesn't matter there either; we're just
- interested in the result of overload resolution. */
- if (cp_unevaluated_operand != 0
- || in_template_function ())
- {
- expr = build_nop (ptr_target_type, expr);
- if (!want_pointer)
- expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
- return expr;
- }
-
- /* If we're in an NSDMI, we don't have the full constructor context yet
- that we need for converting to a virtual base, so just build a stub
- CONVERT_EXPR and expand it later in bot_replace. */
- if (virtual_access && fixed_type_p < 0
- && current_scope () != current_function_decl)
- {
- expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
- CONVERT_EXPR_VBASE_PATH (expr) = true;
- if (!want_pointer)
- expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
- return expr;
- }
-
- /* Do we need to check for a null pointer? */
- if (want_pointer && !nonnull)
- {
- /* If we know the conversion will not actually change the value
- of EXPR, then we can avoid testing the expression for NULL.
- We have to avoid generating a COMPONENT_REF for a base class
- field, because other parts of the compiler know that such
- expressions are always non-NULL. */
- if (!virtual_access && integer_zerop (offset))
- return build_nop (ptr_target_type, expr);
- null_test = error_mark_node;
- }
-
- /* Protect against multiple evaluation if necessary. */
- if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
- expr = save_expr (expr);
-
- /* Now that we've saved expr, build the real null test. */
- if (null_test)
- {
- tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
- null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
- expr, zero);
- }
-
- /* If this is a simple base reference, express it as a COMPONENT_REF. */
- if (code == PLUS_EXPR && !virtual_access
- /* We don't build base fields for empty bases, and they aren't very
- interesting to the optimizers anyway. */
- && !has_empty)
- {
- expr = cp_build_indirect_ref (expr, RO_NULL, complain);
- expr = build_simple_base_path (expr, binfo);
- if (want_pointer)
- expr = build_address (expr);
- target_type = TREE_TYPE (expr);
- goto out;
- }
-
- if (virtual_access)
- {
- /* Going via virtual base V_BINFO. We need the static offset
- from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
- V_BINFO. That offset is an entry in D_BINFO's vtable. */
- tree v_offset;
-
- if (fixed_type_p < 0 && in_base_initializer)
- {
- /* In a base member initializer, we cannot rely on the
- vtable being set up. We have to indirect via the
- vtt_parm. */
- tree t;
-
- t = TREE_TYPE (TYPE_VFIELD (current_class_type));
- t = build_pointer_type (t);
- v_offset = convert (t, current_vtt_parm);
- v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
- }
- else
- v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
- complain),
- TREE_TYPE (TREE_TYPE (expr)));
-
- v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
- v_offset = build1 (NOP_EXPR,
- build_pointer_type (ptrdiff_type_node),
- v_offset);
- v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
- TREE_CONSTANT (v_offset) = 1;
-
- offset = convert_to_integer (ptrdiff_type_node,
- size_diffop_loc (input_location, offset,
- BINFO_OFFSET (v_binfo)));
-
- if (!integer_zerop (offset))
- v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
-
- if (fixed_type_p < 0)
- /* Negative fixed_type_p means this is a constructor or destructor;
- virtual base layout is fixed in in-charge [cd]tors, but not in
- base [cd]tors. */
- offset = build3 (COND_EXPR, ptrdiff_type_node,
- build2 (EQ_EXPR, boolean_type_node,
- current_in_charge_parm, integer_zero_node),
- v_offset,
- convert_to_integer (ptrdiff_type_node,
- BINFO_OFFSET (binfo)));
- else
- offset = v_offset;
- }
-
- if (want_pointer)
- target_type = ptr_target_type;
-
- expr = build1 (NOP_EXPR, ptr_target_type, expr);
-
- if (!integer_zerop (offset))
- {
- offset = fold_convert (sizetype, offset);
- if (code == MINUS_EXPR)
- offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
- expr = fold_build_pointer_plus (expr, offset);
- }
- else
- null_test = NULL;
-
- if (!want_pointer)
- expr = cp_build_indirect_ref (expr, RO_NULL, complain);
-
- out:
- if (null_test)
- expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
- build_zero_cst (target_type));
-
- return expr;
-}
-
-/* Subroutine of build_base_path; EXPR and BINFO are as in that function.
- Perform a derived-to-base conversion by recursively building up a
- sequence of COMPONENT_REFs to the appropriate base fields. */
-
-static tree
-build_simple_base_path (tree expr, tree binfo)
-{
- tree type = BINFO_TYPE (binfo);
- tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
- tree field;
-
- if (d_binfo == NULL_TREE)
- {
- tree temp;
-
- gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
-
- /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
- into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
- an lvalue in the front end; only _DECLs and _REFs are lvalues
- in the back end. */
- temp = unary_complex_lvalue (ADDR_EXPR, expr);
- if (temp)
- expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
-
- return expr;
- }
-
- /* Recurse. */
- expr = build_simple_base_path (expr, d_binfo);
-
- for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
- field; field = DECL_CHAIN (field))
- /* Is this the base field created by build_base_field? */
- if (TREE_CODE (field) == FIELD_DECL
- && DECL_FIELD_IS_BASE (field)
- && TREE_TYPE (field) == type
- /* If we're looking for a field in the most-derived class,
- also check the field offset; we can have two base fields
- of the same type if one is an indirect virtual base and one
- is a direct non-virtual base. */
- && (BINFO_INHERITANCE_CHAIN (d_binfo)
- || tree_int_cst_equal (byte_position (field),
- BINFO_OFFSET (binfo))))
- {
- /* We don't use build_class_member_access_expr here, as that
- has unnecessary checks, and more importantly results in
- recursive calls to dfs_walk_once. */
- int type_quals = cp_type_quals (TREE_TYPE (expr));
-
- expr = build3 (COMPONENT_REF,
- cp_build_qualified_type (type, type_quals),
- expr, field, NULL_TREE);
- expr = fold_if_not_in_template (expr);
-
- /* Mark the expression const or volatile, as appropriate.
- Even though we've dealt with the type above, we still have
- to mark the expression itself. */
- if (type_quals & TYPE_QUAL_CONST)
- TREE_READONLY (expr) = 1;
- if (type_quals & TYPE_QUAL_VOLATILE)
- TREE_THIS_VOLATILE (expr) = 1;
-
- return expr;
- }
-
- /* Didn't find the base field?!? */
- gcc_unreachable ();
-}
-
-/* Convert OBJECT to the base TYPE. OBJECT is an expression whose
- type is a class type or a pointer to a class type. In the former
- case, TYPE is also a class type; in the latter it is another
- pointer type. If CHECK_ACCESS is true, an error message is emitted
- if TYPE is inaccessible. If OBJECT has pointer type, the value is
- assumed to be non-NULL. */
-
-tree
-convert_to_base (tree object, tree type, bool check_access, bool nonnull,
- tsubst_flags_t complain)
-{
- tree binfo;
- tree object_type;
-
- if (TYPE_PTR_P (TREE_TYPE (object)))
- {
- object_type = TREE_TYPE (TREE_TYPE (object));
- type = TREE_TYPE (type);
- }
- else
- object_type = TREE_TYPE (object);
-
- binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
- NULL, complain);
- if (!binfo || binfo == error_mark_node)
- return error_mark_node;
-
- return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
-}
-
-/* EXPR is an expression with unqualified class type. BASE is a base
- binfo of that class type. Returns EXPR, converted to the BASE
- type. This function assumes that EXPR is the most derived class;
- therefore virtual bases can be found at their static offsets. */
-
-tree
-convert_to_base_statically (tree expr, tree base)
-{
- tree expr_type;
-
- expr_type = TREE_TYPE (expr);
- if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
- {
- /* If this is a non-empty base, use a COMPONENT_REF. */
- if (!is_empty_class (BINFO_TYPE (base)))
- return build_simple_base_path (expr, base);
-
- /* We use fold_build2 and fold_convert below to simplify the trees
- provided to the optimizers. It is not safe to call these functions
- when processing a template because they do not handle C++-specific
- trees. */
- gcc_assert (!processing_template_decl);
- expr = cp_build_addr_expr (expr, tf_warning_or_error);
- if (!integer_zerop (BINFO_OFFSET (base)))
- expr = fold_build_pointer_plus_loc (input_location,
- expr, BINFO_OFFSET (base));
- expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
- expr = build_fold_indirect_ref_loc (input_location, expr);
- }
-
- return expr;
-}
-
-
-tree
-build_vfield_ref (tree datum, tree type)
-{
- tree vfield, vcontext;
-
- if (datum == error_mark_node)
- return error_mark_node;
-
- /* First, convert to the requested type. */
- if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
- datum = convert_to_base (datum, type, /*check_access=*/false,
- /*nonnull=*/true, tf_warning_or_error);
-
- /* Second, the requested type may not be the owner of its own vptr.
- If not, convert to the base class that owns it. We cannot use
- convert_to_base here, because VCONTEXT may appear more than once
- in the inheritance hierarchy of TYPE, and thus direct conversion
- between the types may be ambiguous. Following the path back up
- one step at a time via primary bases avoids the problem. */
- vfield = TYPE_VFIELD (type);
- vcontext = DECL_CONTEXT (vfield);
- while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
- {
- datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
- type = TREE_TYPE (datum);
- }
-
- return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
-}
-
-/* Given an object INSTANCE, return an expression which yields the
- vtable element corresponding to INDEX. There are many special
- cases for INSTANCE which we take care of here, mainly to avoid
- creating extra tree nodes when we don't have to. */
-
-static tree
-build_vtbl_ref_1 (tree instance, tree idx)
-{
- tree aref;
- tree vtbl = NULL_TREE;
-
- /* Try to figure out what a reference refers to, and
- access its virtual function table directly. */
-
- int cdtorp = 0;
- tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
-
- tree basetype = non_reference (TREE_TYPE (instance));
-
- if (fixed_type && !cdtorp)
- {
- tree binfo = lookup_base (fixed_type, basetype,
- ba_unique, NULL, tf_none);
- if (binfo && binfo != error_mark_node)
- vtbl = unshare_expr (BINFO_VTABLE (binfo));
- }
-
- if (!vtbl)
- vtbl = build_vfield_ref (instance, basetype);
-
- aref = build_array_ref (input_location, vtbl, idx);
- TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
-
- return aref;
-}
-
-tree
-build_vtbl_ref (tree instance, tree idx)
-{
- tree aref = build_vtbl_ref_1 (instance, idx);
-
- return aref;
-}
-
-/* Given a stable object pointer INSTANCE_PTR, return an expression which
- yields a function pointer corresponding to vtable element INDEX. */
-
-tree
-build_vfn_ref (tree instance_ptr, tree idx)
-{
- tree aref;
-
- aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
- tf_warning_or_error),
- idx);
-
- /* When using function descriptors, the address of the
- vtable entry is treated as a function pointer. */
- if (TARGET_VTABLE_USES_DESCRIPTORS)
- aref = build1 (NOP_EXPR, TREE_TYPE (aref),
- cp_build_addr_expr (aref, tf_warning_or_error));
-
- /* Remember this as a method reference, for later devirtualization. */
- aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
-
- return aref;
-}
-
-/* Return the name of the virtual function table (as an IDENTIFIER_NODE)
- for the given TYPE. */
-
-static tree
-get_vtable_name (tree type)
-{
- return mangle_vtbl_for_type (type);
-}
-
-/* DECL is an entity associated with TYPE, like a virtual table or an
- implicitly generated constructor. Determine whether or not DECL
- should have external or internal linkage at the object file
- level. This routine does not deal with COMDAT linkage and other
- similar complexities; it simply sets TREE_PUBLIC if it possible for
- entities in other translation units to contain copies of DECL, in
- the abstract. */
-
-void
-set_linkage_according_to_type (tree /*type*/, tree decl)
-{
- TREE_PUBLIC (decl) = 1;
- determine_visibility (decl);
-}
-
-/* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
- (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
- Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
-
-static tree
-build_vtable (tree class_type, tree name, tree vtable_type)
-{
- tree decl;
-
- decl = build_lang_decl (VAR_DECL, name, vtable_type);
- /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
- now to avoid confusion in mangle_decl. */
- SET_DECL_ASSEMBLER_NAME (decl, name);
- DECL_CONTEXT (decl) = class_type;
- DECL_ARTIFICIAL (decl) = 1;
- TREE_STATIC (decl) = 1;
- TREE_READONLY (decl) = 1;
- DECL_VIRTUAL_P (decl) = 1;
- DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
- DECL_VTABLE_OR_VTT_P (decl) = 1;
- /* At one time the vtable info was grabbed 2 words at a time. This
- fails on sparc unless you have 8-byte alignment. (tiemann) */
- DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
- DECL_ALIGN (decl));
- set_linkage_according_to_type (class_type, decl);
- /* The vtable has not been defined -- yet. */
- DECL_EXTERNAL (decl) = 1;
- DECL_NOT_REALLY_EXTERN (decl) = 1;
-
- /* Mark the VAR_DECL node representing the vtable itself as a
- "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
- is rather important that such things be ignored because any
- effort to actually generate DWARF for them will run into
- trouble when/if we encounter code like:
-
- #pragma interface
- struct S { virtual void member (); };
-
- because the artificial declaration of the vtable itself (as
- manufactured by the g++ front end) will say that the vtable is
- a static member of `S' but only *after* the debug output for
- the definition of `S' has already been output. This causes
- grief because the DWARF entry for the definition of the vtable
- will try to refer back to an earlier *declaration* of the
- vtable as a static member of `S' and there won't be one. We
- might be able to arrange to have the "vtable static member"
- attached to the member list for `S' before the debug info for
- `S' get written (which would solve the problem) but that would
- require more intrusive changes to the g++ front end. */
- DECL_IGNORED_P (decl) = 1;
-
- return decl;
-}
-
-/* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
- or even complete. If this does not exist, create it. If COMPLETE is
- nonzero, then complete the definition of it -- that will render it
- impossible to actually build the vtable, but is useful to get at those
- which are known to exist in the runtime. */
-
-tree
-get_vtable_decl (tree type, int complete)
-{
- tree decl;
-
- if (CLASSTYPE_VTABLES (type))
- return CLASSTYPE_VTABLES (type);
-
- decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
- CLASSTYPE_VTABLES (type) = decl;
-
- if (complete)
- {
- DECL_EXTERNAL (decl) = 1;
- cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
- }
-
- return decl;
-}
-
-/* Build the primary virtual function table for TYPE. If BINFO is
- non-NULL, build the vtable starting with the initial approximation
- that it is the same as the one which is the head of the association
- list. Returns a nonzero value if a new vtable is actually
- created. */
-
-static int
-build_primary_vtable (tree binfo, tree type)
-{
- tree decl;
- tree virtuals;
-
- decl = get_vtable_decl (type, /*complete=*/0);
-
- if (binfo)
- {
- if (BINFO_NEW_VTABLE_MARKED (binfo))
- /* We have already created a vtable for this base, so there's
- no need to do it again. */
- return 0;
-
- virtuals = copy_list (BINFO_VIRTUALS (binfo));
- TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
- DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
- DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
- }
- else
- {
- gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
- virtuals = NULL_TREE;
- }
-
- if (GATHER_STATISTICS)
- {
- n_vtables += 1;
- n_vtable_elems += list_length (virtuals);
- }
-
- /* Initialize the association list for this type, based
- on our first approximation. */
- BINFO_VTABLE (TYPE_BINFO (type)) = decl;
- BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
- SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
- return 1;
-}
-
-/* Give BINFO a new virtual function table which is initialized
- with a skeleton-copy of its original initialization. The only
- entry that changes is the `delta' entry, so we can really
- share a lot of structure.
-
- FOR_TYPE is the most derived type which caused this table to
- be needed.
-
- Returns nonzero if we haven't met BINFO before.
-
- The order in which vtables are built (by calling this function) for
- an object must remain the same, otherwise a binary incompatibility
- can result. */
-
-static int
-build_secondary_vtable (tree binfo)
-{
- if (BINFO_NEW_VTABLE_MARKED (binfo))
- /* We already created a vtable for this base. There's no need to
- do it again. */
- return 0;
-
- /* Remember that we've created a vtable for this BINFO, so that we
- don't try to do so again. */
- SET_BINFO_NEW_VTABLE_MARKED (binfo);
-
- /* Make fresh virtual list, so we can smash it later. */
- BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
-
- /* Secondary vtables are laid out as part of the same structure as
- the primary vtable. */
- BINFO_VTABLE (binfo) = NULL_TREE;
- return 1;
-}
-
-/* Create a new vtable for BINFO which is the hierarchy dominated by
- T. Return nonzero if we actually created a new vtable. */
-
-static int
-make_new_vtable (tree t, tree binfo)
-{
- if (binfo == TYPE_BINFO (t))
- /* In this case, it is *type*'s vtable we are modifying. We start
- with the approximation that its vtable is that of the
- immediate base class. */
- return build_primary_vtable (binfo, t);
- else
- /* This is our very own copy of `basetype' to play with. Later,
- we will fill in all the virtual functions that override the
- virtual functions in these base classes which are not defined
- by the current type. */
- return build_secondary_vtable (binfo);
-}
-
-/* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
- (which is in the hierarchy dominated by T) list FNDECL as its
- BV_FN. DELTA is the required constant adjustment from the `this'
- pointer where the vtable entry appears to the `this' required when
- the function is actually called. */
-
-static void
-modify_vtable_entry (tree t,
- tree binfo,
- tree fndecl,
- tree delta,
- tree *virtuals)
-{
- tree v;
-
- v = *virtuals;
-
- if (fndecl != BV_FN (v)
- || !tree_int_cst_equal (delta, BV_DELTA (v)))
- {
- /* We need a new vtable for BINFO. */
- if (make_new_vtable (t, binfo))
- {
- /* If we really did make a new vtable, we also made a copy
- of the BINFO_VIRTUALS list. Now, we have to find the
- corresponding entry in that list. */
- *virtuals = BINFO_VIRTUALS (binfo);
- while (BV_FN (*virtuals) != BV_FN (v))
- *virtuals = TREE_CHAIN (*virtuals);
- v = *virtuals;
- }
-
- BV_DELTA (v) = delta;
- BV_VCALL_INDEX (v) = NULL_TREE;
- BV_FN (v) = fndecl;
- }
-}
-
-
-/* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
- the USING_DECL naming METHOD. Returns true if the method could be
- added to the method vec. */
-
-bool
-add_method (tree type, tree method, tree using_decl)
-{
- unsigned slot;
- tree overload;
- bool template_conv_p = false;
- bool conv_p;
- vec<tree, va_gc> *method_vec;
- bool complete_p;
- bool insert_p = false;
- tree current_fns;
- tree fns;
-
- if (method == error_mark_node)
- return false;
-
- complete_p = COMPLETE_TYPE_P (type);
- conv_p = DECL_CONV_FN_P (method);
- if (conv_p)
- template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
- && DECL_TEMPLATE_CONV_FN_P (method));
-
- method_vec = CLASSTYPE_METHOD_VEC (type);
- if (!method_vec)
- {
- /* Make a new method vector. We start with 8 entries. We must
- allocate at least two (for constructors and destructors), and
- we're going to end up with an assignment operator at some
- point as well. */
- vec_alloc (method_vec, 8);
- /* Create slots for constructors and destructors. */
- method_vec->quick_push (NULL_TREE);
- method_vec->quick_push (NULL_TREE);
- CLASSTYPE_METHOD_VEC (type) = method_vec;
- }
-
- /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
- grok_special_member_properties (method);
-
- /* Constructors and destructors go in special slots. */
- if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
- slot = CLASSTYPE_CONSTRUCTOR_SLOT;
- else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
- {
- slot = CLASSTYPE_DESTRUCTOR_SLOT;
-
- if (TYPE_FOR_JAVA (type))
- {
- if (!DECL_ARTIFICIAL (method))
- error ("Java class %qT cannot have a destructor", type);
- else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
- error ("Java class %qT cannot have an implicit non-trivial "
- "destructor",
- type);
- }
- }
- else
- {
- tree m;
-
- insert_p = true;
- /* See if we already have an entry with this name. */
- for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
- vec_safe_iterate (method_vec, slot, &m);
- ++slot)
- {
- m = OVL_CURRENT (m);
- if (template_conv_p)
- {
- if (TREE_CODE (m) == TEMPLATE_DECL
- && DECL_TEMPLATE_CONV_FN_P (m))
- insert_p = false;
- break;
- }
- if (conv_p && !DECL_CONV_FN_P (m))
- break;
- if (DECL_NAME (m) == DECL_NAME (method))
- {
- insert_p = false;
- break;
- }
- if (complete_p
- && !DECL_CONV_FN_P (m)
- && DECL_NAME (m) > DECL_NAME (method))
- break;
- }
- }
- current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
-
- /* Check to see if we've already got this method. */
- for (fns = current_fns; fns; fns = OVL_NEXT (fns))
- {
- tree fn = OVL_CURRENT (fns);
- tree fn_type;
- tree method_type;
- tree parms1;
- tree parms2;
-
- if (TREE_CODE (fn) != TREE_CODE (method))
- continue;
-
- /* [over.load] Member function declarations with the
- same name and the same parameter types cannot be
- overloaded if any of them is a static member
- function declaration.
-
- [over.load] Member function declarations with the same name and
- the same parameter-type-list as well as member function template
- declarations with the same name, the same parameter-type-list, and
- the same template parameter lists cannot be overloaded if any of
- them, but not all, have a ref-qualifier.
-
- [namespace.udecl] When a using-declaration brings names
- from a base class into a derived class scope, member
- functions in the derived class override and/or hide member
- functions with the same name and parameter types in a base
- class (rather than conflicting). */
- fn_type = TREE_TYPE (fn);
- method_type = TREE_TYPE (method);
- parms1 = TYPE_ARG_TYPES (fn_type);
- parms2 = TYPE_ARG_TYPES (method_type);
-
- /* Compare the quals on the 'this' parm. Don't compare
- the whole types, as used functions are treated as
- coming from the using class in overload resolution. */
- if (! DECL_STATIC_FUNCTION_P (fn)
- && ! DECL_STATIC_FUNCTION_P (method)
- /* Either both or neither need to be ref-qualified for
- differing quals to allow overloading. */
- && (FUNCTION_REF_QUALIFIED (fn_type)
- == FUNCTION_REF_QUALIFIED (method_type))
- && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
- || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
- continue;
-
- /* For templates, the return type and template parameters
- must be identical. */
- if (TREE_CODE (fn) == TEMPLATE_DECL
- && (!same_type_p (TREE_TYPE (fn_type),
- TREE_TYPE (method_type))
- || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
- DECL_TEMPLATE_PARMS (method))))
- continue;
-
- if (! DECL_STATIC_FUNCTION_P (fn))
- parms1 = TREE_CHAIN (parms1);
- if (! DECL_STATIC_FUNCTION_P (method))
- parms2 = TREE_CHAIN (parms2);
-
- if (compparms (parms1, parms2)
- && (!DECL_CONV_FN_P (fn)
- || same_type_p (TREE_TYPE (fn_type),
- TREE_TYPE (method_type))))
- {
- /* For function versions, their parms and types match
- but they are not duplicates. Record function versions
- as and when they are found. extern "C" functions are
- not treated as versions. */
- if (TREE_CODE (fn) == FUNCTION_DECL
- && TREE_CODE (method) == FUNCTION_DECL
- && !DECL_EXTERN_C_P (fn)
- && !DECL_EXTERN_C_P (method)
- && targetm.target_option.function_versions (fn, method))
- {
- /* Mark functions as versions if necessary. Modify the mangled
- decl name if necessary. */
- if (!DECL_FUNCTION_VERSIONED (fn))
- {
- DECL_FUNCTION_VERSIONED (fn) = 1;
- if (DECL_ASSEMBLER_NAME_SET_P (fn))
- mangle_decl (fn);
- }
- if (!DECL_FUNCTION_VERSIONED (method))
- {
- DECL_FUNCTION_VERSIONED (method) = 1;
- if (DECL_ASSEMBLER_NAME_SET_P (method))
- mangle_decl (method);
- }
- record_function_versions (fn, method);
- continue;
- }
- if (DECL_INHERITED_CTOR_BASE (method))
- {
- if (DECL_INHERITED_CTOR_BASE (fn))
- {
- error_at (DECL_SOURCE_LOCATION (method),
- "%q#D inherited from %qT", method,
- DECL_INHERITED_CTOR_BASE (method));
- error_at (DECL_SOURCE_LOCATION (fn),
- "conflicts with version inherited from %qT",
- DECL_INHERITED_CTOR_BASE (fn));
- }
- /* Otherwise defer to the other function. */
- return false;
- }
- if (using_decl)
- {
- if (DECL_CONTEXT (fn) == type)
- /* Defer to the local function. */
- return false;
- }
- else
- {
- error ("%q+#D cannot be overloaded", method);
- error ("with %q+#D", fn);
- }
-
- /* We don't call duplicate_decls here to merge the
- declarations because that will confuse things if the
- methods have inline definitions. In particular, we
- will crash while processing the definitions. */
- return false;
- }
- }
-
- /* A class should never have more than one destructor. */
- if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
- return false;
-
- /* Add the new binding. */
- if (using_decl)
- {
- overload = ovl_cons (method, current_fns);
- OVL_USED (overload) = true;
- }
- else
- overload = build_overload (method, current_fns);
-
- if (conv_p)
- TYPE_HAS_CONVERSION (type) = 1;
- else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
- push_class_level_binding (DECL_NAME (method), overload);
-
- if (insert_p)
- {
- bool reallocated;
-
- /* We only expect to add few methods in the COMPLETE_P case, so
- just make room for one more method in that case. */
- if (complete_p)
- reallocated = vec_safe_reserve_exact (method_vec, 1);
- else
- reallocated = vec_safe_reserve (method_vec, 1);
- if (reallocated)
- CLASSTYPE_METHOD_VEC (type) = method_vec;
- if (slot == method_vec->length ())
- method_vec->quick_push (overload);
- else
- method_vec->quick_insert (slot, overload);
- }
- else
- /* Replace the current slot. */
- (*method_vec)[slot] = overload;
- return true;
-}
-
-/* Subroutines of finish_struct. */
-
-/* Change the access of FDECL to ACCESS in T. Return 1 if change was
- legit, otherwise return 0. */
-
-static int
-alter_access (tree t, tree fdecl, tree access)
-{
- tree elem;
-
- if (!DECL_LANG_SPECIFIC (fdecl))
- retrofit_lang_decl (fdecl);
-
- gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
-
- elem = purpose_member (t, DECL_ACCESS (fdecl));
- if (elem)
- {
- if (TREE_VALUE (elem) != access)
- {
- if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
- error ("conflicting access specifications for method"
- " %q+D, ignored", TREE_TYPE (fdecl));
- else
- error ("conflicting access specifications for field %qE, ignored",
- DECL_NAME (fdecl));
- }
- else
- {
- /* They're changing the access to the same thing they changed
- it to before. That's OK. */
- ;
- }
- }
- else
- {
- perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
- tf_warning_or_error);
- DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
- return 1;
- }
- return 0;
-}
-
-/* Process the USING_DECL, which is a member of T. */
-
-static void
-handle_using_decl (tree using_decl, tree t)
-{
- tree decl = USING_DECL_DECLS (using_decl);
- tree name = DECL_NAME (using_decl);
- tree access
- = TREE_PRIVATE (using_decl) ? access_private_node
- : TREE_PROTECTED (using_decl) ? access_protected_node
- : access_public_node;
- tree flist = NULL_TREE;
- tree old_value;
-
- gcc_assert (!processing_template_decl && decl);
-
- old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
- tf_warning_or_error);
- if (old_value)
- {
- if (is_overloaded_fn (old_value))
- old_value = OVL_CURRENT (old_value);
-
- if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
- /* OK */;
- else
- old_value = NULL_TREE;
- }
-
- cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
-
- if (is_overloaded_fn (decl))
- flist = decl;
-
- if (! old_value)
- ;
- else if (is_overloaded_fn (old_value))
- {
- if (flist)
- /* It's OK to use functions from a base when there are functions with
- the same name already present in the current class. */;
- else
- {
- error ("%q+D invalid in %q#T", using_decl, t);
- error (" because of local method %q+#D with same name",
- OVL_CURRENT (old_value));
- return;
- }
- }
- else if (!DECL_ARTIFICIAL (old_value))
- {
- error ("%q+D invalid in %q#T", using_decl, t);
- error (" because of local member %q+#D with same name", old_value);
- return;
- }
-
- /* Make type T see field decl FDECL with access ACCESS. */
- if (flist)
- for (; flist; flist = OVL_NEXT (flist))
- {
- add_method (t, OVL_CURRENT (flist), using_decl);
- alter_access (t, OVL_CURRENT (flist), access);
- }
- else
- alter_access (t, decl, access);
-}
-
-/* walk_tree callback for check_abi_tags: if the type at *TP involves any
- types with abi tags, add the corresponding identifiers to the VEC in
- *DATA and set IDENTIFIER_MARKED. */
-
-struct abi_tag_data
-{
- tree t;
- tree subob;
-};
-
-static tree
-find_abi_tags_r (tree *tp, int */*walk_subtrees*/, void *data)
-{
- if (!TAGGED_TYPE_P (*tp))
- return NULL_TREE;
-
- if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
- {
- struct abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
- for (tree list = TREE_VALUE (attributes); list;
- list = TREE_CHAIN (list))
- {
- tree tag = TREE_VALUE (list);
- tree id = get_identifier (TREE_STRING_POINTER (tag));
- if (!IDENTIFIER_MARKED (id))
- {
- if (TYPE_P (p->subob))
- {
- warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
- "that base %qT has", p->t, tag, p->subob);
- inform (location_of (p->subob), "%qT declared here",
- p->subob);
- }
- else
- {
- warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
- "that %qT (used in the type of %qD) has",
- p->t, tag, *tp, p->subob);
- inform (location_of (p->subob), "%qD declared here",
- p->subob);
- inform (location_of (*tp), "%qT declared here", *tp);
- }
- }
- }
- }
- return NULL_TREE;
-}
-
-/* Check that class T has all the abi tags that subobject SUBOB has, or
- warn if not. */
-
-static void
-check_abi_tags (tree t, tree subob)
-{
- tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
- if (attributes)
- {
- for (tree list = TREE_VALUE (attributes); list;
- list = TREE_CHAIN (list))
- {
- tree tag = TREE_VALUE (list);
- tree id = get_identifier (TREE_STRING_POINTER (tag));
- IDENTIFIER_MARKED (id) = true;
- }
- }
-
- tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
- struct abi_tag_data data = { t, subob };
-
- cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
-
- if (attributes)
- {
- for (tree list = TREE_VALUE (attributes); list;
- list = TREE_CHAIN (list))
- {
- tree tag = TREE_VALUE (list);
- tree id = get_identifier (TREE_STRING_POINTER (tag));
- IDENTIFIER_MARKED (id) = false;
- }
- }
-}
-
-/* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
- and NO_CONST_ASN_REF_P. Also set flag bits in T based on
- properties of the bases. */
-
-static void
-check_bases (tree t,
- int* cant_have_const_ctor_p,
- int* no_const_asn_ref_p)
-{
- int i;
- bool seen_non_virtual_nearly_empty_base_p = 0;
- int seen_tm_mask = 0;
- tree base_binfo;
- tree binfo;
- tree field = NULL_TREE;
-
- if (!CLASSTYPE_NON_STD_LAYOUT (t))
- for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
- if (TREE_CODE (field) == FIELD_DECL)
- break;
-
- for (binfo = TYPE_BINFO (t), i = 0;
- BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
- {
- tree basetype = TREE_TYPE (base_binfo);
-
- gcc_assert (COMPLETE_TYPE_P (basetype));
-
- if (CLASSTYPE_FINAL (basetype))
- error ("cannot derive from %<final%> base %qT in derived type %qT",
- basetype, t);
-
- /* If any base class is non-literal, so is the derived class. */
- if (!CLASSTYPE_LITERAL_P (basetype))
- CLASSTYPE_LITERAL_P (t) = false;
-
- /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
- here because the case of virtual functions but non-virtual
- dtor is handled in finish_struct_1. */
- if (!TYPE_POLYMORPHIC_P (basetype))
- warning (OPT_Weffc__,
- "base class %q#T has a non-virtual destructor", basetype);
-
- /* If the base class doesn't have copy constructors or
- assignment operators that take const references, then the
- derived class cannot have such a member automatically
- generated. */
- if (TYPE_HAS_COPY_CTOR (basetype)
- && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
- *cant_have_const_ctor_p = 1;
- if (TYPE_HAS_COPY_ASSIGN (basetype)
- && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
- *no_const_asn_ref_p = 1;
-
- if (BINFO_VIRTUAL_P (base_binfo))
- /* A virtual base does not effect nearly emptiness. */
- ;
- else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
- {
- if (seen_non_virtual_nearly_empty_base_p)
- /* And if there is more than one nearly empty base, then the
- derived class is not nearly empty either. */
- CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
- else
- /* Remember we've seen one. */
- seen_non_virtual_nearly_empty_base_p = 1;
- }
- else if (!is_empty_class (basetype))
- /* If the base class is not empty or nearly empty, then this
- class cannot be nearly empty. */
- CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
-
- /* A lot of properties from the bases also apply to the derived
- class. */
- TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
- TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
- |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
- TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
- |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
- || !TYPE_HAS_COPY_ASSIGN (basetype));
- TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
- || !TYPE_HAS_COPY_CTOR (basetype));
- TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
- |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
- TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
- TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
- CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
- |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
- TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
- || TYPE_HAS_COMPLEX_DFLT (basetype));
-
- /* A standard-layout class is a class that:
- ...
- * has no non-standard-layout base classes, */
- CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
- if (!CLASSTYPE_NON_STD_LAYOUT (t))
- {
- tree basefield;
- /* ...has no base classes of the same type as the first non-static
- data member... */
- if (field && DECL_CONTEXT (field) == t
- && (same_type_ignoring_top_level_qualifiers_p
- (TREE_TYPE (field), basetype)))
- CLASSTYPE_NON_STD_LAYOUT (t) = 1;
- else
- /* ...either has no non-static data members in the most-derived
- class and at most one base class with non-static data
- members, or has no base classes with non-static data
- members */
- for (basefield = TYPE_FIELDS (basetype); basefield;
- basefield = DECL_CHAIN (basefield))
- if (TREE_CODE (basefield) == FIELD_DECL)
- {
- if (field)
- CLASSTYPE_NON_STD_LAYOUT (t) = 1;
- else
- field = basefield;
- break;
- }
- }
-
- /* Don't bother collecting tm attributes if transactional memory
- support is not enabled. */
- if (flag_tm)
- {
- tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
- if (tm_attr)
- seen_tm_mask |= tm_attr_to_mask (tm_attr);
- }
-
- check_abi_tags (t, basetype);
- }
-
- /* If one of the base classes had TM attributes, and the current class
- doesn't define its own, then the current class inherits one. */
- if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
- {
- tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
- TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
- }
-}
-
-/* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
- those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
- that have had a nearly-empty virtual primary base stolen by some
- other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
- T. */
-
-static void
-determine_primary_bases (tree t)
-{
- unsigned i;
- tree primary = NULL_TREE;
- tree type_binfo = TYPE_BINFO (t);
- tree base_binfo;
-
- /* Determine the primary bases of our bases. */
- for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
- base_binfo = TREE_CHAIN (base_binfo))
- {
- tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
-
- /* See if we're the non-virtual primary of our inheritance
- chain. */
- if (!BINFO_VIRTUAL_P (base_binfo))
- {
- tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
- tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
-
- if (parent_primary
- && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
- BINFO_TYPE (parent_primary)))
- /* We are the primary binfo. */
- BINFO_PRIMARY_P (base_binfo) = 1;
- }
- /* Determine if we have a virtual primary base, and mark it so.
- */
- if (primary && BINFO_VIRTUAL_P (primary))
- {
- tree this_primary = copied_binfo (primary, base_binfo);
-
- if (BINFO_PRIMARY_P (this_primary))
- /* Someone already claimed this base. */
- BINFO_LOST_PRIMARY_P (base_binfo) = 1;
- else
- {
- tree delta;
-
- BINFO_PRIMARY_P (this_primary) = 1;
- BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
-
- /* A virtual binfo might have been copied from within
- another hierarchy. As we're about to use it as a
- primary base, make sure the offsets match. */
- delta = size_diffop_loc (input_location,
- convert (ssizetype,
- BINFO_OFFSET (base_binfo)),
- convert (ssizetype,
- BINFO_OFFSET (this_primary)));
-
- propagate_binfo_offsets (this_primary, delta);
- }
- }
- }
-
- /* First look for a dynamic direct non-virtual base. */
- for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
- {
- tree basetype = BINFO_TYPE (base_binfo);
-
- if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
- {
- primary = base_binfo;
- goto found;
- }
- }
-
- /* A "nearly-empty" virtual base class can be the primary base
- class, if no non-virtual polymorphic base can be found. Look for
- a nearly-empty virtual dynamic base that is not already a primary
- base of something in the hierarchy. If there is no such base,
- just pick the first nearly-empty virtual base. */
-
- for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
- base_binfo = TREE_CHAIN (base_binfo))
- if (BINFO_VIRTUAL_P (base_binfo)
- && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
- {
- if (!BINFO_PRIMARY_P (base_binfo))
- {
- /* Found one that is not primary. */
- primary = base_binfo;
- goto found;
- }
- else if (!primary)
- /* Remember the first candidate. */
- primary = base_binfo;
- }
-
- found:
- /* If we've got a primary base, use it. */
- if (primary)
- {
- tree basetype = BINFO_TYPE (primary);
-
- CLASSTYPE_PRIMARY_BINFO (t) = primary;
- if (BINFO_PRIMARY_P (primary))
- /* We are stealing a primary base. */
- BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
- BINFO_PRIMARY_P (primary) = 1;
- if (BINFO_VIRTUAL_P (primary))
- {
- tree delta;
-
- BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
- /* A virtual binfo might have been copied from within
- another hierarchy. As we're about to use it as a primary
- base, make sure the offsets match. */
- delta = size_diffop_loc (input_location, ssize_int (0),
- convert (ssizetype, BINFO_OFFSET (primary)));
-
- propagate_binfo_offsets (primary, delta);
- }
-
- primary = TYPE_BINFO (basetype);
-
- TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
- BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
- BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
- }
-}
-
-/* Update the variant types of T. */
-
-void
-fixup_type_variants (tree t)
-{
- tree variants;
-
- if (!t)
- return;
-
- for (variants = TYPE_NEXT_VARIANT (t);
- variants;
- variants = TYPE_NEXT_VARIANT (variants))
- {
- /* These fields are in the _TYPE part of the node, not in
- the TYPE_LANG_SPECIFIC component, so they are not shared. */
- TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
- TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
- TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
- = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
-
- TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
-
- TYPE_BINFO (variants) = TYPE_BINFO (t);
-
- /* Copy whatever these are holding today. */
- TYPE_VFIELD (variants) = TYPE_VFIELD (t);
- TYPE_METHODS (variants) = TYPE_METHODS (t);
- TYPE_FIELDS (variants) = TYPE_FIELDS (t);
- }
-}
-
-/* Early variant fixups: we apply attributes at the beginning of the class
- definition, and we need to fix up any variants that have already been
- made via elaborated-type-specifier so that check_qualified_type works. */
-
-void
-fixup_attribute_variants (tree t)
-{
- tree variants;
-
- if (!t)
- return;
-
- for (variants = TYPE_NEXT_VARIANT (t);
- variants;
- variants = TYPE_NEXT_VARIANT (variants))
- {
- /* These are the two fields that check_qualified_type looks at and
- are affected by attributes. */
- TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
- TYPE_ALIGN (variants) = TYPE_ALIGN (t);
- }
-}
-
-/* Set memoizing fields and bits of T (and its variants) for later
- use. */
-
-static void
-finish_struct_bits (tree t)
-{
- /* Fix up variants (if any). */
- fixup_type_variants (t);
-
- if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
- /* For a class w/o baseclasses, 'finish_struct' has set
- CLASSTYPE_PURE_VIRTUALS correctly (by definition).
- Similarly for a class whose base classes do not have vtables.
- When neither of these is true, we might have removed abstract
- virtuals (by providing a definition), added some (by declaring
- new ones), or redeclared ones from a base class. We need to
- recalculate what's really an abstract virtual at this point (by
- looking in the vtables). */
- get_pure_virtuals (t);
-
- /* If this type has a copy constructor or a destructor, force its
- mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
- nonzero. This will cause it to be passed by invisible reference
- and prevent it from being returned in a register. */
- if (type_has_nontrivial_copy_init (t)
- || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
- {
- tree variants;
- DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
- for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
- {
- SET_TYPE_MODE (variants, BLKmode);
- TREE_ADDRESSABLE (variants) = 1;
- }
- }
-}
-
-/* Issue warnings about T having private constructors, but no friends,
- and so forth.
-
- HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
- static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
- non-private static member functions. */
-
-static void
-maybe_warn_about_overly_private_class (tree t)
-{
- int has_member_fn = 0;
- int has_nonprivate_method = 0;
- tree fn;
-
- if (!warn_ctor_dtor_privacy
- /* If the class has friends, those entities might create and
- access instances, so we should not warn. */
- || (CLASSTYPE_FRIEND_CLASSES (t)
- || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
- /* We will have warned when the template was declared; there's
- no need to warn on every instantiation. */
- || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
- /* There's no reason to even consider warning about this
- class. */
- return;
-
- /* We only issue one warning, if more than one applies, because
- otherwise, on code like:
-
- class A {
- // Oops - forgot `public:'
- A();
- A(const A&);
- ~A();
- };
-
- we warn several times about essentially the same problem. */
-
- /* Check to see if all (non-constructor, non-destructor) member
- functions are private. (Since there are no friends or
- non-private statics, we can't ever call any of the private member
- functions.) */
- for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
- /* We're not interested in compiler-generated methods; they don't
- provide any way to call private members. */
- if (!DECL_ARTIFICIAL (fn))
- {
- if (!TREE_PRIVATE (fn))
- {
- if (DECL_STATIC_FUNCTION_P (fn))
- /* A non-private static member function is just like a
- friend; it can create and invoke private member
- functions, and be accessed without a class
- instance. */
- return;
-
- has_nonprivate_method = 1;
- /* Keep searching for a static member function. */
- }
- else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
- has_member_fn = 1;
- }
-
- if (!has_nonprivate_method && has_member_fn)
- {
- /* There are no non-private methods, and there's at least one
- private member function that isn't a constructor or
- destructor. (If all the private members are
- constructors/destructors we want to use the code below that
- issues error messages specifically referring to
- constructors/destructors.) */
- unsigned i;
- tree binfo = TYPE_BINFO (t);
-
- for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
- if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
- {
- has_nonprivate_method = 1;
- break;
- }
- if (!has_nonprivate_method)
- {
- warning (OPT_Wctor_dtor_privacy,
- "all member functions in class %qT are private", t);
- return;
- }
- }
-
- /* Even if some of the member functions are non-private, the class
- won't be useful for much if all the constructors or destructors
- are private: such an object can never be created or destroyed. */
- fn = CLASSTYPE_DESTRUCTORS (t);
- if (fn && TREE_PRIVATE (fn))
- {
- warning (OPT_Wctor_dtor_privacy,
- "%q#T only defines a private destructor and has no friends",
- t);
- return;
- }
-
- /* Warn about classes that have private constructors and no friends. */
- if (TYPE_HAS_USER_CONSTRUCTOR (t)
- /* Implicitly generated constructors are always public. */
- && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
- || !CLASSTYPE_LAZY_COPY_CTOR (t)))
- {
- int nonprivate_ctor = 0;
-
- /* If a non-template class does not define a copy
- constructor, one is defined for it, enabling it to avoid
- this warning. For a template class, this does not
- happen, and so we would normally get a warning on:
-
- template <class T> class C { private: C(); };
-
- To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
- complete non-template or fully instantiated classes have this
- flag set. */
- if (!TYPE_HAS_COPY_CTOR (t))
- nonprivate_ctor = 1;
- else
- for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
- {
- tree ctor = OVL_CURRENT (fn);
- /* Ideally, we wouldn't count copy constructors (or, in
- fact, any constructor that takes an argument of the
- class type as a parameter) because such things cannot
- be used to construct an instance of the class unless
- you already have one. But, for now at least, we're
- more generous. */
- if (! TREE_PRIVATE (ctor))
- {
- nonprivate_ctor = 1;
- break;
- }
- }
-
- if (nonprivate_ctor == 0)
- {
- warning (OPT_Wctor_dtor_privacy,
- "%q#T only defines private constructors and has no friends",
- t);
- return;
- }
- }
-}
-
-static struct {
- gt_pointer_operator new_value;
- void *cookie;
-} resort_data;
-
-/* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
-
-static int
-method_name_cmp (const void* m1_p, const void* m2_p)
-{
- const tree *const m1 = (const tree *) m1_p;
- const tree *const m2 = (const tree *) m2_p;
-
- if (*m1 == NULL_TREE && *m2 == NULL_TREE)
- return 0;
- if (*m1 == NULL_TREE)
- return -1;
- if (*m2 == NULL_TREE)
- return 1;
- if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
- return -1;
- return 1;
-}
-
-/* This routine compares two fields like method_name_cmp but using the
- pointer operator in resort_field_decl_data. */
-
-static int
-resort_method_name_cmp (const void* m1_p, const void* m2_p)
-{
- const tree *const m1 = (const tree *) m1_p;
- const tree *const m2 = (const tree *) m2_p;
- if (*m1 == NULL_TREE && *m2 == NULL_TREE)
- return 0;
- if (*m1 == NULL_TREE)
- return -1;
- if (*m2 == NULL_TREE)
- return 1;
- {
- tree d1 = DECL_NAME (OVL_CURRENT (*m1));
- tree d2 = DECL_NAME (OVL_CURRENT (*m2));
- resort_data.new_value (&d1, resort_data.cookie);
- resort_data.new_value (&d2, resort_data.cookie);
- if (d1 < d2)
- return -1;
- }
- return 1;
-}
-
-/* Resort TYPE_METHOD_VEC because pointers have been reordered. */
-
-void
-resort_type_method_vec (void* obj,
- void* /*orig_obj*/,
- gt_pointer_operator new_value,
- void* cookie)
-{
- vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
- int len = vec_safe_length (method_vec);
- size_t slot;
- tree fn;
-
- /* The type conversion ops have to live at the front of the vec, so we
- can't sort them. */
- for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
- vec_safe_iterate (method_vec, slot, &fn);
- ++slot)
- if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
- break;
-
- if (len - slot > 1)
- {
- resort_data.new_value = new_value;
- resort_data.cookie = cookie;
- qsort (method_vec->address () + slot, len - slot, sizeof (tree),
- resort_method_name_cmp);
- }
-}
-
-/* Warn about duplicate methods in fn_fields.
-
- Sort methods that are not special (i.e., constructors, destructors,
- and type conversion operators) so that we can find them faster in
- search. */
-
-static void
-finish_struct_methods (tree t)
-{
- tree fn_fields;
- vec<tree, va_gc> *method_vec;
- int slot, len;
-
- method_vec = CLASSTYPE_METHOD_VEC (t);
- if (!method_vec)
- return;
-
- len = method_vec->length ();
-
- /* Clear DECL_IN_AGGR_P for all functions. */
- for (fn_fields = TYPE_METHODS (t); fn_fields;
- fn_fields = DECL_CHAIN (fn_fields))
- DECL_IN_AGGR_P (fn_fields) = 0;
-
- /* Issue warnings about private constructors and such. If there are
- no methods, then some public defaults are generated. */
- maybe_warn_about_overly_private_class (t);
-
- /* The type conversion ops have to live at the front of the vec, so we
- can't sort them. */
- for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
- method_vec->iterate (slot, &fn_fields);
- ++slot)
- if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
- break;
- if (len - slot > 1)
- qsort (method_vec->address () + slot,
- len-slot, sizeof (tree), method_name_cmp);
-}
-
-/* Make BINFO's vtable have N entries, including RTTI entries,
- vbase and vcall offsets, etc. Set its type and call the back end
- to lay it out. */
-
-static void
-layout_vtable_decl (tree binfo, int n)
-{
- tree atype;
- tree vtable;
-
- atype = build_array_of_n_type (vtable_entry_type, n);
- layout_type (atype);
-
- /* We may have to grow the vtable. */
- vtable = get_vtbl_decl_for_binfo (binfo);
- if (!same_type_p (TREE_TYPE (vtable), atype))
- {
- TREE_TYPE (vtable) = atype;
- DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
- layout_decl (vtable, 0);
- }
-}
-
-/* True iff FNDECL and BASE_FNDECL (both non-static member functions)
- have the same signature. */
-
-int
-same_signature_p (const_tree fndecl, const_tree base_fndecl)
-{
- /* One destructor overrides another if they are the same kind of
- destructor. */
- if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
- && special_function_p (base_fndecl) == special_function_p (fndecl))
- return 1;
- /* But a non-destructor never overrides a destructor, nor vice
- versa, nor do different kinds of destructors override
- one-another. For example, a complete object destructor does not
- override a deleting destructor. */
- if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
- return 0;
-
- if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
- || (DECL_CONV_FN_P (fndecl)
- && DECL_CONV_FN_P (base_fndecl)
- && same_type_p (DECL_CONV_FN_TYPE (fndecl),
- DECL_CONV_FN_TYPE (base_fndecl))))
- {
- tree types, base_types;
- types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
- base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
- if ((cp_type_quals (TREE_TYPE (TREE_VALUE (base_types)))
- == cp_type_quals (TREE_TYPE (TREE_VALUE (types))))
- && (type_memfn_rqual (TREE_TYPE (fndecl))
- == type_memfn_rqual (TREE_TYPE (base_fndecl)))
- && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
- return 1;
- }
- return 0;
-}
-
-/* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
- subobject. */
-
-static bool
-base_derived_from (tree derived, tree base)
-{
- tree probe;
-
- for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
- {
- if (probe == derived)
- return true;
- else if (BINFO_VIRTUAL_P (probe))
- /* If we meet a virtual base, we can't follow the inheritance
- any more. See if the complete type of DERIVED contains
- such a virtual base. */
- return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
- != NULL_TREE);
- }
- return false;
-}
-
-typedef struct find_final_overrider_data_s {
- /* The function for which we are trying to find a final overrider. */
- tree fn;
- /* The base class in which the function was declared. */
- tree declaring_base;
- /* The candidate overriders. */
- tree candidates;
- /* Path to most derived. */
- vec<tree> path;
-} find_final_overrider_data;
-
-/* Add the overrider along the current path to FFOD->CANDIDATES.
- Returns true if an overrider was found; false otherwise. */
-
-static bool
-dfs_find_final_overrider_1 (tree binfo,
- find_final_overrider_data *ffod,
- unsigned depth)
-{
- tree method;
-
- /* If BINFO is not the most derived type, try a more derived class.
- A definition there will overrider a definition here. */
- if (depth)
- {
- depth--;
- if (dfs_find_final_overrider_1
- (ffod->path[depth], ffod, depth))
- return true;
- }
-
- method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
- if (method)
- {
- tree *candidate = &ffod->candidates;
-
- /* Remove any candidates overridden by this new function. */
- while (*candidate)
- {
- /* If *CANDIDATE overrides METHOD, then METHOD
- cannot override anything else on the list. */
- if (base_derived_from (TREE_VALUE (*candidate), binfo))
- return true;
- /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
- if (base_derived_from (binfo, TREE_VALUE (*candidate)))
- *candidate = TREE_CHAIN (*candidate);
- else
- candidate = &TREE_CHAIN (*candidate);
- }
-
- /* Add the new function. */
- ffod->candidates = tree_cons (method, binfo, ffod->candidates);
- return true;
- }
-
- return false;
-}
-
-/* Called from find_final_overrider via dfs_walk. */
-
-static tree
-dfs_find_final_overrider_pre (tree binfo, void *data)
-{
- find_final_overrider_data *ffod = (find_final_overrider_data *) data;
-
- if (binfo == ffod->declaring_base)
- dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
- ffod->path.safe_push (binfo);
-
- return NULL_TREE;
-}
-
-static tree
-dfs_find_final_overrider_post (tree /*binfo*/, void *data)
-{
- find_final_overrider_data *ffod = (find_final_overrider_data *) data;
- ffod->path.pop ();
-
- return NULL_TREE;
-}
-
-/* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
- FN and whose TREE_VALUE is the binfo for the base where the
- overriding occurs. BINFO (in the hierarchy dominated by the binfo
- DERIVED) is the base object in which FN is declared. */
-
-static tree
-find_final_overrider (tree derived, tree binfo, tree fn)
-{
- find_final_overrider_data ffod;
-
- /* Getting this right is a little tricky. This is valid:
-
- struct S { virtual void f (); };
- struct T { virtual void f (); };
- struct U : public S, public T { };
-
- even though calling `f' in `U' is ambiguous. But,
-
- struct R { virtual void f(); };
- struct S : virtual public R { virtual void f (); };
- struct T : virtual public R { virtual void f (); };
- struct U : public S, public T { };
-
- is not -- there's no way to decide whether to put `S::f' or
- `T::f' in the vtable for `R'.
-
- The solution is to look at all paths to BINFO. If we find
- different overriders along any two, then there is a problem. */
- if (DECL_THUNK_P (fn))
- fn = THUNK_TARGET (fn);
-
- /* Determine the depth of the hierarchy. */
- ffod.fn = fn;
- ffod.declaring_base = binfo;
- ffod.candidates = NULL_TREE;
- ffod.path.create (30);
-
- dfs_walk_all (derived, dfs_find_final_overrider_pre,
- dfs_find_final_overrider_post, &ffod);
-
- ffod.path.release ();
-
- /* If there was no winner, issue an error message. */
- if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
- return error_mark_node;
-
- return ffod.candidates;
-}
-
-/* Return the index of the vcall offset for FN when TYPE is used as a
- virtual base. */
-
-static tree
-get_vcall_index (tree fn, tree type)
-{
- vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
- tree_pair_p p;
- unsigned ix;
-
- FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
- if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
- || same_signature_p (fn, p->purpose))
- return p->value;
-
- /* There should always be an appropriate index. */
- gcc_unreachable ();
-}
-
-/* Update an entry in the vtable for BINFO, which is in the hierarchy
- dominated by T. FN is the old function; VIRTUALS points to the
- corresponding position in the new BINFO_VIRTUALS list. IX is the index
- of that entry in the list. */
-
-static void
-update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
- unsigned ix)
-{
- tree b;
- tree overrider;
- tree delta;
- tree virtual_base;
- tree first_defn;
- tree overrider_fn, overrider_target;
- tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
- tree over_return, base_return;
- bool lost = false;
-
- /* Find the nearest primary base (possibly binfo itself) which defines
- this function; this is the class the caller will convert to when
- calling FN through BINFO. */
- for (b = binfo; ; b = get_primary_binfo (b))
- {
- gcc_assert (b);
- if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
- break;
-
- /* The nearest definition is from a lost primary. */
- if (BINFO_LOST_PRIMARY_P (b))
- lost = true;
- }
- first_defn = b;
-
- /* Find the final overrider. */
- overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
- if (overrider == error_mark_node)
- {
- error ("no unique final overrider for %qD in %qT", target_fn, t);
- return;
- }
- overrider_target = overrider_fn = TREE_PURPOSE (overrider);
-
- /* Check for adjusting covariant return types. */
- over_return = TREE_TYPE (TREE_TYPE (overrider_target));
- base_return = TREE_TYPE (TREE_TYPE (target_fn));
-
- if (POINTER_TYPE_P (over_return)
- && TREE_CODE (over_return) == TREE_CODE (base_return)
- && CLASS_TYPE_P (TREE_TYPE (over_return))
- && CLASS_TYPE_P (TREE_TYPE (base_return))
- /* If the overrider is invalid, don't even try. */
- && !DECL_INVALID_OVERRIDER_P (overrider_target))
- {
- /* If FN is a covariant thunk, we must figure out the adjustment
- to the final base FN was converting to. As OVERRIDER_TARGET might
- also be converting to the return type of FN, we have to
- combine the two conversions here. */
- tree fixed_offset, virtual_offset;
-
- over_return = TREE_TYPE (over_return);
- base_return = TREE_TYPE (base_return);
-
- if (DECL_THUNK_P (fn))
- {
- gcc_assert (DECL_RESULT_THUNK_P (fn));
- fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
- virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
- }
- else
- fixed_offset = virtual_offset = NULL_TREE;
-
- if (virtual_offset)
- /* Find the equivalent binfo within the return type of the
- overriding function. We will want the vbase offset from
- there. */
- virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
- over_return);
- else if (!same_type_ignoring_top_level_qualifiers_p
- (over_return, base_return))
- {
- /* There was no existing virtual thunk (which takes
- precedence). So find the binfo of the base function's
- return type within the overriding function's return type.
- We cannot call lookup base here, because we're inside a
- dfs_walk, and will therefore clobber the BINFO_MARKED
- flags. Fortunately we know the covariancy is valid (it
- has already been checked), so we can just iterate along
- the binfos, which have been chained in inheritance graph
- order. Of course it is lame that we have to repeat the
- search here anyway -- we should really be caching pieces
- of the vtable and avoiding this repeated work. */
- tree thunk_binfo, base_binfo;
-
- /* Find the base binfo within the overriding function's
- return type. We will always find a thunk_binfo, except
- when the covariancy is invalid (which we will have
- already diagnosed). */
- for (base_binfo = TYPE_BINFO (base_return),
- thunk_binfo = TYPE_BINFO (over_return);
- thunk_binfo;
- thunk_binfo = TREE_CHAIN (thunk_binfo))
- if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
- BINFO_TYPE (base_binfo)))
- break;
-
- /* See if virtual inheritance is involved. */
- for (virtual_offset = thunk_binfo;
- virtual_offset;
- virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
- if (BINFO_VIRTUAL_P (virtual_offset))
- break;
-
- if (virtual_offset
- || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
- {
- tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
-
- if (virtual_offset)
- {
- /* We convert via virtual base. Adjust the fixed
- offset to be from there. */
- offset =
- size_diffop (offset,
- convert (ssizetype,
- BINFO_OFFSET (virtual_offset)));
- }
- if (fixed_offset)
- /* There was an existing fixed offset, this must be
- from the base just converted to, and the base the
- FN was thunking to. */
- fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
- else
- fixed_offset = offset;
- }
- }
-
- if (fixed_offset || virtual_offset)
- /* Replace the overriding function with a covariant thunk. We
- will emit the overriding function in its own slot as
- well. */
- overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
- fixed_offset, virtual_offset);
- }
- else
- gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
- !DECL_THUNK_P (fn));
-
- /* If we need a covariant thunk, then we may need to adjust first_defn.
- The ABI specifies that the thunks emitted with a function are
- determined by which bases the function overrides, so we need to be
- sure that we're using a thunk for some overridden base; even if we
- know that the necessary this adjustment is zero, there may not be an
- appropriate zero-this-adjusment thunk for us to use since thunks for
- overriding virtual bases always use the vcall offset.
-
- Furthermore, just choosing any base that overrides this function isn't
- quite right, as this slot won't be used for calls through a type that
- puts a covariant thunk here. Calling the function through such a type
- will use a different slot, and that slot is the one that determines
- the thunk emitted for that base.
-
- So, keep looking until we find the base that we're really overriding
- in this slot: the nearest primary base that doesn't use a covariant
- thunk in this slot. */
- if (overrider_target != overrider_fn)
- {
- if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
- /* We already know that the overrider needs a covariant thunk. */
- b = get_primary_binfo (b);
- for (; ; b = get_primary_binfo (b))
- {
- tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
- tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
- if (!DECL_THUNK_P (TREE_VALUE (bv)))
- break;
- if (BINFO_LOST_PRIMARY_P (b))
- lost = true;
- }
- first_defn = b;
- }
-
- /* Assume that we will produce a thunk that convert all the way to
- the final overrider, and not to an intermediate virtual base. */
- virtual_base = NULL_TREE;
-
- /* See if we can convert to an intermediate virtual base first, and then
- use the vcall offset located there to finish the conversion. */
- for (; b; b = BINFO_INHERITANCE_CHAIN (b))
- {
- /* If we find the final overrider, then we can stop
- walking. */
- if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
- BINFO_TYPE (TREE_VALUE (overrider))))
- break;
-
- /* If we find a virtual base, and we haven't yet found the
- overrider, then there is a virtual base between the
- declaring base (first_defn) and the final overrider. */
- if (BINFO_VIRTUAL_P (b))
- {
- virtual_base = b;
- break;
- }
- }
-
- /* Compute the constant adjustment to the `this' pointer. The
- `this' pointer, when this function is called, will point at BINFO
- (or one of its primary bases, which are at the same offset). */
- if (virtual_base)
- /* The `this' pointer needs to be adjusted from the declaration to
- the nearest virtual base. */
- delta = size_diffop_loc (input_location,
- convert (ssizetype, BINFO_OFFSET (virtual_base)),
- convert (ssizetype, BINFO_OFFSET (first_defn)));
- else if (lost)
- /* If the nearest definition is in a lost primary, we don't need an
- entry in our vtable. Except possibly in a constructor vtable,
- if we happen to get our primary back. In that case, the offset
- will be zero, as it will be a primary base. */
- delta = size_zero_node;
- else
- /* The `this' pointer needs to be adjusted from pointing to
- BINFO to pointing at the base where the final overrider
- appears. */
- delta = size_diffop_loc (input_location,
- convert (ssizetype,
- BINFO_OFFSET (TREE_VALUE (overrider))),
- convert (ssizetype, BINFO_OFFSET (binfo)));
-
- modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
-
- if (virtual_base)
- BV_VCALL_INDEX (*virtuals)
- = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
- else
- BV_VCALL_INDEX (*virtuals) = NULL_TREE;
-
- BV_LOST_PRIMARY (*virtuals) = lost;
-}
-
-/* Called from modify_all_vtables via dfs_walk. */
-
-static tree
-dfs_modify_vtables (tree binfo, void* data)
-{
- tree t = (tree) data;
- tree virtuals;
- tree old_virtuals;
- unsigned ix;
-
- if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
- /* A base without a vtable needs no modification, and its bases
- are uninteresting. */
- return dfs_skip_bases;
-
- if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
- && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
- /* Don't do the primary vtable, if it's new. */
- return NULL_TREE;
-
- if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
- /* There's no need to modify the vtable for a non-virtual primary
- base; we're not going to use that vtable anyhow. We do still
- need to do this for virtual primary bases, as they could become
- non-primary in a construction vtable. */
- return NULL_TREE;
-
- make_new_vtable (t, binfo);
-
- /* Now, go through each of the virtual functions in the virtual
- function table for BINFO. Find the final overrider, and update
- the BINFO_VIRTUALS list appropriately. */
- for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
- old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
- virtuals;
- ix++, virtuals = TREE_CHAIN (virtuals),
- old_virtuals = TREE_CHAIN (old_virtuals))
- update_vtable_entry_for_fn (t,
- binfo,
- BV_FN (old_virtuals),
- &virtuals, ix);
-
- return NULL_TREE;
-}
-
-/* Update all of the primary and secondary vtables for T. Create new
- vtables as required, and initialize their RTTI information. Each
- of the functions in VIRTUALS is declared in T and may override a
- virtual function from a base class; find and modify the appropriate
- entries to point to the overriding functions. Returns a list, in
- declaration order, of the virtual functions that are declared in T,
- but do not appear in the primary base class vtable, and which
- should therefore be appended to the end of the vtable for T. */
-
-static tree
-modify_all_vtables (tree t, tree virtuals)
-{
- tree binfo = TYPE_BINFO (t);
- tree *fnsp;
-
- /* Mangle the vtable name before entering dfs_walk (c++/51884). */
- if (TYPE_CONTAINS_VPTR_P (t))
- get_vtable_decl (t, false);
-
- /* Update all of the vtables. */
- dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
-
- /* Add virtual functions not already in our primary vtable. These
- will be both those introduced by this class, and those overridden
- from secondary bases. It does not include virtuals merely
- inherited from secondary bases. */
- for (fnsp = &virtuals; *fnsp; )
- {
- tree fn = TREE_VALUE (*fnsp);
-
- if (!value_member (fn, BINFO_VIRTUALS (binfo))
- || DECL_VINDEX (fn) == error_mark_node)
- {
- /* We don't need to adjust the `this' pointer when
- calling this function. */
- BV_DELTA (*fnsp) = integer_zero_node;
- BV_VCALL_INDEX (*fnsp) = NULL_TREE;
-
- /* This is a function not already in our vtable. Keep it. */
- fnsp = &TREE_CHAIN (*fnsp);
- }
- else
- /* We've already got an entry for this function. Skip it. */
- *fnsp = TREE_CHAIN (*fnsp);
- }
-
- return virtuals;
-}
-
-/* Get the base virtual function declarations in T that have the
- indicated NAME. */
-
-static tree
-get_basefndecls (tree name, tree t)
-{
- tree methods;
- tree base_fndecls = NULL_TREE;
- int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
- int i;
-
- /* Find virtual functions in T with the indicated NAME. */
- i = lookup_fnfields_1 (t, name);
- if (i != -1)
- for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
- methods;
- methods = OVL_NEXT (methods))
- {
- tree method = OVL_CURRENT (methods);
-
- if (TREE_CODE (method) == FUNCTION_DECL
- && DECL_VINDEX (method))
- base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
- }
-
- if (base_fndecls)
- return base_fndecls;
-
- for (i = 0; i < n_baseclasses; i++)
- {
- tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
- base_fndecls = chainon (get_basefndecls (name, basetype),
- base_fndecls);
- }
-
- return base_fndecls;
-}
-
-/* If this declaration supersedes the declaration of
- a method declared virtual in the base class, then
- mark this field as being virtual as well. */
-
-void
-check_for_override (tree decl, tree ctype)
-{
- bool overrides_found = false;
- if (TREE_CODE (decl) == TEMPLATE_DECL)
- /* In [temp.mem] we have:
-
- A specialization of a member function template does not
- override a virtual function from a base class. */
- return;
- if ((DECL_DESTRUCTOR_P (decl)
- || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
- || DECL_CONV_FN_P (decl))
- && look_for_overrides (ctype, decl)
- && !DECL_STATIC_FUNCTION_P (decl))
- /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
- the error_mark_node so that we know it is an overriding
- function. */
- {
- DECL_VINDEX (decl) = decl;
- overrides_found = true;
- }
-
- if (DECL_VIRTUAL_P (decl))
- {
- if (!DECL_VINDEX (decl))
- DECL_VINDEX (decl) = error_mark_node;
- IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
- if (DECL_DESTRUCTOR_P (decl))
- TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
- }
- else if (DECL_FINAL_P (decl))
- error ("%q+#D marked final, but is not virtual", decl);
- if (DECL_OVERRIDE_P (decl) && !overrides_found)
- error ("%q+#D marked override, but does not override", decl);
-}
-
-/* Warn about hidden virtual functions that are not overridden in t.
- We know that constructors and destructors don't apply. */
-
-static void
-warn_hidden (tree t)
-{
- vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
- tree fns;
- size_t i;
-
- /* We go through each separately named virtual function. */
- for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
- vec_safe_iterate (method_vec, i, &fns);
- ++i)
- {
- tree fn;
- tree name;
- tree fndecl;
- tree base_fndecls;
- tree base_binfo;
- tree binfo;
- int j;
-
- /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
- have the same name. Figure out what name that is. */
- name = DECL_NAME (OVL_CURRENT (fns));
- /* There are no possibly hidden functions yet. */
- base_fndecls = NULL_TREE;
- /* Iterate through all of the base classes looking for possibly
- hidden functions. */
- for (binfo = TYPE_BINFO (t), j = 0;
- BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
- {
- tree basetype = BINFO_TYPE (base_binfo);
- base_fndecls = chainon (get_basefndecls (name, basetype),
- base_fndecls);
- }
-
- /* If there are no functions to hide, continue. */
- if (!base_fndecls)
- continue;
-
- /* Remove any overridden functions. */
- for (fn = fns; fn; fn = OVL_NEXT (fn))
- {
- fndecl = OVL_CURRENT (fn);
- if (DECL_VINDEX (fndecl))
- {
- tree *prev = &base_fndecls;
-
- while (*prev)
- /* If the method from the base class has the same
- signature as the method from the derived class, it
- has been overridden. */
- if (same_signature_p (fndecl, TREE_VALUE (*prev)))
- *prev = TREE_CHAIN (*prev);
- else
- prev = &TREE_CHAIN (*prev);
- }
- }
-
- /* Now give a warning for all base functions without overriders,
- as they are hidden. */
- while (base_fndecls)
- {
- /* Here we know it is a hider, and no overrider exists. */
- warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
- warning (OPT_Woverloaded_virtual, " by %q+D", fns);
- base_fndecls = TREE_CHAIN (base_fndecls);
- }
- }
-}
-
-/* Check for things that are invalid. There are probably plenty of other
- things we should check for also. */
-
-static void
-finish_struct_anon (tree t)
-{
- tree field;
-
- for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
- {
- if (TREE_STATIC (field))
- continue;
- if (TREE_CODE (field) != FIELD_DECL)
- continue;
-
- if (DECL_NAME (field) == NULL_TREE
- && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
- {
- bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
- tree elt = TYPE_FIELDS (TREE_TYPE (field));
- for (; elt; elt = DECL_CHAIN (elt))
- {
- /* We're generally only interested in entities the user
- declared, but we also find nested classes by noticing
- the TYPE_DECL that we create implicitly. You're
- allowed to put one anonymous union inside another,
- though, so we explicitly tolerate that. We use
- TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
- we also allow unnamed types used for defining fields. */
- if (DECL_ARTIFICIAL (elt)
- && (!DECL_IMPLICIT_TYPEDEF_P (elt)
- || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
- continue;
-
- if (TREE_CODE (elt) != FIELD_DECL)
- {
- if (is_union)
- permerror (input_location, "%q+#D invalid; an anonymous union can "
- "only have non-static data members", elt);
- else
- permerror (input_location, "%q+#D invalid; an anonymous struct can "
- "only have non-static data members", elt);
- continue;
- }
-
- if (TREE_PRIVATE (elt))
- {
- if (is_union)
- permerror (input_location, "private member %q+#D in anonymous union", elt);
- else
- permerror (input_location, "private member %q+#D in anonymous struct", elt);
- }
- else if (TREE_PROTECTED (elt))
- {
- if (is_union)
- permerror (input_location, "protected member %q+#D in anonymous union", elt);
- else
- permerror (input_location, "protected member %q+#D in anonymous struct", elt);
- }
-
- TREE_PRIVATE (elt) = TREE_PRIVATE (field);
- TREE_PROTECTED (elt) = TREE_PROTECTED (field);
- }
- }
- }
-}
-
-/* Add T to CLASSTYPE_DECL_LIST of current_class_type which
- will be used later during class template instantiation.
- When FRIEND_P is zero, T can be a static member data (VAR_DECL),
- a non-static member data (FIELD_DECL), a member function
- (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
- a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
- When FRIEND_P is nonzero, T is either a friend class
- (RECORD_TYPE, TEMPLATE_DECL) or a friend function
- (FUNCTION_DECL, TEMPLATE_DECL). */
-
-void
-maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
-{
- /* Save some memory by not creating TREE_LIST if TYPE is not template. */
- if (CLASSTYPE_TEMPLATE_INFO (type))
- CLASSTYPE_DECL_LIST (type)
- = tree_cons (friend_p ? NULL_TREE : type,
- t, CLASSTYPE_DECL_LIST (type));
-}
-
-/* This function is called from declare_virt_assop_and_dtor via
- dfs_walk_all.
-
- DATA is a type that direcly or indirectly inherits the base
- represented by BINFO. If BINFO contains a virtual assignment [copy
- assignment or move assigment] operator or a virtual constructor,
- declare that function in DATA if it hasn't been already declared. */
-
-static tree
-dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
-{
- tree bv, fn, t = (tree)data;
- tree opname = ansi_assopname (NOP_EXPR);
-
- gcc_assert (t && CLASS_TYPE_P (t));
- gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
-
- if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
- /* A base without a vtable needs no modification, and its bases
- are uninteresting. */
- return dfs_skip_bases;
-
- if (BINFO_PRIMARY_P (binfo))
- /* If this is a primary base, then we have already looked at the
- virtual functions of its vtable. */
- return NULL_TREE;
-
- for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
- {
- fn = BV_FN (bv);
-
- if (DECL_NAME (fn) == opname)
- {
- if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
- lazily_declare_fn (sfk_copy_assignment, t);
- if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
- lazily_declare_fn (sfk_move_assignment, t);
- }
- else if (DECL_DESTRUCTOR_P (fn)
- && CLASSTYPE_LAZY_DESTRUCTOR (t))
- lazily_declare_fn (sfk_destructor, t);
- }
-
- return NULL_TREE;
-}
-
-/* If the class type T has a direct or indirect base that contains a
- virtual assignment operator or a virtual destructor, declare that
- function in T if it hasn't been already declared. */
-
-static void
-declare_virt_assop_and_dtor (tree t)
-{
- if (!(TYPE_POLYMORPHIC_P (t)
- && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
- || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
- || CLASSTYPE_LAZY_DESTRUCTOR (t))))
- return;
-
- dfs_walk_all (TYPE_BINFO (t),
- dfs_declare_virt_assop_and_dtor,
- NULL, t);
-}
-
-/* Declare the inheriting constructor for class T inherited from base
- constructor CTOR with the parameter array PARMS of size NPARMS. */
-
-static void
-one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
-{
- /* We don't declare an inheriting ctor that would be a default,
- copy or move ctor for derived or base. */
- if (nparms == 0)
- return;
- if (nparms == 1
- && TREE_CODE (parms[0]) == REFERENCE_TYPE)
- {
- tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
- if (parm == t || parm == DECL_CONTEXT (ctor))
- return;
- }
-
- tree parmlist = void_list_node;
- for (int i = nparms - 1; i >= 0; i--)
- parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
- tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
- t, false, ctor, parmlist);
- if (add_method (t, fn, NULL_TREE))
- {
- DECL_CHAIN (fn) = TYPE_METHODS (t);
- TYPE_METHODS (t) = fn;
- }
-}
-
-/* Declare all the inheriting constructors for class T inherited from base
- constructor CTOR. */
-
-static void
-one_inherited_ctor (tree ctor, tree t)
-{
- tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
-
- tree *new_parms = XALLOCAVEC (tree, list_length (parms));
- int i = 0;
- for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
- {
- if (TREE_PURPOSE (parms))
- one_inheriting_sig (t, ctor, new_parms, i);
- new_parms[i++] = TREE_VALUE (parms);
- }
- one_inheriting_sig (t, ctor, new_parms, i);
- if (parms == NULL_TREE)
- {
- warning (OPT_Winherited_variadic_ctor,
- "the ellipsis in %qD is not inherited", ctor);
- inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
- }
-}
-
-/* Create default constructors, assignment operators, and so forth for
- the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
- and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
- the class cannot have a default constructor, copy constructor
- taking a const reference argument, or an assignment operator taking
- a const reference, respectively. */
-
-static void
-add_implicitly_declared_members (tree t, tree* access_decls,
- int cant_have_const_cctor,
- int cant_have_const_assignment)
-{
- bool move_ok = false;
-
- if (cxx_dialect >= cxx0x && !CLASSTYPE_DESTRUCTORS (t)
- && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
- && !type_has_move_constructor (t) && !type_has_move_assign (t))
- move_ok = true;
-
- /* Destructor. */
- if (!CLASSTYPE_DESTRUCTORS (t))
- {
- /* In general, we create destructors lazily. */
- CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
-
- if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
- && TYPE_FOR_JAVA (t))
- /* But if this is a Java class, any non-trivial destructor is
- invalid, even if compiler-generated. Therefore, if the
- destructor is non-trivial we create it now. */
- lazily_declare_fn (sfk_destructor, t);
- }
-
- /* [class.ctor]
-
- If there is no user-declared constructor for a class, a default
- constructor is implicitly declared. */
- if (! TYPE_HAS_USER_CONSTRUCTOR (t))
- {
- TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
- CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
- if (cxx_dialect >= cxx0x)
- TYPE_HAS_CONSTEXPR_CTOR (t)
- /* This might force the declaration. */
- = type_has_constexpr_default_constructor (t);
- }
-
- /* [class.ctor]
-
- If a class definition does not explicitly declare a copy
- constructor, one is declared implicitly. */
- if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
- {
- TYPE_HAS_COPY_CTOR (t) = 1;
- TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
- CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
- if (move_ok)
- CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
- }
-
- /* If there is no assignment operator, one will be created if and
- when it is needed. For now, just record whether or not the type
- of the parameter to the assignment operator will be a const or
- non-const reference. */
- if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
- {
- TYPE_HAS_COPY_ASSIGN (t) = 1;
- TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
- CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
- if (move_ok)
- CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
- }
-
- /* We can't be lazy about declaring functions that might override
- a virtual function from a base class. */
- declare_virt_assop_and_dtor (t);
-
- while (*access_decls)
- {
- tree using_decl = TREE_VALUE (*access_decls);
- tree decl = USING_DECL_DECLS (using_decl);
- if (DECL_NAME (using_decl) == ctor_identifier)
- {
- /* declare, then remove the decl */
- tree ctor_list = decl;
- location_t loc = input_location;
- input_location = DECL_SOURCE_LOCATION (using_decl);
- if (ctor_list)
- for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
- one_inherited_ctor (OVL_CURRENT (ctor_list), t);
- *access_decls = TREE_CHAIN (*access_decls);
- input_location = loc;
- }
- else
- access_decls = &TREE_CHAIN (*access_decls);
- }
-}
-
-/* Subroutine of insert_into_classtype_sorted_fields. Recursively
- count the number of fields in TYPE, including anonymous union
- members. */
-
-static int
-count_fields (tree fields)
-{
- tree x;
- int n_fields = 0;
- for (x = fields; x; x = DECL_CHAIN (x))
- {
- if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
- n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
- else
- n_fields += 1;
- }
- return n_fields;
-}
-
-/* Subroutine of insert_into_classtype_sorted_fields. Recursively add
- all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
- elts, starting at offset IDX. */
-
-static int
-add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
-{
- tree x;
- for (x = fields; x; x = DECL_CHAIN (x))
- {
- if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
- idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
- else
- field_vec->elts[idx++] = x;
- }
- return idx;
-}
-
-/* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
- starting at offset IDX. */
-
-static int
-add_enum_fields_to_record_type (tree enumtype,
- struct sorted_fields_type *field_vec,
- int idx)
-{
- tree values;
- for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
- field_vec->elts[idx++] = TREE_VALUE (values);
- return idx;
-}
-
-/* FIELD is a bit-field. We are finishing the processing for its
- enclosing type. Issue any appropriate messages and set appropriate
- flags. Returns false if an error has been diagnosed. */
-
-static bool
-check_bitfield_decl (tree field)
-{
- tree type = TREE_TYPE (field);
- tree w;
-
- /* Extract the declared width of the bitfield, which has been
- temporarily stashed in DECL_INITIAL. */
- w = DECL_INITIAL (field);
- gcc_assert (w != NULL_TREE);
- /* Remove the bit-field width indicator so that the rest of the
- compiler does not treat that value as an initializer. */
- DECL_INITIAL (field) = NULL_TREE;
-
- /* Detect invalid bit-field type. */
- if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
- {
- error ("bit-field %q+#D with non-integral type", field);
- w = error_mark_node;
- }
- else
- {
- location_t loc = input_location;
- /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
- STRIP_NOPS (w);
-
- /* detect invalid field size. */
- input_location = DECL_SOURCE_LOCATION (field);
- w = cxx_constant_value (w);
- input_location = loc;
-
- if (TREE_CODE (w) != INTEGER_CST)
- {
- error ("bit-field %q+D width not an integer constant", field);
- w = error_mark_node;
- }
- else if (tree_int_cst_sgn (w) < 0)
- {
- error ("negative width in bit-field %q+D", field);
- w = error_mark_node;
- }
- else if (integer_zerop (w) && DECL_NAME (field) != 0)
- {
- error ("zero width for bit-field %q+D", field);
- w = error_mark_node;
- }
- else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
- && TREE_CODE (type) != ENUMERAL_TYPE
- && TREE_CODE (type) != BOOLEAN_TYPE)
- warning (0, "width of %q+D exceeds its type", field);
- else if (TREE_CODE (type) == ENUMERAL_TYPE
- && (0 > (compare_tree_int
- (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
- warning (0, "%q+D is too small to hold all values of %q#T", field, type);
- }
-
- if (w != error_mark_node)
- {
- DECL_SIZE (field) = convert (bitsizetype, w);
- DECL_BIT_FIELD (field) = 1;
- return true;
- }
- else
- {
- /* Non-bit-fields are aligned for their type. */
- DECL_BIT_FIELD (field) = 0;
- CLEAR_DECL_C_BIT_FIELD (field);
- return false;
- }
-}
-
-/* FIELD is a non bit-field. We are finishing the processing for its
- enclosing type T. Issue any appropriate messages and set appropriate
- flags. */
-
-static void
-check_field_decl (tree field,
- tree t,
- int* cant_have_const_ctor,
- int* no_const_asn_ref,
- int* any_default_members)
-{
- tree type = strip_array_types (TREE_TYPE (field));
-
- /* In C++98 an anonymous union cannot contain any fields which would change
- the settings of CANT_HAVE_CONST_CTOR and friends. */
- if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx0x)
- ;
- /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
- structs. So, we recurse through their fields here. */
- else if (ANON_AGGR_TYPE_P (type))
- {
- tree fields;
-
- for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
- if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
- check_field_decl (fields, t, cant_have_const_ctor,
- no_const_asn_ref, any_default_members);
- }
- /* Check members with class type for constructors, destructors,
- etc. */
- else if (CLASS_TYPE_P (type))
- {
- /* Never let anything with uninheritable virtuals
- make it through without complaint. */
- abstract_virtuals_error (field, type);
-
- if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx0x)
- {
- static bool warned;
- int oldcount = errorcount;
- if (TYPE_NEEDS_CONSTRUCTING (type))
- error ("member %q+#D with constructor not allowed in union",
- field);
- if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
- error ("member %q+#D with destructor not allowed in union", field);
- if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
- error ("member %q+#D with copy assignment operator not allowed in union",
- field);
- if (!warned && errorcount > oldcount)
- {
- inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
- "only available with -std=c++11 or -std=gnu++11");
- warned = true;
- }
- }
- else
- {
- TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
- TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
- |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
- TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
- |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
- || !TYPE_HAS_COPY_ASSIGN (type));
- TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
- || !TYPE_HAS_COPY_CTOR (type));
- TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
- TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
- TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
- || TYPE_HAS_COMPLEX_DFLT (type));
- }
-
- if (TYPE_HAS_COPY_CTOR (type)
- && !TYPE_HAS_CONST_COPY_CTOR (type))
- *cant_have_const_ctor = 1;
-
- if (TYPE_HAS_COPY_ASSIGN (type)
- && !TYPE_HAS_CONST_COPY_ASSIGN (type))
- *no_const_asn_ref = 1;
- }
-
- check_abi_tags (t, field);
-
- if (DECL_INITIAL (field) != NULL_TREE)
- {
- /* `build_class_init_list' does not recognize
- non-FIELD_DECLs. */
- if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
- error ("multiple fields in union %qT initialized", t);
- *any_default_members = 1;
- }
-}
-
-/* Check the data members (both static and non-static), class-scoped
- typedefs, etc., appearing in the declaration of T. Issue
- appropriate diagnostics. Sets ACCESS_DECLS to a list (in
- declaration order) of access declarations; each TREE_VALUE in this
- list is a USING_DECL.
-
- In addition, set the following flags:
-
- EMPTY_P
- The class is empty, i.e., contains no non-static data members.
-
- CANT_HAVE_CONST_CTOR_P
- This class cannot have an implicitly generated copy constructor
- taking a const reference.
-
- CANT_HAVE_CONST_ASN_REF
- This class cannot have an implicitly generated assignment
- operator taking a const reference.
-
- All of these flags should be initialized before calling this
- function.
-
- Returns a pointer to the end of the TYPE_FIELDs chain; additional
- fields can be added by adding to this chain. */
-
-static void
-check_field_decls (tree t, tree *access_decls,
- int *cant_have_const_ctor_p,
- int *no_const_asn_ref_p)
-{
- tree *field;
- tree *next;
- bool has_pointers;
- int any_default_members;
- int cant_pack = 0;
- int field_access = -1;
-
- /* Assume there are no access declarations. */
- *access_decls = NULL_TREE;
- /* Assume this class has no pointer members. */
- has_pointers = false;
- /* Assume none of the members of this class have default
- initializations. */
- any_default_members = 0;
-
- for (field = &TYPE_FIELDS (t); *field; field = next)
- {
- tree x = *field;
- tree type = TREE_TYPE (x);
- int this_field_access;
-
- next = &DECL_CHAIN (x);
-
- if (TREE_CODE (x) == USING_DECL)
- {
- /* Save the access declarations for our caller. */
- *access_decls = tree_cons (NULL_TREE, x, *access_decls);
- continue;
- }
-
- if (TREE_CODE (x) == TYPE_DECL
- || TREE_CODE (x) == TEMPLATE_DECL)
- continue;
-
- /* If we've gotten this far, it's a data member, possibly static,
- or an enumerator. */
- if (TREE_CODE (x) != CONST_DECL)
- DECL_CONTEXT (x) = t;
-
- /* When this goes into scope, it will be a non-local reference. */
- DECL_NONLOCAL (x) = 1;
-
- if (TREE_CODE (t) == UNION_TYPE)
- {
- /* [class.union]
-
- If a union contains a static data member, or a member of
- reference type, the program is ill-formed. */
- if (TREE_CODE (x) == VAR_DECL)
- {
- error ("%q+D may not be static because it is a member of a union", x);
- continue;
- }
- if (TREE_CODE (type) == REFERENCE_TYPE)
- {
- error ("%q+D may not have reference type %qT because"
- " it is a member of a union",
- x, type);
- continue;
- }
- }
-
- /* Perform error checking that did not get done in
- grokdeclarator. */
- if (TREE_CODE (type) == FUNCTION_TYPE)
- {
- error ("field %q+D invalidly declared function type", x);
- type = build_pointer_type (type);
- TREE_TYPE (x) = type;
- }
- else if (TREE_CODE (type) == METHOD_TYPE)
- {
- error ("field %q+D invalidly declared method type", x);
- type = build_pointer_type (type);
- TREE_TYPE (x) = type;
- }
-
- if (type == error_mark_node)
- continue;
-
- if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
- continue;
-
- /* Now it can only be a FIELD_DECL. */
-
- if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
- CLASSTYPE_NON_AGGREGATE (t) = 1;
-
- /* If at least one non-static data member is non-literal, the whole
- class becomes non-literal. Note: if the type is incomplete we
- will complain later on. */
- if (COMPLETE_TYPE_P (type) && !literal_type_p (type))
- CLASSTYPE_LITERAL_P (t) = false;
-
- /* A standard-layout class is a class that:
- ...
- has the same access control (Clause 11) for all non-static data members,
- ... */
- this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
- if (field_access == -1)
- field_access = this_field_access;
- else if (this_field_access != field_access)
- CLASSTYPE_NON_STD_LAYOUT (t) = 1;
-
- /* If this is of reference type, check if it needs an init. */
- if (TREE_CODE (type) == REFERENCE_TYPE)
- {
- CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
- CLASSTYPE_NON_STD_LAYOUT (t) = 1;
- if (DECL_INITIAL (x) == NULL_TREE)
- SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
-
- /* ARM $12.6.2: [A member initializer list] (or, for an
- aggregate, initialization by a brace-enclosed list) is the
- only way to initialize nonstatic const and reference
- members. */
- TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
- TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
- }
-
- type = strip_array_types (type);
-
- if (TYPE_PACKED (t))
- {
- if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
- {
- warning
- (0,
- "ignoring packed attribute because of unpacked non-POD field %q+#D",
- x);
- cant_pack = 1;
- }
- else if (DECL_C_BIT_FIELD (x)
- || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
- DECL_PACKED (x) = 1;
- }
-
- if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
- /* We don't treat zero-width bitfields as making a class
- non-empty. */
- ;
- else
- {
- /* The class is non-empty. */
- CLASSTYPE_EMPTY_P (t) = 0;
- /* The class is not even nearly empty. */
- CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
- /* If one of the data members contains an empty class,
- so does T. */
- if (CLASS_TYPE_P (type)
- && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
- CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
- }
-
- /* This is used by -Weffc++ (see below). Warn only for pointers
- to members which might hold dynamic memory. So do not warn
- for pointers to functions or pointers to members. */
- if (TYPE_PTR_P (type)
- && !TYPE_PTRFN_P (type))
- has_pointers = true;
-
- if (CLASS_TYPE_P (type))
- {
- if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
- SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
- if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
- SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
- }
-
- if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
- CLASSTYPE_HAS_MUTABLE (t) = 1;
-
- if (! layout_pod_type_p (type))
- /* DR 148 now allows pointers to members (which are POD themselves),
- to be allowed in POD structs. */
- CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
-
- if (!std_layout_type_p (type))
- CLASSTYPE_NON_STD_LAYOUT (t) = 1;
-
- if (! zero_init_p (type))
- CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
-
- /* We set DECL_C_BIT_FIELD in grokbitfield.
- If the type and width are valid, we'll also set DECL_BIT_FIELD. */
- if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
- check_field_decl (x, t,
- cant_have_const_ctor_p,
- no_const_asn_ref_p,
- &any_default_members);
-
- /* Now that we've removed bit-field widths from DECL_INITIAL,
- anything left in DECL_INITIAL is an NSDMI that makes the class
- non-aggregate. */
- if (DECL_INITIAL (x))
- CLASSTYPE_NON_AGGREGATE (t) = true;
-
- /* If any field is const, the structure type is pseudo-const. */
- if (CP_TYPE_CONST_P (type))
- {
- C_TYPE_FIELDS_READONLY (t) = 1;
- if (DECL_INITIAL (x) == NULL_TREE)
- SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
-
- /* ARM $12.6.2: [A member initializer list] (or, for an
- aggregate, initialization by a brace-enclosed list) is the
- only way to initialize nonstatic const and reference
- members. */
- TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
- TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
- }
- /* A field that is pseudo-const makes the structure likewise. */
- else if (CLASS_TYPE_P (type))
- {
- C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
- SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
- CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
- | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
- }
-
- /* Core issue 80: A nonstatic data member is required to have a
- different name from the class iff the class has a
- user-declared constructor. */
- if (constructor_name_p (DECL_NAME (x), t)
- && TYPE_HAS_USER_CONSTRUCTOR (t))
- permerror (input_location, "field %q+#D with same name as class", x);
- }
-
- /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
- it should also define a copy constructor and an assignment operator to
- implement the correct copy semantic (deep vs shallow, etc.). As it is
- not feasible to check whether the constructors do allocate dynamic memory
- and store it within members, we approximate the warning like this:
-
- -- Warn only if there are members which are pointers
- -- Warn only if there is a non-trivial constructor (otherwise,
- there cannot be memory allocated).
- -- Warn only if there is a non-trivial destructor. We assume that the
- user at least implemented the cleanup correctly, and a destructor
- is needed to free dynamic memory.
-
- This seems enough for practical purposes. */
- if (warn_ecpp
- && has_pointers
- && TYPE_HAS_USER_CONSTRUCTOR (t)
- && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
- && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
- {
- warning (OPT_Weffc__, "%q#T has pointer data members", t);
-
- if (! TYPE_HAS_COPY_CTOR (t))
- {
- warning (OPT_Weffc__,
- " but does not override %<%T(const %T&)%>", t, t);
- if (!TYPE_HAS_COPY_ASSIGN (t))
- warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
- }
- else if (! TYPE_HAS_COPY_ASSIGN (t))
- warning (OPT_Weffc__,
- " but does not override %<operator=(const %T&)%>", t);
- }
-
- /* Non-static data member initializers make the default constructor
- non-trivial. */
- if (any_default_members)
- {
- TYPE_NEEDS_CONSTRUCTING (t) = true;
- TYPE_HAS_COMPLEX_DFLT (t) = true;
- }
-
- /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
- if (cant_pack)
- TYPE_PACKED (t) = 0;
-
- /* Check anonymous struct/anonymous union fields. */
- finish_struct_anon (t);
-
- /* We've built up the list of access declarations in reverse order.
- Fix that now. */
- *access_decls = nreverse (*access_decls);
-}
-
-/* If TYPE is an empty class type, records its OFFSET in the table of
- OFFSETS. */
-
-static int
-record_subobject_offset (tree type, tree offset, splay_tree offsets)
-{
- splay_tree_node n;
-
- if (!is_empty_class (type))
- return 0;
-
- /* Record the location of this empty object in OFFSETS. */
- n = splay_tree_lookup (offsets, (splay_tree_key) offset);
- if (!n)
- n = splay_tree_insert (offsets,
- (splay_tree_key) offset,
- (splay_tree_value) NULL_TREE);
- n->value = ((splay_tree_value)
- tree_cons (NULL_TREE,
- type,
- (tree) n->value));
-
- return 0;
-}
-
-/* Returns nonzero if TYPE is an empty class type and there is
- already an entry in OFFSETS for the same TYPE as the same OFFSET. */
-
-static int
-check_subobject_offset (tree type, tree offset, splay_tree offsets)
-{
- splay_tree_node n;
- tree t;
-
- if (!is_empty_class (type))
- return 0;
-
- /* Record the location of this empty object in OFFSETS. */
- n = splay_tree_lookup (offsets, (splay_tree_key) offset);
- if (!n)
- return 0;
-
- for (t = (tree) n->value; t; t = TREE_CHAIN (t))
- if (same_type_p (TREE_VALUE (t), type))
- return 1;
-
- return 0;
-}
-
-/* Walk through all the subobjects of TYPE (located at OFFSET). Call
- F for every subobject, passing it the type, offset, and table of
- OFFSETS. If VBASES_P is one, then virtual non-primary bases should
- be traversed.
-
- If MAX_OFFSET is non-NULL, then subobjects with an offset greater
- than MAX_OFFSET will not be walked.
-
- If F returns a nonzero value, the traversal ceases, and that value
- is returned. Otherwise, returns zero. */
-
-static int
-walk_subobject_offsets (tree type,
- subobject_offset_fn f,
- tree offset,
- splay_tree offsets,
- tree max_offset,
- int vbases_p)
-{
- int r = 0;
- tree type_binfo = NULL_TREE;
-
- /* If this OFFSET is bigger than the MAX_OFFSET, then we should
- stop. */
- if (max_offset && INT_CST_LT (max_offset, offset))
- return 0;
-
- if (type == error_mark_node)
- return 0;
-
- if (!TYPE_P (type))
- {
- if (abi_version_at_least (2))
- type_binfo = type;
- type = BINFO_TYPE (type);
- }
-
- if (CLASS_TYPE_P (type))
- {
- tree field;
- tree binfo;
- int i;
-
- /* Avoid recursing into objects that are not interesting. */
- if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
- return 0;
-
- /* Record the location of TYPE. */
- r = (*f) (type, offset, offsets);
- if (r)
- return r;
-
- /* Iterate through the direct base classes of TYPE. */
- if (!type_binfo)
- type_binfo = TYPE_BINFO (type);
- for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
- {
- tree binfo_offset;
-
- if (abi_version_at_least (2)
- && BINFO_VIRTUAL_P (binfo))
- continue;
-
- if (!vbases_p
- && BINFO_VIRTUAL_P (binfo)
- && !BINFO_PRIMARY_P (binfo))
- continue;
-
- if (!abi_version_at_least (2))
- binfo_offset = size_binop (PLUS_EXPR,
- offset,
- BINFO_OFFSET (binfo));
- else
- {
- tree orig_binfo;
- /* We cannot rely on BINFO_OFFSET being set for the base
- class yet, but the offsets for direct non-virtual
- bases can be calculated by going back to the TYPE. */
- orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
- binfo_offset = size_binop (PLUS_EXPR,
- offset,
- BINFO_OFFSET (orig_binfo));
- }
-
- r = walk_subobject_offsets (binfo,
- f,
- binfo_offset,
- offsets,
- max_offset,
- (abi_version_at_least (2)
- ? /*vbases_p=*/0 : vbases_p));
- if (r)
- return r;
- }
-
- if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
- {
- unsigned ix;
- vec<tree, va_gc> *vbases;
-
- /* Iterate through the virtual base classes of TYPE. In G++
- 3.2, we included virtual bases in the direct base class
- loop above, which results in incorrect results; the
- correct offsets for virtual bases are only known when
- working with the most derived type. */
- if (vbases_p)
- for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
- vec_safe_iterate (vbases, ix, &binfo); ix++)
- {
- r = walk_subobject_offsets (binfo,
- f,
- size_binop (PLUS_EXPR,
- offset,
- BINFO_OFFSET (binfo)),
- offsets,
- max_offset,
- /*vbases_p=*/0);
- if (r)
- return r;
- }
- else
- {
- /* We still have to walk the primary base, if it is
- virtual. (If it is non-virtual, then it was walked
- above.) */
- tree vbase = get_primary_binfo (type_binfo);
-
- if (vbase && BINFO_VIRTUAL_P (vbase)
- && BINFO_PRIMARY_P (vbase)
- && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
- {
- r = (walk_subobject_offsets
- (vbase, f, offset,
- offsets, max_offset, /*vbases_p=*/0));
- if (r)
- return r;
- }
- }
- }
-
- /* Iterate through the fields of TYPE. */
- for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
- if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
- {
- tree field_offset;
-
- if (abi_version_at_least (2))
- field_offset = byte_position (field);
- else
- /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
- field_offset = DECL_FIELD_OFFSET (field);
-
- r = walk_subobject_offsets (TREE_TYPE (field),
- f,
- size_binop (PLUS_EXPR,
- offset,
- field_offset),
- offsets,
- max_offset,
- /*vbases_p=*/1);
- if (r)
- return r;
- }
- }
- else if (TREE_CODE (type) == ARRAY_TYPE)
- {
- tree element_type = strip_array_types (type);
- tree domain = TYPE_DOMAIN (type);
- tree index;
-
- /* Avoid recursing into objects that are not interesting. */
- if (!CLASS_TYPE_P (element_type)
- || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
- return 0;
-
- /* Step through each of the elements in the array. */
- for (index = size_zero_node;
- /* G++ 3.2 had an off-by-one error here. */
- (abi_version_at_least (2)
- ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
- : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
- index = size_binop (PLUS_EXPR, index, size_one_node))
- {
- r = walk_subobject_offsets (TREE_TYPE (type),
- f,
- offset,
- offsets,
- max_offset,
- /*vbases_p=*/1);
- if (r)
- return r;
- offset = size_binop (PLUS_EXPR, offset,
- TYPE_SIZE_UNIT (TREE_TYPE (type)));
- /* If this new OFFSET is bigger than the MAX_OFFSET, then
- there's no point in iterating through the remaining
- elements of the array. */
- if (max_offset && INT_CST_LT (max_offset, offset))
- break;
- }
- }
-
- return 0;
-}
-
-/* Record all of the empty subobjects of TYPE (either a type or a
- binfo). If IS_DATA_MEMBER is true, then a non-static data member
- is being placed at OFFSET; otherwise, it is a base class that is
- being placed at OFFSET. */
-
-static void
-record_subobject_offsets (tree type,
- tree offset,
- splay_tree offsets,
- bool is_data_member)
-{
- tree max_offset;
- /* If recording subobjects for a non-static data member or a
- non-empty base class , we do not need to record offsets beyond
- the size of the biggest empty class. Additional data members
- will go at the end of the class. Additional base classes will go
- either at offset zero (if empty, in which case they cannot
- overlap with offsets past the size of the biggest empty class) or
- at the end of the class.
-
- However, if we are placing an empty base class, then we must record
- all offsets, as either the empty class is at offset zero (where
- other empty classes might later be placed) or at the end of the
- class (where other objects might then be placed, so other empty
- subobjects might later overlap). */
- if (is_data_member
- || !is_empty_class (BINFO_TYPE (type)))
- max_offset = sizeof_biggest_empty_class;
- else
- max_offset = NULL_TREE;
- walk_subobject_offsets (type, record_subobject_offset, offset,
- offsets, max_offset, is_data_member);
-}
-
-/* Returns nonzero if any of the empty subobjects of TYPE (located at
- OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
- virtual bases of TYPE are examined. */
-
-static int
-layout_conflict_p (tree type,
- tree offset,
- splay_tree offsets,
- int vbases_p)
-{
- splay_tree_node max_node;
-
- /* Get the node in OFFSETS that indicates the maximum offset where
- an empty subobject is located. */
- max_node = splay_tree_max (offsets);
- /* If there aren't any empty subobjects, then there's no point in
- performing this check. */
- if (!max_node)
- return 0;
-
- return walk_subobject_offsets (type, check_subobject_offset, offset,
- offsets, (tree) (max_node->key),
- vbases_p);
-}
-
-/* DECL is a FIELD_DECL corresponding either to a base subobject of a
- non-static data member of the type indicated by RLI. BINFO is the
- binfo corresponding to the base subobject, OFFSETS maps offsets to
- types already located at those offsets. This function determines
- the position of the DECL. */
-
-static void
-layout_nonempty_base_or_field (record_layout_info rli,
- tree decl,
- tree binfo,
- splay_tree offsets)
-{
- tree offset = NULL_TREE;
- bool field_p;
- tree type;
-
- if (binfo)
- {
- /* For the purposes of determining layout conflicts, we want to
- use the class type of BINFO; TREE_TYPE (DECL) will be the
- CLASSTYPE_AS_BASE version, which does not contain entries for
- zero-sized bases. */
- type = TREE_TYPE (binfo);
- field_p = false;
- }
- else
- {
- type = TREE_TYPE (decl);
- field_p = true;
- }
-
- /* Try to place the field. It may take more than one try if we have
- a hard time placing the field without putting two objects of the
- same type at the same address. */
- while (1)
- {
- struct record_layout_info_s old_rli = *rli;
-
- /* Place this field. */
- place_field (rli, decl);
- offset = byte_position (decl);
-
- /* We have to check to see whether or not there is already
- something of the same type at the offset we're about to use.
- For example, consider:
-
- struct S {};
- struct T : public S { int i; };
- struct U : public S, public T {};
-
- Here, we put S at offset zero in U. Then, we can't put T at
- offset zero -- its S component would be at the same address
- as the S we already allocated. So, we have to skip ahead.
- Since all data members, including those whose type is an
- empty class, have nonzero size, any overlap can happen only
- with a direct or indirect base-class -- it can't happen with
- a data member. */
- /* In a union, overlap is permitted; all members are placed at
- offset zero. */
- if (TREE_CODE (rli->t) == UNION_TYPE)
- break;
- /* G++ 3.2 did not check for overlaps when placing a non-empty
- virtual base. */
- if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
- break;
- if (layout_conflict_p (field_p ? type : binfo, offset,
- offsets, field_p))
- {
- /* Strip off the size allocated to this field. That puts us
- at the first place we could have put the field with
- proper alignment. */
- *rli = old_rli;
-
- /* Bump up by the alignment required for the type. */
- rli->bitpos
- = size_binop (PLUS_EXPR, rli->bitpos,
- bitsize_int (binfo
- ? CLASSTYPE_ALIGN (type)
- : TYPE_ALIGN (type)));
- normalize_rli (rli);
- }
- else
- /* There was no conflict. We're done laying out this field. */
- break;
- }
-
- /* Now that we know where it will be placed, update its
- BINFO_OFFSET. */
- if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
- /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
- this point because their BINFO_OFFSET is copied from another
- hierarchy. Therefore, we may not need to add the entire
- OFFSET. */
- propagate_binfo_offsets (binfo,
- size_diffop_loc (input_location,
- convert (ssizetype, offset),
- convert (ssizetype,
- BINFO_OFFSET (binfo))));
-}
-
-/* Returns true if TYPE is empty and OFFSET is nonzero. */
-
-static int
-empty_base_at_nonzero_offset_p (tree type,
- tree offset,
- splay_tree /*offsets*/)
-{
- return is_empty_class (type) && !integer_zerop (offset);
-}
-
-/* Layout the empty base BINFO. EOC indicates the byte currently just
- past the end of the class, and should be correctly aligned for a
- class of the type indicated by BINFO; OFFSETS gives the offsets of
- the empty bases allocated so far. T is the most derived
- type. Return nonzero iff we added it at the end. */
-
-static bool
-layout_empty_base (record_layout_info rli, tree binfo,
- tree eoc, splay_tree offsets)
-{
- tree alignment;
- tree basetype = BINFO_TYPE (binfo);
- bool atend = false;
-
- /* This routine should only be used for empty classes. */
- gcc_assert (is_empty_class (basetype));
- alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
-
- if (!integer_zerop (BINFO_OFFSET (binfo)))
- {
- if (abi_version_at_least (2))
- propagate_binfo_offsets
- (binfo, size_diffop_loc (input_location,
- size_zero_node, BINFO_OFFSET (binfo)));
- else
- warning (OPT_Wabi,
- "offset of empty base %qT may not be ABI-compliant and may"
- "change in a future version of GCC",
- BINFO_TYPE (binfo));
- }
-
- /* This is an empty base class. We first try to put it at offset
- zero. */
- if (layout_conflict_p (binfo,
- BINFO_OFFSET (binfo),
- offsets,
- /*vbases_p=*/0))
- {
- /* That didn't work. Now, we move forward from the next
- available spot in the class. */
- atend = true;
- propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
- while (1)
- {
- if (!layout_conflict_p (binfo,
- BINFO_OFFSET (binfo),
- offsets,
- /*vbases_p=*/0))
- /* We finally found a spot where there's no overlap. */
- break;
-
- /* There's overlap here, too. Bump along to the next spot. */
- propagate_binfo_offsets (binfo, alignment);
- }
- }
-
- if (CLASSTYPE_USER_ALIGN (basetype))
- {
- rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
- if (warn_packed)
- rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
- TYPE_USER_ALIGN (rli->t) = 1;
- }
-
- return atend;
-}
-
-/* Layout the base given by BINFO in the class indicated by RLI.
- *BASE_ALIGN is a running maximum of the alignments of
- any base class. OFFSETS gives the location of empty base
- subobjects. T is the most derived type. Return nonzero if the new
- object cannot be nearly-empty. A new FIELD_DECL is inserted at
- *NEXT_FIELD, unless BINFO is for an empty base class.
-
- Returns the location at which the next field should be inserted. */
-
-static tree *
-build_base_field (record_layout_info rli, tree binfo,
- splay_tree offsets, tree *next_field)
-{
- tree t = rli->t;
- tree basetype = BINFO_TYPE (binfo);
-
- if (!COMPLETE_TYPE_P (basetype))
- /* This error is now reported in xref_tag, thus giving better
- location information. */
- return next_field;
-
- /* Place the base class. */
- if (!is_empty_class (basetype))
- {
- tree decl;
-
- /* The containing class is non-empty because it has a non-empty
- base class. */
- CLASSTYPE_EMPTY_P (t) = 0;
-
- /* Create the FIELD_DECL. */
- decl = build_decl (input_location,
- FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
- DECL_ARTIFICIAL (decl) = 1;
- DECL_IGNORED_P (decl) = 1;
- DECL_FIELD_CONTEXT (decl) = t;
- if (CLASSTYPE_AS_BASE (basetype))
- {
- DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
- DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
- DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
- DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
- DECL_MODE (decl) = TYPE_MODE (basetype);
- DECL_FIELD_IS_BASE (decl) = 1;
-
- /* Try to place the field. It may take more than one try if we
- have a hard time placing the field without putting two
- objects of the same type at the same address. */
- layout_nonempty_base_or_field (rli, decl, binfo, offsets);
- /* Add the new FIELD_DECL to the list of fields for T. */
- DECL_CHAIN (decl) = *next_field;
- *next_field = decl;
- next_field = &DECL_CHAIN (decl);
- }
- }
- else
- {
- tree eoc;
- bool atend;
-
- /* On some platforms (ARM), even empty classes will not be
- byte-aligned. */
- eoc = round_up_loc (input_location,
- rli_size_unit_so_far (rli),
- CLASSTYPE_ALIGN_UNIT (basetype));
- atend = layout_empty_base (rli, binfo, eoc, offsets);
- /* A nearly-empty class "has no proper base class that is empty,
- not morally virtual, and at an offset other than zero." */
- if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
- {
- if (atend)
- CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
- /* The check above (used in G++ 3.2) is insufficient because
- an empty class placed at offset zero might itself have an
- empty base at a nonzero offset. */
- else if (walk_subobject_offsets (basetype,
- empty_base_at_nonzero_offset_p,
- size_zero_node,
- /*offsets=*/NULL,
- /*max_offset=*/NULL_TREE,
- /*vbases_p=*/true))
- {
- if (abi_version_at_least (2))
- CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
- else
- warning (OPT_Wabi,
- "class %qT will be considered nearly empty in a "
- "future version of GCC", t);
- }
- }
-
- /* We do not create a FIELD_DECL for empty base classes because
- it might overlap some other field. We want to be able to
- create CONSTRUCTORs for the class by iterating over the
- FIELD_DECLs, and the back end does not handle overlapping
- FIELD_DECLs. */
-
- /* An empty virtual base causes a class to be non-empty
- -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
- here because that was already done when the virtual table
- pointer was created. */
- }
-
- /* Record the offsets of BINFO and its base subobjects. */
- record_subobject_offsets (binfo,
- BINFO_OFFSET (binfo),
- offsets,
- /*is_data_member=*/false);
-
- return next_field;
-}
-
-/* Layout all of the non-virtual base classes. Record empty
- subobjects in OFFSETS. T is the most derived type. Return nonzero
- if the type cannot be nearly empty. The fields created
- corresponding to the base classes will be inserted at
- *NEXT_FIELD. */
-
-static void
-build_base_fields (record_layout_info rli,
- splay_tree offsets, tree *next_field)
-{
- /* Chain to hold all the new FIELD_DECLs which stand in for base class
- subobjects. */
- tree t = rli->t;
- int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
- int i;
-
- /* The primary base class is always allocated first. */
- if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
- next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
- offsets, next_field);
-
- /* Now allocate the rest of the bases. */
- for (i = 0; i < n_baseclasses; ++i)
- {
- tree base_binfo;
-
- base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
-
- /* The primary base was already allocated above, so we don't
- need to allocate it again here. */
- if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
- continue;
-
- /* Virtual bases are added at the end (a primary virtual base
- will have already been added). */
- if (BINFO_VIRTUAL_P (base_binfo))
- continue;
-
- next_field = build_base_field (rli, base_binfo,
- offsets, next_field);
- }
-}
-
-/* Go through the TYPE_METHODS of T issuing any appropriate
- diagnostics, figuring out which methods override which other
- methods, and so forth. */
-
-static void
-check_methods (tree t)
-{
- tree x;
-
- for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
- {
- check_for_override (x, t);
- if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
- error ("initializer specified for non-virtual method %q+D", x);
- /* The name of the field is the original field name
- Save this in auxiliary field for later overloading. */
- if (DECL_VINDEX (x))
- {
- TYPE_POLYMORPHIC_P (t) = 1;
- if (DECL_PURE_VIRTUAL_P (x))
- vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
- }
- /* All user-provided destructors are non-trivial.
- Constructors and assignment ops are handled in
- grok_special_member_properties. */
- if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
- TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
- }
-}
-
-/* FN is a constructor or destructor. Clone the declaration to create
- a specialized in-charge or not-in-charge version, as indicated by
- NAME. */
-
-static tree
-build_clone (tree fn, tree name)
-{
- tree parms;
- tree clone;
-
- /* Copy the function. */
- clone = copy_decl (fn);
- /* Reset the function name. */
- DECL_NAME (clone) = name;
- SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
- /* Remember where this function came from. */
- DECL_ABSTRACT_ORIGIN (clone) = fn;
- /* Make it easy to find the CLONE given the FN. */
- DECL_CHAIN (clone) = DECL_CHAIN (fn);
- DECL_CHAIN (fn) = clone;
-
- /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
- if (TREE_CODE (clone) == TEMPLATE_DECL)
- {
- tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
- DECL_TEMPLATE_RESULT (clone) = result;
- DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
- DECL_TI_TEMPLATE (result) = clone;
- TREE_TYPE (clone) = TREE_TYPE (result);
- return clone;
- }
-
- DECL_CLONED_FUNCTION (clone) = fn;
- /* There's no pending inline data for this function. */
- DECL_PENDING_INLINE_INFO (clone) = NULL;
- DECL_PENDING_INLINE_P (clone) = 0;
-
- /* The base-class destructor is not virtual. */
- if (name == base_dtor_identifier)
- {
- DECL_VIRTUAL_P (clone) = 0;
- if (TREE_CODE (clone) != TEMPLATE_DECL)
- DECL_VINDEX (clone) = NULL_TREE;
- }
-
- /* If there was an in-charge parameter, drop it from the function
- type. */
- if (DECL_HAS_IN_CHARGE_PARM_P (clone))
- {
- tree basetype;
- tree parmtypes;
- tree exceptions;
-
- exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
- basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
- parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
- /* Skip the `this' parameter. */
- parmtypes = TREE_CHAIN (parmtypes);
- /* Skip the in-charge parameter. */
- parmtypes = TREE_CHAIN (parmtypes);
- /* And the VTT parm, in a complete [cd]tor. */
- if (DECL_HAS_VTT_PARM_P (fn)
- && ! DECL_NEEDS_VTT_PARM_P (clone))
- parmtypes = TREE_CHAIN (parmtypes);
- /* If this is subobject constructor or destructor, add the vtt
- parameter. */
- TREE_TYPE (clone)
- = build_method_type_directly (basetype,
- TREE_TYPE (TREE_TYPE (clone)),
- parmtypes);
- if (exceptions)
- TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
- exceptions);
- TREE_TYPE (clone)
- = cp_build_type_attribute_variant (TREE_TYPE (clone),
- TYPE_ATTRIBUTES (TREE_TYPE (fn)));
- }
-
- /* Copy the function parameters. */
- DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
- /* Remove the in-charge parameter. */
- if (DECL_HAS_IN_CHARGE_PARM_P (clone))
- {
- DECL_CHAIN (DECL_ARGUMENTS (clone))
- = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
- DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
- }
- /* And the VTT parm, in a complete [cd]tor. */
- if (DECL_HAS_VTT_PARM_P (fn))
- {
- if (DECL_NEEDS_VTT_PARM_P (clone))
- DECL_HAS_VTT_PARM_P (clone) = 1;
- else
- {
- DECL_CHAIN (DECL_ARGUMENTS (clone))
- = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
- DECL_HAS_VTT_PARM_P (clone) = 0;
- }
- }
-
- for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
- {
- DECL_CONTEXT (parms) = clone;
- cxx_dup_lang_specific_decl (parms);
- }
-
- /* Create the RTL for this function. */
- SET_DECL_RTL (clone, NULL);
- rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
-
- if (pch_file)
- note_decl_for_pch (clone);
-
- return clone;
-}
-
-/* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
- not invoke this function directly.
-
- For a non-thunk function, returns the address of the slot for storing
- the function it is a clone of. Otherwise returns NULL_TREE.
-
- If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
- cloned_function is unset. This is to support the separate
- DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
- on a template makes sense, but not the former. */
-
-tree *
-decl_cloned_function_p (const_tree decl, bool just_testing)
-{
- tree *ptr;
- if (just_testing)
- decl = STRIP_TEMPLATE (decl);
-
- if (TREE_CODE (decl) != FUNCTION_DECL
- || !DECL_LANG_SPECIFIC (decl)
- || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
- {
-#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
- if (!just_testing)
- lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
- else
-#endif
- return NULL;
- }
-
- ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
- if (just_testing && *ptr == NULL_TREE)
- return NULL;
- else
- return ptr;
-}
-
-/* Produce declarations for all appropriate clones of FN. If
- UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
- CLASTYPE_METHOD_VEC as well. */
-
-void
-clone_function_decl (tree fn, int update_method_vec_p)
-{
- tree clone;
-
- /* Avoid inappropriate cloning. */
- if (DECL_CHAIN (fn)
- && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
- return;
-
- if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
- {
- /* For each constructor, we need two variants: an in-charge version
- and a not-in-charge version. */
- clone = build_clone (fn, complete_ctor_identifier);
- if (update_method_vec_p)
- add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
- clone = build_clone (fn, base_ctor_identifier);
- if (update_method_vec_p)
- add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
- }
- else
- {
- gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
-
- /* For each destructor, we need three variants: an in-charge
- version, a not-in-charge version, and an in-charge deleting
- version. We clone the deleting version first because that
- means it will go second on the TYPE_METHODS list -- and that
- corresponds to the correct layout order in the virtual
- function table.
-
- For a non-virtual destructor, we do not build a deleting
- destructor. */
- if (DECL_VIRTUAL_P (fn))
- {
- clone = build_clone (fn, deleting_dtor_identifier);
- if (update_method_vec_p)
- add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
- }
- clone = build_clone (fn, complete_dtor_identifier);
- if (update_method_vec_p)
- add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
- clone = build_clone (fn, base_dtor_identifier);
- if (update_method_vec_p)
- add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
- }
-
- /* Note that this is an abstract function that is never emitted. */
- DECL_ABSTRACT (fn) = 1;
-}
-
-/* DECL is an in charge constructor, which is being defined. This will
- have had an in class declaration, from whence clones were
- declared. An out-of-class definition can specify additional default
- arguments. As it is the clones that are involved in overload
- resolution, we must propagate the information from the DECL to its
- clones. */
-
-void
-adjust_clone_args (tree decl)
-{
- tree clone;
-
- for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
- clone = DECL_CHAIN (clone))
- {
- tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
- tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
- tree decl_parms, clone_parms;
-
- clone_parms = orig_clone_parms;
-
- /* Skip the 'this' parameter. */
- orig_clone_parms = TREE_CHAIN (orig_clone_parms);
- orig_decl_parms = TREE_CHAIN (orig_decl_parms);
-
- if (DECL_HAS_IN_CHARGE_PARM_P (decl))
- orig_decl_parms = TREE_CHAIN (orig_decl_parms);
- if (DECL_HAS_VTT_PARM_P (decl))
- orig_decl_parms = TREE_CHAIN (orig_decl_parms);
-
- clone_parms = orig_clone_parms;
- if (DECL_HAS_VTT_PARM_P (clone))
- clone_parms = TREE_CHAIN (clone_parms);
-
- for (decl_parms = orig_decl_parms; decl_parms;
- decl_parms = TREE_CHAIN (decl_parms),
- clone_parms = TREE_CHAIN (clone_parms))
- {
- gcc_assert (same_type_p (TREE_TYPE (decl_parms),
- TREE_TYPE (clone_parms)));
-
- if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
- {
- /* A default parameter has been added. Adjust the
- clone's parameters. */
- tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
- tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
- tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
- tree type;
-
- clone_parms = orig_decl_parms;
-
- if (DECL_HAS_VTT_PARM_P (clone))
- {
- clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
- TREE_VALUE (orig_clone_parms),
- clone_parms);
- TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
- }
- type = build_method_type_directly (basetype,
- TREE_TYPE (TREE_TYPE (clone)),
- clone_parms);
- if (exceptions)
- type = build_exception_variant (type, exceptions);
- if (attrs)
- type = cp_build_type_attribute_variant (type, attrs);
- TREE_TYPE (clone) = type;
-
- clone_parms = NULL_TREE;
- break;
- }
- }
- gcc_assert (!clone_parms);
- }
-}
-
-/* For each of the constructors and destructors in T, create an
- in-charge and not-in-charge variant. */
-
-static void
-clone_constructors_and_destructors (tree t)
-{
- tree fns;
-
- /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
- out now. */
- if (!CLASSTYPE_METHOD_VEC (t))
- return;
-
- for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
- clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
- for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
- clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
-}
-
-/* Deduce noexcept for a destructor DTOR. */
-
-void
-deduce_noexcept_on_destructor (tree dtor)
-{
- if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
- {
- tree ctx = DECL_CONTEXT (dtor);
- tree implicit_fn = implicitly_declare_fn (sfk_destructor, ctx,
- /*const_p=*/false,
- NULL, NULL);
- tree eh_spec = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (implicit_fn));
- TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
- }
-}
-
-/* For each destructor in T, deduce noexcept:
-
- 12.4/3: A declaration of a destructor that does not have an
- exception-specification is implicitly considered to have the
- same exception-specification as an implicit declaration (15.4). */
-
-static void
-deduce_noexcept_on_destructors (tree t)
-{
- tree fns;
-
- /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
- out now. */
- if (!CLASSTYPE_METHOD_VEC (t))
- return;
-
- for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
- deduce_noexcept_on_destructor (OVL_CURRENT (fns));
-}
-
-/* Subroutine of set_one_vmethod_tm_attributes. Search base classes
- of TYPE for virtual functions which FNDECL overrides. Return a
- mask of the tm attributes found therein. */
-
-static int
-look_for_tm_attr_overrides (tree type, tree fndecl)
-{
- tree binfo = TYPE_BINFO (type);
- tree base_binfo;
- int ix, found = 0;
-
- for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
- {
- tree o, basetype = BINFO_TYPE (base_binfo);
-
- if (!TYPE_POLYMORPHIC_P (basetype))
- continue;
-
- o = look_for_overrides_here (basetype, fndecl);
- if (o)
- found |= tm_attr_to_mask (find_tm_attribute
- (TYPE_ATTRIBUTES (TREE_TYPE (o))));
- else
- found |= look_for_tm_attr_overrides (basetype, fndecl);
- }
-
- return found;
-}
-
-/* Subroutine of set_method_tm_attributes. Handle the checks and
- inheritance for one virtual method FNDECL. */
-
-static void
-set_one_vmethod_tm_attributes (tree type, tree fndecl)
-{
- tree tm_attr;
- int found, have;
-
- found = look_for_tm_attr_overrides (type, fndecl);
-
- /* If FNDECL doesn't actually override anything (i.e. T is the
- class that first declares FNDECL virtual), then we're done. */
- if (found == 0)
- return;
-
- tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
- have = tm_attr_to_mask (tm_attr);
-
- /* Intel STM Language Extension 3.0, Section 4.2 table 4:
- tm_pure must match exactly, otherwise no weakening of
- tm_safe > tm_callable > nothing. */
- /* ??? The tm_pure attribute didn't make the transition to the
- multivendor language spec. */
- if (have == TM_ATTR_PURE)
- {
- if (found != TM_ATTR_PURE)
- {
- found &= -found;
- goto err_override;
- }
- }
- /* If the overridden function is tm_pure, then FNDECL must be. */
- else if (found == TM_ATTR_PURE && tm_attr)
- goto err_override;
- /* Look for base class combinations that cannot be satisfied. */
- else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
- {
- found &= ~TM_ATTR_PURE;
- found &= -found;
- error_at (DECL_SOURCE_LOCATION (fndecl),
- "method overrides both %<transaction_pure%> and %qE methods",
- tm_mask_to_attr (found));
- }
- /* If FNDECL did not declare an attribute, then inherit the most
- restrictive one. */
- else if (tm_attr == NULL)
- {
- apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
- }
- /* Otherwise validate that we're not weaker than a function
- that is being overridden. */
- else
- {
- found &= -found;
- if (found <= TM_ATTR_CALLABLE && have > found)
- goto err_override;
- }
- return;
-
- err_override:
- error_at (DECL_SOURCE_LOCATION (fndecl),
- "method declared %qE overriding %qE method",
- tm_attr, tm_mask_to_attr (found));
-}
-
-/* For each of the methods in T, propagate a class-level tm attribute. */
-
-static void
-set_method_tm_attributes (tree t)
-{
- tree class_tm_attr, fndecl;
-
- /* Don't bother collecting tm attributes if transactional memory
- support is not enabled. */
- if (!flag_tm)
- return;
-
- /* Process virtual methods first, as they inherit directly from the
- base virtual function and also require validation of new attributes. */
- if (TYPE_CONTAINS_VPTR_P (t))
- {
- tree vchain;
- for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
- vchain = TREE_CHAIN (vchain))
- {
- fndecl = BV_FN (vchain);
- if (DECL_THUNK_P (fndecl))
- fndecl = THUNK_TARGET (fndecl);
- set_one_vmethod_tm_attributes (t, fndecl);
- }
- }
-
- /* If the class doesn't have an attribute, nothing more to do. */
- class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
- if (class_tm_attr == NULL)
- return;
-
- /* Any method that does not yet have a tm attribute inherits
- the one from the class. */
- for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
- {
- if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
- apply_tm_attr (fndecl, class_tm_attr);
- }
-}
-
-/* Returns true iff class T has a user-defined constructor other than
- the default constructor. */
-
-bool
-type_has_user_nondefault_constructor (tree t)
-{
- tree fns;
-
- if (!TYPE_HAS_USER_CONSTRUCTOR (t))
- return false;
-
- for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
- {
- tree fn = OVL_CURRENT (fns);
- if (!DECL_ARTIFICIAL (fn)
- && (TREE_CODE (fn) == TEMPLATE_DECL
- || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
- != NULL_TREE)))
- return true;
- }
-
- return false;
-}
-
-/* Returns the defaulted constructor if T has one. Otherwise, returns
- NULL_TREE. */
-
-tree
-in_class_defaulted_default_constructor (tree t)
-{
- tree fns, args;
-
- if (!TYPE_HAS_USER_CONSTRUCTOR (t))
- return NULL_TREE;
-
- for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
- {
- tree fn = OVL_CURRENT (fns);
-
- if (DECL_DEFAULTED_IN_CLASS_P (fn))
- {
- args = FUNCTION_FIRST_USER_PARMTYPE (fn);
- while (args && TREE_PURPOSE (args))
- args = TREE_CHAIN (args);
- if (!args || args == void_list_node)
- return fn;
- }
- }
-
- return NULL_TREE;
-}
-
-/* Returns true iff FN is a user-provided function, i.e. user-declared
- and not defaulted at its first declaration; or explicit, private,
- protected, or non-const. */
-
-bool
-user_provided_p (tree fn)
-{
- if (TREE_CODE (fn) == TEMPLATE_DECL)
- return true;
- else
- return (!DECL_ARTIFICIAL (fn)
- && !DECL_DEFAULTED_IN_CLASS_P (fn));
-}
-
-/* Returns true iff class T has a user-provided constructor. */
-
-bool
-type_has_user_provided_constructor (tree t)
-{
- tree fns;
-
- if (!CLASS_TYPE_P (t))
- return false;
-
- if (!TYPE_HAS_USER_CONSTRUCTOR (t))
- return false;
-
- /* This can happen in error cases; avoid crashing. */
- if (!CLASSTYPE_METHOD_VEC (t))
- return false;
-
- for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
- if (user_provided_p (OVL_CURRENT (fns)))
- return true;
-
- return false;
-}
-
-/* Returns true iff class T has a user-provided default constructor. */
-
-bool
-type_has_user_provided_default_constructor (tree t)
-{
- tree fns;
-
- if (!TYPE_HAS_USER_CONSTRUCTOR (t))
- return false;
-
- for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
- {
- tree fn = OVL_CURRENT (fns);
- if (TREE_CODE (fn) == FUNCTION_DECL
- && user_provided_p (fn)
- && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
- return true;
- }
-
- return false;
-}
-
-/* If default-initialization leaves part of TYPE uninitialized, returns
- a DECL for the field or TYPE itself (DR 253). */
-
-tree
-default_init_uninitialized_part (tree type)
-{
- tree t, r, binfo;
- int i;
-
- type = strip_array_types (type);
- if (!CLASS_TYPE_P (type))
- return type;
- if (type_has_user_provided_default_constructor (type))
- return NULL_TREE;
- for (binfo = TYPE_BINFO (type), i = 0;
- BINFO_BASE_ITERATE (binfo, i, t); ++i)
- {
- r = default_init_uninitialized_part (BINFO_TYPE (t));
- if (r)
- return r;
- }
- for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
- if (TREE_CODE (t) == FIELD_DECL
- && !DECL_ARTIFICIAL (t)
- && !DECL_INITIAL (t))
- {
- r = default_init_uninitialized_part (TREE_TYPE (t));
- if (r)
- return DECL_P (r) ? r : t;
- }
-
- return NULL_TREE;
-}
-
-/* Returns true iff for class T, a trivial synthesized default constructor
- would be constexpr. */
-
-bool
-trivial_default_constructor_is_constexpr (tree t)
-{
- /* A defaulted trivial default constructor is constexpr
- if there is nothing to initialize. */
- gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
- return is_really_empty_class (t);
-}
-
-/* Returns true iff class T has a constexpr default constructor. */
-
-bool
-type_has_constexpr_default_constructor (tree t)
-{
- tree fns;
-
- if (!CLASS_TYPE_P (t))
- {
- /* The caller should have stripped an enclosing array. */
- gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
- return false;
- }
- if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
- {
- if (!TYPE_HAS_COMPLEX_DFLT (t))
- return trivial_default_constructor_is_constexpr (t);
- /* Non-trivial, we need to check subobject constructors. */
- lazily_declare_fn (sfk_constructor, t);
- }
- fns = locate_ctor (t);
- return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
-}
-
-/* Returns true iff class TYPE has a virtual destructor. */
-
-bool
-type_has_virtual_destructor (tree type)
-{
- tree dtor;
-
- if (!CLASS_TYPE_P (type))
- return false;
-
- gcc_assert (COMPLETE_TYPE_P (type));
- dtor = CLASSTYPE_DESTRUCTORS (type);
- return (dtor && DECL_VIRTUAL_P (dtor));
-}
-
-/* Returns true iff class T has a move constructor. */
-
-bool
-type_has_move_constructor (tree t)
-{
- tree fns;
-
- if (CLASSTYPE_LAZY_MOVE_CTOR (t))
- {
- gcc_assert (COMPLETE_TYPE_P (t));
- lazily_declare_fn (sfk_move_constructor, t);
- }
-
- if (!CLASSTYPE_METHOD_VEC (t))
- return false;
-
- for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
- if (move_fn_p (OVL_CURRENT (fns)))
- return true;
-
- return false;
-}
-
-/* Returns true iff class T has a move assignment operator. */
-
-bool
-type_has_move_assign (tree t)
-{
- tree fns;
-
- if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
- {
- gcc_assert (COMPLETE_TYPE_P (t));
- lazily_declare_fn (sfk_move_assignment, t);
- }
-
- for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
- fns; fns = OVL_NEXT (fns))
- if (move_fn_p (OVL_CURRENT (fns)))
- return true;
-
- return false;
-}
-
-/* Returns true iff class T has a move constructor that was explicitly
- declared in the class body. Note that this is different from
- "user-provided", which doesn't include functions that are defaulted in
- the class. */
-
-bool
-type_has_user_declared_move_constructor (tree t)
-{
- tree fns;
-
- if (CLASSTYPE_LAZY_MOVE_CTOR (t))
- return false;
-
- if (!CLASSTYPE_METHOD_VEC (t))
- return false;
-
- for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
- {
- tree fn = OVL_CURRENT (fns);
- if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
- return true;
- }
-
- return false;
-}
-
-/* Returns true iff class T has a move assignment operator that was
- explicitly declared in the class body. */
-
-bool
-type_has_user_declared_move_assign (tree t)
-{
- tree fns;
-
- if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
- return false;
-
- for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
- fns; fns = OVL_NEXT (fns))
- {
- tree fn = OVL_CURRENT (fns);
- if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
- return true;
- }
-
- return false;
-}
-
-/* Nonzero if we need to build up a constructor call when initializing an
- object of this class, either because it has a user-provided constructor
- or because it doesn't have a default constructor (so we need to give an
- error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
- what you care about is whether or not an object can be produced by a
- constructor (e.g. so we don't set TREE_READONLY on const variables of
- such type); use this function when what you care about is whether or not
- to try to call a constructor to create an object. The latter case is
- the former plus some cases of constructors that cannot be called. */
-
-bool
-type_build_ctor_call (tree t)
-{
- tree inner;
- if (TYPE_NEEDS_CONSTRUCTING (t))
- return true;
- inner = strip_array_types (t);
- return (CLASS_TYPE_P (inner) && !TYPE_HAS_DEFAULT_CONSTRUCTOR (inner)
- && !ANON_AGGR_TYPE_P (inner));
-}
-
-/* Remove all zero-width bit-fields from T. */
-
-static void
-remove_zero_width_bit_fields (tree t)
-{
- tree *fieldsp;
-
- fieldsp = &TYPE_FIELDS (t);
- while (*fieldsp)
- {
- if (TREE_CODE (*fieldsp) == FIELD_DECL
- && DECL_C_BIT_FIELD (*fieldsp)
- /* We should not be confused by the fact that grokbitfield
- temporarily sets the width of the bit field into
- DECL_INITIAL (*fieldsp).
- check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
- to that width. */
- && integer_zerop (DECL_SIZE (*fieldsp)))
- *fieldsp = DECL_CHAIN (*fieldsp);
- else
- fieldsp = &DECL_CHAIN (*fieldsp);
- }
-}
-
-/* Returns TRUE iff we need a cookie when dynamically allocating an
- array whose elements have the indicated class TYPE. */
-
-static bool
-type_requires_array_cookie (tree type)
-{
- tree fns;
- bool has_two_argument_delete_p = false;
-
- gcc_assert (CLASS_TYPE_P (type));
-
- /* If there's a non-trivial destructor, we need a cookie. In order
- to iterate through the array calling the destructor for each
- element, we'll have to know how many elements there are. */
- if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
- return true;
-
- /* If the usual deallocation function is a two-argument whose second
- argument is of type `size_t', then we have to pass the size of
- the array to the deallocation function, so we will need to store
- a cookie. */
- fns = lookup_fnfields (TYPE_BINFO (type),
- ansi_opname (VEC_DELETE_EXPR),
- /*protect=*/0);
- /* If there are no `operator []' members, or the lookup is
- ambiguous, then we don't need a cookie. */
- if (!fns || fns == error_mark_node)
- return false;
- /* Loop through all of the functions. */
- for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
- {
- tree fn;
- tree second_parm;
-
- /* Select the current function. */
- fn = OVL_CURRENT (fns);
- /* See if this function is a one-argument delete function. If
- it is, then it will be the usual deallocation function. */
- second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
- if (second_parm == void_list_node)
- return false;
- /* Do not consider this function if its second argument is an
- ellipsis. */
- if (!second_parm)
- continue;
- /* Otherwise, if we have a two-argument function and the second
- argument is `size_t', it will be the usual deallocation
- function -- unless there is one-argument function, too. */
- if (TREE_CHAIN (second_parm) == void_list_node
- && same_type_p (TREE_VALUE (second_parm), size_type_node))
- has_two_argument_delete_p = true;
- }
-
- return has_two_argument_delete_p;
-}
-
-/* Finish computing the `literal type' property of class type T.
-
- At this point, we have already processed base classes and
- non-static data members. We need to check whether the copy
- constructor is trivial, the destructor is trivial, and there
- is a trivial default constructor or at least one constexpr
- constructor other than the copy constructor. */
-
-static void
-finalize_literal_type_property (tree t)
-{
- tree fn;
-
- if (cxx_dialect < cxx0x
- || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
- CLASSTYPE_LITERAL_P (t) = false;
- else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
- && CLASSTYPE_NON_AGGREGATE (t)
- && !TYPE_HAS_CONSTEXPR_CTOR (t))
- CLASSTYPE_LITERAL_P (t) = false;
-
- if (!CLASSTYPE_LITERAL_P (t))
- for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
- if (DECL_DECLARED_CONSTEXPR_P (fn)
- && TREE_CODE (fn) != TEMPLATE_DECL
- && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
- && !DECL_CONSTRUCTOR_P (fn))
- {
- DECL_DECLARED_CONSTEXPR_P (fn) = false;
- if (!DECL_GENERATED_P (fn))
- {
- error ("enclosing class of constexpr non-static member "
- "function %q+#D is not a literal type", fn);
- explain_non_literal_class (t);
- }
- }
-}
-
-/* T is a non-literal type used in a context which requires a constant
- expression. Explain why it isn't literal. */
-
-void
-explain_non_literal_class (tree t)
-{
- static struct pointer_set_t *diagnosed;
-
- if (!CLASS_TYPE_P (t))
- return;
- t = TYPE_MAIN_VARIANT (t);
-
- if (diagnosed == NULL)
- diagnosed = pointer_set_create ();
- if (pointer_set_insert (diagnosed, t) != 0)
- /* Already explained. */
- return;
-
- inform (0, "%q+T is not literal because:", t);
- if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
- inform (0, " %q+T has a non-trivial destructor", t);
- else if (CLASSTYPE_NON_AGGREGATE (t)
- && !TYPE_HAS_TRIVIAL_DFLT (t)
- && !TYPE_HAS_CONSTEXPR_CTOR (t))
- {
- inform (0, " %q+T is not an aggregate, does not have a trivial "
- "default constructor, and has no constexpr constructor that "
- "is not a copy or move constructor", t);
- if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
- && !type_has_user_provided_default_constructor (t))
- {
- /* Note that we can't simply call locate_ctor because when the
- constructor is deleted it just returns NULL_TREE. */
- tree fns;
- for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
- {
- tree fn = OVL_CURRENT (fns);
- tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
-
- parms = skip_artificial_parms_for (fn, parms);
-
- if (sufficient_parms_p (parms))
- {
- if (DECL_DELETED_FN (fn))
- maybe_explain_implicit_delete (fn);
- else
- explain_invalid_constexpr_fn (fn);
- break;
- }
- }
- }
- }
- else
- {
- tree binfo, base_binfo, field; int i;
- for (binfo = TYPE_BINFO (t), i = 0;
- BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
- {
- tree basetype = TREE_TYPE (base_binfo);
- if (!CLASSTYPE_LITERAL_P (basetype))
- {
- inform (0, " base class %qT of %q+T is non-literal",
- basetype, t);
- explain_non_literal_class (basetype);
- return;
- }
- }
- for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
- {
- tree ftype;
- if (TREE_CODE (field) != FIELD_DECL)
- continue;
- ftype = TREE_TYPE (field);
- if (!literal_type_p (ftype))
- {
- inform (0, " non-static data member %q+D has "
- "non-literal type", field);
- if (CLASS_TYPE_P (ftype))
- explain_non_literal_class (ftype);
- }
- }
- }
-}
-
-/* Check the validity of the bases and members declared in T. Add any
- implicitly-generated functions (like copy-constructors and
- assignment operators). Compute various flag bits (like
- CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
- level: i.e., independently of the ABI in use. */
-
-static void
-check_bases_and_members (tree t)
-{
- /* Nonzero if the implicitly generated copy constructor should take
- a non-const reference argument. */
- int cant_have_const_ctor;
- /* Nonzero if the implicitly generated assignment operator
- should take a non-const reference argument. */
- int no_const_asn_ref;
- tree access_decls;
- bool saved_complex_asn_ref;
- bool saved_nontrivial_dtor;
- tree fn;
-
- /* By default, we use const reference arguments and generate default
- constructors. */
- cant_have_const_ctor = 0;
- no_const_asn_ref = 0;
-
- /* Check all the base-classes. */
- check_bases (t, &cant_have_const_ctor,
- &no_const_asn_ref);
-
- /* Deduce noexcept on destructors. This needs to happen after we've set
- triviality flags appropriately for our bases. */
- if (cxx_dialect >= cxx0x)
- deduce_noexcept_on_destructors (t);
-
- /* Check all the method declarations. */
- check_methods (t);
-
- /* Save the initial values of these flags which only indicate whether
- or not the class has user-provided functions. As we analyze the
- bases and members we can set these flags for other reasons. */
- saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
- saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
-
- /* Check all the data member declarations. We cannot call
- check_field_decls until we have called check_bases check_methods,
- as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
- being set appropriately. */
- check_field_decls (t, &access_decls,
- &cant_have_const_ctor,
- &no_const_asn_ref);
-
- /* A nearly-empty class has to be vptr-containing; a nearly empty
- class contains just a vptr. */
- if (!TYPE_CONTAINS_VPTR_P (t))
- CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
-
- /* Do some bookkeeping that will guide the generation of implicitly
- declared member functions. */
- TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
- TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
- /* We need to call a constructor for this class if it has a
- user-provided constructor, or if the default constructor is going
- to initialize the vptr. (This is not an if-and-only-if;
- TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
- themselves need constructing.) */
- TYPE_NEEDS_CONSTRUCTING (t)
- |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
- /* [dcl.init.aggr]
-
- An aggregate is an array or a class with no user-provided
- constructors ... and no virtual functions.
-
- Again, other conditions for being an aggregate are checked
- elsewhere. */
- CLASSTYPE_NON_AGGREGATE (t)
- |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
- /* This is the C++98/03 definition of POD; it changed in C++0x, but we
- retain the old definition internally for ABI reasons. */
- CLASSTYPE_NON_LAYOUT_POD_P (t)
- |= (CLASSTYPE_NON_AGGREGATE (t)
- || saved_nontrivial_dtor || saved_complex_asn_ref);
- CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
- TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
- TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
- TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
-
- /* If the class has no user-declared constructor, but does have
- non-static const or reference data members that can never be
- initialized, issue a warning. */
- if (warn_uninitialized
- /* Classes with user-declared constructors are presumed to
- initialize these members. */
- && !TYPE_HAS_USER_CONSTRUCTOR (t)
- /* Aggregates can be initialized with brace-enclosed
- initializers. */
- && CLASSTYPE_NON_AGGREGATE (t))
- {
- tree field;
-
- for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
- {
- tree type;
-
- if (TREE_CODE (field) != FIELD_DECL
- || DECL_INITIAL (field) != NULL_TREE)
- continue;
-
- type = TREE_TYPE (field);
- if (TREE_CODE (type) == REFERENCE_TYPE)
- warning (OPT_Wuninitialized, "non-static reference %q+#D "
- "in class without a constructor", field);
- else if (CP_TYPE_CONST_P (type)
- && (!CLASS_TYPE_P (type)
- || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
- warning (OPT_Wuninitialized, "non-static const member %q+#D "
- "in class without a constructor", field);
- }
- }
-
- /* Synthesize any needed methods. */
- add_implicitly_declared_members (t, &access_decls,
- cant_have_const_ctor,
- no_const_asn_ref);
-
- /* Check defaulted declarations here so we have cant_have_const_ctor
- and don't need to worry about clones. */
- for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
- if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
- {
- int copy = copy_fn_p (fn);
- if (copy > 0)
- {
- bool imp_const_p
- = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
- : !no_const_asn_ref);
- bool fn_const_p = (copy == 2);
-
- if (fn_const_p && !imp_const_p)
- /* If the function is defaulted outside the class, we just
- give the synthesis error. */
- error ("%q+D declared to take const reference, but implicit "
- "declaration would take non-const", fn);
- }
- defaulted_late_check (fn);
- }
-
- if (LAMBDA_TYPE_P (t))
- {
- /* "The closure type associated with a lambda-expression has a deleted
- default constructor and a deleted copy assignment operator." */
- TYPE_NEEDS_CONSTRUCTING (t) = 1;
- TYPE_HAS_COMPLEX_DFLT (t) = 1;
- TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
- CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
-
- /* "This class type is not an aggregate." */
- CLASSTYPE_NON_AGGREGATE (t) = 1;
- }
-
- /* Compute the 'literal type' property before we
- do anything with non-static member functions. */
- finalize_literal_type_property (t);
-
- /* Create the in-charge and not-in-charge variants of constructors
- and destructors. */
- clone_constructors_and_destructors (t);
-
- /* Process the using-declarations. */
- for (; access_decls; access_decls = TREE_CHAIN (access_decls))
- handle_using_decl (TREE_VALUE (access_decls), t);
-
- /* Build and sort the CLASSTYPE_METHOD_VEC. */
- finish_struct_methods (t);
-
- /* Figure out whether or not we will need a cookie when dynamically
- allocating an array of this type. */
- TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
- = type_requires_array_cookie (t);
-}
-
-/* If T needs a pointer to its virtual function table, set TYPE_VFIELD
- accordingly. If a new vfield was created (because T doesn't have a
- primary base class), then the newly created field is returned. It
- is not added to the TYPE_FIELDS list; it is the caller's
- responsibility to do that. Accumulate declared virtual functions
- on VIRTUALS_P. */
-
-static tree
-create_vtable_ptr (tree t, tree* virtuals_p)
-{
- tree fn;
-
- /* Collect the virtual functions declared in T. */
- for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
- if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
- && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
- {
- tree new_virtual = make_node (TREE_LIST);
-
- BV_FN (new_virtual) = fn;
- BV_DELTA (new_virtual) = integer_zero_node;
- BV_VCALL_INDEX (new_virtual) = NULL_TREE;
-
- TREE_CHAIN (new_virtual) = *virtuals_p;
- *virtuals_p = new_virtual;
- }
-
- /* If we couldn't find an appropriate base class, create a new field
- here. Even if there weren't any new virtual functions, we might need a
- new virtual function table if we're supposed to include vptrs in
- all classes that need them. */
- if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
- {
- /* We build this decl with vtbl_ptr_type_node, which is a
- `vtable_entry_type*'. It might seem more precise to use
- `vtable_entry_type (*)[N]' where N is the number of virtual
- functions. However, that would require the vtable pointer in
- base classes to have a different type than the vtable pointer
- in derived classes. We could make that happen, but that
- still wouldn't solve all the problems. In particular, the
- type-based alias analysis code would decide that assignments
- to the base class vtable pointer can't alias assignments to
- the derived class vtable pointer, since they have different
- types. Thus, in a derived class destructor, where the base
- class constructor was inlined, we could generate bad code for
- setting up the vtable pointer.
-
- Therefore, we use one type for all vtable pointers. We still
- use a type-correct type; it's just doesn't indicate the array
- bounds. That's better than using `void*' or some such; it's
- cleaner, and it let's the alias analysis code know that these
- stores cannot alias stores to void*! */
- tree field;
-
- field = build_decl (input_location,
- FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
- DECL_VIRTUAL_P (field) = 1;
- DECL_ARTIFICIAL (field) = 1;
- DECL_FIELD_CONTEXT (field) = t;
- DECL_FCONTEXT (field) = t;
- if (TYPE_PACKED (t))
- DECL_PACKED (field) = 1;
-
- TYPE_VFIELD (t) = field;
-
- /* This class is non-empty. */
- CLASSTYPE_EMPTY_P (t) = 0;
-
- return field;
- }
-
- return NULL_TREE;
-}
-
-/* Add OFFSET to all base types of BINFO which is a base in the
- hierarchy dominated by T.
-
- OFFSET, which is a type offset, is number of bytes. */
-
-static void
-propagate_binfo_offsets (tree binfo, tree offset)
-{
- int i;
- tree primary_binfo;
- tree base_binfo;
-
- /* Update BINFO's offset. */
- BINFO_OFFSET (binfo)
- = convert (sizetype,
- size_binop (PLUS_EXPR,
- convert (ssizetype, BINFO_OFFSET (binfo)),
- offset));
-
- /* Find the primary base class. */
- primary_binfo = get_primary_binfo (binfo);
-
- if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
- propagate_binfo_offsets (primary_binfo, offset);
-
- /* Scan all of the bases, pushing the BINFO_OFFSET adjust
- downwards. */
- for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
- {
- /* Don't do the primary base twice. */
- if (base_binfo == primary_binfo)
- continue;
-
- if (BINFO_VIRTUAL_P (base_binfo))
- continue;
-
- propagate_binfo_offsets (base_binfo, offset);
- }
-}
-
-/* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
- TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
- empty subobjects of T. */
-
-static void
-layout_virtual_bases (record_layout_info rli, splay_tree offsets)
-{
- tree vbase;
- tree t = rli->t;
- bool first_vbase = true;
- tree *next_field;
-
- if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
- return;
-
- if (!abi_version_at_least(2))
- {
- /* In G++ 3.2, we incorrectly rounded the size before laying out
- the virtual bases. */
- finish_record_layout (rli, /*free_p=*/false);
-#ifdef STRUCTURE_SIZE_BOUNDARY
- /* Packed structures don't need to have minimum size. */
- if (! TYPE_PACKED (t))
- TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
-#endif
- rli->offset = TYPE_SIZE_UNIT (t);
- rli->bitpos = bitsize_zero_node;
- rli->record_align = TYPE_ALIGN (t);
- }
-
- /* Find the last field. The artificial fields created for virtual
- bases will go after the last extant field to date. */
- next_field = &TYPE_FIELDS (t);
- while (*next_field)
- next_field = &DECL_CHAIN (*next_field);
-
- /* Go through the virtual bases, allocating space for each virtual
- base that is not already a primary base class. These are
- allocated in inheritance graph order. */
- for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
- {
- if (!BINFO_VIRTUAL_P (vbase))
- continue;
-
- if (!BINFO_PRIMARY_P (vbase))
- {
- tree basetype = TREE_TYPE (vbase);
-
- /* This virtual base is not a primary base of any class in the
- hierarchy, so we have to add space for it. */
- next_field = build_base_field (rli, vbase,
- offsets, next_field);
-
- /* If the first virtual base might have been placed at a
- lower address, had we started from CLASSTYPE_SIZE, rather
- than TYPE_SIZE, issue a warning. There can be both false
- positives and false negatives from this warning in rare
- cases; to deal with all the possibilities would probably
- require performing both layout algorithms and comparing
- the results which is not particularly tractable. */
- if (warn_abi
- && first_vbase
- && (tree_int_cst_lt
- (size_binop (CEIL_DIV_EXPR,
- round_up_loc (input_location,
- CLASSTYPE_SIZE (t),
- CLASSTYPE_ALIGN (basetype)),
- bitsize_unit_node),
- BINFO_OFFSET (vbase))))
- warning (OPT_Wabi,
- "offset of virtual base %qT is not ABI-compliant and "
- "may change in a future version of GCC",
- basetype);
-
- first_vbase = false;
- }
- }
-}
-
-/* Returns the offset of the byte just past the end of the base class
- BINFO. */
-
-static tree
-end_of_base (tree binfo)
-{
- tree size;
-
- if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
- size = TYPE_SIZE_UNIT (char_type_node);
- else if (is_empty_class (BINFO_TYPE (binfo)))
- /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
- allocate some space for it. It cannot have virtual bases, so
- TYPE_SIZE_UNIT is fine. */
- size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
- else
- size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
-
- return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
-}
-
-/* Returns the offset of the byte just past the end of the base class
- with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
- only non-virtual bases are included. */
-
-static tree
-end_of_class (tree t, int include_virtuals_p)
-{
- tree result = size_zero_node;
- vec<tree, va_gc> *vbases;
- tree binfo;
- tree base_binfo;
- tree offset;
- int i;
-
- for (binfo = TYPE_BINFO (t), i = 0;
- BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
- {
- if (!include_virtuals_p
- && BINFO_VIRTUAL_P (base_binfo)
- && (!BINFO_PRIMARY_P (base_binfo)
- || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
- continue;
-
- offset = end_of_base (base_binfo);
- if (INT_CST_LT_UNSIGNED (result, offset))
- result = offset;
- }
-
- /* G++ 3.2 did not check indirect virtual bases. */
- if (abi_version_at_least (2) && include_virtuals_p)
- for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
- vec_safe_iterate (vbases, i, &base_binfo); i++)
- {
- offset = end_of_base (base_binfo);
- if (INT_CST_LT_UNSIGNED (result, offset))
- result = offset;
- }
-
- return result;
-}
-
-/* Warn about bases of T that are inaccessible because they are
- ambiguous. For example:
-
- struct S {};
- struct T : public S {};
- struct U : public S, public T {};
-
- Here, `(S*) new U' is not allowed because there are two `S'
- subobjects of U. */
-
-static void
-warn_about_ambiguous_bases (tree t)
-{
- int i;
- vec<tree, va_gc> *vbases;
- tree basetype;
- tree binfo;
- tree base_binfo;
-
- /* If there are no repeated bases, nothing can be ambiguous. */
- if (!CLASSTYPE_REPEATED_BASE_P (t))
- return;
-
- /* Check direct bases. */
- for (binfo = TYPE_BINFO (t), i = 0;
- BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
- {
- basetype = BINFO_TYPE (base_binfo);
-
- if (!uniquely_derived_from_p (basetype, t))
- warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
- basetype, t);
- }
-
- /* Check for ambiguous virtual bases. */
- if (extra_warnings)
- for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
- vec_safe_iterate (vbases, i, &binfo); i++)
- {
- basetype = BINFO_TYPE (binfo);
-
- if (!uniquely_derived_from_p (basetype, t))
- warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
- "to ambiguity", basetype, t);
- }
-}
-
-/* Compare two INTEGER_CSTs K1 and K2. */
-
-static int
-splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
-{
- return tree_int_cst_compare ((tree) k1, (tree) k2);
-}
-
-/* Increase the size indicated in RLI to account for empty classes
- that are "off the end" of the class. */
-
-static void
-include_empty_classes (record_layout_info rli)
-{
- tree eoc;
- tree rli_size;
-
- /* It might be the case that we grew the class to allocate a
- zero-sized base class. That won't be reflected in RLI, yet,
- because we are willing to overlay multiple bases at the same
- offset. However, now we need to make sure that RLI is big enough
- to reflect the entire class. */
- eoc = end_of_class (rli->t,
- CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
- rli_size = rli_size_unit_so_far (rli);
- if (TREE_CODE (rli_size) == INTEGER_CST
- && INT_CST_LT_UNSIGNED (rli_size, eoc))
- {
- if (!abi_version_at_least (2))
- /* In version 1 of the ABI, the size of a class that ends with
- a bitfield was not rounded up to a whole multiple of a
- byte. Because rli_size_unit_so_far returns only the number
- of fully allocated bytes, any extra bits were not included
- in the size. */
- rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
- else
- /* The size should have been rounded to a whole byte. */
- gcc_assert (tree_int_cst_equal
- (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
- rli->bitpos
- = size_binop (PLUS_EXPR,
- rli->bitpos,
- size_binop (MULT_EXPR,
- convert (bitsizetype,
- size_binop (MINUS_EXPR,
- eoc, rli_size)),
- bitsize_int (BITS_PER_UNIT)));
- normalize_rli (rli);
- }
-}
-
-/* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
- BINFO_OFFSETs for all of the base-classes. Position the vtable
- pointer. Accumulate declared virtual functions on VIRTUALS_P. */
-
-static void
-layout_class_type (tree t, tree *virtuals_p)
-{
- tree non_static_data_members;
- tree field;
- tree vptr;
- record_layout_info rli;
- /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
- types that appear at that offset. */
- splay_tree empty_base_offsets;
- /* True if the last field layed out was a bit-field. */
- bool last_field_was_bitfield = false;
- /* The location at which the next field should be inserted. */
- tree *next_field;
- /* T, as a base class. */
- tree base_t;
-
- /* Keep track of the first non-static data member. */
- non_static_data_members = TYPE_FIELDS (t);
-
- /* Start laying out the record. */
- rli = start_record_layout (t);
-
- /* Mark all the primary bases in the hierarchy. */
- determine_primary_bases (t);
-
- /* Create a pointer to our virtual function table. */
- vptr = create_vtable_ptr (t, virtuals_p);
-
- /* The vptr is always the first thing in the class. */
- if (vptr)
- {
- DECL_CHAIN (vptr) = TYPE_FIELDS (t);
- TYPE_FIELDS (t) = vptr;
- next_field = &DECL_CHAIN (vptr);
- place_field (rli, vptr);
- }
- else
- next_field = &TYPE_FIELDS (t);
-
- /* Build FIELD_DECLs for all of the non-virtual base-types. */
- empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
- NULL, NULL);
- build_base_fields (rli, empty_base_offsets, next_field);
-
- /* Layout the non-static data members. */
- for (field = non_static_data_members; field; field = DECL_CHAIN (field))
- {
- tree type;
- tree padding;
-
- /* We still pass things that aren't non-static data members to
- the back end, in case it wants to do something with them. */
- if (TREE_CODE (field) != FIELD_DECL)
- {
- place_field (rli, field);
- /* If the static data member has incomplete type, keep track
- of it so that it can be completed later. (The handling
- of pending statics in finish_record_layout is
- insufficient; consider:
-
- struct S1;
- struct S2 { static S1 s1; };
-
- At this point, finish_record_layout will be called, but
- S1 is still incomplete.) */
- if (TREE_CODE (field) == VAR_DECL)
- {
- maybe_register_incomplete_var (field);
- /* The visibility of static data members is determined
- at their point of declaration, not their point of
- definition. */
- determine_visibility (field);
- }
- continue;
- }
-
- type = TREE_TYPE (field);
- if (type == error_mark_node)
- continue;
-
- padding = NULL_TREE;
-
- /* If this field is a bit-field whose width is greater than its
- type, then there are some special rules for allocating
- it. */
- if (DECL_C_BIT_FIELD (field)
- && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
- {
- unsigned int itk;
- tree integer_type;
- bool was_unnamed_p = false;
- /* We must allocate the bits as if suitably aligned for the
- longest integer type that fits in this many bits. type
- of the field. Then, we are supposed to use the left over
- bits as additional padding. */
- for (itk = itk_char; itk != itk_none; ++itk)
- if (integer_types[itk] != NULL_TREE
- && (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE),
- TYPE_SIZE (integer_types[itk]))
- || INT_CST_LT (DECL_SIZE (field),
- TYPE_SIZE (integer_types[itk]))))
- break;
-
- /* ITK now indicates a type that is too large for the
- field. We have to back up by one to find the largest
- type that fits. */
- do
- {
- --itk;
- integer_type = integer_types[itk];
- } while (itk > 0 && integer_type == NULL_TREE);
-
- /* Figure out how much additional padding is required. GCC
- 3.2 always created a padding field, even if it had zero
- width. */
- if (!abi_version_at_least (2)
- || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
- {
- if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
- /* In a union, the padding field must have the full width
- of the bit-field; all fields start at offset zero. */
- padding = DECL_SIZE (field);
- else
- {
- if (TREE_CODE (t) == UNION_TYPE)
- warning (OPT_Wabi, "size assigned to %qT may not be "
- "ABI-compliant and may change in a future "
- "version of GCC",
- t);
- padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
- TYPE_SIZE (integer_type));
- }
- }
-#ifdef PCC_BITFIELD_TYPE_MATTERS
- /* An unnamed bitfield does not normally affect the
- alignment of the containing class on a target where
- PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
- make any exceptions for unnamed bitfields when the
- bitfields are longer than their types. Therefore, we
- temporarily give the field a name. */
- if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
- {
- was_unnamed_p = true;
- DECL_NAME (field) = make_anon_name ();
- }
-#endif
- DECL_SIZE (field) = TYPE_SIZE (integer_type);
- DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
- DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
- layout_nonempty_base_or_field (rli, field, NULL_TREE,
- empty_base_offsets);
- if (was_unnamed_p)
- DECL_NAME (field) = NULL_TREE;
- /* Now that layout has been performed, set the size of the
- field to the size of its declared type; the rest of the
- field is effectively invisible. */
- DECL_SIZE (field) = TYPE_SIZE (type);
- /* We must also reset the DECL_MODE of the field. */
- if (abi_version_at_least (2))
- DECL_MODE (field) = TYPE_MODE (type);
- else if (warn_abi
- && DECL_MODE (field) != TYPE_MODE (type))
- /* Versions of G++ before G++ 3.4 did not reset the
- DECL_MODE. */
- warning (OPT_Wabi,
- "the offset of %qD may not be ABI-compliant and may "
- "change in a future version of GCC", field);
- }
- else
- layout_nonempty_base_or_field (rli, field, NULL_TREE,
- empty_base_offsets);
-
- /* Remember the location of any empty classes in FIELD. */
- if (abi_version_at_least (2))
- record_subobject_offsets (TREE_TYPE (field),
- byte_position(field),
- empty_base_offsets,
- /*is_data_member=*/true);
-
- /* If a bit-field does not immediately follow another bit-field,
- and yet it starts in the middle of a byte, we have failed to
- comply with the ABI. */
- if (warn_abi
- && DECL_C_BIT_FIELD (field)
- /* The TREE_NO_WARNING flag gets set by Objective-C when
- laying out an Objective-C class. The ObjC ABI differs
- from the C++ ABI, and so we do not want a warning
- here. */
- && !TREE_NO_WARNING (field)
- && !last_field_was_bitfield
- && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
- DECL_FIELD_BIT_OFFSET (field),
- bitsize_unit_node)))
- warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
- "change in a future version of GCC", field);
-
- /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
- offset of the field. */
- if (warn_abi
- && !abi_version_at_least (2)
- && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
- byte_position (field))
- && contains_empty_class_p (TREE_TYPE (field)))
- warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
- "classes to be placed at different locations in a "
- "future version of GCC", field);
-
- /* The middle end uses the type of expressions to determine the
- possible range of expression values. In order to optimize
- "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
- must be made aware of the width of "i", via its type.
-
- Because C++ does not have integer types of arbitrary width,
- we must (for the purposes of the front end) convert from the
- type assigned here to the declared type of the bitfield
- whenever a bitfield expression is used as an rvalue.
- Similarly, when assigning a value to a bitfield, the value
- must be converted to the type given the bitfield here. */
- if (DECL_C_BIT_FIELD (field))
- {
- unsigned HOST_WIDE_INT width;
- tree ftype = TREE_TYPE (field);
- width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
- if (width != TYPE_PRECISION (ftype))
- {
- TREE_TYPE (field)
- = c_build_bitfield_integer_type (width,
- TYPE_UNSIGNED (ftype));
- TREE_TYPE (field)
- = cp_build_qualified_type (TREE_TYPE (field),
- cp_type_quals (ftype));
- }
- }
-
- /* If we needed additional padding after this field, add it
- now. */
- if (padding)
- {
- tree padding_field;
-
- padding_field = build_decl (input_location,
- FIELD_DECL,
- NULL_TREE,
- char_type_node);
- DECL_BIT_FIELD (padding_field) = 1;
- DECL_SIZE (padding_field) = padding;
- DECL_CONTEXT (padding_field) = t;
- DECL_ARTIFICIAL (padding_field) = 1;
- DECL_IGNORED_P (padding_field) = 1;
- layout_nonempty_base_or_field (rli, padding_field,
- NULL_TREE,
- empty_base_offsets);
- }
-
- last_field_was_bitfield = DECL_C_BIT_FIELD (field);
- }
-
- if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
- {
- /* Make sure that we are on a byte boundary so that the size of
- the class without virtual bases will always be a round number
- of bytes. */
- rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
- normalize_rli (rli);
- }
-
- /* G++ 3.2 does not allow virtual bases to be overlaid with tail
- padding. */
- if (!abi_version_at_least (2))
- include_empty_classes(rli);
-
- /* Delete all zero-width bit-fields from the list of fields. Now
- that the type is laid out they are no longer important. */
- remove_zero_width_bit_fields (t);
-
- /* Create the version of T used for virtual bases. We do not use
- make_class_type for this version; this is an artificial type. For
- a POD type, we just reuse T. */
- if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
- {
- base_t = make_node (TREE_CODE (t));
-
- /* Set the size and alignment for the new type. In G++ 3.2, all
- empty classes were considered to have size zero when used as
- base classes. */
- if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
- {
- TYPE_SIZE (base_t) = bitsize_zero_node;
- TYPE_SIZE_UNIT (base_t) = size_zero_node;
- if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
- warning (OPT_Wabi,
- "layout of classes derived from empty class %qT "
- "may change in a future version of GCC",
- t);
- }
- else
- {
- tree eoc;
-
- /* If the ABI version is not at least two, and the last
- field was a bit-field, RLI may not be on a byte
- boundary. In particular, rli_size_unit_so_far might
- indicate the last complete byte, while rli_size_so_far
- indicates the total number of bits used. Therefore,
- rli_size_so_far, rather than rli_size_unit_so_far, is
- used to compute TYPE_SIZE_UNIT. */
- eoc = end_of_class (t, /*include_virtuals_p=*/0);
- TYPE_SIZE_UNIT (base_t)
- = size_binop (MAX_EXPR,
- convert (sizetype,
- size_binop (CEIL_DIV_EXPR,
- rli_size_so_far (rli),
- bitsize_int (BITS_PER_UNIT))),
- eoc);
- TYPE_SIZE (base_t)
- = size_binop (MAX_EXPR,
- rli_size_so_far (rli),
- size_binop (MULT_EXPR,
- convert (bitsizetype, eoc),
- bitsize_int (BITS_PER_UNIT)));
- }
- TYPE_ALIGN (base_t) = rli->record_align;
- TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
-
- /* Copy the fields from T. */
- next_field = &TYPE_FIELDS (base_t);
- for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
- if (TREE_CODE (field) == FIELD_DECL)
- {
- *next_field = build_decl (input_location,
- FIELD_DECL,
- DECL_NAME (field),
- TREE_TYPE (field));
- DECL_CONTEXT (*next_field) = base_t;
- DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
- DECL_FIELD_BIT_OFFSET (*next_field)
- = DECL_FIELD_BIT_OFFSET (field);
- DECL_SIZE (*next_field) = DECL_SIZE (field);
- DECL_MODE (*next_field) = DECL_MODE (field);
- next_field = &DECL_CHAIN (*next_field);
- }
-
- /* Record the base version of the type. */
- CLASSTYPE_AS_BASE (t) = base_t;
- TYPE_CONTEXT (base_t) = t;
- }
- else
- CLASSTYPE_AS_BASE (t) = t;
-
- /* Every empty class contains an empty class. */
- if (CLASSTYPE_EMPTY_P (t))
- CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
-
- /* Set the TYPE_DECL for this type to contain the right
- value for DECL_OFFSET, so that we can use it as part
- of a COMPONENT_REF for multiple inheritance. */
- layout_decl (TYPE_MAIN_DECL (t), 0);
-
- /* Now fix up any virtual base class types that we left lying
- around. We must get these done before we try to lay out the
- virtual function table. As a side-effect, this will remove the
- base subobject fields. */
- layout_virtual_bases (rli, empty_base_offsets);
-
- /* Make sure that empty classes are reflected in RLI at this
- point. */
- include_empty_classes(rli);
-
- /* Make sure not to create any structures with zero size. */
- if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
- place_field (rli,
- build_decl (input_location,
- FIELD_DECL, NULL_TREE, char_type_node));
-
- /* If this is a non-POD, declaring it packed makes a difference to how it
- can be used as a field; don't let finalize_record_size undo it. */
- if (TYPE_PACKED (t) && !layout_pod_type_p (t))
- rli->packed_maybe_necessary = true;
-
- /* Let the back end lay out the type. */
- finish_record_layout (rli, /*free_p=*/true);
-
- /* Warn about bases that can't be talked about due to ambiguity. */
- warn_about_ambiguous_bases (t);
-
- /* Now that we're done with layout, give the base fields the real types. */
- for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
- if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
- TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
-
- /* Clean up. */
- splay_tree_delete (empty_base_offsets);
-
- if (CLASSTYPE_EMPTY_P (t)
- && tree_int_cst_lt (sizeof_biggest_empty_class,
- TYPE_SIZE_UNIT (t)))
- sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
-}
-
-/* Determine the "key method" for the class type indicated by TYPE,
- and set CLASSTYPE_KEY_METHOD accordingly. */
-
-void
-determine_key_method (tree type)
-{
- tree method;
-
- if (TYPE_FOR_JAVA (type)
- || processing_template_decl
- || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
- || CLASSTYPE_INTERFACE_KNOWN (type))
- return;
-
- /* The key method is the first non-pure virtual function that is not
- inline at the point of class definition. On some targets the
- key function may not be inline; those targets should not call
- this function until the end of the translation unit. */
- for (method = TYPE_METHODS (type); method != NULL_TREE;
- method = DECL_CHAIN (method))
- if (DECL_VINDEX (method) != NULL_TREE
- && ! DECL_DECLARED_INLINE_P (method)
- && ! DECL_PURE_VIRTUAL_P (method))
- {
- CLASSTYPE_KEY_METHOD (type) = method;
- break;
- }
-
- return;
-}
-
-
-/* Allocate and return an instance of struct sorted_fields_type with
- N fields. */
-
-static struct sorted_fields_type *
-sorted_fields_type_new (int n)
-{
- struct sorted_fields_type *sft;
- sft = ggc_alloc_sorted_fields_type (sizeof (struct sorted_fields_type)
- + n * sizeof (tree));
- sft->len = n;
-
- return sft;
-}
-
-
-/* Perform processing required when the definition of T (a class type)
- is complete. */
-
-void
-finish_struct_1 (tree t)
-{
- tree x;
- /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
- tree virtuals = NULL_TREE;
-
- if (COMPLETE_TYPE_P (t))
- {
- gcc_assert (MAYBE_CLASS_TYPE_P (t));
- error ("redefinition of %q#T", t);
- popclass ();
- return;
- }
-
- /* If this type was previously laid out as a forward reference,
- make sure we lay it out again. */
- TYPE_SIZE (t) = NULL_TREE;
- CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
-
- /* Make assumptions about the class; we'll reset the flags if
- necessary. */
- CLASSTYPE_EMPTY_P (t) = 1;
- CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
- CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
- CLASSTYPE_LITERAL_P (t) = true;
-
- /* Do end-of-class semantic processing: checking the validity of the
- bases and members and add implicitly generated methods. */
- check_bases_and_members (t);
-
- /* Find the key method. */
- if (TYPE_CONTAINS_VPTR_P (t))
- {
- /* The Itanium C++ ABI permits the key method to be chosen when
- the class is defined -- even though the key method so
- selected may later turn out to be an inline function. On
- some systems (such as ARM Symbian OS) the key method cannot
- be determined until the end of the translation unit. On such
- systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
- will cause the class to be added to KEYED_CLASSES. Then, in
- finish_file we will determine the key method. */
- if (targetm.cxx.key_method_may_be_inline ())
- determine_key_method (t);
-
- /* If a polymorphic class has no key method, we may emit the vtable
- in every translation unit where the class definition appears. */
- if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
- keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
- }
-
- /* Layout the class itself. */
- layout_class_type (t, &virtuals);
- if (CLASSTYPE_AS_BASE (t) != t)
- /* We use the base type for trivial assignments, and hence it
- needs a mode. */
- compute_record_mode (CLASSTYPE_AS_BASE (t));
-
- virtuals = modify_all_vtables (t, nreverse (virtuals));
-
- /* If necessary, create the primary vtable for this class. */
- if (virtuals || TYPE_CONTAINS_VPTR_P (t))
- {
- /* We must enter these virtuals into the table. */
- if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
- build_primary_vtable (NULL_TREE, t);
- else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
- /* Here we know enough to change the type of our virtual
- function table, but we will wait until later this function. */
- build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
-
- /* If we're warning about ABI tags, check the types of the new
- virtual functions. */
- if (warn_abi_tag)
- for (tree v = virtuals; v; v = TREE_CHAIN (v))
- check_abi_tags (t, TREE_VALUE (v));
- }
-
- if (TYPE_CONTAINS_VPTR_P (t))
- {
- int vindex;
- tree fn;
-
- if (BINFO_VTABLE (TYPE_BINFO (t)))
- gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
- if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
- gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
-
- /* Add entries for virtual functions introduced by this class. */
- BINFO_VIRTUALS (TYPE_BINFO (t))
- = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
-
- /* Set DECL_VINDEX for all functions declared in this class. */
- for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
- fn;
- fn = TREE_CHAIN (fn),
- vindex += (TARGET_VTABLE_USES_DESCRIPTORS
- ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
- {
- tree fndecl = BV_FN (fn);
-
- if (DECL_THUNK_P (fndecl))
- /* A thunk. We should never be calling this entry directly
- from this vtable -- we'd use the entry for the non
- thunk base function. */
- DECL_VINDEX (fndecl) = NULL_TREE;
- else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
- DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
- }
- }
-
- finish_struct_bits (t);
- set_method_tm_attributes (t);
-
- /* Complete the rtl for any static member objects of the type we're
- working on. */
- for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
- if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
- && TREE_TYPE (x) != error_mark_node
- && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
- DECL_MODE (x) = TYPE_MODE (t);
-
- /* Done with FIELDS...now decide whether to sort these for
- faster lookups later.
-
- We use a small number because most searches fail (succeeding
- ultimately as the search bores through the inheritance
- hierarchy), and we want this failure to occur quickly. */
-
- insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
-
- /* Complain if one of the field types requires lower visibility. */
- constrain_class_visibility (t);
-
- /* Make the rtl for any new vtables we have created, and unmark
- the base types we marked. */
- finish_vtbls (t);
-
- /* Build the VTT for T. */
- build_vtt (t);
-
- /* This warning does not make sense for Java classes, since they
- cannot have destructors. */
- if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
- {
- tree dtor;
-
- dtor = CLASSTYPE_DESTRUCTORS (t);
- if (/* An implicitly declared destructor is always public. And,
- if it were virtual, we would have created it by now. */
- !dtor
- || (!DECL_VINDEX (dtor)
- && (/* public non-virtual */
- (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
- || (/* non-public non-virtual with friends */
- (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
- && (CLASSTYPE_FRIEND_CLASSES (t)
- || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
- warning (OPT_Wnon_virtual_dtor,
- "%q#T has virtual functions and accessible"
- " non-virtual destructor", t);
- }
-
- complete_vars (t);
-
- if (warn_overloaded_virtual)
- warn_hidden (t);
-
- /* Class layout, assignment of virtual table slots, etc., is now
- complete. Give the back end a chance to tweak the visibility of
- the class or perform any other required target modifications. */
- targetm.cxx.adjust_class_at_definition (t);
-
- maybe_suppress_debug_info (t);
-
- dump_class_hierarchy (t);
-
- /* Finish debugging output for this type. */
- rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
-
- if (TYPE_TRANSPARENT_AGGR (t))
- {
- tree field = first_field (t);
- if (field == NULL_TREE || error_operand_p (field))
- {
- error ("type transparent %q#T does not have any fields", t);
- TYPE_TRANSPARENT_AGGR (t) = 0;
- }
- else if (DECL_ARTIFICIAL (field))
- {
- if (DECL_FIELD_IS_BASE (field))
- error ("type transparent class %qT has base classes", t);
- else
- {
- gcc_checking_assert (DECL_VIRTUAL_P (field));
- error ("type transparent class %qT has virtual functions", t);
- }
- TYPE_TRANSPARENT_AGGR (t) = 0;
- }
- else if (TYPE_MODE (t) != DECL_MODE (field))
- {
- error ("type transparent %q#T cannot be made transparent because "
- "the type of the first field has a different ABI from the "
- "class overall", t);
- TYPE_TRANSPARENT_AGGR (t) = 0;
- }
- }
-}
-
-/* Insert FIELDS into T for the sorted case if the FIELDS count is
- equal to THRESHOLD or greater than THRESHOLD. */
-
-static void
-insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
-{
- int n_fields = count_fields (fields);
- if (n_fields >= threshold)
- {
- struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
- add_fields_to_record_type (fields, field_vec, 0);
- qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
- CLASSTYPE_SORTED_FIELDS (t) = field_vec;
- }
-}
-
-/* Insert lately defined enum ENUMTYPE into T for the sorted case. */
-
-void
-insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
-{
- struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
- if (sorted_fields)
- {
- int i;
- int n_fields
- = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
- struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
-
- for (i = 0; i < sorted_fields->len; ++i)
- field_vec->elts[i] = sorted_fields->elts[i];
-
- add_enum_fields_to_record_type (enumtype, field_vec,
- sorted_fields->len);
- qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
- CLASSTYPE_SORTED_FIELDS (t) = field_vec;
- }
-}
-
-/* When T was built up, the member declarations were added in reverse
- order. Rearrange them to declaration order. */
-
-void
-unreverse_member_declarations (tree t)
-{
- tree next;
- tree prev;
- tree x;
-
- /* The following lists are all in reverse order. Put them in
- declaration order now. */
- TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
- CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
-
- /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
- reverse order, so we can't just use nreverse. */
- prev = NULL_TREE;
- for (x = TYPE_FIELDS (t);
- x && TREE_CODE (x) != TYPE_DECL;
- x = next)
- {
- next = DECL_CHAIN (x);
- DECL_CHAIN (x) = prev;
- prev = x;
- }
- if (prev)
- {
- DECL_CHAIN (TYPE_FIELDS (t)) = x;
- if (prev)
- TYPE_FIELDS (t) = prev;
- }
-}
-
-tree
-finish_struct (tree t, tree attributes)
-{
- location_t saved_loc = input_location;
-
- /* Now that we've got all the field declarations, reverse everything
- as necessary. */
- unreverse_member_declarations (t);
-
- cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
-
- /* Nadger the current location so that diagnostics point to the start of
- the struct, not the end. */
- input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
-
- if (processing_template_decl)
- {
- tree x;
-
- finish_struct_methods (t);
- TYPE_SIZE (t) = bitsize_zero_node;
- TYPE_SIZE_UNIT (t) = size_zero_node;
-
- /* We need to emit an error message if this type was used as a parameter
- and it is an abstract type, even if it is a template. We construct
- a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
- account and we call complete_vars with this type, which will check
- the PARM_DECLS. Note that while the type is being defined,
- CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
- (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
- CLASSTYPE_PURE_VIRTUALS (t) = NULL;
- for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
- if (DECL_PURE_VIRTUAL_P (x))
- vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
- complete_vars (t);
- /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
- an enclosing scope is a template class, so that this function be
- found by lookup_fnfields_1 when the using declaration is not
- instantiated yet. */
- for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
- if (TREE_CODE (x) == USING_DECL)
- {
- tree fn = strip_using_decl (x);
- if (is_overloaded_fn (fn))
- for (; fn; fn = OVL_NEXT (fn))
- add_method (t, OVL_CURRENT (fn), x);
- }
-
- /* Remember current #pragma pack value. */
- TYPE_PRECISION (t) = maximum_field_alignment;
-
- /* Fix up any variants we've already built. */
- for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
- {
- TYPE_SIZE (x) = TYPE_SIZE (t);
- TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
- TYPE_FIELDS (x) = TYPE_FIELDS (t);
- TYPE_METHODS (x) = TYPE_METHODS (t);
- }
- }
- else
- finish_struct_1 (t);
-
- input_location = saved_loc;
-
- TYPE_BEING_DEFINED (t) = 0;
-
- if (current_class_type)
- popclass ();
- else
- error ("trying to finish struct, but kicked out due to previous parse errors");
-
- if (processing_template_decl && at_function_scope_p ()
- /* Lambdas are defined by the LAMBDA_EXPR. */
- && !LAMBDA_TYPE_P (t))
- add_stmt (build_min (TAG_DEFN, t));
-
- return t;
-}
-
-/* Hash table to avoid endless recursion when handling references. */
-static hash_table <pointer_hash <tree_node> > fixed_type_or_null_ref_ht;
-
-/* Return the dynamic type of INSTANCE, if known.
- Used to determine whether the virtual function table is needed
- or not.
-
- *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
- of our knowledge of its type. *NONNULL should be initialized
- before this function is called. */
-
-static tree
-fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
-{
-#define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
-
- switch (TREE_CODE (instance))
- {
- case INDIRECT_REF:
- if (POINTER_TYPE_P (TREE_TYPE (instance)))
- return NULL_TREE;
- else
- return RECUR (TREE_OPERAND (instance, 0));
-
- case CALL_EXPR:
- /* This is a call to a constructor, hence it's never zero. */
- if (TREE_HAS_CONSTRUCTOR (instance))
- {
- if (nonnull)
- *nonnull = 1;
- return TREE_TYPE (instance);
- }
- return NULL_TREE;
-
- case SAVE_EXPR:
- /* This is a call to a constructor, hence it's never zero. */
- if (TREE_HAS_CONSTRUCTOR (instance))
- {
- if (nonnull)
- *nonnull = 1;
- return TREE_TYPE (instance);
- }
- return RECUR (TREE_OPERAND (instance, 0));
-
- case POINTER_PLUS_EXPR:
- case PLUS_EXPR:
- case MINUS_EXPR:
- if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
- return RECUR (TREE_OPERAND (instance, 0));
- if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
- /* Propagate nonnull. */
- return RECUR (TREE_OPERAND (instance, 0));
-
- return NULL_TREE;
-
- CASE_CONVERT:
- return RECUR (TREE_OPERAND (instance, 0));
-
- case ADDR_EXPR:
- instance = TREE_OPERAND (instance, 0);
- if (nonnull)
- {
- /* Just because we see an ADDR_EXPR doesn't mean we're dealing
- with a real object -- given &p->f, p can still be null. */
- tree t = get_base_address (instance);
- /* ??? Probably should check DECL_WEAK here. */
- if (t && DECL_P (t))
- *nonnull = 1;
- }
- return RECUR (instance);
-
- case COMPONENT_REF:
- /* If this component is really a base class reference, then the field
- itself isn't definitive. */
- if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
- return RECUR (TREE_OPERAND (instance, 0));
- return RECUR (TREE_OPERAND (instance, 1));
-
- case VAR_DECL:
- case FIELD_DECL:
- if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
- && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
- {
- if (nonnull)
- *nonnull = 1;
- return TREE_TYPE (TREE_TYPE (instance));
- }
- /* fall through... */
- case TARGET_EXPR:
- case PARM_DECL:
- case RESULT_DECL:
- if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
- {
- if (nonnull)
- *nonnull = 1;
- return TREE_TYPE (instance);
- }
- else if (instance == current_class_ptr)
- {
- if (nonnull)
- *nonnull = 1;
-
- /* if we're in a ctor or dtor, we know our type. If
- current_class_ptr is set but we aren't in a function, we're in
- an NSDMI (and therefore a constructor). */
- if (current_scope () != current_function_decl
- || (DECL_LANG_SPECIFIC (current_function_decl)
- && (DECL_CONSTRUCTOR_P (current_function_decl)
- || DECL_DESTRUCTOR_P (current_function_decl))))
- {
- if (cdtorp)
- *cdtorp = 1;
- return TREE_TYPE (TREE_TYPE (instance));
- }
- }
- else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
- {
- /* We only need one hash table because it is always left empty. */
- if (!fixed_type_or_null_ref_ht.is_created ())
- fixed_type_or_null_ref_ht.create (37);
-
- /* Reference variables should be references to objects. */
- if (nonnull)
- *nonnull = 1;
-
- /* Enter the INSTANCE in a table to prevent recursion; a
- variable's initializer may refer to the variable
- itself. */
- if (TREE_CODE (instance) == VAR_DECL
- && DECL_INITIAL (instance)
- && !type_dependent_expression_p_push (DECL_INITIAL (instance))
- && !fixed_type_or_null_ref_ht.find (instance))
- {
- tree type;
- tree_node **slot;
-
- slot = fixed_type_or_null_ref_ht.find_slot (instance, INSERT);
- *slot = instance;
- type = RECUR (DECL_INITIAL (instance));
- fixed_type_or_null_ref_ht.remove_elt (instance);
-
- return type;
- }
- }
- return NULL_TREE;
-
- default:
- return NULL_TREE;
- }
-#undef RECUR
-}
-
-/* Return nonzero if the dynamic type of INSTANCE is known, and
- equivalent to the static type. We also handle the case where
- INSTANCE is really a pointer. Return negative if this is a
- ctor/dtor. There the dynamic type is known, but this might not be
- the most derived base of the original object, and hence virtual
- bases may not be layed out according to this type.
-
- Used to determine whether the virtual function table is needed
- or not.
-
- *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
- of our knowledge of its type. *NONNULL should be initialized
- before this function is called. */
-
-int
-resolves_to_fixed_type_p (tree instance, int* nonnull)
-{
- tree t = TREE_TYPE (instance);
- int cdtorp = 0;
- tree fixed;
-
- /* processing_template_decl can be false in a template if we're in
- fold_non_dependent_expr, but we still want to suppress this check. */
- if (in_template_function ())
- {
- /* In a template we only care about the type of the result. */
- if (nonnull)
- *nonnull = true;
- return true;
- }
-
- fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
- if (fixed == NULL_TREE)
- return 0;
- if (POINTER_TYPE_P (t))
- t = TREE_TYPE (t);
- if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
- return 0;
- return cdtorp ? -1 : 1;
-}
-
-
-void
-init_class_processing (void)
-{
- current_class_depth = 0;
- current_class_stack_size = 10;
- current_class_stack
- = XNEWVEC (struct class_stack_node, current_class_stack_size);
- vec_alloc (local_classes, 8);
- sizeof_biggest_empty_class = size_zero_node;
-
- ridpointers[(int) RID_PUBLIC] = access_public_node;
- ridpointers[(int) RID_PRIVATE] = access_private_node;
- ridpointers[(int) RID_PROTECTED] = access_protected_node;
-}
-
-/* Restore the cached PREVIOUS_CLASS_LEVEL. */
-
-static void
-restore_class_cache (void)
-{
- tree type;
-
- /* We are re-entering the same class we just left, so we don't
- have to search the whole inheritance matrix to find all the
- decls to bind again. Instead, we install the cached
- class_shadowed list and walk through it binding names. */
- push_binding_level (previous_class_level);
- class_binding_level = previous_class_level;
- /* Restore IDENTIFIER_TYPE_VALUE. */
- for (type = class_binding_level->type_shadowed;
- type;
- type = TREE_CHAIN (type))
- SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
-}
-
-/* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
- appropriate for TYPE.
-
- So that we may avoid calls to lookup_name, we cache the _TYPE
- nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
-
- For multiple inheritance, we perform a two-pass depth-first search
- of the type lattice. */
-
-void
-pushclass (tree type)
-{
- class_stack_node_t csn;
-
- type = TYPE_MAIN_VARIANT (type);
-
- /* Make sure there is enough room for the new entry on the stack. */
- if (current_class_depth + 1 >= current_class_stack_size)
- {
- current_class_stack_size *= 2;
- current_class_stack
- = XRESIZEVEC (struct class_stack_node, current_class_stack,
- current_class_stack_size);
- }
-
- /* Insert a new entry on the class stack. */
- csn = current_class_stack + current_class_depth;
- csn->name = current_class_name;
- csn->type = current_class_type;
- csn->access = current_access_specifier;
- csn->names_used = 0;
- csn->hidden = 0;
- current_class_depth++;
-
- /* Now set up the new type. */
- current_class_name = TYPE_NAME (type);
- if (TREE_CODE (current_class_name) == TYPE_DECL)
- current_class_name = DECL_NAME (current_class_name);
- current_class_type = type;
-
- /* By default, things in classes are private, while things in
- structures or unions are public. */
- current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
- ? access_private_node
- : access_public_node);
-
- if (previous_class_level
- && type != previous_class_level->this_entity
- && current_class_depth == 1)
- {
- /* Forcibly remove any old class remnants. */
- invalidate_class_lookup_cache ();
- }
-
- if (!previous_class_level
- || type != previous_class_level->this_entity
- || current_class_depth > 1)
- pushlevel_class ();
- else
- restore_class_cache ();
-}
-
-/* When we exit a toplevel class scope, we save its binding level so
- that we can restore it quickly. Here, we've entered some other
- class, so we must invalidate our cache. */
-
-void
-invalidate_class_lookup_cache (void)
-{
- previous_class_level = NULL;
-}
-
-/* Get out of the current class scope. If we were in a class scope
- previously, that is the one popped to. */
-
-void
-popclass (void)
-{
- poplevel_class ();
-
- current_class_depth--;
- current_class_name = current_class_stack[current_class_depth].name;
- current_class_type = current_class_stack[current_class_depth].type;
- current_access_specifier = current_class_stack[current_class_depth].access;
- if (current_class_stack[current_class_depth].names_used)
- splay_tree_delete (current_class_stack[current_class_depth].names_used);
-}
-
-/* Mark the top of the class stack as hidden. */
-
-void
-push_class_stack (void)
-{
- if (current_class_depth)
- ++current_class_stack[current_class_depth - 1].hidden;
-}
-
-/* Mark the top of the class stack as un-hidden. */
-
-void
-pop_class_stack (void)
-{
- if (current_class_depth)
- --current_class_stack[current_class_depth - 1].hidden;
-}
-
-/* Returns 1 if the class type currently being defined is either T or
- a nested type of T. */
-
-bool
-currently_open_class (tree t)
-{
- int i;
-
- if (!CLASS_TYPE_P (t))
- return false;
-
- t = TYPE_MAIN_VARIANT (t);
-
- /* We start looking from 1 because entry 0 is from global scope,
- and has no type. */
- for (i = current_class_depth; i > 0; --i)
- {
- tree c;
- if (i == current_class_depth)
- c = current_class_type;
- else
- {
- if (current_class_stack[i].hidden)
- break;
- c = current_class_stack[i].type;
- }
- if (!c)
- continue;
- if (same_type_p (c, t))
- return true;
- }
- return false;
-}
-
-/* If either current_class_type or one of its enclosing classes are derived
- from T, return the appropriate type. Used to determine how we found
- something via unqualified lookup. */
-
-tree
-currently_open_derived_class (tree t)
-{
- int i;
-
- /* The bases of a dependent type are unknown. */
- if (dependent_type_p (t))
- return NULL_TREE;
-
- if (!current_class_type)
- return NULL_TREE;
-
- if (DERIVED_FROM_P (t, current_class_type))
- return current_class_type;
-
- for (i = current_class_depth - 1; i > 0; --i)
- {
- if (current_class_stack[i].hidden)
- break;
- if (DERIVED_FROM_P (t, current_class_stack[i].type))
- return current_class_stack[i].type;
- }
-
- return NULL_TREE;
-}
-
-/* Returns the innermost class type which is not a lambda closure type. */
-
-tree
-current_nonlambda_class_type (void)
-{
- int i;
-
- /* We start looking from 1 because entry 0 is from global scope,
- and has no type. */
- for (i = current_class_depth; i > 0; --i)
- {
- tree c;
- if (i == current_class_depth)
- c = current_class_type;
- else
- {
- if (current_class_stack[i].hidden)
- break;
- c = current_class_stack[i].type;
- }
- if (!c)
- continue;
- if (!LAMBDA_TYPE_P (c))
- return c;
- }
- return NULL_TREE;
-}
-
-/* When entering a class scope, all enclosing class scopes' names with
- static meaning (static variables, static functions, types and
- enumerators) have to be visible. This recursive function calls
- pushclass for all enclosing class contexts until global or a local
- scope is reached. TYPE is the enclosed class. */
-
-void
-push_nested_class (tree type)
-{
- /* A namespace might be passed in error cases, like A::B:C. */
- if (type == NULL_TREE
- || !CLASS_TYPE_P (type))
- return;
-
- push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
-
- pushclass (type);
-}
-
-/* Undoes a push_nested_class call. */
-
-void
-pop_nested_class (void)
-{
- tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
-
- popclass ();
- if (context && CLASS_TYPE_P (context))
- pop_nested_class ();
-}
-
-/* Returns the number of extern "LANG" blocks we are nested within. */
-
-int
-current_lang_depth (void)
-{
- return vec_safe_length (current_lang_base);
-}
-
-/* Set global variables CURRENT_LANG_NAME to appropriate value
- so that behavior of name-mangling machinery is correct. */
-
-void
-push_lang_context (tree name)
-{
- vec_safe_push (current_lang_base, current_lang_name);
-
- if (name == lang_name_cplusplus)
- {
- current_lang_name = name;
- }
- else if (name == lang_name_java)
- {
- current_lang_name = name;
- /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
- (See record_builtin_java_type in decl.c.) However, that causes
- incorrect debug entries if these types are actually used.
- So we re-enable debug output after extern "Java". */
- DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
- DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
- DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
- DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
- DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
- DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
- DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
- DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
- }
- else if (name == lang_name_c)
- {
- current_lang_name = name;
- }
- else
- error ("language string %<\"%E\"%> not recognized", name);
-}
-
-/* Get out of the current language scope. */
-
-void
-pop_lang_context (void)
-{
- current_lang_name = current_lang_base->pop ();
-}
-
-/* Type instantiation routines. */
-
-/* Given an OVERLOAD and a TARGET_TYPE, return the function that
- matches the TARGET_TYPE. If there is no satisfactory match, return
- error_mark_node, and issue an error & warning messages under
- control of FLAGS. Permit pointers to member function if FLAGS
- permits. If TEMPLATE_ONLY, the name of the overloaded function was
- a template-id, and EXPLICIT_TARGS are the explicitly provided
- template arguments.
-
- If OVERLOAD is for one or more member functions, then ACCESS_PATH
- is the base path used to reference those member functions. If
- the address is resolved to a member function, access checks will be
- performed and errors issued if appropriate. */
-
-static tree
-resolve_address_of_overloaded_function (tree target_type,
- tree overload,
- tsubst_flags_t flags,
- bool template_only,
- tree explicit_targs,
- tree access_path)
-{
- /* Here's what the standard says:
-
- [over.over]
-
- If the name is a function template, template argument deduction
- is done, and if the argument deduction succeeds, the deduced
- arguments are used to generate a single template function, which
- is added to the set of overloaded functions considered.
-
- Non-member functions and static member functions match targets of
- type "pointer-to-function" or "reference-to-function." Nonstatic
- member functions match targets of type "pointer-to-member
- function;" the function type of the pointer to member is used to
- select the member function from the set of overloaded member
- functions. If a nonstatic member function is selected, the
- reference to the overloaded function name is required to have the
- form of a pointer to member as described in 5.3.1.
-
- If more than one function is selected, any template functions in
- the set are eliminated if the set also contains a non-template
- function, and any given template function is eliminated if the
- set contains a second template function that is more specialized
- than the first according to the partial ordering rules 14.5.5.2.
- After such eliminations, if any, there shall remain exactly one
- selected function. */
-
- int is_ptrmem = 0;
- /* We store the matches in a TREE_LIST rooted here. The functions
- are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
- interoperability with most_specialized_instantiation. */
- tree matches = NULL_TREE;
- tree fn;
- tree target_fn_type;
-
- /* By the time we get here, we should be seeing only real
- pointer-to-member types, not the internal POINTER_TYPE to
- METHOD_TYPE representation. */
- gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
- || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
-
- gcc_assert (is_overloaded_fn (overload));
-
- /* Check that the TARGET_TYPE is reasonable. */
- if (TYPE_PTRFN_P (target_type))
- /* This is OK. */;
- else if (TYPE_PTRMEMFUNC_P (target_type))
- /* This is OK, too. */
- is_ptrmem = 1;
- else if (TREE_CODE (target_type) == FUNCTION_TYPE)
- /* This is OK, too. This comes from a conversion to reference
- type. */
- target_type = build_reference_type (target_type);
- else
- {
- if (flags & tf_error)
- error ("cannot resolve overloaded function %qD based on"
- " conversion to type %qT",
- DECL_NAME (OVL_FUNCTION (overload)), target_type);
- return error_mark_node;
- }
-
- /* Non-member functions and static member functions match targets of type
- "pointer-to-function" or "reference-to-function." Nonstatic member
- functions match targets of type "pointer-to-member-function;" the
- function type of the pointer to member is used to select the member
- function from the set of overloaded member functions.
-
- So figure out the FUNCTION_TYPE that we want to match against. */
- target_fn_type = static_fn_type (target_type);
-
- /* If we can find a non-template function that matches, we can just
- use it. There's no point in generating template instantiations
- if we're just going to throw them out anyhow. But, of course, we
- can only do this when we don't *need* a template function. */
- if (!template_only)
- {
- tree fns;
-
- for (fns = overload; fns; fns = OVL_NEXT (fns))
- {
- tree fn = OVL_CURRENT (fns);
-
- if (TREE_CODE (fn) == TEMPLATE_DECL)
- /* We're not looking for templates just yet. */
- continue;
-
- if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
- != is_ptrmem)
- /* We're looking for a non-static member, and this isn't
- one, or vice versa. */
- continue;
-
- /* Ignore functions which haven't been explicitly
- declared. */
- if (DECL_ANTICIPATED (fn))
- continue;
-
- /* See if there's a match. */
- if (same_type_p (target_fn_type, static_fn_type (fn)))
- matches = tree_cons (fn, NULL_TREE, matches);
- }
- }
-
- /* Now, if we've already got a match (or matches), there's no need
- to proceed to the template functions. But, if we don't have a
- match we need to look at them, too. */
- if (!matches)
- {
- tree target_arg_types;
- tree target_ret_type;
- tree fns;
- tree *args;
- unsigned int nargs, ia;
- tree arg;
-
- target_arg_types = TYPE_ARG_TYPES (target_fn_type);
- target_ret_type = TREE_TYPE (target_fn_type);
-
- nargs = list_length (target_arg_types);
- args = XALLOCAVEC (tree, nargs);
- for (arg = target_arg_types, ia = 0;
- arg != NULL_TREE && arg != void_list_node;
- arg = TREE_CHAIN (arg), ++ia)
- args[ia] = TREE_VALUE (arg);
- nargs = ia;
-
- for (fns = overload; fns; fns = OVL_NEXT (fns))
- {
- tree fn = OVL_CURRENT (fns);
- tree instantiation;
- tree targs;
-
- if (TREE_CODE (fn) != TEMPLATE_DECL)
- /* We're only looking for templates. */
- continue;
-
- if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
- != is_ptrmem)
- /* We're not looking for a non-static member, and this is
- one, or vice versa. */
- continue;
-
- /* Try to do argument deduction. */
- targs = make_tree_vec (DECL_NTPARMS (fn));
- instantiation = fn_type_unification (fn, explicit_targs, targs, args,
- nargs, target_ret_type,
- DEDUCE_EXACT, LOOKUP_NORMAL,
- false);
- if (instantiation == error_mark_node)
- /* Instantiation failed. */
- continue;
-
- /* See if there's a match. */
- if (same_type_p (target_fn_type, static_fn_type (instantiation)))
- matches = tree_cons (instantiation, fn, matches);
- }
-
- /* Now, remove all but the most specialized of the matches. */
- if (matches)
- {
- tree match = most_specialized_instantiation (matches);
-
- if (match != error_mark_node)
- matches = tree_cons (TREE_PURPOSE (match),
- NULL_TREE,
- NULL_TREE);
- }
- }
-
- /* Now we should have exactly one function in MATCHES. */
- if (matches == NULL_TREE)
- {
- /* There were *no* matches. */
- if (flags & tf_error)
- {
- error ("no matches converting function %qD to type %q#T",
- DECL_NAME (OVL_CURRENT (overload)),
- target_type);
-
- print_candidates (overload);
- }
- return error_mark_node;
- }
- else if (TREE_CHAIN (matches))
- {
- /* There were too many matches. First check if they're all
- the same function. */
- tree match = NULL_TREE;
-
- fn = TREE_PURPOSE (matches);
-
- /* For multi-versioned functions, more than one match is just fine and
- decls_match will return false as they are different. */
- for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
- if (!decls_match (fn, TREE_PURPOSE (match))
- && !targetm.target_option.function_versions
- (fn, TREE_PURPOSE (match)))
- break;
-
- if (match)
- {
- if (flags & tf_error)
- {
- error ("converting overloaded function %qD to type %q#T is ambiguous",
- DECL_NAME (OVL_FUNCTION (overload)),
- target_type);
-
- /* Since print_candidates expects the functions in the
- TREE_VALUE slot, we flip them here. */
- for (match = matches; match; match = TREE_CHAIN (match))
- TREE_VALUE (match) = TREE_PURPOSE (match);
-
- print_candidates (matches);
- }
-
- return error_mark_node;
- }
- }
-
- /* Good, exactly one match. Now, convert it to the correct type. */
- fn = TREE_PURPOSE (matches);
-
- if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
- && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
- {
- static int explained;
-
- if (!(flags & tf_error))
- return error_mark_node;
-
- permerror (input_location, "assuming pointer to member %qD", fn);
- if (!explained)
- {
- inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
- explained = 1;
- }
- }
-
- /* If a pointer to a function that is multi-versioned is requested, the
- pointer to the dispatcher function is returned instead. This works
- well because indirectly calling the function will dispatch the right
- function version at run-time. */
- if (DECL_FUNCTION_VERSIONED (fn))
- {
- fn = get_function_version_dispatcher (fn);
- if (fn == NULL)
- return error_mark_node;
- /* Mark all the versions corresponding to the dispatcher as used. */
- if (!(flags & tf_conv))
- mark_versions_used (fn);
- }
-
- /* If we're doing overload resolution purely for the purpose of
- determining conversion sequences, we should not consider the
- function used. If this conversion sequence is selected, the
- function will be marked as used at this point. */
- if (!(flags & tf_conv))
- {
- /* Make =delete work with SFINAE. */
- if (DECL_DELETED_FN (fn) && !(flags & tf_error))
- return error_mark_node;
-
- mark_used (fn);
- }
-
- /* We could not check access to member functions when this
- expression was originally created since we did not know at that
- time to which function the expression referred. */
- if (DECL_FUNCTION_MEMBER_P (fn))
- {
- gcc_assert (access_path);
- perform_or_defer_access_check (access_path, fn, fn, flags);
- }
-
- if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
- return cp_build_addr_expr (fn, flags);
- else
- {
- /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
- will mark the function as addressed, but here we must do it
- explicitly. */
- cxx_mark_addressable (fn);
-
- return fn;
- }
-}
-
-/* This function will instantiate the type of the expression given in
- RHS to match the type of LHSTYPE. If errors exist, then return
- error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
- we complain on errors. If we are not complaining, never modify rhs,
- as overload resolution wants to try many possible instantiations, in
- the hope that at least one will work.
-
- For non-recursive calls, LHSTYPE should be a function, pointer to
- function, or a pointer to member function. */
-
-tree
-instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
-{
- tsubst_flags_t flags_in = flags;
- tree access_path = NULL_TREE;
-
- flags &= ~tf_ptrmem_ok;
-
- if (lhstype == unknown_type_node)
- {
- if (flags & tf_error)
- error ("not enough type information");
- return error_mark_node;
- }
-
- if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
- {
- if (same_type_p (lhstype, TREE_TYPE (rhs)))
- return rhs;
- if (flag_ms_extensions
- && TYPE_PTRMEMFUNC_P (lhstype)
- && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
- /* Microsoft allows `A::f' to be resolved to a
- pointer-to-member. */
- ;
- else
- {
- if (flags & tf_error)
- error ("cannot convert %qE from type %qT to type %qT",
- rhs, TREE_TYPE (rhs), lhstype);
- return error_mark_node;
- }
- }
-
- if (BASELINK_P (rhs))
- {
- access_path = BASELINK_ACCESS_BINFO (rhs);
- rhs = BASELINK_FUNCTIONS (rhs);
- }
-
- /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
- deduce any type information. */
- if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
- {
- if (flags & tf_error)
- error ("not enough type information");
- return error_mark_node;
- }
-
- /* There only a few kinds of expressions that may have a type
- dependent on overload resolution. */
- gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
- || TREE_CODE (rhs) == COMPONENT_REF
- || really_overloaded_fn (rhs)
- || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
-
- /* This should really only be used when attempting to distinguish
- what sort of a pointer to function we have. For now, any
- arithmetic operation which is not supported on pointers
- is rejected as an error. */
-
- switch (TREE_CODE (rhs))
- {
- case COMPONENT_REF:
- {
- tree member = TREE_OPERAND (rhs, 1);
-
- member = instantiate_type (lhstype, member, flags);
- if (member != error_mark_node
- && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
- /* Do not lose object's side effects. */
- return build2 (COMPOUND_EXPR, TREE_TYPE (member),
- TREE_OPERAND (rhs, 0), member);
- return member;
- }
-
- case OFFSET_REF:
- rhs = TREE_OPERAND (rhs, 1);
- if (BASELINK_P (rhs))
- return instantiate_type (lhstype, rhs, flags_in);
-
- /* This can happen if we are forming a pointer-to-member for a
- member template. */
- gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
-
- /* Fall through. */
-
- case TEMPLATE_ID_EXPR:
- {
- tree fns = TREE_OPERAND (rhs, 0);
- tree args = TREE_OPERAND (rhs, 1);
-
- return
- resolve_address_of_overloaded_function (lhstype, fns, flags_in,
- /*template_only=*/true,
- args, access_path);
- }
-
- case OVERLOAD:
- case FUNCTION_DECL:
- return
- resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
- /*template_only=*/false,
- /*explicit_targs=*/NULL_TREE,
- access_path);
-
- case ADDR_EXPR:
- {
- if (PTRMEM_OK_P (rhs))
- flags |= tf_ptrmem_ok;
-
- return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
- }
-
- case ERROR_MARK:
- return error_mark_node;
-
- default:
- gcc_unreachable ();
- }
- return error_mark_node;
-}
-
-/* Return the name of the virtual function pointer field
- (as an IDENTIFIER_NODE) for the given TYPE. Note that
- this may have to look back through base types to find the
- ultimate field name. (For single inheritance, these could
- all be the same name. Who knows for multiple inheritance). */
-
-static tree
-get_vfield_name (tree type)
-{
- tree binfo, base_binfo;
- char *buf;
-
- for (binfo = TYPE_BINFO (type);
- BINFO_N_BASE_BINFOS (binfo);
- binfo = base_binfo)
- {
- base_binfo = BINFO_BASE_BINFO (binfo, 0);
-
- if (BINFO_VIRTUAL_P (base_binfo)
- || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
- break;
- }
-
- type = BINFO_TYPE (binfo);
- buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
- + TYPE_NAME_LENGTH (type) + 2);
- sprintf (buf, VFIELD_NAME_FORMAT,
- IDENTIFIER_POINTER (constructor_name (type)));
- return get_identifier (buf);
-}
-
-void
-print_class_statistics (void)
-{
- if (! GATHER_STATISTICS)
- return;
-
- fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
- fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
- if (n_vtables)
- {
- fprintf (stderr, "vtables = %d; vtable searches = %d\n",
- n_vtables, n_vtable_searches);
- fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
- n_vtable_entries, n_vtable_elems);
- }
-}
-
-/* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
- according to [class]:
- The class-name is also inserted
- into the scope of the class itself. For purposes of access checking,
- the inserted class name is treated as if it were a public member name. */
-
-void
-build_self_reference (void)
-{
- tree name = constructor_name (current_class_type);
- tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
- tree saved_cas;
-
- DECL_NONLOCAL (value) = 1;
- DECL_CONTEXT (value) = current_class_type;
- DECL_ARTIFICIAL (value) = 1;
- SET_DECL_SELF_REFERENCE_P (value);
- set_underlying_type (value);
-
- if (processing_template_decl)
- value = push_template_decl (value);
-
- saved_cas = current_access_specifier;
- current_access_specifier = access_public_node;
- finish_member_declaration (value);
- current_access_specifier = saved_cas;
-}
-
-/* Returns 1 if TYPE contains only padding bytes. */
-
-int
-is_empty_class (tree type)
-{
- if (type == error_mark_node)
- return 0;
-
- if (! CLASS_TYPE_P (type))
- return 0;
-
- /* In G++ 3.2, whether or not a class was empty was determined by
- looking at its size. */
- if (abi_version_at_least (2))
- return CLASSTYPE_EMPTY_P (type);
- else
- return integer_zerop (CLASSTYPE_SIZE (type));
-}
-
-/* Returns true if TYPE contains an empty class. */
-
-static bool
-contains_empty_class_p (tree type)
-{
- if (is_empty_class (type))
- return true;
- if (CLASS_TYPE_P (type))
- {
- tree field;
- tree binfo;
- tree base_binfo;
- int i;
-
- for (binfo = TYPE_BINFO (type), i = 0;
- BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
- if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
- return true;
- for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
- if (TREE_CODE (field) == FIELD_DECL
- && !DECL_ARTIFICIAL (field)
- && is_empty_class (TREE_TYPE (field)))
- return true;
- }
- else if (TREE_CODE (type) == ARRAY_TYPE)
- return contains_empty_class_p (TREE_TYPE (type));
- return false;
-}
-
-/* Returns true if TYPE contains no actual data, just various
- possible combinations of empty classes and possibly a vptr. */
-
-bool
-is_really_empty_class (tree type)
-{
- if (CLASS_TYPE_P (type))
- {
- tree field;
- tree binfo;
- tree base_binfo;
- int i;
-
- /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
- out, but we'd like to be able to check this before then. */
- if (COMPLETE_TYPE_P (type) && is_empty_class (type))
- return true;
-
- for (binfo = TYPE_BINFO (type), i = 0;
- BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
- if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
- return false;
- for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
- if (TREE_CODE (field) == FIELD_DECL
- && !DECL_ARTIFICIAL (field)
- && !is_really_empty_class (TREE_TYPE (field)))
- return false;
- return true;
- }
- else if (TREE_CODE (type) == ARRAY_TYPE)
- return is_really_empty_class (TREE_TYPE (type));
- return false;
-}
-
-/* Note that NAME was looked up while the current class was being
- defined and that the result of that lookup was DECL. */
-
-void
-maybe_note_name_used_in_class (tree name, tree decl)
-{
- splay_tree names_used;
-
- /* If we're not defining a class, there's nothing to do. */
- if (!(innermost_scope_kind() == sk_class
- && TYPE_BEING_DEFINED (current_class_type)
- && !LAMBDA_TYPE_P (current_class_type)))
- return;
-
- /* If there's already a binding for this NAME, then we don't have
- anything to worry about. */
- if (lookup_member (current_class_type, name,
- /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
- return;
-
- if (!current_class_stack[current_class_depth - 1].names_used)
- current_class_stack[current_class_depth - 1].names_used
- = splay_tree_new (splay_tree_compare_pointers, 0, 0);
- names_used = current_class_stack[current_class_depth - 1].names_used;
-
- splay_tree_insert (names_used,
- (splay_tree_key) name,
- (splay_tree_value) decl);
-}
-
-/* Note that NAME was declared (as DECL) in the current class. Check
- to see that the declaration is valid. */
-
-void
-note_name_declared_in_class (tree name, tree decl)
-{
- splay_tree names_used;
- splay_tree_node n;
-
- /* Look to see if we ever used this name. */
- names_used
- = current_class_stack[current_class_depth - 1].names_used;
- if (!names_used)
- return;
- /* The C language allows members to be declared with a type of the same
- name, and the C++ standard says this diagnostic is not required. So
- allow it in extern "C" blocks unless predantic is specified.
- Allow it in all cases if -ms-extensions is specified. */
- if ((!pedantic && current_lang_name == lang_name_c)
- || flag_ms_extensions)
- return;
- n = splay_tree_lookup (names_used, (splay_tree_key) name);
- if (n)
- {
- /* [basic.scope.class]
-
- A name N used in a class S shall refer to the same declaration
- in its context and when re-evaluated in the completed scope of
- S. */
- permerror (input_location, "declaration of %q#D", decl);
- permerror (input_location, "changes meaning of %qD from %q+#D",
- DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
- }
-}
-
-/* Returns the VAR_DECL for the complete vtable associated with BINFO.
- Secondary vtables are merged with primary vtables; this function
- will return the VAR_DECL for the primary vtable. */
-
-tree
-get_vtbl_decl_for_binfo (tree binfo)
-{
- tree decl;
-
- decl = BINFO_VTABLE (binfo);
- if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
- {
- gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
- decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
- }
- if (decl)
- gcc_assert (TREE_CODE (decl) == VAR_DECL);
- return decl;
-}
-
-
-/* Returns the binfo for the primary base of BINFO. If the resulting
- BINFO is a virtual base, and it is inherited elsewhere in the
- hierarchy, then the returned binfo might not be the primary base of
- BINFO in the complete object. Check BINFO_PRIMARY_P or
- BINFO_LOST_PRIMARY_P to be sure. */
-
-static tree
-get_primary_binfo (tree binfo)
-{
- tree primary_base;
-
- primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
- if (!primary_base)
- return NULL_TREE;
-
- return copied_binfo (primary_base, binfo);
-}
-
-/* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
-
-static int
-maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
-{
- if (!indented_p)
- fprintf (stream, "%*s", indent, "");
- return 1;
-}
-
-/* Dump the offsets of all the bases rooted at BINFO to STREAM.
- INDENT should be zero when called from the top level; it is
- incremented recursively. IGO indicates the next expected BINFO in
- inheritance graph ordering. */
-
-static tree
-dump_class_hierarchy_r (FILE *stream,
- int flags,
- tree binfo,
- tree igo,
- int indent)
-{
- int indented = 0;
- tree base_binfo;
- int i;
-
- indented = maybe_indent_hierarchy (stream, indent, 0);
- fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
- type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
- (HOST_WIDE_INT) (uintptr_t) binfo);
- if (binfo != igo)
- {
- fprintf (stream, "alternative-path\n");
- return igo;
- }
- igo = TREE_CHAIN (binfo);
-
- fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
- tree_low_cst (BINFO_OFFSET (binfo), 0));
- if (is_empty_class (BINFO_TYPE (binfo)))
- fprintf (stream, " empty");
- else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
- fprintf (stream, " nearly-empty");
- if (BINFO_VIRTUAL_P (binfo))
- fprintf (stream, " virtual");
- fprintf (stream, "\n");
-
- indented = 0;
- if (BINFO_PRIMARY_P (binfo))
- {
- indented = maybe_indent_hierarchy (stream, indent + 3, indented);
- fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
- type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
- TFF_PLAIN_IDENTIFIER),
- (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
- }
- if (BINFO_LOST_PRIMARY_P (binfo))
- {
- indented = maybe_indent_hierarchy (stream, indent + 3, indented);
- fprintf (stream, " lost-primary");
- }
- if (indented)
- fprintf (stream, "\n");
-
- if (!(flags & TDF_SLIM))
- {
- int indented = 0;
-
- if (BINFO_SUBVTT_INDEX (binfo))
- {
- indented = maybe_indent_hierarchy (stream, indent + 3, indented);
- fprintf (stream, " subvttidx=%s",
- expr_as_string (BINFO_SUBVTT_INDEX (binfo),
- TFF_PLAIN_IDENTIFIER));
- }
- if (BINFO_VPTR_INDEX (binfo))
- {
- indented = maybe_indent_hierarchy (stream, indent + 3, indented);
- fprintf (stream, " vptridx=%s",
- expr_as_string (BINFO_VPTR_INDEX (binfo),
- TFF_PLAIN_IDENTIFIER));
- }
- if (BINFO_VPTR_FIELD (binfo))
- {
- indented = maybe_indent_hierarchy (stream, indent + 3, indented);
- fprintf (stream, " vbaseoffset=%s",
- expr_as_string (BINFO_VPTR_FIELD (binfo),
- TFF_PLAIN_IDENTIFIER));
- }
- if (BINFO_VTABLE (binfo))
- {
- indented = maybe_indent_hierarchy (stream, indent + 3, indented);
- fprintf (stream, " vptr=%s",
- expr_as_string (BINFO_VTABLE (binfo),
- TFF_PLAIN_IDENTIFIER));
- }
-
- if (indented)
- fprintf (stream, "\n");
- }
-
- for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
- igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
-
- return igo;
-}
-
-/* Dump the BINFO hierarchy for T. */
-
-static void
-dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
-{
- fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
- fprintf (stream, " size=%lu align=%lu\n",
- (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
- (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
- fprintf (stream, " base size=%lu base align=%lu\n",
- (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
- / BITS_PER_UNIT),
- (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
- / BITS_PER_UNIT));
- dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
- fprintf (stream, "\n");
-}
-
-/* Debug interface to hierarchy dumping. */
-
-void
-debug_class (tree t)
-{
- dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
-}
-
-static void
-dump_class_hierarchy (tree t)
-{
- int flags;
- FILE *stream = dump_begin (TDI_class, &flags);
-
- if (stream)
- {
- dump_class_hierarchy_1 (stream, flags, t);
- dump_end (TDI_class, stream);
- }
-}
-
-static void
-dump_array (FILE * stream, tree decl)
-{
- tree value;
- unsigned HOST_WIDE_INT ix;
- HOST_WIDE_INT elt;
- tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
-
- elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
- / BITS_PER_UNIT);
- fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
- fprintf (stream, " %s entries",
- expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
- TFF_PLAIN_IDENTIFIER));
- fprintf (stream, "\n");
-
- FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
- ix, value)
- fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
- expr_as_string (value, TFF_PLAIN_IDENTIFIER));
-}
-
-static void
-dump_vtable (tree t, tree binfo, tree vtable)
-{
- int flags;
- FILE *stream = dump_begin (TDI_class, &flags);
-
- if (!stream)
- return;
-
- if (!(flags & TDF_SLIM))
- {
- int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
-
- fprintf (stream, "%s for %s",
- ctor_vtbl_p ? "Construction vtable" : "Vtable",
- type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
- if (ctor_vtbl_p)
- {
- if (!BINFO_VIRTUAL_P (binfo))
- fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
- (HOST_WIDE_INT) (uintptr_t) binfo);
- fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
- }
- fprintf (stream, "\n");
- dump_array (stream, vtable);
- fprintf (stream, "\n");
- }
-
- dump_end (TDI_class, stream);
-}
-
-static void
-dump_vtt (tree t, tree vtt)
-{
- int flags;
- FILE *stream = dump_begin (TDI_class, &flags);
-
- if (!stream)
- return;
-
- if (!(flags & TDF_SLIM))
- {
- fprintf (stream, "VTT for %s\n",
- type_as_string (t, TFF_PLAIN_IDENTIFIER));
- dump_array (stream, vtt);
- fprintf (stream, "\n");
- }
-
- dump_end (TDI_class, stream);
-}
-
-/* Dump a function or thunk and its thunkees. */
-
-static void
-dump_thunk (FILE *stream, int indent, tree thunk)
-{
- static const char spaces[] = " ";
- tree name = DECL_NAME (thunk);
- tree thunks;
-
- fprintf (stream, "%.*s%p %s %s", indent, spaces,
- (void *)thunk,
- !DECL_THUNK_P (thunk) ? "function"
- : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
- name ? IDENTIFIER_POINTER (name) : "<unset>");
- if (DECL_THUNK_P (thunk))
- {
- HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
- tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
-
- fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
- if (!virtual_adjust)
- /*NOP*/;
- else if (DECL_THIS_THUNK_P (thunk))
- fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
- tree_low_cst (virtual_adjust, 0));
- else
- fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
- tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
- type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
- if (THUNK_ALIAS (thunk))
- fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
- }
- fprintf (stream, "\n");
- for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
- dump_thunk (stream, indent + 2, thunks);
-}
-
-/* Dump the thunks for FN. */
-
-void
-debug_thunks (tree fn)
-{
- dump_thunk (stderr, 0, fn);
-}
-
-/* Virtual function table initialization. */
-
-/* Create all the necessary vtables for T and its base classes. */
-
-static void
-finish_vtbls (tree t)
-{
- tree vbase;
- vec<constructor_elt, va_gc> *v = NULL;
- tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
-
- /* We lay out the primary and secondary vtables in one contiguous
- vtable. The primary vtable is first, followed by the non-virtual
- secondary vtables in inheritance graph order. */
- accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
- vtable, t, &v);
-
- /* Then come the virtual bases, also in inheritance graph order. */
- for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
- {
- if (!BINFO_VIRTUAL_P (vbase))
- continue;
- accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
- }
-
- if (BINFO_VTABLE (TYPE_BINFO (t)))
- initialize_vtable (TYPE_BINFO (t), v);
-}
-
-/* Initialize the vtable for BINFO with the INITS. */
-
-static void
-initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
-{
- tree decl;
-
- layout_vtable_decl (binfo, vec_safe_length (inits));
- decl = get_vtbl_decl_for_binfo (binfo);
- initialize_artificial_var (decl, inits);
- dump_vtable (BINFO_TYPE (binfo), binfo, decl);
-}
-
-/* Build the VTT (virtual table table) for T.
- A class requires a VTT if it has virtual bases.
-
- This holds
- 1 - primary virtual pointer for complete object T
- 2 - secondary VTTs for each direct non-virtual base of T which requires a
- VTT
- 3 - secondary virtual pointers for each direct or indirect base of T which
- has virtual bases or is reachable via a virtual path from T.
- 4 - secondary VTTs for each direct or indirect virtual base of T.
-
- Secondary VTTs look like complete object VTTs without part 4. */
-
-static void
-build_vtt (tree t)
-{
- tree type;
- tree vtt;
- tree index;
- vec<constructor_elt, va_gc> *inits;
-
- /* Build up the initializers for the VTT. */
- inits = NULL;
- index = size_zero_node;
- build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
-
- /* If we didn't need a VTT, we're done. */
- if (!inits)
- return;
-
- /* Figure out the type of the VTT. */
- type = build_array_of_n_type (const_ptr_type_node,
- inits->length ());
-
- /* Now, build the VTT object itself. */
- vtt = build_vtable (t, mangle_vtt_for_type (t), type);
- initialize_artificial_var (vtt, inits);
- /* Add the VTT to the vtables list. */
- DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
- DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
-
- dump_vtt (t, vtt);
-}
-
-/* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
- PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
- and CHAIN the vtable pointer for this binfo after construction is
- complete. VALUE can also be another BINFO, in which case we recurse. */
-
-static tree
-binfo_ctor_vtable (tree binfo)
-{
- tree vt;
-
- while (1)
- {
- vt = BINFO_VTABLE (binfo);
- if (TREE_CODE (vt) == TREE_LIST)
- vt = TREE_VALUE (vt);
- if (TREE_CODE (vt) == TREE_BINFO)
- binfo = vt;
- else
- break;
- }
-
- return vt;
-}
-
-/* Data for secondary VTT initialization. */
-typedef struct secondary_vptr_vtt_init_data_s
-{
- /* Is this the primary VTT? */
- bool top_level_p;
-
- /* Current index into the VTT. */
- tree index;
-
- /* Vector of initializers built up. */
- vec<constructor_elt, va_gc> *inits;
-
- /* The type being constructed by this secondary VTT. */
- tree type_being_constructed;
-} secondary_vptr_vtt_init_data;
-
-/* Recursively build the VTT-initializer for BINFO (which is in the
- hierarchy dominated by T). INITS points to the end of the initializer
- list to date. INDEX is the VTT index where the next element will be
- replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
- not a subvtt for some base of T). When that is so, we emit the sub-VTTs
- for virtual bases of T. When it is not so, we build the constructor
- vtables for the BINFO-in-T variant. */
-
-static void
-build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
- tree *index)
-{
- int i;
- tree b;
- tree init;
- secondary_vptr_vtt_init_data data;
- int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
-
- /* We only need VTTs for subobjects with virtual bases. */
- if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
- return;
-
- /* We need to use a construction vtable if this is not the primary
- VTT. */
- if (!top_level_p)
- {
- build_ctor_vtbl_group (binfo, t);
-
- /* Record the offset in the VTT where this sub-VTT can be found. */
- BINFO_SUBVTT_INDEX (binfo) = *index;
- }
-
- /* Add the address of the primary vtable for the complete object. */
- init = binfo_ctor_vtable (binfo);
- CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
- if (top_level_p)
- {
- gcc_assert (!BINFO_VPTR_INDEX (binfo));
- BINFO_VPTR_INDEX (binfo) = *index;
- }
- *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
-
- /* Recursively add the secondary VTTs for non-virtual bases. */
- for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
- if (!BINFO_VIRTUAL_P (b))
- build_vtt_inits (b, t, inits, index);
-
- /* Add secondary virtual pointers for all subobjects of BINFO with
- either virtual bases or reachable along a virtual path, except
- subobjects that are non-virtual primary bases. */
- data.top_level_p = top_level_p;
- data.index = *index;
- data.inits = *inits;
- data.type_being_constructed = BINFO_TYPE (binfo);
-
- dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
-
- *index = data.index;
-
- /* data.inits might have grown as we added secondary virtual pointers.
- Make sure our caller knows about the new vector. */
- *inits = data.inits;
-
- if (top_level_p)
- /* Add the secondary VTTs for virtual bases in inheritance graph
- order. */
- for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
- {
- if (!BINFO_VIRTUAL_P (b))
- continue;
-
- build_vtt_inits (b, t, inits, index);
- }
- else
- /* Remove the ctor vtables we created. */
- dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
-}
-
-/* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
- in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
-
-static tree
-dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
-{
- secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
-
- /* We don't care about bases that don't have vtables. */
- if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
- return dfs_skip_bases;
-
- /* We're only interested in proper subobjects of the type being
- constructed. */
- if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
- return NULL_TREE;
-
- /* We're only interested in bases with virtual bases or reachable
- via a virtual path from the type being constructed. */
- if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
- || binfo_via_virtual (binfo, data->type_being_constructed)))
- return dfs_skip_bases;
-
- /* We're not interested in non-virtual primary bases. */
- if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
- return NULL_TREE;
-
- /* Record the index where this secondary vptr can be found. */
- if (data->top_level_p)
- {
- gcc_assert (!BINFO_VPTR_INDEX (binfo));
- BINFO_VPTR_INDEX (binfo) = data->index;
-
- if (BINFO_VIRTUAL_P (binfo))
- {
- /* It's a primary virtual base, and this is not a
- construction vtable. Find the base this is primary of in
- the inheritance graph, and use that base's vtable
- now. */
- while (BINFO_PRIMARY_P (binfo))
- binfo = BINFO_INHERITANCE_CHAIN (binfo);
- }
- }
-
- /* Add the initializer for the secondary vptr itself. */
- CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
-
- /* Advance the vtt index. */
- data->index = size_binop (PLUS_EXPR, data->index,
- TYPE_SIZE_UNIT (ptr_type_node));
-
- return NULL_TREE;
-}
-
-/* Called from build_vtt_inits via dfs_walk. After building
- constructor vtables and generating the sub-vtt from them, we need
- to restore the BINFO_VTABLES that were scribbled on. DATA is the
- binfo of the base whose sub vtt was generated. */
-
-static tree
-dfs_fixup_binfo_vtbls (tree binfo, void* data)
-{
- tree vtable = BINFO_VTABLE (binfo);
-
- if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
- /* If this class has no vtable, none of its bases do. */
- return dfs_skip_bases;
-
- if (!vtable)
- /* This might be a primary base, so have no vtable in this
- hierarchy. */
- return NULL_TREE;
-
- /* If we scribbled the construction vtable vptr into BINFO, clear it
- out now. */
- if (TREE_CODE (vtable) == TREE_LIST
- && (TREE_PURPOSE (vtable) == (tree) data))
- BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
-
- return NULL_TREE;
-}
-
-/* Build the construction vtable group for BINFO which is in the
- hierarchy dominated by T. */
-
-static void
-build_ctor_vtbl_group (tree binfo, tree t)
-{
- tree type;
- tree vtbl;
- tree id;
- tree vbase;
- vec<constructor_elt, va_gc> *v;
-
- /* See if we've already created this construction vtable group. */
- id = mangle_ctor_vtbl_for_type (t, binfo);
- if (IDENTIFIER_GLOBAL_VALUE (id))
- return;
-
- gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
- /* Build a version of VTBL (with the wrong type) for use in
- constructing the addresses of secondary vtables in the
- construction vtable group. */
- vtbl = build_vtable (t, id, ptr_type_node);
- DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
- /* Don't export construction vtables from shared libraries. Even on
- targets that don't support hidden visibility, this tells
- can_refer_decl_in_current_unit_p not to assume that it's safe to
- access from a different compilation unit (bz 54314). */
- DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
- DECL_VISIBILITY_SPECIFIED (vtbl) = true;
-
- v = NULL;
- accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
- binfo, vtbl, t, &v);
-
- /* Add the vtables for each of our virtual bases using the vbase in T
- binfo. */
- for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
- vbase;
- vbase = TREE_CHAIN (vbase))
- {
- tree b;
-
- if (!BINFO_VIRTUAL_P (vbase))
- continue;
- b = copied_binfo (vbase, binfo);
-
- accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
- }
-
- /* Figure out the type of the construction vtable. */
- type = build_array_of_n_type (vtable_entry_type, v->length ());
- layout_type (type);
- TREE_TYPE (vtbl) = type;
- DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
- layout_decl (vtbl, 0);
-
- /* Initialize the construction vtable. */
- CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
- initialize_artificial_var (vtbl, v);
- dump_vtable (t, binfo, vtbl);
-}
-
-/* Add the vtbl initializers for BINFO (and its bases other than
- non-virtual primaries) to the list of INITS. BINFO is in the
- hierarchy dominated by T. RTTI_BINFO is the binfo within T of
- the constructor the vtbl inits should be accumulated for. (If this
- is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
- ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
- BINFO is the active base equivalent of ORIG_BINFO in the inheritance
- graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
- but are not necessarily the same in terms of layout. */
-
-static void
-accumulate_vtbl_inits (tree binfo,
- tree orig_binfo,
- tree rtti_binfo,
- tree vtbl,
- tree t,
- vec<constructor_elt, va_gc> **inits)
-{
- int i;
- tree base_binfo;
- int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
-
- gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
-
- /* If it doesn't have a vptr, we don't do anything. */
- if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
- return;
-
- /* If we're building a construction vtable, we're not interested in
- subobjects that don't require construction vtables. */
- if (ctor_vtbl_p
- && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
- && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
- return;
-
- /* Build the initializers for the BINFO-in-T vtable. */
- dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
-
- /* Walk the BINFO and its bases. We walk in preorder so that as we
- initialize each vtable we can figure out at what offset the
- secondary vtable lies from the primary vtable. We can't use
- dfs_walk here because we need to iterate through bases of BINFO
- and RTTI_BINFO simultaneously. */
- for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
- {
- /* Skip virtual bases. */
- if (BINFO_VIRTUAL_P (base_binfo))
- continue;
- accumulate_vtbl_inits (base_binfo,
- BINFO_BASE_BINFO (orig_binfo, i),
- rtti_binfo, vtbl, t,
- inits);
- }
-}
-
-/* Called from accumulate_vtbl_inits. Adds the initializers for the
- BINFO vtable to L. */
-
-static void
-dfs_accumulate_vtbl_inits (tree binfo,
- tree orig_binfo,
- tree rtti_binfo,
- tree orig_vtbl,
- tree t,
- vec<constructor_elt, va_gc> **l)
-{
- tree vtbl = NULL_TREE;
- int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
- int n_inits;
-
- if (ctor_vtbl_p
- && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
- {
- /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
- primary virtual base. If it is not the same primary in
- the hierarchy of T, we'll need to generate a ctor vtable
- for it, to place at its location in T. If it is the same
- primary, we still need a VTT entry for the vtable, but it
- should point to the ctor vtable for the base it is a
- primary for within the sub-hierarchy of RTTI_BINFO.
-
- There are three possible cases:
-
- 1) We are in the same place.
- 2) We are a primary base within a lost primary virtual base of
- RTTI_BINFO.
- 3) We are primary to something not a base of RTTI_BINFO. */
-
- tree b;
- tree last = NULL_TREE;
-
- /* First, look through the bases we are primary to for RTTI_BINFO
- or a virtual base. */
- b = binfo;
- while (BINFO_PRIMARY_P (b))
- {
- b = BINFO_INHERITANCE_CHAIN (b);
- last = b;
- if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
- goto found;
- }
- /* If we run out of primary links, keep looking down our
- inheritance chain; we might be an indirect primary. */
- for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
- if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
- break;
- found:
-
- /* If we found RTTI_BINFO, this is case 1. If we found a virtual
- base B and it is a base of RTTI_BINFO, this is case 2. In
- either case, we share our vtable with LAST, i.e. the
- derived-most base within B of which we are a primary. */
- if (b == rtti_binfo
- || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
- /* Just set our BINFO_VTABLE to point to LAST, as we may not have
- set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
- binfo_ctor_vtable after everything's been set up. */
- vtbl = last;
-
- /* Otherwise, this is case 3 and we get our own. */
- }
- else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
- return;
-
- n_inits = vec_safe_length (*l);
-
- if (!vtbl)
- {
- tree index;
- int non_fn_entries;
-
- /* Add the initializer for this vtable. */
- build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
- &non_fn_entries, l);
-
- /* Figure out the position to which the VPTR should point. */
- vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
- index = size_binop (MULT_EXPR,
- TYPE_SIZE_UNIT (vtable_entry_type),
- size_int (non_fn_entries + n_inits));
- vtbl = fold_build_pointer_plus (vtbl, index);
- }
-
- if (ctor_vtbl_p)
- /* For a construction vtable, we can't overwrite BINFO_VTABLE.
- So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
- straighten this out. */
- BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
- else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
- /* Throw away any unneeded intializers. */
- (*l)->truncate (n_inits);
- else
- /* For an ordinary vtable, set BINFO_VTABLE. */
- BINFO_VTABLE (binfo) = vtbl;
-}
-
-static GTY(()) tree abort_fndecl_addr;
-
-/* Construct the initializer for BINFO's virtual function table. BINFO
- is part of the hierarchy dominated by T. If we're building a
- construction vtable, the ORIG_BINFO is the binfo we should use to
- find the actual function pointers to put in the vtable - but they
- can be overridden on the path to most-derived in the graph that
- ORIG_BINFO belongs. Otherwise,
- ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
- BINFO that should be indicated by the RTTI information in the
- vtable; it will be a base class of T, rather than T itself, if we
- are building a construction vtable.
-
- The value returned is a TREE_LIST suitable for wrapping in a
- CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
- NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
- number of non-function entries in the vtable.
-
- It might seem that this function should never be called with a
- BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
- base is always subsumed by a derived class vtable. However, when
- we are building construction vtables, we do build vtables for
- primary bases; we need these while the primary base is being
- constructed. */
-
-static void
-build_vtbl_initializer (tree binfo,
- tree orig_binfo,
- tree t,
- tree rtti_binfo,
- int* non_fn_entries_p,
- vec<constructor_elt, va_gc> **inits)
-{
- tree v;
- vtbl_init_data vid;
- unsigned ix, jx;
- tree vbinfo;
- vec<tree, va_gc> *vbases;
- constructor_elt *e;
-
- /* Initialize VID. */
- memset (&vid, 0, sizeof (vid));
- vid.binfo = binfo;
- vid.derived = t;
- vid.rtti_binfo = rtti_binfo;
- vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
- vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
- vid.generate_vcall_entries = true;
- /* The first vbase or vcall offset is at index -3 in the vtable. */
- vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
-
- /* Add entries to the vtable for RTTI. */
- build_rtti_vtbl_entries (binfo, &vid);
-
- /* Create an array for keeping track of the functions we've
- processed. When we see multiple functions with the same
- signature, we share the vcall offsets. */
- vec_alloc (vid.fns, 32);
- /* Add the vcall and vbase offset entries. */
- build_vcall_and_vbase_vtbl_entries (binfo, &vid);
-
- /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
- build_vbase_offset_vtbl_entries. */
- for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
- vec_safe_iterate (vbases, ix, &vbinfo); ix++)
- BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
-
- /* If the target requires padding between data entries, add that now. */
- if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
- {
- int n_entries = vec_safe_length (vid.inits);
-
- vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
-
- /* Move data entries into their new positions and add padding
- after the new positions. Iterate backwards so we don't
- overwrite entries that we would need to process later. */
- for (ix = n_entries - 1;
- vid.inits->iterate (ix, &e);
- ix--)
- {
- int j;
- int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
- + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
-
- (*vid.inits)[new_position] = *e;
-
- for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
- {
- constructor_elt *f = &(*vid.inits)[new_position - j];
- f->index = NULL_TREE;
- f->value = build1 (NOP_EXPR, vtable_entry_type,
- null_pointer_node);
- }
- }
- }
-
- if (non_fn_entries_p)
- *non_fn_entries_p = vec_safe_length (vid.inits);
-
- /* The initializers for virtual functions were built up in reverse
- order. Straighten them out and add them to the running list in one
- step. */
- jx = vec_safe_length (*inits);
- vec_safe_grow (*inits, jx + vid.inits->length ());
-
- for (ix = vid.inits->length () - 1;
- vid.inits->iterate (ix, &e);
- ix--, jx++)
- (**inits)[jx] = *e;
-
- /* Go through all the ordinary virtual functions, building up
- initializers. */
- for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
- {
- tree delta;
- tree vcall_index;
- tree fn, fn_original;
- tree init = NULL_TREE;
-
- fn = BV_FN (v);
- fn_original = fn;
- if (DECL_THUNK_P (fn))
- {
- if (!DECL_NAME (fn))
- finish_thunk (fn);
- if (THUNK_ALIAS (fn))
- {
- fn = THUNK_ALIAS (fn);
- BV_FN (v) = fn;
- }
- fn_original = THUNK_TARGET (fn);
- }
-
- /* If the only definition of this function signature along our
- primary base chain is from a lost primary, this vtable slot will
- never be used, so just zero it out. This is important to avoid
- requiring extra thunks which cannot be generated with the function.
-
- We first check this in update_vtable_entry_for_fn, so we handle
- restored primary bases properly; we also need to do it here so we
- zero out unused slots in ctor vtables, rather than filling them
- with erroneous values (though harmless, apart from relocation
- costs). */
- if (BV_LOST_PRIMARY (v))
- init = size_zero_node;
-
- if (! init)
- {
- /* Pull the offset for `this', and the function to call, out of
- the list. */
- delta = BV_DELTA (v);
- vcall_index = BV_VCALL_INDEX (v);
-
- gcc_assert (TREE_CODE (delta) == INTEGER_CST);
- gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
-
- /* You can't call an abstract virtual function; it's abstract.
- So, we replace these functions with __pure_virtual. */
- if (DECL_PURE_VIRTUAL_P (fn_original))
- {
- fn = abort_fndecl;
- if (!TARGET_VTABLE_USES_DESCRIPTORS)
- {
- if (abort_fndecl_addr == NULL)
- abort_fndecl_addr
- = fold_convert (vfunc_ptr_type_node,
- build_fold_addr_expr (fn));
- init = abort_fndecl_addr;
- }
- }
- /* Likewise for deleted virtuals. */
- else if (DECL_DELETED_FN (fn_original))
- {
- fn = get_identifier ("__cxa_deleted_virtual");
- if (!get_global_value_if_present (fn, &fn))
- fn = push_library_fn (fn, (build_function_type_list
- (void_type_node, NULL_TREE)),
- NULL_TREE);
- if (!TARGET_VTABLE_USES_DESCRIPTORS)
- init = fold_convert (vfunc_ptr_type_node,
- build_fold_addr_expr (fn));
- }
- else
- {
- if (!integer_zerop (delta) || vcall_index)
- {
- fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
- if (!DECL_NAME (fn))
- finish_thunk (fn);
- }
- /* Take the address of the function, considering it to be of an
- appropriate generic type. */
- if (!TARGET_VTABLE_USES_DESCRIPTORS)
- init = fold_convert (vfunc_ptr_type_node,
- build_fold_addr_expr (fn));
- }
- }
-
- /* And add it to the chain of initializers. */
- if (TARGET_VTABLE_USES_DESCRIPTORS)
- {
- int i;
- if (init == size_zero_node)
- for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
- CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
- else
- for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
- {
- tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
- fn, build_int_cst (NULL_TREE, i));
- TREE_CONSTANT (fdesc) = 1;
-
- CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
- }
- }
- else
- CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
- }
-}
-
-/* Adds to vid->inits the initializers for the vbase and vcall
- offsets in BINFO, which is in the hierarchy dominated by T. */
-
-static void
-build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
-{
- tree b;
-
- /* If this is a derived class, we must first create entries
- corresponding to the primary base class. */
- b = get_primary_binfo (binfo);
- if (b)
- build_vcall_and_vbase_vtbl_entries (b, vid);
-
- /* Add the vbase entries for this base. */
- build_vbase_offset_vtbl_entries (binfo, vid);
- /* Add the vcall entries for this base. */
- build_vcall_offset_vtbl_entries (binfo, vid);
-}
-
-/* Returns the initializers for the vbase offset entries in the vtable
- for BINFO (which is part of the class hierarchy dominated by T), in
- reverse order. VBASE_OFFSET_INDEX gives the vtable index
- where the next vbase offset will go. */
-
-static void
-build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
-{
- tree vbase;
- tree t;
- tree non_primary_binfo;
-
- /* If there are no virtual baseclasses, then there is nothing to
- do. */
- if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
- return;
-
- t = vid->derived;
-
- /* We might be a primary base class. Go up the inheritance hierarchy
- until we find the most derived class of which we are a primary base:
- it is the offset of that which we need to use. */
- non_primary_binfo = binfo;
- while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
- {
- tree b;
-
- /* If we have reached a virtual base, then it must be a primary
- base (possibly multi-level) of vid->binfo, or we wouldn't
- have called build_vcall_and_vbase_vtbl_entries for it. But it
- might be a lost primary, so just skip down to vid->binfo. */
- if (BINFO_VIRTUAL_P (non_primary_binfo))
- {
- non_primary_binfo = vid->binfo;
- break;
- }
-
- b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
- if (get_primary_binfo (b) != non_primary_binfo)
- break;
- non_primary_binfo = b;
- }
-
- /* Go through the virtual bases, adding the offsets. */
- for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
- vbase;
- vbase = TREE_CHAIN (vbase))
- {
- tree b;
- tree delta;
-
- if (!BINFO_VIRTUAL_P (vbase))
- continue;
-
- /* Find the instance of this virtual base in the complete
- object. */
- b = copied_binfo (vbase, binfo);
-
- /* If we've already got an offset for this virtual base, we
- don't need another one. */
- if (BINFO_VTABLE_PATH_MARKED (b))
- continue;
- BINFO_VTABLE_PATH_MARKED (b) = 1;
-
- /* Figure out where we can find this vbase offset. */
- delta = size_binop (MULT_EXPR,
- vid->index,
- convert (ssizetype,
- TYPE_SIZE_UNIT (vtable_entry_type)));
- if (vid->primary_vtbl_p)
- BINFO_VPTR_FIELD (b) = delta;
-
- if (binfo != TYPE_BINFO (t))
- /* The vbase offset had better be the same. */
- gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
-
- /* The next vbase will come at a more negative offset. */
- vid->index = size_binop (MINUS_EXPR, vid->index,
- ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
-
- /* The initializer is the delta from BINFO to this virtual base.
- The vbase offsets go in reverse inheritance-graph order, and
- we are walking in inheritance graph order so these end up in
- the right order. */
- delta = size_diffop_loc (input_location,
- BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
-
- CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
- fold_build1_loc (input_location, NOP_EXPR,
- vtable_entry_type, delta));
- }
-}
-
-/* Adds the initializers for the vcall offset entries in the vtable
- for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
- to VID->INITS. */
-
-static void
-build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
-{
- /* We only need these entries if this base is a virtual base. We
- compute the indices -- but do not add to the vtable -- when
- building the main vtable for a class. */
- if (binfo == TYPE_BINFO (vid->derived)
- || (BINFO_VIRTUAL_P (binfo)
- /* If BINFO is RTTI_BINFO, then (since BINFO does not
- correspond to VID->DERIVED), we are building a primary
- construction virtual table. Since this is a primary
- virtual table, we do not need the vcall offsets for
- BINFO. */
- && binfo != vid->rtti_binfo))
- {
- /* We need a vcall offset for each of the virtual functions in this
- vtable. For example:
-
- class A { virtual void f (); };
- class B1 : virtual public A { virtual void f (); };
- class B2 : virtual public A { virtual void f (); };
- class C: public B1, public B2 { virtual void f (); };
-
- A C object has a primary base of B1, which has a primary base of A. A
- C also has a secondary base of B2, which no longer has a primary base
- of A. So the B2-in-C construction vtable needs a secondary vtable for
- A, which will adjust the A* to a B2* to call f. We have no way of
- knowing what (or even whether) this offset will be when we define B2,
- so we store this "vcall offset" in the A sub-vtable and look it up in
- a "virtual thunk" for B2::f.
-
- We need entries for all the functions in our primary vtable and
- in our non-virtual bases' secondary vtables. */
- vid->vbase = binfo;
- /* If we are just computing the vcall indices -- but do not need
- the actual entries -- not that. */
- if (!BINFO_VIRTUAL_P (binfo))
- vid->generate_vcall_entries = false;
- /* Now, walk through the non-virtual bases, adding vcall offsets. */
- add_vcall_offset_vtbl_entries_r (binfo, vid);
- }
-}
-
-/* Build vcall offsets, starting with those for BINFO. */
-
-static void
-add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
-{
- int i;
- tree primary_binfo;
- tree base_binfo;
-
- /* Don't walk into virtual bases -- except, of course, for the
- virtual base for which we are building vcall offsets. Any
- primary virtual base will have already had its offsets generated
- through the recursion in build_vcall_and_vbase_vtbl_entries. */
- if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
- return;
-
- /* If BINFO has a primary base, process it first. */
- primary_binfo = get_primary_binfo (binfo);
- if (primary_binfo)
- add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
-
- /* Add BINFO itself to the list. */
- add_vcall_offset_vtbl_entries_1 (binfo, vid);
-
- /* Scan the non-primary bases of BINFO. */
- for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
- if (base_binfo != primary_binfo)
- add_vcall_offset_vtbl_entries_r (base_binfo, vid);
-}
-
-/* Called from build_vcall_offset_vtbl_entries_r. */
-
-static void
-add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
-{
- /* Make entries for the rest of the virtuals. */
- if (abi_version_at_least (2))
- {
- tree orig_fn;
-
- /* The ABI requires that the methods be processed in declaration
- order. G++ 3.2 used the order in the vtable. */
- for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
- orig_fn;
- orig_fn = DECL_CHAIN (orig_fn))
- if (DECL_VINDEX (orig_fn))
- add_vcall_offset (orig_fn, binfo, vid);
- }
- else
- {
- tree derived_virtuals;
- tree base_virtuals;
- tree orig_virtuals;
- /* If BINFO is a primary base, the most derived class which has
- BINFO as a primary base; otherwise, just BINFO. */
- tree non_primary_binfo;
-
- /* We might be a primary base class. Go up the inheritance hierarchy
- until we find the most derived class of which we are a primary base:
- it is the BINFO_VIRTUALS there that we need to consider. */
- non_primary_binfo = binfo;
- while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
- {
- tree b;
-
- /* If we have reached a virtual base, then it must be vid->vbase,
- because we ignore other virtual bases in
- add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
- base (possibly multi-level) of vid->binfo, or we wouldn't
- have called build_vcall_and_vbase_vtbl_entries for it. But it
- might be a lost primary, so just skip down to vid->binfo. */
- if (BINFO_VIRTUAL_P (non_primary_binfo))
- {
- gcc_assert (non_primary_binfo == vid->vbase);
- non_primary_binfo = vid->binfo;
- break;
- }
-
- b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
- if (get_primary_binfo (b) != non_primary_binfo)
- break;
- non_primary_binfo = b;
- }
-
- if (vid->ctor_vtbl_p)
- /* For a ctor vtable we need the equivalent binfo within the hierarchy
- where rtti_binfo is the most derived type. */
- non_primary_binfo
- = original_binfo (non_primary_binfo, vid->rtti_binfo);
-
- for (base_virtuals = BINFO_VIRTUALS (binfo),
- derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
- orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
- base_virtuals;
- base_virtuals = TREE_CHAIN (base_virtuals),
- derived_virtuals = TREE_CHAIN (derived_virtuals),
- orig_virtuals = TREE_CHAIN (orig_virtuals))
- {
- tree orig_fn;
-
- /* Find the declaration that originally caused this function to
- be present in BINFO_TYPE (binfo). */
- orig_fn = BV_FN (orig_virtuals);
-
- /* When processing BINFO, we only want to generate vcall slots for
- function slots introduced in BINFO. So don't try to generate
- one if the function isn't even defined in BINFO. */
- if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
- continue;
-
- add_vcall_offset (orig_fn, binfo, vid);
- }
- }
-}
-
-/* Add a vcall offset entry for ORIG_FN to the vtable. */
-
-static void
-add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
-{
- size_t i;
- tree vcall_offset;
- tree derived_entry;
-
- /* If there is already an entry for a function with the same
- signature as FN, then we do not need a second vcall offset.
- Check the list of functions already present in the derived
- class vtable. */
- FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
- {
- if (same_signature_p (derived_entry, orig_fn)
- /* We only use one vcall offset for virtual destructors,
- even though there are two virtual table entries. */
- || (DECL_DESTRUCTOR_P (derived_entry)
- && DECL_DESTRUCTOR_P (orig_fn)))
- return;
- }
-
- /* If we are building these vcall offsets as part of building
- the vtable for the most derived class, remember the vcall
- offset. */
- if (vid->binfo == TYPE_BINFO (vid->derived))
- {
- tree_pair_s elt = {orig_fn, vid->index};
- vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
- }
-
- /* The next vcall offset will be found at a more negative
- offset. */
- vid->index = size_binop (MINUS_EXPR, vid->index,
- ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
-
- /* Keep track of this function. */
- vec_safe_push (vid->fns, orig_fn);
-
- if (vid->generate_vcall_entries)
- {
- tree base;
- tree fn;
-
- /* Find the overriding function. */
- fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
- if (fn == error_mark_node)
- vcall_offset = build_zero_cst (vtable_entry_type);
- else
- {
- base = TREE_VALUE (fn);
-
- /* The vbase we're working on is a primary base of
- vid->binfo. But it might be a lost primary, so its
- BINFO_OFFSET might be wrong, so we just use the
- BINFO_OFFSET from vid->binfo. */
- vcall_offset = size_diffop_loc (input_location,
- BINFO_OFFSET (base),
- BINFO_OFFSET (vid->binfo));
- vcall_offset = fold_build1_loc (input_location,
- NOP_EXPR, vtable_entry_type,
- vcall_offset);
- }
- /* Add the initializer to the vtable. */
- CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
- }
-}
-
-/* Return vtbl initializers for the RTTI entries corresponding to the
- BINFO's vtable. The RTTI entries should indicate the object given
- by VID->rtti_binfo. */
-
-static void
-build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
-{
- tree b;
- tree t;
- tree offset;
- tree decl;
- tree init;
-
- t = BINFO_TYPE (vid->rtti_binfo);
-
- /* To find the complete object, we will first convert to our most
- primary base, and then add the offset in the vtbl to that value. */
- b = binfo;
- while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
- && !BINFO_LOST_PRIMARY_P (b))
- {
- tree primary_base;
-
- primary_base = get_primary_binfo (b);
- gcc_assert (BINFO_PRIMARY_P (primary_base)
- && BINFO_INHERITANCE_CHAIN (primary_base) == b);
- b = primary_base;
- }
- offset = size_diffop_loc (input_location,
- BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
-
- /* The second entry is the address of the typeinfo object. */
- if (flag_rtti)
- decl = build_address (get_tinfo_decl (t));
- else
- decl = integer_zero_node;
-
- /* Convert the declaration to a type that can be stored in the
- vtable. */
- init = build_nop (vfunc_ptr_type_node, decl);
- CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
-
- /* Add the offset-to-top entry. It comes earlier in the vtable than
- the typeinfo entry. Convert the offset to look like a
- function pointer, so that we can put it in the vtable. */
- init = build_nop (vfunc_ptr_type_node, offset);
- CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
-}
-
-/* TRUE iff TYPE is uniquely derived from PARENT. Ignores
- accessibility. */
-
-bool
-uniquely_derived_from_p (tree parent, tree type)
-{
- tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
- return base && base != error_mark_node;
-}
-
-/* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
-
-bool
-publicly_uniquely_derived_p (tree parent, tree type)
-{
- tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
- NULL, tf_none);
- return base && base != error_mark_node;
-}
-
-#include "gt-cp-class.h"