aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/config/i386/i386.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/config/i386/i386.h')
-rw-r--r--gcc-4.8.1/gcc/config/i386/i386.h2426
1 files changed, 0 insertions, 2426 deletions
diff --git a/gcc-4.8.1/gcc/config/i386/i386.h b/gcc-4.8.1/gcc/config/i386/i386.h
deleted file mode 100644
index a69862c54..000000000
--- a/gcc-4.8.1/gcc/config/i386/i386.h
+++ /dev/null
@@ -1,2426 +0,0 @@
-/* Definitions of target machine for GCC for IA-32.
- Copyright (C) 1988-2013 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 3, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-Under Section 7 of GPL version 3, you are granted additional
-permissions described in the GCC Runtime Library Exception, version
-3.1, as published by the Free Software Foundation.
-
-You should have received a copy of the GNU General Public License and
-a copy of the GCC Runtime Library Exception along with this program;
-see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
-<http://www.gnu.org/licenses/>. */
-
-/* The purpose of this file is to define the characteristics of the i386,
- independent of assembler syntax or operating system.
-
- Three other files build on this one to describe a specific assembler syntax:
- bsd386.h, att386.h, and sun386.h.
-
- The actual tm.h file for a particular system should include
- this file, and then the file for the appropriate assembler syntax.
-
- Many macros that specify assembler syntax are omitted entirely from
- this file because they really belong in the files for particular
- assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
- ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
- that start with ASM_ or end in ASM_OP. */
-
-/* Redefines for option macros. */
-
-#define TARGET_64BIT TARGET_ISA_64BIT
-#define TARGET_MMX TARGET_ISA_MMX
-#define TARGET_3DNOW TARGET_ISA_3DNOW
-#define TARGET_3DNOW_A TARGET_ISA_3DNOW_A
-#define TARGET_SSE TARGET_ISA_SSE
-#define TARGET_SSE2 TARGET_ISA_SSE2
-#define TARGET_SSE3 TARGET_ISA_SSE3
-#define TARGET_SSSE3 TARGET_ISA_SSSE3
-#define TARGET_SSE4_1 TARGET_ISA_SSE4_1
-#define TARGET_SSE4_2 TARGET_ISA_SSE4_2
-#define TARGET_AVX TARGET_ISA_AVX
-#define TARGET_AVX2 TARGET_ISA_AVX2
-#define TARGET_FMA TARGET_ISA_FMA
-#define TARGET_SSE4A TARGET_ISA_SSE4A
-#define TARGET_FMA4 TARGET_ISA_FMA4
-#define TARGET_XOP TARGET_ISA_XOP
-#define TARGET_LWP TARGET_ISA_LWP
-#define TARGET_ROUND TARGET_ISA_ROUND
-#define TARGET_ABM TARGET_ISA_ABM
-#define TARGET_BMI TARGET_ISA_BMI
-#define TARGET_BMI2 TARGET_ISA_BMI2
-#define TARGET_LZCNT TARGET_ISA_LZCNT
-#define TARGET_TBM TARGET_ISA_TBM
-#define TARGET_POPCNT TARGET_ISA_POPCNT
-#define TARGET_SAHF TARGET_ISA_SAHF
-#define TARGET_MOVBE TARGET_ISA_MOVBE
-#define TARGET_CRC32 TARGET_ISA_CRC32
-#define TARGET_AES TARGET_ISA_AES
-#define TARGET_PCLMUL TARGET_ISA_PCLMUL
-#define TARGET_CMPXCHG16B TARGET_ISA_CX16
-#define TARGET_FSGSBASE TARGET_ISA_FSGSBASE
-#define TARGET_RDRND TARGET_ISA_RDRND
-#define TARGET_F16C TARGET_ISA_F16C
-#define TARGET_RTM TARGET_ISA_RTM
-#define TARGET_HLE TARGET_ISA_HLE
-#define TARGET_RDSEED TARGET_ISA_RDSEED
-#define TARGET_PRFCHW TARGET_ISA_PRFCHW
-#define TARGET_ADX TARGET_ISA_ADX
-#define TARGET_FXSR TARGET_ISA_FXSR
-#define TARGET_XSAVE TARGET_ISA_XSAVE
-#define TARGET_XSAVEOPT TARGET_ISA_XSAVEOPT
-
-#define TARGET_LP64 TARGET_ABI_64
-#define TARGET_X32 TARGET_ABI_X32
-
-/* SSE4.1 defines round instructions */
-#define OPTION_MASK_ISA_ROUND OPTION_MASK_ISA_SSE4_1
-#define TARGET_ISA_ROUND ((ix86_isa_flags & OPTION_MASK_ISA_ROUND) != 0)
-
-#include "config/vxworks-dummy.h"
-
-#include "config/i386/i386-opts.h"
-
-#define MAX_STRINGOP_ALGS 4
-
-/* Specify what algorithm to use for stringops on known size.
- When size is unknown, the UNKNOWN_SIZE alg is used. When size is
- known at compile time or estimated via feedback, the SIZE array
- is walked in order until MAX is greater then the estimate (or -1
- means infinity). Corresponding ALG is used then.
- When NOALIGN is true the code guaranting the alignment of the memory
- block is skipped.
-
- For example initializer:
- {{256, loop}, {-1, rep_prefix_4_byte}}
- will use loop for blocks smaller or equal to 256 bytes, rep prefix will
- be used otherwise. */
-struct stringop_algs
-{
- const enum stringop_alg unknown_size;
- const struct stringop_strategy {
- const int max;
- const enum stringop_alg alg;
- int noalign;
- } size [MAX_STRINGOP_ALGS];
-};
-
-/* Define the specific costs for a given cpu */
-
-struct processor_costs {
- const int add; /* cost of an add instruction */
- const int lea; /* cost of a lea instruction */
- const int shift_var; /* variable shift costs */
- const int shift_const; /* constant shift costs */
- const int mult_init[5]; /* cost of starting a multiply
- in QImode, HImode, SImode, DImode, TImode*/
- const int mult_bit; /* cost of multiply per each bit set */
- const int divide[5]; /* cost of a divide/mod
- in QImode, HImode, SImode, DImode, TImode*/
- int movsx; /* The cost of movsx operation. */
- int movzx; /* The cost of movzx operation. */
- const int large_insn; /* insns larger than this cost more */
- const int move_ratio; /* The threshold of number of scalar
- memory-to-memory move insns. */
- const int movzbl_load; /* cost of loading using movzbl */
- const int int_load[3]; /* cost of loading integer registers
- in QImode, HImode and SImode relative
- to reg-reg move (2). */
- const int int_store[3]; /* cost of storing integer register
- in QImode, HImode and SImode */
- const int fp_move; /* cost of reg,reg fld/fst */
- const int fp_load[3]; /* cost of loading FP register
- in SFmode, DFmode and XFmode */
- const int fp_store[3]; /* cost of storing FP register
- in SFmode, DFmode and XFmode */
- const int mmx_move; /* cost of moving MMX register. */
- const int mmx_load[2]; /* cost of loading MMX register
- in SImode and DImode */
- const int mmx_store[2]; /* cost of storing MMX register
- in SImode and DImode */
- const int sse_move; /* cost of moving SSE register. */
- const int sse_load[3]; /* cost of loading SSE register
- in SImode, DImode and TImode*/
- const int sse_store[3]; /* cost of storing SSE register
- in SImode, DImode and TImode*/
- const int mmxsse_to_integer; /* cost of moving mmxsse register to
- integer and vice versa. */
- const int l1_cache_size; /* size of l1 cache, in kilobytes. */
- const int l2_cache_size; /* size of l2 cache, in kilobytes. */
- const int prefetch_block; /* bytes moved to cache for prefetch. */
- const int simultaneous_prefetches; /* number of parallel prefetch
- operations. */
- const int branch_cost; /* Default value for BRANCH_COST. */
- const int fadd; /* cost of FADD and FSUB instructions. */
- const int fmul; /* cost of FMUL instruction. */
- const int fdiv; /* cost of FDIV instruction. */
- const int fabs; /* cost of FABS instruction. */
- const int fchs; /* cost of FCHS instruction. */
- const int fsqrt; /* cost of FSQRT instruction. */
- /* Specify what algorithm
- to use for stringops on unknown size. */
- struct stringop_algs memcpy[2], memset[2];
- const int scalar_stmt_cost; /* Cost of any scalar operation, excluding
- load and store. */
- const int scalar_load_cost; /* Cost of scalar load. */
- const int scalar_store_cost; /* Cost of scalar store. */
- const int vec_stmt_cost; /* Cost of any vector operation, excluding
- load, store, vector-to-scalar and
- scalar-to-vector operation. */
- const int vec_to_scalar_cost; /* Cost of vect-to-scalar operation. */
- const int scalar_to_vec_cost; /* Cost of scalar-to-vector operation. */
- const int vec_align_load_cost; /* Cost of aligned vector load. */
- const int vec_unalign_load_cost; /* Cost of unaligned vector load. */
- const int vec_store_cost; /* Cost of vector store. */
- const int cond_taken_branch_cost; /* Cost of taken branch for vectorizer
- cost model. */
- const int cond_not_taken_branch_cost;/* Cost of not taken branch for
- vectorizer cost model. */
-};
-
-extern const struct processor_costs *ix86_cost;
-extern const struct processor_costs ix86_size_cost;
-
-#define ix86_cur_cost() \
- (optimize_insn_for_size_p () ? &ix86_size_cost: ix86_cost)
-
-/* Macros used in the machine description to test the flags. */
-
-/* configure can arrange to make this 2, to force a 486. */
-
-#ifndef TARGET_CPU_DEFAULT
-#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
-#endif
-
-#ifndef TARGET_FPMATH_DEFAULT
-#define TARGET_FPMATH_DEFAULT \
- (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
-#endif
-
-#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
-
-/* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
- compile-time constant. */
-#ifdef IN_LIBGCC2
-#undef TARGET_64BIT
-#ifdef __x86_64__
-#define TARGET_64BIT 1
-#else
-#define TARGET_64BIT 0
-#endif
-#else
-#ifndef TARGET_BI_ARCH
-#undef TARGET_64BIT
-#if TARGET_64BIT_DEFAULT
-#define TARGET_64BIT 1
-#else
-#define TARGET_64BIT 0
-#endif
-#endif
-#endif
-
-#define HAS_LONG_COND_BRANCH 1
-#define HAS_LONG_UNCOND_BRANCH 1
-
-#define TARGET_386 (ix86_tune == PROCESSOR_I386)
-#define TARGET_486 (ix86_tune == PROCESSOR_I486)
-#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
-#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
-#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
-#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
-#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
-#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
-#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
-#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
-#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
-#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
-#define TARGET_COREI7 (ix86_tune == PROCESSOR_COREI7)
-#define TARGET_HASWELL (ix86_tune == PROCESSOR_HASWELL)
-#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
-#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
-#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
-#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
-#define TARGET_BDVER1 (ix86_tune == PROCESSOR_BDVER1)
-#define TARGET_BDVER2 (ix86_tune == PROCESSOR_BDVER2)
-#define TARGET_BDVER3 (ix86_tune == PROCESSOR_BDVER3)
-#define TARGET_BTVER1 (ix86_tune == PROCESSOR_BTVER1)
-#define TARGET_BTVER2 (ix86_tune == PROCESSOR_BTVER2)
-#define TARGET_ATOM (ix86_tune == PROCESSOR_ATOM)
-
-/* Feature tests against the various tunings. */
-enum ix86_tune_indices {
- X86_TUNE_USE_LEAVE,
- X86_TUNE_PUSH_MEMORY,
- X86_TUNE_ZERO_EXTEND_WITH_AND,
- X86_TUNE_UNROLL_STRLEN,
- X86_TUNE_BRANCH_PREDICTION_HINTS,
- X86_TUNE_DOUBLE_WITH_ADD,
- X86_TUNE_USE_SAHF,
- X86_TUNE_MOVX,
- X86_TUNE_PARTIAL_REG_STALL,
- X86_TUNE_PARTIAL_FLAG_REG_STALL,
- X86_TUNE_LCP_STALL,
- X86_TUNE_USE_HIMODE_FIOP,
- X86_TUNE_USE_SIMODE_FIOP,
- X86_TUNE_USE_MOV0,
- X86_TUNE_USE_CLTD,
- X86_TUNE_USE_XCHGB,
- X86_TUNE_SPLIT_LONG_MOVES,
- X86_TUNE_READ_MODIFY_WRITE,
- X86_TUNE_READ_MODIFY,
- X86_TUNE_PROMOTE_QIMODE,
- X86_TUNE_FAST_PREFIX,
- X86_TUNE_SINGLE_STRINGOP,
- X86_TUNE_QIMODE_MATH,
- X86_TUNE_HIMODE_MATH,
- X86_TUNE_PROMOTE_QI_REGS,
- X86_TUNE_PROMOTE_HI_REGS,
- X86_TUNE_SINGLE_POP,
- X86_TUNE_DOUBLE_POP,
- X86_TUNE_SINGLE_PUSH,
- X86_TUNE_DOUBLE_PUSH,
- X86_TUNE_INTEGER_DFMODE_MOVES,
- X86_TUNE_PARTIAL_REG_DEPENDENCY,
- X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY,
- X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL,
- X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL,
- X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL,
- X86_TUNE_SSE_SPLIT_REGS,
- X86_TUNE_SSE_TYPELESS_STORES,
- X86_TUNE_SSE_LOAD0_BY_PXOR,
- X86_TUNE_MEMORY_MISMATCH_STALL,
- X86_TUNE_PROLOGUE_USING_MOVE,
- X86_TUNE_EPILOGUE_USING_MOVE,
- X86_TUNE_SHIFT1,
- X86_TUNE_USE_FFREEP,
- X86_TUNE_INTER_UNIT_MOVES,
- X86_TUNE_INTER_UNIT_CONVERSIONS,
- X86_TUNE_FOUR_JUMP_LIMIT,
- X86_TUNE_SCHEDULE,
- X86_TUNE_USE_BT,
- X86_TUNE_USE_INCDEC,
- X86_TUNE_PAD_RETURNS,
- X86_TUNE_PAD_SHORT_FUNCTION,
- X86_TUNE_EXT_80387_CONSTANTS,
- X86_TUNE_AVOID_VECTOR_DECODE,
- X86_TUNE_PROMOTE_HIMODE_IMUL,
- X86_TUNE_SLOW_IMUL_IMM32_MEM,
- X86_TUNE_SLOW_IMUL_IMM8,
- X86_TUNE_MOVE_M1_VIA_OR,
- X86_TUNE_NOT_UNPAIRABLE,
- X86_TUNE_NOT_VECTORMODE,
- X86_TUNE_USE_VECTOR_FP_CONVERTS,
- X86_TUNE_USE_VECTOR_CONVERTS,
- X86_TUNE_FUSE_CMP_AND_BRANCH,
- X86_TUNE_OPT_AGU,
- X86_TUNE_VECTORIZE_DOUBLE,
- X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL,
- X86_TUNE_AVX128_OPTIMAL,
- X86_TUNE_REASSOC_INT_TO_PARALLEL,
- X86_TUNE_REASSOC_FP_TO_PARALLEL,
- X86_TUNE_GENERAL_REGS_SSE_SPILL,
- X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE,
-
- X86_TUNE_LAST
-};
-
-extern unsigned char ix86_tune_features[X86_TUNE_LAST];
-
-#define TARGET_USE_LEAVE ix86_tune_features[X86_TUNE_USE_LEAVE]
-#define TARGET_PUSH_MEMORY ix86_tune_features[X86_TUNE_PUSH_MEMORY]
-#define TARGET_ZERO_EXTEND_WITH_AND \
- ix86_tune_features[X86_TUNE_ZERO_EXTEND_WITH_AND]
-#define TARGET_UNROLL_STRLEN ix86_tune_features[X86_TUNE_UNROLL_STRLEN]
-#define TARGET_BRANCH_PREDICTION_HINTS \
- ix86_tune_features[X86_TUNE_BRANCH_PREDICTION_HINTS]
-#define TARGET_DOUBLE_WITH_ADD ix86_tune_features[X86_TUNE_DOUBLE_WITH_ADD]
-#define TARGET_USE_SAHF ix86_tune_features[X86_TUNE_USE_SAHF]
-#define TARGET_MOVX ix86_tune_features[X86_TUNE_MOVX]
-#define TARGET_PARTIAL_REG_STALL ix86_tune_features[X86_TUNE_PARTIAL_REG_STALL]
-#define TARGET_PARTIAL_FLAG_REG_STALL \
- ix86_tune_features[X86_TUNE_PARTIAL_FLAG_REG_STALL]
-#define TARGET_LCP_STALL \
- ix86_tune_features[X86_TUNE_LCP_STALL]
-#define TARGET_USE_HIMODE_FIOP ix86_tune_features[X86_TUNE_USE_HIMODE_FIOP]
-#define TARGET_USE_SIMODE_FIOP ix86_tune_features[X86_TUNE_USE_SIMODE_FIOP]
-#define TARGET_USE_MOV0 ix86_tune_features[X86_TUNE_USE_MOV0]
-#define TARGET_USE_CLTD ix86_tune_features[X86_TUNE_USE_CLTD]
-#define TARGET_USE_XCHGB ix86_tune_features[X86_TUNE_USE_XCHGB]
-#define TARGET_SPLIT_LONG_MOVES ix86_tune_features[X86_TUNE_SPLIT_LONG_MOVES]
-#define TARGET_READ_MODIFY_WRITE ix86_tune_features[X86_TUNE_READ_MODIFY_WRITE]
-#define TARGET_READ_MODIFY ix86_tune_features[X86_TUNE_READ_MODIFY]
-#define TARGET_PROMOTE_QImode ix86_tune_features[X86_TUNE_PROMOTE_QIMODE]
-#define TARGET_FAST_PREFIX ix86_tune_features[X86_TUNE_FAST_PREFIX]
-#define TARGET_SINGLE_STRINGOP ix86_tune_features[X86_TUNE_SINGLE_STRINGOP]
-#define TARGET_QIMODE_MATH ix86_tune_features[X86_TUNE_QIMODE_MATH]
-#define TARGET_HIMODE_MATH ix86_tune_features[X86_TUNE_HIMODE_MATH]
-#define TARGET_PROMOTE_QI_REGS ix86_tune_features[X86_TUNE_PROMOTE_QI_REGS]
-#define TARGET_PROMOTE_HI_REGS ix86_tune_features[X86_TUNE_PROMOTE_HI_REGS]
-#define TARGET_SINGLE_POP ix86_tune_features[X86_TUNE_SINGLE_POP]
-#define TARGET_DOUBLE_POP ix86_tune_features[X86_TUNE_DOUBLE_POP]
-#define TARGET_SINGLE_PUSH ix86_tune_features[X86_TUNE_SINGLE_PUSH]
-#define TARGET_DOUBLE_PUSH ix86_tune_features[X86_TUNE_DOUBLE_PUSH]
-#define TARGET_INTEGER_DFMODE_MOVES \
- ix86_tune_features[X86_TUNE_INTEGER_DFMODE_MOVES]
-#define TARGET_PARTIAL_REG_DEPENDENCY \
- ix86_tune_features[X86_TUNE_PARTIAL_REG_DEPENDENCY]
-#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
- ix86_tune_features[X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY]
-#define TARGET_SSE_UNALIGNED_LOAD_OPTIMAL \
- ix86_tune_features[X86_TUNE_SSE_UNALIGNED_LOAD_OPTIMAL]
-#define TARGET_SSE_UNALIGNED_STORE_OPTIMAL \
- ix86_tune_features[X86_TUNE_SSE_UNALIGNED_STORE_OPTIMAL]
-#define TARGET_SSE_PACKED_SINGLE_INSN_OPTIMAL \
- ix86_tune_features[X86_TUNE_SSE_PACKED_SINGLE_INSN_OPTIMAL]
-#define TARGET_SSE_SPLIT_REGS ix86_tune_features[X86_TUNE_SSE_SPLIT_REGS]
-#define TARGET_SSE_TYPELESS_STORES \
- ix86_tune_features[X86_TUNE_SSE_TYPELESS_STORES]
-#define TARGET_SSE_LOAD0_BY_PXOR ix86_tune_features[X86_TUNE_SSE_LOAD0_BY_PXOR]
-#define TARGET_MEMORY_MISMATCH_STALL \
- ix86_tune_features[X86_TUNE_MEMORY_MISMATCH_STALL]
-#define TARGET_PROLOGUE_USING_MOVE \
- ix86_tune_features[X86_TUNE_PROLOGUE_USING_MOVE]
-#define TARGET_EPILOGUE_USING_MOVE \
- ix86_tune_features[X86_TUNE_EPILOGUE_USING_MOVE]
-#define TARGET_SHIFT1 ix86_tune_features[X86_TUNE_SHIFT1]
-#define TARGET_USE_FFREEP ix86_tune_features[X86_TUNE_USE_FFREEP]
-#define TARGET_INTER_UNIT_MOVES ix86_tune_features[X86_TUNE_INTER_UNIT_MOVES]
-#define TARGET_INTER_UNIT_CONVERSIONS\
- ix86_tune_features[X86_TUNE_INTER_UNIT_CONVERSIONS]
-#define TARGET_FOUR_JUMP_LIMIT ix86_tune_features[X86_TUNE_FOUR_JUMP_LIMIT]
-#define TARGET_SCHEDULE ix86_tune_features[X86_TUNE_SCHEDULE]
-#define TARGET_USE_BT ix86_tune_features[X86_TUNE_USE_BT]
-#define TARGET_USE_INCDEC ix86_tune_features[X86_TUNE_USE_INCDEC]
-#define TARGET_PAD_RETURNS ix86_tune_features[X86_TUNE_PAD_RETURNS]
-#define TARGET_PAD_SHORT_FUNCTION \
- ix86_tune_features[X86_TUNE_PAD_SHORT_FUNCTION]
-#define TARGET_EXT_80387_CONSTANTS \
- ix86_tune_features[X86_TUNE_EXT_80387_CONSTANTS]
-#define TARGET_AVOID_VECTOR_DECODE \
- ix86_tune_features[X86_TUNE_AVOID_VECTOR_DECODE]
-#define TARGET_TUNE_PROMOTE_HIMODE_IMUL \
- ix86_tune_features[X86_TUNE_PROMOTE_HIMODE_IMUL]
-#define TARGET_SLOW_IMUL_IMM32_MEM \
- ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM32_MEM]
-#define TARGET_SLOW_IMUL_IMM8 ix86_tune_features[X86_TUNE_SLOW_IMUL_IMM8]
-#define TARGET_MOVE_M1_VIA_OR ix86_tune_features[X86_TUNE_MOVE_M1_VIA_OR]
-#define TARGET_NOT_UNPAIRABLE ix86_tune_features[X86_TUNE_NOT_UNPAIRABLE]
-#define TARGET_NOT_VECTORMODE ix86_tune_features[X86_TUNE_NOT_VECTORMODE]
-#define TARGET_USE_VECTOR_FP_CONVERTS \
- ix86_tune_features[X86_TUNE_USE_VECTOR_FP_CONVERTS]
-#define TARGET_USE_VECTOR_CONVERTS \
- ix86_tune_features[X86_TUNE_USE_VECTOR_CONVERTS]
-#define TARGET_FUSE_CMP_AND_BRANCH \
- ix86_tune_features[X86_TUNE_FUSE_CMP_AND_BRANCH]
-#define TARGET_OPT_AGU ix86_tune_features[X86_TUNE_OPT_AGU]
-#define TARGET_VECTORIZE_DOUBLE \
- ix86_tune_features[X86_TUNE_VECTORIZE_DOUBLE]
-#define TARGET_SOFTWARE_PREFETCHING_BENEFICIAL \
- ix86_tune_features[X86_TUNE_SOFTWARE_PREFETCHING_BENEFICIAL]
-#define TARGET_AVX128_OPTIMAL \
- ix86_tune_features[X86_TUNE_AVX128_OPTIMAL]
-#define TARGET_REASSOC_INT_TO_PARALLEL \
- ix86_tune_features[X86_TUNE_REASSOC_INT_TO_PARALLEL]
-#define TARGET_REASSOC_FP_TO_PARALLEL \
- ix86_tune_features[X86_TUNE_REASSOC_FP_TO_PARALLEL]
-#define TARGET_GENERAL_REGS_SSE_SPILL \
- ix86_tune_features[X86_TUNE_GENERAL_REGS_SSE_SPILL]
-#define TARGET_AVOID_MEM_OPND_FOR_CMOVE \
- ix86_tune_features[X86_TUNE_AVOID_MEM_OPND_FOR_CMOVE]
-
-/* Feature tests against the various architecture variations. */
-enum ix86_arch_indices {
- X86_ARCH_CMOV,
- X86_ARCH_CMPXCHG,
- X86_ARCH_CMPXCHG8B,
- X86_ARCH_XADD,
- X86_ARCH_BSWAP,
-
- X86_ARCH_LAST
-};
-
-extern unsigned char ix86_arch_features[X86_ARCH_LAST];
-
-#define TARGET_CMOV ix86_arch_features[X86_ARCH_CMOV]
-#define TARGET_CMPXCHG ix86_arch_features[X86_ARCH_CMPXCHG]
-#define TARGET_CMPXCHG8B ix86_arch_features[X86_ARCH_CMPXCHG8B]
-#define TARGET_XADD ix86_arch_features[X86_ARCH_XADD]
-#define TARGET_BSWAP ix86_arch_features[X86_ARCH_BSWAP]
-
-/* For sane SSE instruction set generation we need fcomi instruction.
- It is safe to enable all CMOVE instructions. Also, RDRAND intrinsic
- expands to a sequence that includes conditional move. */
-#define TARGET_CMOVE (TARGET_CMOV || TARGET_SSE || TARGET_RDRND)
-
-#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
-
-extern unsigned char x86_prefetch_sse;
-#define TARGET_PREFETCH_SSE x86_prefetch_sse
-
-#define ASSEMBLER_DIALECT (ix86_asm_dialect)
-
-#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
-#define TARGET_MIX_SSE_I387 \
- ((ix86_fpmath & (FPMATH_SSE | FPMATH_387)) == (FPMATH_SSE | FPMATH_387))
-
-#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
-#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
-#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
-#define TARGET_SUN_TLS 0
-
-#ifndef TARGET_64BIT_DEFAULT
-#define TARGET_64BIT_DEFAULT 0
-#endif
-#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
-#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
-#endif
-
-/* Fence to use after loop using storent. */
-
-extern tree x86_mfence;
-#define FENCE_FOLLOWING_MOVNT x86_mfence
-
-/* Once GDB has been enhanced to deal with functions without frame
- pointers, we can change this to allow for elimination of
- the frame pointer in leaf functions. */
-#define TARGET_DEFAULT 0
-
-/* Extra bits to force. */
-#define TARGET_SUBTARGET_DEFAULT 0
-#define TARGET_SUBTARGET_ISA_DEFAULT 0
-
-/* Extra bits to force on w/ 32-bit mode. */
-#define TARGET_SUBTARGET32_DEFAULT 0
-#define TARGET_SUBTARGET32_ISA_DEFAULT 0
-
-/* Extra bits to force on w/ 64-bit mode. */
-#define TARGET_SUBTARGET64_DEFAULT 0
-#define TARGET_SUBTARGET64_ISA_DEFAULT 0
-
-/* Replace MACH-O, ifdefs by in-line tests, where possible.
- (a) Macros defined in config/i386/darwin.h */
-#define TARGET_MACHO 0
-#define TARGET_MACHO_BRANCH_ISLANDS 0
-#define MACHOPIC_ATT_STUB 0
-/* (b) Macros defined in config/darwin.h */
-#define MACHO_DYNAMIC_NO_PIC_P 0
-#define MACHOPIC_INDIRECT 0
-#define MACHOPIC_PURE 0
-
-/* For the RDOS */
-#define TARGET_RDOS 0
-
-/* For the Windows 64-bit ABI. */
-#define TARGET_64BIT_MS_ABI (TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
-
-/* For the Windows 32-bit ABI. */
-#define TARGET_32BIT_MS_ABI (!TARGET_64BIT && ix86_cfun_abi () == MS_ABI)
-
-/* This is re-defined by cygming.h. */
-#define TARGET_SEH 0
-
-/* The default abi used by target. */
-#define DEFAULT_ABI SYSV_ABI
-
-/* Subtargets may reset this to 1 in order to enable 96-bit long double
- with the rounding mode forced to 53 bits. */
-#define TARGET_96_ROUND_53_LONG_DOUBLE 0
-
-/* -march=native handling only makes sense with compiler running on
- an x86 or x86_64 chip. If changing this condition, also change
- the condition in driver-i386.c. */
-#if defined(__i386__) || defined(__x86_64__)
-/* In driver-i386.c. */
-extern const char *host_detect_local_cpu (int argc, const char **argv);
-#define EXTRA_SPEC_FUNCTIONS \
- { "local_cpu_detect", host_detect_local_cpu },
-#define HAVE_LOCAL_CPU_DETECT
-#endif
-
-#if TARGET_64BIT_DEFAULT
-#define OPT_ARCH64 "!m32"
-#define OPT_ARCH32 "m32"
-#else
-#define OPT_ARCH64 "m64|mx32"
-#define OPT_ARCH32 "m64|mx32:;"
-#endif
-
-/* Support for configure-time defaults of some command line options.
- The order here is important so that -march doesn't squash the
- tune or cpu values. */
-#define OPTION_DEFAULT_SPECS \
- {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
- {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
- {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
- {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
- {"cpu_32", "%{" OPT_ARCH32 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
- {"cpu_64", "%{" OPT_ARCH64 ":%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}}" }, \
- {"arch", "%{!march=*:-march=%(VALUE)}"}, \
- {"arch_32", "%{" OPT_ARCH32 ":%{!march=*:-march=%(VALUE)}}"}, \
- {"arch_64", "%{" OPT_ARCH64 ":%{!march=*:-march=%(VALUE)}}"},
-
-/* Specs for the compiler proper */
-
-#ifndef CC1_CPU_SPEC
-#define CC1_CPU_SPEC_1 ""
-
-#ifndef HAVE_LOCAL_CPU_DETECT
-#define CC1_CPU_SPEC CC1_CPU_SPEC_1
-#else
-#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
-"%{march=native:%>march=native %:local_cpu_detect(arch) \
- %{!mtune=*:%>mtune=native %:local_cpu_detect(tune)}} \
-%{mtune=native:%>mtune=native %:local_cpu_detect(tune)}"
-#endif
-#endif
-
-/* Target CPU builtins. */
-#define TARGET_CPU_CPP_BUILTINS() ix86_target_macros ()
-
-/* Target Pragmas. */
-#define REGISTER_TARGET_PRAGMAS() ix86_register_pragmas ()
-
-enum target_cpu_default
-{
- TARGET_CPU_DEFAULT_generic = 0,
-
- TARGET_CPU_DEFAULT_i386,
- TARGET_CPU_DEFAULT_i486,
- TARGET_CPU_DEFAULT_pentium,
- TARGET_CPU_DEFAULT_pentium_mmx,
- TARGET_CPU_DEFAULT_pentiumpro,
- TARGET_CPU_DEFAULT_pentium2,
- TARGET_CPU_DEFAULT_pentium3,
- TARGET_CPU_DEFAULT_pentium4,
- TARGET_CPU_DEFAULT_pentium_m,
- TARGET_CPU_DEFAULT_prescott,
- TARGET_CPU_DEFAULT_nocona,
- TARGET_CPU_DEFAULT_core2,
- TARGET_CPU_DEFAULT_corei7,
- TARGET_CPU_DEFAULT_haswell,
- TARGET_CPU_DEFAULT_atom,
-
- TARGET_CPU_DEFAULT_geode,
- TARGET_CPU_DEFAULT_k6,
- TARGET_CPU_DEFAULT_k6_2,
- TARGET_CPU_DEFAULT_k6_3,
- TARGET_CPU_DEFAULT_athlon,
- TARGET_CPU_DEFAULT_athlon_sse,
- TARGET_CPU_DEFAULT_k8,
- TARGET_CPU_DEFAULT_amdfam10,
- TARGET_CPU_DEFAULT_bdver1,
- TARGET_CPU_DEFAULT_bdver2,
- TARGET_CPU_DEFAULT_bdver3,
- TARGET_CPU_DEFAULT_btver1,
- TARGET_CPU_DEFAULT_btver2,
-
- TARGET_CPU_DEFAULT_max
-};
-
-#ifndef CC1_SPEC
-#define CC1_SPEC "%(cc1_cpu) "
-#endif
-
-/* This macro defines names of additional specifications to put in the
- specs that can be used in various specifications like CC1_SPEC. Its
- definition is an initializer with a subgrouping for each command option.
-
- Each subgrouping contains a string constant, that defines the
- specification name, and a string constant that used by the GCC driver
- program.
-
- Do not define this macro if it does not need to do anything. */
-
-#ifndef SUBTARGET_EXTRA_SPECS
-#define SUBTARGET_EXTRA_SPECS
-#endif
-
-#define EXTRA_SPECS \
- { "cc1_cpu", CC1_CPU_SPEC }, \
- SUBTARGET_EXTRA_SPECS
-
-
-/* Set the value of FLT_EVAL_METHOD in float.h. When using only the
- FPU, assume that the fpcw is set to extended precision; when using
- only SSE, rounding is correct; when using both SSE and the FPU,
- the rounding precision is indeterminate, since either may be chosen
- apparently at random. */
-#define TARGET_FLT_EVAL_METHOD \
- (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
-
-/* Whether to allow x87 floating-point arithmetic on MODE (one of
- SFmode, DFmode and XFmode) in the current excess precision
- configuration. */
-#define X87_ENABLE_ARITH(MODE) \
- (flag_excess_precision == EXCESS_PRECISION_FAST || (MODE) == XFmode)
-
-/* Likewise, whether to allow direct conversions from integer mode
- IMODE (HImode, SImode or DImode) to MODE. */
-#define X87_ENABLE_FLOAT(MODE, IMODE) \
- (flag_excess_precision == EXCESS_PRECISION_FAST \
- || (MODE) == XFmode \
- || ((MODE) == DFmode && (IMODE) == SImode) \
- || (IMODE) == HImode)
-
-/* target machine storage layout */
-
-#define SHORT_TYPE_SIZE 16
-#define INT_TYPE_SIZE 32
-#define LONG_TYPE_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
-#define POINTER_SIZE (TARGET_X32 ? 32 : BITS_PER_WORD)
-#define LONG_LONG_TYPE_SIZE 64
-#define FLOAT_TYPE_SIZE 32
-#define DOUBLE_TYPE_SIZE 64
-#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 80)
-
-/* Define this to set long double type size to use in libgcc2.c, which can
- not depend on target_flags. */
-#ifdef __LONG_DOUBLE_64__
-#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
-#else
-#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 80
-#endif
-
-#define WIDEST_HARDWARE_FP_SIZE 80
-
-#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
-#define MAX_BITS_PER_WORD 64
-#else
-#define MAX_BITS_PER_WORD 32
-#endif
-
-/* Define this if most significant byte of a word is the lowest numbered. */
-/* That is true on the 80386. */
-
-#define BITS_BIG_ENDIAN 0
-
-/* Define this if most significant byte of a word is the lowest numbered. */
-/* That is not true on the 80386. */
-#define BYTES_BIG_ENDIAN 0
-
-/* Define this if most significant word of a multiword number is the lowest
- numbered. */
-/* Not true for 80386 */
-#define WORDS_BIG_ENDIAN 0
-
-/* Width of a word, in units (bytes). */
-#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
-
-#ifndef IN_LIBGCC2
-#define MIN_UNITS_PER_WORD 4
-#endif
-
-/* Allocation boundary (in *bits*) for storing arguments in argument list. */
-#define PARM_BOUNDARY BITS_PER_WORD
-
-/* Boundary (in *bits*) on which stack pointer should be aligned. */
-#define STACK_BOUNDARY \
- (TARGET_64BIT && ix86_abi == MS_ABI ? 128 : BITS_PER_WORD)
-
-/* Stack boundary of the main function guaranteed by OS. */
-#define MAIN_STACK_BOUNDARY (TARGET_64BIT ? 128 : 32)
-
-/* Minimum stack boundary. */
-#define MIN_STACK_BOUNDARY (TARGET_64BIT ? (TARGET_SSE ? 128 : 64) : 32)
-
-/* Boundary (in *bits*) on which the stack pointer prefers to be
- aligned; the compiler cannot rely on having this alignment. */
-#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
-
-/* It should be MIN_STACK_BOUNDARY. But we set it to 128 bits for
- both 32bit and 64bit, to support codes that need 128 bit stack
- alignment for SSE instructions, but can't realign the stack. */
-#define PREFERRED_STACK_BOUNDARY_DEFAULT 128
-
-/* 1 if -mstackrealign should be turned on by default. It will
- generate an alternate prologue and epilogue that realigns the
- runtime stack if nessary. This supports mixing codes that keep a
- 4-byte aligned stack, as specified by i386 psABI, with codes that
- need a 16-byte aligned stack, as required by SSE instructions. */
-#define STACK_REALIGN_DEFAULT 0
-
-/* Boundary (in *bits*) on which the incoming stack is aligned. */
-#define INCOMING_STACK_BOUNDARY ix86_incoming_stack_boundary
-
-/* According to Windows x64 software convention, the maximum stack allocatable
- in the prologue is 4G - 8 bytes. Furthermore, there is a limited set of
- instructions allowed to adjust the stack pointer in the epilog, forcing the
- use of frame pointer for frames larger than 2 GB. This theorical limit
- is reduced by 256, an over-estimated upper bound for the stack use by the
- prologue.
- We define only one threshold for both the prolog and the epilog. When the
- frame size is larger than this threshold, we allocate the area to save SSE
- regs, then save them, and then allocate the remaining. There is no SEH
- unwind info for this later allocation. */
-#define SEH_MAX_FRAME_SIZE ((2U << 30) - 256)
-
-/* Target OS keeps a vector-aligned (128-bit, 16-byte) stack. This is
- mandatory for the 64-bit ABI, and may or may not be true for other
- operating systems. */
-#define TARGET_KEEPS_VECTOR_ALIGNED_STACK TARGET_64BIT
-
-/* Minimum allocation boundary for the code of a function. */
-#define FUNCTION_BOUNDARY 8
-
-/* C++ stores the virtual bit in the lowest bit of function pointers. */
-#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
-
-/* Minimum size in bits of the largest boundary to which any
- and all fundamental data types supported by the hardware
- might need to be aligned. No data type wants to be aligned
- rounder than this.
-
- Pentium+ prefers DFmode values to be aligned to 64 bit boundary
- and Pentium Pro XFmode values at 128 bit boundaries. */
-
-#define BIGGEST_ALIGNMENT (TARGET_AVX ? 256 : 128)
-
-/* Maximum stack alignment. */
-#define MAX_STACK_ALIGNMENT MAX_OFILE_ALIGNMENT
-
-/* Alignment value for attribute ((aligned)). It is a constant since
- it is the part of the ABI. We shouldn't change it with -mavx. */
-#define ATTRIBUTE_ALIGNED_VALUE 128
-
-/* Decide whether a variable of mode MODE should be 128 bit aligned. */
-#define ALIGN_MODE_128(MODE) \
- ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
-
-/* The published ABIs say that doubles should be aligned on word
- boundaries, so lower the alignment for structure fields unless
- -malign-double is set. */
-
-/* ??? Blah -- this macro is used directly by libobjc. Since it
- supports no vector modes, cut out the complexity and fall back
- on BIGGEST_FIELD_ALIGNMENT. */
-#ifdef IN_TARGET_LIBS
-#ifdef __x86_64__
-#define BIGGEST_FIELD_ALIGNMENT 128
-#else
-#define BIGGEST_FIELD_ALIGNMENT 32
-#endif
-#else
-#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
- x86_field_alignment (FIELD, COMPUTED)
-#endif
-
-/* If defined, a C expression to compute the alignment given to a
- constant that is being placed in memory. EXP is the constant
- and ALIGN is the alignment that the object would ordinarily have.
- The value of this macro is used instead of that alignment to align
- the object.
-
- If this macro is not defined, then ALIGN is used.
-
- The typical use of this macro is to increase alignment for string
- constants to be word aligned so that `strcpy' calls that copy
- constants can be done inline. */
-
-#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
-
-/* If defined, a C expression to compute the alignment for a static
- variable. TYPE is the data type, and ALIGN is the alignment that
- the object would ordinarily have. The value of this macro is used
- instead of that alignment to align the object.
-
- If this macro is not defined, then ALIGN is used.
-
- One use of this macro is to increase alignment of medium-size
- data to make it all fit in fewer cache lines. Another is to
- cause character arrays to be word-aligned so that `strcpy' calls
- that copy constants to character arrays can be done inline. */
-
-#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
-
-/* If defined, a C expression to compute the alignment for a local
- variable. TYPE is the data type, and ALIGN is the alignment that
- the object would ordinarily have. The value of this macro is used
- instead of that alignment to align the object.
-
- If this macro is not defined, then ALIGN is used.
-
- One use of this macro is to increase alignment of medium-size
- data to make it all fit in fewer cache lines. */
-
-#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
- ix86_local_alignment ((TYPE), VOIDmode, (ALIGN))
-
-/* If defined, a C expression to compute the alignment for stack slot.
- TYPE is the data type, MODE is the widest mode available, and ALIGN
- is the alignment that the slot would ordinarily have. The value of
- this macro is used instead of that alignment to align the slot.
-
- If this macro is not defined, then ALIGN is used when TYPE is NULL,
- Otherwise, LOCAL_ALIGNMENT will be used.
-
- One use of this macro is to set alignment of stack slot to the
- maximum alignment of all possible modes which the slot may have. */
-
-#define STACK_SLOT_ALIGNMENT(TYPE, MODE, ALIGN) \
- ix86_local_alignment ((TYPE), (MODE), (ALIGN))
-
-/* If defined, a C expression to compute the alignment for a local
- variable DECL.
-
- If this macro is not defined, then
- LOCAL_ALIGNMENT (TREE_TYPE (DECL), DECL_ALIGN (DECL)) will be used.
-
- One use of this macro is to increase alignment of medium-size
- data to make it all fit in fewer cache lines. */
-
-#define LOCAL_DECL_ALIGNMENT(DECL) \
- ix86_local_alignment ((DECL), VOIDmode, DECL_ALIGN (DECL))
-
-/* If defined, a C expression to compute the minimum required alignment
- for dynamic stack realignment purposes for EXP (a TYPE or DECL),
- MODE, assuming normal alignment ALIGN.
-
- If this macro is not defined, then (ALIGN) will be used. */
-
-#define MINIMUM_ALIGNMENT(EXP, MODE, ALIGN) \
- ix86_minimum_alignment (EXP, MODE, ALIGN)
-
-
-/* Set this nonzero if move instructions will actually fail to work
- when given unaligned data. */
-#define STRICT_ALIGNMENT 0
-
-/* If bit field type is int, don't let it cross an int,
- and give entire struct the alignment of an int. */
-/* Required on the 386 since it doesn't have bit-field insns. */
-#define PCC_BITFIELD_TYPE_MATTERS 1
-
-/* Standard register usage. */
-
-/* This processor has special stack-like registers. See reg-stack.c
- for details. */
-
-#define STACK_REGS
-
-#define IS_STACK_MODE(MODE) \
- (((MODE) == SFmode && !(TARGET_SSE && TARGET_SSE_MATH)) \
- || ((MODE) == DFmode && !(TARGET_SSE2 && TARGET_SSE_MATH)) \
- || (MODE) == XFmode)
-
-/* Number of actual hardware registers.
- The hardware registers are assigned numbers for the compiler
- from 0 to just below FIRST_PSEUDO_REGISTER.
- All registers that the compiler knows about must be given numbers,
- even those that are not normally considered general registers.
-
- In the 80386 we give the 8 general purpose registers the numbers 0-7.
- We number the floating point registers 8-15.
- Note that registers 0-7 can be accessed as a short or int,
- while only 0-3 may be used with byte `mov' instructions.
-
- Reg 16 does not correspond to any hardware register, but instead
- appears in the RTL as an argument pointer prior to reload, and is
- eliminated during reloading in favor of either the stack or frame
- pointer. */
-
-#define FIRST_PSEUDO_REGISTER 53
-
-/* Number of hardware registers that go into the DWARF-2 unwind info.
- If not defined, equals FIRST_PSEUDO_REGISTER. */
-
-#define DWARF_FRAME_REGISTERS 17
-
-/* 1 for registers that have pervasive standard uses
- and are not available for the register allocator.
- On the 80386, the stack pointer is such, as is the arg pointer.
-
- REX registers are disabled for 32bit targets in
- TARGET_CONDITIONAL_REGISTER_USAGE. */
-
-#define FIXED_REGISTERS \
-/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
-{ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
-/*arg,flags,fpsr,fpcr,frame*/ \
- 1, 1, 1, 1, 1, \
-/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
- 0, 0, 0, 0, 0, 0, 0, 0, \
-/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
- 0, 0, 0, 0, 0, 0, 0, 0, \
-/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
- 0, 0, 0, 0, 0, 0, 0, 0, \
-/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
- 0, 0, 0, 0, 0, 0, 0, 0 }
-
-/* 1 for registers not available across function calls.
- These must include the FIXED_REGISTERS and also any
- registers that can be used without being saved.
- The latter must include the registers where values are returned
- and the register where structure-value addresses are passed.
- Aside from that, you can include as many other registers as you like.
-
- Value is set to 1 if the register is call used unconditionally.
- Bit one is set if the register is call used on TARGET_32BIT ABI.
- Bit two is set if the register is call used on TARGET_64BIT ABI.
- Bit three is set if the register is call used on TARGET_64BIT_MS_ABI.
-
- Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
-
-#define CALL_USED_REGISTERS \
-/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
-{ 1, 1, 1, 0, 4, 4, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
-/*arg,flags,fpsr,fpcr,frame*/ \
- 1, 1, 1, 1, 1, \
-/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
- 1, 1, 1, 1, 1, 1, 6, 6, \
-/* mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7*/ \
- 1, 1, 1, 1, 1, 1, 1, 1, \
-/* r8, r9, r10, r11, r12, r13, r14, r15*/ \
- 1, 1, 1, 1, 2, 2, 2, 2, \
-/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
- 6, 6, 6, 6, 6, 6, 6, 6 }
-
-/* Order in which to allocate registers. Each register must be
- listed once, even those in FIXED_REGISTERS. List frame pointer
- late and fixed registers last. Note that, in general, we prefer
- registers listed in CALL_USED_REGISTERS, keeping the others
- available for storage of persistent values.
-
- The ADJUST_REG_ALLOC_ORDER actually overwrite the order,
- so this is just empty initializer for array. */
-
-#define REG_ALLOC_ORDER \
-{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
- 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
- 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
- 48, 49, 50, 51, 52 }
-
-/* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
- to be rearranged based on a particular function. When using sse math,
- we want to allocate SSE before x87 registers and vice versa. */
-
-#define ADJUST_REG_ALLOC_ORDER x86_order_regs_for_local_alloc ()
-
-
-#define OVERRIDE_ABI_FORMAT(FNDECL) ix86_call_abi_override (FNDECL)
-
-/* Return number of consecutive hard regs needed starting at reg REGNO
- to hold something of mode MODE.
- This is ordinarily the length in words of a value of mode MODE
- but can be less for certain modes in special long registers.
-
- Actually there are no two word move instructions for consecutive
- registers. And only registers 0-3 may have mov byte instructions
- applied to them. */
-
-#define HARD_REGNO_NREGS(REGNO, MODE) \
- (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
- ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
- : ((MODE) == XFmode \
- ? (TARGET_64BIT ? 2 : 3) \
- : (MODE) == XCmode \
- ? (TARGET_64BIT ? 4 : 6) \
- : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
-
-#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE) \
- ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT) \
- ? (STACK_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
- ? 0 \
- : ((MODE) == XFmode || (MODE) == XCmode)) \
- : 0)
-
-#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
-
-#define VALID_AVX256_REG_MODE(MODE) \
- ((MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
- || (MODE) == V4DImode || (MODE) == V2TImode || (MODE) == V8SFmode \
- || (MODE) == V4DFmode)
-
-#define VALID_AVX256_REG_OR_OI_MODE(MODE) \
- (VALID_AVX256_REG_MODE (MODE) || (MODE) == OImode)
-
-#define VALID_SSE2_REG_MODE(MODE) \
- ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
- || (MODE) == V2DImode || (MODE) == DFmode)
-
-#define VALID_SSE_REG_MODE(MODE) \
- ((MODE) == V1TImode || (MODE) == TImode \
- || (MODE) == V4SFmode || (MODE) == V4SImode \
- || (MODE) == SFmode || (MODE) == TFmode)
-
-#define VALID_MMX_REG_MODE_3DNOW(MODE) \
- ((MODE) == V2SFmode || (MODE) == SFmode)
-
-#define VALID_MMX_REG_MODE(MODE) \
- ((MODE == V1DImode) || (MODE) == DImode \
- || (MODE) == V2SImode || (MODE) == SImode \
- || (MODE) == V4HImode || (MODE) == V8QImode)
-
-#define VALID_DFP_MODE_P(MODE) \
- ((MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode)
-
-#define VALID_FP_MODE_P(MODE) \
- ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
- || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
-
-#define VALID_INT_MODE_P(MODE) \
- ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
- || (MODE) == DImode \
- || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
- || (MODE) == CDImode \
- || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
- || (MODE) == TFmode || (MODE) == TCmode)))
-
-/* Return true for modes passed in SSE registers. */
-#define SSE_REG_MODE_P(MODE) \
- ((MODE) == V1TImode || (MODE) == TImode || (MODE) == V16QImode \
- || (MODE) == TFmode || (MODE) == V8HImode || (MODE) == V2DFmode \
- || (MODE) == V2DImode || (MODE) == V4SFmode || (MODE) == V4SImode \
- || (MODE) == V32QImode || (MODE) == V16HImode || (MODE) == V8SImode \
- || (MODE) == V4DImode || (MODE) == V8SFmode || (MODE) == V4DFmode \
- || (MODE) == V2TImode)
-
-/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
-
-#define HARD_REGNO_MODE_OK(REGNO, MODE) \
- ix86_hard_regno_mode_ok ((REGNO), (MODE))
-
-/* Value is 1 if it is a good idea to tie two pseudo registers
- when one has mode MODE1 and one has mode MODE2.
- If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
- for any hard reg, then this must be 0 for correct output. */
-
-#define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
-
-/* It is possible to write patterns to move flags; but until someone
- does it, */
-#define AVOID_CCMODE_COPIES
-
-/* Specify the modes required to caller save a given hard regno.
- We do this on i386 to prevent flags from being saved at all.
-
- Kill any attempts to combine saving of modes. */
-
-#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
- (CC_REGNO_P (REGNO) ? VOIDmode \
- : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
- : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false) \
- : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
- : (MODE) == QImode && !(TARGET_64BIT || QI_REGNO_P (REGNO)) ? SImode \
- : (MODE))
-
-/* The only ABI that saves SSE registers across calls is Win64 (thus no
- need to check the current ABI here), and with AVX enabled Win64 only
- guarantees that the low 16 bytes are saved. */
-#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
- (SSE_REGNO_P (REGNO) && GET_MODE_SIZE (MODE) > 16)
-
-/* Specify the registers used for certain standard purposes.
- The values of these macros are register numbers. */
-
-/* on the 386 the pc register is %eip, and is not usable as a general
- register. The ordinary mov instructions won't work */
-/* #define PC_REGNUM */
-
-/* Register to use for pushing function arguments. */
-#define STACK_POINTER_REGNUM 7
-
-/* Base register for access to local variables of the function. */
-#define HARD_FRAME_POINTER_REGNUM 6
-
-/* Base register for access to local variables of the function. */
-#define FRAME_POINTER_REGNUM 20
-
-/* First floating point reg */
-#define FIRST_FLOAT_REG 8
-
-/* First & last stack-like regs */
-#define FIRST_STACK_REG FIRST_FLOAT_REG
-#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
-
-#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
-#define LAST_SSE_REG (FIRST_SSE_REG + 7)
-
-#define FIRST_MMX_REG (LAST_SSE_REG + 1)
-#define LAST_MMX_REG (FIRST_MMX_REG + 7)
-
-#define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
-#define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
-
-#define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
-#define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
-
-/* Override this in other tm.h files to cope with various OS lossage
- requiring a frame pointer. */
-#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
-#define SUBTARGET_FRAME_POINTER_REQUIRED 0
-#endif
-
-/* Make sure we can access arbitrary call frames. */
-#define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
-
-/* Base register for access to arguments of the function. */
-#define ARG_POINTER_REGNUM 16
-
-/* Register to hold the addressing base for position independent
- code access to data items. We don't use PIC pointer for 64bit
- mode. Define the regnum to dummy value to prevent gcc from
- pessimizing code dealing with EBX.
-
- To avoid clobbering a call-saved register unnecessarily, we renumber
- the pic register when possible. The change is visible after the
- prologue has been emitted. */
-
-#define REAL_PIC_OFFSET_TABLE_REGNUM BX_REG
-
-#define PIC_OFFSET_TABLE_REGNUM \
- ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
- || !flag_pic ? INVALID_REGNUM \
- : reload_completed ? REGNO (pic_offset_table_rtx) \
- : REAL_PIC_OFFSET_TABLE_REGNUM)
-
-#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
-
-/* This is overridden by <cygwin.h>. */
-#define MS_AGGREGATE_RETURN 0
-
-#define KEEP_AGGREGATE_RETURN_POINTER 0
-
-/* Define the classes of registers for register constraints in the
- machine description. Also define ranges of constants.
-
- One of the classes must always be named ALL_REGS and include all hard regs.
- If there is more than one class, another class must be named NO_REGS
- and contain no registers.
-
- The name GENERAL_REGS must be the name of a class (or an alias for
- another name such as ALL_REGS). This is the class of registers
- that is allowed by "g" or "r" in a register constraint.
- Also, registers outside this class are allocated only when
- instructions express preferences for them.
-
- The classes must be numbered in nondecreasing order; that is,
- a larger-numbered class must never be contained completely
- in a smaller-numbered class.
-
- For any two classes, it is very desirable that there be another
- class that represents their union.
-
- It might seem that class BREG is unnecessary, since no useful 386
- opcode needs reg %ebx. But some systems pass args to the OS in ebx,
- and the "b" register constraint is useful in asms for syscalls.
-
- The flags, fpsr and fpcr registers are in no class. */
-
-enum reg_class
-{
- NO_REGS,
- AREG, DREG, CREG, BREG, SIREG, DIREG,
- AD_REGS, /* %eax/%edx for DImode */
- Q_REGS, /* %eax %ebx %ecx %edx */
- NON_Q_REGS, /* %esi %edi %ebp %esp */
- INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
- LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
- CLOBBERED_REGS, /* call-clobbered integer registers */
- GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp
- %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 */
- FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
- FLOAT_REGS,
- SSE_FIRST_REG,
- SSE_REGS,
- MMX_REGS,
- FP_TOP_SSE_REGS,
- FP_SECOND_SSE_REGS,
- FLOAT_SSE_REGS,
- FLOAT_INT_REGS,
- INT_SSE_REGS,
- FLOAT_INT_SSE_REGS,
- ALL_REGS, LIM_REG_CLASSES
-};
-
-#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
-
-#define INTEGER_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), GENERAL_REGS)
-#define FLOAT_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), FLOAT_REGS)
-#define SSE_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), SSE_REGS)
-#define MMX_CLASS_P(CLASS) \
- ((CLASS) == MMX_REGS)
-#define MAYBE_INTEGER_CLASS_P(CLASS) \
- reg_classes_intersect_p ((CLASS), GENERAL_REGS)
-#define MAYBE_FLOAT_CLASS_P(CLASS) \
- reg_classes_intersect_p ((CLASS), FLOAT_REGS)
-#define MAYBE_SSE_CLASS_P(CLASS) \
- reg_classes_intersect_p (SSE_REGS, (CLASS))
-#define MAYBE_MMX_CLASS_P(CLASS) \
- reg_classes_intersect_p (MMX_REGS, (CLASS))
-
-#define Q_CLASS_P(CLASS) \
- reg_class_subset_p ((CLASS), Q_REGS)
-
-/* Give names of register classes as strings for dump file. */
-
-#define REG_CLASS_NAMES \
-{ "NO_REGS", \
- "AREG", "DREG", "CREG", "BREG", \
- "SIREG", "DIREG", \
- "AD_REGS", \
- "Q_REGS", "NON_Q_REGS", \
- "INDEX_REGS", \
- "LEGACY_REGS", \
- "CLOBBERED_REGS", \
- "GENERAL_REGS", \
- "FP_TOP_REG", "FP_SECOND_REG", \
- "FLOAT_REGS", \
- "SSE_FIRST_REG", \
- "SSE_REGS", \
- "MMX_REGS", \
- "FP_TOP_SSE_REGS", \
- "FP_SECOND_SSE_REGS", \
- "FLOAT_SSE_REGS", \
- "FLOAT_INT_REGS", \
- "INT_SSE_REGS", \
- "FLOAT_INT_SSE_REGS", \
- "ALL_REGS" }
-
-/* Define which registers fit in which classes. This is an initializer
- for a vector of HARD_REG_SET of length N_REG_CLASSES.
-
- Note that CLOBBERED_REGS are calculated by
- TARGET_CONDITIONAL_REGISTER_USAGE. */
-
-#define REG_CLASS_CONTENTS \
-{ { 0x00, 0x0 }, \
- { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
- { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
- { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
- { 0x03, 0x0 }, /* AD_REGS */ \
- { 0x0f, 0x0 }, /* Q_REGS */ \
- { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
- { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
- { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
- { 0x00, 0x0 }, /* CLOBBERED_REGS */ \
- { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
- { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
- { 0xff00, 0x0 }, /* FLOAT_REGS */ \
- { 0x200000, 0x0 }, /* SSE_FIRST_REG */ \
-{ 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
-{ 0xe0000000, 0x1f }, /* MMX_REGS */ \
-{ 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
-{ 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
-{ 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
- { 0x11ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
-{ 0x1ff100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
-{ 0x1ff1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
-{ 0xffffffff,0x1fffff } \
-}
-
-/* The same information, inverted:
- Return the class number of the smallest class containing
- reg number REGNO. This could be a conditional expression
- or could index an array. */
-
-#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
-
-/* When this hook returns true for MODE, the compiler allows
- registers explicitly used in the rtl to be used as spill registers
- but prevents the compiler from extending the lifetime of these
- registers. */
-#define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
-
-#define QI_REG_P(X) (REG_P (X) && QI_REGNO_P (REGNO (X)))
-#define QI_REGNO_P(N) IN_RANGE ((N), AX_REG, BX_REG)
-
-#define GENERAL_REG_P(X) \
- (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
-#define GENERAL_REGNO_P(N) \
- (IN_RANGE ((N), AX_REG, SP_REG) || REX_INT_REGNO_P (N))
-
-#define ANY_QI_REG_P(X) (REG_P (X) && ANY_QI_REGNO_P (REGNO (X)))
-#define ANY_QI_REGNO_P(N) \
- (TARGET_64BIT ? GENERAL_REGNO_P (N) : QI_REGNO_P (N))
-
-#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
-#define REX_INT_REGNO_P(N) \
- IN_RANGE ((N), FIRST_REX_INT_REG, LAST_REX_INT_REG)
-
-#define STACK_REG_P(X) (REG_P (X) && STACK_REGNO_P (REGNO (X)))
-#define STACK_REGNO_P(N) IN_RANGE ((N), FIRST_STACK_REG, LAST_STACK_REG)
-
-#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
-#define ANY_FP_REGNO_P(N) (STACK_REGNO_P (N) || SSE_REGNO_P (N))
-
-#define X87_FLOAT_MODE_P(MODE) \
- (TARGET_80387 && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode))
-
-#define SSE_REG_P(X) (REG_P (X) && SSE_REGNO_P (REGNO (X)))
-#define SSE_REGNO_P(N) \
- (IN_RANGE ((N), FIRST_SSE_REG, LAST_SSE_REG) \
- || REX_SSE_REGNO_P (N))
-
-#define REX_SSE_REGNO_P(N) \
- IN_RANGE ((N), FIRST_REX_SSE_REG, LAST_REX_SSE_REG)
-
-#define SSE_REGNO(N) \
- ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
-
-#define SSE_FLOAT_MODE_P(MODE) \
- ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
-
-#define FMA4_VEC_FLOAT_MODE_P(MODE) \
- (TARGET_FMA4 && ((MODE) == V4SFmode || (MODE) == V2DFmode \
- || (MODE) == V8SFmode || (MODE) == V4DFmode))
-
-#define MMX_REG_P(X) (REG_P (X) && MMX_REGNO_P (REGNO (X)))
-#define MMX_REGNO_P(N) IN_RANGE ((N), FIRST_MMX_REG, LAST_MMX_REG)
-
-#define STACK_TOP_P(X) (REG_P (X) && REGNO (X) == FIRST_STACK_REG)
-
-#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
-#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
-
-/* The class value for index registers, and the one for base regs. */
-
-#define INDEX_REG_CLASS INDEX_REGS
-#define BASE_REG_CLASS GENERAL_REGS
-
-/* Place additional restrictions on the register class to use when it
- is necessary to be able to hold a value of mode MODE in a reload
- register for which class CLASS would ordinarily be used.
-
- We avoid classes containing registers from multiple units due to
- the limitation in ix86_secondary_memory_needed. We limit these
- classes to their "natural mode" single unit register class, depending
- on the unit availability.
-
- Please note that reg_class_subset_p is not commutative, so these
- conditions mean "... if (CLASS) includes ALL registers from the
- register set." */
-
-#define LIMIT_RELOAD_CLASS(MODE, CLASS) \
- (((MODE) == QImode && !TARGET_64BIT \
- && reg_class_subset_p (Q_REGS, (CLASS))) ? Q_REGS \
- : (((MODE) == SImode || (MODE) == DImode) \
- && reg_class_subset_p (GENERAL_REGS, (CLASS))) ? GENERAL_REGS \
- : (SSE_FLOAT_MODE_P (MODE) && TARGET_SSE_MATH \
- && reg_class_subset_p (SSE_REGS, (CLASS))) ? SSE_REGS \
- : (X87_FLOAT_MODE_P (MODE) \
- && reg_class_subset_p (FLOAT_REGS, (CLASS))) ? FLOAT_REGS \
- : (CLASS))
-
-/* If we are copying between general and FP registers, we need a memory
- location. The same is true for SSE and MMX registers. */
-#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
- ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
-
-/* Get_secondary_mem widens integral modes to BITS_PER_WORD.
- There is no need to emit full 64 bit move on 64 bit targets
- for integral modes that can be moved using 32 bit move. */
-#define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
- (GET_MODE_BITSIZE (MODE) < 32 && INTEGRAL_MODE_P (MODE) \
- ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
- : MODE)
-
-/* Return a class of registers that cannot change FROM mode to TO mode. */
-
-#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
- ix86_cannot_change_mode_class (FROM, TO, CLASS)
-
-/* Stack layout; function entry, exit and calling. */
-
-/* Define this if pushing a word on the stack
- makes the stack pointer a smaller address. */
-#define STACK_GROWS_DOWNWARD
-
-/* Define this to nonzero if the nominal address of the stack frame
- is at the high-address end of the local variables;
- that is, each additional local variable allocated
- goes at a more negative offset in the frame. */
-#define FRAME_GROWS_DOWNWARD 1
-
-/* Offset within stack frame to start allocating local variables at.
- If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
- first local allocated. Otherwise, it is the offset to the BEGINNING
- of the first local allocated. */
-#define STARTING_FRAME_OFFSET 0
-
-/* If we generate an insn to push BYTES bytes, this says how many the stack
- pointer really advances by. On 386, we have pushw instruction that
- decrements by exactly 2 no matter what the position was, there is no pushb.
-
- But as CIE data alignment factor on this arch is -4 for 32bit targets
- and -8 for 64bit targets, we need to make sure all stack pointer adjustments
- are in multiple of 4 for 32bit targets and 8 for 64bit targets. */
-
-#define PUSH_ROUNDING(BYTES) \
- (((BYTES) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)
-
-/* If defined, the maximum amount of space required for outgoing arguments
- will be computed and placed into the variable `crtl->outgoing_args_size'.
- No space will be pushed onto the stack for each call; instead, the
- function prologue should increase the stack frame size by this amount.
-
- 64-bit MS ABI seem to require 16 byte alignment everywhere except for
- function prologue and apilogue. This is not possible without
- ACCUMULATE_OUTGOING_ARGS. */
-
-#define ACCUMULATE_OUTGOING_ARGS \
- (TARGET_ACCUMULATE_OUTGOING_ARGS || TARGET_64BIT_MS_ABI)
-
-/* If defined, a C expression whose value is nonzero when we want to use PUSH
- instructions to pass outgoing arguments. */
-
-#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
-
-/* We want the stack and args grow in opposite directions, even if
- PUSH_ARGS is 0. */
-#define PUSH_ARGS_REVERSED 1
-
-/* Offset of first parameter from the argument pointer register value. */
-#define FIRST_PARM_OFFSET(FNDECL) 0
-
-/* Define this macro if functions should assume that stack space has been
- allocated for arguments even when their values are passed in registers.
-
- The value of this macro is the size, in bytes, of the area reserved for
- arguments passed in registers for the function represented by FNDECL.
-
- This space can be allocated by the caller, or be a part of the
- machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
- which. */
-#define REG_PARM_STACK_SPACE(FNDECL) ix86_reg_parm_stack_space (FNDECL)
-
-#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) \
- (TARGET_64BIT && ix86_function_type_abi (FNTYPE) == MS_ABI)
-
-/* Define how to find the value returned by a library function
- assuming the value has mode MODE. */
-
-#define LIBCALL_VALUE(MODE) ix86_libcall_value (MODE)
-
-/* Define the size of the result block used for communication between
- untyped_call and untyped_return. The block contains a DImode value
- followed by the block used by fnsave and frstor. */
-
-#define APPLY_RESULT_SIZE (8+108)
-
-/* 1 if N is a possible register number for function argument passing. */
-#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
-
-/* Define a data type for recording info about an argument list
- during the scan of that argument list. This data type should
- hold all necessary information about the function itself
- and about the args processed so far, enough to enable macros
- such as FUNCTION_ARG to determine where the next arg should go. */
-
-typedef struct ix86_args {
- int words; /* # words passed so far */
- int nregs; /* # registers available for passing */
- int regno; /* next available register number */
- int fastcall; /* fastcall or thiscall calling convention
- is used */
- int sse_words; /* # sse words passed so far */
- int sse_nregs; /* # sse registers available for passing */
- int warn_avx; /* True when we want to warn about AVX ABI. */
- int warn_sse; /* True when we want to warn about SSE ABI. */
- int warn_mmx; /* True when we want to warn about MMX ABI. */
- int sse_regno; /* next available sse register number */
- int mmx_words; /* # mmx words passed so far */
- int mmx_nregs; /* # mmx registers available for passing */
- int mmx_regno; /* next available mmx register number */
- int maybe_vaarg; /* true for calls to possibly vardic fncts. */
- int caller; /* true if it is caller. */
- int float_in_sse; /* Set to 1 or 2 for 32bit targets if
- SFmode/DFmode arguments should be passed
- in SSE registers. Otherwise 0. */
- enum calling_abi call_abi; /* Set to SYSV_ABI for sysv abi. Otherwise
- MS_ABI for ms abi. */
-} CUMULATIVE_ARGS;
-
-/* Initialize a variable CUM of type CUMULATIVE_ARGS
- for a call to a function whose data type is FNTYPE.
- For a library call, FNTYPE is 0. */
-
-#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
- init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL), \
- (N_NAMED_ARGS) != -1)
-
-/* Output assembler code to FILE to increment profiler label # LABELNO
- for profiling a function entry. */
-
-#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
-
-#define MCOUNT_NAME "_mcount"
-
-#define MCOUNT_NAME_BEFORE_PROLOGUE "__fentry__"
-
-#define PROFILE_COUNT_REGISTER "edx"
-
-/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
- the stack pointer does not matter. The value is tested only in
- functions that have frame pointers.
- No definition is equivalent to always zero. */
-/* Note on the 386 it might be more efficient not to define this since
- we have to restore it ourselves from the frame pointer, in order to
- use pop */
-
-#define EXIT_IGNORE_STACK 1
-
-/* Output assembler code for a block containing the constant parts
- of a trampoline, leaving space for the variable parts. */
-
-/* On the 386, the trampoline contains two instructions:
- mov #STATIC,ecx
- jmp FUNCTION
- The trampoline is generated entirely at runtime. The operand of JMP
- is the address of FUNCTION relative to the instruction following the
- JMP (which is 5 bytes long). */
-
-/* Length in units of the trampoline for entering a nested function. */
-
-#define TRAMPOLINE_SIZE (TARGET_64BIT ? 24 : 10)
-
-/* Definitions for register eliminations.
-
- This is an array of structures. Each structure initializes one pair
- of eliminable registers. The "from" register number is given first,
- followed by "to". Eliminations of the same "from" register are listed
- in order of preference.
-
- There are two registers that can always be eliminated on the i386.
- The frame pointer and the arg pointer can be replaced by either the
- hard frame pointer or to the stack pointer, depending upon the
- circumstances. The hard frame pointer is not used before reload and
- so it is not eligible for elimination. */
-
-#define ELIMINABLE_REGS \
-{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
- { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
-
-/* Define the offset between two registers, one to be eliminated, and the other
- its replacement, at the start of a routine. */
-
-#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
- ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
-
-/* Addressing modes, and classification of registers for them. */
-
-/* Macros to check register numbers against specific register classes. */
-
-/* These assume that REGNO is a hard or pseudo reg number.
- They give nonzero only if REGNO is a hard reg of the suitable class
- or a pseudo reg currently allocated to a suitable hard reg.
- Since they use reg_renumber, they are safe only once reg_renumber
- has been allocated, which happens in reginfo.c during register
- allocation. */
-
-#define REGNO_OK_FOR_INDEX_P(REGNO) \
- ((REGNO) < STACK_POINTER_REGNUM \
- || REX_INT_REGNO_P (REGNO) \
- || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM \
- || REX_INT_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
-
-#define REGNO_OK_FOR_BASE_P(REGNO) \
- (GENERAL_REGNO_P (REGNO) \
- || (REGNO) == ARG_POINTER_REGNUM \
- || (REGNO) == FRAME_POINTER_REGNUM \
- || GENERAL_REGNO_P ((unsigned) reg_renumber[(REGNO)]))
-
-/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
- and check its validity for a certain class.
- We have two alternate definitions for each of them.
- The usual definition accepts all pseudo regs; the other rejects
- them unless they have been allocated suitable hard regs.
- The symbol REG_OK_STRICT causes the latter definition to be used.
-
- Most source files want to accept pseudo regs in the hope that
- they will get allocated to the class that the insn wants them to be in.
- Source files for reload pass need to be strict.
- After reload, it makes no difference, since pseudo regs have
- been eliminated by then. */
-
-
-/* Non strict versions, pseudos are ok. */
-#define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
- (REGNO (X) < STACK_POINTER_REGNUM \
- || REX_INT_REGNO_P (REGNO (X)) \
- || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-#define REG_OK_FOR_BASE_NONSTRICT_P(X) \
- (GENERAL_REGNO_P (REGNO (X)) \
- || REGNO (X) == ARG_POINTER_REGNUM \
- || REGNO (X) == FRAME_POINTER_REGNUM \
- || REGNO (X) >= FIRST_PSEUDO_REGISTER)
-
-/* Strict versions, hard registers only */
-#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
-#define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
-
-#ifndef REG_OK_STRICT
-#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
-#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
-
-#else
-#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
-#define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
-#endif
-
-/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
- that is a valid memory address for an instruction.
- The MODE argument is the machine mode for the MEM expression
- that wants to use this address.
-
- The other macros defined here are used only in TARGET_LEGITIMATE_ADDRESS_P,
- except for CONSTANT_ADDRESS_P which is usually machine-independent.
-
- See legitimize_pic_address in i386.c for details as to what
- constitutes a legitimate address when -fpic is used. */
-
-#define MAX_REGS_PER_ADDRESS 2
-
-#define CONSTANT_ADDRESS_P(X) constant_address_p (X)
-
-/* Try a machine-dependent way of reloading an illegitimate address
- operand. If we find one, push the reload and jump to WIN. This
- macro is used in only one place: `find_reloads_address' in reload.c. */
-
-#define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, INDL, WIN) \
-do { \
- if (ix86_legitimize_reload_address ((X), (MODE), (OPNUM), \
- (int)(TYPE), (INDL))) \
- goto WIN; \
-} while (0)
-
-/* If defined, a C expression to determine the base term of address X.
- This macro is used in only one place: `find_base_term' in alias.c.
-
- It is always safe for this macro to not be defined. It exists so
- that alias analysis can understand machine-dependent addresses.
-
- The typical use of this macro is to handle addresses containing
- a label_ref or symbol_ref within an UNSPEC. */
-
-#define FIND_BASE_TERM(X) ix86_find_base_term (X)
-
-/* Nonzero if the constant value X is a legitimate general operand
- when generating PIC code. It is given that flag_pic is on and
- that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
-
-#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
-
-#define SYMBOLIC_CONST(X) \
- (GET_CODE (X) == SYMBOL_REF \
- || GET_CODE (X) == LABEL_REF \
- || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
-
-/* Max number of args passed in registers. If this is more than 3, we will
- have problems with ebx (register #4), since it is a caller save register and
- is also used as the pic register in ELF. So for now, don't allow more than
- 3 registers to be passed in registers. */
-
-/* Abi specific values for REGPARM_MAX and SSE_REGPARM_MAX */
-#define X86_64_REGPARM_MAX 6
-#define X86_64_MS_REGPARM_MAX 4
-
-#define X86_32_REGPARM_MAX 3
-
-#define REGPARM_MAX \
- (TARGET_64BIT \
- ? (TARGET_64BIT_MS_ABI \
- ? X86_64_MS_REGPARM_MAX \
- : X86_64_REGPARM_MAX) \
- : X86_32_REGPARM_MAX)
-
-#define X86_64_SSE_REGPARM_MAX 8
-#define X86_64_MS_SSE_REGPARM_MAX 4
-
-#define X86_32_SSE_REGPARM_MAX (TARGET_SSE ? (TARGET_MACHO ? 4 : 3) : 0)
-
-#define SSE_REGPARM_MAX \
- (TARGET_64BIT \
- ? (TARGET_64BIT_MS_ABI \
- ? X86_64_MS_SSE_REGPARM_MAX \
- : X86_64_SSE_REGPARM_MAX) \
- : X86_32_SSE_REGPARM_MAX)
-
-#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
-
-/* Specify the machine mode that this machine uses
- for the index in the tablejump instruction. */
-#define CASE_VECTOR_MODE \
- (!TARGET_LP64 || (flag_pic && ix86_cmodel != CM_LARGE_PIC) ? SImode : DImode)
-
-/* Define this as 1 if `char' should by default be signed; else as 0. */
-#define DEFAULT_SIGNED_CHAR 1
-
-/* Max number of bytes we can move from memory to memory
- in one reasonably fast instruction. */
-#define MOVE_MAX 16
-
-/* MOVE_MAX_PIECES is the number of bytes at a time which we can
- move efficiently, as opposed to MOVE_MAX which is the maximum
- number of bytes we can move with a single instruction. */
-#define MOVE_MAX_PIECES UNITS_PER_WORD
-
-/* If a memory-to-memory move would take MOVE_RATIO or more simple
- move-instruction pairs, we will do a movmem or libcall instead.
- Increasing the value will always make code faster, but eventually
- incurs high cost in increased code size.
-
- If you don't define this, a reasonable default is used. */
-
-#define MOVE_RATIO(speed) ((speed) ? ix86_cost->move_ratio : 3)
-
-/* If a clear memory operation would take CLEAR_RATIO or more simple
- move-instruction sequences, we will do a clrmem or libcall instead. */
-
-#define CLEAR_RATIO(speed) ((speed) ? MIN (6, ix86_cost->move_ratio) : 2)
-
-/* Define if shifts truncate the shift count which implies one can
- omit a sign-extension or zero-extension of a shift count.
-
- On i386, shifts do truncate the count. But bit test instructions
- take the modulo of the bit offset operand. */
-
-/* #define SHIFT_COUNT_TRUNCATED */
-
-/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
- is done just by pretending it is already truncated. */
-#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
-
-/* A macro to update M and UNSIGNEDP when an object whose type is
- TYPE and which has the specified mode and signedness is to be
- stored in a register. This macro is only called when TYPE is a
- scalar type.
-
- On i386 it is sometimes useful to promote HImode and QImode
- quantities to SImode. The choice depends on target type. */
-
-#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
-do { \
- if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
- || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
- (MODE) = SImode; \
-} while (0)
-
-/* Specify the machine mode that pointers have.
- After generation of rtl, the compiler makes no further distinction
- between pointers and any other objects of this machine mode. */
-#define Pmode (ix86_pmode == PMODE_DI ? DImode : SImode)
-
-/* A C expression whose value is zero if pointers that need to be extended
- from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and
- greater then zero if they are zero-extended and less then zero if the
- ptr_extend instruction should be used. */
-
-#define POINTERS_EXTEND_UNSIGNED 1
-
-/* A function address in a call instruction
- is a byte address (for indexing purposes)
- so give the MEM rtx a byte's mode. */
-#define FUNCTION_MODE QImode
-
-
-/* A C expression for the cost of a branch instruction. A value of 1
- is the default; other values are interpreted relative to that. */
-
-#define BRANCH_COST(speed_p, predictable_p) \
- (!(speed_p) ? 2 : (predictable_p) ? 0 : ix86_branch_cost)
-
-/* An integer expression for the size in bits of the largest integer machine
- mode that should actually be used. We allow pairs of registers. */
-#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
-
-/* Define this macro as a C expression which is nonzero if accessing
- less than a word of memory (i.e. a `char' or a `short') is no
- faster than accessing a word of memory, i.e., if such access
- require more than one instruction or if there is no difference in
- cost between byte and (aligned) word loads.
-
- When this macro is not defined, the compiler will access a field by
- finding the smallest containing object; when it is defined, a
- fullword load will be used if alignment permits. Unless bytes
- accesses are faster than word accesses, using word accesses is
- preferable since it may eliminate subsequent memory access if
- subsequent accesses occur to other fields in the same word of the
- structure, but to different bytes. */
-
-#define SLOW_BYTE_ACCESS 0
-
-/* Nonzero if access to memory by shorts is slow and undesirable. */
-#define SLOW_SHORT_ACCESS 0
-
-/* Define this macro to be the value 1 if unaligned accesses have a
- cost many times greater than aligned accesses, for example if they
- are emulated in a trap handler.
-
- When this macro is nonzero, the compiler will act as if
- `STRICT_ALIGNMENT' were nonzero when generating code for block
- moves. This can cause significantly more instructions to be
- produced. Therefore, do not set this macro nonzero if unaligned
- accesses only add a cycle or two to the time for a memory access.
-
- If the value of this macro is always zero, it need not be defined. */
-
-/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
-
-/* Define this macro if it is as good or better to call a constant
- function address than to call an address kept in a register.
-
- Desirable on the 386 because a CALL with a constant address is
- faster than one with a register address. */
-
-#define NO_FUNCTION_CSE
-
-/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
- return the mode to be used for the comparison.
-
- For floating-point equality comparisons, CCFPEQmode should be used.
- VOIDmode should be used in all other cases.
-
- For integer comparisons against zero, reduce to CCNOmode or CCZmode if
- possible, to allow for more combinations. */
-
-#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
-
-/* Return nonzero if MODE implies a floating point inequality can be
- reversed. */
-
-#define REVERSIBLE_CC_MODE(MODE) 1
-
-/* A C expression whose value is reversed condition code of the CODE for
- comparison done in CC_MODE mode. */
-#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
-
-
-/* Control the assembler format that we output, to the extent
- this does not vary between assemblers. */
-
-/* How to refer to registers in assembler output.
- This sequence is indexed by compiler's hard-register-number (see above). */
-
-/* In order to refer to the first 8 regs as 32-bit regs, prefix an "e".
- For non floating point regs, the following are the HImode names.
-
- For float regs, the stack top is sometimes referred to as "%st(0)"
- instead of just "%st". TARGET_PRINT_OPERAND handles this with the
- "y" code. */
-
-#define HI_REGISTER_NAMES \
-{"ax","dx","cx","bx","si","di","bp","sp", \
- "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
- "argp", "flags", "fpsr", "fpcr", "frame", \
- "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
- "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", \
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
- "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
-
-#define REGISTER_NAMES HI_REGISTER_NAMES
-
-/* Table of additional register names to use in user input. */
-
-#define ADDITIONAL_REGISTER_NAMES \
-{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
- { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
- { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
- { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
- { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
- { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
-
-/* Note we are omitting these since currently I don't know how
-to get gcc to use these, since they want the same but different
-number as al, and ax.
-*/
-
-#define QI_REGISTER_NAMES \
-{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
-
-/* These parallel the array above, and can be used to access bits 8:15
- of regs 0 through 3. */
-
-#define QI_HIGH_REGISTER_NAMES \
-{"ah", "dh", "ch", "bh", }
-
-/* How to renumber registers for dbx and gdb. */
-
-#define DBX_REGISTER_NUMBER(N) \
- (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
-
-extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
-extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
-extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
-
-/* Before the prologue, RA is at 0(%esp). */
-#define INCOMING_RETURN_ADDR_RTX \
- gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
-
-/* After the prologue, RA is at -4(AP) in the current frame. */
-#define RETURN_ADDR_RTX(COUNT, FRAME) \
- ((COUNT) == 0 \
- ? gen_rtx_MEM (Pmode, plus_constant (Pmode, arg_pointer_rtx, \
- -UNITS_PER_WORD)) \
- : gen_rtx_MEM (Pmode, plus_constant (Pmode, FRAME, UNITS_PER_WORD)))
-
-/* PC is dbx register 8; let's use that column for RA. */
-#define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
-
-/* Before the prologue, the top of the frame is at 4(%esp). */
-#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
-
-/* Describe how we implement __builtin_eh_return. */
-#define EH_RETURN_DATA_REGNO(N) ((N) <= DX_REG ? (N) : INVALID_REGNUM)
-#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, CX_REG)
-
-
-/* Select a format to encode pointers in exception handling data. CODE
- is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
- true if the symbol may be affected by dynamic relocations.
-
- ??? All x86 object file formats are capable of representing this.
- After all, the relocation needed is the same as for the call insn.
- Whether or not a particular assembler allows us to enter such, I
- guess we'll have to see. */
-#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
- asm_preferred_eh_data_format ((CODE), (GLOBAL))
-
-/* This is how to output an insn to push a register on the stack.
- It need not be very fast code. */
-
-#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
-do { \
- if (TARGET_64BIT) \
- asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
- reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
- else \
- asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
-} while (0)
-
-/* This is how to output an insn to pop a register from the stack.
- It need not be very fast code. */
-
-#define ASM_OUTPUT_REG_POP(FILE, REGNO) \
-do { \
- if (TARGET_64BIT) \
- asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
- reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
- else \
- asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
-} while (0)
-
-/* This is how to output an element of a case-vector that is absolute. */
-
-#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
- ix86_output_addr_vec_elt ((FILE), (VALUE))
-
-/* This is how to output an element of a case-vector that is relative. */
-
-#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
- ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
-
-/* When we see %v, we will print the 'v' prefix if TARGET_AVX is true. */
-
-#define ASM_OUTPUT_AVX_PREFIX(STREAM, PTR) \
-{ \
- if ((PTR)[0] == '%' && (PTR)[1] == 'v') \
- (PTR) += TARGET_AVX ? 1 : 2; \
-}
-
-/* A C statement or statements which output an assembler instruction
- opcode to the stdio stream STREAM. The macro-operand PTR is a
- variable of type `char *' which points to the opcode name in
- its "internal" form--the form that is written in the machine
- description. */
-
-#define ASM_OUTPUT_OPCODE(STREAM, PTR) \
- ASM_OUTPUT_AVX_PREFIX ((STREAM), (PTR))
-
-/* A C statement to output to the stdio stream FILE an assembler
- command to pad the location counter to a multiple of 1<<LOG
- bytes if it is within MAX_SKIP bytes. */
-
-#ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
-#undef ASM_OUTPUT_MAX_SKIP_PAD
-#define ASM_OUTPUT_MAX_SKIP_PAD(FILE, LOG, MAX_SKIP) \
- if ((LOG) != 0) \
- { \
- if ((MAX_SKIP) == 0) \
- fprintf ((FILE), "\t.p2align %d\n", (LOG)); \
- else \
- fprintf ((FILE), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP)); \
- }
-#endif
-
-/* Write the extra assembler code needed to declare a function
- properly. */
-
-#undef ASM_OUTPUT_FUNCTION_LABEL
-#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
- ix86_asm_output_function_label (FILE, NAME, DECL)
-
-/* Under some conditions we need jump tables in the text section,
- because the assembler cannot handle label differences between
- sections. This is the case for x86_64 on Mach-O for example. */
-
-#define JUMP_TABLES_IN_TEXT_SECTION \
- (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
- || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
-
-/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
- and switch back. For x86 we do this only to save a few bytes that
- would otherwise be unused in the text section. */
-#define CRT_MKSTR2(VAL) #VAL
-#define CRT_MKSTR(x) CRT_MKSTR2(x)
-
-#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
- asm (SECTION_OP "\n\t" \
- "call " CRT_MKSTR(__USER_LABEL_PREFIX__) #FUNC "\n" \
- TEXT_SECTION_ASM_OP);
-
-/* Default threshold for putting data in large sections
- with x86-64 medium memory model */
-#define DEFAULT_LARGE_SECTION_THRESHOLD 65536
-
-/* Which processor to tune code generation for. */
-
-enum processor_type
-{
- PROCESSOR_I386 = 0, /* 80386 */
- PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
- PROCESSOR_PENTIUM,
- PROCESSOR_PENTIUMPRO,
- PROCESSOR_GEODE,
- PROCESSOR_K6,
- PROCESSOR_ATHLON,
- PROCESSOR_PENTIUM4,
- PROCESSOR_K8,
- PROCESSOR_NOCONA,
- PROCESSOR_CORE2,
- PROCESSOR_COREI7,
- PROCESSOR_HASWELL,
- PROCESSOR_GENERIC32,
- PROCESSOR_GENERIC64,
- PROCESSOR_AMDFAM10,
- PROCESSOR_BDVER1,
- PROCESSOR_BDVER2,
- PROCESSOR_BDVER3,
- PROCESSOR_BTVER1,
- PROCESSOR_BTVER2,
- PROCESSOR_ATOM,
- PROCESSOR_max
-};
-
-extern enum processor_type ix86_tune;
-extern enum processor_type ix86_arch;
-
-/* Size of the RED_ZONE area. */
-#define RED_ZONE_SIZE 128
-/* Reserved area of the red zone for temporaries. */
-#define RED_ZONE_RESERVE 8
-
-extern unsigned int ix86_preferred_stack_boundary;
-extern unsigned int ix86_incoming_stack_boundary;
-
-/* Smallest class containing REGNO. */
-extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
-
-enum ix86_fpcmp_strategy {
- IX86_FPCMP_SAHF,
- IX86_FPCMP_COMI,
- IX86_FPCMP_ARITH
-};
-
-/* To properly truncate FP values into integers, we need to set i387 control
- word. We can't emit proper mode switching code before reload, as spills
- generated by reload may truncate values incorrectly, but we still can avoid
- redundant computation of new control word by the mode switching pass.
- The fldcw instructions are still emitted redundantly, but this is probably
- not going to be noticeable problem, as most CPUs do have fast path for
- the sequence.
-
- The machinery is to emit simple truncation instructions and split them
- before reload to instructions having USEs of two memory locations that
- are filled by this code to old and new control word.
-
- Post-reload pass may be later used to eliminate the redundant fildcw if
- needed. */
-
-enum ix86_entity
-{
- AVX_U128 = 0,
- I387_TRUNC,
- I387_FLOOR,
- I387_CEIL,
- I387_MASK_PM,
- MAX_386_ENTITIES
-};
-
-enum ix86_stack_slot
-{
- SLOT_TEMP = 0,
- SLOT_CW_STORED,
- SLOT_CW_TRUNC,
- SLOT_CW_FLOOR,
- SLOT_CW_CEIL,
- SLOT_CW_MASK_PM,
- MAX_386_STACK_LOCALS
-};
-
-enum avx_u128_state
-{
- AVX_U128_CLEAN,
- AVX_U128_DIRTY,
- AVX_U128_ANY
-};
-
-/* Define this macro if the port needs extra instructions inserted
- for mode switching in an optimizing compilation. */
-
-#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
- ix86_optimize_mode_switching[(ENTITY)]
-
-/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
- initializer for an array of integers. Each initializer element N
- refers to an entity that needs mode switching, and specifies the
- number of different modes that might need to be set for this
- entity. The position of the initializer in the initializer -
- starting counting at zero - determines the integer that is used to
- refer to the mode-switched entity in question. */
-
-#define NUM_MODES_FOR_MODE_SWITCHING \
- { AVX_U128_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
-
-/* ENTITY is an integer specifying a mode-switched entity. If
- `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
- return an integer value not larger than the corresponding element
- in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
- must be switched into prior to the execution of INSN. */
-
-#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
-
-/* If this macro is defined, it is evaluated for every INSN during
- mode switching. It determines the mode that an insn results in (if
- different from the incoming mode). */
-
-#define MODE_AFTER(ENTITY, MODE, I) ix86_mode_after ((ENTITY), (MODE), (I))
-
-/* If this macro is defined, it is evaluated for every ENTITY that
- needs mode switching. It should evaluate to an integer, which is
- a mode that ENTITY is assumed to be switched to at function entry. */
-
-#define MODE_ENTRY(ENTITY) ix86_mode_entry (ENTITY)
-
-/* If this macro is defined, it is evaluated for every ENTITY that
- needs mode switching. It should evaluate to an integer, which is
- a mode that ENTITY is assumed to be switched to at function exit. */
-
-#define MODE_EXIT(ENTITY) ix86_mode_exit (ENTITY)
-
-/* This macro specifies the order in which modes for ENTITY are
- processed. 0 is the highest priority. */
-
-#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
-
-/* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
- is the set of hard registers live at the point where the insn(s)
- are to be inserted. */
-
-#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
- ix86_emit_mode_set ((ENTITY), (MODE), (HARD_REGS_LIVE))
-
-/* Avoid renaming of stack registers, as doing so in combination with
- scheduling just increases amount of live registers at time and in
- the turn amount of fxch instructions needed.
-
- ??? Maybe Pentium chips benefits from renaming, someone can try.... */
-
-#define HARD_REGNO_RENAME_OK(SRC, TARGET) !STACK_REGNO_P (SRC)
-
-
-#define FASTCALL_PREFIX '@'
-
-/* Machine specific frame tracking during prologue/epilogue generation. */
-
-#ifndef USED_FOR_TARGET
-struct GTY(()) machine_frame_state
-{
- /* This pair tracks the currently active CFA as reg+offset. When reg
- is drap_reg, we don't bother trying to record here the real CFA when
- it might really be a DW_CFA_def_cfa_expression. */
- rtx cfa_reg;
- HOST_WIDE_INT cfa_offset;
-
- /* The current offset (canonically from the CFA) of ESP and EBP.
- When stack frame re-alignment is active, these may not be relative
- to the CFA. However, in all cases they are relative to the offsets
- of the saved registers stored in ix86_frame. */
- HOST_WIDE_INT sp_offset;
- HOST_WIDE_INT fp_offset;
-
- /* The size of the red-zone that may be assumed for the purposes of
- eliding register restore notes in the epilogue. This may be zero
- if no red-zone is in effect, or may be reduced from the real
- red-zone value by a maximum runtime stack re-alignment value. */
- int red_zone_offset;
-
- /* Indicate whether each of ESP, EBP or DRAP currently holds a valid
- value within the frame. If false then the offset above should be
- ignored. Note that DRAP, if valid, *always* points to the CFA and
- thus has an offset of zero. */
- BOOL_BITFIELD sp_valid : 1;
- BOOL_BITFIELD fp_valid : 1;
- BOOL_BITFIELD drap_valid : 1;
-
- /* Indicate whether the local stack frame has been re-aligned. When
- set, the SP/FP offsets above are relative to the aligned frame
- and not the CFA. */
- BOOL_BITFIELD realigned : 1;
-};
-
-/* Private to winnt.c. */
-struct seh_frame_state;
-
-struct GTY(()) machine_function {
- struct stack_local_entry *stack_locals;
- const char *some_ld_name;
- int varargs_gpr_size;
- int varargs_fpr_size;
- int optimize_mode_switching[MAX_386_ENTITIES];
-
- /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE
- has been computed for. */
- int use_fast_prologue_epilogue_nregs;
-
- /* For -fsplit-stack support: A stack local which holds a pointer to
- the stack arguments for a function with a variable number of
- arguments. This is set at the start of the function and is used
- to initialize the overflow_arg_area field of the va_list
- structure. */
- rtx split_stack_varargs_pointer;
-
- /* This value is used for amd64 targets and specifies the current abi
- to be used. MS_ABI means ms abi. Otherwise SYSV_ABI means sysv abi. */
- ENUM_BITFIELD(calling_abi) call_abi : 8;
-
- /* Nonzero if the function accesses a previous frame. */
- BOOL_BITFIELD accesses_prev_frame : 1;
-
- /* Nonzero if the function requires a CLD in the prologue. */
- BOOL_BITFIELD needs_cld : 1;
-
- /* Set by ix86_compute_frame_layout and used by prologue/epilogue
- expander to determine the style used. */
- BOOL_BITFIELD use_fast_prologue_epilogue : 1;
-
- /* If true, the current function needs the default PIC register, not
- an alternate register (on x86) and must not use the red zone (on
- x86_64), even if it's a leaf function. We don't want the
- function to be regarded as non-leaf because TLS calls need not
- affect register allocation. This flag is set when a TLS call
- instruction is expanded within a function, and never reset, even
- if all such instructions are optimized away. Use the
- ix86_current_function_calls_tls_descriptor macro for a better
- approximation. */
- BOOL_BITFIELD tls_descriptor_call_expanded_p : 1;
-
- /* If true, the current function has a STATIC_CHAIN is placed on the
- stack below the return address. */
- BOOL_BITFIELD static_chain_on_stack : 1;
-
- /* During prologue/epilogue generation, the current frame state.
- Otherwise, the frame state at the end of the prologue. */
- struct machine_frame_state fs;
-
- /* During SEH output, this is non-null. */
- struct seh_frame_state * GTY((skip(""))) seh;
-};
-#endif
-
-#define ix86_stack_locals (cfun->machine->stack_locals)
-#define ix86_varargs_gpr_size (cfun->machine->varargs_gpr_size)
-#define ix86_varargs_fpr_size (cfun->machine->varargs_fpr_size)
-#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
-#define ix86_current_function_needs_cld (cfun->machine->needs_cld)
-#define ix86_tls_descriptor_calls_expanded_in_cfun \
- (cfun->machine->tls_descriptor_call_expanded_p)
-/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
- calls are optimized away, we try to detect cases in which it was
- optimized away. Since such instructions (use (reg REG_SP)), we can
- verify whether there's any such instruction live by testing that
- REG_SP is live. */
-#define ix86_current_function_calls_tls_descriptor \
- (ix86_tls_descriptor_calls_expanded_in_cfun && df_regs_ever_live_p (SP_REG))
-#define ix86_static_chain_on_stack (cfun->machine->static_chain_on_stack)
-
-/* Control behavior of x86_file_start. */
-#define X86_FILE_START_VERSION_DIRECTIVE false
-#define X86_FILE_START_FLTUSED false
-
-/* Flag to mark data that is in the large address area. */
-#define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
-#define SYMBOL_REF_FAR_ADDR_P(X) \
- ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
-
-/* Flags to mark dllimport/dllexport. Used by PE ports, but handy to
- have defined always, to avoid ifdefing. */
-#define SYMBOL_FLAG_DLLIMPORT (SYMBOL_FLAG_MACH_DEP << 1)
-#define SYMBOL_REF_DLLIMPORT_P(X) \
- ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLIMPORT) != 0)
-
-#define SYMBOL_FLAG_DLLEXPORT (SYMBOL_FLAG_MACH_DEP << 2)
-#define SYMBOL_REF_DLLEXPORT_P(X) \
- ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_DLLEXPORT) != 0)
-
-extern void debug_ready_dispatch (void);
-extern void debug_dispatch_window (int);
-
-/* The value at zero is only defined for the BMI instructions
- LZCNT and TZCNT, not the BSR/BSF insns in the original isa. */
-#define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
- ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_BMI)
-#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
- ((VALUE) = GET_MODE_BITSIZE (MODE), TARGET_LZCNT)
-
-
-/* Flags returned by ix86_get_callcvt (). */
-#define IX86_CALLCVT_CDECL 0x1
-#define IX86_CALLCVT_STDCALL 0x2
-#define IX86_CALLCVT_FASTCALL 0x4
-#define IX86_CALLCVT_THISCALL 0x8
-#define IX86_CALLCVT_REGPARM 0x10
-#define IX86_CALLCVT_SSEREGPARM 0x20
-
-#define IX86_BASE_CALLCVT(FLAGS) \
- ((FLAGS) & (IX86_CALLCVT_CDECL | IX86_CALLCVT_STDCALL \
- | IX86_CALLCVT_FASTCALL | IX86_CALLCVT_THISCALL))
-
-#define RECIP_MASK_NONE 0x00
-#define RECIP_MASK_DIV 0x01
-#define RECIP_MASK_SQRT 0x02
-#define RECIP_MASK_VEC_DIV 0x04
-#define RECIP_MASK_VEC_SQRT 0x08
-#define RECIP_MASK_ALL (RECIP_MASK_DIV | RECIP_MASK_SQRT \
- | RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
-#define RECIP_MASK_DEFAULT (RECIP_MASK_VEC_DIV | RECIP_MASK_VEC_SQRT)
-
-#define TARGET_RECIP_DIV ((recip_mask & RECIP_MASK_DIV) != 0)
-#define TARGET_RECIP_SQRT ((recip_mask & RECIP_MASK_SQRT) != 0)
-#define TARGET_RECIP_VEC_DIV ((recip_mask & RECIP_MASK_VEC_DIV) != 0)
-#define TARGET_RECIP_VEC_SQRT ((recip_mask & RECIP_MASK_VEC_SQRT) != 0)
-
-#define IX86_HLE_ACQUIRE (1 << 16)
-#define IX86_HLE_RELEASE (1 << 17)
-
-/*
-Local variables:
-version-control: t
-End:
-*/