aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/alias.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/alias.c')
-rw-r--r--gcc-4.8.1/gcc/alias.c3016
1 files changed, 0 insertions, 3016 deletions
diff --git a/gcc-4.8.1/gcc/alias.c b/gcc-4.8.1/gcc/alias.c
deleted file mode 100644
index 970bdb0ee..000000000
--- a/gcc-4.8.1/gcc/alias.c
+++ /dev/null
@@ -1,3016 +0,0 @@
-/* Alias analysis for GNU C
- Copyright (C) 1997-2013 Free Software Foundation, Inc.
- Contributed by John Carr (jfc@mit.edu).
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "rtl.h"
-#include "tree.h"
-#include "tm_p.h"
-#include "function.h"
-#include "alias.h"
-#include "emit-rtl.h"
-#include "regs.h"
-#include "hard-reg-set.h"
-#include "basic-block.h"
-#include "flags.h"
-#include "diagnostic-core.h"
-#include "cselib.h"
-#include "splay-tree.h"
-#include "ggc.h"
-#include "langhooks.h"
-#include "timevar.h"
-#include "dumpfile.h"
-#include "target.h"
-#include "cgraph.h"
-#include "df.h"
-#include "tree-ssa-alias.h"
-#include "pointer-set.h"
-#include "tree-flow.h"
-
-/* The aliasing API provided here solves related but different problems:
-
- Say there exists (in c)
-
- struct X {
- struct Y y1;
- struct Z z2;
- } x1, *px1, *px2;
-
- struct Y y2, *py;
- struct Z z2, *pz;
-
-
- py = &x1.y1;
- px2 = &x1;
-
- Consider the four questions:
-
- Can a store to x1 interfere with px2->y1?
- Can a store to x1 interfere with px2->z2?
- Can a store to x1 change the value pointed to by with py?
- Can a store to x1 change the value pointed to by with pz?
-
- The answer to these questions can be yes, yes, yes, and maybe.
-
- The first two questions can be answered with a simple examination
- of the type system. If structure X contains a field of type Y then
- a store through a pointer to an X can overwrite any field that is
- contained (recursively) in an X (unless we know that px1 != px2).
-
- The last two questions can be solved in the same way as the first
- two questions but this is too conservative. The observation is
- that in some cases we can know which (if any) fields are addressed
- and if those addresses are used in bad ways. This analysis may be
- language specific. In C, arbitrary operations may be applied to
- pointers. However, there is some indication that this may be too
- conservative for some C++ types.
-
- The pass ipa-type-escape does this analysis for the types whose
- instances do not escape across the compilation boundary.
-
- Historically in GCC, these two problems were combined and a single
- data structure that was used to represent the solution to these
- problems. We now have two similar but different data structures,
- The data structure to solve the last two questions is similar to
- the first, but does not contain the fields whose address are never
- taken. For types that do escape the compilation unit, the data
- structures will have identical information.
-*/
-
-/* The alias sets assigned to MEMs assist the back-end in determining
- which MEMs can alias which other MEMs. In general, two MEMs in
- different alias sets cannot alias each other, with one important
- exception. Consider something like:
-
- struct S { int i; double d; };
-
- a store to an `S' can alias something of either type `int' or type
- `double'. (However, a store to an `int' cannot alias a `double'
- and vice versa.) We indicate this via a tree structure that looks
- like:
- struct S
- / \
- / \
- |/_ _\|
- int double
-
- (The arrows are directed and point downwards.)
- In this situation we say the alias set for `struct S' is the
- `superset' and that those for `int' and `double' are `subsets'.
-
- To see whether two alias sets can point to the same memory, we must
- see if either alias set is a subset of the other. We need not trace
- past immediate descendants, however, since we propagate all
- grandchildren up one level.
-
- Alias set zero is implicitly a superset of all other alias sets.
- However, this is no actual entry for alias set zero. It is an
- error to attempt to explicitly construct a subset of zero. */
-
-struct GTY(()) alias_set_entry_d {
- /* The alias set number, as stored in MEM_ALIAS_SET. */
- alias_set_type alias_set;
-
- /* Nonzero if would have a child of zero: this effectively makes this
- alias set the same as alias set zero. */
- int has_zero_child;
-
- /* The children of the alias set. These are not just the immediate
- children, but, in fact, all descendants. So, if we have:
-
- struct T { struct S s; float f; }
-
- continuing our example above, the children here will be all of
- `int', `double', `float', and `struct S'. */
- splay_tree GTY((param1_is (int), param2_is (int))) children;
-};
-typedef struct alias_set_entry_d *alias_set_entry;
-
-static int rtx_equal_for_memref_p (const_rtx, const_rtx);
-static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
-static void record_set (rtx, const_rtx, void *);
-static int base_alias_check (rtx, rtx, enum machine_mode,
- enum machine_mode);
-static rtx find_base_value (rtx);
-static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
-static int insert_subset_children (splay_tree_node, void*);
-static alias_set_entry get_alias_set_entry (alias_set_type);
-static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
-static tree decl_for_component_ref (tree);
-static int write_dependence_p (const_rtx, const_rtx, int);
-
-static void memory_modified_1 (rtx, const_rtx, void *);
-
-/* Set up all info needed to perform alias analysis on memory references. */
-
-/* Returns the size in bytes of the mode of X. */
-#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
-
-/* Cap the number of passes we make over the insns propagating alias
- information through set chains.
- ??? 10 is a completely arbitrary choice. This should be based on the
- maximum loop depth in the CFG, but we do not have this information
- available (even if current_loops _is_ available). */
-#define MAX_ALIAS_LOOP_PASSES 10
-
-/* reg_base_value[N] gives an address to which register N is related.
- If all sets after the first add or subtract to the current value
- or otherwise modify it so it does not point to a different top level
- object, reg_base_value[N] is equal to the address part of the source
- of the first set.
-
- A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
- expressions represent three types of base:
-
- 1. incoming arguments. There is just one ADDRESS to represent all
- arguments, since we do not know at this level whether accesses
- based on different arguments can alias. The ADDRESS has id 0.
-
- 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
- (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
- Each of these rtxes has a separate ADDRESS associated with it,
- each with a negative id.
-
- GCC is (and is required to be) precise in which register it
- chooses to access a particular region of stack. We can therefore
- assume that accesses based on one of these rtxes do not alias
- accesses based on another of these rtxes.
-
- 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
- Each such piece of memory has a separate ADDRESS associated
- with it, each with an id greater than 0.
-
- Accesses based on one ADDRESS do not alias accesses based on other
- ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
- alias globals either; the ADDRESSes have Pmode to indicate this.
- The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
- indicate this. */
-
-static GTY(()) vec<rtx, va_gc> *reg_base_value;
-static rtx *new_reg_base_value;
-
-/* The single VOIDmode ADDRESS that represents all argument bases.
- It has id 0. */
-static GTY(()) rtx arg_base_value;
-
-/* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
-static int unique_id;
-
-/* We preserve the copy of old array around to avoid amount of garbage
- produced. About 8% of garbage produced were attributed to this
- array. */
-static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
-
-/* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
- registers. */
-#define UNIQUE_BASE_VALUE_SP -1
-#define UNIQUE_BASE_VALUE_ARGP -2
-#define UNIQUE_BASE_VALUE_FP -3
-#define UNIQUE_BASE_VALUE_HFP -4
-
-#define static_reg_base_value \
- (this_target_rtl->x_static_reg_base_value)
-
-#define REG_BASE_VALUE(X) \
- (REGNO (X) < vec_safe_length (reg_base_value) \
- ? (*reg_base_value)[REGNO (X)] : 0)
-
-/* Vector indexed by N giving the initial (unchanging) value known for
- pseudo-register N. This vector is initialized in init_alias_analysis,
- and does not change until end_alias_analysis is called. */
-static GTY(()) vec<rtx, va_gc> *reg_known_value;
-
-/* Vector recording for each reg_known_value whether it is due to a
- REG_EQUIV note. Future passes (viz., reload) may replace the
- pseudo with the equivalent expression and so we account for the
- dependences that would be introduced if that happens.
-
- The REG_EQUIV notes created in assign_parms may mention the arg
- pointer, and there are explicit insns in the RTL that modify the
- arg pointer. Thus we must ensure that such insns don't get
- scheduled across each other because that would invalidate the
- REG_EQUIV notes. One could argue that the REG_EQUIV notes are
- wrong, but solving the problem in the scheduler will likely give
- better code, so we do it here. */
-static sbitmap reg_known_equiv_p;
-
-/* True when scanning insns from the start of the rtl to the
- NOTE_INSN_FUNCTION_BEG note. */
-static bool copying_arguments;
-
-
-/* The splay-tree used to store the various alias set entries. */
-static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
-
-/* Build a decomposed reference object for querying the alias-oracle
- from the MEM rtx and store it in *REF.
- Returns false if MEM is not suitable for the alias-oracle. */
-
-static bool
-ao_ref_from_mem (ao_ref *ref, const_rtx mem)
-{
- tree expr = MEM_EXPR (mem);
- tree base;
-
- if (!expr)
- return false;
-
- ao_ref_init (ref, expr);
-
- /* Get the base of the reference and see if we have to reject or
- adjust it. */
- base = ao_ref_base (ref);
- if (base == NULL_TREE)
- return false;
-
- /* The tree oracle doesn't like bases that are neither decls
- nor indirect references of SSA names. */
- if (!(DECL_P (base)
- || (TREE_CODE (base) == MEM_REF
- && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
- || (TREE_CODE (base) == TARGET_MEM_REF
- && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
- return false;
-
- /* If this is a reference based on a partitioned decl replace the
- base with a MEM_REF of the pointer representative we
- created during stack slot partitioning. */
- if (TREE_CODE (base) == VAR_DECL
- && ! is_global_var (base)
- && cfun->gimple_df->decls_to_pointers != NULL)
- {
- void *namep;
- namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
- if (namep)
- ref->base = build_simple_mem_ref (*(tree *)namep);
- }
-
- ref->ref_alias_set = MEM_ALIAS_SET (mem);
-
- /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
- is conservative, so trust it. */
- if (!MEM_OFFSET_KNOWN_P (mem)
- || !MEM_SIZE_KNOWN_P (mem))
- return true;
-
- /* If the base decl is a parameter we can have negative MEM_OFFSET in
- case of promoted subregs on bigendian targets. Trust the MEM_EXPR
- here. */
- if (MEM_OFFSET (mem) < 0
- && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
- return true;
-
- /* Otherwise continue and refine size and offset we got from analyzing
- MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
-
- ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
- ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
-
- /* The MEM may extend into adjacent fields, so adjust max_size if
- necessary. */
- if (ref->max_size != -1
- && ref->size > ref->max_size)
- ref->max_size = ref->size;
-
- /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
- the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
- if (MEM_EXPR (mem) != get_spill_slot_decl (false)
- && (ref->offset < 0
- || (DECL_P (ref->base)
- && (!host_integerp (DECL_SIZE (ref->base), 1)
- || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
- < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
- return false;
-
- return true;
-}
-
-/* Query the alias-oracle on whether the two memory rtx X and MEM may
- alias. If TBAA_P is set also apply TBAA. Returns true if the
- two rtxen may alias, false otherwise. */
-
-static bool
-rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
-{
- ao_ref ref1, ref2;
-
- if (!ao_ref_from_mem (&ref1, x)
- || !ao_ref_from_mem (&ref2, mem))
- return true;
-
- return refs_may_alias_p_1 (&ref1, &ref2,
- tbaa_p
- && MEM_ALIAS_SET (x) != 0
- && MEM_ALIAS_SET (mem) != 0);
-}
-
-/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
- such an entry, or NULL otherwise. */
-
-static inline alias_set_entry
-get_alias_set_entry (alias_set_type alias_set)
-{
- return (*alias_sets)[alias_set];
-}
-
-/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
- the two MEMs cannot alias each other. */
-
-static inline int
-mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
-{
-/* Perform a basic sanity check. Namely, that there are no alias sets
- if we're not using strict aliasing. This helps to catch bugs
- whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
- where a MEM is allocated in some way other than by the use of
- gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
- use alias sets to indicate that spilled registers cannot alias each
- other, we might need to remove this check. */
- gcc_assert (flag_strict_aliasing
- || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
-
- return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
-}
-
-/* Insert the NODE into the splay tree given by DATA. Used by
- record_alias_subset via splay_tree_foreach. */
-
-static int
-insert_subset_children (splay_tree_node node, void *data)
-{
- splay_tree_insert ((splay_tree) data, node->key, node->value);
-
- return 0;
-}
-
-/* Return true if the first alias set is a subset of the second. */
-
-bool
-alias_set_subset_of (alias_set_type set1, alias_set_type set2)
-{
- alias_set_entry ase;
-
- /* Everything is a subset of the "aliases everything" set. */
- if (set2 == 0)
- return true;
-
- /* Otherwise, check if set1 is a subset of set2. */
- ase = get_alias_set_entry (set2);
- if (ase != 0
- && (ase->has_zero_child
- || splay_tree_lookup (ase->children,
- (splay_tree_key) set1)))
- return true;
- return false;
-}
-
-/* Return 1 if the two specified alias sets may conflict. */
-
-int
-alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
-{
- alias_set_entry ase;
-
- /* The easy case. */
- if (alias_sets_must_conflict_p (set1, set2))
- return 1;
-
- /* See if the first alias set is a subset of the second. */
- ase = get_alias_set_entry (set1);
- if (ase != 0
- && (ase->has_zero_child
- || splay_tree_lookup (ase->children,
- (splay_tree_key) set2)))
- return 1;
-
- /* Now do the same, but with the alias sets reversed. */
- ase = get_alias_set_entry (set2);
- if (ase != 0
- && (ase->has_zero_child
- || splay_tree_lookup (ase->children,
- (splay_tree_key) set1)))
- return 1;
-
- /* The two alias sets are distinct and neither one is the
- child of the other. Therefore, they cannot conflict. */
- return 0;
-}
-
-/* Return 1 if the two specified alias sets will always conflict. */
-
-int
-alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
-{
- if (set1 == 0 || set2 == 0 || set1 == set2)
- return 1;
-
- return 0;
-}
-
-/* Return 1 if any MEM object of type T1 will always conflict (using the
- dependency routines in this file) with any MEM object of type T2.
- This is used when allocating temporary storage. If T1 and/or T2 are
- NULL_TREE, it means we know nothing about the storage. */
-
-int
-objects_must_conflict_p (tree t1, tree t2)
-{
- alias_set_type set1, set2;
-
- /* If neither has a type specified, we don't know if they'll conflict
- because we may be using them to store objects of various types, for
- example the argument and local variables areas of inlined functions. */
- if (t1 == 0 && t2 == 0)
- return 0;
-
- /* If they are the same type, they must conflict. */
- if (t1 == t2
- /* Likewise if both are volatile. */
- || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
- return 1;
-
- set1 = t1 ? get_alias_set (t1) : 0;
- set2 = t2 ? get_alias_set (t2) : 0;
-
- /* We can't use alias_sets_conflict_p because we must make sure
- that every subtype of t1 will conflict with every subtype of
- t2 for which a pair of subobjects of these respective subtypes
- overlaps on the stack. */
- return alias_sets_must_conflict_p (set1, set2);
-}
-
-/* Return true if all nested component references handled by
- get_inner_reference in T are such that we should use the alias set
- provided by the object at the heart of T.
-
- This is true for non-addressable components (which don't have their
- own alias set), as well as components of objects in alias set zero.
- This later point is a special case wherein we wish to override the
- alias set used by the component, but we don't have per-FIELD_DECL
- assignable alias sets. */
-
-bool
-component_uses_parent_alias_set (const_tree t)
-{
- while (1)
- {
- /* If we're at the end, it vacuously uses its own alias set. */
- if (!handled_component_p (t))
- return false;
-
- switch (TREE_CODE (t))
- {
- case COMPONENT_REF:
- if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
- return true;
- break;
-
- case ARRAY_REF:
- case ARRAY_RANGE_REF:
- if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
- return true;
- break;
-
- case REALPART_EXPR:
- case IMAGPART_EXPR:
- break;
-
- default:
- /* Bitfields and casts are never addressable. */
- return true;
- }
-
- t = TREE_OPERAND (t, 0);
- if (get_alias_set (TREE_TYPE (t)) == 0)
- return true;
- }
-}
-
-/* Return the alias set for the memory pointed to by T, which may be
- either a type or an expression. Return -1 if there is nothing
- special about dereferencing T. */
-
-static alias_set_type
-get_deref_alias_set_1 (tree t)
-{
- /* If we're not doing any alias analysis, just assume everything
- aliases everything else. */
- if (!flag_strict_aliasing)
- return 0;
-
- /* All we care about is the type. */
- if (! TYPE_P (t))
- t = TREE_TYPE (t);
-
- /* If we have an INDIRECT_REF via a void pointer, we don't
- know anything about what that might alias. Likewise if the
- pointer is marked that way. */
- if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
- || TYPE_REF_CAN_ALIAS_ALL (t))
- return 0;
-
- return -1;
-}
-
-/* Return the alias set for the memory pointed to by T, which may be
- either a type or an expression. */
-
-alias_set_type
-get_deref_alias_set (tree t)
-{
- alias_set_type set = get_deref_alias_set_1 (t);
-
- /* Fall back to the alias-set of the pointed-to type. */
- if (set == -1)
- {
- if (! TYPE_P (t))
- t = TREE_TYPE (t);
- set = get_alias_set (TREE_TYPE (t));
- }
-
- return set;
-}
-
-/* Return the alias set for T, which may be either a type or an
- expression. Call language-specific routine for help, if needed. */
-
-alias_set_type
-get_alias_set (tree t)
-{
- alias_set_type set;
-
- /* If we're not doing any alias analysis, just assume everything
- aliases everything else. Also return 0 if this or its type is
- an error. */
- if (! flag_strict_aliasing || t == error_mark_node
- || (! TYPE_P (t)
- && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
- return 0;
-
- /* We can be passed either an expression or a type. This and the
- language-specific routine may make mutually-recursive calls to each other
- to figure out what to do. At each juncture, we see if this is a tree
- that the language may need to handle specially. First handle things that
- aren't types. */
- if (! TYPE_P (t))
- {
- tree inner;
-
- /* Give the language a chance to do something with this tree
- before we look at it. */
- STRIP_NOPS (t);
- set = lang_hooks.get_alias_set (t);
- if (set != -1)
- return set;
-
- /* Get the base object of the reference. */
- inner = t;
- while (handled_component_p (inner))
- {
- /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
- the type of any component references that wrap it to
- determine the alias-set. */
- if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
- t = TREE_OPERAND (inner, 0);
- inner = TREE_OPERAND (inner, 0);
- }
-
- /* Handle pointer dereferences here, they can override the
- alias-set. */
- if (INDIRECT_REF_P (inner))
- {
- set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
- if (set != -1)
- return set;
- }
- else if (TREE_CODE (inner) == TARGET_MEM_REF)
- return get_deref_alias_set (TMR_OFFSET (inner));
- else if (TREE_CODE (inner) == MEM_REF)
- {
- set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
- if (set != -1)
- return set;
- }
-
- /* If the innermost reference is a MEM_REF that has a
- conversion embedded treat it like a VIEW_CONVERT_EXPR above,
- using the memory access type for determining the alias-set. */
- if (TREE_CODE (inner) == MEM_REF
- && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
- != TYPE_MAIN_VARIANT
- (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
- return get_deref_alias_set (TREE_OPERAND (inner, 1));
-
- /* Otherwise, pick up the outermost object that we could have a pointer
- to, processing conversions as above. */
- while (component_uses_parent_alias_set (t))
- {
- t = TREE_OPERAND (t, 0);
- STRIP_NOPS (t);
- }
-
- /* If we've already determined the alias set for a decl, just return
- it. This is necessary for C++ anonymous unions, whose component
- variables don't look like union members (boo!). */
- if (TREE_CODE (t) == VAR_DECL
- && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
- return MEM_ALIAS_SET (DECL_RTL (t));
-
- /* Now all we care about is the type. */
- t = TREE_TYPE (t);
- }
-
- /* Variant qualifiers don't affect the alias set, so get the main
- variant. */
- t = TYPE_MAIN_VARIANT (t);
-
- /* Always use the canonical type as well. If this is a type that
- requires structural comparisons to identify compatible types
- use alias set zero. */
- if (TYPE_STRUCTURAL_EQUALITY_P (t))
- {
- /* Allow the language to specify another alias set for this
- type. */
- set = lang_hooks.get_alias_set (t);
- if (set != -1)
- return set;
- return 0;
- }
-
- t = TYPE_CANONICAL (t);
-
- /* The canonical type should not require structural equality checks. */
- gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
-
- /* If this is a type with a known alias set, return it. */
- if (TYPE_ALIAS_SET_KNOWN_P (t))
- return TYPE_ALIAS_SET (t);
-
- /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
- if (!COMPLETE_TYPE_P (t))
- {
- /* For arrays with unknown size the conservative answer is the
- alias set of the element type. */
- if (TREE_CODE (t) == ARRAY_TYPE)
- return get_alias_set (TREE_TYPE (t));
-
- /* But return zero as a conservative answer for incomplete types. */
- return 0;
- }
-
- /* See if the language has special handling for this type. */
- set = lang_hooks.get_alias_set (t);
- if (set != -1)
- return set;
-
- /* There are no objects of FUNCTION_TYPE, so there's no point in
- using up an alias set for them. (There are, of course, pointers
- and references to functions, but that's different.) */
- else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
- set = 0;
-
- /* Unless the language specifies otherwise, let vector types alias
- their components. This avoids some nasty type punning issues in
- normal usage. And indeed lets vectors be treated more like an
- array slice. */
- else if (TREE_CODE (t) == VECTOR_TYPE)
- set = get_alias_set (TREE_TYPE (t));
-
- /* Unless the language specifies otherwise, treat array types the
- same as their components. This avoids the asymmetry we get
- through recording the components. Consider accessing a
- character(kind=1) through a reference to a character(kind=1)[1:1].
- Or consider if we want to assign integer(kind=4)[0:D.1387] and
- integer(kind=4)[4] the same alias set or not.
- Just be pragmatic here and make sure the array and its element
- type get the same alias set assigned. */
- else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
- set = get_alias_set (TREE_TYPE (t));
-
- /* From the former common C and C++ langhook implementation:
-
- Unfortunately, there is no canonical form of a pointer type.
- In particular, if we have `typedef int I', then `int *', and
- `I *' are different types. So, we have to pick a canonical
- representative. We do this below.
-
- Technically, this approach is actually more conservative that
- it needs to be. In particular, `const int *' and `int *'
- should be in different alias sets, according to the C and C++
- standard, since their types are not the same, and so,
- technically, an `int **' and `const int **' cannot point at
- the same thing.
-
- But, the standard is wrong. In particular, this code is
- legal C++:
-
- int *ip;
- int **ipp = &ip;
- const int* const* cipp = ipp;
- And, it doesn't make sense for that to be legal unless you
- can dereference IPP and CIPP. So, we ignore cv-qualifiers on
- the pointed-to types. This issue has been reported to the
- C++ committee.
-
- In addition to the above canonicalization issue, with LTO
- we should also canonicalize `T (*)[]' to `T *' avoiding
- alias issues with pointer-to element types and pointer-to
- array types.
-
- Likewise we need to deal with the situation of incomplete
- pointed-to types and make `*(struct X **)&a' and
- `*(struct X {} **)&a' alias. Otherwise we will have to
- guarantee that all pointer-to incomplete type variants
- will be replaced by pointer-to complete type variants if
- they are available.
-
- With LTO the convenient situation of using `void *' to
- access and store any pointer type will also become
- more apparent (and `void *' is just another pointer-to
- incomplete type). Assigning alias-set zero to `void *'
- and all pointer-to incomplete types is a not appealing
- solution. Assigning an effective alias-set zero only
- affecting pointers might be - by recording proper subset
- relationships of all pointer alias-sets.
-
- Pointer-to function types are another grey area which
- needs caution. Globbing them all into one alias-set
- or the above effective zero set would work.
-
- For now just assign the same alias-set to all pointers.
- That's simple and avoids all the above problems. */
- else if (POINTER_TYPE_P (t)
- && t != ptr_type_node)
- set = get_alias_set (ptr_type_node);
-
- /* Otherwise make a new alias set for this type. */
- else
- {
- /* Each canonical type gets its own alias set, so canonical types
- shouldn't form a tree. It doesn't really matter for types
- we handle specially above, so only check it where it possibly
- would result in a bogus alias set. */
- gcc_checking_assert (TYPE_CANONICAL (t) == t);
-
- set = new_alias_set ();
- }
-
- TYPE_ALIAS_SET (t) = set;
-
- /* If this is an aggregate type or a complex type, we must record any
- component aliasing information. */
- if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
- record_component_aliases (t);
-
- return set;
-}
-
-/* Return a brand-new alias set. */
-
-alias_set_type
-new_alias_set (void)
-{
- if (flag_strict_aliasing)
- {
- if (alias_sets == 0)
- vec_safe_push (alias_sets, (alias_set_entry) 0);
- vec_safe_push (alias_sets, (alias_set_entry) 0);
- return alias_sets->length () - 1;
- }
- else
- return 0;
-}
-
-/* Indicate that things in SUBSET can alias things in SUPERSET, but that
- not everything that aliases SUPERSET also aliases SUBSET. For example,
- in C, a store to an `int' can alias a load of a structure containing an
- `int', and vice versa. But it can't alias a load of a 'double' member
- of the same structure. Here, the structure would be the SUPERSET and
- `int' the SUBSET. This relationship is also described in the comment at
- the beginning of this file.
-
- This function should be called only once per SUPERSET/SUBSET pair.
-
- It is illegal for SUPERSET to be zero; everything is implicitly a
- subset of alias set zero. */
-
-void
-record_alias_subset (alias_set_type superset, alias_set_type subset)
-{
- alias_set_entry superset_entry;
- alias_set_entry subset_entry;
-
- /* It is possible in complex type situations for both sets to be the same,
- in which case we can ignore this operation. */
- if (superset == subset)
- return;
-
- gcc_assert (superset);
-
- superset_entry = get_alias_set_entry (superset);
- if (superset_entry == 0)
- {
- /* Create an entry for the SUPERSET, so that we have a place to
- attach the SUBSET. */
- superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
- superset_entry->alias_set = superset;
- superset_entry->children
- = splay_tree_new_ggc (splay_tree_compare_ints,
- ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
- ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
- superset_entry->has_zero_child = 0;
- (*alias_sets)[superset] = superset_entry;
- }
-
- if (subset == 0)
- superset_entry->has_zero_child = 1;
- else
- {
- subset_entry = get_alias_set_entry (subset);
- /* If there is an entry for the subset, enter all of its children
- (if they are not already present) as children of the SUPERSET. */
- if (subset_entry)
- {
- if (subset_entry->has_zero_child)
- superset_entry->has_zero_child = 1;
-
- splay_tree_foreach (subset_entry->children, insert_subset_children,
- superset_entry->children);
- }
-
- /* Enter the SUBSET itself as a child of the SUPERSET. */
- splay_tree_insert (superset_entry->children,
- (splay_tree_key) subset, 0);
- }
-}
-
-/* Record that component types of TYPE, if any, are part of that type for
- aliasing purposes. For record types, we only record component types
- for fields that are not marked non-addressable. For array types, we
- only record the component type if it is not marked non-aliased. */
-
-void
-record_component_aliases (tree type)
-{
- alias_set_type superset = get_alias_set (type);
- tree field;
-
- if (superset == 0)
- return;
-
- switch (TREE_CODE (type))
- {
- case RECORD_TYPE:
- case UNION_TYPE:
- case QUAL_UNION_TYPE:
- /* Recursively record aliases for the base classes, if there are any. */
- if (TYPE_BINFO (type))
- {
- int i;
- tree binfo, base_binfo;
-
- for (binfo = TYPE_BINFO (type), i = 0;
- BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
- record_alias_subset (superset,
- get_alias_set (BINFO_TYPE (base_binfo)));
- }
- for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
- if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
- record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
- break;
-
- case COMPLEX_TYPE:
- record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
- break;
-
- /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
- element type. */
-
- default:
- break;
- }
-}
-
-/* Allocate an alias set for use in storing and reading from the varargs
- spill area. */
-
-static GTY(()) alias_set_type varargs_set = -1;
-
-alias_set_type
-get_varargs_alias_set (void)
-{
-#if 1
- /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
- varargs alias set to an INDIRECT_REF (FIXME!), so we can't
- consistently use the varargs alias set for loads from the varargs
- area. So don't use it anywhere. */
- return 0;
-#else
- if (varargs_set == -1)
- varargs_set = new_alias_set ();
-
- return varargs_set;
-#endif
-}
-
-/* Likewise, but used for the fixed portions of the frame, e.g., register
- save areas. */
-
-static GTY(()) alias_set_type frame_set = -1;
-
-alias_set_type
-get_frame_alias_set (void)
-{
- if (frame_set == -1)
- frame_set = new_alias_set ();
-
- return frame_set;
-}
-
-/* Create a new, unique base with id ID. */
-
-static rtx
-unique_base_value (HOST_WIDE_INT id)
-{
- return gen_rtx_ADDRESS (Pmode, id);
-}
-
-/* Return true if accesses based on any other base value cannot alias
- those based on X. */
-
-static bool
-unique_base_value_p (rtx x)
-{
- return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
-}
-
-/* Return true if X is known to be a base value. */
-
-static bool
-known_base_value_p (rtx x)
-{
- switch (GET_CODE (x))
- {
- case LABEL_REF:
- case SYMBOL_REF:
- return true;
-
- case ADDRESS:
- /* Arguments may or may not be bases; we don't know for sure. */
- return GET_MODE (x) != VOIDmode;
-
- default:
- return false;
- }
-}
-
-/* Inside SRC, the source of a SET, find a base address. */
-
-static rtx
-find_base_value (rtx src)
-{
- unsigned int regno;
-
-#if defined (FIND_BASE_TERM)
- /* Try machine-dependent ways to find the base term. */
- src = FIND_BASE_TERM (src);
-#endif
-
- switch (GET_CODE (src))
- {
- case SYMBOL_REF:
- case LABEL_REF:
- return src;
-
- case REG:
- regno = REGNO (src);
- /* At the start of a function, argument registers have known base
- values which may be lost later. Returning an ADDRESS
- expression here allows optimization based on argument values
- even when the argument registers are used for other purposes. */
- if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
- return new_reg_base_value[regno];
-
- /* If a pseudo has a known base value, return it. Do not do this
- for non-fixed hard regs since it can result in a circular
- dependency chain for registers which have values at function entry.
-
- The test above is not sufficient because the scheduler may move
- a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
- if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
- && regno < vec_safe_length (reg_base_value))
- {
- /* If we're inside init_alias_analysis, use new_reg_base_value
- to reduce the number of relaxation iterations. */
- if (new_reg_base_value && new_reg_base_value[regno]
- && DF_REG_DEF_COUNT (regno) == 1)
- return new_reg_base_value[regno];
-
- if ((*reg_base_value)[regno])
- return (*reg_base_value)[regno];
- }
-
- return 0;
-
- case MEM:
- /* Check for an argument passed in memory. Only record in the
- copying-arguments block; it is too hard to track changes
- otherwise. */
- if (copying_arguments
- && (XEXP (src, 0) == arg_pointer_rtx
- || (GET_CODE (XEXP (src, 0)) == PLUS
- && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
- return arg_base_value;
- return 0;
-
- case CONST:
- src = XEXP (src, 0);
- if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
- break;
-
- /* ... fall through ... */
-
- case PLUS:
- case MINUS:
- {
- rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
-
- /* If either operand is a REG that is a known pointer, then it
- is the base. */
- if (REG_P (src_0) && REG_POINTER (src_0))
- return find_base_value (src_0);
- if (REG_P (src_1) && REG_POINTER (src_1))
- return find_base_value (src_1);
-
- /* If either operand is a REG, then see if we already have
- a known value for it. */
- if (REG_P (src_0))
- {
- temp = find_base_value (src_0);
- if (temp != 0)
- src_0 = temp;
- }
-
- if (REG_P (src_1))
- {
- temp = find_base_value (src_1);
- if (temp!= 0)
- src_1 = temp;
- }
-
- /* If either base is named object or a special address
- (like an argument or stack reference), then use it for the
- base term. */
- if (src_0 != 0 && known_base_value_p (src_0))
- return src_0;
-
- if (src_1 != 0 && known_base_value_p (src_1))
- return src_1;
-
- /* Guess which operand is the base address:
- If either operand is a symbol, then it is the base. If
- either operand is a CONST_INT, then the other is the base. */
- if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
- return find_base_value (src_0);
- else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
- return find_base_value (src_1);
-
- return 0;
- }
-
- case LO_SUM:
- /* The standard form is (lo_sum reg sym) so look only at the
- second operand. */
- return find_base_value (XEXP (src, 1));
-
- case AND:
- /* If the second operand is constant set the base
- address to the first operand. */
- if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
- return find_base_value (XEXP (src, 0));
- return 0;
-
- case TRUNCATE:
- /* As we do not know which address space the pointer is referring to, we can
- handle this only if the target does not support different pointer or
- address modes depending on the address space. */
- if (!target_default_pointer_address_modes_p ())
- break;
- if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
- break;
- /* Fall through. */
- case HIGH:
- case PRE_INC:
- case PRE_DEC:
- case POST_INC:
- case POST_DEC:
- case PRE_MODIFY:
- case POST_MODIFY:
- return find_base_value (XEXP (src, 0));
-
- case ZERO_EXTEND:
- case SIGN_EXTEND: /* used for NT/Alpha pointers */
- /* As we do not know which address space the pointer is referring to, we can
- handle this only if the target does not support different pointer or
- address modes depending on the address space. */
- if (!target_default_pointer_address_modes_p ())
- break;
-
- {
- rtx temp = find_base_value (XEXP (src, 0));
-
- if (temp != 0 && CONSTANT_P (temp))
- temp = convert_memory_address (Pmode, temp);
-
- return temp;
- }
-
- default:
- break;
- }
-
- return 0;
-}
-
-/* Called from init_alias_analysis indirectly through note_stores,
- or directly if DEST is a register with a REG_NOALIAS note attached.
- SET is null in the latter case. */
-
-/* While scanning insns to find base values, reg_seen[N] is nonzero if
- register N has been set in this function. */
-static sbitmap reg_seen;
-
-static void
-record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
-{
- unsigned regno;
- rtx src;
- int n;
-
- if (!REG_P (dest))
- return;
-
- regno = REGNO (dest);
-
- gcc_checking_assert (regno < reg_base_value->length ());
-
- /* If this spans multiple hard registers, then we must indicate that every
- register has an unusable value. */
- if (regno < FIRST_PSEUDO_REGISTER)
- n = hard_regno_nregs[regno][GET_MODE (dest)];
- else
- n = 1;
- if (n != 1)
- {
- while (--n >= 0)
- {
- bitmap_set_bit (reg_seen, regno + n);
- new_reg_base_value[regno + n] = 0;
- }
- return;
- }
-
- if (set)
- {
- /* A CLOBBER wipes out any old value but does not prevent a previously
- unset register from acquiring a base address (i.e. reg_seen is not
- set). */
- if (GET_CODE (set) == CLOBBER)
- {
- new_reg_base_value[regno] = 0;
- return;
- }
- src = SET_SRC (set);
- }
- else
- {
- /* There's a REG_NOALIAS note against DEST. */
- if (bitmap_bit_p (reg_seen, regno))
- {
- new_reg_base_value[regno] = 0;
- return;
- }
- bitmap_set_bit (reg_seen, regno);
- new_reg_base_value[regno] = unique_base_value (unique_id++);
- return;
- }
-
- /* If this is not the first set of REGNO, see whether the new value
- is related to the old one. There are two cases of interest:
-
- (1) The register might be assigned an entirely new value
- that has the same base term as the original set.
-
- (2) The set might be a simple self-modification that
- cannot change REGNO's base value.
-
- If neither case holds, reject the original base value as invalid.
- Note that the following situation is not detected:
-
- extern int x, y; int *p = &x; p += (&y-&x);
-
- ANSI C does not allow computing the difference of addresses
- of distinct top level objects. */
- if (new_reg_base_value[regno] != 0
- && find_base_value (src) != new_reg_base_value[regno])
- switch (GET_CODE (src))
- {
- case LO_SUM:
- case MINUS:
- if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
- new_reg_base_value[regno] = 0;
- break;
- case PLUS:
- /* If the value we add in the PLUS is also a valid base value,
- this might be the actual base value, and the original value
- an index. */
- {
- rtx other = NULL_RTX;
-
- if (XEXP (src, 0) == dest)
- other = XEXP (src, 1);
- else if (XEXP (src, 1) == dest)
- other = XEXP (src, 0);
-
- if (! other || find_base_value (other))
- new_reg_base_value[regno] = 0;
- break;
- }
- case AND:
- if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
- new_reg_base_value[regno] = 0;
- break;
- default:
- new_reg_base_value[regno] = 0;
- break;
- }
- /* If this is the first set of a register, record the value. */
- else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
- && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
- new_reg_base_value[regno] = find_base_value (src);
-
- bitmap_set_bit (reg_seen, regno);
-}
-
-/* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
- using hard registers with non-null REG_BASE_VALUE for renaming. */
-rtx
-get_reg_base_value (unsigned int regno)
-{
- return (*reg_base_value)[regno];
-}
-
-/* If a value is known for REGNO, return it. */
-
-rtx
-get_reg_known_value (unsigned int regno)
-{
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- regno -= FIRST_PSEUDO_REGISTER;
- if (regno < vec_safe_length (reg_known_value))
- return (*reg_known_value)[regno];
- }
- return NULL;
-}
-
-/* Set it. */
-
-static void
-set_reg_known_value (unsigned int regno, rtx val)
-{
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- regno -= FIRST_PSEUDO_REGISTER;
- if (regno < vec_safe_length (reg_known_value))
- (*reg_known_value)[regno] = val;
- }
-}
-
-/* Similarly for reg_known_equiv_p. */
-
-bool
-get_reg_known_equiv_p (unsigned int regno)
-{
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- regno -= FIRST_PSEUDO_REGISTER;
- if (regno < vec_safe_length (reg_known_value))
- return bitmap_bit_p (reg_known_equiv_p, regno);
- }
- return false;
-}
-
-static void
-set_reg_known_equiv_p (unsigned int regno, bool val)
-{
- if (regno >= FIRST_PSEUDO_REGISTER)
- {
- regno -= FIRST_PSEUDO_REGISTER;
- if (regno < vec_safe_length (reg_known_value))
- {
- if (val)
- bitmap_set_bit (reg_known_equiv_p, regno);
- else
- bitmap_clear_bit (reg_known_equiv_p, regno);
- }
- }
-}
-
-
-/* Returns a canonical version of X, from the point of view alias
- analysis. (For example, if X is a MEM whose address is a register,
- and the register has a known value (say a SYMBOL_REF), then a MEM
- whose address is the SYMBOL_REF is returned.) */
-
-rtx
-canon_rtx (rtx x)
-{
- /* Recursively look for equivalences. */
- if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
- {
- rtx t = get_reg_known_value (REGNO (x));
- if (t == x)
- return x;
- if (t)
- return canon_rtx (t);
- }
-
- if (GET_CODE (x) == PLUS)
- {
- rtx x0 = canon_rtx (XEXP (x, 0));
- rtx x1 = canon_rtx (XEXP (x, 1));
-
- if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
- {
- if (CONST_INT_P (x0))
- return plus_constant (GET_MODE (x), x1, INTVAL (x0));
- else if (CONST_INT_P (x1))
- return plus_constant (GET_MODE (x), x0, INTVAL (x1));
- return gen_rtx_PLUS (GET_MODE (x), x0, x1);
- }
- }
-
- /* This gives us much better alias analysis when called from
- the loop optimizer. Note we want to leave the original
- MEM alone, but need to return the canonicalized MEM with
- all the flags with their original values. */
- else if (MEM_P (x))
- x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
-
- return x;
-}
-
-/* Return 1 if X and Y are identical-looking rtx's.
- Expect that X and Y has been already canonicalized.
-
- We use the data in reg_known_value above to see if two registers with
- different numbers are, in fact, equivalent. */
-
-static int
-rtx_equal_for_memref_p (const_rtx x, const_rtx y)
-{
- int i;
- int j;
- enum rtx_code code;
- const char *fmt;
-
- if (x == 0 && y == 0)
- return 1;
- if (x == 0 || y == 0)
- return 0;
-
- if (x == y)
- return 1;
-
- code = GET_CODE (x);
- /* Rtx's of different codes cannot be equal. */
- if (code != GET_CODE (y))
- return 0;
-
- /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
- (REG:SI x) and (REG:HI x) are NOT equivalent. */
-
- if (GET_MODE (x) != GET_MODE (y))
- return 0;
-
- /* Some RTL can be compared without a recursive examination. */
- switch (code)
- {
- case REG:
- return REGNO (x) == REGNO (y);
-
- case LABEL_REF:
- return XEXP (x, 0) == XEXP (y, 0);
-
- case SYMBOL_REF:
- return XSTR (x, 0) == XSTR (y, 0);
-
- case ENTRY_VALUE:
- /* This is magic, don't go through canonicalization et al. */
- return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
-
- case VALUE:
- CASE_CONST_UNIQUE:
- /* There's no need to compare the contents of CONST_DOUBLEs or
- CONST_INTs because pointer equality is a good enough
- comparison for these nodes. */
- return 0;
-
- default:
- break;
- }
-
- /* canon_rtx knows how to handle plus. No need to canonicalize. */
- if (code == PLUS)
- return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
- && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
- || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
- && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
- /* For commutative operations, the RTX match if the operand match in any
- order. Also handle the simple binary and unary cases without a loop. */
- if (COMMUTATIVE_P (x))
- {
- rtx xop0 = canon_rtx (XEXP (x, 0));
- rtx yop0 = canon_rtx (XEXP (y, 0));
- rtx yop1 = canon_rtx (XEXP (y, 1));
-
- return ((rtx_equal_for_memref_p (xop0, yop0)
- && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
- || (rtx_equal_for_memref_p (xop0, yop1)
- && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
- }
- else if (NON_COMMUTATIVE_P (x))
- {
- return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
- canon_rtx (XEXP (y, 0)))
- && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
- canon_rtx (XEXP (y, 1))));
- }
- else if (UNARY_P (x))
- return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
- canon_rtx (XEXP (y, 0)));
-
- /* Compare the elements. If any pair of corresponding elements
- fail to match, return 0 for the whole things.
-
- Limit cases to types which actually appear in addresses. */
-
- fmt = GET_RTX_FORMAT (code);
- for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
- {
- switch (fmt[i])
- {
- case 'i':
- if (XINT (x, i) != XINT (y, i))
- return 0;
- break;
-
- case 'E':
- /* Two vectors must have the same length. */
- if (XVECLEN (x, i) != XVECLEN (y, i))
- return 0;
-
- /* And the corresponding elements must match. */
- for (j = 0; j < XVECLEN (x, i); j++)
- if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
- canon_rtx (XVECEXP (y, i, j))) == 0)
- return 0;
- break;
-
- case 'e':
- if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
- canon_rtx (XEXP (y, i))) == 0)
- return 0;
- break;
-
- /* This can happen for asm operands. */
- case 's':
- if (strcmp (XSTR (x, i), XSTR (y, i)))
- return 0;
- break;
-
- /* This can happen for an asm which clobbers memory. */
- case '0':
- break;
-
- /* It is believed that rtx's at this level will never
- contain anything but integers and other rtx's,
- except for within LABEL_REFs and SYMBOL_REFs. */
- default:
- gcc_unreachable ();
- }
- }
- return 1;
-}
-
-static rtx
-find_base_term (rtx x)
-{
- cselib_val *val;
- struct elt_loc_list *l, *f;
- rtx ret;
-
-#if defined (FIND_BASE_TERM)
- /* Try machine-dependent ways to find the base term. */
- x = FIND_BASE_TERM (x);
-#endif
-
- switch (GET_CODE (x))
- {
- case REG:
- return REG_BASE_VALUE (x);
-
- case TRUNCATE:
- /* As we do not know which address space the pointer is referring to, we can
- handle this only if the target does not support different pointer or
- address modes depending on the address space. */
- if (!target_default_pointer_address_modes_p ())
- return 0;
- if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
- return 0;
- /* Fall through. */
- case HIGH:
- case PRE_INC:
- case PRE_DEC:
- case POST_INC:
- case POST_DEC:
- case PRE_MODIFY:
- case POST_MODIFY:
- return find_base_term (XEXP (x, 0));
-
- case ZERO_EXTEND:
- case SIGN_EXTEND: /* Used for Alpha/NT pointers */
- /* As we do not know which address space the pointer is referring to, we can
- handle this only if the target does not support different pointer or
- address modes depending on the address space. */
- if (!target_default_pointer_address_modes_p ())
- return 0;
-
- {
- rtx temp = find_base_term (XEXP (x, 0));
-
- if (temp != 0 && CONSTANT_P (temp))
- temp = convert_memory_address (Pmode, temp);
-
- return temp;
- }
-
- case VALUE:
- val = CSELIB_VAL_PTR (x);
- ret = NULL_RTX;
-
- if (!val)
- return ret;
-
- if (cselib_sp_based_value_p (val))
- return static_reg_base_value[STACK_POINTER_REGNUM];
-
- f = val->locs;
- /* Temporarily reset val->locs to avoid infinite recursion. */
- val->locs = NULL;
-
- for (l = f; l; l = l->next)
- if (GET_CODE (l->loc) == VALUE
- && CSELIB_VAL_PTR (l->loc)->locs
- && !CSELIB_VAL_PTR (l->loc)->locs->next
- && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
- continue;
- else if ((ret = find_base_term (l->loc)) != 0)
- break;
-
- val->locs = f;
- return ret;
-
- case LO_SUM:
- /* The standard form is (lo_sum reg sym) so look only at the
- second operand. */
- return find_base_term (XEXP (x, 1));
-
- case CONST:
- x = XEXP (x, 0);
- if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
- return 0;
- /* Fall through. */
- case PLUS:
- case MINUS:
- {
- rtx tmp1 = XEXP (x, 0);
- rtx tmp2 = XEXP (x, 1);
-
- /* This is a little bit tricky since we have to determine which of
- the two operands represents the real base address. Otherwise this
- routine may return the index register instead of the base register.
-
- That may cause us to believe no aliasing was possible, when in
- fact aliasing is possible.
-
- We use a few simple tests to guess the base register. Additional
- tests can certainly be added. For example, if one of the operands
- is a shift or multiply, then it must be the index register and the
- other operand is the base register. */
-
- if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
- return find_base_term (tmp2);
-
- /* If either operand is known to be a pointer, then use it
- to determine the base term. */
- if (REG_P (tmp1) && REG_POINTER (tmp1))
- {
- rtx base = find_base_term (tmp1);
- if (base)
- return base;
- }
-
- if (REG_P (tmp2) && REG_POINTER (tmp2))
- {
- rtx base = find_base_term (tmp2);
- if (base)
- return base;
- }
-
- /* Neither operand was known to be a pointer. Go ahead and find the
- base term for both operands. */
- tmp1 = find_base_term (tmp1);
- tmp2 = find_base_term (tmp2);
-
- /* If either base term is named object or a special address
- (like an argument or stack reference), then use it for the
- base term. */
- if (tmp1 != 0 && known_base_value_p (tmp1))
- return tmp1;
-
- if (tmp2 != 0 && known_base_value_p (tmp2))
- return tmp2;
-
- /* We could not determine which of the two operands was the
- base register and which was the index. So we can determine
- nothing from the base alias check. */
- return 0;
- }
-
- case AND:
- if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
- return find_base_term (XEXP (x, 0));
- return 0;
-
- case SYMBOL_REF:
- case LABEL_REF:
- return x;
-
- default:
- return 0;
- }
-}
-
-/* Return true if accesses to address X may alias accesses based
- on the stack pointer. */
-
-bool
-may_be_sp_based_p (rtx x)
-{
- rtx base = find_base_term (x);
- return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
-}
-
-/* Return 0 if the addresses X and Y are known to point to different
- objects, 1 if they might be pointers to the same object. */
-
-static int
-base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
- enum machine_mode y_mode)
-{
- rtx x_base = find_base_term (x);
- rtx y_base = find_base_term (y);
-
- /* If the address itself has no known base see if a known equivalent
- value has one. If either address still has no known base, nothing
- is known about aliasing. */
- if (x_base == 0)
- {
- rtx x_c;
-
- if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
- return 1;
-
- x_base = find_base_term (x_c);
- if (x_base == 0)
- return 1;
- }
-
- if (y_base == 0)
- {
- rtx y_c;
- if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
- return 1;
-
- y_base = find_base_term (y_c);
- if (y_base == 0)
- return 1;
- }
-
- /* If the base addresses are equal nothing is known about aliasing. */
- if (rtx_equal_p (x_base, y_base))
- return 1;
-
- /* The base addresses are different expressions. If they are not accessed
- via AND, there is no conflict. We can bring knowledge of object
- alignment into play here. For example, on alpha, "char a, b;" can
- alias one another, though "char a; long b;" cannot. AND addesses may
- implicitly alias surrounding objects; i.e. unaligned access in DImode
- via AND address can alias all surrounding object types except those
- with aligment 8 or higher. */
- if (GET_CODE (x) == AND && GET_CODE (y) == AND)
- return 1;
- if (GET_CODE (x) == AND
- && (!CONST_INT_P (XEXP (x, 1))
- || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
- return 1;
- if (GET_CODE (y) == AND
- && (!CONST_INT_P (XEXP (y, 1))
- || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
- return 1;
-
- /* Differing symbols not accessed via AND never alias. */
- if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
- return 0;
-
- if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
- return 0;
-
- return 1;
-}
-
-/* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
- whose UID is greater than the int uid that D points to. */
-
-static int
-refs_newer_value_cb (rtx *x, void *d)
-{
- if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
- return 1;
-
- return 0;
-}
-
-/* Return TRUE if EXPR refers to a VALUE whose uid is greater than
- that of V. */
-
-static bool
-refs_newer_value_p (rtx expr, rtx v)
-{
- int minuid = CSELIB_VAL_PTR (v)->uid;
-
- return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
-}
-
-/* Convert the address X into something we can use. This is done by returning
- it unchanged unless it is a value; in the latter case we call cselib to get
- a more useful rtx. */
-
-rtx
-get_addr (rtx x)
-{
- cselib_val *v;
- struct elt_loc_list *l;
-
- if (GET_CODE (x) != VALUE)
- return x;
- v = CSELIB_VAL_PTR (x);
- if (v)
- {
- bool have_equivs = cselib_have_permanent_equivalences ();
- if (have_equivs)
- v = canonical_cselib_val (v);
- for (l = v->locs; l; l = l->next)
- if (CONSTANT_P (l->loc))
- return l->loc;
- for (l = v->locs; l; l = l->next)
- if (!REG_P (l->loc) && !MEM_P (l->loc)
- /* Avoid infinite recursion when potentially dealing with
- var-tracking artificial equivalences, by skipping the
- equivalences themselves, and not choosing expressions
- that refer to newer VALUEs. */
- && (!have_equivs
- || (GET_CODE (l->loc) != VALUE
- && !refs_newer_value_p (l->loc, x))))
- return l->loc;
- if (have_equivs)
- {
- for (l = v->locs; l; l = l->next)
- if (REG_P (l->loc)
- || (GET_CODE (l->loc) != VALUE
- && !refs_newer_value_p (l->loc, x)))
- return l->loc;
- /* Return the canonical value. */
- return v->val_rtx;
- }
- if (v->locs)
- return v->locs->loc;
- }
- return x;
-}
-
-/* Return the address of the (N_REFS + 1)th memory reference to ADDR
- where SIZE is the size in bytes of the memory reference. If ADDR
- is not modified by the memory reference then ADDR is returned. */
-
-static rtx
-addr_side_effect_eval (rtx addr, int size, int n_refs)
-{
- int offset = 0;
-
- switch (GET_CODE (addr))
- {
- case PRE_INC:
- offset = (n_refs + 1) * size;
- break;
- case PRE_DEC:
- offset = -(n_refs + 1) * size;
- break;
- case POST_INC:
- offset = n_refs * size;
- break;
- case POST_DEC:
- offset = -n_refs * size;
- break;
-
- default:
- return addr;
- }
-
- if (offset)
- addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
- GEN_INT (offset));
- else
- addr = XEXP (addr, 0);
- addr = canon_rtx (addr);
-
- return addr;
-}
-
-/* Return TRUE if an object X sized at XSIZE bytes and another object
- Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
- any of the sizes is zero, assume an overlap, otherwise use the
- absolute value of the sizes as the actual sizes. */
-
-static inline bool
-offset_overlap_p (HOST_WIDE_INT c, int xsize, int ysize)
-{
- return (xsize == 0 || ysize == 0
- || (c >= 0
- ? (abs (xsize) > c)
- : (abs (ysize) > -c)));
-}
-
-/* Return one if X and Y (memory addresses) reference the
- same location in memory or if the references overlap.
- Return zero if they do not overlap, else return
- minus one in which case they still might reference the same location.
-
- C is an offset accumulator. When
- C is nonzero, we are testing aliases between X and Y + C.
- XSIZE is the size in bytes of the X reference,
- similarly YSIZE is the size in bytes for Y.
- Expect that canon_rtx has been already called for X and Y.
-
- If XSIZE or YSIZE is zero, we do not know the amount of memory being
- referenced (the reference was BLKmode), so make the most pessimistic
- assumptions.
-
- If XSIZE or YSIZE is negative, we may access memory outside the object
- being referenced as a side effect. This can happen when using AND to
- align memory references, as is done on the Alpha.
-
- Nice to notice that varying addresses cannot conflict with fp if no
- local variables had their addresses taken, but that's too hard now.
-
- ??? Contrary to the tree alias oracle this does not return
- one for X + non-constant and Y + non-constant when X and Y are equal.
- If that is fixed the TBAA hack for union type-punning can be removed. */
-
-static int
-memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
-{
- if (GET_CODE (x) == VALUE)
- {
- if (REG_P (y))
- {
- struct elt_loc_list *l = NULL;
- if (CSELIB_VAL_PTR (x))
- for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
- l; l = l->next)
- if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
- break;
- if (l)
- x = y;
- else
- x = get_addr (x);
- }
- /* Don't call get_addr if y is the same VALUE. */
- else if (x != y)
- x = get_addr (x);
- }
- if (GET_CODE (y) == VALUE)
- {
- if (REG_P (x))
- {
- struct elt_loc_list *l = NULL;
- if (CSELIB_VAL_PTR (y))
- for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
- l; l = l->next)
- if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
- break;
- if (l)
- y = x;
- else
- y = get_addr (y);
- }
- /* Don't call get_addr if x is the same VALUE. */
- else if (y != x)
- y = get_addr (y);
- }
- if (GET_CODE (x) == HIGH)
- x = XEXP (x, 0);
- else if (GET_CODE (x) == LO_SUM)
- x = XEXP (x, 1);
- else
- x = addr_side_effect_eval (x, abs (xsize), 0);
- if (GET_CODE (y) == HIGH)
- y = XEXP (y, 0);
- else if (GET_CODE (y) == LO_SUM)
- y = XEXP (y, 1);
- else
- y = addr_side_effect_eval (y, abs (ysize), 0);
-
- if (rtx_equal_for_memref_p (x, y))
- {
- return offset_overlap_p (c, xsize, ysize);
- }
-
- /* This code used to check for conflicts involving stack references and
- globals but the base address alias code now handles these cases. */
-
- if (GET_CODE (x) == PLUS)
- {
- /* The fact that X is canonicalized means that this
- PLUS rtx is canonicalized. */
- rtx x0 = XEXP (x, 0);
- rtx x1 = XEXP (x, 1);
-
- if (GET_CODE (y) == PLUS)
- {
- /* The fact that Y is canonicalized means that this
- PLUS rtx is canonicalized. */
- rtx y0 = XEXP (y, 0);
- rtx y1 = XEXP (y, 1);
-
- if (rtx_equal_for_memref_p (x1, y1))
- return memrefs_conflict_p (xsize, x0, ysize, y0, c);
- if (rtx_equal_for_memref_p (x0, y0))
- return memrefs_conflict_p (xsize, x1, ysize, y1, c);
- if (CONST_INT_P (x1))
- {
- if (CONST_INT_P (y1))
- return memrefs_conflict_p (xsize, x0, ysize, y0,
- c - INTVAL (x1) + INTVAL (y1));
- else
- return memrefs_conflict_p (xsize, x0, ysize, y,
- c - INTVAL (x1));
- }
- else if (CONST_INT_P (y1))
- return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
-
- return -1;
- }
- else if (CONST_INT_P (x1))
- return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
- }
- else if (GET_CODE (y) == PLUS)
- {
- /* The fact that Y is canonicalized means that this
- PLUS rtx is canonicalized. */
- rtx y0 = XEXP (y, 0);
- rtx y1 = XEXP (y, 1);
-
- if (CONST_INT_P (y1))
- return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
- else
- return -1;
- }
-
- if (GET_CODE (x) == GET_CODE (y))
- switch (GET_CODE (x))
- {
- case MULT:
- {
- /* Handle cases where we expect the second operands to be the
- same, and check only whether the first operand would conflict
- or not. */
- rtx x0, y0;
- rtx x1 = canon_rtx (XEXP (x, 1));
- rtx y1 = canon_rtx (XEXP (y, 1));
- if (! rtx_equal_for_memref_p (x1, y1))
- return -1;
- x0 = canon_rtx (XEXP (x, 0));
- y0 = canon_rtx (XEXP (y, 0));
- if (rtx_equal_for_memref_p (x0, y0))
- return offset_overlap_p (c, xsize, ysize);
-
- /* Can't properly adjust our sizes. */
- if (!CONST_INT_P (x1))
- return -1;
- xsize /= INTVAL (x1);
- ysize /= INTVAL (x1);
- c /= INTVAL (x1);
- return memrefs_conflict_p (xsize, x0, ysize, y0, c);
- }
-
- default:
- break;
- }
-
- /* Deal with alignment ANDs by adjusting offset and size so as to
- cover the maximum range, without taking any previously known
- alignment into account. Make a size negative after such an
- adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
- assume a potential overlap, because they may end up in contiguous
- memory locations and the stricter-alignment access may span over
- part of both. */
- if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
- {
- HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
- unsigned HOST_WIDE_INT uc = sc;
- if (sc < 0 && -uc == (uc & -uc))
- {
- if (xsize > 0)
- xsize = -xsize;
- if (xsize)
- xsize += sc + 1;
- c -= sc + 1;
- return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
- ysize, y, c);
- }
- }
- if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
- {
- HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
- unsigned HOST_WIDE_INT uc = sc;
- if (sc < 0 && -uc == (uc & -uc))
- {
- if (ysize > 0)
- ysize = -ysize;
- if (ysize)
- ysize += sc + 1;
- c += sc + 1;
- return memrefs_conflict_p (xsize, x,
- ysize, canon_rtx (XEXP (y, 0)), c);
- }
- }
-
- if (CONSTANT_P (x))
- {
- if (CONST_INT_P (x) && CONST_INT_P (y))
- {
- c += (INTVAL (y) - INTVAL (x));
- return offset_overlap_p (c, xsize, ysize);
- }
-
- if (GET_CODE (x) == CONST)
- {
- if (GET_CODE (y) == CONST)
- return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
- ysize, canon_rtx (XEXP (y, 0)), c);
- else
- return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
- ysize, y, c);
- }
- if (GET_CODE (y) == CONST)
- return memrefs_conflict_p (xsize, x, ysize,
- canon_rtx (XEXP (y, 0)), c);
-
- /* Assume a potential overlap for symbolic addresses that went
- through alignment adjustments (i.e., that have negative
- sizes), because we can't know how far they are from each
- other. */
- if (CONSTANT_P (y))
- return (xsize < 0 || ysize < 0 || offset_overlap_p (c, xsize, ysize));
-
- return -1;
- }
-
- return -1;
-}
-
-/* Functions to compute memory dependencies.
-
- Since we process the insns in execution order, we can build tables
- to keep track of what registers are fixed (and not aliased), what registers
- are varying in known ways, and what registers are varying in unknown
- ways.
-
- If both memory references are volatile, then there must always be a
- dependence between the two references, since their order can not be
- changed. A volatile and non-volatile reference can be interchanged
- though.
-
- We also must allow AND addresses, because they may generate accesses
- outside the object being referenced. This is used to generate aligned
- addresses from unaligned addresses, for instance, the alpha
- storeqi_unaligned pattern. */
-
-/* Read dependence: X is read after read in MEM takes place. There can
- only be a dependence here if both reads are volatile, or if either is
- an explicit barrier. */
-
-int
-read_dependence (const_rtx mem, const_rtx x)
-{
- if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
- return true;
- if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
- || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
- return true;
- return false;
-}
-
-/* Return true if we can determine that the fields referenced cannot
- overlap for any pair of objects. */
-
-static bool
-nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
-{
- const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
- const_tree fieldx, fieldy, typex, typey, orig_y;
-
- if (!flag_strict_aliasing
- || !x || !y
- || TREE_CODE (x) != COMPONENT_REF
- || TREE_CODE (y) != COMPONENT_REF)
- return false;
-
- do
- {
- /* The comparison has to be done at a common type, since we don't
- know how the inheritance hierarchy works. */
- orig_y = y;
- do
- {
- fieldx = TREE_OPERAND (x, 1);
- typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
-
- y = orig_y;
- do
- {
- fieldy = TREE_OPERAND (y, 1);
- typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
-
- if (typex == typey)
- goto found;
-
- y = TREE_OPERAND (y, 0);
- }
- while (y && TREE_CODE (y) == COMPONENT_REF);
-
- x = TREE_OPERAND (x, 0);
- }
- while (x && TREE_CODE (x) == COMPONENT_REF);
- /* Never found a common type. */
- return false;
-
- found:
- /* If we're left with accessing different fields of a structure, then no
- possible overlap, unless they are both bitfields. */
- if (TREE_CODE (typex) == RECORD_TYPE && fieldx != fieldy)
- return !(DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy));
-
- /* The comparison on the current field failed. If we're accessing
- a very nested structure, look at the next outer level. */
- x = TREE_OPERAND (x, 0);
- y = TREE_OPERAND (y, 0);
- }
- while (x && y
- && TREE_CODE (x) == COMPONENT_REF
- && TREE_CODE (y) == COMPONENT_REF);
-
- return false;
-}
-
-/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
-
-static tree
-decl_for_component_ref (tree x)
-{
- do
- {
- x = TREE_OPERAND (x, 0);
- }
- while (x && TREE_CODE (x) == COMPONENT_REF);
-
- return x && DECL_P (x) ? x : NULL_TREE;
-}
-
-/* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
- for the offset of the field reference. *KNOWN_P says whether the
- offset is known. */
-
-static void
-adjust_offset_for_component_ref (tree x, bool *known_p,
- HOST_WIDE_INT *offset)
-{
- if (!*known_p)
- return;
- do
- {
- tree xoffset = component_ref_field_offset (x);
- tree field = TREE_OPERAND (x, 1);
-
- if (! host_integerp (xoffset, 1))
- {
- *known_p = false;
- return;
- }
- *offset += (tree_low_cst (xoffset, 1)
- + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
- / BITS_PER_UNIT));
-
- x = TREE_OPERAND (x, 0);
- }
- while (x && TREE_CODE (x) == COMPONENT_REF);
-}
-
-/* Return nonzero if we can determine the exprs corresponding to memrefs
- X and Y and they do not overlap.
- If LOOP_VARIANT is set, skip offset-based disambiguation */
-
-int
-nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
-{
- tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
- rtx rtlx, rtly;
- rtx basex, basey;
- bool moffsetx_known_p, moffsety_known_p;
- HOST_WIDE_INT moffsetx = 0, moffsety = 0;
- HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
-
- /* Unless both have exprs, we can't tell anything. */
- if (exprx == 0 || expry == 0)
- return 0;
-
- /* For spill-slot accesses make sure we have valid offsets. */
- if ((exprx == get_spill_slot_decl (false)
- && ! MEM_OFFSET_KNOWN_P (x))
- || (expry == get_spill_slot_decl (false)
- && ! MEM_OFFSET_KNOWN_P (y)))
- return 0;
-
- /* If the field reference test failed, look at the DECLs involved. */
- moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
- if (moffsetx_known_p)
- moffsetx = MEM_OFFSET (x);
- if (TREE_CODE (exprx) == COMPONENT_REF)
- {
- tree t = decl_for_component_ref (exprx);
- if (! t)
- return 0;
- adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
- exprx = t;
- }
-
- moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
- if (moffsety_known_p)
- moffsety = MEM_OFFSET (y);
- if (TREE_CODE (expry) == COMPONENT_REF)
- {
- tree t = decl_for_component_ref (expry);
- if (! t)
- return 0;
- adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
- expry = t;
- }
-
- if (! DECL_P (exprx) || ! DECL_P (expry))
- return 0;
-
- /* With invalid code we can end up storing into the constant pool.
- Bail out to avoid ICEing when creating RTL for this.
- See gfortran.dg/lto/20091028-2_0.f90. */
- if (TREE_CODE (exprx) == CONST_DECL
- || TREE_CODE (expry) == CONST_DECL)
- return 1;
-
- rtlx = DECL_RTL (exprx);
- rtly = DECL_RTL (expry);
-
- /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
- can't overlap unless they are the same because we never reuse that part
- of the stack frame used for locals for spilled pseudos. */
- if ((!MEM_P (rtlx) || !MEM_P (rtly))
- && ! rtx_equal_p (rtlx, rtly))
- return 1;
-
- /* If we have MEMs referring to different address spaces (which can
- potentially overlap), we cannot easily tell from the addresses
- whether the references overlap. */
- if (MEM_P (rtlx) && MEM_P (rtly)
- && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
- return 0;
-
- /* Get the base and offsets of both decls. If either is a register, we
- know both are and are the same, so use that as the base. The only
- we can avoid overlap is if we can deduce that they are nonoverlapping
- pieces of that decl, which is very rare. */
- basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
- if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
- offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
-
- basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
- if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
- offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
-
- /* If the bases are different, we know they do not overlap if both
- are constants or if one is a constant and the other a pointer into the
- stack frame. Otherwise a different base means we can't tell if they
- overlap or not. */
- if (! rtx_equal_p (basex, basey))
- return ((CONSTANT_P (basex) && CONSTANT_P (basey))
- || (CONSTANT_P (basex) && REG_P (basey)
- && REGNO_PTR_FRAME_P (REGNO (basey)))
- || (CONSTANT_P (basey) && REG_P (basex)
- && REGNO_PTR_FRAME_P (REGNO (basex))));
-
- /* Offset based disambiguation not appropriate for loop invariant */
- if (loop_invariant)
- return 0;
-
- sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
- : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
- : -1);
- sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
- : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
- : -1);
-
- /* If we have an offset for either memref, it can update the values computed
- above. */
- if (moffsetx_known_p)
- offsetx += moffsetx, sizex -= moffsetx;
- if (moffsety_known_p)
- offsety += moffsety, sizey -= moffsety;
-
- /* If a memref has both a size and an offset, we can use the smaller size.
- We can't do this if the offset isn't known because we must view this
- memref as being anywhere inside the DECL's MEM. */
- if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
- sizex = MEM_SIZE (x);
- if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
- sizey = MEM_SIZE (y);
-
- /* Put the values of the memref with the lower offset in X's values. */
- if (offsetx > offsety)
- {
- tem = offsetx, offsetx = offsety, offsety = tem;
- tem = sizex, sizex = sizey, sizey = tem;
- }
-
- /* If we don't know the size of the lower-offset value, we can't tell
- if they conflict. Otherwise, we do the test. */
- return sizex >= 0 && offsety >= offsetx + sizex;
-}
-
-/* Helper for true_dependence and canon_true_dependence.
- Checks for true dependence: X is read after store in MEM takes place.
-
- If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
- NULL_RTX, and the canonical addresses of MEM and X are both computed
- here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
-
- If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
-
- Returns 1 if there is a true dependence, 0 otherwise. */
-
-static int
-true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
- const_rtx x, rtx x_addr, bool mem_canonicalized)
-{
- rtx base;
- int ret;
-
- gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
- : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
-
- if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
- return 1;
-
- /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
- This is used in epilogue deallocation functions, and in cselib. */
- if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
- return 1;
- if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
- return 1;
- if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
- || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
- return 1;
-
- /* Read-only memory is by definition never modified, and therefore can't
- conflict with anything. We don't expect to find read-only set on MEM,
- but stupid user tricks can produce them, so don't die. */
- if (MEM_READONLY_P (x))
- return 0;
-
- /* If we have MEMs referring to different address spaces (which can
- potentially overlap), we cannot easily tell from the addresses
- whether the references overlap. */
- if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
- return 1;
-
- if (! mem_addr)
- {
- mem_addr = XEXP (mem, 0);
- if (mem_mode == VOIDmode)
- mem_mode = GET_MODE (mem);
- }
-
- if (! x_addr)
- {
- x_addr = XEXP (x, 0);
- if (!((GET_CODE (x_addr) == VALUE
- && GET_CODE (mem_addr) != VALUE
- && reg_mentioned_p (x_addr, mem_addr))
- || (GET_CODE (x_addr) != VALUE
- && GET_CODE (mem_addr) == VALUE
- && reg_mentioned_p (mem_addr, x_addr))))
- {
- x_addr = get_addr (x_addr);
- if (! mem_canonicalized)
- mem_addr = get_addr (mem_addr);
- }
- }
-
- base = find_base_term (x_addr);
- if (base && (GET_CODE (base) == LABEL_REF
- || (GET_CODE (base) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (base))))
- return 0;
-
- if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
- return 0;
-
- x_addr = canon_rtx (x_addr);
- if (!mem_canonicalized)
- mem_addr = canon_rtx (mem_addr);
-
- if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
- SIZE_FOR_MODE (x), x_addr, 0)) != -1)
- return ret;
-
- if (mems_in_disjoint_alias_sets_p (x, mem))
- return 0;
-
- if (nonoverlapping_memrefs_p (mem, x, false))
- return 0;
-
- if (nonoverlapping_component_refs_p (mem, x))
- return 0;
-
- return rtx_refs_may_alias_p (x, mem, true);
-}
-
-/* True dependence: X is read after store in MEM takes place. */
-
-int
-true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
-{
- return true_dependence_1 (mem, mem_mode, NULL_RTX,
- x, NULL_RTX, /*mem_canonicalized=*/false);
-}
-
-/* Canonical true dependence: X is read after store in MEM takes place.
- Variant of true_dependence which assumes MEM has already been
- canonicalized (hence we no longer do that here).
- The mem_addr argument has been added, since true_dependence_1 computed
- this value prior to canonicalizing. */
-
-int
-canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
- const_rtx x, rtx x_addr)
-{
- return true_dependence_1 (mem, mem_mode, mem_addr,
- x, x_addr, /*mem_canonicalized=*/true);
-}
-
-/* Returns nonzero if a write to X might alias a previous read from
- (or, if WRITEP is nonzero, a write to) MEM. */
-
-static int
-write_dependence_p (const_rtx mem, const_rtx x, int writep)
-{
- rtx x_addr, mem_addr;
- rtx base;
- int ret;
-
- if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
- return 1;
-
- /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
- This is used in epilogue deallocation functions. */
- if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
- return 1;
- if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
- return 1;
- if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
- || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
- return 1;
-
- /* A read from read-only memory can't conflict with read-write memory. */
- if (!writep && MEM_READONLY_P (mem))
- return 0;
-
- /* If we have MEMs referring to different address spaces (which can
- potentially overlap), we cannot easily tell from the addresses
- whether the references overlap. */
- if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
- return 1;
-
- x_addr = XEXP (x, 0);
- mem_addr = XEXP (mem, 0);
- if (!((GET_CODE (x_addr) == VALUE
- && GET_CODE (mem_addr) != VALUE
- && reg_mentioned_p (x_addr, mem_addr))
- || (GET_CODE (x_addr) != VALUE
- && GET_CODE (mem_addr) == VALUE
- && reg_mentioned_p (mem_addr, x_addr))))
- {
- x_addr = get_addr (x_addr);
- mem_addr = get_addr (mem_addr);
- }
-
- if (! writep)
- {
- base = find_base_term (mem_addr);
- if (base && (GET_CODE (base) == LABEL_REF
- || (GET_CODE (base) == SYMBOL_REF
- && CONSTANT_POOL_ADDRESS_P (base))))
- return 0;
- }
-
- if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
- GET_MODE (mem)))
- return 0;
-
- x_addr = canon_rtx (x_addr);
- mem_addr = canon_rtx (mem_addr);
-
- if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
- SIZE_FOR_MODE (x), x_addr, 0)) != -1)
- return ret;
-
- if (nonoverlapping_memrefs_p (x, mem, false))
- return 0;
-
- return rtx_refs_may_alias_p (x, mem, false);
-}
-
-/* Anti dependence: X is written after read in MEM takes place. */
-
-int
-anti_dependence (const_rtx mem, const_rtx x)
-{
- return write_dependence_p (mem, x, /*writep=*/0);
-}
-
-/* Output dependence: X is written after store in MEM takes place. */
-
-int
-output_dependence (const_rtx mem, const_rtx x)
-{
- return write_dependence_p (mem, x, /*writep=*/1);
-}
-
-
-
-/* Check whether X may be aliased with MEM. Don't do offset-based
- memory disambiguation & TBAA. */
-int
-may_alias_p (const_rtx mem, const_rtx x)
-{
- rtx x_addr, mem_addr;
-
- if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
- return 1;
-
- /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
- This is used in epilogue deallocation functions. */
- if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
- return 1;
- if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
- return 1;
- if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
- || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
- return 1;
-
- /* Read-only memory is by definition never modified, and therefore can't
- conflict with anything. We don't expect to find read-only set on MEM,
- but stupid user tricks can produce them, so don't die. */
- if (MEM_READONLY_P (x))
- return 0;
-
- /* If we have MEMs referring to different address spaces (which can
- potentially overlap), we cannot easily tell from the addresses
- whether the references overlap. */
- if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
- return 1;
-
- x_addr = XEXP (x, 0);
- mem_addr = XEXP (mem, 0);
- if (!((GET_CODE (x_addr) == VALUE
- && GET_CODE (mem_addr) != VALUE
- && reg_mentioned_p (x_addr, mem_addr))
- || (GET_CODE (x_addr) != VALUE
- && GET_CODE (mem_addr) == VALUE
- && reg_mentioned_p (mem_addr, x_addr))))
- {
- x_addr = get_addr (x_addr);
- mem_addr = get_addr (mem_addr);
- }
-
- if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
- return 0;
-
- x_addr = canon_rtx (x_addr);
- mem_addr = canon_rtx (mem_addr);
-
- if (nonoverlapping_memrefs_p (mem, x, true))
- return 0;
-
- /* TBAA not valid for loop_invarint */
- return rtx_refs_may_alias_p (x, mem, false);
-}
-
-void
-init_alias_target (void)
-{
- int i;
-
- if (!arg_base_value)
- arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
-
- memset (static_reg_base_value, 0, sizeof static_reg_base_value);
-
- for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
- /* Check whether this register can hold an incoming pointer
- argument. FUNCTION_ARG_REGNO_P tests outgoing register
- numbers, so translate if necessary due to register windows. */
- if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
- && HARD_REGNO_MODE_OK (i, Pmode))
- static_reg_base_value[i] = arg_base_value;
-
- static_reg_base_value[STACK_POINTER_REGNUM]
- = unique_base_value (UNIQUE_BASE_VALUE_SP);
- static_reg_base_value[ARG_POINTER_REGNUM]
- = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
- static_reg_base_value[FRAME_POINTER_REGNUM]
- = unique_base_value (UNIQUE_BASE_VALUE_FP);
-#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
- static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
- = unique_base_value (UNIQUE_BASE_VALUE_HFP);
-#endif
-}
-
-/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
- to be memory reference. */
-static bool memory_modified;
-static void
-memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
-{
- if (MEM_P (x))
- {
- if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
- memory_modified = true;
- }
-}
-
-
-/* Return true when INSN possibly modify memory contents of MEM
- (i.e. address can be modified). */
-bool
-memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
-{
- if (!INSN_P (insn))
- return false;
- memory_modified = false;
- note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
- return memory_modified;
-}
-
-/* Return TRUE if the destination of a set is rtx identical to
- ITEM. */
-static inline bool
-set_dest_equal_p (const_rtx set, const_rtx item)
-{
- rtx dest = SET_DEST (set);
- return rtx_equal_p (dest, item);
-}
-
-/* Like memory_modified_in_insn_p, but return TRUE if INSN will
- *DEFINITELY* modify the memory contents of MEM. */
-bool
-memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
-{
- if (!INSN_P (insn))
- return false;
- insn = PATTERN (insn);
- if (GET_CODE (insn) == SET)
- return set_dest_equal_p (insn, mem);
- else if (GET_CODE (insn) == PARALLEL)
- {
- int i;
- for (i = 0; i < XVECLEN (insn, 0); i++)
- {
- rtx sub = XVECEXP (insn, 0, i);
- if (GET_CODE (sub) == SET
- && set_dest_equal_p (sub, mem))
- return true;
- }
- }
- return false;
-}
-
-/* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
- array. */
-
-void
-init_alias_analysis (void)
-{
- unsigned int maxreg = max_reg_num ();
- int changed, pass;
- int i;
- unsigned int ui;
- rtx insn, val;
- int rpo_cnt;
- int *rpo;
-
- timevar_push (TV_ALIAS_ANALYSIS);
-
- vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
- reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
- bitmap_clear (reg_known_equiv_p);
-
- /* If we have memory allocated from the previous run, use it. */
- if (old_reg_base_value)
- reg_base_value = old_reg_base_value;
-
- if (reg_base_value)
- reg_base_value->truncate (0);
-
- vec_safe_grow_cleared (reg_base_value, maxreg);
-
- new_reg_base_value = XNEWVEC (rtx, maxreg);
- reg_seen = sbitmap_alloc (maxreg);
-
- /* The basic idea is that each pass through this loop will use the
- "constant" information from the previous pass to propagate alias
- information through another level of assignments.
-
- The propagation is done on the CFG in reverse post-order, to propagate
- things forward as far as possible in each iteration.
-
- This could get expensive if the assignment chains are long. Maybe
- we should throttle the number of iterations, possibly based on
- the optimization level or flag_expensive_optimizations.
-
- We could propagate more information in the first pass by making use
- of DF_REG_DEF_COUNT to determine immediately that the alias information
- for a pseudo is "constant".
-
- A program with an uninitialized variable can cause an infinite loop
- here. Instead of doing a full dataflow analysis to detect such problems
- we just cap the number of iterations for the loop.
-
- The state of the arrays for the set chain in question does not matter
- since the program has undefined behavior. */
-
- rpo = XNEWVEC (int, n_basic_blocks);
- rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
-
- pass = 0;
- do
- {
- /* Assume nothing will change this iteration of the loop. */
- changed = 0;
-
- /* We want to assign the same IDs each iteration of this loop, so
- start counting from one each iteration of the loop. */
- unique_id = 1;
-
- /* We're at the start of the function each iteration through the
- loop, so we're copying arguments. */
- copying_arguments = true;
-
- /* Wipe the potential alias information clean for this pass. */
- memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
-
- /* Wipe the reg_seen array clean. */
- bitmap_clear (reg_seen);
-
- /* Mark all hard registers which may contain an address.
- The stack, frame and argument pointers may contain an address.
- An argument register which can hold a Pmode value may contain
- an address even if it is not in BASE_REGS.
-
- The address expression is VOIDmode for an argument and
- Pmode for other registers. */
-
- memcpy (new_reg_base_value, static_reg_base_value,
- FIRST_PSEUDO_REGISTER * sizeof (rtx));
-
- /* Walk the insns adding values to the new_reg_base_value array. */
- for (i = 0; i < rpo_cnt; i++)
- {
- basic_block bb = BASIC_BLOCK (rpo[i]);
- FOR_BB_INSNS (bb, insn)
- {
- if (NONDEBUG_INSN_P (insn))
- {
- rtx note, set;
-
-#if defined (HAVE_prologue) || defined (HAVE_epilogue)
- /* The prologue/epilogue insns are not threaded onto the
- insn chain until after reload has completed. Thus,
- there is no sense wasting time checking if INSN is in
- the prologue/epilogue until after reload has completed. */
- if (reload_completed
- && prologue_epilogue_contains (insn))
- continue;
-#endif
-
- /* If this insn has a noalias note, process it, Otherwise,
- scan for sets. A simple set will have no side effects
- which could change the base value of any other register. */
-
- if (GET_CODE (PATTERN (insn)) == SET
- && REG_NOTES (insn) != 0
- && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
- record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
- else
- note_stores (PATTERN (insn), record_set, NULL);
-
- set = single_set (insn);
-
- if (set != 0
- && REG_P (SET_DEST (set))
- && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
- {
- unsigned int regno = REGNO (SET_DEST (set));
- rtx src = SET_SRC (set);
- rtx t;
-
- note = find_reg_equal_equiv_note (insn);
- if (note && REG_NOTE_KIND (note) == REG_EQUAL
- && DF_REG_DEF_COUNT (regno) != 1)
- note = NULL_RTX;
-
- if (note != NULL_RTX
- && GET_CODE (XEXP (note, 0)) != EXPR_LIST
- && ! rtx_varies_p (XEXP (note, 0), 1)
- && ! reg_overlap_mentioned_p (SET_DEST (set),
- XEXP (note, 0)))
- {
- set_reg_known_value (regno, XEXP (note, 0));
- set_reg_known_equiv_p (regno,
- REG_NOTE_KIND (note) == REG_EQUIV);
- }
- else if (DF_REG_DEF_COUNT (regno) == 1
- && GET_CODE (src) == PLUS
- && REG_P (XEXP (src, 0))
- && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
- && CONST_INT_P (XEXP (src, 1)))
- {
- t = plus_constant (GET_MODE (src), t,
- INTVAL (XEXP (src, 1)));
- set_reg_known_value (regno, t);
- set_reg_known_equiv_p (regno, false);
- }
- else if (DF_REG_DEF_COUNT (regno) == 1
- && ! rtx_varies_p (src, 1))
- {
- set_reg_known_value (regno, src);
- set_reg_known_equiv_p (regno, false);
- }
- }
- }
- else if (NOTE_P (insn)
- && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
- copying_arguments = false;
- }
- }
-
- /* Now propagate values from new_reg_base_value to reg_base_value. */
- gcc_assert (maxreg == (unsigned int) max_reg_num ());
-
- for (ui = 0; ui < maxreg; ui++)
- {
- if (new_reg_base_value[ui]
- && new_reg_base_value[ui] != (*reg_base_value)[ui]
- && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
- {
- (*reg_base_value)[ui] = new_reg_base_value[ui];
- changed = 1;
- }
- }
- }
- while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
- XDELETEVEC (rpo);
-
- /* Fill in the remaining entries. */
- FOR_EACH_VEC_ELT (*reg_known_value, i, val)
- {
- int regno = i + FIRST_PSEUDO_REGISTER;
- if (! val)
- set_reg_known_value (regno, regno_reg_rtx[regno]);
- }
-
- /* Clean up. */
- free (new_reg_base_value);
- new_reg_base_value = 0;
- sbitmap_free (reg_seen);
- reg_seen = 0;
- timevar_pop (TV_ALIAS_ANALYSIS);
-}
-
-/* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
- Special API for var-tracking pass purposes. */
-
-void
-vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
-{
- (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
-}
-
-void
-end_alias_analysis (void)
-{
- old_reg_base_value = reg_base_value;
- vec_free (reg_known_value);
- sbitmap_free (reg_known_equiv_p);
-}
-
-#include "gt-alias.h"