aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/ada/s-taprop-solaris.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/ada/s-taprop-solaris.adb')
-rw-r--r--gcc-4.8.1/gcc/ada/s-taprop-solaris.adb2058
1 files changed, 2058 insertions, 0 deletions
diff --git a/gcc-4.8.1/gcc/ada/s-taprop-solaris.adb b/gcc-4.8.1/gcc/ada/s-taprop-solaris.adb
new file mode 100644
index 000000000..92088e10c
--- /dev/null
+++ b/gcc-4.8.1/gcc/ada/s-taprop-solaris.adb
@@ -0,0 +1,2058 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
+-- --
+-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
+-- --
+-- GNARL is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. --
+-- --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception, --
+-- version 3.1, as published by the Free Software Foundation. --
+-- --
+-- You should have received a copy of the GNU General Public License and --
+-- a copy of the GCC Runtime Library Exception along with this program; --
+-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
+-- <http://www.gnu.org/licenses/>. --
+-- --
+-- GNARL was developed by the GNARL team at Florida State University. --
+-- Extensive contributions were provided by Ada Core Technologies, Inc. --
+-- --
+------------------------------------------------------------------------------
+
+-- This is a Solaris (native) version of this package
+
+-- This package contains all the GNULL primitives that interface directly with
+-- the underlying OS.
+
+pragma Polling (Off);
+-- Turn off polling, we do not want ATC polling to take place during tasking
+-- operations. It causes infinite loops and other problems.
+
+with Interfaces.C;
+
+with System.Multiprocessors;
+with System.Tasking.Debug;
+with System.Interrupt_Management;
+with System.OS_Constants;
+with System.OS_Primitives;
+with System.Task_Info;
+
+pragma Warnings (Off);
+with System.OS_Lib;
+pragma Warnings (On);
+
+with System.Soft_Links;
+-- We use System.Soft_Links instead of System.Tasking.Initialization
+-- because the later is a higher level package that we shouldn't depend on.
+-- For example when using the restricted run time, it is replaced by
+-- System.Tasking.Restricted.Stages.
+
+package body System.Task_Primitives.Operations is
+
+ package OSC renames System.OS_Constants;
+ package SSL renames System.Soft_Links;
+
+ use System.Tasking.Debug;
+ use System.Tasking;
+ use Interfaces.C;
+ use System.OS_Interface;
+ use System.Parameters;
+ use System.OS_Primitives;
+
+ ----------------
+ -- Local Data --
+ ----------------
+
+ -- The following are logically constants, but need to be initialized
+ -- at run time.
+
+ Environment_Task_Id : Task_Id;
+ -- A variable to hold Task_Id for the environment task.
+ -- If we use this variable to get the Task_Id, we need the following
+ -- ATCB_Key only for non-Ada threads.
+
+ Unblocked_Signal_Mask : aliased sigset_t;
+ -- The set of signals that should unblocked in all tasks
+
+ ATCB_Key : aliased thread_key_t;
+ -- Key used to find the Ada Task_Id associated with a thread,
+ -- at least for C threads unknown to the Ada run-time system.
+
+ Single_RTS_Lock : aliased RTS_Lock;
+ -- This is a lock to allow only one thread of control in the RTS at
+ -- a time; it is used to execute in mutual exclusion from all other tasks.
+ -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
+
+ Next_Serial_Number : Task_Serial_Number := 100;
+ -- We start at 100, to reserve some special values for
+ -- using in error checking.
+ -- The following are internal configuration constants needed.
+
+ Abort_Handler_Installed : Boolean := False;
+ -- True if a handler for the abort signal is installed
+
+ Null_Thread_Id : constant Thread_Id := Thread_Id'Last;
+ -- Constant to indicate that the thread identifier has not yet been
+ -- initialized.
+
+ ----------------------
+ -- Priority Support --
+ ----------------------
+
+ Priority_Ceiling_Emulation : constant Boolean := True;
+ -- controls whether we emulate priority ceiling locking
+
+ -- To get a scheduling close to annex D requirements, we use the real-time
+ -- class provided for LWPs and map each task/thread to a specific and
+ -- unique LWP (there is 1 thread per LWP, and 1 LWP per thread).
+
+ -- The real time class can only be set when the process has root
+ -- privileges, so in the other cases, we use the normal thread scheduling
+ -- and priority handling.
+
+ Using_Real_Time_Class : Boolean := False;
+ -- indicates whether the real time class is being used (i.e. the process
+ -- has root privileges).
+
+ Prio_Param : aliased struct_pcparms;
+ -- Hold priority info (Real_Time) initialized during the package
+ -- elaboration.
+
+ -----------------------------------
+ -- External Configuration Values --
+ -----------------------------------
+
+ Time_Slice_Val : Integer;
+ pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
+
+ Locking_Policy : Character;
+ pragma Import (C, Locking_Policy, "__gl_locking_policy");
+
+ Dispatching_Policy : Character;
+ pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
+
+ Foreign_Task_Elaborated : aliased Boolean := True;
+ -- Used to identified fake tasks (i.e., non-Ada Threads)
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ function sysconf (name : System.OS_Interface.int) return processorid_t;
+ pragma Import (C, sysconf, "sysconf");
+
+ SC_NPROCESSORS_CONF : constant System.OS_Interface.int := 14;
+
+ function Num_Procs
+ (name : System.OS_Interface.int := SC_NPROCESSORS_CONF)
+ return processorid_t renames sysconf;
+
+ procedure Abort_Handler
+ (Sig : Signal;
+ Code : not null access siginfo_t;
+ Context : not null access ucontext_t);
+ -- Target-dependent binding of inter-thread Abort signal to
+ -- the raising of the Abort_Signal exception.
+ -- See also comments in 7staprop.adb
+
+ ------------
+ -- Checks --
+ ------------
+
+ function Check_Initialize_Lock
+ (L : Lock_Ptr;
+ Level : Lock_Level) return Boolean;
+ pragma Inline (Check_Initialize_Lock);
+
+ function Check_Lock (L : Lock_Ptr) return Boolean;
+ pragma Inline (Check_Lock);
+
+ function Record_Lock (L : Lock_Ptr) return Boolean;
+ pragma Inline (Record_Lock);
+
+ function Check_Sleep (Reason : Task_States) return Boolean;
+ pragma Inline (Check_Sleep);
+
+ function Record_Wakeup
+ (L : Lock_Ptr;
+ Reason : Task_States) return Boolean;
+ pragma Inline (Record_Wakeup);
+
+ function Check_Wakeup
+ (T : Task_Id;
+ Reason : Task_States) return Boolean;
+ pragma Inline (Check_Wakeup);
+
+ function Check_Unlock (L : Lock_Ptr) return Boolean;
+ pragma Inline (Check_Unlock);
+
+ function Check_Finalize_Lock (L : Lock_Ptr) return Boolean;
+ pragma Inline (Check_Finalize_Lock);
+
+ --------------------
+ -- Local Packages --
+ --------------------
+
+ package Specific is
+
+ procedure Initialize (Environment_Task : Task_Id);
+ pragma Inline (Initialize);
+ -- Initialize various data needed by this package
+
+ function Is_Valid_Task return Boolean;
+ pragma Inline (Is_Valid_Task);
+ -- Does executing thread have a TCB?
+
+ procedure Set (Self_Id : Task_Id);
+ pragma Inline (Set);
+ -- Set the self id for the current task
+
+ function Self return Task_Id;
+ pragma Inline (Self);
+ -- Return a pointer to the Ada Task Control Block of the calling task
+
+ end Specific;
+
+ package body Specific is separate;
+ -- The body of this package is target specific
+
+ ----------------------------------
+ -- ATCB allocation/deallocation --
+ ----------------------------------
+
+ package body ATCB_Allocation is separate;
+ -- The body of this package is shared across several targets
+
+ ---------------------------------
+ -- Support for foreign threads --
+ ---------------------------------
+
+ function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
+ -- Allocate and Initialize a new ATCB for the current Thread
+
+ function Register_Foreign_Thread
+ (Thread : Thread_Id) return Task_Id is separate;
+
+ ------------
+ -- Checks --
+ ------------
+
+ Check_Count : Integer := 0;
+ Lock_Count : Integer := 0;
+ Unlock_Count : Integer := 0;
+
+ -------------------
+ -- Abort_Handler --
+ -------------------
+
+ procedure Abort_Handler
+ (Sig : Signal;
+ Code : not null access siginfo_t;
+ Context : not null access ucontext_t)
+ is
+ pragma Unreferenced (Sig);
+ pragma Unreferenced (Code);
+ pragma Unreferenced (Context);
+
+ Self_ID : constant Task_Id := Self;
+ Old_Set : aliased sigset_t;
+
+ Result : Interfaces.C.int;
+ pragma Warnings (Off, Result);
+
+ begin
+ -- It's not safe to raise an exception when using GCC ZCX mechanism.
+ -- Note that we still need to install a signal handler, since in some
+ -- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
+ -- need to send the Abort signal to a task.
+
+ if ZCX_By_Default then
+ return;
+ end if;
+
+ if Self_ID.Deferral_Level = 0
+ and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
+ and then not Self_ID.Aborting
+ then
+ Self_ID.Aborting := True;
+
+ -- Make sure signals used for RTS internal purpose are unmasked
+
+ Result :=
+ thr_sigsetmask
+ (SIG_UNBLOCK,
+ Unblocked_Signal_Mask'Unchecked_Access,
+ Old_Set'Unchecked_Access);
+ pragma Assert (Result = 0);
+
+ raise Standard'Abort_Signal;
+ end if;
+ end Abort_Handler;
+
+ -----------------
+ -- Stack_Guard --
+ -----------------
+
+ -- The underlying thread system sets a guard page at the
+ -- bottom of a thread stack, so nothing is needed.
+
+ procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
+ pragma Unreferenced (T);
+ pragma Unreferenced (On);
+ begin
+ null;
+ end Stack_Guard;
+
+ -------------------
+ -- Get_Thread_Id --
+ -------------------
+
+ function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
+ begin
+ return T.Common.LL.Thread;
+ end Get_Thread_Id;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize (Environment_Task : ST.Task_Id) is
+ act : aliased struct_sigaction;
+ old_act : aliased struct_sigaction;
+ Tmp_Set : aliased sigset_t;
+ Result : Interfaces.C.int;
+
+ procedure Configure_Processors;
+ -- Processors configuration
+ -- The user can specify a processor which the program should run
+ -- on to emulate a single-processor system. This can be easily
+ -- done by setting environment variable GNAT_PROCESSOR to one of
+ -- the following :
+ --
+ -- -2 : use the default configuration (run the program on all
+ -- available processors) - this is the same as having
+ -- GNAT_PROCESSOR unset
+ -- -1 : let the RTS choose one processor and run the program on
+ -- that processor
+ -- 0 .. Last_Proc : run the program on the specified processor
+ --
+ -- Last_Proc is equal to the value of the system variable
+ -- _SC_NPROCESSORS_CONF, minus one.
+
+ procedure Configure_Processors is
+ Proc_Acc : constant System.OS_Lib.String_Access :=
+ System.OS_Lib.Getenv ("GNAT_PROCESSOR");
+ Proc : aliased processorid_t; -- User processor #
+ Last_Proc : processorid_t; -- Last processor #
+
+ begin
+ if Proc_Acc.all'Length /= 0 then
+
+ -- Environment variable is defined
+
+ Last_Proc := Num_Procs - 1;
+
+ if Last_Proc /= -1 then
+ Proc := processorid_t'Value (Proc_Acc.all);
+
+ if Proc <= -2 or else Proc > Last_Proc then
+
+ -- Use the default configuration
+
+ null;
+
+ elsif Proc = -1 then
+
+ -- Choose a processor
+
+ Result := 0;
+ while Proc < Last_Proc loop
+ Proc := Proc + 1;
+ Result := p_online (Proc, PR_STATUS);
+ exit when Result = PR_ONLINE;
+ end loop;
+
+ pragma Assert (Result = PR_ONLINE);
+ Result := processor_bind (P_PID, P_MYID, Proc, null);
+ pragma Assert (Result = 0);
+
+ else
+ -- Use user processor
+
+ Result := processor_bind (P_PID, P_MYID, Proc, null);
+ pragma Assert (Result = 0);
+ end if;
+ end if;
+ end if;
+
+ exception
+ when Constraint_Error =>
+
+ -- Illegal environment variable GNAT_PROCESSOR - ignored
+
+ null;
+ end Configure_Processors;
+
+ function State
+ (Int : System.Interrupt_Management.Interrupt_ID) return Character;
+ pragma Import (C, State, "__gnat_get_interrupt_state");
+ -- Get interrupt state. Defined in a-init.c
+ -- The input argument is the interrupt number,
+ -- and the result is one of the following:
+
+ Default : constant Character := 's';
+ -- 'n' this interrupt not set by any Interrupt_State pragma
+ -- 'u' Interrupt_State pragma set state to User
+ -- 'r' Interrupt_State pragma set state to Runtime
+ -- 's' Interrupt_State pragma set state to System (use "default"
+ -- system handler)
+
+ -- Start of processing for Initialize
+
+ begin
+ Environment_Task_Id := Environment_Task;
+
+ Interrupt_Management.Initialize;
+
+ -- Prepare the set of signals that should unblocked in all tasks
+
+ Result := sigemptyset (Unblocked_Signal_Mask'Access);
+ pragma Assert (Result = 0);
+
+ for J in Interrupt_Management.Interrupt_ID loop
+ if System.Interrupt_Management.Keep_Unmasked (J) then
+ Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
+ pragma Assert (Result = 0);
+ end if;
+ end loop;
+
+ if Dispatching_Policy = 'F' then
+ declare
+ Result : Interfaces.C.long;
+ Class_Info : aliased struct_pcinfo;
+ Secs, Nsecs : Interfaces.C.long;
+
+ begin
+ -- If a pragma Time_Slice is specified, takes the value in account
+
+ if Time_Slice_Val > 0 then
+
+ -- Convert Time_Slice_Val (microseconds) to seconds/nanosecs
+
+ Secs := Interfaces.C.long (Time_Slice_Val / 1_000_000);
+ Nsecs :=
+ Interfaces.C.long ((Time_Slice_Val rem 1_000_000) * 1_000);
+
+ -- Otherwise, default to no time slicing (i.e run until blocked)
+
+ else
+ Secs := RT_TQINF;
+ Nsecs := RT_TQINF;
+ end if;
+
+ -- Get the real time class id
+
+ Class_Info.pc_clname (1) := 'R';
+ Class_Info.pc_clname (2) := 'T';
+ Class_Info.pc_clname (3) := ASCII.NUL;
+
+ Result := priocntl (PC_VERSION, P_LWPID, P_MYID, PC_GETCID,
+ Class_Info'Address);
+
+ -- Request the real time class
+
+ Prio_Param.pc_cid := Class_Info.pc_cid;
+ Prio_Param.rt_pri := pri_t (Class_Info.rt_maxpri);
+ Prio_Param.rt_tqsecs := Secs;
+ Prio_Param.rt_tqnsecs := Nsecs;
+
+ Result :=
+ priocntl
+ (PC_VERSION, P_LWPID, P_MYID, PC_SETPARMS, Prio_Param'Address);
+
+ Using_Real_Time_Class := Result /= -1;
+ end;
+ end if;
+
+ Specific.Initialize (Environment_Task);
+
+ -- The following is done in Enter_Task, but this is too late for the
+ -- Environment Task, since we need to call Self in Check_Locks when
+ -- the run time is compiled with assertions on.
+
+ Specific.Set (Environment_Task);
+
+ -- Initialize the lock used to synchronize chain of all ATCBs
+
+ Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
+
+ -- Make environment task known here because it doesn't go through
+ -- Activate_Tasks, which does it for all other tasks.
+
+ Known_Tasks (Known_Tasks'First) := Environment_Task;
+ Environment_Task.Known_Tasks_Index := Known_Tasks'First;
+
+ Enter_Task (Environment_Task);
+
+ Configure_Processors;
+
+ if State
+ (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
+ then
+ -- Set sa_flags to SA_NODEFER so that during the handler execution
+ -- we do not change the Signal_Mask to be masked for the Abort_Signal
+ -- This is a temporary fix to the problem that the Signal_Mask is
+ -- not restored after the exception (longjmp) from the handler.
+ -- The right fix should be made in sigsetjmp so that we save
+ -- the Signal_Set and restore it after a longjmp.
+ -- In that case, this field should be changed back to 0. ???
+
+ act.sa_flags := 16;
+
+ act.sa_handler := Abort_Handler'Address;
+ Result := sigemptyset (Tmp_Set'Access);
+ pragma Assert (Result = 0);
+ act.sa_mask := Tmp_Set;
+
+ Result :=
+ sigaction
+ (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
+ act'Unchecked_Access,
+ old_act'Unchecked_Access);
+ pragma Assert (Result = 0);
+ Abort_Handler_Installed := True;
+ end if;
+ end Initialize;
+
+ ---------------------
+ -- Initialize_Lock --
+ ---------------------
+
+ -- Note: mutexes and cond_variables needed per-task basis are initialized
+ -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
+ -- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
+ -- status change of RTS. Therefore raising Storage_Error in the following
+ -- routines should be able to be handled safely.
+
+ procedure Initialize_Lock
+ (Prio : System.Any_Priority;
+ L : not null access Lock)
+ is
+ Result : Interfaces.C.int;
+
+ begin
+ pragma Assert (Check_Initialize_Lock (Lock_Ptr (L), PO_Level));
+
+ if Priority_Ceiling_Emulation then
+ L.Ceiling := Prio;
+ end if;
+
+ Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result = ENOMEM then
+ raise Storage_Error with "Failed to allocate a lock";
+ end if;
+ end Initialize_Lock;
+
+ procedure Initialize_Lock
+ (L : not null access RTS_Lock;
+ Level : Lock_Level)
+ is
+ Result : Interfaces.C.int;
+
+ begin
+ pragma Assert
+ (Check_Initialize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L)), Level));
+ Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result = ENOMEM then
+ raise Storage_Error with "Failed to allocate a lock";
+ end if;
+ end Initialize_Lock;
+
+ -------------------
+ -- Finalize_Lock --
+ -------------------
+
+ procedure Finalize_Lock (L : not null access Lock) is
+ Result : Interfaces.C.int;
+ begin
+ pragma Assert (Check_Finalize_Lock (Lock_Ptr (L)));
+ Result := mutex_destroy (L.L'Access);
+ pragma Assert (Result = 0);
+ end Finalize_Lock;
+
+ procedure Finalize_Lock (L : not null access RTS_Lock) is
+ Result : Interfaces.C.int;
+ begin
+ pragma Assert (Check_Finalize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
+ Result := mutex_destroy (L.L'Access);
+ pragma Assert (Result = 0);
+ end Finalize_Lock;
+
+ ----------------
+ -- Write_Lock --
+ ----------------
+
+ procedure Write_Lock
+ (L : not null access Lock;
+ Ceiling_Violation : out Boolean)
+ is
+ Result : Interfaces.C.int;
+
+ begin
+ pragma Assert (Check_Lock (Lock_Ptr (L)));
+
+ if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
+ declare
+ Self_Id : constant Task_Id := Self;
+ Saved_Priority : System.Any_Priority;
+
+ begin
+ if Self_Id.Common.LL.Active_Priority > L.Ceiling then
+ Ceiling_Violation := True;
+ return;
+ end if;
+
+ Saved_Priority := Self_Id.Common.LL.Active_Priority;
+
+ if Self_Id.Common.LL.Active_Priority < L.Ceiling then
+ Set_Priority (Self_Id, L.Ceiling);
+ end if;
+
+ Result := mutex_lock (L.L'Access);
+ pragma Assert (Result = 0);
+ Ceiling_Violation := False;
+
+ L.Saved_Priority := Saved_Priority;
+ end;
+
+ else
+ Result := mutex_lock (L.L'Access);
+ pragma Assert (Result = 0);
+ Ceiling_Violation := False;
+ end if;
+
+ pragma Assert (Record_Lock (Lock_Ptr (L)));
+ end Write_Lock;
+
+ procedure Write_Lock
+ (L : not null access RTS_Lock;
+ Global_Lock : Boolean := False)
+ is
+ Result : Interfaces.C.int;
+ begin
+ if not Single_Lock or else Global_Lock then
+ pragma Assert (Check_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
+ Result := mutex_lock (L.L'Access);
+ pragma Assert (Result = 0);
+ pragma Assert (Record_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
+ end if;
+ end Write_Lock;
+
+ procedure Write_Lock (T : Task_Id) is
+ Result : Interfaces.C.int;
+ begin
+ if not Single_Lock then
+ pragma Assert (Check_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
+ Result := mutex_lock (T.Common.LL.L.L'Access);
+ pragma Assert (Result = 0);
+ pragma Assert (Record_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
+ end if;
+ end Write_Lock;
+
+ ---------------
+ -- Read_Lock --
+ ---------------
+
+ procedure Read_Lock
+ (L : not null access Lock;
+ Ceiling_Violation : out Boolean) is
+ begin
+ Write_Lock (L, Ceiling_Violation);
+ end Read_Lock;
+
+ ------------
+ -- Unlock --
+ ------------
+
+ procedure Unlock (L : not null access Lock) is
+ Result : Interfaces.C.int;
+
+ begin
+ pragma Assert (Check_Unlock (Lock_Ptr (L)));
+
+ if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
+ declare
+ Self_Id : constant Task_Id := Self;
+
+ begin
+ Result := mutex_unlock (L.L'Access);
+ pragma Assert (Result = 0);
+
+ if Self_Id.Common.LL.Active_Priority > L.Saved_Priority then
+ Set_Priority (Self_Id, L.Saved_Priority);
+ end if;
+ end;
+ else
+ Result := mutex_unlock (L.L'Access);
+ pragma Assert (Result = 0);
+ end if;
+ end Unlock;
+
+ procedure Unlock
+ (L : not null access RTS_Lock;
+ Global_Lock : Boolean := False)
+ is
+ Result : Interfaces.C.int;
+ begin
+ if not Single_Lock or else Global_Lock then
+ pragma Assert (Check_Unlock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
+ Result := mutex_unlock (L.L'Access);
+ pragma Assert (Result = 0);
+ end if;
+ end Unlock;
+
+ procedure Unlock (T : Task_Id) is
+ Result : Interfaces.C.int;
+ begin
+ if not Single_Lock then
+ pragma Assert (Check_Unlock (To_Lock_Ptr (T.Common.LL.L'Access)));
+ Result := mutex_unlock (T.Common.LL.L.L'Access);
+ pragma Assert (Result = 0);
+ end if;
+ end Unlock;
+
+ -----------------
+ -- Set_Ceiling --
+ -----------------
+
+ -- Dynamic priority ceilings are not supported by the underlying system
+
+ procedure Set_Ceiling
+ (L : not null access Lock;
+ Prio : System.Any_Priority)
+ is
+ pragma Unreferenced (L, Prio);
+ begin
+ null;
+ end Set_Ceiling;
+
+ -- For the time delay implementation, we need to make sure we
+ -- achieve following criteria:
+
+ -- 1) We have to delay at least for the amount requested.
+ -- 2) We have to give up CPU even though the actual delay does not
+ -- result in blocking.
+ -- 3) Except for restricted run-time systems that do not support
+ -- ATC or task abort, the delay must be interrupted by the
+ -- abort_task operation.
+ -- 4) The implementation has to be efficient so that the delay overhead
+ -- is relatively cheap.
+ -- (1)-(3) are Ada requirements. Even though (2) is an Annex-D
+ -- requirement we still want to provide the effect in all cases.
+ -- The reason is that users may want to use short delays to implement
+ -- their own scheduling effect in the absence of language provided
+ -- scheduling policies.
+
+ ---------------------
+ -- Monotonic_Clock --
+ ---------------------
+
+ function Monotonic_Clock return Duration is
+ TS : aliased timespec;
+ Result : Interfaces.C.int;
+ begin
+ Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
+ pragma Assert (Result = 0);
+ return To_Duration (TS);
+ end Monotonic_Clock;
+
+ -------------------
+ -- RT_Resolution --
+ -------------------
+
+ function RT_Resolution return Duration is
+ begin
+ return 10#1.0#E-6;
+ end RT_Resolution;
+
+ -----------
+ -- Yield --
+ -----------
+
+ procedure Yield (Do_Yield : Boolean := True) is
+ begin
+ if Do_Yield then
+ System.OS_Interface.thr_yield;
+ end if;
+ end Yield;
+
+ -----------
+ -- Self ---
+ -----------
+
+ function Self return Task_Id renames Specific.Self;
+
+ ------------------
+ -- Set_Priority --
+ ------------------
+
+ procedure Set_Priority
+ (T : Task_Id;
+ Prio : System.Any_Priority;
+ Loss_Of_Inheritance : Boolean := False)
+ is
+ pragma Unreferenced (Loss_Of_Inheritance);
+
+ Result : Interfaces.C.int;
+ pragma Unreferenced (Result);
+
+ Param : aliased struct_pcparms;
+
+ use Task_Info;
+
+ begin
+ T.Common.Current_Priority := Prio;
+
+ if Priority_Ceiling_Emulation then
+ T.Common.LL.Active_Priority := Prio;
+ end if;
+
+ if Using_Real_Time_Class then
+ Param.pc_cid := Prio_Param.pc_cid;
+ Param.rt_pri := pri_t (Prio);
+ Param.rt_tqsecs := Prio_Param.rt_tqsecs;
+ Param.rt_tqnsecs := Prio_Param.rt_tqnsecs;
+
+ Result := Interfaces.C.int (
+ priocntl (PC_VERSION, P_LWPID, T.Common.LL.LWP, PC_SETPARMS,
+ Param'Address));
+
+ else
+ if T.Common.Task_Info /= null
+ and then not T.Common.Task_Info.Bound_To_LWP
+ then
+ -- The task is not bound to a LWP, so use thr_setprio
+
+ Result :=
+ thr_setprio (T.Common.LL.Thread, Interfaces.C.int (Prio));
+
+ else
+ -- The task is bound to a LWP, use priocntl
+ -- ??? TBD
+
+ null;
+ end if;
+ end if;
+ end Set_Priority;
+
+ ------------------
+ -- Get_Priority --
+ ------------------
+
+ function Get_Priority (T : Task_Id) return System.Any_Priority is
+ begin
+ return T.Common.Current_Priority;
+ end Get_Priority;
+
+ ----------------
+ -- Enter_Task --
+ ----------------
+
+ procedure Enter_Task (Self_ID : Task_Id) is
+ begin
+ Self_ID.Common.LL.Thread := thr_self;
+ Self_ID.Common.LL.LWP := lwp_self;
+
+ Set_Task_Affinity (Self_ID);
+ Specific.Set (Self_ID);
+
+ -- We need the above code even if we do direct fetch of Task_Id in Self
+ -- for the main task on Sun, x86 Solaris and for gcc 2.7.2.
+ end Enter_Task;
+
+ -------------------
+ -- Is_Valid_Task --
+ -------------------
+
+ function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
+
+ -----------------------------
+ -- Register_Foreign_Thread --
+ -----------------------------
+
+ function Register_Foreign_Thread return Task_Id is
+ begin
+ if Is_Valid_Task then
+ return Self;
+ else
+ return Register_Foreign_Thread (thr_self);
+ end if;
+ end Register_Foreign_Thread;
+
+ --------------------
+ -- Initialize_TCB --
+ --------------------
+
+ procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
+ Result : Interfaces.C.int := 0;
+
+ begin
+ -- Give the task a unique serial number
+
+ Self_ID.Serial_Number := Next_Serial_Number;
+ Next_Serial_Number := Next_Serial_Number + 1;
+ pragma Assert (Next_Serial_Number /= 0);
+
+ Self_ID.Common.LL.Thread := Null_Thread_Id;
+
+ if not Single_Lock then
+ Result :=
+ mutex_init
+ (Self_ID.Common.LL.L.L'Access, USYNC_THREAD, System.Null_Address);
+ Self_ID.Common.LL.L.Level :=
+ Private_Task_Serial_Number (Self_ID.Serial_Number);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+ end if;
+
+ if Result = 0 then
+ Result := cond_init (Self_ID.Common.LL.CV'Access, USYNC_THREAD, 0);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+ end if;
+
+ if Result = 0 then
+ Succeeded := True;
+ else
+ if not Single_Lock then
+ Result := mutex_destroy (Self_ID.Common.LL.L.L'Access);
+ pragma Assert (Result = 0);
+ end if;
+
+ Succeeded := False;
+ end if;
+ end Initialize_TCB;
+
+ -----------------
+ -- Create_Task --
+ -----------------
+
+ procedure Create_Task
+ (T : Task_Id;
+ Wrapper : System.Address;
+ Stack_Size : System.Parameters.Size_Type;
+ Priority : System.Any_Priority;
+ Succeeded : out Boolean)
+ is
+ pragma Unreferenced (Priority);
+
+ Result : Interfaces.C.int;
+ Adjusted_Stack_Size : Interfaces.C.size_t;
+ Opts : Interfaces.C.int := THR_DETACHED;
+
+ Page_Size : constant System.Parameters.Size_Type := 4096;
+ -- This constant is for reserving extra space at the
+ -- end of the stack, which can be used by the stack
+ -- checking as guard page. The idea is that we need
+ -- to have at least Stack_Size bytes available for
+ -- actual use.
+
+ use System.Task_Info;
+ use type System.Multiprocessors.CPU_Range;
+
+ begin
+ -- Check whether both Dispatching_Domain and CPU are specified for the
+ -- task, and the CPU value is not contained within the range of
+ -- processors for the domain.
+
+ if T.Common.Domain /= null
+ and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
+ and then
+ (T.Common.Base_CPU not in T.Common.Domain'Range
+ or else not T.Common.Domain (T.Common.Base_CPU))
+ then
+ Succeeded := False;
+ return;
+ end if;
+
+ Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size + Page_Size);
+
+ -- Since the initial signal mask of a thread is inherited from the
+ -- creator, and the Environment task has all its signals masked, we
+ -- do not need to manipulate caller's signal mask at this point.
+ -- All tasks in RTS will have All_Tasks_Mask initially.
+
+ if T.Common.Task_Info /= null then
+ if T.Common.Task_Info.New_LWP then
+ Opts := Opts + THR_NEW_LWP;
+ end if;
+
+ if T.Common.Task_Info.Bound_To_LWP then
+ Opts := Opts + THR_BOUND;
+ end if;
+
+ else
+ Opts := THR_DETACHED + THR_BOUND;
+ end if;
+
+ -- Note: the use of Unrestricted_Access in the following call is needed
+ -- because otherwise we have an error of getting a access-to-volatile
+ -- value which points to a non-volatile object. But in this case it is
+ -- safe to do this, since we know we have no problems with aliasing and
+ -- Unrestricted_Access bypasses this check.
+
+ Result :=
+ thr_create
+ (System.Null_Address,
+ Adjusted_Stack_Size,
+ Thread_Body_Access (Wrapper),
+ To_Address (T),
+ Opts,
+ T.Common.LL.Thread'Unrestricted_Access);
+
+ Succeeded := Result = 0;
+ pragma Assert
+ (Result = 0
+ or else Result = ENOMEM
+ or else Result = EAGAIN);
+ end Create_Task;
+
+ ------------------
+ -- Finalize_TCB --
+ ------------------
+
+ procedure Finalize_TCB (T : Task_Id) is
+ Result : Interfaces.C.int;
+
+ begin
+ T.Common.LL.Thread := Null_Thread_Id;
+
+ if not Single_Lock then
+ Result := mutex_destroy (T.Common.LL.L.L'Access);
+ pragma Assert (Result = 0);
+ end if;
+
+ Result := cond_destroy (T.Common.LL.CV'Access);
+ pragma Assert (Result = 0);
+
+ if T.Known_Tasks_Index /= -1 then
+ Known_Tasks (T.Known_Tasks_Index) := null;
+ end if;
+
+ ATCB_Allocation.Free_ATCB (T);
+ end Finalize_TCB;
+
+ ---------------
+ -- Exit_Task --
+ ---------------
+
+ -- This procedure must be called with abort deferred. It can no longer
+ -- call Self or access the current task's ATCB, since the ATCB has been
+ -- deallocated.
+
+ procedure Exit_Task is
+ begin
+ Specific.Set (null);
+ end Exit_Task;
+
+ ----------------
+ -- Abort_Task --
+ ----------------
+
+ procedure Abort_Task (T : Task_Id) is
+ Result : Interfaces.C.int;
+ begin
+ if Abort_Handler_Installed then
+ pragma Assert (T /= Self);
+ Result :=
+ thr_kill
+ (T.Common.LL.Thread,
+ Signal (System.Interrupt_Management.Abort_Task_Interrupt));
+ pragma Assert (Result = 0);
+ end if;
+ end Abort_Task;
+
+ -----------
+ -- Sleep --
+ -----------
+
+ procedure Sleep
+ (Self_ID : Task_Id;
+ Reason : Task_States)
+ is
+ Result : Interfaces.C.int;
+
+ begin
+ pragma Assert (Check_Sleep (Reason));
+
+ if Single_Lock then
+ Result :=
+ cond_wait
+ (Self_ID.Common.LL.CV'Access, Single_RTS_Lock.L'Access);
+ else
+ Result :=
+ cond_wait
+ (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L.L'Access);
+ end if;
+
+ pragma Assert
+ (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
+ pragma Assert (Result = 0 or else Result = EINTR);
+ end Sleep;
+
+ -- Note that we are relying heavily here on GNAT representing
+ -- Calendar.Time, System.Real_Time.Time, Duration,
+ -- System.Real_Time.Time_Span in the same way, i.e., as a 64-bit count of
+ -- nanoseconds.
+
+ -- This allows us to always pass the timeout value as a Duration
+
+ -- ???
+ -- We are taking liberties here with the semantics of the delays. That is,
+ -- we make no distinction between delays on the Calendar clock and delays
+ -- on the Real_Time clock. That is technically incorrect, if the Calendar
+ -- clock happens to be reset or adjusted. To solve this defect will require
+ -- modification to the compiler interface, so that it can pass through more
+ -- information, to tell us here which clock to use!
+
+ -- cond_timedwait will return if any of the following happens:
+ -- 1) some other task did cond_signal on this condition variable
+ -- In this case, the return value is 0
+ -- 2) the call just returned, for no good reason
+ -- This is called a "spurious wakeup".
+ -- In this case, the return value may also be 0.
+ -- 3) the time delay expires
+ -- In this case, the return value is ETIME
+ -- 4) this task received a signal, which was handled by some
+ -- handler procedure, and now the thread is resuming execution
+ -- UNIX calls this an "interrupted" system call.
+ -- In this case, the return value is EINTR
+
+ -- If the cond_timedwait returns 0 or EINTR, it is still possible that the
+ -- time has actually expired, and by chance a signal or cond_signal
+ -- occurred at around the same time.
+
+ -- We have also observed that on some OS's the value ETIME will be
+ -- returned, but the clock will show that the full delay has not yet
+ -- expired.
+
+ -- For these reasons, we need to check the clock after return from
+ -- cond_timedwait. If the time has expired, we will set Timedout = True.
+
+ -- This check might be omitted for systems on which the cond_timedwait()
+ -- never returns early or wakes up spuriously.
+
+ -- Annex D requires that completion of a delay cause the task to go to the
+ -- end of its priority queue, regardless of whether the task actually was
+ -- suspended by the delay. Since cond_timedwait does not do this on
+ -- Solaris, we add a call to thr_yield at the end. We might do this at the
+ -- beginning, instead, but then the round-robin effect would not be the
+ -- same; the delayed task would be ahead of other tasks of the same
+ -- priority that awoke while it was sleeping.
+
+ -- For Timed_Sleep, we are expecting possible cond_signals to indicate
+ -- other events (e.g., completion of a RV or completion of the abortable
+ -- part of an async. select), we want to always return if interrupted. The
+ -- caller will be responsible for checking the task state to see whether
+ -- the wakeup was spurious, and to go back to sleep again in that case. We
+ -- don't need to check for pending abort or priority change on the way in
+ -- our out; that is the caller's responsibility.
+
+ -- For Timed_Delay, we are not expecting any cond_signals or other
+ -- interruptions, except for priority changes and aborts. Therefore, we
+ -- don't want to return unless the delay has actually expired, or the call
+ -- has been aborted. In this case, since we want to implement the entire
+ -- delay statement semantics, we do need to check for pending abort and
+ -- priority changes. We can quietly handle priority changes inside the
+ -- procedure, since there is no entry-queue reordering involved.
+
+ -----------------
+ -- Timed_Sleep --
+ -----------------
+
+ procedure Timed_Sleep
+ (Self_ID : Task_Id;
+ Time : Duration;
+ Mode : ST.Delay_Modes;
+ Reason : System.Tasking.Task_States;
+ Timedout : out Boolean;
+ Yielded : out Boolean)
+ is
+ Base_Time : constant Duration := Monotonic_Clock;
+ Check_Time : Duration := Base_Time;
+ Abs_Time : Duration;
+ Request : aliased timespec;
+ Result : Interfaces.C.int;
+
+ begin
+ pragma Assert (Check_Sleep (Reason));
+ Timedout := True;
+ Yielded := False;
+
+ Abs_Time :=
+ (if Mode = Relative
+ then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
+ else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
+
+ if Abs_Time > Check_Time then
+ Request := To_Timespec (Abs_Time);
+ loop
+ exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
+
+ if Single_Lock then
+ Result :=
+ cond_timedwait
+ (Self_ID.Common.LL.CV'Access,
+ Single_RTS_Lock.L'Access, Request'Access);
+ else
+ Result :=
+ cond_timedwait
+ (Self_ID.Common.LL.CV'Access,
+ Self_ID.Common.LL.L.L'Access, Request'Access);
+ end if;
+
+ Yielded := True;
+
+ Check_Time := Monotonic_Clock;
+ exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
+
+ if Result = 0 or Result = EINTR then
+
+ -- Somebody may have called Wakeup for us
+
+ Timedout := False;
+ exit;
+ end if;
+
+ pragma Assert (Result = ETIME);
+ end loop;
+ end if;
+
+ pragma Assert
+ (Record_Wakeup (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
+ end Timed_Sleep;
+
+ -----------------
+ -- Timed_Delay --
+ -----------------
+
+ procedure Timed_Delay
+ (Self_ID : Task_Id;
+ Time : Duration;
+ Mode : ST.Delay_Modes)
+ is
+ Base_Time : constant Duration := Monotonic_Clock;
+ Check_Time : Duration := Base_Time;
+ Abs_Time : Duration;
+ Request : aliased timespec;
+ Result : Interfaces.C.int;
+ Yielded : Boolean := False;
+
+ begin
+ if Single_Lock then
+ Lock_RTS;
+ end if;
+
+ Write_Lock (Self_ID);
+
+ Abs_Time :=
+ (if Mode = Relative
+ then Time + Check_Time
+ else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
+
+ if Abs_Time > Check_Time then
+ Request := To_Timespec (Abs_Time);
+ Self_ID.Common.State := Delay_Sleep;
+
+ pragma Assert (Check_Sleep (Delay_Sleep));
+
+ loop
+ exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
+
+ if Single_Lock then
+ Result :=
+ cond_timedwait
+ (Self_ID.Common.LL.CV'Access,
+ Single_RTS_Lock.L'Access,
+ Request'Access);
+ else
+ Result :=
+ cond_timedwait
+ (Self_ID.Common.LL.CV'Access,
+ Self_ID.Common.LL.L.L'Access,
+ Request'Access);
+ end if;
+
+ Yielded := True;
+
+ Check_Time := Monotonic_Clock;
+ exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
+
+ pragma Assert
+ (Result = 0 or else
+ Result = ETIME or else
+ Result = EINTR);
+ end loop;
+
+ pragma Assert
+ (Record_Wakeup
+ (To_Lock_Ptr (Self_ID.Common.LL.L'Access), Delay_Sleep));
+
+ Self_ID.Common.State := Runnable;
+ end if;
+
+ Unlock (Self_ID);
+
+ if Single_Lock then
+ Unlock_RTS;
+ end if;
+
+ if not Yielded then
+ thr_yield;
+ end if;
+ end Timed_Delay;
+
+ ------------
+ -- Wakeup --
+ ------------
+
+ procedure Wakeup
+ (T : Task_Id;
+ Reason : Task_States)
+ is
+ Result : Interfaces.C.int;
+ begin
+ pragma Assert (Check_Wakeup (T, Reason));
+ Result := cond_signal (T.Common.LL.CV'Access);
+ pragma Assert (Result = 0);
+ end Wakeup;
+
+ ---------------------------
+ -- Check_Initialize_Lock --
+ ---------------------------
+
+ -- The following code is intended to check some of the invariant assertions
+ -- related to lock usage, on which we depend.
+
+ function Check_Initialize_Lock
+ (L : Lock_Ptr;
+ Level : Lock_Level) return Boolean
+ is
+ Self_ID : constant Task_Id := Self;
+
+ begin
+ -- Check that caller is abort-deferred
+
+ if Self_ID.Deferral_Level = 0 then
+ return False;
+ end if;
+
+ -- Check that the lock is not yet initialized
+
+ if L.Level /= 0 then
+ return False;
+ end if;
+
+ L.Level := Lock_Level'Pos (Level) + 1;
+ return True;
+ end Check_Initialize_Lock;
+
+ ----------------
+ -- Check_Lock --
+ ----------------
+
+ function Check_Lock (L : Lock_Ptr) return Boolean is
+ Self_ID : constant Task_Id := Self;
+ P : Lock_Ptr;
+
+ begin
+ -- Check that the argument is not null
+
+ if L = null then
+ return False;
+ end if;
+
+ -- Check that L is not frozen
+
+ if L.Frozen then
+ return False;
+ end if;
+
+ -- Check that caller is abort-deferred
+
+ if Self_ID.Deferral_Level = 0 then
+ return False;
+ end if;
+
+ -- Check that caller is not holding this lock already
+
+ if L.Owner = To_Owner_ID (To_Address (Self_ID)) then
+ return False;
+ end if;
+
+ if Single_Lock then
+ return True;
+ end if;
+
+ -- Check that TCB lock order rules are satisfied
+
+ P := Self_ID.Common.LL.Locks;
+ if P /= null then
+ if P.Level >= L.Level
+ and then (P.Level > 2 or else L.Level > 2)
+ then
+ return False;
+ end if;
+ end if;
+
+ return True;
+ end Check_Lock;
+
+ -----------------
+ -- Record_Lock --
+ -----------------
+
+ function Record_Lock (L : Lock_Ptr) return Boolean is
+ Self_ID : constant Task_Id := Self;
+ P : Lock_Ptr;
+
+ begin
+ Lock_Count := Lock_Count + 1;
+
+ -- There should be no owner for this lock at this point
+
+ if L.Owner /= null then
+ return False;
+ end if;
+
+ -- Record new owner
+
+ L.Owner := To_Owner_ID (To_Address (Self_ID));
+
+ if Single_Lock then
+ return True;
+ end if;
+
+ -- Check that TCB lock order rules are satisfied
+
+ P := Self_ID.Common.LL.Locks;
+
+ if P /= null then
+ L.Next := P;
+ end if;
+
+ Self_ID.Common.LL.Locking := null;
+ Self_ID.Common.LL.Locks := L;
+ return True;
+ end Record_Lock;
+
+ -----------------
+ -- Check_Sleep --
+ -----------------
+
+ function Check_Sleep (Reason : Task_States) return Boolean is
+ pragma Unreferenced (Reason);
+
+ Self_ID : constant Task_Id := Self;
+ P : Lock_Ptr;
+
+ begin
+ -- Check that caller is abort-deferred
+
+ if Self_ID.Deferral_Level = 0 then
+ return False;
+ end if;
+
+ if Single_Lock then
+ return True;
+ end if;
+
+ -- Check that caller is holding own lock, on top of list
+
+ if Self_ID.Common.LL.Locks /=
+ To_Lock_Ptr (Self_ID.Common.LL.L'Access)
+ then
+ return False;
+ end if;
+
+ -- Check that TCB lock order rules are satisfied
+
+ if Self_ID.Common.LL.Locks.Next /= null then
+ return False;
+ end if;
+
+ Self_ID.Common.LL.L.Owner := null;
+ P := Self_ID.Common.LL.Locks;
+ Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
+ P.Next := null;
+ return True;
+ end Check_Sleep;
+
+ -------------------
+ -- Record_Wakeup --
+ -------------------
+
+ function Record_Wakeup
+ (L : Lock_Ptr;
+ Reason : Task_States) return Boolean
+ is
+ pragma Unreferenced (Reason);
+
+ Self_ID : constant Task_Id := Self;
+ P : Lock_Ptr;
+
+ begin
+ -- Record new owner
+
+ L.Owner := To_Owner_ID (To_Address (Self_ID));
+
+ if Single_Lock then
+ return True;
+ end if;
+
+ -- Check that TCB lock order rules are satisfied
+
+ P := Self_ID.Common.LL.Locks;
+
+ if P /= null then
+ L.Next := P;
+ end if;
+
+ Self_ID.Common.LL.Locking := null;
+ Self_ID.Common.LL.Locks := L;
+ return True;
+ end Record_Wakeup;
+
+ ------------------
+ -- Check_Wakeup --
+ ------------------
+
+ function Check_Wakeup
+ (T : Task_Id;
+ Reason : Task_States) return Boolean
+ is
+ Self_ID : constant Task_Id := Self;
+
+ begin
+ -- Is caller holding T's lock?
+
+ if T.Common.LL.L.Owner /= To_Owner_ID (To_Address (Self_ID)) then
+ return False;
+ end if;
+
+ -- Are reasons for wakeup and sleep consistent?
+
+ if T.Common.State /= Reason then
+ return False;
+ end if;
+
+ return True;
+ end Check_Wakeup;
+
+ ------------------
+ -- Check_Unlock --
+ ------------------
+
+ function Check_Unlock (L : Lock_Ptr) return Boolean is
+ Self_ID : constant Task_Id := Self;
+ P : Lock_Ptr;
+
+ begin
+ Unlock_Count := Unlock_Count + 1;
+
+ if L = null then
+ return False;
+ end if;
+
+ if L.Buddy /= null then
+ return False;
+ end if;
+
+ -- Magic constant 4???
+
+ if L.Level = 4 then
+ Check_Count := Unlock_Count;
+ end if;
+
+ -- Magic constant 1000???
+
+ if Unlock_Count - Check_Count > 1000 then
+ Check_Count := Unlock_Count;
+ end if;
+
+ -- Check that caller is abort-deferred
+
+ if Self_ID.Deferral_Level = 0 then
+ return False;
+ end if;
+
+ -- Check that caller is holding this lock, on top of list
+
+ if Self_ID.Common.LL.Locks /= L then
+ return False;
+ end if;
+
+ -- Record there is no owner now
+
+ L.Owner := null;
+ P := Self_ID.Common.LL.Locks;
+ Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
+ P.Next := null;
+ return True;
+ end Check_Unlock;
+
+ --------------------
+ -- Check_Finalize --
+ --------------------
+
+ function Check_Finalize_Lock (L : Lock_Ptr) return Boolean is
+ Self_ID : constant Task_Id := Self;
+
+ begin
+ -- Check that caller is abort-deferred
+
+ if Self_ID.Deferral_Level = 0 then
+ return False;
+ end if;
+
+ -- Check that no one is holding this lock
+
+ if L.Owner /= null then
+ return False;
+ end if;
+
+ L.Frozen := True;
+ return True;
+ end Check_Finalize_Lock;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize (S : in out Suspension_Object) is
+ Result : Interfaces.C.int;
+
+ begin
+ -- Initialize internal state (always to zero (RM D.10(6)))
+
+ S.State := False;
+ S.Waiting := False;
+
+ -- Initialize internal mutex
+
+ Result := mutex_init (S.L'Access, USYNC_THREAD, System.Null_Address);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result = ENOMEM then
+ raise Storage_Error with "Failed to allocate a lock";
+ end if;
+
+ -- Initialize internal condition variable
+
+ Result := cond_init (S.CV'Access, USYNC_THREAD, 0);
+ pragma Assert (Result = 0 or else Result = ENOMEM);
+
+ if Result /= 0 then
+ Result := mutex_destroy (S.L'Access);
+ pragma Assert (Result = 0);
+
+ if Result = ENOMEM then
+ raise Storage_Error;
+ end if;
+ end if;
+ end Initialize;
+
+ --------------
+ -- Finalize --
+ --------------
+
+ procedure Finalize (S : in out Suspension_Object) is
+ Result : Interfaces.C.int;
+
+ begin
+ -- Destroy internal mutex
+
+ Result := mutex_destroy (S.L'Access);
+ pragma Assert (Result = 0);
+
+ -- Destroy internal condition variable
+
+ Result := cond_destroy (S.CV'Access);
+ pragma Assert (Result = 0);
+ end Finalize;
+
+ -------------------
+ -- Current_State --
+ -------------------
+
+ function Current_State (S : Suspension_Object) return Boolean is
+ begin
+ -- We do not want to use lock on this read operation. State is marked
+ -- as Atomic so that we ensure that the value retrieved is correct.
+
+ return S.State;
+ end Current_State;
+
+ ---------------
+ -- Set_False --
+ ---------------
+
+ procedure Set_False (S : in out Suspension_Object) is
+ Result : Interfaces.C.int;
+
+ begin
+ SSL.Abort_Defer.all;
+
+ Result := mutex_lock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ S.State := False;
+
+ Result := mutex_unlock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ SSL.Abort_Undefer.all;
+ end Set_False;
+
+ --------------
+ -- Set_True --
+ --------------
+
+ procedure Set_True (S : in out Suspension_Object) is
+ Result : Interfaces.C.int;
+
+ begin
+ SSL.Abort_Defer.all;
+
+ Result := mutex_lock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ -- If there is already a task waiting on this suspension object then
+ -- we resume it, leaving the state of the suspension object to False,
+ -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
+ -- the state to True.
+
+ if S.Waiting then
+ S.Waiting := False;
+ S.State := False;
+
+ Result := cond_signal (S.CV'Access);
+ pragma Assert (Result = 0);
+
+ else
+ S.State := True;
+ end if;
+
+ Result := mutex_unlock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ SSL.Abort_Undefer.all;
+ end Set_True;
+
+ ------------------------
+ -- Suspend_Until_True --
+ ------------------------
+
+ procedure Suspend_Until_True (S : in out Suspension_Object) is
+ Result : Interfaces.C.int;
+
+ begin
+ SSL.Abort_Defer.all;
+
+ Result := mutex_lock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ if S.Waiting then
+
+ -- Program_Error must be raised upon calling Suspend_Until_True
+ -- if another task is already waiting on that suspension object
+ -- (RM D.10(10)).
+
+ Result := mutex_unlock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ SSL.Abort_Undefer.all;
+
+ raise Program_Error;
+
+ else
+ -- Suspend the task if the state is False. Otherwise, the task
+ -- continues its execution, and the state of the suspension object
+ -- is set to False (ARM D.10 par. 9).
+
+ if S.State then
+ S.State := False;
+ else
+ S.Waiting := True;
+
+ loop
+ -- Loop in case pthread_cond_wait returns earlier than expected
+ -- (e.g. in case of EINTR caused by a signal).
+
+ Result := cond_wait (S.CV'Access, S.L'Access);
+ pragma Assert (Result = 0 or else Result = EINTR);
+
+ exit when not S.Waiting;
+ end loop;
+ end if;
+
+ Result := mutex_unlock (S.L'Access);
+ pragma Assert (Result = 0);
+
+ SSL.Abort_Undefer.all;
+ end if;
+ end Suspend_Until_True;
+
+ ----------------
+ -- Check_Exit --
+ ----------------
+
+ function Check_Exit (Self_ID : Task_Id) return Boolean is
+ begin
+ -- Check that caller is just holding Global_Task_Lock and no other locks
+
+ if Self_ID.Common.LL.Locks = null then
+ return False;
+ end if;
+
+ -- 2 = Global_Task_Level
+
+ if Self_ID.Common.LL.Locks.Level /= 2 then
+ return False;
+ end if;
+
+ if Self_ID.Common.LL.Locks.Next /= null then
+ return False;
+ end if;
+
+ -- Check that caller is abort-deferred
+
+ if Self_ID.Deferral_Level = 0 then
+ return False;
+ end if;
+
+ return True;
+ end Check_Exit;
+
+ --------------------
+ -- Check_No_Locks --
+ --------------------
+
+ function Check_No_Locks (Self_ID : Task_Id) return Boolean is
+ begin
+ return Self_ID.Common.LL.Locks = null;
+ end Check_No_Locks;
+
+ ----------------------
+ -- Environment_Task --
+ ----------------------
+
+ function Environment_Task return Task_Id is
+ begin
+ return Environment_Task_Id;
+ end Environment_Task;
+
+ --------------
+ -- Lock_RTS --
+ --------------
+
+ procedure Lock_RTS is
+ begin
+ Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
+ end Lock_RTS;
+
+ ----------------
+ -- Unlock_RTS --
+ ----------------
+
+ procedure Unlock_RTS is
+ begin
+ Unlock (Single_RTS_Lock'Access, Global_Lock => True);
+ end Unlock_RTS;
+
+ ------------------
+ -- Suspend_Task --
+ ------------------
+
+ function Suspend_Task
+ (T : ST.Task_Id;
+ Thread_Self : Thread_Id) return Boolean
+ is
+ begin
+ if T.Common.LL.Thread /= Thread_Self then
+ return thr_suspend (T.Common.LL.Thread) = 0;
+ else
+ return True;
+ end if;
+ end Suspend_Task;
+
+ -----------------
+ -- Resume_Task --
+ -----------------
+
+ function Resume_Task
+ (T : ST.Task_Id;
+ Thread_Self : Thread_Id) return Boolean
+ is
+ begin
+ if T.Common.LL.Thread /= Thread_Self then
+ return thr_continue (T.Common.LL.Thread) = 0;
+ else
+ return True;
+ end if;
+ end Resume_Task;
+
+ --------------------
+ -- Stop_All_Tasks --
+ --------------------
+
+ procedure Stop_All_Tasks is
+ begin
+ null;
+ end Stop_All_Tasks;
+
+ ---------------
+ -- Stop_Task --
+ ---------------
+
+ function Stop_Task (T : ST.Task_Id) return Boolean is
+ pragma Unreferenced (T);
+ begin
+ return False;
+ end Stop_Task;
+
+ -------------------
+ -- Continue_Task --
+ -------------------
+
+ function Continue_Task (T : ST.Task_Id) return Boolean is
+ pragma Unreferenced (T);
+ begin
+ return False;
+ end Continue_Task;
+
+ -----------------------
+ -- Set_Task_Affinity --
+ -----------------------
+
+ procedure Set_Task_Affinity (T : ST.Task_Id) is
+ Result : Interfaces.C.int;
+ Proc : processorid_t; -- User processor #
+ Last_Proc : processorid_t; -- Last processor #
+
+ use System.Task_Info;
+ use type System.Multiprocessors.CPU_Range;
+
+ begin
+ -- Do nothing if the underlying thread has not yet been created. If the
+ -- thread has not yet been created then the proper affinity will be set
+ -- during its creation.
+
+ if T.Common.LL.Thread = Null_Thread_Id then
+ null;
+
+ -- pragma CPU
+
+ elsif T.Common.Base_CPU /=
+ System.Multiprocessors.Not_A_Specific_CPU
+ then
+ -- The CPU numbering in pragma CPU starts at 1 while the subprogram
+ -- to set the affinity starts at 0, therefore we must substract 1.
+
+ Result :=
+ processor_bind
+ (P_LWPID, id_t (T.Common.LL.LWP),
+ processorid_t (T.Common.Base_CPU) - 1, null);
+ pragma Assert (Result = 0);
+
+ -- Task_Info
+
+ elsif T.Common.Task_Info /= null then
+ if T.Common.Task_Info.New_LWP
+ and then T.Common.Task_Info.CPU /= CPU_UNCHANGED
+ then
+ Last_Proc := Num_Procs - 1;
+
+ if T.Common.Task_Info.CPU = ANY_CPU then
+ Result := 0;
+
+ Proc := 0;
+ while Proc < Last_Proc loop
+ Result := p_online (Proc, PR_STATUS);
+ exit when Result = PR_ONLINE;
+ Proc := Proc + 1;
+ end loop;
+
+ Result :=
+ processor_bind
+ (P_LWPID, id_t (T.Common.LL.LWP), Proc, null);
+ pragma Assert (Result = 0);
+
+ else
+ -- Use specified processor
+
+ if T.Common.Task_Info.CPU < 0
+ or else T.Common.Task_Info.CPU > Last_Proc
+ then
+ raise Invalid_CPU_Number;
+ end if;
+
+ Result :=
+ processor_bind
+ (P_LWPID, id_t (T.Common.LL.LWP),
+ T.Common.Task_Info.CPU, null);
+ pragma Assert (Result = 0);
+ end if;
+ end if;
+
+ -- Handle dispatching domains
+
+ elsif T.Common.Domain /= null
+ and then (T.Common.Domain /= ST.System_Domain
+ or else T.Common.Domain.all /=
+ (Multiprocessors.CPU'First ..
+ Multiprocessors.Number_Of_CPUs => True))
+ then
+ declare
+ CPU_Set : aliased psetid_t;
+ Result : int;
+
+ begin
+ Result := pset_create (CPU_Set'Access);
+ pragma Assert (Result = 0);
+
+ -- Set the affinity to all the processors belonging to the
+ -- dispatching domain.
+
+ for Proc in T.Common.Domain'Range loop
+
+ -- The Ada CPU numbering starts at 1 while the subprogram to
+ -- set the affinity starts at 0, therefore we must substract 1.
+
+ if T.Common.Domain (Proc) then
+ Result :=
+ pset_assign (CPU_Set, processorid_t (Proc) - 1, null);
+ pragma Assert (Result = 0);
+ end if;
+ end loop;
+
+ Result :=
+ pset_bind (CPU_Set, P_LWPID, id_t (T.Common.LL.LWP), null);
+ pragma Assert (Result = 0);
+ end;
+ end if;
+ end Set_Task_Affinity;
+
+end System.Task_Primitives.Operations;