aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.8.1/gcc/ada/s-taprop-mingw.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.8.1/gcc/ada/s-taprop-mingw.adb')
-rw-r--r--gcc-4.8.1/gcc/ada/s-taprop-mingw.adb1392
1 files changed, 1392 insertions, 0 deletions
diff --git a/gcc-4.8.1/gcc/ada/s-taprop-mingw.adb b/gcc-4.8.1/gcc/ada/s-taprop-mingw.adb
new file mode 100644
index 000000000..75d81cb63
--- /dev/null
+++ b/gcc-4.8.1/gcc/ada/s-taprop-mingw.adb
@@ -0,0 +1,1392 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
+-- --
+-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
+-- --
+-- GNARL is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. --
+-- --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception, --
+-- version 3.1, as published by the Free Software Foundation. --
+-- --
+-- You should have received a copy of the GNU General Public License and --
+-- a copy of the GCC Runtime Library Exception along with this program; --
+-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
+-- <http://www.gnu.org/licenses/>. --
+-- --
+-- GNARL was developed by the GNARL team at Florida State University. --
+-- Extensive contributions were provided by Ada Core Technologies, Inc. --
+-- --
+------------------------------------------------------------------------------
+
+-- This is a NT (native) version of this package
+
+-- This package contains all the GNULL primitives that interface directly with
+-- the underlying OS.
+
+pragma Polling (Off);
+-- Turn off polling, we do not want ATC polling to take place during tasking
+-- operations. It causes infinite loops and other problems.
+
+with Interfaces.C;
+with Interfaces.C.Strings;
+
+with System.Float_Control;
+with System.Interrupt_Management;
+with System.Multiprocessors;
+with System.OS_Primitives;
+with System.Task_Info;
+with System.Tasking.Debug;
+with System.Win32.Ext;
+
+with System.Soft_Links;
+-- We use System.Soft_Links instead of System.Tasking.Initialization because
+-- the later is a higher level package that we shouldn't depend on. For
+-- example when using the restricted run time, it is replaced by
+-- System.Tasking.Restricted.Stages.
+
+package body System.Task_Primitives.Operations is
+
+ package SSL renames System.Soft_Links;
+
+ use Interfaces.C;
+ use Interfaces.C.Strings;
+ use System.OS_Interface;
+ use System.OS_Primitives;
+ use System.Parameters;
+ use System.Task_Info;
+ use System.Tasking;
+ use System.Tasking.Debug;
+ use System.Win32;
+ use System.Win32.Ext;
+
+ pragma Link_With ("-Xlinker --stack=0x200000,0x1000");
+ -- Change the default stack size (2 MB) for tasking programs on Windows.
+ -- This allows about 1000 tasks running at the same time. Note that
+ -- we set the stack size for non tasking programs on System unit.
+ -- Also note that under Windows XP, we use a Windows XP extension to
+ -- specify the stack size on a per task basis, as done under other OSes.
+
+ ---------------------
+ -- Local Functions --
+ ---------------------
+
+ procedure InitializeCriticalSection (pCriticalSection : access RTS_Lock);
+ procedure InitializeCriticalSection
+ (pCriticalSection : access CRITICAL_SECTION);
+ pragma Import
+ (Stdcall, InitializeCriticalSection, "InitializeCriticalSection");
+
+ procedure EnterCriticalSection (pCriticalSection : access RTS_Lock);
+ procedure EnterCriticalSection
+ (pCriticalSection : access CRITICAL_SECTION);
+ pragma Import (Stdcall, EnterCriticalSection, "EnterCriticalSection");
+
+ procedure LeaveCriticalSection (pCriticalSection : access RTS_Lock);
+ procedure LeaveCriticalSection (pCriticalSection : access CRITICAL_SECTION);
+ pragma Import (Stdcall, LeaveCriticalSection, "LeaveCriticalSection");
+
+ procedure DeleteCriticalSection (pCriticalSection : access RTS_Lock);
+ procedure DeleteCriticalSection
+ (pCriticalSection : access CRITICAL_SECTION);
+ pragma Import (Stdcall, DeleteCriticalSection, "DeleteCriticalSection");
+
+ ----------------
+ -- Local Data --
+ ----------------
+
+ Environment_Task_Id : Task_Id;
+ -- A variable to hold Task_Id for the environment task
+
+ Single_RTS_Lock : aliased RTS_Lock;
+ -- This is a lock to allow only one thread of control in the RTS at
+ -- a time; it is used to execute in mutual exclusion from all other tasks.
+ -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
+
+ Time_Slice_Val : Integer;
+ pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
+
+ Dispatching_Policy : Character;
+ pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
+
+ function Get_Policy (Prio : System.Any_Priority) return Character;
+ pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
+ -- Get priority specific dispatching policy
+
+ Foreign_Task_Elaborated : aliased Boolean := True;
+ -- Used to identified fake tasks (i.e., non-Ada Threads)
+
+ Null_Thread_Id : constant Thread_Id := 0;
+ -- Constant to indicate that the thread identifier has not yet been
+ -- initialized.
+
+ ------------------------------------
+ -- The thread local storage index --
+ ------------------------------------
+
+ TlsIndex : DWORD;
+ pragma Export (Ada, TlsIndex);
+ -- To ensure that this variable won't be local to this package, since
+ -- in some cases, inlining forces this variable to be global anyway.
+
+ --------------------
+ -- Local Packages --
+ --------------------
+
+ package Specific is
+
+ function Is_Valid_Task return Boolean;
+ pragma Inline (Is_Valid_Task);
+ -- Does executing thread have a TCB?
+
+ procedure Set (Self_Id : Task_Id);
+ pragma Inline (Set);
+ -- Set the self id for the current task
+
+ end Specific;
+
+ package body Specific is
+
+ function Is_Valid_Task return Boolean is
+ begin
+ return TlsGetValue (TlsIndex) /= System.Null_Address;
+ end Is_Valid_Task;
+
+ procedure Set (Self_Id : Task_Id) is
+ Succeeded : BOOL;
+ begin
+ Succeeded := TlsSetValue (TlsIndex, To_Address (Self_Id));
+ pragma Assert (Succeeded = Win32.TRUE);
+ end Set;
+
+ end Specific;
+
+ ----------------------------------
+ -- ATCB allocation/deallocation --
+ ----------------------------------
+
+ package body ATCB_Allocation is separate;
+ -- The body of this package is shared across several targets
+
+ ---------------------------------
+ -- Support for foreign threads --
+ ---------------------------------
+
+ function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
+ -- Allocate and Initialize a new ATCB for the current Thread
+
+ function Register_Foreign_Thread
+ (Thread : Thread_Id) return Task_Id is separate;
+
+ ----------------------------------
+ -- Condition Variable Functions --
+ ----------------------------------
+
+ procedure Initialize_Cond (Cond : not null access Condition_Variable);
+ -- Initialize given condition variable Cond
+
+ procedure Finalize_Cond (Cond : not null access Condition_Variable);
+ -- Finalize given condition variable Cond
+
+ procedure Cond_Signal (Cond : not null access Condition_Variable);
+ -- Signal condition variable Cond
+
+ procedure Cond_Wait
+ (Cond : not null access Condition_Variable;
+ L : not null access RTS_Lock);
+ -- Wait on conditional variable Cond, using lock L
+
+ procedure Cond_Timed_Wait
+ (Cond : not null access Condition_Variable;
+ L : not null access RTS_Lock;
+ Rel_Time : Duration;
+ Timed_Out : out Boolean;
+ Status : out Integer);
+ -- Do timed wait on condition variable Cond using lock L. The duration
+ -- of the timed wait is given by Rel_Time. When the condition is
+ -- signalled, Timed_Out shows whether or not a time out occurred.
+ -- Status is only valid if Timed_Out is False, in which case it
+ -- shows whether Cond_Timed_Wait completed successfully.
+
+ ---------------------
+ -- Initialize_Cond --
+ ---------------------
+
+ procedure Initialize_Cond (Cond : not null access Condition_Variable) is
+ hEvent : HANDLE;
+ begin
+ hEvent := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr);
+ pragma Assert (hEvent /= 0);
+ Cond.all := Condition_Variable (hEvent);
+ end Initialize_Cond;
+
+ -------------------
+ -- Finalize_Cond --
+ -------------------
+
+ -- No such problem here, DosCloseEventSem has been derived.
+ -- What does such refer to in above comment???
+
+ procedure Finalize_Cond (Cond : not null access Condition_Variable) is
+ Result : BOOL;
+ begin
+ Result := CloseHandle (HANDLE (Cond.all));
+ pragma Assert (Result = Win32.TRUE);
+ end Finalize_Cond;
+
+ -----------------
+ -- Cond_Signal --
+ -----------------
+
+ procedure Cond_Signal (Cond : not null access Condition_Variable) is
+ Result : BOOL;
+ begin
+ Result := SetEvent (HANDLE (Cond.all));
+ pragma Assert (Result = Win32.TRUE);
+ end Cond_Signal;
+
+ ---------------
+ -- Cond_Wait --
+ ---------------
+
+ -- Pre-condition: Cond is posted
+ -- L is locked.
+
+ -- Post-condition: Cond is posted
+ -- L is locked.
+
+ procedure Cond_Wait
+ (Cond : not null access Condition_Variable;
+ L : not null access RTS_Lock)
+ is
+ Result : DWORD;
+ Result_Bool : BOOL;
+
+ begin
+ -- Must reset Cond BEFORE L is unlocked
+
+ Result_Bool := ResetEvent (HANDLE (Cond.all));
+ pragma Assert (Result_Bool = Win32.TRUE);
+ Unlock (L, Global_Lock => True);
+
+ -- No problem if we are interrupted here: if the condition is signaled,
+ -- WaitForSingleObject will simply not block
+
+ Result := WaitForSingleObject (HANDLE (Cond.all), Wait_Infinite);
+ pragma Assert (Result = 0);
+
+ Write_Lock (L, Global_Lock => True);
+ end Cond_Wait;
+
+ ---------------------
+ -- Cond_Timed_Wait --
+ ---------------------
+
+ -- Pre-condition: Cond is posted
+ -- L is locked.
+
+ -- Post-condition: Cond is posted
+ -- L is locked.
+
+ procedure Cond_Timed_Wait
+ (Cond : not null access Condition_Variable;
+ L : not null access RTS_Lock;
+ Rel_Time : Duration;
+ Timed_Out : out Boolean;
+ Status : out Integer)
+ is
+ Time_Out_Max : constant DWORD := 16#FFFF0000#;
+ -- NT 4 can't handle excessive timeout values (e.g. DWORD'Last - 1)
+
+ Time_Out : DWORD;
+ Result : BOOL;
+ Wait_Result : DWORD;
+
+ begin
+ -- Must reset Cond BEFORE L is unlocked
+
+ Result := ResetEvent (HANDLE (Cond.all));
+ pragma Assert (Result = Win32.TRUE);
+ Unlock (L, Global_Lock => True);
+
+ -- No problem if we are interrupted here: if the condition is signaled,
+ -- WaitForSingleObject will simply not block.
+
+ if Rel_Time <= 0.0 then
+ Timed_Out := True;
+ Wait_Result := 0;
+
+ else
+ Time_Out :=
+ (if Rel_Time >= Duration (Time_Out_Max) / 1000
+ then Time_Out_Max
+ else DWORD (Rel_Time * 1000));
+
+ Wait_Result := WaitForSingleObject (HANDLE (Cond.all), Time_Out);
+
+ if Wait_Result = WAIT_TIMEOUT then
+ Timed_Out := True;
+ Wait_Result := 0;
+ else
+ Timed_Out := False;
+ end if;
+ end if;
+
+ Write_Lock (L, Global_Lock => True);
+
+ -- Ensure post-condition
+
+ if Timed_Out then
+ Result := SetEvent (HANDLE (Cond.all));
+ pragma Assert (Result = Win32.TRUE);
+ end if;
+
+ Status := Integer (Wait_Result);
+ end Cond_Timed_Wait;
+
+ ------------------
+ -- Stack_Guard --
+ ------------------
+
+ -- The underlying thread system sets a guard page at the bottom of a thread
+ -- stack, so nothing is needed.
+ -- ??? Check the comment above
+
+ procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
+ pragma Unreferenced (T, On);
+ begin
+ null;
+ end Stack_Guard;
+
+ --------------------
+ -- Get_Thread_Id --
+ --------------------
+
+ function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
+ begin
+ return T.Common.LL.Thread;
+ end Get_Thread_Id;
+
+ ----------
+ -- Self --
+ ----------
+
+ function Self return Task_Id is
+ Self_Id : constant Task_Id := To_Task_Id (TlsGetValue (TlsIndex));
+ begin
+ if Self_Id = null then
+ return Register_Foreign_Thread (GetCurrentThread);
+ else
+ return Self_Id;
+ end if;
+ end Self;
+
+ ---------------------
+ -- Initialize_Lock --
+ ---------------------
+
+ -- Note: mutexes and cond_variables needed per-task basis are initialized
+ -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
+ -- as RTS_Lock, Memory_Lock...) used in the RTS is initialized before any
+ -- status change of RTS. Therefore raising Storage_Error in the following
+ -- routines should be able to be handled safely.
+
+ procedure Initialize_Lock
+ (Prio : System.Any_Priority;
+ L : not null access Lock)
+ is
+ begin
+ InitializeCriticalSection (L.Mutex'Access);
+ L.Owner_Priority := 0;
+ L.Priority := Prio;
+ end Initialize_Lock;
+
+ procedure Initialize_Lock
+ (L : not null access RTS_Lock; Level : Lock_Level)
+ is
+ pragma Unreferenced (Level);
+ begin
+ InitializeCriticalSection (L);
+ end Initialize_Lock;
+
+ -------------------
+ -- Finalize_Lock --
+ -------------------
+
+ procedure Finalize_Lock (L : not null access Lock) is
+ begin
+ DeleteCriticalSection (L.Mutex'Access);
+ end Finalize_Lock;
+
+ procedure Finalize_Lock (L : not null access RTS_Lock) is
+ begin
+ DeleteCriticalSection (L);
+ end Finalize_Lock;
+
+ ----------------
+ -- Write_Lock --
+ ----------------
+
+ procedure Write_Lock
+ (L : not null access Lock; Ceiling_Violation : out Boolean) is
+ begin
+ L.Owner_Priority := Get_Priority (Self);
+
+ if L.Priority < L.Owner_Priority then
+ Ceiling_Violation := True;
+ return;
+ end if;
+
+ EnterCriticalSection (L.Mutex'Access);
+
+ Ceiling_Violation := False;
+ end Write_Lock;
+
+ procedure Write_Lock
+ (L : not null access RTS_Lock;
+ Global_Lock : Boolean := False)
+ is
+ begin
+ if not Single_Lock or else Global_Lock then
+ EnterCriticalSection (L);
+ end if;
+ end Write_Lock;
+
+ procedure Write_Lock (T : Task_Id) is
+ begin
+ if not Single_Lock then
+ EnterCriticalSection (T.Common.LL.L'Access);
+ end if;
+ end Write_Lock;
+
+ ---------------
+ -- Read_Lock --
+ ---------------
+
+ procedure Read_Lock
+ (L : not null access Lock; Ceiling_Violation : out Boolean) is
+ begin
+ Write_Lock (L, Ceiling_Violation);
+ end Read_Lock;
+
+ ------------
+ -- Unlock --
+ ------------
+
+ procedure Unlock (L : not null access Lock) is
+ begin
+ LeaveCriticalSection (L.Mutex'Access);
+ end Unlock;
+
+ procedure Unlock
+ (L : not null access RTS_Lock; Global_Lock : Boolean := False) is
+ begin
+ if not Single_Lock or else Global_Lock then
+ LeaveCriticalSection (L);
+ end if;
+ end Unlock;
+
+ procedure Unlock (T : Task_Id) is
+ begin
+ if not Single_Lock then
+ LeaveCriticalSection (T.Common.LL.L'Access);
+ end if;
+ end Unlock;
+
+ -----------------
+ -- Set_Ceiling --
+ -----------------
+
+ -- Dynamic priority ceilings are not supported by the underlying system
+
+ procedure Set_Ceiling
+ (L : not null access Lock;
+ Prio : System.Any_Priority)
+ is
+ pragma Unreferenced (L, Prio);
+ begin
+ null;
+ end Set_Ceiling;
+
+ -----------
+ -- Sleep --
+ -----------
+
+ procedure Sleep
+ (Self_ID : Task_Id;
+ Reason : System.Tasking.Task_States)
+ is
+ pragma Unreferenced (Reason);
+
+ begin
+ pragma Assert (Self_ID = Self);
+
+ if Single_Lock then
+ Cond_Wait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
+ else
+ Cond_Wait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
+ end if;
+
+ if Self_ID.Deferral_Level = 0
+ and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
+ then
+ Unlock (Self_ID);
+ raise Standard'Abort_Signal;
+ end if;
+ end Sleep;
+
+ -----------------
+ -- Timed_Sleep --
+ -----------------
+
+ -- This is for use within the run-time system, so abort is assumed to be
+ -- already deferred, and the caller should be holding its own ATCB lock.
+
+ procedure Timed_Sleep
+ (Self_ID : Task_Id;
+ Time : Duration;
+ Mode : ST.Delay_Modes;
+ Reason : System.Tasking.Task_States;
+ Timedout : out Boolean;
+ Yielded : out Boolean)
+ is
+ pragma Unreferenced (Reason);
+ Check_Time : Duration := Monotonic_Clock;
+ Rel_Time : Duration;
+ Abs_Time : Duration;
+
+ Result : Integer;
+ pragma Unreferenced (Result);
+
+ Local_Timedout : Boolean;
+
+ begin
+ Timedout := True;
+ Yielded := False;
+
+ if Mode = Relative then
+ Rel_Time := Time;
+ Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
+ else
+ Rel_Time := Time - Check_Time;
+ Abs_Time := Time;
+ end if;
+
+ if Rel_Time > 0.0 then
+ loop
+ exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
+
+ if Single_Lock then
+ Cond_Timed_Wait
+ (Self_ID.Common.LL.CV'Access,
+ Single_RTS_Lock'Access,
+ Rel_Time, Local_Timedout, Result);
+ else
+ Cond_Timed_Wait
+ (Self_ID.Common.LL.CV'Access,
+ Self_ID.Common.LL.L'Access,
+ Rel_Time, Local_Timedout, Result);
+ end if;
+
+ Check_Time := Monotonic_Clock;
+ exit when Abs_Time <= Check_Time;
+
+ if not Local_Timedout then
+
+ -- Somebody may have called Wakeup for us
+
+ Timedout := False;
+ exit;
+ end if;
+
+ Rel_Time := Abs_Time - Check_Time;
+ end loop;
+ end if;
+ end Timed_Sleep;
+
+ -----------------
+ -- Timed_Delay --
+ -----------------
+
+ procedure Timed_Delay
+ (Self_ID : Task_Id;
+ Time : Duration;
+ Mode : ST.Delay_Modes)
+ is
+ Check_Time : Duration := Monotonic_Clock;
+ Rel_Time : Duration;
+ Abs_Time : Duration;
+
+ Timedout : Boolean;
+ Result : Integer;
+ pragma Unreferenced (Timedout, Result);
+
+ begin
+ if Single_Lock then
+ Lock_RTS;
+ end if;
+
+ Write_Lock (Self_ID);
+
+ if Mode = Relative then
+ Rel_Time := Time;
+ Abs_Time := Time + Check_Time;
+ else
+ Rel_Time := Time - Check_Time;
+ Abs_Time := Time;
+ end if;
+
+ if Rel_Time > 0.0 then
+ Self_ID.Common.State := Delay_Sleep;
+
+ loop
+ exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
+
+ if Single_Lock then
+ Cond_Timed_Wait
+ (Self_ID.Common.LL.CV'Access,
+ Single_RTS_Lock'Access,
+ Rel_Time, Timedout, Result);
+ else
+ Cond_Timed_Wait
+ (Self_ID.Common.LL.CV'Access,
+ Self_ID.Common.LL.L'Access,
+ Rel_Time, Timedout, Result);
+ end if;
+
+ Check_Time := Monotonic_Clock;
+ exit when Abs_Time <= Check_Time;
+
+ Rel_Time := Abs_Time - Check_Time;
+ end loop;
+
+ Self_ID.Common.State := Runnable;
+ end if;
+
+ Unlock (Self_ID);
+
+ if Single_Lock then
+ Unlock_RTS;
+ end if;
+
+ Yield;
+ end Timed_Delay;
+
+ ------------
+ -- Wakeup --
+ ------------
+
+ procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
+ pragma Unreferenced (Reason);
+ begin
+ Cond_Signal (T.Common.LL.CV'Access);
+ end Wakeup;
+
+ -----------
+ -- Yield --
+ -----------
+
+ procedure Yield (Do_Yield : Boolean := True) is
+ begin
+ -- Note: in a previous implementation if Do_Yield was False, then we
+ -- introduced a delay of 1 millisecond in an attempt to get closer to
+ -- annex D semantics, and in particular to make ACATS CXD8002 pass. But
+ -- this change introduced a huge performance regression evaluating the
+ -- Count attribute. So we decided to remove this processing.
+
+ -- Moreover, CXD8002 appears to pass on Windows (although we do not
+ -- guarantee full Annex D compliance on Windows in any case).
+
+ if Do_Yield then
+ SwitchToThread;
+ end if;
+ end Yield;
+
+ ------------------
+ -- Set_Priority --
+ ------------------
+
+ procedure Set_Priority
+ (T : Task_Id;
+ Prio : System.Any_Priority;
+ Loss_Of_Inheritance : Boolean := False)
+ is
+ Res : BOOL;
+ pragma Unreferenced (Loss_Of_Inheritance);
+
+ begin
+ Res :=
+ SetThreadPriority
+ (T.Common.LL.Thread,
+ Interfaces.C.int (Underlying_Priorities (Prio)));
+ pragma Assert (Res = Win32.TRUE);
+
+ -- Note: Annex D (RM D.2.3(5/2)) requires the task to be placed at the
+ -- head of its priority queue when decreasing its priority as a result
+ -- of a loss of inherited priority. This is not the case, but we
+ -- consider it an acceptable variation (RM 1.1.3(6)), given this is
+ -- the built-in behavior offered by the Windows operating system.
+
+ -- In older versions we attempted to better approximate the Annex D
+ -- required behavior, but this simulation was not entirely accurate,
+ -- and it seems better to live with the standard Windows semantics.
+
+ T.Common.Current_Priority := Prio;
+ end Set_Priority;
+
+ ------------------
+ -- Get_Priority --
+ ------------------
+
+ function Get_Priority (T : Task_Id) return System.Any_Priority is
+ begin
+ return T.Common.Current_Priority;
+ end Get_Priority;
+
+ ----------------
+ -- Enter_Task --
+ ----------------
+
+ -- There were two paths were we needed to call Enter_Task :
+ -- 1) from System.Task_Primitives.Operations.Initialize
+ -- 2) from System.Tasking.Stages.Task_Wrapper
+
+ -- The thread initialisation has to be done only for the first case
+
+ -- This is because the GetCurrentThread NT call does not return the real
+ -- thread handler but only a "pseudo" one. It is not possible to release
+ -- the thread handle and free the system resources from this "pseudo"
+ -- handle. So we really want to keep the real thread handle set in
+ -- System.Task_Primitives.Operations.Create_Task during thread creation.
+
+ procedure Enter_Task (Self_ID : Task_Id) is
+ procedure Get_Stack_Bounds (Base : Address; Limit : Address);
+ pragma Import (C, Get_Stack_Bounds, "__gnat_get_stack_bounds");
+ -- Get stack boundaries
+ begin
+ Specific.Set (Self_ID);
+
+ -- Properly initializes the FPU for x86 systems
+
+ System.Float_Control.Reset;
+
+ if Self_ID.Common.Task_Info /= null
+ and then
+ Self_ID.Common.Task_Info.CPU >= CPU_Number (Number_Of_Processors)
+ then
+ raise Invalid_CPU_Number;
+ end if;
+
+ Self_ID.Common.LL.Thread_Id := GetCurrentThreadId;
+
+ Get_Stack_Bounds
+ (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Base'Address,
+ Self_ID.Common.Compiler_Data.Pri_Stack_Info.Limit'Address);
+ end Enter_Task;
+
+ -------------------
+ -- Is_Valid_Task --
+ -------------------
+
+ function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
+
+ -----------------------------
+ -- Register_Foreign_Thread --
+ -----------------------------
+
+ function Register_Foreign_Thread return Task_Id is
+ begin
+ if Is_Valid_Task then
+ return Self;
+ else
+ return Register_Foreign_Thread (GetCurrentThread);
+ end if;
+ end Register_Foreign_Thread;
+
+ --------------------
+ -- Initialize_TCB --
+ --------------------
+
+ procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
+ begin
+ -- Initialize thread ID to 0, this is needed to detect threads that
+ -- are not yet activated.
+
+ Self_ID.Common.LL.Thread := Null_Thread_Id;
+
+ Initialize_Cond (Self_ID.Common.LL.CV'Access);
+
+ if not Single_Lock then
+ Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
+ end if;
+
+ Succeeded := True;
+ end Initialize_TCB;
+
+ -----------------
+ -- Create_Task --
+ -----------------
+
+ procedure Create_Task
+ (T : Task_Id;
+ Wrapper : System.Address;
+ Stack_Size : System.Parameters.Size_Type;
+ Priority : System.Any_Priority;
+ Succeeded : out Boolean)
+ is
+ Initial_Stack_Size : constant := 1024;
+ -- We set the initial stack size to 1024. On Windows version prior to XP
+ -- there is no way to fix a task stack size. Only the initial stack size
+ -- can be set, the operating system will raise the task stack size if
+ -- needed.
+
+ function Is_Windows_XP return Integer;
+ pragma Import (C, Is_Windows_XP, "__gnat_is_windows_xp");
+ -- Returns 1 if running on Windows XP
+
+ hTask : HANDLE;
+ TaskId : aliased DWORD;
+ pTaskParameter : Win32.PVOID;
+ Result : DWORD;
+ Entry_Point : PTHREAD_START_ROUTINE;
+
+ use type System.Multiprocessors.CPU_Range;
+
+ begin
+ -- Check whether both Dispatching_Domain and CPU are specified for the
+ -- task, and the CPU value is not contained within the range of
+ -- processors for the domain.
+
+ if T.Common.Domain /= null
+ and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
+ and then
+ (T.Common.Base_CPU not in T.Common.Domain'Range
+ or else not T.Common.Domain (T.Common.Base_CPU))
+ then
+ Succeeded := False;
+ return;
+ end if;
+
+ pTaskParameter := To_Address (T);
+
+ Entry_Point := To_PTHREAD_START_ROUTINE (Wrapper);
+
+ if Is_Windows_XP = 1 then
+ hTask := CreateThread
+ (null,
+ DWORD (Stack_Size),
+ Entry_Point,
+ pTaskParameter,
+ DWORD (Create_Suspended) or
+ DWORD (Stack_Size_Param_Is_A_Reservation),
+ TaskId'Unchecked_Access);
+ else
+ hTask := CreateThread
+ (null,
+ Initial_Stack_Size,
+ Entry_Point,
+ pTaskParameter,
+ DWORD (Create_Suspended),
+ TaskId'Unchecked_Access);
+ end if;
+
+ -- Step 1: Create the thread in blocked mode
+
+ if hTask = 0 then
+ Succeeded := False;
+ return;
+ end if;
+
+ -- Step 2: set its TCB
+
+ T.Common.LL.Thread := hTask;
+
+ -- Note: it would be useful to initialize Thread_Id right away to avoid
+ -- a race condition in gdb where Thread_ID may not have the right value
+ -- yet, but GetThreadId is a Vista specific API, not available under XP:
+ -- T.Common.LL.Thread_Id := GetThreadId (hTask); so instead we set the
+ -- field to 0 to avoid having a random value. Thread_Id is initialized
+ -- in Enter_Task anyway.
+
+ T.Common.LL.Thread_Id := 0;
+
+ -- Step 3: set its priority (child has inherited priority from parent)
+
+ Set_Priority (T, Priority);
+
+ if Time_Slice_Val = 0
+ or else Dispatching_Policy = 'F'
+ or else Get_Policy (Priority) = 'F'
+ then
+ -- Here we need Annex D semantics so we disable the NT priority
+ -- boost. A priority boost is temporarily given by the system to
+ -- a thread when it is taken out of a wait state.
+
+ SetThreadPriorityBoost (hTask, DisablePriorityBoost => Win32.TRUE);
+ end if;
+
+ -- Step 4: Handle pragma CPU and Task_Info
+
+ Set_Task_Affinity (T);
+
+ -- Step 5: Now, start it for good
+
+ Result := ResumeThread (hTask);
+ pragma Assert (Result = 1);
+
+ Succeeded := Result = 1;
+ end Create_Task;
+
+ ------------------
+ -- Finalize_TCB --
+ ------------------
+
+ procedure Finalize_TCB (T : Task_Id) is
+ Succeeded : BOOL;
+
+ begin
+ if not Single_Lock then
+ Finalize_Lock (T.Common.LL.L'Access);
+ end if;
+
+ Finalize_Cond (T.Common.LL.CV'Access);
+
+ if T.Known_Tasks_Index /= -1 then
+ Known_Tasks (T.Known_Tasks_Index) := null;
+ end if;
+
+ if T.Common.LL.Thread /= 0 then
+
+ -- This task has been activated. Close the thread handle. This
+ -- is needed to release system resources.
+
+ Succeeded := CloseHandle (T.Common.LL.Thread);
+ pragma Assert (Succeeded = Win32.TRUE);
+ end if;
+
+ ATCB_Allocation.Free_ATCB (T);
+ end Finalize_TCB;
+
+ ---------------
+ -- Exit_Task --
+ ---------------
+
+ procedure Exit_Task is
+ begin
+ Specific.Set (null);
+ end Exit_Task;
+
+ ----------------
+ -- Abort_Task --
+ ----------------
+
+ procedure Abort_Task (T : Task_Id) is
+ pragma Unreferenced (T);
+ begin
+ null;
+ end Abort_Task;
+
+ ----------------------
+ -- Environment_Task --
+ ----------------------
+
+ function Environment_Task return Task_Id is
+ begin
+ return Environment_Task_Id;
+ end Environment_Task;
+
+ --------------
+ -- Lock_RTS --
+ --------------
+
+ procedure Lock_RTS is
+ begin
+ Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
+ end Lock_RTS;
+
+ ----------------
+ -- Unlock_RTS --
+ ----------------
+
+ procedure Unlock_RTS is
+ begin
+ Unlock (Single_RTS_Lock'Access, Global_Lock => True);
+ end Unlock_RTS;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize (Environment_Task : Task_Id) is
+ Discard : BOOL;
+ pragma Unreferenced (Discard);
+
+ begin
+ Environment_Task_Id := Environment_Task;
+ OS_Primitives.Initialize;
+ Interrupt_Management.Initialize;
+
+ if Time_Slice_Val = 0 or else Dispatching_Policy = 'F' then
+ -- Here we need Annex D semantics, switch the current process to the
+ -- Realtime_Priority_Class.
+
+ Discard := OS_Interface.SetPriorityClass
+ (GetCurrentProcess, Realtime_Priority_Class);
+ end if;
+
+ TlsIndex := TlsAlloc;
+
+ -- Initialize the lock used to synchronize chain of all ATCBs
+
+ Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
+
+ Environment_Task.Common.LL.Thread := GetCurrentThread;
+
+ -- Make environment task known here because it doesn't go through
+ -- Activate_Tasks, which does it for all other tasks.
+
+ Known_Tasks (Known_Tasks'First) := Environment_Task;
+ Environment_Task.Known_Tasks_Index := Known_Tasks'First;
+
+ Enter_Task (Environment_Task);
+
+ -- pragma CPU and dispatching domains for the environment task
+
+ Set_Task_Affinity (Environment_Task);
+ end Initialize;
+
+ ---------------------
+ -- Monotonic_Clock --
+ ---------------------
+
+ function Monotonic_Clock return Duration
+ renames System.OS_Primitives.Monotonic_Clock;
+
+ -------------------
+ -- RT_Resolution --
+ -------------------
+
+ function RT_Resolution return Duration is
+ begin
+ return 0.000_001; -- 1 micro-second
+ end RT_Resolution;
+
+ ----------------
+ -- Initialize --
+ ----------------
+
+ procedure Initialize (S : in out Suspension_Object) is
+ begin
+ -- Initialize internal state. It is always initialized to False (ARM
+ -- D.10 par. 6).
+
+ S.State := False;
+ S.Waiting := False;
+
+ -- Initialize internal mutex
+
+ InitializeCriticalSection (S.L'Access);
+
+ -- Initialize internal condition variable
+
+ S.CV := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr);
+ pragma Assert (S.CV /= 0);
+ end Initialize;
+
+ --------------
+ -- Finalize --
+ --------------
+
+ procedure Finalize (S : in out Suspension_Object) is
+ Result : BOOL;
+
+ begin
+ -- Destroy internal mutex
+
+ DeleteCriticalSection (S.L'Access);
+
+ -- Destroy internal condition variable
+
+ Result := CloseHandle (S.CV);
+ pragma Assert (Result = Win32.TRUE);
+ end Finalize;
+
+ -------------------
+ -- Current_State --
+ -------------------
+
+ function Current_State (S : Suspension_Object) return Boolean is
+ begin
+ -- We do not want to use lock on this read operation. State is marked
+ -- as Atomic so that we ensure that the value retrieved is correct.
+
+ return S.State;
+ end Current_State;
+
+ ---------------
+ -- Set_False --
+ ---------------
+
+ procedure Set_False (S : in out Suspension_Object) is
+ begin
+ SSL.Abort_Defer.all;
+
+ EnterCriticalSection (S.L'Access);
+
+ S.State := False;
+
+ LeaveCriticalSection (S.L'Access);
+
+ SSL.Abort_Undefer.all;
+ end Set_False;
+
+ --------------
+ -- Set_True --
+ --------------
+
+ procedure Set_True (S : in out Suspension_Object) is
+ Result : BOOL;
+
+ begin
+ SSL.Abort_Defer.all;
+
+ EnterCriticalSection (S.L'Access);
+
+ -- If there is already a task waiting on this suspension object then
+ -- we resume it, leaving the state of the suspension object to False,
+ -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
+ -- the state to True.
+
+ if S.Waiting then
+ S.Waiting := False;
+ S.State := False;
+
+ Result := SetEvent (S.CV);
+ pragma Assert (Result = Win32.TRUE);
+
+ else
+ S.State := True;
+ end if;
+
+ LeaveCriticalSection (S.L'Access);
+
+ SSL.Abort_Undefer.all;
+ end Set_True;
+
+ ------------------------
+ -- Suspend_Until_True --
+ ------------------------
+
+ procedure Suspend_Until_True (S : in out Suspension_Object) is
+ Result : DWORD;
+ Result_Bool : BOOL;
+
+ begin
+ SSL.Abort_Defer.all;
+
+ EnterCriticalSection (S.L'Access);
+
+ if S.Waiting then
+
+ -- Program_Error must be raised upon calling Suspend_Until_True
+ -- if another task is already waiting on that suspension object
+ -- (ARM D.10 par. 10).
+
+ LeaveCriticalSection (S.L'Access);
+
+ SSL.Abort_Undefer.all;
+
+ raise Program_Error;
+
+ else
+ -- Suspend the task if the state is False. Otherwise, the task
+ -- continues its execution, and the state of the suspension object
+ -- is set to False (ARM D.10 par. 9).
+
+ if S.State then
+ S.State := False;
+
+ LeaveCriticalSection (S.L'Access);
+
+ SSL.Abort_Undefer.all;
+
+ else
+ S.Waiting := True;
+
+ -- Must reset CV BEFORE L is unlocked
+
+ Result_Bool := ResetEvent (S.CV);
+ pragma Assert (Result_Bool = Win32.TRUE);
+
+ LeaveCriticalSection (S.L'Access);
+
+ SSL.Abort_Undefer.all;
+
+ Result := WaitForSingleObject (S.CV, Wait_Infinite);
+ pragma Assert (Result = 0);
+ end if;
+ end if;
+ end Suspend_Until_True;
+
+ ----------------
+ -- Check_Exit --
+ ----------------
+
+ -- Dummy versions, currently this only works for solaris (native)
+
+ function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
+ pragma Unreferenced (Self_ID);
+ begin
+ return True;
+ end Check_Exit;
+
+ --------------------
+ -- Check_No_Locks --
+ --------------------
+
+ function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
+ pragma Unreferenced (Self_ID);
+ begin
+ return True;
+ end Check_No_Locks;
+
+ ------------------
+ -- Suspend_Task --
+ ------------------
+
+ function Suspend_Task
+ (T : ST.Task_Id;
+ Thread_Self : Thread_Id) return Boolean
+ is
+ begin
+ if T.Common.LL.Thread /= Thread_Self then
+ return SuspendThread (T.Common.LL.Thread) = NO_ERROR;
+ else
+ return True;
+ end if;
+ end Suspend_Task;
+
+ -----------------
+ -- Resume_Task --
+ -----------------
+
+ function Resume_Task
+ (T : ST.Task_Id;
+ Thread_Self : Thread_Id) return Boolean
+ is
+ begin
+ if T.Common.LL.Thread /= Thread_Self then
+ return ResumeThread (T.Common.LL.Thread) = NO_ERROR;
+ else
+ return True;
+ end if;
+ end Resume_Task;
+
+ --------------------
+ -- Stop_All_Tasks --
+ --------------------
+
+ procedure Stop_All_Tasks is
+ begin
+ null;
+ end Stop_All_Tasks;
+
+ ---------------
+ -- Stop_Task --
+ ---------------
+
+ function Stop_Task (T : ST.Task_Id) return Boolean is
+ pragma Unreferenced (T);
+ begin
+ return False;
+ end Stop_Task;
+
+ -------------------
+ -- Continue_Task --
+ -------------------
+
+ function Continue_Task (T : ST.Task_Id) return Boolean is
+ pragma Unreferenced (T);
+ begin
+ return False;
+ end Continue_Task;
+
+ -----------------------
+ -- Set_Task_Affinity --
+ -----------------------
+
+ procedure Set_Task_Affinity (T : ST.Task_Id) is
+ Result : DWORD;
+
+ use type System.Multiprocessors.CPU_Range;
+
+ begin
+ -- Do nothing if the underlying thread has not yet been created. If the
+ -- thread has not yet been created then the proper affinity will be set
+ -- during its creation.
+
+ if T.Common.LL.Thread = Null_Thread_Id then
+ null;
+
+ -- pragma CPU
+
+ elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
+
+ -- The CPU numbering in pragma CPU starts at 1 while the subprogram
+ -- to set the affinity starts at 0, therefore we must substract 1.
+
+ Result :=
+ SetThreadIdealProcessor
+ (T.Common.LL.Thread, ProcessorId (T.Common.Base_CPU) - 1);
+ pragma Assert (Result = 1);
+
+ -- Task_Info
+
+ elsif T.Common.Task_Info /= null then
+ if T.Common.Task_Info.CPU /= Task_Info.Any_CPU then
+ Result :=
+ SetThreadIdealProcessor
+ (T.Common.LL.Thread, T.Common.Task_Info.CPU);
+ pragma Assert (Result = 1);
+ end if;
+
+ -- Dispatching domains
+
+ elsif T.Common.Domain /= null
+ and then (T.Common.Domain /= ST.System_Domain
+ or else
+ T.Common.Domain.all /=
+ (Multiprocessors.CPU'First ..
+ Multiprocessors.Number_Of_CPUs => True))
+ then
+ declare
+ CPU_Set : DWORD := 0;
+
+ begin
+ for Proc in T.Common.Domain'Range loop
+ if T.Common.Domain (Proc) then
+
+ -- The thread affinity mask is a bit vector in which each
+ -- bit represents a logical processor.
+
+ CPU_Set := CPU_Set + 2 ** (Integer (Proc) - 1);
+ end if;
+ end loop;
+
+ Result := SetThreadAffinityMask (T.Common.LL.Thread, CPU_Set);
+ pragma Assert (Result = 1);
+ end;
+ end if;
+ end Set_Task_Affinity;
+
+end System.Task_Primitives.Operations;