aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.7/libgo/go/reflect
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.7/libgo/go/reflect')
-rw-r--r--gcc-4.7/libgo/go/reflect/all_test.go1766
-rw-r--r--gcc-4.7/libgo/go/reflect/deepequal.go138
-rw-r--r--gcc-4.7/libgo/go/reflect/set_test.go211
-rw-r--r--gcc-4.7/libgo/go/reflect/tostring_test.go96
-rw-r--r--gcc-4.7/libgo/go/reflect/type.go1242
-rw-r--r--gcc-4.7/libgo/go/reflect/value.go1807
6 files changed, 5260 insertions, 0 deletions
diff --git a/gcc-4.7/libgo/go/reflect/all_test.go b/gcc-4.7/libgo/go/reflect/all_test.go
new file mode 100644
index 000000000..e946c0adf
--- /dev/null
+++ b/gcc-4.7/libgo/go/reflect/all_test.go
@@ -0,0 +1,1766 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflect_test
+
+import (
+ "bytes"
+ "encoding/base64"
+ "fmt"
+ "io"
+ "os"
+ . "reflect"
+ /* "runtime" */
+ "testing"
+ "unsafe"
+)
+
+func TestBool(t *testing.T) {
+ v := ValueOf(true)
+ if v.Bool() != true {
+ t.Fatal("ValueOf(true).Bool() = false")
+ }
+}
+
+type integer int
+type T struct {
+ a int
+ b float64
+ c string
+ d *int
+}
+
+type pair struct {
+ i interface{}
+ s string
+}
+
+func isDigit(c uint8) bool { return '0' <= c && c <= '9' }
+
+func assert(t *testing.T, s, want string) {
+ if s != want {
+ t.Errorf("have %#q want %#q", s, want)
+ }
+}
+
+func typestring(i interface{}) string { return TypeOf(i).String() }
+
+var typeTests = []pair{
+ {struct{ x int }{}, "int"},
+ {struct{ x int8 }{}, "int8"},
+ {struct{ x int16 }{}, "int16"},
+ {struct{ x int32 }{}, "int32"},
+ {struct{ x int64 }{}, "int64"},
+ {struct{ x uint }{}, "uint"},
+ {struct{ x uint8 }{}, "uint8"},
+ {struct{ x uint16 }{}, "uint16"},
+ {struct{ x uint32 }{}, "uint32"},
+ {struct{ x uint64 }{}, "uint64"},
+ {struct{ x float32 }{}, "float32"},
+ {struct{ x float64 }{}, "float64"},
+ {struct{ x int8 }{}, "int8"},
+ {struct{ x (**int8) }{}, "**int8"},
+ {struct{ x (**integer) }{}, "**reflect_test.integer"},
+ {struct{ x ([32]int32) }{}, "[32]int32"},
+ {struct{ x ([]int8) }{}, "[]int8"},
+ {struct{ x (map[string]int32) }{}, "map[string]int32"},
+ {struct{ x (chan<- string) }{}, "chan<- string"},
+ {struct {
+ x struct {
+ c chan *int32
+ d float32
+ }
+ }{},
+ "struct { c chan *int32; d float32 }",
+ },
+ {struct{ x (func(a int8, b int32)) }{}, "func(int8, int32)"},
+ {struct {
+ x struct {
+ c func(chan *integer, *int8)
+ }
+ }{},
+ "struct { c func(chan *reflect_test.integer, *int8) }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int32
+ }
+ }{},
+ "struct { a int8; b int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int32
+ }
+ }{},
+ "struct { a int8; b int8; c int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int8
+ d int32
+ }
+ }{},
+ "struct { a int8; b int8; c int8; d int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int8
+ d int8
+ e int32
+ }
+ }{},
+ "struct { a int8; b int8; c int8; d int8; e int32 }",
+ },
+ {struct {
+ x struct {
+ a int8
+ b int8
+ c int8
+ d int8
+ e int8
+ f int32
+ }
+ }{},
+ "struct { a int8; b int8; c int8; d int8; e int8; f int32 }",
+ },
+ {struct {
+ x struct {
+ a int8 `reflect:"hi there"`
+ }
+ }{},
+ `struct { a int8 "reflect:\"hi there\"" }`,
+ },
+ {struct {
+ x struct {
+ a int8 `reflect:"hi \x00there\t\n\"\\"`
+ }
+ }{},
+ `struct { a int8 "reflect:\"hi \\x00there\\t\\n\\\"\\\\\"" }`,
+ },
+ {struct {
+ x struct {
+ f func(args ...int)
+ }
+ }{},
+ "struct { f func(...int) }",
+ },
+ {struct {
+ x (interface {
+ a(func(func(int) int) func(func(int)) int)
+ b()
+ })
+ }{},
+ "interface { reflect_test.a(func(func(int) int) func(func(int)) int); reflect_test.b() }",
+ },
+}
+
+var valueTests = []pair{
+ {new(int8), "8"},
+ {new(int16), "16"},
+ {new(int32), "32"},
+ {new(int64), "64"},
+ {new(uint8), "8"},
+ {new(uint16), "16"},
+ {new(uint32), "32"},
+ {new(uint64), "64"},
+ {new(float32), "256.25"},
+ {new(float64), "512.125"},
+ {new(string), "stringy cheese"},
+ {new(bool), "true"},
+ {new(*int8), "*int8(0)"},
+ {new(**int8), "**int8(0)"},
+ {new([5]int32), "[5]int32{0, 0, 0, 0, 0}"},
+ {new(**integer), "**reflect_test.integer(0)"},
+ {new(map[string]int32), "map[string]int32{<can't iterate on maps>}"},
+ {new(chan<- string), "chan<- string"},
+ {new(func(a int8, b int32)), "func(int8, int32)(0)"},
+ {new(struct {
+ c chan *int32
+ d float32
+ }),
+ "struct { c chan *int32; d float32 }{chan *int32, 0}",
+ },
+ {new(struct{ c func(chan *integer, *int8) }),
+ "struct { c func(chan *reflect_test.integer, *int8) }{func(chan *reflect_test.integer, *int8)(0)}",
+ },
+ {new(struct {
+ a int8
+ b int32
+ }),
+ "struct { a int8; b int32 }{0, 0}",
+ },
+ {new(struct {
+ a int8
+ b int8
+ c int32
+ }),
+ "struct { a int8; b int8; c int32 }{0, 0, 0}",
+ },
+}
+
+func testType(t *testing.T, i int, typ Type, want string) {
+ s := typ.String()
+ if s != want {
+ t.Errorf("#%d: have %#q, want %#q", i, s, want)
+ }
+}
+
+func TestTypes(t *testing.T) {
+ for i, tt := range typeTests {
+ testType(t, i, ValueOf(tt.i).Field(0).Type(), tt.s)
+ }
+}
+
+func TestSet(t *testing.T) {
+ for i, tt := range valueTests {
+ v := ValueOf(tt.i)
+ v = v.Elem()
+ switch v.Kind() {
+ case Int:
+ v.SetInt(132)
+ case Int8:
+ v.SetInt(8)
+ case Int16:
+ v.SetInt(16)
+ case Int32:
+ v.SetInt(32)
+ case Int64:
+ v.SetInt(64)
+ case Uint:
+ v.SetUint(132)
+ case Uint8:
+ v.SetUint(8)
+ case Uint16:
+ v.SetUint(16)
+ case Uint32:
+ v.SetUint(32)
+ case Uint64:
+ v.SetUint(64)
+ case Float32:
+ v.SetFloat(256.25)
+ case Float64:
+ v.SetFloat(512.125)
+ case Complex64:
+ v.SetComplex(532.125 + 10i)
+ case Complex128:
+ v.SetComplex(564.25 + 1i)
+ case String:
+ v.SetString("stringy cheese")
+ case Bool:
+ v.SetBool(true)
+ }
+ s := valueToString(v)
+ if s != tt.s {
+ t.Errorf("#%d: have %#q, want %#q", i, s, tt.s)
+ }
+ }
+}
+
+func TestSetValue(t *testing.T) {
+ for i, tt := range valueTests {
+ v := ValueOf(tt.i).Elem()
+ switch v.Kind() {
+ case Int:
+ v.Set(ValueOf(int(132)))
+ case Int8:
+ v.Set(ValueOf(int8(8)))
+ case Int16:
+ v.Set(ValueOf(int16(16)))
+ case Int32:
+ v.Set(ValueOf(int32(32)))
+ case Int64:
+ v.Set(ValueOf(int64(64)))
+ case Uint:
+ v.Set(ValueOf(uint(132)))
+ case Uint8:
+ v.Set(ValueOf(uint8(8)))
+ case Uint16:
+ v.Set(ValueOf(uint16(16)))
+ case Uint32:
+ v.Set(ValueOf(uint32(32)))
+ case Uint64:
+ v.Set(ValueOf(uint64(64)))
+ case Float32:
+ v.Set(ValueOf(float32(256.25)))
+ case Float64:
+ v.Set(ValueOf(512.125))
+ case Complex64:
+ v.Set(ValueOf(complex64(532.125 + 10i)))
+ case Complex128:
+ v.Set(ValueOf(complex128(564.25 + 1i)))
+ case String:
+ v.Set(ValueOf("stringy cheese"))
+ case Bool:
+ v.Set(ValueOf(true))
+ }
+ s := valueToString(v)
+ if s != tt.s {
+ t.Errorf("#%d: have %#q, want %#q", i, s, tt.s)
+ }
+ }
+}
+
+var _i = 7
+
+var valueToStringTests = []pair{
+ {123, "123"},
+ {123.5, "123.5"},
+ {byte(123), "123"},
+ {"abc", "abc"},
+ {T{123, 456.75, "hello", &_i}, "reflect_test.T{123, 456.75, hello, *int(&7)}"},
+ {new(chan *T), "*chan *reflect_test.T(&chan *reflect_test.T)"},
+ {[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"},
+ {&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[10]int(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"},
+ {[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"},
+ {&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[]int(&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"},
+}
+
+func TestValueToString(t *testing.T) {
+ for i, test := range valueToStringTests {
+ s := valueToString(ValueOf(test.i))
+ if s != test.s {
+ t.Errorf("#%d: have %#q, want %#q", i, s, test.s)
+ }
+ }
+}
+
+func TestArrayElemSet(t *testing.T) {
+ v := ValueOf(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}).Elem()
+ v.Index(4).SetInt(123)
+ s := valueToString(v)
+ const want = "[10]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}"
+ if s != want {
+ t.Errorf("[10]int: have %#q want %#q", s, want)
+ }
+
+ v = ValueOf([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})
+ v.Index(4).SetInt(123)
+ s = valueToString(v)
+ const want1 = "[]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}"
+ if s != want1 {
+ t.Errorf("[]int: have %#q want %#q", s, want1)
+ }
+}
+
+func TestPtrPointTo(t *testing.T) {
+ var ip *int32
+ var i int32 = 1234
+ vip := ValueOf(&ip)
+ vi := ValueOf(&i).Elem()
+ vip.Elem().Set(vi.Addr())
+ if *ip != 1234 {
+ t.Errorf("got %d, want 1234", *ip)
+ }
+
+ ip = nil
+ vp := ValueOf(&ip).Elem()
+ vp.Set(Zero(vp.Type()))
+ if ip != nil {
+ t.Errorf("got non-nil (%p), want nil", ip)
+ }
+}
+
+func TestPtrSetNil(t *testing.T) {
+ var i int32 = 1234
+ ip := &i
+ vip := ValueOf(&ip)
+ vip.Elem().Set(Zero(vip.Elem().Type()))
+ if ip != nil {
+ t.Errorf("got non-nil (%d), want nil", *ip)
+ }
+}
+
+func TestMapSetNil(t *testing.T) {
+ m := make(map[string]int)
+ vm := ValueOf(&m)
+ vm.Elem().Set(Zero(vm.Elem().Type()))
+ if m != nil {
+ t.Errorf("got non-nil (%p), want nil", m)
+ }
+}
+
+func TestAll(t *testing.T) {
+ testType(t, 1, TypeOf((int8)(0)), "int8")
+ testType(t, 2, TypeOf((*int8)(nil)).Elem(), "int8")
+
+ typ := TypeOf((*struct {
+ c chan *int32
+ d float32
+ })(nil))
+ testType(t, 3, typ, "*struct { c chan *int32; d float32 }")
+ etyp := typ.Elem()
+ testType(t, 4, etyp, "struct { c chan *int32; d float32 }")
+ styp := etyp
+ f := styp.Field(0)
+ testType(t, 5, f.Type, "chan *int32")
+
+ f, present := styp.FieldByName("d")
+ if !present {
+ t.Errorf("FieldByName says present field is absent")
+ }
+ testType(t, 6, f.Type, "float32")
+
+ f, present = styp.FieldByName("absent")
+ if present {
+ t.Errorf("FieldByName says absent field is present")
+ }
+
+ typ = TypeOf([32]int32{})
+ testType(t, 7, typ, "[32]int32")
+ testType(t, 8, typ.Elem(), "int32")
+
+ typ = TypeOf((map[string]*int32)(nil))
+ testType(t, 9, typ, "map[string]*int32")
+ mtyp := typ
+ testType(t, 10, mtyp.Key(), "string")
+ testType(t, 11, mtyp.Elem(), "*int32")
+
+ typ = TypeOf((chan<- string)(nil))
+ testType(t, 12, typ, "chan<- string")
+ testType(t, 13, typ.Elem(), "string")
+
+ // make sure tag strings are not part of element type
+ typ = TypeOf(struct {
+ d []uint32 `reflect:"TAG"`
+ }{}).Field(0).Type
+ testType(t, 14, typ, "[]uint32")
+}
+
+func TestInterfaceGet(t *testing.T) {
+ var inter struct {
+ E interface{}
+ }
+ inter.E = 123.456
+ v1 := ValueOf(&inter)
+ v2 := v1.Elem().Field(0)
+ assert(t, v2.Type().String(), "interface {}")
+ i2 := v2.Interface()
+ v3 := ValueOf(i2)
+ assert(t, v3.Type().String(), "float64")
+}
+
+func TestInterfaceValue(t *testing.T) {
+ var inter struct {
+ E interface{}
+ }
+ inter.E = 123.456
+ v1 := ValueOf(&inter)
+ v2 := v1.Elem().Field(0)
+ assert(t, v2.Type().String(), "interface {}")
+ v3 := v2.Elem()
+ assert(t, v3.Type().String(), "float64")
+
+ i3 := v2.Interface()
+ if _, ok := i3.(float64); !ok {
+ t.Error("v2.Interface() did not return float64, got ", TypeOf(i3))
+ }
+}
+
+func TestFunctionValue(t *testing.T) {
+ var x interface{} = func() {}
+ v := ValueOf(x)
+ if fmt.Sprint(v.Interface()) != fmt.Sprint(x) {
+ t.Fatalf("TestFunction returned wrong pointer")
+ }
+ assert(t, v.Type().String(), "func()")
+}
+
+var appendTests = []struct {
+ orig, extra []int
+}{
+ {make([]int, 2, 4), []int{22}},
+ {make([]int, 2, 4), []int{22, 33, 44}},
+}
+
+func sameInts(x, y []int) bool {
+ if len(x) != len(y) {
+ return false
+ }
+ for i, xx := range x {
+ if xx != y[i] {
+ return false
+ }
+ }
+ return true
+}
+
+func TestAppend(t *testing.T) {
+ for i, test := range appendTests {
+ origLen, extraLen := len(test.orig), len(test.extra)
+ want := append(test.orig, test.extra...)
+ // Convert extra from []int to []Value.
+ e0 := make([]Value, len(test.extra))
+ for j, e := range test.extra {
+ e0[j] = ValueOf(e)
+ }
+ // Convert extra from []int to *SliceValue.
+ e1 := ValueOf(test.extra)
+ // Test Append.
+ a0 := ValueOf(test.orig)
+ have0 := Append(a0, e0...).Interface().([]int)
+ if !sameInts(have0, want) {
+ t.Errorf("Append #%d: have %v, want %v (%p %p)", i, have0, want, test.orig, have0)
+ }
+ // Check that the orig and extra slices were not modified.
+ if len(test.orig) != origLen {
+ t.Errorf("Append #%d origLen: have %v, want %v", i, len(test.orig), origLen)
+ }
+ if len(test.extra) != extraLen {
+ t.Errorf("Append #%d extraLen: have %v, want %v", i, len(test.extra), extraLen)
+ }
+ // Test AppendSlice.
+ a1 := ValueOf(test.orig)
+ have1 := AppendSlice(a1, e1).Interface().([]int)
+ if !sameInts(have1, want) {
+ t.Errorf("AppendSlice #%d: have %v, want %v", i, have1, want)
+ }
+ // Check that the orig and extra slices were not modified.
+ if len(test.orig) != origLen {
+ t.Errorf("AppendSlice #%d origLen: have %v, want %v", i, len(test.orig), origLen)
+ }
+ if len(test.extra) != extraLen {
+ t.Errorf("AppendSlice #%d extraLen: have %v, want %v", i, len(test.extra), extraLen)
+ }
+ }
+}
+
+func TestCopy(t *testing.T) {
+ a := []int{1, 2, 3, 4, 10, 9, 8, 7}
+ b := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44}
+ c := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44}
+ for i := 0; i < len(b); i++ {
+ if b[i] != c[i] {
+ t.Fatalf("b != c before test")
+ }
+ }
+ a1 := a
+ b1 := b
+ aa := ValueOf(&a1).Elem()
+ ab := ValueOf(&b1).Elem()
+ for tocopy := 1; tocopy <= 7; tocopy++ {
+ aa.SetLen(tocopy)
+ Copy(ab, aa)
+ aa.SetLen(8)
+ for i := 0; i < tocopy; i++ {
+ if a[i] != b[i] {
+ t.Errorf("(i) tocopy=%d a[%d]=%d, b[%d]=%d",
+ tocopy, i, a[i], i, b[i])
+ }
+ }
+ for i := tocopy; i < len(b); i++ {
+ if b[i] != c[i] {
+ if i < len(a) {
+ t.Errorf("(ii) tocopy=%d a[%d]=%d, b[%d]=%d, c[%d]=%d",
+ tocopy, i, a[i], i, b[i], i, c[i])
+ } else {
+ t.Errorf("(iii) tocopy=%d b[%d]=%d, c[%d]=%d",
+ tocopy, i, b[i], i, c[i])
+ }
+ } else {
+ t.Logf("tocopy=%d elem %d is okay\n", tocopy, i)
+ }
+ }
+ }
+}
+
+func TestCopyArray(t *testing.T) {
+ a := [8]int{1, 2, 3, 4, 10, 9, 8, 7}
+ b := [11]int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44}
+ c := b
+ aa := ValueOf(&a).Elem()
+ ab := ValueOf(&b).Elem()
+ Copy(ab, aa)
+ for i := 0; i < len(a); i++ {
+ if a[i] != b[i] {
+ t.Errorf("(i) a[%d]=%d, b[%d]=%d", i, a[i], i, b[i])
+ }
+ }
+ for i := len(a); i < len(b); i++ {
+ if b[i] != c[i] {
+ t.Errorf("(ii) b[%d]=%d, c[%d]=%d", i, b[i], i, c[i])
+ } else {
+ t.Logf("elem %d is okay\n", i)
+ }
+ }
+}
+
+func TestBigUnnamedStruct(t *testing.T) {
+ b := struct{ a, b, c, d int64 }{1, 2, 3, 4}
+ v := ValueOf(b)
+ b1 := v.Interface().(struct {
+ a, b, c, d int64
+ })
+ if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d {
+ t.Errorf("ValueOf(%v).Interface().(*Big) = %v", b, b1)
+ }
+}
+
+type big struct {
+ a, b, c, d, e int64
+}
+
+func TestBigStruct(t *testing.T) {
+ b := big{1, 2, 3, 4, 5}
+ v := ValueOf(b)
+ b1 := v.Interface().(big)
+ if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d || b1.e != b.e {
+ t.Errorf("ValueOf(%v).Interface().(big) = %v", b, b1)
+ }
+}
+
+type Basic struct {
+ x int
+ y float32
+}
+
+type NotBasic Basic
+
+type DeepEqualTest struct {
+ a, b interface{}
+ eq bool
+}
+
+// Simple functions for DeepEqual tests.
+var (
+ fn1 func() // nil.
+ fn2 func() // nil.
+ fn3 = func() { fn1() } // Not nil.
+)
+
+var deepEqualTests = []DeepEqualTest{
+ // Equalities
+ {nil, nil, true},
+ {1, 1, true},
+ {int32(1), int32(1), true},
+ {0.5, 0.5, true},
+ {float32(0.5), float32(0.5), true},
+ {"hello", "hello", true},
+ {make([]int, 10), make([]int, 10), true},
+ {&[3]int{1, 2, 3}, &[3]int{1, 2, 3}, true},
+ {Basic{1, 0.5}, Basic{1, 0.5}, true},
+ {error(nil), error(nil), true},
+ {map[int]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, true},
+ {fn1, fn2, true},
+
+ // Inequalities
+ {1, 2, false},
+ {int32(1), int32(2), false},
+ {0.5, 0.6, false},
+ {float32(0.5), float32(0.6), false},
+ {"hello", "hey", false},
+ {make([]int, 10), make([]int, 11), false},
+ {&[3]int{1, 2, 3}, &[3]int{1, 2, 4}, false},
+ {Basic{1, 0.5}, Basic{1, 0.6}, false},
+ {Basic{1, 0}, Basic{2, 0}, false},
+ {map[int]string{1: "one", 3: "two"}, map[int]string{2: "two", 1: "one"}, false},
+ {map[int]string{1: "one", 2: "txo"}, map[int]string{2: "two", 1: "one"}, false},
+ {map[int]string{1: "one"}, map[int]string{2: "two", 1: "one"}, false},
+ {map[int]string{2: "two", 1: "one"}, map[int]string{1: "one"}, false},
+ {nil, 1, false},
+ {1, nil, false},
+ {fn1, fn3, false},
+ {fn3, fn3, false},
+
+ // Nil vs empty: not the same.
+ {[]int{}, []int(nil), false},
+ {[]int{}, []int{}, true},
+ {[]int(nil), []int(nil), true},
+ {map[int]int{}, map[int]int(nil), false},
+ {map[int]int{}, map[int]int{}, true},
+ {map[int]int(nil), map[int]int(nil), true},
+
+ // Mismatched types
+ {1, 1.0, false},
+ {int32(1), int64(1), false},
+ {0.5, "hello", false},
+ {[]int{1, 2, 3}, [3]int{1, 2, 3}, false},
+ {&[3]interface{}{1, 2, 4}, &[3]interface{}{1, 2, "s"}, false},
+ {Basic{1, 0.5}, NotBasic{1, 0.5}, false},
+ {map[uint]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, false},
+}
+
+func TestDeepEqual(t *testing.T) {
+ for _, test := range deepEqualTests {
+ if r := DeepEqual(test.a, test.b); r != test.eq {
+ t.Errorf("DeepEqual(%v, %v) = %v, want %v", test.a, test.b, r, test.eq)
+ }
+ }
+}
+
+func TestTypeOf(t *testing.T) {
+ // Special case for nil
+ if typ := TypeOf(nil); typ != nil {
+ t.Errorf("expected nil type for nil value; got %v", typ)
+ }
+ for _, test := range deepEqualTests {
+ v := ValueOf(test.a)
+ if !v.IsValid() {
+ continue
+ }
+ typ := TypeOf(test.a)
+ if typ != v.Type() {
+ t.Errorf("TypeOf(%v) = %v, but ValueOf(%v).Type() = %v", test.a, typ, test.a, v.Type())
+ }
+ }
+}
+
+type Recursive struct {
+ x int
+ r *Recursive
+}
+
+func TestDeepEqualRecursiveStruct(t *testing.T) {
+ a, b := new(Recursive), new(Recursive)
+ *a = Recursive{12, a}
+ *b = Recursive{12, b}
+ if !DeepEqual(a, b) {
+ t.Error("DeepEqual(recursive same) = false, want true")
+ }
+}
+
+type _Complex struct {
+ a int
+ b [3]*_Complex
+ c *string
+ d map[float64]float64
+}
+
+func TestDeepEqualComplexStruct(t *testing.T) {
+ m := make(map[float64]float64)
+ stra, strb := "hello", "hello"
+ a, b := new(_Complex), new(_Complex)
+ *a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m}
+ *b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m}
+ if !DeepEqual(a, b) {
+ t.Error("DeepEqual(complex same) = false, want true")
+ }
+}
+
+func TestDeepEqualComplexStructInequality(t *testing.T) {
+ m := make(map[float64]float64)
+ stra, strb := "hello", "helloo" // Difference is here
+ a, b := new(_Complex), new(_Complex)
+ *a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m}
+ *b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m}
+ if DeepEqual(a, b) {
+ t.Error("DeepEqual(complex different) = true, want false")
+ }
+}
+
+type UnexpT struct {
+ m map[int]int
+}
+
+func TestDeepEqualUnexportedMap(t *testing.T) {
+ // Check that DeepEqual can look at unexported fields.
+ x1 := UnexpT{map[int]int{1: 2}}
+ x2 := UnexpT{map[int]int{1: 2}}
+ if !DeepEqual(&x1, &x2) {
+ t.Error("DeepEqual(x1, x2) = false, want true")
+ }
+
+ y1 := UnexpT{map[int]int{2: 3}}
+ if DeepEqual(&x1, &y1) {
+ t.Error("DeepEqual(x1, y1) = true, want false")
+ }
+}
+
+func check2ndField(x interface{}, offs uintptr, t *testing.T) {
+ s := ValueOf(x)
+ f := s.Type().Field(1)
+ if f.Offset != offs {
+ t.Error("mismatched offsets in structure alignment:", f.Offset, offs)
+ }
+}
+
+// Check that structure alignment & offsets viewed through reflect agree with those
+// from the compiler itself.
+func TestAlignment(t *testing.T) {
+ type T1inner struct {
+ a int
+ }
+ type T1 struct {
+ T1inner
+ f int
+ }
+ type T2inner struct {
+ a, b int
+ }
+ type T2 struct {
+ T2inner
+ f int
+ }
+
+ x := T1{T1inner{2}, 17}
+ check2ndField(x, uintptr(unsafe.Pointer(&x.f))-uintptr(unsafe.Pointer(&x)), t)
+
+ x1 := T2{T2inner{2, 3}, 17}
+ check2ndField(x1, uintptr(unsafe.Pointer(&x1.f))-uintptr(unsafe.Pointer(&x1)), t)
+}
+
+func Nil(a interface{}, t *testing.T) {
+ n := ValueOf(a).Field(0)
+ if !n.IsNil() {
+ t.Errorf("%v should be nil", a)
+ }
+}
+
+func NotNil(a interface{}, t *testing.T) {
+ n := ValueOf(a).Field(0)
+ if n.IsNil() {
+ t.Errorf("value of type %v should not be nil", ValueOf(a).Type().String())
+ }
+}
+
+func TestIsNil(t *testing.T) {
+ // These implement IsNil.
+ // Wrap in extra struct to hide interface type.
+ doNil := []interface{}{
+ struct{ x *int }{},
+ struct{ x interface{} }{},
+ struct{ x map[string]int }{},
+ struct{ x func() bool }{},
+ struct{ x chan int }{},
+ struct{ x []string }{},
+ }
+ for _, ts := range doNil {
+ ty := TypeOf(ts).Field(0).Type
+ v := Zero(ty)
+ v.IsNil() // panics if not okay to call
+ }
+
+ // Check the implementations
+ var pi struct {
+ x *int
+ }
+ Nil(pi, t)
+ pi.x = new(int)
+ NotNil(pi, t)
+
+ var si struct {
+ x []int
+ }
+ Nil(si, t)
+ si.x = make([]int, 10)
+ NotNil(si, t)
+
+ var ci struct {
+ x chan int
+ }
+ Nil(ci, t)
+ ci.x = make(chan int)
+ NotNil(ci, t)
+
+ var mi struct {
+ x map[int]int
+ }
+ Nil(mi, t)
+ mi.x = make(map[int]int)
+ NotNil(mi, t)
+
+ var ii struct {
+ x interface{}
+ }
+ Nil(ii, t)
+ ii.x = 2
+ NotNil(ii, t)
+
+ var fi struct {
+ x func(t *testing.T)
+ }
+ Nil(fi, t)
+ fi.x = TestIsNil
+ NotNil(fi, t)
+}
+
+func TestInterfaceExtraction(t *testing.T) {
+ var s struct {
+ W io.Writer
+ }
+
+ s.W = os.Stdout
+ v := Indirect(ValueOf(&s)).Field(0).Interface()
+ if v != s.W.(interface{}) {
+ t.Error("Interface() on interface: ", v, s.W)
+ }
+}
+
+func TestNilPtrValueSub(t *testing.T) {
+ var pi *int
+ if pv := ValueOf(pi); pv.Elem().IsValid() {
+ t.Error("ValueOf((*int)(nil)).Elem().IsValid()")
+ }
+}
+
+func TestMap(t *testing.T) {
+ m := map[string]int{"a": 1, "b": 2}
+ mv := ValueOf(m)
+ if n := mv.Len(); n != len(m) {
+ t.Errorf("Len = %d, want %d", n, len(m))
+ }
+ keys := mv.MapKeys()
+ newmap := MakeMap(mv.Type())
+ for k, v := range m {
+ // Check that returned Keys match keys in range.
+ // These aren't required to be in the same order.
+ seen := false
+ for _, kv := range keys {
+ if kv.String() == k {
+ seen = true
+ break
+ }
+ }
+ if !seen {
+ t.Errorf("Missing key %q", k)
+ }
+
+ // Check that value lookup is correct.
+ vv := mv.MapIndex(ValueOf(k))
+ if vi := vv.Int(); vi != int64(v) {
+ t.Errorf("Key %q: have value %d, want %d", k, vi, v)
+ }
+
+ // Copy into new map.
+ newmap.SetMapIndex(ValueOf(k), ValueOf(v))
+ }
+ vv := mv.MapIndex(ValueOf("not-present"))
+ if vv.IsValid() {
+ t.Errorf("Invalid key: got non-nil value %s", valueToString(vv))
+ }
+
+ newm := newmap.Interface().(map[string]int)
+ if len(newm) != len(m) {
+ t.Errorf("length after copy: newm=%d, m=%d", newm, m)
+ }
+
+ for k, v := range newm {
+ mv, ok := m[k]
+ if mv != v {
+ t.Errorf("newm[%q] = %d, but m[%q] = %d, %v", k, v, k, mv, ok)
+ }
+ }
+
+ newmap.SetMapIndex(ValueOf("a"), Value{})
+ v, ok := newm["a"]
+ if ok {
+ t.Errorf("newm[\"a\"] = %d after delete", v)
+ }
+
+ mv = ValueOf(&m).Elem()
+ mv.Set(Zero(mv.Type()))
+ if m != nil {
+ t.Errorf("mv.Set(nil) failed")
+ }
+}
+
+func TestChan(t *testing.T) {
+ for loop := 0; loop < 2; loop++ {
+ var c chan int
+ var cv Value
+
+ // check both ways to allocate channels
+ switch loop {
+ case 1:
+ c = make(chan int, 1)
+ cv = ValueOf(c)
+ case 0:
+ cv = MakeChan(TypeOf(c), 1)
+ c = cv.Interface().(chan int)
+ }
+
+ // Send
+ cv.Send(ValueOf(2))
+ if i := <-c; i != 2 {
+ t.Errorf("reflect Send 2, native recv %d", i)
+ }
+
+ // Recv
+ c <- 3
+ if i, ok := cv.Recv(); i.Int() != 3 || !ok {
+ t.Errorf("native send 3, reflect Recv %d, %t", i.Int(), ok)
+ }
+
+ // TryRecv fail
+ val, ok := cv.TryRecv()
+ if val.IsValid() || ok {
+ t.Errorf("TryRecv on empty chan: %s, %t", valueToString(val), ok)
+ }
+
+ // TryRecv success
+ c <- 4
+ val, ok = cv.TryRecv()
+ if !val.IsValid() {
+ t.Errorf("TryRecv on ready chan got nil")
+ } else if i := val.Int(); i != 4 || !ok {
+ t.Errorf("native send 4, TryRecv %d, %t", i, ok)
+ }
+
+ // TrySend fail
+ c <- 100
+ ok = cv.TrySend(ValueOf(5))
+ i := <-c
+ if ok {
+ t.Errorf("TrySend on full chan succeeded: value %d", i)
+ }
+
+ // TrySend success
+ ok = cv.TrySend(ValueOf(6))
+ if !ok {
+ t.Errorf("TrySend on empty chan failed")
+ } else {
+ if i = <-c; i != 6 {
+ t.Errorf("TrySend 6, recv %d", i)
+ }
+ }
+
+ // Close
+ c <- 123
+ cv.Close()
+ if i, ok := cv.Recv(); i.Int() != 123 || !ok {
+ t.Errorf("send 123 then close; Recv %d, %t", i.Int(), ok)
+ }
+ if i, ok := cv.Recv(); i.Int() != 0 || ok {
+ t.Errorf("after close Recv %d, %t", i.Int(), ok)
+ }
+ }
+
+ // check creation of unbuffered channel
+ var c chan int
+ cv := MakeChan(TypeOf(c), 0)
+ c = cv.Interface().(chan int)
+ if cv.TrySend(ValueOf(7)) {
+ t.Errorf("TrySend on sync chan succeeded")
+ }
+ if v, ok := cv.TryRecv(); v.IsValid() || ok {
+ t.Errorf("TryRecv on sync chan succeeded: isvalid=%v ok=%v", v.IsValid(), ok)
+ }
+
+ // len/cap
+ cv = MakeChan(TypeOf(c), 10)
+ c = cv.Interface().(chan int)
+ for i := 0; i < 3; i++ {
+ c <- i
+ }
+ if l, m := cv.Len(), cv.Cap(); l != len(c) || m != cap(c) {
+ t.Errorf("Len/Cap = %d/%d want %d/%d", l, m, len(c), cap(c))
+ }
+
+}
+
+// Difficult test for function call because of
+// implicit padding between arguments.
+func dummy(b byte, c int, d byte) (i byte, j int, k byte) {
+ return b, c, d
+}
+
+func TestFunc(t *testing.T) {
+ ret := ValueOf(dummy).Call([]Value{ValueOf(byte(10)), ValueOf(20), ValueOf(byte(30))})
+ if len(ret) != 3 {
+ t.Fatalf("Call returned %d values, want 3", len(ret))
+ }
+
+ i := byte(ret[0].Uint())
+ j := int(ret[1].Int())
+ k := byte(ret[2].Uint())
+ if i != 10 || j != 20 || k != 30 {
+ t.Errorf("Call returned %d, %d, %d; want 10, 20, 30", i, j, k)
+ }
+}
+
+type Point struct {
+ x, y int
+}
+
+// This will be index 0.
+func (p Point) AnotherMethod(scale int) int {
+ return -1
+}
+
+// This will be index 1.
+func (p Point) Dist(scale int) int {
+ // println("Point.Dist", p.x, p.y, scale)
+ return p.x*p.x*scale + p.y*p.y*scale
+}
+
+func TestMethod(t *testing.T) {
+ // Non-curried method of type.
+ p := Point{3, 4}
+ i := TypeOf(p).Method(1).Func.Call([]Value{ValueOf(p), ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Type Method returned %d; want 250", i)
+ }
+
+ m, ok := TypeOf(p).MethodByName("Dist")
+ if !ok {
+ t.Fatalf("method by name failed")
+ }
+ m.Func.Call([]Value{ValueOf(p), ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Type MethodByName returned %d; want 250", i)
+ }
+
+ i = TypeOf(&p).Method(1).Func.Call([]Value{ValueOf(&p), ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Pointer Type Method returned %d; want 250", i)
+ }
+
+ m, ok = TypeOf(&p).MethodByName("Dist")
+ if !ok {
+ t.Fatalf("ptr method by name failed")
+ }
+ i = m.Func.Call([]Value{ValueOf(&p), ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Pointer Type MethodByName returned %d; want 250", i)
+ }
+
+ // Curried method of value.
+ tfunc := TypeOf(func(int) int(nil))
+ v := ValueOf(p).Method(1)
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Value Method Type is %s; want %s", tt, tfunc)
+ }
+ i = v.Call([]Value{ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Value Method returned %d; want 250", i)
+ }
+ v = ValueOf(p).MethodByName("Dist")
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Value MethodByName Type is %s; want %s", tt, tfunc)
+ }
+ i = v.Call([]Value{ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Value MethodByName returned %d; want 250", i)
+ }
+
+ // Curried method of pointer.
+ v = ValueOf(&p).Method(1)
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Pointer Value Method Type is %s; want %s", tt, tfunc)
+ }
+ i = v.Call([]Value{ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Pointer Value Method returned %d; want 250", i)
+ }
+ v = ValueOf(&p).MethodByName("Dist")
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Pointer Value MethodByName Type is %s; want %s", tt, tfunc)
+ }
+ i = v.Call([]Value{ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Pointer Value MethodByName returned %d; want 250", i)
+ }
+
+ // Curried method of interface value.
+ // Have to wrap interface value in a struct to get at it.
+ // Passing it to ValueOf directly would
+ // access the underlying Point, not the interface.
+ var s = struct {
+ X interface {
+ Dist(int) int
+ }
+ }{p}
+ pv := ValueOf(s).Field(0)
+ v = pv.Method(0)
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Interface Method Type is %s; want %s", tt, tfunc)
+ }
+ i = v.Call([]Value{ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Interface Method returned %d; want 250", i)
+ }
+ v = pv.MethodByName("Dist")
+ if tt := v.Type(); tt != tfunc {
+ t.Errorf("Interface MethodByName Type is %s; want %s", tt, tfunc)
+ }
+ i = v.Call([]Value{ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Interface MethodByName returned %d; want 250", i)
+ }
+}
+
+func TestInterfaceSet(t *testing.T) {
+ p := &Point{3, 4}
+
+ var s struct {
+ I interface{}
+ P interface {
+ Dist(int) int
+ }
+ }
+ sv := ValueOf(&s).Elem()
+ sv.Field(0).Set(ValueOf(p))
+ if q := s.I.(*Point); q != p {
+ t.Errorf("i: have %p want %p", q, p)
+ }
+
+ pv := sv.Field(1)
+ pv.Set(ValueOf(p))
+ if q := s.P.(*Point); q != p {
+ t.Errorf("i: have %p want %p", q, p)
+ }
+
+ i := pv.Method(0).Call([]Value{ValueOf(10)})[0].Int()
+ if i != 250 {
+ t.Errorf("Interface Method returned %d; want 250", i)
+ }
+}
+
+type T1 struct {
+ a string
+ int
+}
+
+func TestAnonymousFields(t *testing.T) {
+ var field StructField
+ var ok bool
+ var t1 T1
+ type1 := TypeOf(t1)
+ if field, ok = type1.FieldByName("int"); !ok {
+ t.Error("no field 'int'")
+ }
+ if field.Index[0] != 1 {
+ t.Error("field index should be 1; is", field.Index)
+ }
+}
+
+type FTest struct {
+ s interface{}
+ name string
+ index []int
+ value int
+}
+
+type D1 struct {
+ d int
+}
+type D2 struct {
+ d int
+}
+
+type S0 struct {
+ A, B, C int
+ D1
+ D2
+}
+
+type S1 struct {
+ B int
+ S0
+}
+
+type S2 struct {
+ A int
+ *S1
+}
+
+type S1x struct {
+ S1
+}
+
+type S1y struct {
+ S1
+}
+
+type S3 struct {
+ S1x
+ S2
+ D, E int
+ *S1y
+}
+
+type S4 struct {
+ *S4
+ A int
+}
+
+var fieldTests = []FTest{
+ {struct{}{}, "", nil, 0},
+ {struct{}{}, "Foo", nil, 0},
+ {S0{A: 'a'}, "A", []int{0}, 'a'},
+ {S0{}, "D", nil, 0},
+ {S1{S0: S0{A: 'a'}}, "A", []int{1, 0}, 'a'},
+ {S1{B: 'b'}, "B", []int{0}, 'b'},
+ {S1{}, "S0", []int{1}, 0},
+ {S1{S0: S0{C: 'c'}}, "C", []int{1, 2}, 'c'},
+ {S2{A: 'a'}, "A", []int{0}, 'a'},
+ {S2{}, "S1", []int{1}, 0},
+ {S2{S1: &S1{B: 'b'}}, "B", []int{1, 0}, 'b'},
+ {S2{S1: &S1{S0: S0{C: 'c'}}}, "C", []int{1, 1, 2}, 'c'},
+ {S2{}, "D", nil, 0},
+ {S3{}, "S1", nil, 0},
+ {S3{S2: S2{A: 'a'}}, "A", []int{1, 0}, 'a'},
+ {S3{}, "B", nil, 0},
+ {S3{D: 'd'}, "D", []int{2}, 0},
+ {S3{E: 'e'}, "E", []int{3}, 'e'},
+ {S4{A: 'a'}, "A", []int{1}, 'a'},
+ {S4{}, "B", nil, 0},
+}
+
+func TestFieldByIndex(t *testing.T) {
+ for _, test := range fieldTests {
+ s := TypeOf(test.s)
+ f := s.FieldByIndex(test.index)
+ if f.Name != "" {
+ if test.index != nil {
+ if f.Name != test.name {
+ t.Errorf("%s.%s found; want %s", s.Name(), f.Name, test.name)
+ }
+ } else {
+ t.Errorf("%s.%s found", s.Name(), f.Name)
+ }
+ } else if len(test.index) > 0 {
+ t.Errorf("%s.%s not found", s.Name(), test.name)
+ }
+
+ if test.value != 0 {
+ v := ValueOf(test.s).FieldByIndex(test.index)
+ if v.IsValid() {
+ if x, ok := v.Interface().(int); ok {
+ if x != test.value {
+ t.Errorf("%s%v is %d; want %d", s.Name(), test.index, x, test.value)
+ }
+ } else {
+ t.Errorf("%s%v value not an int", s.Name(), test.index)
+ }
+ } else {
+ t.Errorf("%s%v value not found", s.Name(), test.index)
+ }
+ }
+ }
+}
+
+func TestFieldByName(t *testing.T) {
+ for _, test := range fieldTests {
+ s := TypeOf(test.s)
+ f, found := s.FieldByName(test.name)
+ if found {
+ if test.index != nil {
+ // Verify field depth and index.
+ if len(f.Index) != len(test.index) {
+ t.Errorf("%s.%s depth %d; want %d", s.Name(), test.name, len(f.Index), len(test.index))
+ } else {
+ for i, x := range f.Index {
+ if x != test.index[i] {
+ t.Errorf("%s.%s.Index[%d] is %d; want %d", s.Name(), test.name, i, x, test.index[i])
+ }
+ }
+ }
+ } else {
+ t.Errorf("%s.%s found", s.Name(), f.Name)
+ }
+ } else if len(test.index) > 0 {
+ t.Errorf("%s.%s not found", s.Name(), test.name)
+ }
+
+ if test.value != 0 {
+ v := ValueOf(test.s).FieldByName(test.name)
+ if v.IsValid() {
+ if x, ok := v.Interface().(int); ok {
+ if x != test.value {
+ t.Errorf("%s.%s is %d; want %d", s.Name(), test.name, x, test.value)
+ }
+ } else {
+ t.Errorf("%s.%s value not an int", s.Name(), test.name)
+ }
+ } else {
+ t.Errorf("%s.%s value not found", s.Name(), test.name)
+ }
+ }
+ }
+}
+
+func TestImportPath(t *testing.T) {
+ tests := []struct {
+ t Type
+ path string
+ }{
+ {TypeOf(&base64.Encoding{}).Elem(), "encoding/base64"},
+ {TypeOf(uint(0)), ""},
+ {TypeOf(map[string]int{}), ""},
+ {TypeOf((*error)(nil)).Elem(), ""},
+ }
+ for _, test := range tests {
+ if path := test.t.PkgPath(); path != test.path {
+ t.Errorf("%v.PkgPath() = %q, want %q", test.t, path, test.path)
+ }
+ }
+}
+
+func TestVariadicType(t *testing.T) {
+ // Test example from Type documentation.
+ var f func(x int, y ...float64)
+ typ := TypeOf(f)
+ if typ.NumIn() == 2 && typ.In(0) == TypeOf(int(0)) {
+ sl := typ.In(1)
+ if sl.Kind() == Slice {
+ if sl.Elem() == TypeOf(0.0) {
+ // ok
+ return
+ }
+ }
+ }
+
+ // Failed
+ t.Errorf("want NumIn() = 2, In(0) = int, In(1) = []float64")
+ s := fmt.Sprintf("have NumIn() = %d", typ.NumIn())
+ for i := 0; i < typ.NumIn(); i++ {
+ s += fmt.Sprintf(", In(%d) = %s", i, typ.In(i))
+ }
+ t.Error(s)
+}
+
+type inner struct {
+ x int
+}
+
+type outer struct {
+ y int
+ inner
+}
+
+func (*inner) m() {}
+func (*outer) m() {}
+
+func TestNestedMethods(t *testing.T) {
+ typ := TypeOf((*outer)(nil))
+ if typ.NumMethod() != 1 || typ.Method(0).Func.Pointer() != ValueOf((*outer).m).Pointer() {
+ t.Errorf("Wrong method table for outer: (m=%p)", (*outer).m)
+ for i := 0; i < typ.NumMethod(); i++ {
+ m := typ.Method(i)
+ t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Pointer())
+ }
+ }
+}
+
+type InnerInt struct {
+ X int
+}
+
+type OuterInt struct {
+ Y int
+ InnerInt
+}
+
+func (i *InnerInt) M() int {
+ return i.X
+}
+
+func TestEmbeddedMethods(t *testing.T) {
+ typ := TypeOf((*OuterInt)(nil))
+ if typ.NumMethod() != 1 || typ.Method(0).Func.Pointer() != ValueOf((*OuterInt).M).Pointer() {
+ t.Errorf("Wrong method table for OuterInt: (m=%p)", (*OuterInt).M)
+ for i := 0; i < typ.NumMethod(); i++ {
+ m := typ.Method(i)
+ t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Pointer())
+ }
+ }
+
+ i := &InnerInt{3}
+ if v := ValueOf(i).Method(0).Call(nil)[0].Int(); v != 3 {
+ t.Errorf("i.M() = %d, want 3", v)
+ }
+
+ o := &OuterInt{1, InnerInt{2}}
+ if v := ValueOf(o).Method(0).Call(nil)[0].Int(); v != 2 {
+ t.Errorf("i.M() = %d, want 2", v)
+ }
+
+ f := (*OuterInt).M
+ if v := f(o); v != 2 {
+ t.Errorf("f(o) = %d, want 2", v)
+ }
+}
+
+func TestPtrTo(t *testing.T) {
+ var i int
+
+ typ := TypeOf(i)
+ for i = 0; i < 100; i++ {
+ typ = PtrTo(typ)
+ }
+ for i = 0; i < 100; i++ {
+ typ = typ.Elem()
+ }
+ if typ != TypeOf(i) {
+ t.Errorf("after 100 PtrTo and Elem, have %s, want %s", typ, TypeOf(i))
+ }
+}
+
+func TestAddr(t *testing.T) {
+ var p struct {
+ X, Y int
+ }
+
+ v := ValueOf(&p)
+ v = v.Elem()
+ v = v.Addr()
+ v = v.Elem()
+ v = v.Field(0)
+ v.SetInt(2)
+ if p.X != 2 {
+ t.Errorf("Addr.Elem.Set failed to set value")
+ }
+
+ // Again but take address of the ValueOf value.
+ // Exercises generation of PtrTypes not present in the binary.
+ q := &p
+ v = ValueOf(&q).Elem()
+ v = v.Addr()
+ v = v.Elem()
+ v = v.Elem()
+ v = v.Addr()
+ v = v.Elem()
+ v = v.Field(0)
+ v.SetInt(3)
+ if p.X != 3 {
+ t.Errorf("Addr.Elem.Set failed to set value")
+ }
+
+ // Starting without pointer we should get changed value
+ // in interface.
+ qq := p
+ v = ValueOf(&qq).Elem()
+ v0 := v
+ v = v.Addr()
+ v = v.Elem()
+ v = v.Field(0)
+ v.SetInt(4)
+ if p.X != 3 { // should be unchanged from last time
+ t.Errorf("somehow value Set changed original p")
+ }
+ p = v0.Interface().(struct {
+ X, Y int
+ })
+ if p.X != 4 {
+ t.Errorf("Addr.Elem.Set valued to set value in top value")
+ }
+
+ // Verify that taking the address of a type gives us a pointer
+ // which we can convert back using the usual interface
+ // notation.
+ var s struct {
+ B *bool
+ }
+ ps := ValueOf(&s).Elem().Field(0).Addr().Interface()
+ *(ps.(**bool)) = new(bool)
+ if s.B == nil {
+ t.Errorf("Addr.Interface direct assignment failed")
+ }
+}
+
+/* gccgo does do allocations here.
+
+func noAlloc(t *testing.T, n int, f func(int)) {
+ // once to prime everything
+ f(-1)
+ memstats := new(runtime.MemStats)
+ runtime.ReadMemStats(memstats)
+ oldmallocs := memstats.Mallocs
+
+ for j := 0; j < n; j++ {
+ f(j)
+ }
+ // A few allocs may happen in the testing package when GOMAXPROCS > 1, so don't
+ // require zero mallocs.
+ runtime.ReadMemStats(memstats)
+ mallocs := memstats.Mallocs - oldmallocs
+ if mallocs > 5 {
+ t.Fatalf("%d mallocs after %d iterations", mallocs, n)
+ }
+}
+
+func TestAllocations(t *testing.T) {
+ noAlloc(t, 100, func(j int) {
+ var i interface{}
+ var v Value
+ i = 42 + j
+ v = ValueOf(i)
+ if int(v.Int()) != 42+j {
+ panic("wrong int")
+ }
+ })
+}
+
+*/
+
+func TestSmallNegativeInt(t *testing.T) {
+ i := int16(-1)
+ v := ValueOf(i)
+ if v.Int() != -1 {
+ t.Errorf("int16(-1).Int() returned %v", v.Int())
+ }
+}
+
+func TestSlice(t *testing.T) {
+ xs := []int{1, 2, 3, 4, 5, 6, 7, 8}
+ v := ValueOf(xs).Slice(3, 5).Interface().([]int)
+ if len(v) != 2 {
+ t.Errorf("len(xs.Slice(3, 5)) = %d", len(v))
+ }
+ if cap(v) != 5 {
+ t.Errorf("cap(xs.Slice(3, 5)) = %d", cap(v))
+ }
+ if !DeepEqual(v[0:5], xs[3:]) {
+ t.Errorf("xs.Slice(3, 5)[0:5] = %v", v[0:5])
+ }
+
+ xa := [8]int{10, 20, 30, 40, 50, 60, 70, 80}
+ v = ValueOf(&xa).Elem().Slice(2, 5).Interface().([]int)
+ if len(v) != 3 {
+ t.Errorf("len(xa.Slice(2, 5)) = %d", len(v))
+ }
+ if cap(v) != 6 {
+ t.Errorf("cap(xa.Slice(2, 5)) = %d", cap(v))
+ }
+ if !DeepEqual(v[0:6], xa[2:]) {
+ t.Errorf("xs.Slice(2, 5)[0:6] = %v", v[0:6])
+ }
+}
+
+func TestVariadic(t *testing.T) {
+ var b bytes.Buffer
+ V := ValueOf
+
+ b.Reset()
+ V(fmt.Fprintf).Call([]Value{V(&b), V("%s, %d world"), V("hello"), V(42)})
+ if b.String() != "hello, 42 world" {
+ t.Errorf("after Fprintf Call: %q != %q", b.String(), "hello 42 world")
+ }
+
+ b.Reset()
+ V(fmt.Fprintf).CallSlice([]Value{V(&b), V("%s, %d world"), V([]interface{}{"hello", 42})})
+ if b.String() != "hello, 42 world" {
+ t.Errorf("after Fprintf CallSlice: %q != %q", b.String(), "hello 42 world")
+ }
+}
+
+var tagGetTests = []struct {
+ Tag StructTag
+ Key string
+ Value string
+}{
+ {`protobuf:"PB(1,2)"`, `protobuf`, `PB(1,2)`},
+ {`protobuf:"PB(1,2)"`, `foo`, ``},
+ {`protobuf:"PB(1,2)"`, `rotobuf`, ``},
+ {`protobuf:"PB(1,2)" json:"name"`, `json`, `name`},
+ {`protobuf:"PB(1,2)" json:"name"`, `protobuf`, `PB(1,2)`},
+}
+
+func TestTagGet(t *testing.T) {
+ for _, tt := range tagGetTests {
+ if v := tt.Tag.Get(tt.Key); v != tt.Value {
+ t.Errorf("StructTag(%#q).Get(%#q) = %#q, want %#q", tt.Tag, tt.Key, v, tt.Value)
+ }
+ }
+}
+
+func TestBytes(t *testing.T) {
+ type B []byte
+ x := B{1, 2, 3, 4}
+ y := ValueOf(x).Bytes()
+ if !bytes.Equal(x, y) {
+ t.Fatalf("ValueOf(%v).Bytes() = %v", x, y)
+ }
+ if &x[0] != &y[0] {
+ t.Errorf("ValueOf(%p).Bytes() = %p", &x[0], &y[0])
+ }
+}
+
+func TestSetBytes(t *testing.T) {
+ type B []byte
+ var x B
+ y := []byte{1, 2, 3, 4}
+ ValueOf(&x).Elem().SetBytes(y)
+ if !bytes.Equal(x, y) {
+ t.Fatalf("ValueOf(%v).Bytes() = %v", x, y)
+ }
+ if &x[0] != &y[0] {
+ t.Errorf("ValueOf(%p).Bytes() = %p", &x[0], &y[0])
+ }
+}
+
+type Private struct {
+ x int
+ y **int
+}
+
+func (p *Private) m() {
+}
+
+type Public struct {
+ X int
+ Y **int
+}
+
+func (p *Public) M() {
+}
+
+func TestUnexported(t *testing.T) {
+ var pub Public
+ v := ValueOf(&pub)
+ isValid(v.Elem().Field(0))
+ isValid(v.Elem().Field(1))
+ isValid(v.Elem().FieldByName("X"))
+ isValid(v.Elem().FieldByName("Y"))
+ isValid(v.Type().Method(0).Func)
+ isNonNil(v.Elem().Field(0).Interface())
+ isNonNil(v.Elem().Field(1).Interface())
+ isNonNil(v.Elem().FieldByName("X").Interface())
+ isNonNil(v.Elem().FieldByName("Y").Interface())
+ isNonNil(v.Type().Method(0).Func.Interface())
+
+ var priv Private
+ v = ValueOf(&priv)
+ isValid(v.Elem().Field(0))
+ isValid(v.Elem().Field(1))
+ isValid(v.Elem().FieldByName("x"))
+ isValid(v.Elem().FieldByName("y"))
+ isValid(v.Type().Method(0).Func)
+ shouldPanic(func() { v.Elem().Field(0).Interface() })
+ shouldPanic(func() { v.Elem().Field(1).Interface() })
+ shouldPanic(func() { v.Elem().FieldByName("x").Interface() })
+ shouldPanic(func() { v.Elem().FieldByName("y").Interface() })
+ shouldPanic(func() { v.Type().Method(0).Func.Interface() })
+}
+
+func shouldPanic(f func()) {
+ defer func() {
+ if recover() == nil {
+ panic("did not panic")
+ }
+ }()
+ f()
+}
+
+func isNonNil(x interface{}) {
+ if x == nil {
+ panic("nil interface")
+ }
+}
+
+func isValid(v Value) {
+ if !v.IsValid() {
+ panic("zero Value")
+ }
+}
+
+func TestAlias(t *testing.T) {
+ x := string("hello")
+ v := ValueOf(&x).Elem()
+ oldvalue := v.Interface()
+ v.SetString("world")
+ newvalue := v.Interface()
+
+ if oldvalue != "hello" || newvalue != "world" {
+ t.Errorf("aliasing: old=%q new=%q, want hello, world", oldvalue, newvalue)
+ }
+}
diff --git a/gcc-4.7/libgo/go/reflect/deepequal.go b/gcc-4.7/libgo/go/reflect/deepequal.go
new file mode 100644
index 000000000..c12e90f36
--- /dev/null
+++ b/gcc-4.7/libgo/go/reflect/deepequal.go
@@ -0,0 +1,138 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Deep equality test via reflection
+
+package reflect
+
+// During deepValueEqual, must keep track of checks that are
+// in progress. The comparison algorithm assumes that all
+// checks in progress are true when it reencounters them.
+// Visited are stored in a map indexed by 17 * a1 + a2;
+type visit struct {
+ a1 uintptr
+ a2 uintptr
+ typ Type
+ next *visit
+}
+
+// Tests for deep equality using reflected types. The map argument tracks
+// comparisons that have already been seen, which allows short circuiting on
+// recursive types.
+func deepValueEqual(v1, v2 Value, visited map[uintptr]*visit, depth int) (b bool) {
+ if !v1.IsValid() || !v2.IsValid() {
+ return v1.IsValid() == v2.IsValid()
+ }
+ if v1.Type() != v2.Type() {
+ return false
+ }
+
+ // if depth > 10 { panic("deepValueEqual") } // for debugging
+
+ if v1.CanAddr() && v2.CanAddr() {
+ addr1 := v1.UnsafeAddr()
+ addr2 := v2.UnsafeAddr()
+ if addr1 > addr2 {
+ // Canonicalize order to reduce number of entries in visited.
+ addr1, addr2 = addr2, addr1
+ }
+
+ // Short circuit if references are identical ...
+ if addr1 == addr2 {
+ return true
+ }
+
+ // ... or already seen
+ h := 17*addr1 + addr2
+ seen := visited[h]
+ typ := v1.Type()
+ for p := seen; p != nil; p = p.next {
+ if p.a1 == addr1 && p.a2 == addr2 && p.typ == typ {
+ return true
+ }
+ }
+
+ // Remember for later.
+ visited[h] = &visit{addr1, addr2, typ, seen}
+ }
+
+ switch v1.Kind() {
+ case Array:
+ if v1.Len() != v2.Len() {
+ return false
+ }
+ for i := 0; i < v1.Len(); i++ {
+ if !deepValueEqual(v1.Index(i), v2.Index(i), visited, depth+1) {
+ return false
+ }
+ }
+ return true
+ case Slice:
+ if v1.IsNil() != v2.IsNil() {
+ return false
+ }
+ if v1.Len() != v2.Len() {
+ return false
+ }
+ for i := 0; i < v1.Len(); i++ {
+ if !deepValueEqual(v1.Index(i), v2.Index(i), visited, depth+1) {
+ return false
+ }
+ }
+ return true
+ case Interface:
+ if v1.IsNil() || v2.IsNil() {
+ return v1.IsNil() == v2.IsNil()
+ }
+ return deepValueEqual(v1.Elem(), v2.Elem(), visited, depth+1)
+ case Ptr:
+ return deepValueEqual(v1.Elem(), v2.Elem(), visited, depth+1)
+ case Struct:
+ for i, n := 0, v1.NumField(); i < n; i++ {
+ if !deepValueEqual(v1.Field(i), v2.Field(i), visited, depth+1) {
+ return false
+ }
+ }
+ return true
+ case Map:
+ if v1.IsNil() != v2.IsNil() {
+ return false
+ }
+ if v1.Len() != v2.Len() {
+ return false
+ }
+ for _, k := range v1.MapKeys() {
+ if !deepValueEqual(v1.MapIndex(k), v2.MapIndex(k), visited, depth+1) {
+ return false
+ }
+ }
+ return true
+ case Func:
+ if v1.IsNil() && v2.IsNil() {
+ return true
+ }
+ // Can't do better than this:
+ return false
+ default:
+ // Normal equality suffices
+ return valueInterface(v1, false) == valueInterface(v2, false)
+ }
+
+ panic("Not reached")
+}
+
+// DeepEqual tests for deep equality. It uses normal == equality where possible
+// but will scan members of arrays, slices, maps, and fields of structs. It correctly
+// handles recursive types. Functions are equal only if they are both nil.
+func DeepEqual(a1, a2 interface{}) bool {
+ if a1 == nil || a2 == nil {
+ return a1 == a2
+ }
+ v1 := ValueOf(a1)
+ v2 := ValueOf(a2)
+ if v1.Type() != v2.Type() {
+ return false
+ }
+ return deepValueEqual(v1, v2, make(map[uintptr]*visit), 0)
+}
diff --git a/gcc-4.7/libgo/go/reflect/set_test.go b/gcc-4.7/libgo/go/reflect/set_test.go
new file mode 100644
index 000000000..8135a4cd1
--- /dev/null
+++ b/gcc-4.7/libgo/go/reflect/set_test.go
@@ -0,0 +1,211 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflect_test
+
+import (
+ "bytes"
+ "go/ast"
+ "io"
+ . "reflect"
+ "testing"
+ "unsafe"
+)
+
+type MyBuffer bytes.Buffer
+
+func TestImplicitMapConversion(t *testing.T) {
+ // Test implicit conversions in MapIndex and SetMapIndex.
+ {
+ // direct
+ m := make(map[int]int)
+ mv := ValueOf(m)
+ mv.SetMapIndex(ValueOf(1), ValueOf(2))
+ x, ok := m[1]
+ if x != 2 {
+ t.Errorf("#1 after SetMapIndex(1,2): %d, %t (map=%v)", x, ok, m)
+ }
+ if n := mv.MapIndex(ValueOf(1)).Interface().(int); n != 2 {
+ t.Errorf("#1 MapIndex(1) = %d", n)
+ }
+ }
+ {
+ // convert interface key
+ m := make(map[interface{}]int)
+ mv := ValueOf(m)
+ mv.SetMapIndex(ValueOf(1), ValueOf(2))
+ x, ok := m[1]
+ if x != 2 {
+ t.Errorf("#2 after SetMapIndex(1,2): %d, %t (map=%v)", x, ok, m)
+ }
+ if n := mv.MapIndex(ValueOf(1)).Interface().(int); n != 2 {
+ t.Errorf("#2 MapIndex(1) = %d", n)
+ }
+ }
+ {
+ // convert interface value
+ m := make(map[int]interface{})
+ mv := ValueOf(m)
+ mv.SetMapIndex(ValueOf(1), ValueOf(2))
+ x, ok := m[1]
+ if x != 2 {
+ t.Errorf("#3 after SetMapIndex(1,2): %d, %t (map=%v)", x, ok, m)
+ }
+ if n := mv.MapIndex(ValueOf(1)).Interface().(int); n != 2 {
+ t.Errorf("#3 MapIndex(1) = %d", n)
+ }
+ }
+ {
+ // convert both interface key and interface value
+ m := make(map[interface{}]interface{})
+ mv := ValueOf(m)
+ mv.SetMapIndex(ValueOf(1), ValueOf(2))
+ x, ok := m[1]
+ if x != 2 {
+ t.Errorf("#4 after SetMapIndex(1,2): %d, %t (map=%v)", x, ok, m)
+ }
+ if n := mv.MapIndex(ValueOf(1)).Interface().(int); n != 2 {
+ t.Errorf("#4 MapIndex(1) = %d", n)
+ }
+ }
+ {
+ // convert both, with non-empty interfaces
+ m := make(map[io.Reader]io.Writer)
+ mv := ValueOf(m)
+ b1 := new(bytes.Buffer)
+ b2 := new(bytes.Buffer)
+ mv.SetMapIndex(ValueOf(b1), ValueOf(b2))
+ x, ok := m[b1]
+ if x != b2 {
+ t.Errorf("#5 after SetMapIndex(b1, b2): %p (!= %p), %t (map=%v)", x, b2, ok, m)
+ }
+ if p := mv.MapIndex(ValueOf(b1)).Elem().Pointer(); p != uintptr(unsafe.Pointer(b2)) {
+ t.Errorf("#5 MapIndex(b1) = %p want %p", p, b2)
+ }
+ }
+ {
+ // convert channel direction
+ m := make(map[<-chan int]chan int)
+ mv := ValueOf(m)
+ c1 := make(chan int)
+ c2 := make(chan int)
+ mv.SetMapIndex(ValueOf(c1), ValueOf(c2))
+ x, ok := m[c1]
+ if x != c2 {
+ t.Errorf("#6 after SetMapIndex(c1, c2): %p (!= %p), %t (map=%v)", x, c2, ok, m)
+ }
+ if p := mv.MapIndex(ValueOf(c1)).Pointer(); p != ValueOf(c2).Pointer() {
+ t.Errorf("#6 MapIndex(c1) = %p want %p", p, c2)
+ }
+ }
+ {
+ // convert identical underlying types
+ // TODO(rsc): Should be able to define MyBuffer here.
+ // 6l prints very strange messages about .this.Bytes etc
+ // when we do that though, so MyBuffer is defined
+ // at top level.
+ m := make(map[*MyBuffer]*bytes.Buffer)
+ mv := ValueOf(m)
+ b1 := new(MyBuffer)
+ b2 := new(bytes.Buffer)
+ mv.SetMapIndex(ValueOf(b1), ValueOf(b2))
+ x, ok := m[b1]
+ if x != b2 {
+ t.Errorf("#7 after SetMapIndex(b1, b2): %p (!= %p), %t (map=%v)", x, b2, ok, m)
+ }
+ if p := mv.MapIndex(ValueOf(b1)).Pointer(); p != uintptr(unsafe.Pointer(b2)) {
+ t.Errorf("#7 MapIndex(b1) = %p want %p", p, b2)
+ }
+ }
+
+}
+
+func TestImplicitSetConversion(t *testing.T) {
+ // Assume TestImplicitMapConversion covered the basics.
+ // Just make sure conversions are being applied at all.
+ var r io.Reader
+ b := new(bytes.Buffer)
+ rv := ValueOf(&r).Elem()
+ rv.Set(ValueOf(b))
+ if r != b {
+ t.Errorf("after Set: r=%T(%v)", r, r)
+ }
+}
+
+func TestImplicitSendConversion(t *testing.T) {
+ c := make(chan io.Reader, 10)
+ b := new(bytes.Buffer)
+ ValueOf(c).Send(ValueOf(b))
+ if bb := <-c; bb != b {
+ t.Errorf("Received %p != %p", bb, b)
+ }
+}
+
+func TestImplicitCallConversion(t *testing.T) {
+ // Arguments must be assignable to parameter types.
+ fv := ValueOf(io.WriteString)
+ b := new(bytes.Buffer)
+ fv.Call([]Value{ValueOf(b), ValueOf("hello world")})
+ if b.String() != "hello world" {
+ t.Errorf("After call: string=%q want %q", b.String(), "hello world")
+ }
+}
+
+func TestImplicitAppendConversion(t *testing.T) {
+ // Arguments must be assignable to the slice's element type.
+ s := []io.Reader{}
+ sv := ValueOf(&s).Elem()
+ b := new(bytes.Buffer)
+ sv.Set(Append(sv, ValueOf(b)))
+ if len(s) != 1 || s[0] != b {
+ t.Errorf("after append: s=%v want [%p]", s, b)
+ }
+}
+
+var implementsTests = []struct {
+ x interface{}
+ t interface{}
+ b bool
+}{
+ {new(*bytes.Buffer), new(io.Reader), true},
+ {new(bytes.Buffer), new(io.Reader), false},
+ {new(*bytes.Buffer), new(io.ReaderAt), false},
+ {new(*ast.Ident), new(ast.Expr), true},
+}
+
+func TestImplements(t *testing.T) {
+ for _, tt := range implementsTests {
+ xv := TypeOf(tt.x).Elem()
+ xt := TypeOf(tt.t).Elem()
+ if b := xv.Implements(xt); b != tt.b {
+ t.Errorf("(%s).Implements(%s) = %v, want %v", xv.String(), xt.String(), b, tt.b)
+ }
+ }
+}
+
+var assignableTests = []struct {
+ x interface{}
+ t interface{}
+ b bool
+}{
+ {new(chan int), new(<-chan int), true},
+ {new(<-chan int), new(chan int), false},
+ {new(*int), new(IntPtr), true},
+ {new(IntPtr), new(*int), true},
+ {new(IntPtr), new(IntPtr1), false},
+ // test runs implementsTests too
+}
+
+type IntPtr *int
+type IntPtr1 *int
+
+func TestAssignableTo(t *testing.T) {
+ for _, tt := range append(assignableTests, implementsTests...) {
+ xv := TypeOf(tt.x).Elem()
+ xt := TypeOf(tt.t).Elem()
+ if b := xv.AssignableTo(xt); b != tt.b {
+ t.Errorf("(%s).AssignableTo(%s) = %v, want %v", xv.String(), xt.String(), b, tt.b)
+ }
+ }
+}
diff --git a/gcc-4.7/libgo/go/reflect/tostring_test.go b/gcc-4.7/libgo/go/reflect/tostring_test.go
new file mode 100644
index 000000000..7486a9bfc
--- /dev/null
+++ b/gcc-4.7/libgo/go/reflect/tostring_test.go
@@ -0,0 +1,96 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Formatting of reflection types and values for debugging.
+// Not defined as methods so they do not need to be linked into most binaries;
+// the functions are not used by the library itself, only in tests.
+
+package reflect_test
+
+import (
+ . "reflect"
+ "strconv"
+)
+
+// valueToString returns a textual representation of the reflection value val.
+// For debugging only.
+func valueToString(val Value) string {
+ var str string
+ if !val.IsValid() {
+ return "<zero Value>"
+ }
+ typ := val.Type()
+ switch val.Kind() {
+ case Int, Int8, Int16, Int32, Int64:
+ return strconv.FormatInt(val.Int(), 10)
+ case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
+ return strconv.FormatUint(val.Uint(), 10)
+ case Float32, Float64:
+ return strconv.FormatFloat(val.Float(), 'g', -1, 64)
+ case Complex64, Complex128:
+ c := val.Complex()
+ return strconv.FormatFloat(real(c), 'g', -1, 64) + "+" + strconv.FormatFloat(imag(c), 'g', -1, 64) + "i"
+ case String:
+ return val.String()
+ case Bool:
+ if val.Bool() {
+ return "true"
+ } else {
+ return "false"
+ }
+ case Ptr:
+ v := val
+ str = typ.String() + "("
+ if v.IsNil() {
+ str += "0"
+ } else {
+ str += "&" + valueToString(v.Elem())
+ }
+ str += ")"
+ return str
+ case Array, Slice:
+ v := val
+ str += typ.String()
+ str += "{"
+ for i := 0; i < v.Len(); i++ {
+ if i > 0 {
+ str += ", "
+ }
+ str += valueToString(v.Index(i))
+ }
+ str += "}"
+ return str
+ case Map:
+ t := typ
+ str = t.String()
+ str += "{"
+ str += "<can't iterate on maps>"
+ str += "}"
+ return str
+ case Chan:
+ str = typ.String()
+ return str
+ case Struct:
+ t := typ
+ v := val
+ str += t.String()
+ str += "{"
+ for i, n := 0, v.NumField(); i < n; i++ {
+ if i > 0 {
+ str += ", "
+ }
+ str += valueToString(v.Field(i))
+ }
+ str += "}"
+ return str
+ case Interface:
+ return typ.String() + "(" + valueToString(val.Elem()) + ")"
+ case Func:
+ v := val
+ return typ.String() + "(" + strconv.FormatUint(uint64(v.Pointer()), 10) + ")"
+ default:
+ panic("valueToString: can't print type " + typ.String())
+ }
+ return "valueToString: can't happen"
+}
diff --git a/gcc-4.7/libgo/go/reflect/type.go b/gcc-4.7/libgo/go/reflect/type.go
new file mode 100644
index 000000000..93021bae2
--- /dev/null
+++ b/gcc-4.7/libgo/go/reflect/type.go
@@ -0,0 +1,1242 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package reflect implements run-time reflection, allowing a program to
+// manipulate objects with arbitrary types. The typical use is to take a value
+// with static type interface{} and extract its dynamic type information by
+// calling TypeOf, which returns a Type.
+//
+// A call to ValueOf returns a Value representing the run-time data.
+// Zero takes a Type and returns a Value representing a zero value
+// for that type.
+//
+// See "The Laws of Reflection" for an introduction to reflection in Go:
+// http://golang.org/doc/articles/laws_of_reflection.html
+package reflect
+
+import (
+ "strconv"
+ "sync"
+ "unsafe"
+)
+
+// Type is the representation of a Go type.
+//
+// Not all methods apply to all kinds of types. Restrictions,
+// if any, are noted in the documentation for each method.
+// Use the Kind method to find out the kind of type before
+// calling kind-specific methods. Calling a method
+// inappropriate to the kind of type causes a run-time panic.
+type Type interface {
+ // Methods applicable to all types.
+
+ // Align returns the alignment in bytes of a value of
+ // this type when allocated in memory.
+ Align() int
+
+ // FieldAlign returns the alignment in bytes of a value of
+ // this type when used as a field in a struct.
+ FieldAlign() int
+
+ // Method returns the i'th method in the type's method set.
+ // It panics if i is not in the range [0, NumMethod()).
+ //
+ // For a non-interface type T or *T, the returned Method's Type and Func
+ // fields describe a function whose first argument is the receiver.
+ //
+ // For an interface type, the returned Method's Type field gives the
+ // method signature, without a receiver, and the Func field is nil.
+ Method(int) Method
+
+ // MethodByName returns the method with that name in the type's
+ // method set and a boolean indicating if the method was found.
+ //
+ // For a non-interface type T or *T, the returned Method's Type and Func
+ // fields describe a function whose first argument is the receiver.
+ //
+ // For an interface type, the returned Method's Type field gives the
+ // method signature, without a receiver, and the Func field is nil.
+ MethodByName(string) (Method, bool)
+
+ // NumMethod returns the number of methods in the type's method set.
+ NumMethod() int
+
+ // Name returns the type's name within its package.
+ // It returns an empty string for unnamed types.
+ Name() string
+
+ // PkgPath returns a named type's package path, that is, the import path
+ // that uniquely identifies the package, such as "encoding/base64".
+ // If the type was predeclared (string, error) or unnamed (*T, struct{}, []int),
+ // the package path will be the empty string.
+ PkgPath() string
+
+ // Size returns the number of bytes needed to store
+ // a value of the given type; it is analogous to unsafe.Sizeof.
+ Size() uintptr
+
+ // String returns a string representation of the type.
+ // The string representation may use shortened package names
+ // (e.g., base64 instead of "encoding/base64") and is not
+ // guaranteed to be unique among types. To test for equality,
+ // compare the Types directly.
+ String() string
+
+ // Used internally by gccgo--the string retaining quoting.
+ rawString() string
+
+ // Kind returns the specific kind of this type.
+ Kind() Kind
+
+ // Implements returns true if the type implements the interface type u.
+ Implements(u Type) bool
+
+ // AssignableTo returns true if a value of the type is assignable to type u.
+ AssignableTo(u Type) bool
+
+ // Methods applicable only to some types, depending on Kind.
+ // The methods allowed for each kind are:
+ //
+ // Int*, Uint*, Float*, Complex*: Bits
+ // Array: Elem, Len
+ // Chan: ChanDir, Elem
+ // Func: In, NumIn, Out, NumOut, IsVariadic.
+ // Map: Key, Elem
+ // Ptr: Elem
+ // Slice: Elem
+ // Struct: Field, FieldByIndex, FieldByName, FieldByNameFunc, NumField
+
+ // Bits returns the size of the type in bits.
+ // It panics if the type's Kind is not one of the
+ // sized or unsized Int, Uint, Float, or Complex kinds.
+ Bits() int
+
+ // ChanDir returns a channel type's direction.
+ // It panics if the type's Kind is not Chan.
+ ChanDir() ChanDir
+
+ // IsVariadic returns true if a function type's final input parameter
+ // is a "..." parameter. If so, t.In(t.NumIn() - 1) returns the parameter's
+ // implicit actual type []T.
+ //
+ // For concreteness, if t represents func(x int, y ... float64), then
+ //
+ // t.NumIn() == 2
+ // t.In(0) is the reflect.Type for "int"
+ // t.In(1) is the reflect.Type for "[]float64"
+ // t.IsVariadic() == true
+ //
+ // IsVariadic panics if the type's Kind is not Func.
+ IsVariadic() bool
+
+ // Elem returns a type's element type.
+ // It panics if the type's Kind is not Array, Chan, Map, Ptr, or Slice.
+ Elem() Type
+
+ // Field returns a struct type's i'th field.
+ // It panics if the type's Kind is not Struct.
+ // It panics if i is not in the range [0, NumField()).
+ Field(i int) StructField
+
+ // FieldByIndex returns the nested field corresponding
+ // to the index sequence. It is equivalent to calling Field
+ // successively for each index i.
+ // It panics if the type's Kind is not Struct.
+ FieldByIndex(index []int) StructField
+
+ // FieldByName returns the struct field with the given name
+ // and a boolean indicating if the field was found.
+ FieldByName(name string) (StructField, bool)
+
+ // FieldByNameFunc returns the first struct field with a name
+ // that satisfies the match function and a boolean indicating if
+ // the field was found.
+ FieldByNameFunc(match func(string) bool) (StructField, bool)
+
+ // In returns the type of a function type's i'th input parameter.
+ // It panics if the type's Kind is not Func.
+ // It panics if i is not in the range [0, NumIn()).
+ In(i int) Type
+
+ // Key returns a map type's key type.
+ // It panics if the type's Kind is not Map.
+ Key() Type
+
+ // Len returns an array type's length.
+ // It panics if the type's Kind is not Array.
+ Len() int
+
+ // NumField returns a struct type's field count.
+ // It panics if the type's Kind is not Struct.
+ NumField() int
+
+ // NumIn returns a function type's input parameter count.
+ // It panics if the type's Kind is not Func.
+ NumIn() int
+
+ // NumOut returns a function type's output parameter count.
+ // It panics if the type's Kind is not Func.
+ NumOut() int
+
+ // Out returns the type of a function type's i'th output parameter.
+ // It panics if the type's Kind is not Func.
+ // It panics if i is not in the range [0, NumOut()).
+ Out(i int) Type
+
+ runtimeType() *runtimeType
+ common() *commonType
+ uncommon() *uncommonType
+}
+
+// A Kind represents the specific kind of type that a Type represents.
+// The zero Kind is not a valid kind.
+type Kind uint
+
+const (
+ Invalid Kind = iota
+ Bool
+ Int
+ Int8
+ Int16
+ Int32
+ Int64
+ Uint
+ Uint8
+ Uint16
+ Uint32
+ Uint64
+ Uintptr
+ Float32
+ Float64
+ Complex64
+ Complex128
+ Array
+ Chan
+ Func
+ Interface
+ Map
+ Ptr
+ Slice
+ String
+ Struct
+ UnsafePointer
+)
+
+/*
+ * These data structures are known to the compiler (../../cmd/gc/reflect.c).
+ * A few are known to ../runtime/type.go to convey to debuggers.
+ */
+
+type runtimeType commonType
+
+// commonType is the common implementation of most values.
+// It is embedded in other, public struct types, but always
+// with a unique tag like `reflect:"array"` or `reflect:"ptr"`
+// so that code cannot convert from, say, *arrayType to *ptrType.
+type commonType struct {
+ kind uint8 // enumeration for C
+ align int8 // alignment of variable with this type
+ fieldAlign uint8 // alignment of struct field with this type
+ _ uint8 // unused/padding
+ size uintptr // size in bytes
+ hash uint32 // hash of type; avoids computation in hash tables
+
+ hashfn func(unsafe.Pointer, uintptr) // hash function
+ equalfn func(unsafe.Pointer, unsafe.Pointer, uintptr) // equality function
+
+ string *string // string form; unnecessary but undeniably useful
+ *uncommonType // (relatively) uncommon fields
+ ptrToThis *runtimeType // pointer to this type, if used in binary or has methods
+}
+
+// Method on non-interface type
+type method struct {
+ name *string // name of method
+ pkgPath *string // nil for exported Names; otherwise import path
+ mtyp *runtimeType // method type (without receiver)
+ typ *runtimeType // .(*FuncType) underneath (with receiver)
+ tfn unsafe.Pointer // fn used for normal method call
+}
+
+// uncommonType is present only for types with names or methods
+// (if T is a named type, the uncommonTypes for T and *T have methods).
+// Using a pointer to this struct reduces the overall size required
+// to describe an unnamed type with no methods.
+type uncommonType struct {
+ name *string // name of type
+ pkgPath *string // import path; nil for built-in types like int, string
+ methods []method // methods associated with type
+}
+
+// ChanDir represents a channel type's direction.
+type ChanDir int
+
+const (
+ RecvDir ChanDir = 1 << iota // <-chan
+ SendDir // chan<-
+ BothDir = RecvDir | SendDir // chan
+)
+
+// arrayType represents a fixed array type.
+type arrayType struct {
+ commonType `reflect:"array"`
+ elem *runtimeType // array element type
+ slice *runtimeType // slice type
+ len uintptr
+}
+
+// chanType represents a channel type.
+type chanType struct {
+ commonType `reflect:"chan"`
+ elem *runtimeType // channel element type
+ dir uintptr // channel direction (ChanDir)
+}
+
+// funcType represents a function type.
+type funcType struct {
+ commonType `reflect:"func"`
+ dotdotdot bool // last input parameter is ...
+ in []*runtimeType // input parameter types
+ out []*runtimeType // output parameter types
+}
+
+// imethod represents a method on an interface type
+type imethod struct {
+ name *string // name of method
+ pkgPath *string // nil for exported Names; otherwise import path
+ typ *runtimeType // .(*FuncType) underneath
+}
+
+// interfaceType represents an interface type.
+type interfaceType struct {
+ commonType `reflect:"interface"`
+ methods []imethod // sorted by hash
+}
+
+// mapType represents a map type.
+type mapType struct {
+ commonType `reflect:"map"`
+ key *runtimeType // map key type
+ elem *runtimeType // map element (value) type
+}
+
+// ptrType represents a pointer type.
+type ptrType struct {
+ commonType `reflect:"ptr"`
+ elem *runtimeType // pointer element (pointed at) type
+}
+
+// sliceType represents a slice type.
+type sliceType struct {
+ commonType `reflect:"slice"`
+ elem *runtimeType // slice element type
+}
+
+// Struct field
+type structField struct {
+ name *string // nil for embedded fields
+ pkgPath *string // nil for exported Names; otherwise import path
+ typ *runtimeType // type of field
+ tag *string // nil if no tag
+ offset uintptr // byte offset of field within struct
+}
+
+// structType represents a struct type.
+type structType struct {
+ commonType `reflect:"struct"`
+ fields []structField // sorted by offset
+}
+
+/*
+ * The compiler knows the exact layout of all the data structures above.
+ * The compiler does not know about the data structures and methods below.
+ */
+
+// Method represents a single method.
+type Method struct {
+ // Name is the method name.
+ // PkgPath is the package path that qualifies a lower case (unexported)
+ // method name. It is empty for upper case (exported) method names.
+ // The combination of PkgPath and Name uniquely identifies a method
+ // in a method set.
+ // See http://golang.org/ref/spec#Uniqueness_of_identifiers
+ Name string
+ PkgPath string
+
+ Type Type // method type
+ Func Value // func with receiver as first argument
+ Index int // index for Type.Method
+}
+
+// High bit says whether type has
+// embedded pointers,to help garbage collector.
+const kindMask = 0x7f
+
+func (k Kind) String() string {
+ if int(k) < len(kindNames) {
+ return kindNames[k]
+ }
+ return "kind" + strconv.Itoa(int(k))
+}
+
+var kindNames = []string{
+ Invalid: "invalid",
+ Bool: "bool",
+ Int: "int",
+ Int8: "int8",
+ Int16: "int16",
+ Int32: "int32",
+ Int64: "int64",
+ Uint: "uint",
+ Uint8: "uint8",
+ Uint16: "uint16",
+ Uint32: "uint32",
+ Uint64: "uint64",
+ Uintptr: "uintptr",
+ Float32: "float32",
+ Float64: "float64",
+ Complex64: "complex64",
+ Complex128: "complex128",
+ Array: "array",
+ Chan: "chan",
+ Func: "func",
+ Interface: "interface",
+ Map: "map",
+ Ptr: "ptr",
+ Slice: "slice",
+ String: "string",
+ Struct: "struct",
+ UnsafePointer: "unsafe.Pointer",
+}
+
+func (t *uncommonType) uncommon() *uncommonType {
+ return t
+}
+
+func (t *uncommonType) PkgPath() string {
+ if t == nil || t.pkgPath == nil {
+ return ""
+ }
+ return *t.pkgPath
+}
+
+func (t *uncommonType) Name() string {
+ if t == nil || t.name == nil {
+ return ""
+ }
+ return *t.name
+}
+
+func (t *commonType) toType() Type {
+ if t == nil {
+ return nil
+ }
+ return canonicalize(t)
+}
+
+func (t *commonType) rawString() string { return *t.string }
+
+func (t *commonType) String() string {
+ // For gccgo, strip out quoted strings.
+ s := *t.string
+ var q bool
+ r := make([]byte, len(s))
+ j := 0
+ for i := 0; i < len(s); i++ {
+ if s[i] == '\t' {
+ q = !q
+ } else if !q {
+ r[j] = s[i]
+ j++
+ }
+ }
+ return string(r[:j])
+}
+
+func (t *commonType) Size() uintptr { return t.size }
+
+func (t *commonType) Bits() int {
+ if t == nil {
+ panic("reflect: Bits of nil Type")
+ }
+ k := t.Kind()
+ if k < Int || k > Complex128 {
+ panic("reflect: Bits of non-arithmetic Type " + t.String())
+ }
+ return int(t.size) * 8
+}
+
+func (t *commonType) Align() int { return int(t.align) }
+
+func (t *commonType) FieldAlign() int { return int(t.fieldAlign) }
+
+func (t *commonType) Kind() Kind { return Kind(t.kind & kindMask) }
+
+func (t *commonType) common() *commonType { return t }
+
+func (t *uncommonType) Method(i int) (m Method) {
+ if t == nil || i < 0 || i >= len(t.methods) {
+ panic("reflect: Method index out of range")
+ }
+ p := &t.methods[i]
+ if p.name != nil {
+ m.Name = *p.name
+ }
+ fl := flag(Func) << flagKindShift
+ if p.pkgPath != nil {
+ m.PkgPath = *p.pkgPath
+ fl |= flagRO
+ }
+ mt := toCommonType(p.typ)
+ m.Type = mt.toType()
+ x := new(unsafe.Pointer)
+ *x = p.tfn
+ m.Func = Value{mt, unsafe.Pointer(x), fl | flagIndir}
+ m.Index = i
+ return
+}
+
+func (t *uncommonType) NumMethod() int {
+ if t == nil {
+ return 0
+ }
+ return len(t.methods)
+}
+
+func (t *uncommonType) MethodByName(name string) (m Method, ok bool) {
+ if t == nil {
+ return
+ }
+ var p *method
+ for i := range t.methods {
+ p = &t.methods[i]
+ if p.name != nil && *p.name == name {
+ return t.Method(i), true
+ }
+ }
+ return
+}
+
+// TODO(rsc): 6g supplies these, but they are not
+// as efficient as they could be: they have commonType
+// as the receiver instead of *commonType.
+func (t *commonType) NumMethod() int {
+ if t.Kind() == Interface {
+ tt := (*interfaceType)(unsafe.Pointer(t))
+ return tt.NumMethod()
+ }
+ return t.uncommonType.NumMethod()
+}
+
+func (t *commonType) Method(i int) (m Method) {
+ if t.Kind() == Interface {
+ tt := (*interfaceType)(unsafe.Pointer(t))
+ return tt.Method(i)
+ }
+ return t.uncommonType.Method(i)
+}
+
+func (t *commonType) MethodByName(name string) (m Method, ok bool) {
+ if t.Kind() == Interface {
+ tt := (*interfaceType)(unsafe.Pointer(t))
+ return tt.MethodByName(name)
+ }
+ return t.uncommonType.MethodByName(name)
+}
+
+func (t *commonType) PkgPath() string {
+ return t.uncommonType.PkgPath()
+}
+
+func (t *commonType) Name() string {
+ return t.uncommonType.Name()
+}
+
+func (t *commonType) ChanDir() ChanDir {
+ if t.Kind() != Chan {
+ panic("reflect: ChanDir of non-chan type")
+ }
+ tt := (*chanType)(unsafe.Pointer(t))
+ return ChanDir(tt.dir)
+}
+
+func (t *commonType) IsVariadic() bool {
+ if t.Kind() != Func {
+ panic("reflect: IsVariadic of non-func type")
+ }
+ tt := (*funcType)(unsafe.Pointer(t))
+ return tt.dotdotdot
+}
+
+func (t *commonType) Elem() Type {
+ switch t.Kind() {
+ case Array:
+ tt := (*arrayType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ case Chan:
+ tt := (*chanType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ case Map:
+ tt := (*mapType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ case Ptr:
+ tt := (*ptrType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ case Slice:
+ tt := (*sliceType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ }
+ panic("reflect: Elem of invalid type")
+}
+
+func (t *commonType) Field(i int) StructField {
+ if t.Kind() != Struct {
+ panic("reflect: Field of non-struct type")
+ }
+ tt := (*structType)(unsafe.Pointer(t))
+ return tt.Field(i)
+}
+
+func (t *commonType) FieldByIndex(index []int) StructField {
+ if t.Kind() != Struct {
+ panic("reflect: FieldByIndex of non-struct type")
+ }
+ tt := (*structType)(unsafe.Pointer(t))
+ return tt.FieldByIndex(index)
+}
+
+func (t *commonType) FieldByName(name string) (StructField, bool) {
+ if t.Kind() != Struct {
+ panic("reflect: FieldByName of non-struct type")
+ }
+ tt := (*structType)(unsafe.Pointer(t))
+ return tt.FieldByName(name)
+}
+
+func (t *commonType) FieldByNameFunc(match func(string) bool) (StructField, bool) {
+ if t.Kind() != Struct {
+ panic("reflect: FieldByNameFunc of non-struct type")
+ }
+ tt := (*structType)(unsafe.Pointer(t))
+ return tt.FieldByNameFunc(match)
+}
+
+func (t *commonType) In(i int) Type {
+ if t.Kind() != Func {
+ panic("reflect: In of non-func type")
+ }
+ tt := (*funcType)(unsafe.Pointer(t))
+ return toType(tt.in[i])
+}
+
+func (t *commonType) Key() Type {
+ if t.Kind() != Map {
+ panic("reflect: Key of non-map type")
+ }
+ tt := (*mapType)(unsafe.Pointer(t))
+ return toType(tt.key)
+}
+
+func (t *commonType) Len() int {
+ if t.Kind() != Array {
+ panic("reflect: Len of non-array type")
+ }
+ tt := (*arrayType)(unsafe.Pointer(t))
+ return int(tt.len)
+}
+
+func (t *commonType) NumField() int {
+ if t.Kind() != Struct {
+ panic("reflect: NumField of non-struct type")
+ }
+ tt := (*structType)(unsafe.Pointer(t))
+ return len(tt.fields)
+}
+
+func (t *commonType) NumIn() int {
+ if t.Kind() != Func {
+ panic("reflect: NumIn of non-func type")
+ }
+ tt := (*funcType)(unsafe.Pointer(t))
+ return len(tt.in)
+}
+
+func (t *commonType) NumOut() int {
+ if t.Kind() != Func {
+ panic("reflect: NumOut of non-func type")
+ }
+ tt := (*funcType)(unsafe.Pointer(t))
+ return len(tt.out)
+}
+
+func (t *commonType) Out(i int) Type {
+ if t.Kind() != Func {
+ panic("reflect: Out of non-func type")
+ }
+ tt := (*funcType)(unsafe.Pointer(t))
+ return toType(tt.out[i])
+}
+
+func (d ChanDir) String() string {
+ switch d {
+ case SendDir:
+ return "chan<-"
+ case RecvDir:
+ return "<-chan"
+ case BothDir:
+ return "chan"
+ }
+ return "ChanDir" + strconv.Itoa(int(d))
+}
+
+// Method returns the i'th method in the type's method set.
+func (t *interfaceType) Method(i int) (m Method) {
+ if i < 0 || i >= len(t.methods) {
+ return
+ }
+ p := &t.methods[i]
+ m.Name = *p.name
+ if p.pkgPath != nil {
+ m.PkgPath = *p.pkgPath
+ }
+ m.Type = toType(p.typ)
+ m.Index = i
+ return
+}
+
+// NumMethod returns the number of interface methods in the type's method set.
+func (t *interfaceType) NumMethod() int { return len(t.methods) }
+
+// MethodByName method with the given name in the type's method set.
+func (t *interfaceType) MethodByName(name string) (m Method, ok bool) {
+ if t == nil {
+ return
+ }
+ var p *imethod
+ for i := range t.methods {
+ p = &t.methods[i]
+ if *p.name == name {
+ return t.Method(i), true
+ }
+ }
+ return
+}
+
+// A StructField describes a single field in a struct.
+type StructField struct {
+ // Name is the field name.
+ // PkgPath is the package path that qualifies a lower case (unexported)
+ // field name. It is empty for upper case (exported) field names.
+ // See http://golang.org/ref/spec#Uniqueness_of_identifiers
+ Name string
+ PkgPath string
+
+ Type Type // field type
+ Tag StructTag // field tag string
+ Offset uintptr // offset within struct, in bytes
+ Index []int // index sequence for Type.FieldByIndex
+ Anonymous bool // is an anonymous field
+}
+
+// A StructTag is the tag string in a struct field.
+//
+// By convention, tag strings are a concatenation of
+// optionally space-separated key:"value" pairs.
+// Each key is a non-empty string consisting of non-control
+// characters other than space (U+0020 ' '), quote (U+0022 '"'),
+// and colon (U+003A ':'). Each value is quoted using U+0022 '"'
+// characters and Go string literal syntax.
+type StructTag string
+
+// Get returns the value associated with key in the tag string.
+// If there is no such key in the tag, Get returns the empty string.
+// If the tag does not have the conventional format, the value
+// returned by Get is unspecified.
+func (tag StructTag) Get(key string) string {
+ for tag != "" {
+ // skip leading space
+ i := 0
+ for i < len(tag) && tag[i] == ' ' {
+ i++
+ }
+ tag = tag[i:]
+ if tag == "" {
+ break
+ }
+
+ // scan to colon.
+ // a space or a quote is a syntax error
+ i = 0
+ for i < len(tag) && tag[i] != ' ' && tag[i] != ':' && tag[i] != '"' {
+ i++
+ }
+ if i+1 >= len(tag) || tag[i] != ':' || tag[i+1] != '"' {
+ break
+ }
+ name := string(tag[:i])
+ tag = tag[i+1:]
+
+ // scan quoted string to find value
+ i = 1
+ for i < len(tag) && tag[i] != '"' {
+ if tag[i] == '\\' {
+ i++
+ }
+ i++
+ }
+ if i >= len(tag) {
+ break
+ }
+ qvalue := string(tag[:i+1])
+ tag = tag[i+1:]
+
+ if key == name {
+ value, _ := strconv.Unquote(qvalue)
+ return value
+ }
+ }
+ return ""
+}
+
+// Field returns the i'th struct field.
+func (t *structType) Field(i int) (f StructField) {
+ if i < 0 || i >= len(t.fields) {
+ return
+ }
+ p := &t.fields[i]
+ f.Type = toType(p.typ)
+ if p.name != nil {
+ f.Name = *p.name
+ } else {
+ t := f.Type
+ if t.Kind() == Ptr {
+ t = t.Elem()
+ }
+ f.Name = t.Name()
+ f.Anonymous = true
+ }
+ if p.pkgPath != nil {
+ f.PkgPath = *p.pkgPath
+ }
+ if p.tag != nil {
+ f.Tag = StructTag(*p.tag)
+ }
+ f.Offset = p.offset
+
+ // NOTE(rsc): This is the only allocation in the interface
+ // presented by a reflect.Type. It would be nice to avoid,
+ // at least in the common cases, but we need to make sure
+ // that misbehaving clients of reflect cannot affect other
+ // uses of reflect. One possibility is CL 5371098, but we
+ // postponed that ugliness until there is a demonstrated
+ // need for the performance. This is issue 2320.
+ f.Index = []int{i}
+ return
+}
+
+// TODO(gri): Should there be an error/bool indicator if the index
+// is wrong for FieldByIndex?
+
+// FieldByIndex returns the nested field corresponding to index.
+func (t *structType) FieldByIndex(index []int) (f StructField) {
+ f.Type = Type(t.toType())
+ for i, x := range index {
+ if i > 0 {
+ ft := f.Type
+ if ft.Kind() == Ptr && ft.Elem().Kind() == Struct {
+ ft = ft.Elem()
+ }
+ f.Type = ft
+ }
+ f = f.Type.Field(x)
+ }
+ return
+}
+
+const inf = 1 << 30 // infinity - no struct has that many nesting levels
+
+func (t *structType) fieldByNameFunc(match func(string) bool, mark map[*structType]bool, depth int) (ff StructField, fd int) {
+ fd = inf // field depth
+
+ if mark[t] {
+ // Struct already seen.
+ return
+ }
+ mark[t] = true
+
+ var fi int // field index
+ n := 0 // number of matching fields at depth fd
+L:
+ for i := range t.fields {
+ f := t.Field(i)
+ d := inf
+ switch {
+ case match(f.Name):
+ // Matching top-level field.
+ d = depth
+ case f.Anonymous:
+ ft := f.Type
+ if ft.Kind() == Ptr {
+ ft = ft.Elem()
+ }
+ switch {
+ case match(ft.Name()):
+ // Matching anonymous top-level field.
+ d = depth
+ case fd > depth:
+ // No top-level field yet; look inside nested structs.
+ if ft.Kind() == Struct {
+ st := (*structType)(unsafe.Pointer(ft.(*commonType)))
+ f, d = st.fieldByNameFunc(match, mark, depth+1)
+ }
+ }
+ }
+
+ switch {
+ case d < fd:
+ // Found field at shallower depth.
+ ff, fi, fd = f, i, d
+ n = 1
+ case d == fd:
+ // More than one matching field at the same depth (or d, fd == inf).
+ // Same as no field found at this depth.
+ n++
+ if d == depth {
+ // Impossible to find a field at lower depth.
+ break L
+ }
+ }
+ }
+
+ if n == 1 {
+ // Found matching field.
+ if depth >= len(ff.Index) {
+ ff.Index = make([]int, depth+1)
+ }
+ if len(ff.Index) > 1 {
+ ff.Index[depth] = fi
+ }
+ } else {
+ // None or more than one matching field found.
+ fd = inf
+ }
+
+ delete(mark, t)
+ return
+}
+
+// FieldByName returns the struct field with the given name
+// and a boolean to indicate if the field was found.
+func (t *structType) FieldByName(name string) (f StructField, present bool) {
+ return t.FieldByNameFunc(func(s string) bool { return s == name })
+}
+
+// FieldByNameFunc returns the struct field with a name that satisfies the
+// match function and a boolean to indicate if the field was found.
+func (t *structType) FieldByNameFunc(match func(string) bool) (f StructField, present bool) {
+ if ff, fd := t.fieldByNameFunc(match, make(map[*structType]bool), 0); fd < inf {
+ ff.Index = ff.Index[0 : fd+1]
+ f, present = ff, true
+ }
+ return
+}
+
+// Convert runtime type to reflect type.
+func toCommonType(p *runtimeType) *commonType {
+ if p == nil {
+ return nil
+ }
+ return (*commonType)(unsafe.Pointer(p))
+}
+
+// Canonicalize a Type.
+var canonicalType = make(map[string]Type)
+
+var canonicalTypeLock sync.RWMutex
+
+func canonicalize(t Type) Type {
+ if t == nil {
+ return nil
+ }
+ u := t.uncommon()
+ var s string
+ if u == nil || u.PkgPath() == "" {
+ s = t.rawString()
+ } else {
+ s = u.PkgPath() + "." + u.Name()
+ }
+ canonicalTypeLock.RLock()
+ if r, ok := canonicalType[s]; ok {
+ canonicalTypeLock.RUnlock()
+ return r
+ }
+ canonicalTypeLock.RUnlock()
+ canonicalTypeLock.Lock()
+ if r, ok := canonicalType[s]; ok {
+ canonicalTypeLock.Unlock()
+ return r
+ }
+ canonicalType[s] = t
+ canonicalTypeLock.Unlock()
+ return t
+}
+
+func toType(p *runtimeType) Type {
+ if p == nil {
+ return nil
+ }
+ return (*commonType)(unsafe.Pointer(p))
+}
+
+// TypeOf returns the reflection Type of the value in the interface{}.
+// TypeOf(nil) returns nil.
+func TypeOf(i interface{}) Type {
+ eface := *(*emptyInterface)(unsafe.Pointer(&i))
+ return toType(eface.typ)
+}
+
+// ptrMap is the cache for PtrTo.
+var ptrMap struct {
+ sync.RWMutex
+ m map[*commonType]*ptrType
+}
+
+func (t *commonType) runtimeType() *runtimeType {
+ return (*runtimeType)(unsafe.Pointer(t))
+}
+
+// PtrTo returns the pointer type with element t.
+// For example, if t represents type Foo, PtrTo(t) represents *Foo.
+func PtrTo(t Type) Type {
+ return t.(*commonType).ptrTo()
+}
+
+func (ct *commonType) ptrTo() *commonType {
+ if p := ct.ptrToThis; p != nil {
+ return toCommonType(p)
+ }
+
+ // Otherwise, synthesize one.
+ // This only happens for pointers with no methods.
+ // We keep the mapping in a map on the side, because
+ // this operation is rare and a separate map lets us keep
+ // the type structures in read-only memory.
+ ptrMap.RLock()
+ if m := ptrMap.m; m != nil {
+ if p := m[ct]; p != nil {
+ ptrMap.RUnlock()
+ return &p.commonType
+ }
+ }
+ ptrMap.RUnlock()
+ ptrMap.Lock()
+ if ptrMap.m == nil {
+ ptrMap.m = make(map[*commonType]*ptrType)
+ }
+ p := ptrMap.m[ct]
+ if p != nil {
+ // some other goroutine won the race and created it
+ ptrMap.Unlock()
+ return &p.commonType
+ }
+
+ s := "*" + *ct.string
+
+ canonicalTypeLock.RLock()
+ r, ok := canonicalType[s]
+ canonicalTypeLock.RUnlock()
+ if ok {
+ ptrMap.m[ct] = (*ptrType)(unsafe.Pointer(r.(*commonType)))
+ ptrMap.Unlock()
+ return r.(*commonType)
+ }
+
+ // initialize p using *byte's ptrType as a prototype.
+ p = new(ptrType)
+ var ibyte interface{} = (*byte)(nil)
+ bp := (*ptrType)(unsafe.Pointer(*(**runtimeType)(unsafe.Pointer(&ibyte))))
+ *p = *bp
+
+ p.string = &s
+
+ // For the type structures linked into the binary, the
+ // compiler provides a good hash of the string.
+ // Create a good hash for the new string by using
+ // the FNV-1 hash's mixing function to combine the
+ // old hash and the new "*".
+ // p.hash = ct.hash*16777619 ^ '*'
+ // This is the gccgo version.
+ p.hash = (ct.hash << 4) + 9
+
+ p.uncommonType = nil
+ p.ptrToThis = nil
+ p.elem = (*runtimeType)(unsafe.Pointer(ct))
+
+ p = canonicalize(p).(*ptrType)
+
+ ptrMap.m[ct] = p
+ ptrMap.Unlock()
+ return &p.commonType
+}
+
+func (t *commonType) Implements(u Type) bool {
+ if u == nil {
+ panic("reflect: nil type passed to Type.Implements")
+ }
+ if u.Kind() != Interface {
+ panic("reflect: non-interface type passed to Type.Implements")
+ }
+ return implements(u.(*commonType), t)
+}
+
+func (t *commonType) AssignableTo(u Type) bool {
+ if u == nil {
+ panic("reflect: nil type passed to Type.AssignableTo")
+ }
+ uu := u.(*commonType)
+ return directlyAssignable(uu, t) || implements(uu, t)
+}
+
+// implements returns true if the type V implements the interface type T.
+func implements(T, V *commonType) bool {
+ if T.Kind() != Interface {
+ return false
+ }
+ t := (*interfaceType)(unsafe.Pointer(T))
+ if len(t.methods) == 0 {
+ return true
+ }
+
+ // The same algorithm applies in both cases, but the
+ // method tables for an interface type and a concrete type
+ // are different, so the code is duplicated.
+ // In both cases the algorithm is a linear scan over the two
+ // lists - T's methods and V's methods - simultaneously.
+ // Since method tables are stored in a unique sorted order
+ // (alphabetical, with no duplicate method names), the scan
+ // through V's methods must hit a match for each of T's
+ // methods along the way, or else V does not implement T.
+ // This lets us run the scan in overall linear time instead of
+ // the quadratic time a naive search would require.
+ // See also ../runtime/iface.c.
+ if V.Kind() == Interface {
+ v := (*interfaceType)(unsafe.Pointer(V))
+ i := 0
+ for j := 0; j < len(v.methods); j++ {
+ tm := &t.methods[i]
+ vm := &v.methods[j]
+ if *vm.name == *tm.name && (vm.pkgPath == tm.pkgPath || (vm.pkgPath != nil && tm.pkgPath != nil && *vm.pkgPath == *tm.pkgPath)) && toType(vm.typ).common() == toType(tm.typ).common() {
+ if i++; i >= len(t.methods) {
+ return true
+ }
+ }
+ }
+ return false
+ }
+
+ v := V.uncommon()
+ if v == nil {
+ return false
+ }
+ i := 0
+ for j := 0; j < len(v.methods); j++ {
+ tm := &t.methods[i]
+ vm := &v.methods[j]
+ if *vm.name == *tm.name && (vm.pkgPath == tm.pkgPath || (vm.pkgPath != nil && tm.pkgPath != nil && *vm.pkgPath == *tm.pkgPath)) && toType(vm.mtyp).common() == toType(tm.typ).common() {
+ if i++; i >= len(t.methods) {
+ return true
+ }
+ }
+ }
+ return false
+}
+
+// directlyAssignable returns true if a value x of type V can be directly
+// assigned (using memmove) to a value of type T.
+// http://golang.org/doc/go_spec.html#Assignability
+// Ignoring the interface rules (implemented elsewhere)
+// and the ideal constant rules (no ideal constants at run time).
+func directlyAssignable(T, V *commonType) bool {
+ // x's type V is identical to T?
+ if T == V {
+ return true
+ }
+
+ // Otherwise at least one of T and V must be unnamed
+ // and they must have the same kind.
+ if T.Name() != "" && V.Name() != "" || T.Kind() != V.Kind() {
+ return false
+ }
+
+ // x's type T and V have identical underlying types.
+ // Since at least one is unnamed, only the composite types
+ // need to be considered.
+ switch T.Kind() {
+ case Array:
+ return T.Elem() == V.Elem() && T.Len() == V.Len()
+
+ case Chan:
+ // Special case:
+ // x is a bidirectional channel value, T is a channel type,
+ // and x's type V and T have identical element types.
+ if V.ChanDir() == BothDir && T.Elem() == V.Elem() {
+ return true
+ }
+
+ // Otherwise continue test for identical underlying type.
+ return V.ChanDir() == T.ChanDir() && T.Elem() == V.Elem()
+
+ case Func:
+ t := (*funcType)(unsafe.Pointer(T))
+ v := (*funcType)(unsafe.Pointer(V))
+ if t.dotdotdot != v.dotdotdot || len(t.in) != len(v.in) || len(t.out) != len(v.out) {
+ return false
+ }
+ for i, typ := range t.in {
+ if typ != v.in[i] {
+ return false
+ }
+ }
+ for i, typ := range t.out {
+ if typ != v.out[i] {
+ return false
+ }
+ }
+ return true
+
+ case Interface:
+ t := (*interfaceType)(unsafe.Pointer(T))
+ v := (*interfaceType)(unsafe.Pointer(V))
+ if len(t.methods) == 0 && len(v.methods) == 0 {
+ return true
+ }
+ // Might have the same methods but still
+ // need a run time conversion.
+ return false
+
+ case Map:
+ return T.Key() == V.Key() && T.Elem() == V.Elem()
+
+ case Ptr, Slice:
+ return T.Elem() == V.Elem()
+
+ case Struct:
+ t := (*structType)(unsafe.Pointer(T))
+ v := (*structType)(unsafe.Pointer(V))
+ if len(t.fields) != len(v.fields) {
+ return false
+ }
+ for i := range t.fields {
+ tf := &t.fields[i]
+ vf := &v.fields[i]
+ if tf.name != vf.name || tf.pkgPath != vf.pkgPath ||
+ tf.typ != vf.typ || tf.tag != vf.tag || tf.offset != vf.offset {
+ return false
+ }
+ }
+ return true
+ }
+
+ return false
+}
diff --git a/gcc-4.7/libgo/go/reflect/value.go b/gcc-4.7/libgo/go/reflect/value.go
new file mode 100644
index 000000000..a12fcb266
--- /dev/null
+++ b/gcc-4.7/libgo/go/reflect/value.go
@@ -0,0 +1,1807 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package reflect
+
+import (
+ "math"
+ "runtime"
+ "strconv"
+ "unsafe"
+)
+
+const bigEndian = false // can be smarter if we find a big-endian machine
+const ptrSize = unsafe.Sizeof((*byte)(nil))
+const cannotSet = "cannot set value obtained from unexported struct field"
+
+// TODO: This will have to go away when
+// the new gc goes in.
+func memmove(adst, asrc unsafe.Pointer, n uintptr) {
+ dst := uintptr(adst)
+ src := uintptr(asrc)
+ switch {
+ case src < dst && src+n > dst:
+ // byte copy backward
+ // careful: i is unsigned
+ for i := n; i > 0; {
+ i--
+ *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
+ }
+ case (n|src|dst)&(ptrSize-1) != 0:
+ // byte copy forward
+ for i := uintptr(0); i < n; i++ {
+ *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i))
+ }
+ default:
+ // word copy forward
+ for i := uintptr(0); i < n; i += ptrSize {
+ *(*uintptr)(unsafe.Pointer(dst + i)) = *(*uintptr)(unsafe.Pointer(src + i))
+ }
+ }
+}
+
+// Value is the reflection interface to a Go value.
+//
+// Not all methods apply to all kinds of values. Restrictions,
+// if any, are noted in the documentation for each method.
+// Use the Kind method to find out the kind of value before
+// calling kind-specific methods. Calling a method
+// inappropriate to the kind of type causes a run time panic.
+//
+// The zero Value represents no value.
+// Its IsValid method returns false, its Kind method returns Invalid,
+// its String method returns "<invalid Value>", and all other methods panic.
+// Most functions and methods never return an invalid value.
+// If one does, its documentation states the conditions explicitly.
+//
+// A Value can be used concurrently by multiple goroutines provided that
+// the underlying Go value can be used concurrently for the equivalent
+// direct operations.
+type Value struct {
+ // typ holds the type of the value represented by a Value.
+ typ *commonType
+
+ // val holds the 1-word representation of the value.
+ // If flag's flagIndir bit is set, then val is a pointer to the data.
+ // Otherwise val is a word holding the actual data.
+ // When the data is smaller than a word, it begins at
+ // the first byte (in the memory address sense) of val.
+ // We use unsafe.Pointer so that the garbage collector
+ // knows that val could be a pointer.
+ val unsafe.Pointer
+
+ // flag holds metadata about the value.
+ // The lowest bits are flag bits:
+ // - flagRO: obtained via unexported field, so read-only
+ // - flagIndir: val holds a pointer to the data
+ // - flagAddr: v.CanAddr is true (implies flagIndir)
+ // - flagMethod: v is a method value.
+ // The next five bits give the Kind of the value.
+ // This repeats typ.Kind() except for method values.
+ // The remaining 23+ bits give a method number for method values.
+ // If flag.kind() != Func, code can assume that flagMethod is unset.
+ // If typ.size > ptrSize, code can assume that flagIndir is set.
+ flag
+
+ // A method value represents a curried method invocation
+ // like r.Read for some receiver r. The typ+val+flag bits describe
+ // the receiver r, but the flag's Kind bits say Func (methods are
+ // functions), and the top bits of the flag give the method number
+ // in r's type's method table.
+}
+
+type flag uintptr
+
+const (
+ flagRO flag = 1 << iota
+ flagIndir
+ flagAddr
+ flagMethod
+ flagKindShift = iota
+ flagKindWidth = 5 // there are 27 kinds
+ flagKindMask flag = 1<<flagKindWidth - 1
+ flagMethodShift = flagKindShift + flagKindWidth
+)
+
+func (f flag) kind() Kind {
+ return Kind((f >> flagKindShift) & flagKindMask)
+}
+
+// A ValueError occurs when a Value method is invoked on
+// a Value that does not support it. Such cases are documented
+// in the description of each method.
+type ValueError struct {
+ Method string
+ Kind Kind
+}
+
+func (e *ValueError) Error() string {
+ if e.Kind == 0 {
+ return "reflect: call of " + e.Method + " on zero Value"
+ }
+ return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
+}
+
+// methodName returns the name of the calling method,
+// assumed to be two stack frames above.
+func methodName() string {
+ pc, _, _, _ := runtime.Caller(2)
+ f := runtime.FuncForPC(pc)
+ if f == nil {
+ return "unknown method"
+ }
+ return f.Name()
+}
+
+// An iword is the word that would be stored in an
+// interface to represent a given value v. Specifically, if v is
+// bigger than a pointer, its word is a pointer to v's data.
+// Otherwise, its word holds the data stored
+// in its leading bytes (so is not a pointer).
+// Because the value sometimes holds a pointer, we use
+// unsafe.Pointer to represent it, so that if iword appears
+// in a struct, the garbage collector knows that might be
+// a pointer.
+type iword unsafe.Pointer
+
+func (v Value) iword() iword {
+ if v.flag&flagIndir != 0 && (v.kind() == Ptr || v.kind() == UnsafePointer) {
+ // Have indirect but want direct word.
+ return loadIword(v.val, v.typ.size)
+ }
+ return iword(v.val)
+}
+
+// loadIword loads n bytes at p from memory into an iword.
+func loadIword(p unsafe.Pointer, n uintptr) iword {
+ // Run the copy ourselves instead of calling memmove
+ // to avoid moving w to the heap.
+ var w iword
+ switch n {
+ default:
+ panic("reflect: internal error: loadIword of " + strconv.Itoa(int(n)) + "-byte value")
+ case 0:
+ case 1:
+ *(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p)
+ case 2:
+ *(*uint16)(unsafe.Pointer(&w)) = *(*uint16)(p)
+ case 3:
+ *(*[3]byte)(unsafe.Pointer(&w)) = *(*[3]byte)(p)
+ case 4:
+ *(*uint32)(unsafe.Pointer(&w)) = *(*uint32)(p)
+ case 5:
+ *(*[5]byte)(unsafe.Pointer(&w)) = *(*[5]byte)(p)
+ case 6:
+ *(*[6]byte)(unsafe.Pointer(&w)) = *(*[6]byte)(p)
+ case 7:
+ *(*[7]byte)(unsafe.Pointer(&w)) = *(*[7]byte)(p)
+ case 8:
+ *(*uint64)(unsafe.Pointer(&w)) = *(*uint64)(p)
+ }
+ return w
+}
+
+// storeIword stores n bytes from w into p.
+func storeIword(p unsafe.Pointer, w iword, n uintptr) {
+ // Run the copy ourselves instead of calling memmove
+ // to avoid moving w to the heap.
+ switch n {
+ default:
+ panic("reflect: internal error: storeIword of " + strconv.Itoa(int(n)) + "-byte value")
+ case 0:
+ case 1:
+ *(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w))
+ case 2:
+ *(*uint16)(p) = *(*uint16)(unsafe.Pointer(&w))
+ case 3:
+ *(*[3]byte)(p) = *(*[3]byte)(unsafe.Pointer(&w))
+ case 4:
+ *(*uint32)(p) = *(*uint32)(unsafe.Pointer(&w))
+ case 5:
+ *(*[5]byte)(p) = *(*[5]byte)(unsafe.Pointer(&w))
+ case 6:
+ *(*[6]byte)(p) = *(*[6]byte)(unsafe.Pointer(&w))
+ case 7:
+ *(*[7]byte)(p) = *(*[7]byte)(unsafe.Pointer(&w))
+ case 8:
+ *(*uint64)(p) = *(*uint64)(unsafe.Pointer(&w))
+ }
+}
+
+// emptyInterface is the header for an interface{} value.
+type emptyInterface struct {
+ typ *runtimeType
+ word iword
+}
+
+// nonEmptyInterface is the header for a interface value with methods.
+type nonEmptyInterface struct {
+ // see ../runtime/iface.c:/Itab
+ itab *struct {
+ typ *runtimeType // dynamic concrete type
+ fun [100000]unsafe.Pointer // method table
+ }
+ word iword
+}
+
+// mustBe panics if f's kind is not expected.
+// Making this a method on flag instead of on Value
+// (and embedding flag in Value) means that we can write
+// the very clear v.mustBe(Bool) and have it compile into
+// v.flag.mustBe(Bool), which will only bother to copy the
+// single important word for the receiver.
+func (f flag) mustBe(expected Kind) {
+ k := f.kind()
+ if k != expected {
+ panic(&ValueError{methodName(), k})
+ }
+}
+
+// mustBeExported panics if f records that the value was obtained using
+// an unexported field.
+func (f flag) mustBeExported() {
+ if f == 0 {
+ panic(&ValueError{methodName(), 0})
+ }
+ if f&flagRO != 0 {
+ panic(methodName() + " using value obtained using unexported field")
+ }
+}
+
+// mustBeAssignable panics if f records that the value is not assignable,
+// which is to say that either it was obtained using an unexported field
+// or it is not addressable.
+func (f flag) mustBeAssignable() {
+ if f == 0 {
+ panic(&ValueError{methodName(), Invalid})
+ }
+ // Assignable if addressable and not read-only.
+ if f&flagRO != 0 {
+ panic(methodName() + " using value obtained using unexported field")
+ }
+ if f&flagAddr == 0 {
+ panic(methodName() + " using unaddressable value")
+ }
+}
+
+// Addr returns a pointer value representing the address of v.
+// It panics if CanAddr() returns false.
+// Addr is typically used to obtain a pointer to a struct field
+// or slice element in order to call a method that requires a
+// pointer receiver.
+func (v Value) Addr() Value {
+ if v.flag&flagAddr == 0 {
+ panic("reflect.Value.Addr of unaddressable value")
+ }
+ return Value{v.typ.ptrTo(), v.val, (v.flag & flagRO) | flag(Ptr)<<flagKindShift}
+}
+
+// Bool returns v's underlying value.
+// It panics if v's kind is not Bool.
+func (v Value) Bool() bool {
+ v.mustBe(Bool)
+ if v.flag&flagIndir != 0 {
+ return *(*bool)(v.val)
+ }
+ return *(*bool)(unsafe.Pointer(&v.val))
+}
+
+// Bytes returns v's underlying value.
+// It panics if v's underlying value is not a slice of bytes.
+func (v Value) Bytes() []byte {
+ v.mustBe(Slice)
+ if v.typ.Elem().Kind() != Uint8 {
+ panic("reflect.Value.Bytes of non-byte slice")
+ }
+ // Slice is always bigger than a word; assume flagIndir.
+ return *(*[]byte)(v.val)
+}
+
+// CanAddr returns true if the value's address can be obtained with Addr.
+// Such values are called addressable. A value is addressable if it is
+// an element of a slice, an element of an addressable array,
+// a field of an addressable struct, or the result of dereferencing a pointer.
+// If CanAddr returns false, calling Addr will panic.
+func (v Value) CanAddr() bool {
+ return v.flag&flagAddr != 0
+}
+
+// CanSet returns true if the value of v can be changed.
+// A Value can be changed only if it is addressable and was not
+// obtained by the use of unexported struct fields.
+// If CanSet returns false, calling Set or any type-specific
+// setter (e.g., SetBool, SetInt64) will panic.
+func (v Value) CanSet() bool {
+ return v.flag&(flagAddr|flagRO) == flagAddr
+}
+
+// Call calls the function v with the input arguments in.
+// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
+// Call panics if v's Kind is not Func.
+// It returns the output results as Values.
+// As in Go, each input argument must be assignable to the
+// type of the function's corresponding input parameter.
+// If v is a variadic function, Call creates the variadic slice parameter
+// itself, copying in the corresponding values.
+func (v Value) Call(in []Value) []Value {
+ v.mustBe(Func)
+ v.mustBeExported()
+ return v.call("Call", in)
+}
+
+// CallSlice calls the variadic function v with the input arguments in,
+// assigning the slice in[len(in)-1] to v's final variadic argument.
+// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]...).
+// Call panics if v's Kind is not Func or if v is not variadic.
+// It returns the output results as Values.
+// As in Go, each input argument must be assignable to the
+// type of the function's corresponding input parameter.
+func (v Value) CallSlice(in []Value) []Value {
+ v.mustBe(Func)
+ v.mustBeExported()
+ return v.call("CallSlice", in)
+}
+
+func (v Value) call(method string, in []Value) []Value {
+ // Get function pointer, type.
+ t := v.typ
+ var (
+ fn unsafe.Pointer
+ rcvr iword
+ )
+ if v.flag&flagMethod != 0 {
+ i := int(v.flag) >> flagMethodShift
+ if v.typ.Kind() == Interface {
+ tt := (*interfaceType)(unsafe.Pointer(v.typ))
+ if i < 0 || i >= len(tt.methods) {
+ panic("reflect: broken Value")
+ }
+ m := &tt.methods[i]
+ if m.pkgPath != nil {
+ panic(method + " of unexported method")
+ }
+ t = toCommonType(m.typ)
+ iface := (*nonEmptyInterface)(v.val)
+ if iface.itab == nil {
+ panic(method + " of method on nil interface value")
+ }
+ fn = iface.itab.fun[i]
+ rcvr = iface.word
+ } else {
+ ut := v.typ.uncommon()
+ if ut == nil || i < 0 || i >= len(ut.methods) {
+ panic("reflect: broken Value")
+ }
+ m := &ut.methods[i]
+ if m.pkgPath != nil {
+ panic(method + " of unexported method")
+ }
+ fn = m.tfn
+ t = toCommonType(m.mtyp)
+ rcvr = v.iword()
+ }
+ } else if v.flag&flagIndir != 0 {
+ fn = *(*unsafe.Pointer)(v.val)
+ } else {
+ fn = v.val
+ }
+
+ if fn == nil {
+ panic("reflect.Value.Call: call of nil function")
+ }
+
+ isSlice := method == "CallSlice"
+ n := t.NumIn()
+ if isSlice {
+ if !t.IsVariadic() {
+ panic("reflect: CallSlice of non-variadic function")
+ }
+ if len(in) < n {
+ panic("reflect: CallSlice with too few input arguments")
+ }
+ if len(in) > n {
+ panic("reflect: CallSlice with too many input arguments")
+ }
+ } else {
+ if t.IsVariadic() {
+ n--
+ }
+ if len(in) < n {
+ panic("reflect: Call with too few input arguments")
+ }
+ if !t.IsVariadic() && len(in) > n {
+ panic("reflect: Call with too many input arguments")
+ }
+ }
+ for _, x := range in {
+ if x.Kind() == Invalid {
+ panic("reflect: " + method + " using zero Value argument")
+ }
+ }
+ for i := 0; i < n; i++ {
+ if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
+ panic("reflect: " + method + " using " + xt.String() + " as type " + targ.String())
+ }
+ }
+ if !isSlice && t.IsVariadic() {
+ // prepare slice for remaining values
+ m := len(in) - n
+ slice := MakeSlice(t.In(n), m, m)
+ elem := t.In(n).Elem()
+ for i := 0; i < m; i++ {
+ x := in[n+i]
+ if xt := x.Type(); !xt.AssignableTo(elem) {
+ panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + method)
+ }
+ slice.Index(i).Set(x)
+ }
+ origIn := in
+ in = make([]Value, n+1)
+ copy(in[:n], origIn)
+ in[n] = slice
+ }
+
+ nin := len(in)
+ if nin != t.NumIn() {
+ panic("reflect.Value.Call: wrong argument count")
+ }
+ nout := t.NumOut()
+
+ if v.flag&flagMethod != 0 {
+ nin++
+ }
+ params := make([]unsafe.Pointer, nin)
+ off := 0
+ if v.flag&flagMethod != 0 {
+ // Hard-wired first argument.
+ p := new(iword)
+ *p = rcvr
+ params[0] = unsafe.Pointer(p)
+ off = 1
+ }
+ first_pointer := false
+ for i, pv := range in {
+ pv.mustBeExported()
+ targ := t.In(i).(*commonType)
+ pv = pv.assignTo("reflect.Value.Call", targ, nil)
+ if pv.flag&flagIndir == 0 {
+ p := new(unsafe.Pointer)
+ *p = pv.val
+ params[off] = unsafe.Pointer(p)
+ } else {
+ params[off] = pv.val
+ }
+ if i == 0 && Kind(targ.kind) != Ptr && v.flag&flagMethod == 0 && isMethod(v.typ) {
+ p := new(unsafe.Pointer)
+ *p = params[off]
+ params[off] = unsafe.Pointer(p)
+ first_pointer = true
+ }
+ off++
+ }
+
+ ret := make([]Value, nout)
+ results := make([]unsafe.Pointer, nout)
+ for i := 0; i < nout; i++ {
+ v := New(t.Out(i))
+ results[i] = unsafe.Pointer(v.Pointer())
+ ret[i] = Indirect(v)
+ }
+
+ var pp *unsafe.Pointer
+ if len(params) > 0 {
+ pp = &params[0]
+ }
+ var pr *unsafe.Pointer
+ if len(results) > 0 {
+ pr = &results[0]
+ }
+
+ call(t, fn, v.flag&flagMethod != 0, first_pointer, pp, pr)
+
+ return ret
+}
+
+// gccgo specific test to see if typ is a method. We can tell by
+// looking at the string to see if there is a receiver. We need this
+// because for gccgo all methods take pointer receivers.
+func isMethod(t *commonType) bool {
+ if Kind(t.kind) != Func {
+ return false
+ }
+ s := *t.string
+ parens := 0
+ params := 0
+ sawRet := false
+ for i, c := range s {
+ if c == '(' {
+ parens++
+ params++
+ } else if c == ')' {
+ parens--
+ } else if parens == 0 && c == ' ' && s[i+1] != '(' && !sawRet {
+ params++
+ sawRet = true
+ }
+ }
+ return params > 2
+}
+
+// Cap returns v's capacity.
+// It panics if v's Kind is not Array, Chan, or Slice.
+func (v Value) Cap() int {
+ k := v.kind()
+ switch k {
+ case Array:
+ return v.typ.Len()
+ case Chan:
+ return int(chancap(*(*iword)(v.iword())))
+ case Slice:
+ // Slice is always bigger than a word; assume flagIndir.
+ return (*SliceHeader)(v.val).Cap
+ }
+ panic(&ValueError{"reflect.Value.Cap", k})
+}
+
+// Close closes the channel v.
+// It panics if v's Kind is not Chan.
+func (v Value) Close() {
+ v.mustBe(Chan)
+ v.mustBeExported()
+ chanclose(*(*iword)(v.iword()))
+}
+
+// Complex returns v's underlying value, as a complex128.
+// It panics if v's Kind is not Complex64 or Complex128
+func (v Value) Complex() complex128 {
+ k := v.kind()
+ switch k {
+ case Complex64:
+ if v.flag&flagIndir != 0 {
+ return complex128(*(*complex64)(v.val))
+ }
+ return complex128(*(*complex64)(unsafe.Pointer(&v.val)))
+ case Complex128:
+ // complex128 is always bigger than a word; assume flagIndir.
+ return *(*complex128)(v.val)
+ }
+ panic(&ValueError{"reflect.Value.Complex", k})
+}
+
+// Elem returns the value that the interface v contains
+// or that the pointer v points to.
+// It panics if v's Kind is not Interface or Ptr.
+// It returns the zero Value if v is nil.
+func (v Value) Elem() Value {
+ k := v.kind()
+ switch k {
+ case Interface:
+ var (
+ typ *commonType
+ val unsafe.Pointer
+ )
+ if v.typ.NumMethod() == 0 {
+ eface := (*emptyInterface)(v.val)
+ if eface.typ == nil {
+ // nil interface value
+ return Value{}
+ }
+ typ = toCommonType(eface.typ)
+ val = unsafe.Pointer(eface.word)
+ } else {
+ iface := (*nonEmptyInterface)(v.val)
+ if iface.itab == nil {
+ // nil interface value
+ return Value{}
+ }
+ typ = toCommonType(iface.itab.typ)
+ val = unsafe.Pointer(iface.word)
+ }
+ fl := v.flag & flagRO
+ fl |= flag(typ.Kind()) << flagKindShift
+ if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
+ fl |= flagIndir
+ }
+ return Value{typ, val, fl}
+
+ case Ptr:
+ val := v.val
+ if v.flag&flagIndir != 0 {
+ val = *(*unsafe.Pointer)(val)
+ }
+ // The returned value's address is v's value.
+ if val == nil {
+ return Value{}
+ }
+ tt := (*ptrType)(unsafe.Pointer(v.typ))
+ typ := toCommonType(tt.elem)
+ fl := v.flag&flagRO | flagIndir | flagAddr
+ fl |= flag(typ.Kind() << flagKindShift)
+ return Value{typ, val, fl}
+ }
+ panic(&ValueError{"reflect.Value.Elem", k})
+}
+
+// Field returns the i'th field of the struct v.
+// It panics if v's Kind is not Struct or i is out of range.
+func (v Value) Field(i int) Value {
+ v.mustBe(Struct)
+ tt := (*structType)(unsafe.Pointer(v.typ))
+ if i < 0 || i >= len(tt.fields) {
+ panic("reflect: Field index out of range")
+ }
+ field := &tt.fields[i]
+ typ := toCommonType(field.typ)
+
+ // Inherit permission bits from v.
+ fl := v.flag & (flagRO | flagIndir | flagAddr)
+ // Using an unexported field forces flagRO.
+ if field.pkgPath != nil {
+ fl |= flagRO
+ }
+ fl |= flag(typ.Kind()) << flagKindShift
+
+ var val unsafe.Pointer
+ switch {
+ case fl&flagIndir != 0:
+ // Indirect. Just bump pointer.
+ val = unsafe.Pointer(uintptr(v.val) + field.offset)
+ case bigEndian:
+ // Direct. Discard leading bytes.
+ val = unsafe.Pointer(uintptr(v.val) << (field.offset * 8))
+ default:
+ // Direct. Discard leading bytes.
+ val = unsafe.Pointer(uintptr(v.val) >> (field.offset * 8))
+ }
+
+ return Value{typ, val, fl}
+}
+
+// FieldByIndex returns the nested field corresponding to index.
+// It panics if v's Kind is not struct.
+func (v Value) FieldByIndex(index []int) Value {
+ v.mustBe(Struct)
+ for i, x := range index {
+ if i > 0 {
+ if v.Kind() == Ptr && v.Elem().Kind() == Struct {
+ v = v.Elem()
+ }
+ }
+ v = v.Field(x)
+ }
+ return v
+}
+
+// FieldByName returns the struct field with the given name.
+// It returns the zero Value if no field was found.
+// It panics if v's Kind is not struct.
+func (v Value) FieldByName(name string) Value {
+ v.mustBe(Struct)
+ if f, ok := v.typ.FieldByName(name); ok {
+ return v.FieldByIndex(f.Index)
+ }
+ return Value{}
+}
+
+// FieldByNameFunc returns the struct field with a name
+// that satisfies the match function.
+// It panics if v's Kind is not struct.
+// It returns the zero Value if no field was found.
+func (v Value) FieldByNameFunc(match func(string) bool) Value {
+ v.mustBe(Struct)
+ if f, ok := v.typ.FieldByNameFunc(match); ok {
+ return v.FieldByIndex(f.Index)
+ }
+ return Value{}
+}
+
+// Float returns v's underlying value, as a float64.
+// It panics if v's Kind is not Float32 or Float64
+func (v Value) Float() float64 {
+ k := v.kind()
+ switch k {
+ case Float32:
+ if v.flag&flagIndir != 0 {
+ return float64(*(*float32)(v.val))
+ }
+ return float64(*(*float32)(unsafe.Pointer(&v.val)))
+ case Float64:
+ if v.flag&flagIndir != 0 {
+ return *(*float64)(v.val)
+ }
+ return *(*float64)(unsafe.Pointer(&v.val))
+ }
+ panic(&ValueError{"reflect.Value.Float", k})
+}
+
+// Index returns v's i'th element.
+// It panics if v's Kind is not Array or Slice or i is out of range.
+func (v Value) Index(i int) Value {
+ k := v.kind()
+ switch k {
+ case Array:
+ tt := (*arrayType)(unsafe.Pointer(v.typ))
+ if i < 0 || i > int(tt.len) {
+ panic("reflect: array index out of range")
+ }
+ typ := toCommonType(tt.elem)
+ fl := v.flag & (flagRO | flagIndir | flagAddr) // bits same as overall array
+ fl |= flag(typ.Kind()) << flagKindShift
+ offset := uintptr(i) * typ.size
+
+ var val unsafe.Pointer
+ switch {
+ case fl&flagIndir != 0:
+ // Indirect. Just bump pointer.
+ val = unsafe.Pointer(uintptr(v.val) + offset)
+ case bigEndian:
+ // Direct. Discard leading bytes.
+ val = unsafe.Pointer(uintptr(v.val) << (offset * 8))
+ default:
+ // Direct. Discard leading bytes.
+ val = unsafe.Pointer(uintptr(v.val) >> (offset * 8))
+ }
+ return Value{typ, val, fl}
+
+ case Slice:
+ // Element flag same as Elem of Ptr.
+ // Addressable, indirect, possibly read-only.
+ fl := flagAddr | flagIndir | v.flag&flagRO
+ s := (*SliceHeader)(v.val)
+ if i < 0 || i >= s.Len {
+ panic("reflect: slice index out of range")
+ }
+ tt := (*sliceType)(unsafe.Pointer(v.typ))
+ typ := toCommonType(tt.elem)
+ fl |= flag(typ.Kind()) << flagKindShift
+ val := unsafe.Pointer(s.Data + uintptr(i)*typ.size)
+ return Value{typ, val, fl}
+ }
+ panic(&ValueError{"reflect.Value.Index", k})
+}
+
+// Int returns v's underlying value, as an int64.
+// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
+func (v Value) Int() int64 {
+ k := v.kind()
+ var p unsafe.Pointer
+ if v.flag&flagIndir != 0 {
+ p = v.val
+ } else {
+ // The escape analysis is good enough that &v.val
+ // does not trigger a heap allocation.
+ p = unsafe.Pointer(&v.val)
+ }
+ switch k {
+ case Int:
+ return int64(*(*int)(p))
+ case Int8:
+ return int64(*(*int8)(p))
+ case Int16:
+ return int64(*(*int16)(p))
+ case Int32:
+ return int64(*(*int32)(p))
+ case Int64:
+ return int64(*(*int64)(p))
+ }
+ panic(&ValueError{"reflect.Value.Int", k})
+}
+
+// CanInterface returns true if Interface can be used without panicking.
+func (v Value) CanInterface() bool {
+ if v.flag == 0 {
+ panic(&ValueError{"reflect.Value.CanInterface", Invalid})
+ }
+ return v.flag&(flagMethod|flagRO) == 0
+}
+
+// Interface returns v's current value as an interface{}.
+// It is equivalent to:
+// var i interface{} = (v's underlying value)
+// If v is a method obtained by invoking Value.Method
+// (as opposed to Type.Method), Interface cannot return an
+// interface value, so it panics.
+// It also panics if the Value was obtained by accessing
+// unexported struct fields.
+func (v Value) Interface() (i interface{}) {
+ return valueInterface(v, true)
+}
+
+func valueInterface(v Value, safe bool) interface{} {
+ if v.flag == 0 {
+ panic(&ValueError{"reflect.Value.Interface", 0})
+ }
+ if v.flag&flagMethod != 0 {
+ panic("reflect.Value.Interface: cannot create interface value for method with bound receiver")
+ }
+
+ if safe && v.flag&flagRO != 0 {
+ // Do not allow access to unexported values via Interface,
+ // because they might be pointers that should not be
+ // writable or methods or function that should not be callable.
+ panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
+ }
+
+ k := v.kind()
+ if k == Interface {
+ // Special case: return the element inside the interface.
+ // Empty interface has one layout, all interfaces with
+ // methods have a second layout.
+ if v.NumMethod() == 0 {
+ return *(*interface{})(v.val)
+ }
+ return *(*interface {
+ M()
+ })(v.val)
+ }
+
+ // Non-interface value.
+ var eface emptyInterface
+ eface.typ = v.typ.runtimeType()
+ eface.word = v.iword()
+
+ if v.flag&flagIndir != 0 && v.typ.size > ptrSize {
+ // eface.word is a pointer to the actual data,
+ // which might be changed. We need to return
+ // a pointer to unchanging data, so make a copy.
+ ptr := unsafe_New(v.typ)
+ memmove(ptr, unsafe.Pointer(eface.word), v.typ.size)
+ eface.word = iword(ptr)
+ }
+
+ return *(*interface{})(unsafe.Pointer(&eface))
+}
+
+// InterfaceData returns the interface v's value as a uintptr pair.
+// It panics if v's Kind is not Interface.
+func (v Value) InterfaceData() [2]uintptr {
+ v.mustBe(Interface)
+ // We treat this as a read operation, so we allow
+ // it even for unexported data, because the caller
+ // has to import "unsafe" to turn it into something
+ // that can be abused.
+ // Interface value is always bigger than a word; assume flagIndir.
+ return *(*[2]uintptr)(v.val)
+}
+
+// IsNil returns true if v is a nil value.
+// It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice.
+func (v Value) IsNil() bool {
+ k := v.kind()
+ switch k {
+ case Chan, Func, Map, Ptr:
+ if v.flag&flagMethod != 0 {
+ panic("reflect: IsNil of method Value")
+ }
+ ptr := v.val
+ if v.flag&flagIndir != 0 {
+ ptr = *(*unsafe.Pointer)(ptr)
+ }
+ return ptr == nil
+ case Interface, Slice:
+ // Both interface and slice are nil if first word is 0.
+ // Both are always bigger than a word; assume flagIndir.
+ return *(*unsafe.Pointer)(v.val) == nil
+ }
+ panic(&ValueError{"reflect.Value.IsNil", k})
+}
+
+// IsValid returns true if v represents a value.
+// It returns false if v is the zero Value.
+// If IsValid returns false, all other methods except String panic.
+// Most functions and methods never return an invalid value.
+// If one does, its documentation states the conditions explicitly.
+func (v Value) IsValid() bool {
+ return v.flag != 0
+}
+
+// Kind returns v's Kind.
+// If v is the zero Value (IsValid returns false), Kind returns Invalid.
+func (v Value) Kind() Kind {
+ return v.kind()
+}
+
+// Len returns v's length.
+// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
+func (v Value) Len() int {
+ k := v.kind()
+ switch k {
+ case Array:
+ tt := (*arrayType)(unsafe.Pointer(v.typ))
+ return int(tt.len)
+ case Chan:
+ return int(chanlen(*(*iword)(v.iword())))
+ case Map:
+ return int(maplen(*(*iword)(v.iword())))
+ case Slice:
+ // Slice is bigger than a word; assume flagIndir.
+ return (*SliceHeader)(v.val).Len
+ case String:
+ // String is bigger than a word; assume flagIndir.
+ return (*StringHeader)(v.val).Len
+ }
+ panic(&ValueError{"reflect.Value.Len", k})
+}
+
+// MapIndex returns the value associated with key in the map v.
+// It panics if v's Kind is not Map.
+// It returns the zero Value if key is not found in the map or if v represents a nil map.
+// As in Go, the key's value must be assignable to the map's key type.
+func (v Value) MapIndex(key Value) Value {
+ v.mustBe(Map)
+ tt := (*mapType)(unsafe.Pointer(v.typ))
+
+ // Do not require key to be exported, so that DeepEqual
+ // and other programs can use all the keys returned by
+ // MapKeys as arguments to MapIndex. If either the map
+ // or the key is unexported, though, the result will be
+ // considered unexported. This is consistent with the
+ // behavior for structs, which allow read but not write
+ // of unexported fields.
+ key = key.assignTo("reflect.Value.MapIndex", toCommonType(tt.key), nil)
+
+ word, ok := mapaccess(v.typ.runtimeType(), *(*iword)(v.iword()), key.iword())
+ if !ok {
+ return Value{}
+ }
+ typ := toCommonType(tt.elem)
+ fl := (v.flag | key.flag) & flagRO
+ if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
+ fl |= flagIndir
+ }
+ fl |= flag(typ.Kind()) << flagKindShift
+ return Value{typ, unsafe.Pointer(word), fl}
+}
+
+// MapKeys returns a slice containing all the keys present in the map,
+// in unspecified order.
+// It panics if v's Kind is not Map.
+// It returns an empty slice if v represents a nil map.
+func (v Value) MapKeys() []Value {
+ v.mustBe(Map)
+ tt := (*mapType)(unsafe.Pointer(v.typ))
+ keyType := toCommonType(tt.key)
+
+ fl := v.flag & flagRO
+ fl |= flag(keyType.Kind()) << flagKindShift
+ if keyType.Kind() != Ptr && keyType.Kind() != UnsafePointer {
+ fl |= flagIndir
+ }
+
+ m := *(*iword)(v.iword())
+ mlen := int32(0)
+ if m != nil {
+ mlen = maplen(m)
+ }
+ it := mapiterinit(v.typ.runtimeType(), m)
+ a := make([]Value, mlen)
+ var i int
+ for i = 0; i < len(a); i++ {
+ keyWord, ok := mapiterkey(it)
+ if !ok {
+ break
+ }
+ a[i] = Value{keyType, unsafe.Pointer(keyWord), fl}
+ mapiternext(it)
+ }
+ return a[:i]
+}
+
+// Method returns a function value corresponding to v's i'th method.
+// The arguments to a Call on the returned function should not include
+// a receiver; the returned function will always use v as the receiver.
+// Method panics if i is out of range.
+func (v Value) Method(i int) Value {
+ if v.typ == nil {
+ panic(&ValueError{"reflect.Value.Method", Invalid})
+ }
+ if v.flag&flagMethod != 0 || i < 0 || i >= v.typ.NumMethod() {
+ panic("reflect: Method index out of range")
+ }
+ fl := v.flag & (flagRO | flagAddr | flagIndir)
+ fl |= flag(Func) << flagKindShift
+ fl |= flag(i)<<flagMethodShift | flagMethod
+ return Value{v.typ, v.val, fl}
+}
+
+// NumMethod returns the number of methods in the value's method set.
+func (v Value) NumMethod() int {
+ if v.typ == nil {
+ panic(&ValueError{"reflect.Value.NumMethod", Invalid})
+ }
+ if v.flag&flagMethod != 0 {
+ return 0
+ }
+ return v.typ.NumMethod()
+}
+
+// MethodByName returns a function value corresponding to the method
+// of v with the given name.
+// The arguments to a Call on the returned function should not include
+// a receiver; the returned function will always use v as the receiver.
+// It returns the zero Value if no method was found.
+func (v Value) MethodByName(name string) Value {
+ if v.typ == nil {
+ panic(&ValueError{"reflect.Value.MethodByName", Invalid})
+ }
+ if v.flag&flagMethod != 0 {
+ return Value{}
+ }
+ m, ok := v.typ.MethodByName(name)
+ if !ok {
+ return Value{}
+ }
+ return v.Method(m.Index)
+}
+
+// NumField returns the number of fields in the struct v.
+// It panics if v's Kind is not Struct.
+func (v Value) NumField() int {
+ v.mustBe(Struct)
+ tt := (*structType)(unsafe.Pointer(v.typ))
+ return len(tt.fields)
+}
+
+// OverflowComplex returns true if the complex128 x cannot be represented by v's type.
+// It panics if v's Kind is not Complex64 or Complex128.
+func (v Value) OverflowComplex(x complex128) bool {
+ k := v.kind()
+ switch k {
+ case Complex64:
+ return overflowFloat32(real(x)) || overflowFloat32(imag(x))
+ case Complex128:
+ return false
+ }
+ panic(&ValueError{"reflect.Value.OverflowComplex", k})
+}
+
+// OverflowFloat returns true if the float64 x cannot be represented by v's type.
+// It panics if v's Kind is not Float32 or Float64.
+func (v Value) OverflowFloat(x float64) bool {
+ k := v.kind()
+ switch k {
+ case Float32:
+ return overflowFloat32(x)
+ case Float64:
+ return false
+ }
+ panic(&ValueError{"reflect.Value.OverflowFloat", k})
+}
+
+func overflowFloat32(x float64) bool {
+ if x < 0 {
+ x = -x
+ }
+ return math.MaxFloat32 <= x && x <= math.MaxFloat64
+}
+
+// OverflowInt returns true if the int64 x cannot be represented by v's type.
+// It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
+func (v Value) OverflowInt(x int64) bool {
+ k := v.kind()
+ switch k {
+ case Int, Int8, Int16, Int32, Int64:
+ bitSize := v.typ.size * 8
+ trunc := (x << (64 - bitSize)) >> (64 - bitSize)
+ return x != trunc
+ }
+ panic(&ValueError{"reflect.Value.OverflowInt", k})
+}
+
+// OverflowUint returns true if the uint64 x cannot be represented by v's type.
+// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
+func (v Value) OverflowUint(x uint64) bool {
+ k := v.kind()
+ switch k {
+ case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
+ bitSize := v.typ.size * 8
+ trunc := (x << (64 - bitSize)) >> (64 - bitSize)
+ return x != trunc
+ }
+ panic(&ValueError{"reflect.Value.OverflowUint", k})
+}
+
+// Pointer returns v's value as a uintptr.
+// It returns uintptr instead of unsafe.Pointer so that
+// code using reflect cannot obtain unsafe.Pointers
+// without importing the unsafe package explicitly.
+// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
+func (v Value) Pointer() uintptr {
+ k := v.kind()
+ switch k {
+ case Chan, Func, Map, Ptr, UnsafePointer:
+ if k == Func && v.flag&flagMethod != 0 {
+ panic("reflect.Value.Pointer of method Value")
+ }
+ p := v.val
+ if v.flag&flagIndir != 0 {
+ p = *(*unsafe.Pointer)(p)
+ }
+ return uintptr(p)
+ case Slice:
+ return (*SliceHeader)(v.val).Data
+ }
+ panic(&ValueError{"reflect.Value.Pointer", k})
+}
+
+// Recv receives and returns a value from the channel v.
+// It panics if v's Kind is not Chan.
+// The receive blocks until a value is ready.
+// The boolean value ok is true if the value x corresponds to a send
+// on the channel, false if it is a zero value received because the channel is closed.
+func (v Value) Recv() (x Value, ok bool) {
+ v.mustBe(Chan)
+ v.mustBeExported()
+ return v.recv(false)
+}
+
+// internal recv, possibly non-blocking (nb).
+// v is known to be a channel.
+func (v Value) recv(nb bool) (val Value, ok bool) {
+ tt := (*chanType)(unsafe.Pointer(v.typ))
+ if ChanDir(tt.dir)&RecvDir == 0 {
+ panic("recv on send-only channel")
+ }
+ word, selected, ok := chanrecv(v.typ.runtimeType(), *(*iword)(v.iword()), nb)
+ if selected {
+ typ := toCommonType(tt.elem)
+ fl := flag(typ.Kind()) << flagKindShift
+ if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
+ fl |= flagIndir
+ }
+ val = Value{typ, unsafe.Pointer(word), fl}
+ }
+ return
+}
+
+// Send sends x on the channel v.
+// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
+// As in Go, x's value must be assignable to the channel's element type.
+func (v Value) Send(x Value) {
+ v.mustBe(Chan)
+ v.mustBeExported()
+ v.send(x, false)
+}
+
+// internal send, possibly non-blocking.
+// v is known to be a channel.
+func (v Value) send(x Value, nb bool) (selected bool) {
+ tt := (*chanType)(unsafe.Pointer(v.typ))
+ if ChanDir(tt.dir)&SendDir == 0 {
+ panic("send on recv-only channel")
+ }
+ x.mustBeExported()
+ x = x.assignTo("reflect.Value.Send", toCommonType(tt.elem), nil)
+ return chansend(v.typ.runtimeType(), *(*iword)(v.iword()), x.iword(), nb)
+}
+
+// Set assigns x to the value v.
+// It panics if CanSet returns false.
+// As in Go, x's value must be assignable to v's type.
+func (v Value) Set(x Value) {
+ v.mustBeAssignable()
+ x.mustBeExported() // do not let unexported x leak
+ var target *interface{}
+ if v.kind() == Interface {
+ target = (*interface{})(v.val)
+ }
+ x = x.assignTo("reflect.Set", v.typ, target)
+ if x.flag&flagIndir != 0 {
+ memmove(v.val, x.val, v.typ.size)
+ } else {
+ storeIword(v.val, iword(x.val), v.typ.size)
+ }
+}
+
+// SetBool sets v's underlying value.
+// It panics if v's Kind is not Bool or if CanSet() is false.
+func (v Value) SetBool(x bool) {
+ v.mustBeAssignable()
+ v.mustBe(Bool)
+ *(*bool)(v.val) = x
+}
+
+// SetBytes sets v's underlying value.
+// It panics if v's underlying value is not a slice of bytes.
+func (v Value) SetBytes(x []byte) {
+ v.mustBeAssignable()
+ v.mustBe(Slice)
+ if v.typ.Elem().Kind() != Uint8 {
+ panic("reflect.Value.SetBytes of non-byte slice")
+ }
+ *(*[]byte)(v.val) = x
+}
+
+// SetComplex sets v's underlying value to x.
+// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
+func (v Value) SetComplex(x complex128) {
+ v.mustBeAssignable()
+ switch k := v.kind(); k {
+ default:
+ panic(&ValueError{"reflect.Value.SetComplex", k})
+ case Complex64:
+ *(*complex64)(v.val) = complex64(x)
+ case Complex128:
+ *(*complex128)(v.val) = x
+ }
+}
+
+// SetFloat sets v's underlying value to x.
+// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
+func (v Value) SetFloat(x float64) {
+ v.mustBeAssignable()
+ switch k := v.kind(); k {
+ default:
+ panic(&ValueError{"reflect.Value.SetFloat", k})
+ case Float32:
+ *(*float32)(v.val) = float32(x)
+ case Float64:
+ *(*float64)(v.val) = x
+ }
+}
+
+// SetInt sets v's underlying value to x.
+// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
+func (v Value) SetInt(x int64) {
+ v.mustBeAssignable()
+ switch k := v.kind(); k {
+ default:
+ panic(&ValueError{"reflect.Value.SetInt", k})
+ case Int:
+ *(*int)(v.val) = int(x)
+ case Int8:
+ *(*int8)(v.val) = int8(x)
+ case Int16:
+ *(*int16)(v.val) = int16(x)
+ case Int32:
+ *(*int32)(v.val) = int32(x)
+ case Int64:
+ *(*int64)(v.val) = x
+ }
+}
+
+// SetLen sets v's length to n.
+// It panics if v's Kind is not Slice or if n is negative or
+// greater than the capacity of the slice.
+func (v Value) SetLen(n int) {
+ v.mustBeAssignable()
+ v.mustBe(Slice)
+ s := (*SliceHeader)(v.val)
+ if n < 0 || n > int(s.Cap) {
+ panic("reflect: slice length out of range in SetLen")
+ }
+ s.Len = n
+}
+
+// SetMapIndex sets the value associated with key in the map v to val.
+// It panics if v's Kind is not Map.
+// If val is the zero Value, SetMapIndex deletes the key from the map.
+// As in Go, key's value must be assignable to the map's key type,
+// and val's value must be assignable to the map's value type.
+func (v Value) SetMapIndex(key, val Value) {
+ v.mustBe(Map)
+ v.mustBeExported()
+ key.mustBeExported()
+ tt := (*mapType)(unsafe.Pointer(v.typ))
+ key = key.assignTo("reflect.Value.SetMapIndex", toCommonType(tt.key), nil)
+ if val.typ != nil {
+ val.mustBeExported()
+ val = val.assignTo("reflect.Value.SetMapIndex", toCommonType(tt.elem), nil)
+ }
+ mapassign(v.typ.runtimeType(), *(*iword)(v.iword()), key.iword(), val.iword(), val.typ != nil)
+}
+
+// SetUint sets v's underlying value to x.
+// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
+func (v Value) SetUint(x uint64) {
+ v.mustBeAssignable()
+ switch k := v.kind(); k {
+ default:
+ panic(&ValueError{"reflect.Value.SetUint", k})
+ case Uint:
+ *(*uint)(v.val) = uint(x)
+ case Uint8:
+ *(*uint8)(v.val) = uint8(x)
+ case Uint16:
+ *(*uint16)(v.val) = uint16(x)
+ case Uint32:
+ *(*uint32)(v.val) = uint32(x)
+ case Uint64:
+ *(*uint64)(v.val) = x
+ case Uintptr:
+ *(*uintptr)(v.val) = uintptr(x)
+ }
+}
+
+// SetPointer sets the unsafe.Pointer value v to x.
+// It panics if v's Kind is not UnsafePointer.
+func (v Value) SetPointer(x unsafe.Pointer) {
+ v.mustBeAssignable()
+ v.mustBe(UnsafePointer)
+ *(*unsafe.Pointer)(v.val) = x
+}
+
+// SetString sets v's underlying value to x.
+// It panics if v's Kind is not String or if CanSet() is false.
+func (v Value) SetString(x string) {
+ v.mustBeAssignable()
+ v.mustBe(String)
+ *(*string)(v.val) = x
+}
+
+// Slice returns a slice of v.
+// It panics if v's Kind is not Array or Slice.
+func (v Value) Slice(beg, end int) Value {
+ var (
+ cap int
+ typ *sliceType
+ base unsafe.Pointer
+ )
+ switch k := v.kind(); k {
+ default:
+ panic(&ValueError{"reflect.Value.Slice", k})
+ case Array:
+ if v.flag&flagAddr == 0 {
+ panic("reflect.Value.Slice: slice of unaddressable array")
+ }
+ tt := (*arrayType)(unsafe.Pointer(v.typ))
+ cap = int(tt.len)
+ typ = (*sliceType)(unsafe.Pointer(toCommonType(tt.slice)))
+ base = v.val
+ case Slice:
+ typ = (*sliceType)(unsafe.Pointer(v.typ))
+ s := (*SliceHeader)(v.val)
+ base = unsafe.Pointer(s.Data)
+ cap = s.Cap
+
+ }
+ if beg < 0 || end < beg || end > cap {
+ panic("reflect.Value.Slice: slice index out of bounds")
+ }
+
+ // Declare slice so that gc can see the base pointer in it.
+ var x []byte
+
+ // Reinterpret as *SliceHeader to edit.
+ s := (*SliceHeader)(unsafe.Pointer(&x))
+ s.Data = uintptr(base) + uintptr(beg)*toCommonType(typ.elem).Size()
+ s.Len = end - beg
+ s.Cap = cap - beg
+
+ fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift
+ return Value{typ.common(), unsafe.Pointer(&x), fl}
+}
+
+// String returns the string v's underlying value, as a string.
+// String is a special case because of Go's String method convention.
+// Unlike the other getters, it does not panic if v's Kind is not String.
+// Instead, it returns a string of the form "<T value>" where T is v's type.
+func (v Value) String() string {
+ switch k := v.kind(); k {
+ case Invalid:
+ return "<invalid Value>"
+ case String:
+ return *(*string)(v.val)
+ }
+ // If you call String on a reflect.Value of other type, it's better to
+ // print something than to panic. Useful in debugging.
+ return "<" + v.typ.String() + " Value>"
+}
+
+// TryRecv attempts to receive a value from the channel v but will not block.
+// It panics if v's Kind is not Chan.
+// If the receive cannot finish without blocking, x is the zero Value.
+// The boolean ok is true if the value x corresponds to a send
+// on the channel, false if it is a zero value received because the channel is closed.
+func (v Value) TryRecv() (x Value, ok bool) {
+ v.mustBe(Chan)
+ v.mustBeExported()
+ return v.recv(true)
+}
+
+// TrySend attempts to send x on the channel v but will not block.
+// It panics if v's Kind is not Chan.
+// It returns true if the value was sent, false otherwise.
+// As in Go, x's value must be assignable to the channel's element type.
+func (v Value) TrySend(x Value) bool {
+ v.mustBe(Chan)
+ v.mustBeExported()
+ return v.send(x, true)
+}
+
+// Type returns v's type.
+func (v Value) Type() Type {
+ f := v.flag
+ if f == 0 {
+ panic(&ValueError{"reflect.Value.Type", Invalid})
+ }
+ if f&flagMethod == 0 {
+ // Easy case
+ return v.typ.toType()
+ }
+
+ // Method value.
+ // v.typ describes the receiver, not the method type.
+ i := int(v.flag) >> flagMethodShift
+ if v.typ.Kind() == Interface {
+ // Method on interface.
+ tt := (*interfaceType)(unsafe.Pointer(v.typ))
+ if i < 0 || i >= len(tt.methods) {
+ panic("reflect: broken Value")
+ }
+ m := &tt.methods[i]
+ return toCommonType(m.typ).toType()
+ }
+ // Method on concrete type.
+ ut := v.typ.uncommon()
+ if ut == nil || i < 0 || i >= len(ut.methods) {
+ panic("reflect: broken Value")
+ }
+ m := &ut.methods[i]
+ return toCommonType(m.mtyp).toType()
+}
+
+// Uint returns v's underlying value, as a uint64.
+// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
+func (v Value) Uint() uint64 {
+ k := v.kind()
+ var p unsafe.Pointer
+ if v.flag&flagIndir != 0 {
+ p = v.val
+ } else {
+ // The escape analysis is good enough that &v.val
+ // does not trigger a heap allocation.
+ p = unsafe.Pointer(&v.val)
+ }
+ switch k {
+ case Uint:
+ return uint64(*(*uint)(p))
+ case Uint8:
+ return uint64(*(*uint8)(p))
+ case Uint16:
+ return uint64(*(*uint16)(p))
+ case Uint32:
+ return uint64(*(*uint32)(p))
+ case Uint64:
+ return uint64(*(*uint64)(p))
+ case Uintptr:
+ return uint64(*(*uintptr)(p))
+ }
+ panic(&ValueError{"reflect.Value.Uint", k})
+}
+
+// UnsafeAddr returns a pointer to v's data.
+// It is for advanced clients that also import the "unsafe" package.
+// It panics if v is not addressable.
+func (v Value) UnsafeAddr() uintptr {
+ if v.typ == nil {
+ panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
+ }
+ if v.flag&flagAddr == 0 {
+ panic("reflect.Value.UnsafeAddr of unaddressable value")
+ }
+ return uintptr(v.val)
+}
+
+// StringHeader is the runtime representation of a string.
+// It cannot be used safely or portably.
+type StringHeader struct {
+ Data uintptr
+ Len int
+}
+
+// SliceHeader is the runtime representation of a slice.
+// It cannot be used safely or portably.
+type SliceHeader struct {
+ Data uintptr
+ Len int
+ Cap int
+}
+
+func typesMustMatch(what string, t1, t2 Type) {
+ if t1 != t2 {
+ panic(what + ": " + t1.String() + " != " + t2.String())
+ }
+}
+
+// grow grows the slice s so that it can hold extra more values, allocating
+// more capacity if needed. It also returns the old and new slice lengths.
+func grow(s Value, extra int) (Value, int, int) {
+ i0 := s.Len()
+ i1 := i0 + extra
+ if i1 < i0 {
+ panic("reflect.Append: slice overflow")
+ }
+ m := s.Cap()
+ if i1 <= m {
+ return s.Slice(0, i1), i0, i1
+ }
+ if m == 0 {
+ m = extra
+ } else {
+ for m < i1 {
+ if i0 < 1024 {
+ m += m
+ } else {
+ m += m / 4
+ }
+ }
+ }
+ t := MakeSlice(s.Type(), i1, m)
+ Copy(t, s)
+ return t, i0, i1
+}
+
+// Append appends the values x to a slice s and returns the resulting slice.
+// As in Go, each x's value must be assignable to the slice's element type.
+func Append(s Value, x ...Value) Value {
+ s.mustBe(Slice)
+ s, i0, i1 := grow(s, len(x))
+ for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
+ s.Index(i).Set(x[j])
+ }
+ return s
+}
+
+// AppendSlice appends a slice t to a slice s and returns the resulting slice.
+// The slices s and t must have the same element type.
+func AppendSlice(s, t Value) Value {
+ s.mustBe(Slice)
+ t.mustBe(Slice)
+ typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
+ s, i0, i1 := grow(s, t.Len())
+ Copy(s.Slice(i0, i1), t)
+ return s
+}
+
+// Copy copies the contents of src into dst until either
+// dst has been filled or src has been exhausted.
+// It returns the number of elements copied.
+// Dst and src each must have kind Slice or Array, and
+// dst and src must have the same element type.
+func Copy(dst, src Value) int {
+ dk := dst.kind()
+ if dk != Array && dk != Slice {
+ panic(&ValueError{"reflect.Copy", dk})
+ }
+ if dk == Array {
+ dst.mustBeAssignable()
+ }
+ dst.mustBeExported()
+
+ sk := src.kind()
+ if sk != Array && sk != Slice {
+ panic(&ValueError{"reflect.Copy", sk})
+ }
+ src.mustBeExported()
+
+ de := dst.typ.Elem()
+ se := src.typ.Elem()
+ typesMustMatch("reflect.Copy", de, se)
+
+ n := dst.Len()
+ if sn := src.Len(); n > sn {
+ n = sn
+ }
+
+ // If sk is an in-line array, cannot take its address.
+ // Instead, copy element by element.
+ if src.flag&flagIndir == 0 {
+ for i := 0; i < n; i++ {
+ dst.Index(i).Set(src.Index(i))
+ }
+ return n
+ }
+
+ // Copy via memmove.
+ var da, sa unsafe.Pointer
+ if dk == Array {
+ da = dst.val
+ } else {
+ da = unsafe.Pointer((*SliceHeader)(dst.val).Data)
+ }
+ if sk == Array {
+ sa = src.val
+ } else {
+ sa = unsafe.Pointer((*SliceHeader)(src.val).Data)
+ }
+ memmove(da, sa, uintptr(n)*de.Size())
+ return n
+}
+
+/*
+ * constructors
+ */
+
+// implemented in package runtime
+func unsafe_New(Type) unsafe.Pointer
+func unsafe_NewArray(Type, int) unsafe.Pointer
+
+// MakeSlice creates a new zero-initialized slice value
+// for the specified slice type, length, and capacity.
+func MakeSlice(typ Type, len, cap int) Value {
+ if typ.Kind() != Slice {
+ panic("reflect.MakeSlice of non-slice type")
+ }
+ if len < 0 {
+ panic("reflect.MakeSlice: negative len")
+ }
+ if cap < 0 {
+ panic("reflect.MakeSlice: negative cap")
+ }
+ if len > cap {
+ panic("reflect.MakeSlice: len > cap")
+ }
+
+ // Declare slice so that gc can see the base pointer in it.
+ var x []byte
+
+ // Reinterpret as *SliceHeader to edit.
+ s := (*SliceHeader)(unsafe.Pointer(&x))
+ s.Data = uintptr(unsafe_NewArray(typ.Elem(), cap))
+ s.Len = len
+ s.Cap = cap
+
+ return Value{typ.common(), unsafe.Pointer(&x), flagIndir | flag(Slice)<<flagKindShift}
+}
+
+// MakeChan creates a new channel with the specified type and buffer size.
+func MakeChan(typ Type, buffer int) Value {
+ if typ.Kind() != Chan {
+ panic("reflect.MakeChan of non-chan type")
+ }
+ if buffer < 0 {
+ panic("reflect.MakeChan: negative buffer size")
+ }
+ if typ.ChanDir() != BothDir {
+ panic("reflect.MakeChan: unidirectional channel type")
+ }
+ ch := makechan(typ.runtimeType(), uint32(buffer))
+ return Value{typ.common(), unsafe.Pointer(ch), flagIndir | (flag(Chan) << flagKindShift)}
+}
+
+// MakeMap creates a new map of the specified type.
+func MakeMap(typ Type) Value {
+ if typ.Kind() != Map {
+ panic("reflect.MakeMap of non-map type")
+ }
+ m := makemap(typ.runtimeType())
+ return Value{typ.common(), unsafe.Pointer(m), flagIndir | (flag(Map) << flagKindShift)}
+}
+
+// Indirect returns the value that v points to.
+// If v is a nil pointer, Indirect returns a zero Value.
+// If v is not a pointer, Indirect returns v.
+func Indirect(v Value) Value {
+ if v.Kind() != Ptr {
+ return v
+ }
+ return v.Elem()
+}
+
+// ValueOf returns a new Value initialized to the concrete value
+// stored in the interface i. ValueOf(nil) returns the zero Value.
+func ValueOf(i interface{}) Value {
+ if i == nil {
+ return Value{}
+ }
+
+ // TODO(rsc): Eliminate this terrible hack.
+ // In the call to packValue, eface.typ doesn't escape,
+ // and eface.word is an integer. So it looks like
+ // i (= eface) doesn't escape. But really it does,
+ // because eface.word is actually a pointer.
+ escapes(i)
+
+ // For an interface value with the noAddr bit set,
+ // the representation is identical to an empty interface.
+ eface := *(*emptyInterface)(unsafe.Pointer(&i))
+ typ := toCommonType(eface.typ)
+ fl := flag(typ.Kind()) << flagKindShift
+ if typ.Kind() != Ptr && typ.Kind() != UnsafePointer {
+ fl |= flagIndir
+ }
+ return Value{typ, unsafe.Pointer(eface.word), fl}
+}
+
+// Zero returns a Value representing a zero value for the specified type.
+// The result is different from the zero value of the Value struct,
+// which represents no value at all.
+// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
+func Zero(typ Type) Value {
+ if typ == nil {
+ panic("reflect: Zero(nil)")
+ }
+ t := typ.common()
+ fl := flag(t.Kind()) << flagKindShift
+ if t.Kind() == Ptr || t.Kind() == UnsafePointer {
+ return Value{t, nil, fl}
+ }
+ return Value{t, unsafe_New(typ), fl | flagIndir}
+}
+
+// New returns a Value representing a pointer to a new zero value
+// for the specified type. That is, the returned Value's Type is PtrTo(t).
+func New(typ Type) Value {
+ if typ == nil {
+ panic("reflect: New(nil)")
+ }
+ ptr := unsafe_New(typ)
+ fl := flag(Ptr) << flagKindShift
+ return Value{typ.common().ptrTo(), ptr, fl}
+}
+
+// NewAt returns a Value representing a pointer to a value of the
+// specified type, using p as that pointer.
+func NewAt(typ Type, p unsafe.Pointer) Value {
+ fl := flag(Ptr) << flagKindShift
+ return Value{typ.common().ptrTo(), p, fl}
+}
+
+// assignTo returns a value v that can be assigned directly to typ.
+// It panics if v is not assignable to typ.
+// For a conversion to an interface type, target is a suggested scratch space to use.
+func (v Value) assignTo(context string, dst *commonType, target *interface{}) Value {
+ if v.flag&flagMethod != 0 {
+ panic(context + ": cannot assign method value to type " + dst.String())
+ }
+
+ switch {
+ case directlyAssignable(dst, v.typ):
+ // Overwrite type so that they match.
+ // Same memory layout, so no harm done.
+ v.typ = dst
+ fl := v.flag & (flagRO | flagAddr | flagIndir)
+ fl |= flag(dst.Kind()) << flagKindShift
+ return Value{dst, v.val, fl}
+
+ case implements(dst, v.typ):
+ if target == nil {
+ target = new(interface{})
+ }
+ x := valueInterface(v, false)
+ if dst.NumMethod() == 0 {
+ *target = x
+ } else {
+ ifaceE2I(dst.runtimeType(), x, unsafe.Pointer(target))
+ }
+ return Value{dst, unsafe.Pointer(target), flagIndir | flag(Interface)<<flagKindShift}
+ }
+
+ // Failed.
+ panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
+}
+
+// implemented in ../pkg/runtime
+func chancap(ch iword) int32
+func chanclose(ch iword)
+func chanlen(ch iword) int32
+func chanrecv(t *runtimeType, ch iword, nb bool) (val iword, selected, received bool)
+func chansend(t *runtimeType, ch iword, val iword, nb bool) bool
+
+func makechan(typ *runtimeType, size uint32) (ch iword)
+func makemap(t *runtimeType) (m iword)
+func mapaccess(t *runtimeType, m iword, key iword) (val iword, ok bool)
+func mapassign(t *runtimeType, m iword, key, val iword, ok bool)
+func mapiterinit(t *runtimeType, m iword) *byte
+func mapiterkey(it *byte) (key iword, ok bool)
+func mapiternext(it *byte)
+func maplen(m iword) int32
+
+func call(typ *commonType, fnaddr unsafe.Pointer, isInterface bool, isMethod bool, params *unsafe.Pointer, results *unsafe.Pointer)
+func ifaceE2I(t *runtimeType, src interface{}, dst unsafe.Pointer)
+
+// Dummy annotation marking that the value x escapes,
+// for use in cases where the reflect code is so clever that
+// the compiler cannot follow.
+func escapes(x interface{}) {
+ if dummy.b {
+ dummy.x = x
+ }
+}
+
+var dummy struct {
+ b bool
+ x interface{}
+}