aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.7/gcc/ada/s-rannum.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.7/gcc/ada/s-rannum.adb')
-rw-r--r--gcc-4.7/gcc/ada/s-rannum.adb694
1 files changed, 694 insertions, 0 deletions
diff --git a/gcc-4.7/gcc/ada/s-rannum.adb b/gcc-4.7/gcc/ada/s-rannum.adb
new file mode 100644
index 000000000..21d879923
--- /dev/null
+++ b/gcc-4.7/gcc/ada/s-rannum.adb
@@ -0,0 +1,694 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT RUN-TIME COMPONENTS --
+-- --
+-- S Y S T E M . R A N D O M _ N U M B E R S --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 2007-2012, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. --
+-- --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception, --
+-- version 3.1, as published by the Free Software Foundation. --
+-- --
+-- You should have received a copy of the GNU General Public License and --
+-- a copy of the GCC Runtime Library Exception along with this program; --
+-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
+-- <http://www.gnu.org/licenses/>. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+------------------------------------------------------------------------------
+-- --
+-- The implementation here is derived from a C-program for MT19937, with --
+-- initialization improved 2002/1/26. As required, the following notice is --
+-- copied from the original program. --
+-- --
+-- Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, --
+-- All rights reserved. --
+-- --
+-- Redistribution and use in source and binary forms, with or without --
+-- modification, are permitted provided that the following conditions --
+-- are met: --
+-- --
+-- 1. Redistributions of source code must retain the above copyright --
+-- notice, this list of conditions and the following disclaimer. --
+-- --
+-- 2. Redistributions in binary form must reproduce the above copyright --
+-- notice, this list of conditions and the following disclaimer in the --
+-- documentation and/or other materials provided with the distribution.--
+-- --
+-- 3. The names of its contributors may not be used to endorse or promote --
+-- products derived from this software without specific prior written --
+-- permission. --
+-- --
+-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS --
+-- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT --
+-- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR --
+-- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT --
+-- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, --
+-- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED --
+-- TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --
+-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --
+-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --
+-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --
+-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --
+-- --
+------------------------------------------------------------------------------
+
+------------------------------------------------------------------------------
+-- --
+-- This is an implementation of the Mersenne Twister, twisted generalized --
+-- feedback shift register of rational normal form, with state-bit --
+-- reflection and tempering. This version generates 32-bit integers with a --
+-- period of 2**19937 - 1 (a Mersenne prime, hence the name). For --
+-- applications requiring more than 32 bits (up to 64), we concatenate two --
+-- 32-bit numbers. --
+-- --
+-- See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for --
+-- details. --
+-- --
+-- In contrast to the original code, we do not generate random numbers in --
+-- batches of N. Measurement seems to show this has very little if any --
+-- effect on performance, and it may be marginally better for real-time --
+-- applications with hard deadlines. --
+-- --
+------------------------------------------------------------------------------
+
+with Ada.Unchecked_Conversion;
+
+with System.Random_Seed;
+
+with Interfaces; use Interfaces;
+
+use Ada;
+
+package body System.Random_Numbers is
+
+ Image_Numeral_Length : constant := Max_Image_Width / N;
+ subtype Image_String is String (1 .. Max_Image_Width);
+
+ ----------------------------
+ -- Algorithmic Parameters --
+ ----------------------------
+
+ Lower_Mask : constant := 2**31-1;
+ Upper_Mask : constant := 2**31;
+
+ Matrix_A : constant array (State_Val range 0 .. 1) of State_Val
+ := (0, 16#9908b0df#);
+ -- The twist transformation is represented by a matrix of the form
+ --
+ -- [ 0 I(31) ]
+ -- [ _a ]
+ --
+ -- where 0 is a 31x31 block of 0s, I(31) is the 31x31 identity matrix and
+ -- _a is a particular bit row-vector, represented here by a 32-bit integer.
+ -- If integer x represents a row vector of bits (with x(0), the units bit,
+ -- last), then
+ -- x * A = [0 x(31..1)] xor Matrix_A(x(0)).
+
+ U : constant := 11;
+ S : constant := 7;
+ B_Mask : constant := 16#9d2c5680#;
+ T : constant := 15;
+ C_Mask : constant := 16#efc60000#;
+ L : constant := 18;
+ -- The tempering shifts and bit masks, in the order applied
+
+ Seed0 : constant := 5489;
+ -- Default seed, used to initialize the state vector when Reset not called
+
+ Seed1 : constant := 19650218;
+ -- Seed used to initialize the state vector when calling Reset with an
+ -- initialization vector.
+
+ Mult0 : constant := 1812433253;
+ -- Multiplier for a modified linear congruential generator used to
+ -- initialize the state vector when calling Reset with a single integer
+ -- seed.
+
+ Mult1 : constant := 1664525;
+ Mult2 : constant := 1566083941;
+ -- Multipliers for two modified linear congruential generators used to
+ -- initialize the state vector when calling Reset with an initialization
+ -- vector.
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ procedure Init (Gen : Generator; Initiator : Unsigned_32);
+ -- Perform a default initialization of the state of Gen. The resulting
+ -- state is identical for identical values of Initiator.
+
+ procedure Insert_Image
+ (S : in out Image_String;
+ Index : Integer;
+ V : State_Val);
+ -- Insert image of V into S, in the Index'th 11-character substring
+
+ function Extract_Value (S : String; Index : Integer) return State_Val;
+ -- Treat S as a sequence of 11-character decimal numerals and return
+ -- the result of converting numeral #Index (numbering from 0)
+
+ function To_Unsigned is
+ new Unchecked_Conversion (Integer_32, Unsigned_32);
+ function To_Unsigned is
+ new Unchecked_Conversion (Integer_64, Unsigned_64);
+
+ ------------
+ -- Random --
+ ------------
+
+ function Random (Gen : Generator) return Unsigned_32 is
+ G : Generator renames Gen.Writable.Self.all;
+ Y : State_Val;
+ I : Integer; -- should avoid use of identifier I ???
+
+ begin
+ I := G.I;
+
+ if I < N - M then
+ Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
+ Y := G.S (I + M) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
+ I := I + 1;
+
+ elsif I < N - 1 then
+ Y := (G.S (I) and Upper_Mask) or (G.S (I + 1) and Lower_Mask);
+ Y := G.S (I + (M - N))
+ xor Shift_Right (Y, 1)
+ xor Matrix_A (Y and 1);
+ I := I + 1;
+
+ elsif I = N - 1 then
+ Y := (G.S (I) and Upper_Mask) or (G.S (0) and Lower_Mask);
+ Y := G.S (M - 1) xor Shift_Right (Y, 1) xor Matrix_A (Y and 1);
+ I := 0;
+
+ else
+ Init (G, Seed0);
+ return Random (Gen);
+ end if;
+
+ G.S (G.I) := Y;
+ G.I := I;
+
+ Y := Y xor Shift_Right (Y, U);
+ Y := Y xor (Shift_Left (Y, S) and B_Mask);
+ Y := Y xor (Shift_Left (Y, T) and C_Mask);
+ Y := Y xor Shift_Right (Y, L);
+
+ return Y;
+ end Random;
+
+ generic
+ type Unsigned is mod <>;
+ type Real is digits <>;
+ with function Random (G : Generator) return Unsigned is <>;
+ function Random_Float_Template (Gen : Generator) return Real;
+ pragma Inline (Random_Float_Template);
+ -- Template for a random-number generator implementation that delivers
+ -- values of type Real in the range [0 .. 1], using values from Gen,
+ -- assuming that Unsigned is large enough to hold the bits of a mantissa
+ -- for type Real.
+
+ ---------------------------
+ -- Random_Float_Template --
+ ---------------------------
+
+ function Random_Float_Template (Gen : Generator) return Real is
+
+ pragma Compile_Time_Error
+ (Unsigned'Last <= 2**(Real'Machine_Mantissa - 1),
+ "insufficiently large modular type used to hold mantissa");
+
+ begin
+ -- This code generates random floating-point numbers from unsigned
+ -- integers. Assuming that Real'Machine_Radix = 2, it can deliver all
+ -- machine values of type Real (as implied by Real'Machine_Mantissa and
+ -- Real'Machine_Emin), which is not true of the standard method (to
+ -- which we fall back for non-binary radix): computing Real(<random
+ -- integer>) / (<max random integer>+1). To do so, we first extract an
+ -- (M-1)-bit significand (where M is Real'Machine_Mantissa), and then
+ -- decide on a normalized exponent by repeated coin flips, decrementing
+ -- from 0 as long as we flip heads (1 bits). This process yields the
+ -- proper geometric distribution for the exponent: in a uniformly
+ -- distributed set of floating-point numbers, 1/2 of them will be in
+ -- (0.5, 1], 1/4 will be in (0.25, 0.5], and so forth. It makes a
+ -- further adjustment at binade boundaries (see comments below) to give
+ -- the effect of selecting a uniformly distributed real deviate in
+ -- [0..1] and then rounding to the nearest representable floating-point
+ -- number. The algorithm attempts to be stingy with random integers. In
+ -- the worst case, it can consume roughly -Real'Machine_Emin/32 32-bit
+ -- integers, but this case occurs with probability around
+ -- 2**Machine_Emin, and the expected number of calls to integer-valued
+ -- Random is 1. For another discussion of the issues addressed by this
+ -- process, see Allen Downey's unpublished paper at
+ -- http://allendowney.com/research/rand/downey07randfloat.pdf.
+
+ if Real'Machine_Radix /= 2 then
+ return Real'Machine
+ (Real (Unsigned'(Random (Gen))) * 2.0**(-Unsigned'Size));
+
+ else
+ declare
+ type Bit_Count is range 0 .. 4;
+
+ subtype T is Real'Base;
+
+ Trailing_Ones : constant array (Unsigned_32 range 0 .. 15)
+ of Bit_Count :=
+ (2#00000# => 0, 2#00001# => 1, 2#00010# => 0, 2#00011# => 2,
+ 2#00100# => 0, 2#00101# => 1, 2#00110# => 0, 2#00111# => 3,
+ 2#01000# => 0, 2#01001# => 1, 2#01010# => 0, 2#01011# => 2,
+ 2#01100# => 0, 2#01101# => 1, 2#01110# => 0, 2#01111# => 4);
+
+ Pow_Tab : constant array (Bit_Count range 0 .. 3) of Real
+ := (0 => 2.0**(0 - T'Machine_Mantissa),
+ 1 => 2.0**(-1 - T'Machine_Mantissa),
+ 2 => 2.0**(-2 - T'Machine_Mantissa),
+ 3 => 2.0**(-3 - T'Machine_Mantissa));
+
+ Extra_Bits : constant Natural :=
+ (Unsigned'Size - T'Machine_Mantissa + 1);
+ -- Random bits left over after selecting mantissa
+
+ Mantissa : Unsigned;
+
+ X : Real; -- Scaled mantissa
+ R : Unsigned_32; -- Supply of random bits
+ R_Bits : Natural; -- Number of bits left in R
+ K : Bit_Count; -- Next decrement to exponent
+
+ begin
+ Mantissa := Random (Gen) / 2**Extra_Bits;
+ R := Unsigned_32 (Mantissa mod 2**Extra_Bits);
+ R_Bits := Extra_Bits;
+ X := Real (2**(T'Machine_Mantissa - 1) + Mantissa); -- Exact
+
+ if Extra_Bits < 4 and then R < 2 ** Extra_Bits - 1 then
+
+ -- We got lucky and got a zero in our few extra bits
+
+ K := Trailing_Ones (R);
+
+ else
+ Find_Zero : loop
+
+ -- R has R_Bits unprocessed random bits, a multiple of 4.
+ -- X needs to be halved for each trailing one bit. The
+ -- process stops as soon as a 0 bit is found. If R_Bits
+ -- becomes zero, reload R.
+
+ -- Process 4 bits at a time for speed: the two iterations
+ -- on average with three tests each was still too slow,
+ -- probably because the branches are not predictable.
+ -- This loop now will only execute once 94% of the cases,
+ -- doing more bits at a time will not help.
+
+ while R_Bits >= 4 loop
+ K := Trailing_Ones (R mod 16);
+
+ exit Find_Zero when K < 4; -- Exits 94% of the time
+
+ R_Bits := R_Bits - 4;
+ X := X / 16.0;
+ R := R / 16;
+ end loop;
+
+ -- Do not allow us to loop endlessly even in the (very
+ -- unlikely) case that Random (Gen) keeps yielding all ones.
+
+ exit Find_Zero when X = 0.0;
+ R := Random (Gen);
+ R_Bits := 32;
+ end loop Find_Zero;
+ end if;
+
+ -- K has the count of trailing ones not reflected yet in X. The
+ -- following multiplication takes care of that, as well as the
+ -- correction to move the radix point to the left of the mantissa.
+ -- Doing it at the end avoids repeated rounding errors in the
+ -- exceedingly unlikely case of ever having a subnormal result.
+
+ X := X * Pow_Tab (K);
+
+ -- The smallest value in each binade is rounded to by 0.75 of
+ -- the span of real numbers as its next larger neighbor, and
+ -- 1.0 is rounded to by half of the span of real numbers as its
+ -- next smaller neighbor. To account for this, when we encounter
+ -- the smallest number in a binade, we substitute the smallest
+ -- value in the next larger binade with probability 1/2.
+
+ if Mantissa = 0 and then Unsigned_32'(Random (Gen)) mod 2 = 0 then
+ X := 2.0 * X;
+ end if;
+
+ return X;
+ end;
+ end if;
+ end Random_Float_Template;
+
+ ------------
+ -- Random --
+ ------------
+
+ function Random (Gen : Generator) return Float is
+ function F is new Random_Float_Template (Unsigned_32, Float);
+ begin
+ return F (Gen);
+ end Random;
+
+ function Random (Gen : Generator) return Long_Float is
+ function F is new Random_Float_Template (Unsigned_64, Long_Float);
+ begin
+ return F (Gen);
+ end Random;
+
+ function Random (Gen : Generator) return Unsigned_64 is
+ begin
+ return Shift_Left (Unsigned_64 (Unsigned_32'(Random (Gen))), 32)
+ or Unsigned_64 (Unsigned_32'(Random (Gen)));
+ end Random;
+
+ ---------------------
+ -- Random_Discrete --
+ ---------------------
+
+ function Random_Discrete
+ (Gen : Generator;
+ Min : Result_Subtype := Default_Min;
+ Max : Result_Subtype := Result_Subtype'Last) return Result_Subtype
+ is
+ begin
+ if Max = Min then
+ return Max;
+
+ elsif Max < Min then
+ raise Constraint_Error;
+
+ elsif Result_Subtype'Base'Size > 32 then
+ declare
+ -- In the 64-bit case, we have to be careful, since not all 64-bit
+ -- unsigned values are representable in GNAT's root_integer type.
+ -- Ignore different-size warnings here since GNAT's handling
+ -- is correct.
+
+ pragma Warnings ("Z"); -- better to use msg string! ???
+ function Conv_To_Unsigned is
+ new Unchecked_Conversion (Result_Subtype'Base, Unsigned_64);
+ function Conv_To_Result is
+ new Unchecked_Conversion (Unsigned_64, Result_Subtype'Base);
+ pragma Warnings ("z");
+
+ N : constant Unsigned_64 :=
+ Conv_To_Unsigned (Max) - Conv_To_Unsigned (Min) + 1;
+
+ X, Slop : Unsigned_64;
+
+ begin
+ if N = 0 then
+ return Conv_To_Result (Conv_To_Unsigned (Min) + Random (Gen));
+
+ else
+ Slop := Unsigned_64'Last rem N + 1;
+
+ loop
+ X := Random (Gen);
+ exit when Slop = N or else X <= Unsigned_64'Last - Slop;
+ end loop;
+
+ return Conv_To_Result (Conv_To_Unsigned (Min) + X rem N);
+ end if;
+ end;
+
+ elsif Result_Subtype'Pos (Max) - Result_Subtype'Pos (Min) =
+ 2 ** 32 - 1
+ then
+ return Result_Subtype'Val
+ (Result_Subtype'Pos (Min) + Unsigned_32'Pos (Random (Gen)));
+ else
+ declare
+ N : constant Unsigned_32 :=
+ Unsigned_32 (Result_Subtype'Pos (Max) -
+ Result_Subtype'Pos (Min) + 1);
+ Slop : constant Unsigned_32 := Unsigned_32'Last rem N + 1;
+ X : Unsigned_32;
+
+ begin
+ loop
+ X := Random (Gen);
+ exit when Slop = N or else X <= Unsigned_32'Last - Slop;
+ end loop;
+
+ return
+ Result_Subtype'Val
+ (Result_Subtype'Pos (Min) + Unsigned_32'Pos (X rem N));
+ end;
+ end if;
+ end Random_Discrete;
+
+ ------------------
+ -- Random_Float --
+ ------------------
+
+ function Random_Float (Gen : Generator) return Result_Subtype is
+ begin
+ if Result_Subtype'Base'Digits > Float'Digits then
+ return Result_Subtype'Machine (Result_Subtype
+ (Long_Float'(Random (Gen))));
+ else
+ return Result_Subtype'Machine (Result_Subtype
+ (Float'(Random (Gen))));
+ end if;
+ end Random_Float;
+
+ -----------
+ -- Reset --
+ -----------
+
+ procedure Reset (Gen : Generator) is
+ begin
+ Init (Gen, Unsigned_32'Mod (Random_Seed.Get_Seed));
+ end Reset;
+
+ procedure Reset (Gen : Generator; Initiator : Integer_32) is
+ begin
+ Init (Gen, To_Unsigned (Initiator));
+ end Reset;
+
+ procedure Reset (Gen : Generator; Initiator : Unsigned_32) is
+ begin
+ Init (Gen, Initiator);
+ end Reset;
+
+ procedure Reset (Gen : Generator; Initiator : Integer) is
+ begin
+ pragma Warnings (Off, "condition is always *");
+ -- This is probably an unnecessary precaution against future change, but
+ -- since the test is a static expression, no extra code is involved.
+
+ if Integer'Size <= 32 then
+ Init (Gen, To_Unsigned (Integer_32 (Initiator)));
+
+ else
+ declare
+ Initiator1 : constant Unsigned_64 :=
+ To_Unsigned (Integer_64 (Initiator));
+ Init0 : constant Unsigned_32 :=
+ Unsigned_32 (Initiator1 mod 2 ** 32);
+ Init1 : constant Unsigned_32 :=
+ Unsigned_32 (Shift_Right (Initiator1, 32));
+ begin
+ Reset (Gen, Initialization_Vector'(Init0, Init1));
+ end;
+ end if;
+
+ pragma Warnings (On, "condition is always *");
+ end Reset;
+
+ procedure Reset (Gen : Generator; Initiator : Initialization_Vector) is
+ G : Generator renames Gen.Writable.Self.all;
+ I, J : Integer;
+
+ begin
+ Init (G, Seed1);
+ I := 1;
+ J := 0;
+
+ if Initiator'Length > 0 then
+ for K in reverse 1 .. Integer'Max (N, Initiator'Length) loop
+ G.S (I) :=
+ (G.S (I) xor ((G.S (I - 1)
+ xor Shift_Right (G.S (I - 1), 30)) * Mult1))
+ + Initiator (J + Initiator'First) + Unsigned_32 (J);
+
+ I := I + 1;
+ J := J + 1;
+
+ if I >= N then
+ G.S (0) := G.S (N - 1);
+ I := 1;
+ end if;
+
+ if J >= Initiator'Length then
+ J := 0;
+ end if;
+ end loop;
+ end if;
+
+ for K in reverse 1 .. N - 1 loop
+ G.S (I) :=
+ (G.S (I) xor ((G.S (I - 1)
+ xor Shift_Right (G.S (I - 1), 30)) * Mult2))
+ - Unsigned_32 (I);
+ I := I + 1;
+
+ if I >= N then
+ G.S (0) := G.S (N - 1);
+ I := 1;
+ end if;
+ end loop;
+
+ G.S (0) := Upper_Mask;
+ end Reset;
+
+ procedure Reset (Gen : Generator; From_State : Generator) is
+ G : Generator renames Gen.Writable.Self.all;
+ begin
+ G.S := From_State.S;
+ G.I := From_State.I;
+ end Reset;
+
+ procedure Reset (Gen : Generator; From_State : State) is
+ G : Generator renames Gen.Writable.Self.all;
+ begin
+ G.I := 0;
+ G.S := From_State;
+ end Reset;
+
+ procedure Reset (Gen : Generator; From_Image : String) is
+ G : Generator renames Gen.Writable.Self.all;
+ begin
+ G.I := 0;
+
+ for J in 0 .. N - 1 loop
+ G.S (J) := Extract_Value (From_Image, J);
+ end loop;
+ end Reset;
+
+ ----------
+ -- Save --
+ ----------
+
+ procedure Save (Gen : Generator; To_State : out State) is
+ Gen2 : Generator;
+
+ begin
+ if Gen.I = N then
+ Init (Gen2, 5489);
+ To_State := Gen2.S;
+
+ else
+ To_State (0 .. N - 1 - Gen.I) := Gen.S (Gen.I .. N - 1);
+ To_State (N - Gen.I .. N - 1) := Gen.S (0 .. Gen.I - 1);
+ end if;
+ end Save;
+
+ -----------
+ -- Image --
+ -----------
+
+ function Image (Of_State : State) return String is
+ Result : Image_String;
+
+ begin
+ Result := (others => ' ');
+
+ for J in Of_State'Range loop
+ Insert_Image (Result, J, Of_State (J));
+ end loop;
+
+ return Result;
+ end Image;
+
+ function Image (Gen : Generator) return String is
+ Result : Image_String;
+
+ begin
+ Result := (others => ' ');
+ for J in 0 .. N - 1 loop
+ Insert_Image (Result, J, Gen.S ((J + Gen.I) mod N));
+ end loop;
+
+ return Result;
+ end Image;
+
+ -----------
+ -- Value --
+ -----------
+
+ function Value (Coded_State : String) return State is
+ Gen : Generator;
+ S : State;
+ begin
+ Reset (Gen, Coded_State);
+ Save (Gen, S);
+ return S;
+ end Value;
+
+ ----------
+ -- Init --
+ ----------
+
+ procedure Init (Gen : Generator; Initiator : Unsigned_32) is
+ G : Generator renames Gen.Writable.Self.all;
+ begin
+ G.S (0) := Initiator;
+
+ for I in 1 .. N - 1 loop
+ G.S (I) :=
+ (G.S (I - 1) xor Shift_Right (G.S (I - 1), 30)) * Mult0
+ + Unsigned_32 (I);
+ end loop;
+
+ G.I := 0;
+ end Init;
+
+ ------------------
+ -- Insert_Image --
+ ------------------
+
+ procedure Insert_Image
+ (S : in out Image_String;
+ Index : Integer;
+ V : State_Val)
+ is
+ Value : constant String := State_Val'Image (V);
+ begin
+ S (Index * 11 + 1 .. Index * 11 + Value'Length) := Value;
+ end Insert_Image;
+
+ -------------------
+ -- Extract_Value --
+ -------------------
+
+ function Extract_Value (S : String; Index : Integer) return State_Val is
+ Start : constant Integer := S'First + Index * Image_Numeral_Length;
+ begin
+ return State_Val'Value (S (Start .. Start + Image_Numeral_Length - 1));
+ end Extract_Value;
+
+end System.Random_Numbers;