aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.7/gcc/ada/s-gearop.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.7/gcc/ada/s-gearop.adb')
-rw-r--r--gcc-4.7/gcc/ada/s-gearop.adb948
1 files changed, 0 insertions, 948 deletions
diff --git a/gcc-4.7/gcc/ada/s-gearop.adb b/gcc-4.7/gcc/ada/s-gearop.adb
deleted file mode 100644
index db18a7ebe..000000000
--- a/gcc-4.7/gcc/ada/s-gearop.adb
+++ /dev/null
@@ -1,948 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT RUN-TIME COMPONENTS --
--- --
--- S Y S T E M . G E N E R I C _ A R R A Y _ O P E R A T I O N S --
--- --
--- B o d y --
--- --
--- Copyright (C) 2006-2012, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Ada.Numerics; use Ada.Numerics;
-
-package body System.Generic_Array_Operations is
-
- -- The local function Check_Unit_Last computes the index of the last
- -- element returned by Unit_Vector or Unit_Matrix. A separate function is
- -- needed to allow raising Constraint_Error before declaring the function
- -- result variable. The result variable needs to be declared first, to
- -- allow front-end inlining.
-
- function Check_Unit_Last
- (Index : Integer;
- Order : Positive;
- First : Integer) return Integer;
- pragma Inline_Always (Check_Unit_Last);
-
- --------------
- -- Diagonal --
- --------------
-
- function Diagonal (A : Matrix) return Vector is
- N : constant Natural := Natural'Min (A'Length (1), A'Length (2));
- R : Vector (A'First (1) .. A'First (1) + N - 1);
-
- begin
- for J in 0 .. N - 1 loop
- R (R'First + J) := A (A'First (1) + J, A'First (2) + J);
- end loop;
-
- return R;
- end Diagonal;
-
- --------------------------
- -- Square_Matrix_Length --
- --------------------------
-
- function Square_Matrix_Length (A : Matrix) return Natural is
- begin
- if A'Length (1) /= A'Length (2) then
- raise Constraint_Error with "matrix is not square";
- end if;
-
- return A'Length (1);
- end Square_Matrix_Length;
-
- ---------------------
- -- Check_Unit_Last --
- ---------------------
-
- function Check_Unit_Last
- (Index : Integer;
- Order : Positive;
- First : Integer) return Integer
- is
- begin
- -- Order the tests carefully to avoid overflow
-
- if Index < First
- or else First > Integer'Last - Order + 1
- or else Index > First + (Order - 1)
- then
- raise Constraint_Error;
- end if;
-
- return First + (Order - 1);
- end Check_Unit_Last;
-
- ---------------------
- -- Back_Substitute --
- ---------------------
-
- procedure Back_Substitute (M, N : in out Matrix) is
- pragma Assert (M'First (1) = N'First (1)
- and then
- M'Last (1) = N'Last (1));
-
- procedure Sub_Row
- (M : in out Matrix;
- Target : Integer;
- Source : Integer;
- Factor : Scalar);
- -- Elementary row operation that subtracts Factor * M (Source, <>) from
- -- M (Target, <>)
-
- procedure Sub_Row
- (M : in out Matrix;
- Target : Integer;
- Source : Integer;
- Factor : Scalar)
- is
- begin
- for J in M'Range (2) loop
- M (Target, J) := M (Target, J) - Factor * M (Source, J);
- end loop;
- end Sub_Row;
-
- -- Local declarations
-
- Max_Col : Integer := M'Last (2);
-
- -- Start of processing for Back_Substitute
-
- begin
- Do_Rows : for Row in reverse M'Range (1) loop
- Find_Non_Zero : for Col in reverse M'First (2) .. Max_Col loop
- if Is_Non_Zero (M (Row, Col)) then
-
- -- Found first non-zero element, so subtract a multiple of this
- -- element from all higher rows, to reduce all other elements
- -- in this column to zero.
-
- declare
- -- We can't use a for loop, as we'd need to iterate to
- -- Row - 1, but that expression will overflow if M'First
- -- equals Integer'First, which is true for aggregates
- -- without explicit bounds..
-
- J : Integer := M'First (1);
-
- begin
- while J < Row loop
- Sub_Row (N, J, Row, (M (J, Col) / M (Row, Col)));
- Sub_Row (M, J, Row, (M (J, Col) / M (Row, Col)));
- J := J + 1;
- end loop;
- end;
-
- -- Avoid potential overflow in the subtraction below
-
- exit Do_Rows when Col = M'First (2);
-
- Max_Col := Col - 1;
-
- exit Find_Non_Zero;
- end if;
- end loop Find_Non_Zero;
- end loop Do_Rows;
- end Back_Substitute;
-
- -----------------------
- -- Forward_Eliminate --
- -----------------------
-
- procedure Forward_Eliminate
- (M : in out Matrix;
- N : in out Matrix;
- Det : out Scalar)
- is
- pragma Assert (M'First (1) = N'First (1)
- and then
- M'Last (1) = N'Last (1));
-
- -- The following are variations of the elementary matrix row operations:
- -- row switching, row multiplication and row addition. Because in this
- -- algorithm the addition factor is always a negated value, we chose to
- -- use row subtraction instead. Similarly, instead of multiplying by
- -- a reciprocal, we divide.
-
- procedure Sub_Row
- (M : in out Matrix;
- Target : Integer;
- Source : Integer;
- Factor : Scalar);
- -- Subtrace Factor * M (Source, <>) from M (Target, <>)
-
- procedure Divide_Row
- (M, N : in out Matrix;
- Row : Integer;
- Scale : Scalar);
- -- Divide M (Row) and N (Row) by Scale, and update Det
-
- procedure Switch_Row
- (M, N : in out Matrix;
- Row_1 : Integer;
- Row_2 : Integer);
- -- Exchange M (Row_1) and N (Row_1) with M (Row_2) and N (Row_2),
- -- negating Det in the process.
-
- -------------
- -- Sub_Row --
- -------------
-
- procedure Sub_Row
- (M : in out Matrix;
- Target : Integer;
- Source : Integer;
- Factor : Scalar)
- is
- begin
- for J in M'Range (2) loop
- M (Target, J) := M (Target, J) - Factor * M (Source, J);
- end loop;
- end Sub_Row;
-
- ----------------
- -- Divide_Row --
- ----------------
-
- procedure Divide_Row
- (M, N : in out Matrix;
- Row : Integer;
- Scale : Scalar)
- is
- begin
- Det := Det * Scale;
-
- for J in M'Range (2) loop
- M (Row, J) := M (Row, J) / Scale;
- end loop;
-
- for J in N'Range (2) loop
- N (Row - M'First (1) + N'First (1), J) :=
- N (Row - M'First (1) + N'First (1), J) / Scale;
- end loop;
- end Divide_Row;
-
- ----------------
- -- Switch_Row --
- ----------------
-
- procedure Switch_Row
- (M, N : in out Matrix;
- Row_1 : Integer;
- Row_2 : Integer)
- is
- procedure Swap (X, Y : in out Scalar);
- -- Exchange the values of X and Y
-
- procedure Swap (X, Y : in out Scalar) is
- T : constant Scalar := X;
- begin
- X := Y;
- Y := T;
- end Swap;
-
- -- Start of processing for Switch_Row
-
- begin
- if Row_1 /= Row_2 then
- Det := Zero - Det;
-
- for J in M'Range (2) loop
- Swap (M (Row_1, J), M (Row_2, J));
- end loop;
-
- for J in N'Range (2) loop
- Swap (N (Row_1 - M'First (1) + N'First (1), J),
- N (Row_2 - M'First (1) + N'First (1), J));
- end loop;
- end if;
- end Switch_Row;
-
- -- Local declarations
-
- Row : Integer := M'First (1);
-
- -- Start of processing for Forward_Eliminate
-
- begin
- Det := One;
-
- for J in M'Range (2) loop
- declare
- Max_Row : Integer := Row;
- Max_Abs : Real'Base := 0.0;
-
- begin
- -- Find best pivot in column J, starting in row Row
-
- for K in Row .. M'Last (1) loop
- declare
- New_Abs : constant Real'Base := abs M (K, J);
- begin
- if Max_Abs < New_Abs then
- Max_Abs := New_Abs;
- Max_Row := K;
- end if;
- end;
- end loop;
-
- if Max_Abs > 0.0 then
- Switch_Row (M, N, Row, Max_Row);
-
- -- The temporaries below are necessary to force a copy of the
- -- value and avoid improper aliasing.
-
- declare
- Scale : constant Scalar := M (Row, J);
- begin
- Divide_Row (M, N, Row, Scale);
- end;
-
- for U in Row + 1 .. M'Last (1) loop
- declare
- Factor : constant Scalar := M (U, J);
- begin
- Sub_Row (N, U, Row, Factor);
- Sub_Row (M, U, Row, Factor);
- end;
- end loop;
-
- exit when Row >= M'Last (1);
-
- Row := Row + 1;
-
- else
- -- Set zero (note that we do not have literals)
-
- Det := Zero;
- end if;
- end;
- end loop;
- end Forward_Eliminate;
-
- -------------------
- -- Inner_Product --
- -------------------
-
- function Inner_Product
- (Left : Left_Vector;
- Right : Right_Vector) return Result_Scalar
- is
- R : Result_Scalar := Zero;
-
- begin
- if Left'Length /= Right'Length then
- raise Constraint_Error with
- "vectors are of different length in inner product";
- end if;
-
- for J in Left'Range loop
- R := R + Left (J) * Right (J - Left'First + Right'First);
- end loop;
-
- return R;
- end Inner_Product;
-
- -------------
- -- L2_Norm --
- -------------
-
- function L2_Norm (X : X_Vector) return Result_Real'Base is
- Sum : Result_Real'Base := 0.0;
-
- begin
- for J in X'Range loop
- Sum := Sum + Result_Real'Base (abs X (J))**2;
- end loop;
-
- return Sqrt (Sum);
- end L2_Norm;
-
- ----------------------------------
- -- Matrix_Elementwise_Operation --
- ----------------------------------
-
- function Matrix_Elementwise_Operation (X : X_Matrix) return Result_Matrix is
- R : Result_Matrix (X'Range (1), X'Range (2));
-
- begin
- for J in R'Range (1) loop
- for K in R'Range (2) loop
- R (J, K) := Operation (X (J, K));
- end loop;
- end loop;
-
- return R;
- end Matrix_Elementwise_Operation;
-
- ----------------------------------
- -- Vector_Elementwise_Operation --
- ----------------------------------
-
- function Vector_Elementwise_Operation (X : X_Vector) return Result_Vector is
- R : Result_Vector (X'Range);
-
- begin
- for J in R'Range loop
- R (J) := Operation (X (J));
- end loop;
-
- return R;
- end Vector_Elementwise_Operation;
-
- -----------------------------------------
- -- Matrix_Matrix_Elementwise_Operation --
- -----------------------------------------
-
- function Matrix_Matrix_Elementwise_Operation
- (Left : Left_Matrix;
- Right : Right_Matrix) return Result_Matrix
- is
- R : Result_Matrix (Left'Range (1), Left'Range (2));
-
- begin
- if Left'Length (1) /= Right'Length (1)
- or else
- Left'Length (2) /= Right'Length (2)
- then
- raise Constraint_Error with
- "matrices are of different dimension in elementwise operation";
- end if;
-
- for J in R'Range (1) loop
- for K in R'Range (2) loop
- R (J, K) :=
- Operation
- (Left (J, K),
- Right
- (J - R'First (1) + Right'First (1),
- K - R'First (2) + Right'First (2)));
- end loop;
- end loop;
-
- return R;
- end Matrix_Matrix_Elementwise_Operation;
-
- ------------------------------------------------
- -- Matrix_Matrix_Scalar_Elementwise_Operation --
- ------------------------------------------------
-
- function Matrix_Matrix_Scalar_Elementwise_Operation
- (X : X_Matrix;
- Y : Y_Matrix;
- Z : Z_Scalar) return Result_Matrix
- is
- R : Result_Matrix (X'Range (1), X'Range (2));
-
- begin
- if X'Length (1) /= Y'Length (1)
- or else
- X'Length (2) /= Y'Length (2)
- then
- raise Constraint_Error with
- "matrices are of different dimension in elementwise operation";
- end if;
-
- for J in R'Range (1) loop
- for K in R'Range (2) loop
- R (J, K) :=
- Operation
- (X (J, K),
- Y (J - R'First (1) + Y'First (1),
- K - R'First (2) + Y'First (2)),
- Z);
- end loop;
- end loop;
-
- return R;
- end Matrix_Matrix_Scalar_Elementwise_Operation;
-
- -----------------------------------------
- -- Vector_Vector_Elementwise_Operation --
- -----------------------------------------
-
- function Vector_Vector_Elementwise_Operation
- (Left : Left_Vector;
- Right : Right_Vector) return Result_Vector
- is
- R : Result_Vector (Left'Range);
-
- begin
- if Left'Length /= Right'Length then
- raise Constraint_Error with
- "vectors are of different length in elementwise operation";
- end if;
-
- for J in R'Range loop
- R (J) := Operation (Left (J), Right (J - R'First + Right'First));
- end loop;
-
- return R;
- end Vector_Vector_Elementwise_Operation;
-
- ------------------------------------------------
- -- Vector_Vector_Scalar_Elementwise_Operation --
- ------------------------------------------------
-
- function Vector_Vector_Scalar_Elementwise_Operation
- (X : X_Vector;
- Y : Y_Vector;
- Z : Z_Scalar) return Result_Vector
- is
- R : Result_Vector (X'Range);
-
- begin
- if X'Length /= Y'Length then
- raise Constraint_Error with
- "vectors are of different length in elementwise operation";
- end if;
-
- for J in R'Range loop
- R (J) := Operation (X (J), Y (J - X'First + Y'First), Z);
- end loop;
-
- return R;
- end Vector_Vector_Scalar_Elementwise_Operation;
-
- -----------------------------------------
- -- Matrix_Scalar_Elementwise_Operation --
- -----------------------------------------
-
- function Matrix_Scalar_Elementwise_Operation
- (Left : Left_Matrix;
- Right : Right_Scalar) return Result_Matrix
- is
- R : Result_Matrix (Left'Range (1), Left'Range (2));
-
- begin
- for J in R'Range (1) loop
- for K in R'Range (2) loop
- R (J, K) := Operation (Left (J, K), Right);
- end loop;
- end loop;
-
- return R;
- end Matrix_Scalar_Elementwise_Operation;
-
- -----------------------------------------
- -- Vector_Scalar_Elementwise_Operation --
- -----------------------------------------
-
- function Vector_Scalar_Elementwise_Operation
- (Left : Left_Vector;
- Right : Right_Scalar) return Result_Vector
- is
- R : Result_Vector (Left'Range);
-
- begin
- for J in R'Range loop
- R (J) := Operation (Left (J), Right);
- end loop;
-
- return R;
- end Vector_Scalar_Elementwise_Operation;
-
- -----------------------------------------
- -- Scalar_Matrix_Elementwise_Operation --
- -----------------------------------------
-
- function Scalar_Matrix_Elementwise_Operation
- (Left : Left_Scalar;
- Right : Right_Matrix) return Result_Matrix
- is
- R : Result_Matrix (Right'Range (1), Right'Range (2));
-
- begin
- for J in R'Range (1) loop
- for K in R'Range (2) loop
- R (J, K) := Operation (Left, Right (J, K));
- end loop;
- end loop;
-
- return R;
- end Scalar_Matrix_Elementwise_Operation;
-
- -----------------------------------------
- -- Scalar_Vector_Elementwise_Operation --
- -----------------------------------------
-
- function Scalar_Vector_Elementwise_Operation
- (Left : Left_Scalar;
- Right : Right_Vector) return Result_Vector
- is
- R : Result_Vector (Right'Range);
-
- begin
- for J in R'Range loop
- R (J) := Operation (Left, Right (J));
- end loop;
-
- return R;
- end Scalar_Vector_Elementwise_Operation;
-
- ----------
- -- Sqrt --
- ----------
-
- function Sqrt (X : Real'Base) return Real'Base is
- Root, Next : Real'Base;
-
- begin
- -- Be defensive: any comparisons with NaN values will yield False.
-
- if not (X > 0.0) then
- if X = 0.0 then
- return X;
- else
- raise Argument_Error;
- end if;
-
- elsif X > Real'Base'Last then
-
- -- X is infinity, which is its own square root
-
- return X;
- end if;
-
- -- Compute an initial estimate based on:
-
- -- X = M * R**E and Sqrt (X) = Sqrt (M) * R**(E / 2.0),
-
- -- where M is the mantissa, R is the radix and E the exponent.
-
- -- By ignoring the mantissa and ignoring the case of an odd
- -- exponent, we get a final error that is at most R. In other words,
- -- the result has about a single bit precision.
-
- Root := Real'Base (Real'Machine_Radix) ** (Real'Exponent (X) / 2);
-
- -- Because of the poor initial estimate, use the Babylonian method of
- -- computing the square root, as it is stable for all inputs. Every step
- -- will roughly double the precision of the result. Just a few steps
- -- suffice in most cases. Eight iterations should give about 2**8 bits
- -- of precision.
-
- for J in 1 .. 8 loop
- Next := (Root + X / Root) / 2.0;
- exit when Root = Next;
- Root := Next;
- end loop;
-
- return Root;
- end Sqrt;
-
- ---------------------------
- -- Matrix_Matrix_Product --
- ---------------------------
-
- function Matrix_Matrix_Product
- (Left : Left_Matrix;
- Right : Right_Matrix) return Result_Matrix
- is
- R : Result_Matrix (Left'Range (1), Right'Range (2));
-
- begin
- if Left'Length (2) /= Right'Length (1) then
- raise Constraint_Error with
- "incompatible dimensions in matrix multiplication";
- end if;
-
- for J in R'Range (1) loop
- for K in R'Range (2) loop
- declare
- S : Result_Scalar := Zero;
-
- begin
- for M in Left'Range (2) loop
- S := S + Left (J, M) *
- Right (M - Left'First (2) + Right'First (1), K);
- end loop;
-
- R (J, K) := S;
- end;
- end loop;
- end loop;
-
- return R;
- end Matrix_Matrix_Product;
-
- ----------------------------
- -- Matrix_Vector_Solution --
- ----------------------------
-
- function Matrix_Vector_Solution (A : Matrix; X : Vector) return Vector is
- N : constant Natural := A'Length (1);
- MA : Matrix := A;
- MX : Matrix (A'Range (1), 1 .. 1);
- R : Vector (A'Range (2));
- Det : Scalar;
-
- begin
- if A'Length (2) /= N then
- raise Constraint_Error with "matrix is not square";
- end if;
-
- if X'Length /= N then
- raise Constraint_Error with "incompatible vector length";
- end if;
-
- for J in 0 .. MX'Length (1) - 1 loop
- MX (MX'First (1) + J, 1) := X (X'First + J);
- end loop;
-
- Forward_Eliminate (MA, MX, Det);
- Back_Substitute (MA, MX);
-
- for J in 0 .. R'Length - 1 loop
- R (R'First + J) := MX (MX'First (1) + J, 1);
- end loop;
-
- return R;
- end Matrix_Vector_Solution;
-
- ----------------------------
- -- Matrix_Matrix_Solution --
- ----------------------------
-
- function Matrix_Matrix_Solution (A, X : Matrix) return Matrix is
- N : constant Natural := A'Length (1);
- MA : Matrix (A'Range (2), A'Range (2));
- MB : Matrix (A'Range (2), X'Range (2));
- Det : Scalar;
-
- begin
- if A'Length (2) /= N then
- raise Constraint_Error with "matrix is not square";
- end if;
-
- if X'Length (1) /= N then
- raise Constraint_Error with "matrices have unequal number of rows";
- end if;
-
- for J in 0 .. A'Length (1) - 1 loop
- for K in MA'Range (2) loop
- MA (MA'First (1) + J, K) := A (A'First (1) + J, K);
- end loop;
-
- for K in MB'Range (2) loop
- MB (MB'First (1) + J, K) := X (X'First (1) + J, K);
- end loop;
- end loop;
-
- Forward_Eliminate (MA, MB, Det);
- Back_Substitute (MA, MB);
-
- return MB;
- end Matrix_Matrix_Solution;
-
- ---------------------------
- -- Matrix_Vector_Product --
- ---------------------------
-
- function Matrix_Vector_Product
- (Left : Matrix;
- Right : Right_Vector) return Result_Vector
- is
- R : Result_Vector (Left'Range (1));
-
- begin
- if Left'Length (2) /= Right'Length then
- raise Constraint_Error with
- "incompatible dimensions in matrix-vector multiplication";
- end if;
-
- for J in Left'Range (1) loop
- declare
- S : Result_Scalar := Zero;
-
- begin
- for K in Left'Range (2) loop
- S := S + Left (J, K) * Right (K - Left'First (2) + Right'First);
- end loop;
-
- R (J) := S;
- end;
- end loop;
-
- return R;
- end Matrix_Vector_Product;
-
- -------------------
- -- Outer_Product --
- -------------------
-
- function Outer_Product
- (Left : Left_Vector;
- Right : Right_Vector) return Matrix
- is
- R : Matrix (Left'Range, Right'Range);
-
- begin
- for J in R'Range (1) loop
- for K in R'Range (2) loop
- R (J, K) := Left (J) * Right (K);
- end loop;
- end loop;
-
- return R;
- end Outer_Product;
-
- -----------------
- -- Swap_Column --
- -----------------
-
- procedure Swap_Column (A : in out Matrix; Left, Right : Integer) is
- Temp : Scalar;
- begin
- for J in A'Range (1) loop
- Temp := A (J, Left);
- A (J, Left) := A (J, Right);
- A (J, Right) := Temp;
- end loop;
- end Swap_Column;
-
- ---------------
- -- Transpose --
- ---------------
-
- procedure Transpose (A : Matrix; R : out Matrix) is
- begin
- for J in R'Range (1) loop
- for K in R'Range (2) loop
- R (J, K) := A (K - R'First (2) + A'First (1),
- J - R'First (1) + A'First (2));
- end loop;
- end loop;
- end Transpose;
-
- -------------------------------
- -- Update_Matrix_With_Matrix --
- -------------------------------
-
- procedure Update_Matrix_With_Matrix (X : in out X_Matrix; Y : Y_Matrix) is
- begin
- if X'Length (1) /= Y'Length (1)
- or else X'Length (2) /= Y'Length (2)
- then
- raise Constraint_Error with
- "matrices are of different dimension in update operation";
- end if;
-
- for J in X'Range (1) loop
- for K in X'Range (2) loop
- Update (X (J, K), Y (J - X'First (1) + Y'First (1),
- K - X'First (2) + Y'First (2)));
- end loop;
- end loop;
- end Update_Matrix_With_Matrix;
-
- -------------------------------
- -- Update_Vector_With_Vector --
- -------------------------------
-
- procedure Update_Vector_With_Vector (X : in out X_Vector; Y : Y_Vector) is
- begin
- if X'Length /= Y'Length then
- raise Constraint_Error with
- "vectors are of different length in update operation";
- end if;
-
- for J in X'Range loop
- Update (X (J), Y (J - X'First + Y'First));
- end loop;
- end Update_Vector_With_Vector;
-
- -----------------
- -- Unit_Matrix --
- -----------------
-
- function Unit_Matrix
- (Order : Positive;
- First_1 : Integer := 1;
- First_2 : Integer := 1) return Matrix
- is
- R : Matrix (First_1 .. Check_Unit_Last (First_1, Order, First_1),
- First_2 .. Check_Unit_Last (First_2, Order, First_2));
-
- begin
- R := (others => (others => Zero));
-
- for J in 0 .. Order - 1 loop
- R (First_1 + J, First_2 + J) := One;
- end loop;
-
- return R;
- end Unit_Matrix;
-
- -----------------
- -- Unit_Vector --
- -----------------
-
- function Unit_Vector
- (Index : Integer;
- Order : Positive;
- First : Integer := 1) return Vector
- is
- R : Vector (First .. Check_Unit_Last (Index, Order, First));
- begin
- R := (others => Zero);
- R (Index) := One;
- return R;
- end Unit_Vector;
-
- ---------------------------
- -- Vector_Matrix_Product --
- ---------------------------
-
- function Vector_Matrix_Product
- (Left : Left_Vector;
- Right : Matrix) return Result_Vector
- is
- R : Result_Vector (Right'Range (2));
-
- begin
- if Left'Length /= Right'Length (2) then
- raise Constraint_Error with
- "incompatible dimensions in vector-matrix multiplication";
- end if;
-
- for J in Right'Range (2) loop
- declare
- S : Result_Scalar := Zero;
-
- begin
- for K in Right'Range (1) loop
- S := S + Left (J - Right'First (1) + Left'First) * Right (K, J);
- end loop;
-
- R (J) := S;
- end;
- end loop;
-
- return R;
- end Vector_Matrix_Product;
-
-end System.Generic_Array_Operations;