aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.7/gcc/ada/exp_ch5.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.7/gcc/ada/exp_ch5.adb')
-rw-r--r--gcc-4.7/gcc/ada/exp_ch5.adb3972
1 files changed, 0 insertions, 3972 deletions
diff --git a/gcc-4.7/gcc/ada/exp_ch5.adb b/gcc-4.7/gcc/ada/exp_ch5.adb
deleted file mode 100644
index 2b170a6c4..000000000
--- a/gcc-4.7/gcc/ada/exp_ch5.adb
+++ /dev/null
@@ -1,3972 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- E X P _ C H 5 --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Aspects; use Aspects;
-with Atree; use Atree;
-with Checks; use Checks;
-with Debug; use Debug;
-with Einfo; use Einfo;
-with Errout; use Errout;
-with Exp_Aggr; use Exp_Aggr;
-with Exp_Ch6; use Exp_Ch6;
-with Exp_Ch7; use Exp_Ch7;
-with Exp_Ch11; use Exp_Ch11;
-with Exp_Dbug; use Exp_Dbug;
-with Exp_Pakd; use Exp_Pakd;
-with Exp_Tss; use Exp_Tss;
-with Exp_Util; use Exp_Util;
-with Namet; use Namet;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Restrict; use Restrict;
-with Rident; use Rident;
-with Rtsfind; use Rtsfind;
-with Sinfo; use Sinfo;
-with Sem; use Sem;
-with Sem_Aux; use Sem_Aux;
-with Sem_Ch3; use Sem_Ch3;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Ch13; use Sem_Ch13;
-with Sem_Eval; use Sem_Eval;
-with Sem_Res; use Sem_Res;
-with Sem_Util; use Sem_Util;
-with Snames; use Snames;
-with Stand; use Stand;
-with Stringt; use Stringt;
-with Targparm; use Targparm;
-with Tbuild; use Tbuild;
-with Validsw; use Validsw;
-
-package body Exp_Ch5 is
-
- function Change_Of_Representation (N : Node_Id) return Boolean;
- -- Determine if the right hand side of assignment N is a type conversion
- -- which requires a change of representation. Called only for the array
- -- and record cases.
-
- procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id);
- -- N is an assignment which assigns an array value. This routine process
- -- the various special cases and checks required for such assignments,
- -- including change of representation. Rhs is normally simply the right
- -- hand side of the assignment, except that if the right hand side is a
- -- type conversion or a qualified expression, then the RHS is the actual
- -- expression inside any such type conversions or qualifications.
-
- function Expand_Assign_Array_Loop
- (N : Node_Id;
- Larray : Entity_Id;
- Rarray : Entity_Id;
- L_Type : Entity_Id;
- R_Type : Entity_Id;
- Ndim : Pos;
- Rev : Boolean) return Node_Id;
- -- N is an assignment statement which assigns an array value. This routine
- -- expands the assignment into a loop (or nested loops for the case of a
- -- multi-dimensional array) to do the assignment component by component.
- -- Larray and Rarray are the entities of the actual arrays on the left
- -- hand and right hand sides. L_Type and R_Type are the types of these
- -- arrays (which may not be the same, due to either sliding, or to a
- -- change of representation case). Ndim is the number of dimensions and
- -- the parameter Rev indicates if the loops run normally (Rev = False),
- -- or reversed (Rev = True). The value returned is the constructed
- -- loop statement. Auxiliary declarations are inserted before node N
- -- using the standard Insert_Actions mechanism.
-
- procedure Expand_Assign_Record (N : Node_Id);
- -- N is an assignment of a non-tagged record value. This routine handles
- -- the case where the assignment must be made component by component,
- -- either because the target is not byte aligned, or there is a change
- -- of representation, or when we have a tagged type with a representation
- -- clause (this last case is required because holes in the tagged type
- -- might be filled with components from child types).
-
- procedure Expand_Iterator_Loop (N : Node_Id);
- -- Expand loop over arrays and containers that uses the form "for X of C"
- -- with an optional subtype mark, or "for Y in C".
-
- procedure Expand_Predicated_Loop (N : Node_Id);
- -- Expand for loop over predicated subtype
-
- function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id;
- -- Generate the necessary code for controlled and tagged assignment, that
- -- is to say, finalization of the target before, adjustment of the target
- -- after and save and restore of the tag and finalization pointers which
- -- are not 'part of the value' and must not be changed upon assignment. N
- -- is the original Assignment node.
-
- ------------------------------
- -- Change_Of_Representation --
- ------------------------------
-
- function Change_Of_Representation (N : Node_Id) return Boolean is
- Rhs : constant Node_Id := Expression (N);
- begin
- return
- Nkind (Rhs) = N_Type_Conversion
- and then
- not Same_Representation (Etype (Rhs), Etype (Expression (Rhs)));
- end Change_Of_Representation;
-
- -------------------------
- -- Expand_Assign_Array --
- -------------------------
-
- -- There are two issues here. First, do we let Gigi do a block move, or
- -- do we expand out into a loop? Second, we need to set the two flags
- -- Forwards_OK and Backwards_OK which show whether the block move (or
- -- corresponding loops) can be legitimately done in a forwards (low to
- -- high) or backwards (high to low) manner.
-
- procedure Expand_Assign_Array (N : Node_Id; Rhs : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
-
- Lhs : constant Node_Id := Name (N);
-
- Act_Lhs : constant Node_Id := Get_Referenced_Object (Lhs);
- Act_Rhs : Node_Id := Get_Referenced_Object (Rhs);
-
- L_Type : constant Entity_Id :=
- Underlying_Type (Get_Actual_Subtype (Act_Lhs));
- R_Type : Entity_Id :=
- Underlying_Type (Get_Actual_Subtype (Act_Rhs));
-
- L_Slice : constant Boolean := Nkind (Act_Lhs) = N_Slice;
- R_Slice : constant Boolean := Nkind (Act_Rhs) = N_Slice;
-
- Crep : constant Boolean := Change_Of_Representation (N);
-
- Larray : Node_Id;
- Rarray : Node_Id;
-
- Ndim : constant Pos := Number_Dimensions (L_Type);
-
- Loop_Required : Boolean := False;
- -- This switch is set to True if the array move must be done using
- -- an explicit front end generated loop.
-
- procedure Apply_Dereference (Arg : Node_Id);
- -- If the argument is an access to an array, and the assignment is
- -- converted into a procedure call, apply explicit dereference.
-
- function Has_Address_Clause (Exp : Node_Id) return Boolean;
- -- Test if Exp is a reference to an array whose declaration has
- -- an address clause, or it is a slice of such an array.
-
- function Is_Formal_Array (Exp : Node_Id) return Boolean;
- -- Test if Exp is a reference to an array which is either a formal
- -- parameter or a slice of a formal parameter. These are the cases
- -- where hidden aliasing can occur.
-
- function Is_Non_Local_Array (Exp : Node_Id) return Boolean;
- -- Determine if Exp is a reference to an array variable which is other
- -- than an object defined in the current scope, or a slice of such
- -- an object. Such objects can be aliased to parameters (unlike local
- -- array references).
-
- -----------------------
- -- Apply_Dereference --
- -----------------------
-
- procedure Apply_Dereference (Arg : Node_Id) is
- Typ : constant Entity_Id := Etype (Arg);
- begin
- if Is_Access_Type (Typ) then
- Rewrite (Arg, Make_Explicit_Dereference (Loc,
- Prefix => Relocate_Node (Arg)));
- Analyze_And_Resolve (Arg, Designated_Type (Typ));
- end if;
- end Apply_Dereference;
-
- ------------------------
- -- Has_Address_Clause --
- ------------------------
-
- function Has_Address_Clause (Exp : Node_Id) return Boolean is
- begin
- return
- (Is_Entity_Name (Exp) and then
- Present (Address_Clause (Entity (Exp))))
- or else
- (Nkind (Exp) = N_Slice and then Has_Address_Clause (Prefix (Exp)));
- end Has_Address_Clause;
-
- ---------------------
- -- Is_Formal_Array --
- ---------------------
-
- function Is_Formal_Array (Exp : Node_Id) return Boolean is
- begin
- return
- (Is_Entity_Name (Exp) and then Is_Formal (Entity (Exp)))
- or else
- (Nkind (Exp) = N_Slice and then Is_Formal_Array (Prefix (Exp)));
- end Is_Formal_Array;
-
- ------------------------
- -- Is_Non_Local_Array --
- ------------------------
-
- function Is_Non_Local_Array (Exp : Node_Id) return Boolean is
- begin
- return (Is_Entity_Name (Exp)
- and then Scope (Entity (Exp)) /= Current_Scope)
- or else (Nkind (Exp) = N_Slice
- and then Is_Non_Local_Array (Prefix (Exp)));
- end Is_Non_Local_Array;
-
- -- Determine if Lhs, Rhs are formal arrays or nonlocal arrays
-
- Lhs_Formal : constant Boolean := Is_Formal_Array (Act_Lhs);
- Rhs_Formal : constant Boolean := Is_Formal_Array (Act_Rhs);
-
- Lhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Lhs);
- Rhs_Non_Local_Var : constant Boolean := Is_Non_Local_Array (Act_Rhs);
-
- -- Start of processing for Expand_Assign_Array
-
- begin
- -- Deal with length check. Note that the length check is done with
- -- respect to the right hand side as given, not a possible underlying
- -- renamed object, since this would generate incorrect extra checks.
-
- Apply_Length_Check (Rhs, L_Type);
-
- -- We start by assuming that the move can be done in either direction,
- -- i.e. that the two sides are completely disjoint.
-
- Set_Forwards_OK (N, True);
- Set_Backwards_OK (N, True);
-
- -- Normally it is only the slice case that can lead to overlap, and
- -- explicit checks for slices are made below. But there is one case
- -- where the slice can be implicit and invisible to us: when we have a
- -- one dimensional array, and either both operands are parameters, or
- -- one is a parameter (which can be a slice passed by reference) and the
- -- other is a non-local variable. In this case the parameter could be a
- -- slice that overlaps with the other operand.
-
- -- However, if the array subtype is a constrained first subtype in the
- -- parameter case, then we don't have to worry about overlap, since
- -- slice assignments aren't possible (other than for a slice denoting
- -- the whole array).
-
- -- Note: No overlap is possible if there is a change of representation,
- -- so we can exclude this case.
-
- if Ndim = 1
- and then not Crep
- and then
- ((Lhs_Formal and Rhs_Formal)
- or else
- (Lhs_Formal and Rhs_Non_Local_Var)
- or else
- (Rhs_Formal and Lhs_Non_Local_Var))
- and then
- (not Is_Constrained (Etype (Lhs))
- or else not Is_First_Subtype (Etype (Lhs)))
-
- -- In the case of compiling for the Java or .NET Virtual Machine,
- -- slices are always passed by making a copy, so we don't have to
- -- worry about overlap. We also want to prevent generation of "<"
- -- comparisons for array addresses, since that's a meaningless
- -- operation on the VM.
-
- and then VM_Target = No_VM
- then
- Set_Forwards_OK (N, False);
- Set_Backwards_OK (N, False);
-
- -- Note: the bit-packed case is not worrisome here, since if we have
- -- a slice passed as a parameter, it is always aligned on a byte
- -- boundary, and if there are no explicit slices, the assignment
- -- can be performed directly.
- end if;
-
- -- If either operand has an address clause clear Backwards_OK and
- -- Forwards_OK, since we cannot tell if the operands overlap. We
- -- exclude this treatment when Rhs is an aggregate, since we know
- -- that overlap can't occur.
-
- if (Has_Address_Clause (Lhs) and then Nkind (Rhs) /= N_Aggregate)
- or else Has_Address_Clause (Rhs)
- then
- Set_Forwards_OK (N, False);
- Set_Backwards_OK (N, False);
- end if;
-
- -- We certainly must use a loop for change of representation and also
- -- we use the operand of the conversion on the right hand side as the
- -- effective right hand side (the component types must match in this
- -- situation).
-
- if Crep then
- Act_Rhs := Get_Referenced_Object (Rhs);
- R_Type := Get_Actual_Subtype (Act_Rhs);
- Loop_Required := True;
-
- -- We require a loop if the left side is possibly bit unaligned
-
- elsif Possible_Bit_Aligned_Component (Lhs)
- or else
- Possible_Bit_Aligned_Component (Rhs)
- then
- Loop_Required := True;
-
- -- Arrays with controlled components are expanded into a loop to force
- -- calls to Adjust at the component level.
-
- elsif Has_Controlled_Component (L_Type) then
- Loop_Required := True;
-
- -- If object is atomic, we cannot tolerate a loop
-
- elsif Is_Atomic_Object (Act_Lhs)
- or else
- Is_Atomic_Object (Act_Rhs)
- then
- return;
-
- -- Loop is required if we have atomic components since we have to
- -- be sure to do any accesses on an element by element basis.
-
- elsif Has_Atomic_Components (L_Type)
- or else Has_Atomic_Components (R_Type)
- or else Is_Atomic (Component_Type (L_Type))
- or else Is_Atomic (Component_Type (R_Type))
- then
- Loop_Required := True;
-
- -- Case where no slice is involved
-
- elsif not L_Slice and not R_Slice then
-
- -- The following code deals with the case of unconstrained bit packed
- -- arrays. The problem is that the template for such arrays contains
- -- the bounds of the actual source level array, but the copy of an
- -- entire array requires the bounds of the underlying array. It would
- -- be nice if the back end could take care of this, but right now it
- -- does not know how, so if we have such a type, then we expand out
- -- into a loop, which is inefficient but works correctly. If we don't
- -- do this, we get the wrong length computed for the array to be
- -- moved. The two cases we need to worry about are:
-
- -- Explicit dereference of an unconstrained packed array type as in
- -- the following example:
-
- -- procedure C52 is
- -- type BITS is array(INTEGER range <>) of BOOLEAN;
- -- pragma PACK(BITS);
- -- type A is access BITS;
- -- P1,P2 : A;
- -- begin
- -- P1 := new BITS (1 .. 65_535);
- -- P2 := new BITS (1 .. 65_535);
- -- P2.ALL := P1.ALL;
- -- end C52;
-
- -- A formal parameter reference with an unconstrained bit array type
- -- is the other case we need to worry about (here we assume the same
- -- BITS type declared above):
-
- -- procedure Write_All (File : out BITS; Contents : BITS);
- -- begin
- -- File.Storage := Contents;
- -- end Write_All;
-
- -- We expand to a loop in either of these two cases
-
- -- Question for future thought. Another potentially more efficient
- -- approach would be to create the actual subtype, and then do an
- -- unchecked conversion to this actual subtype ???
-
- Check_Unconstrained_Bit_Packed_Array : declare
-
- function Is_UBPA_Reference (Opnd : Node_Id) return Boolean;
- -- Function to perform required test for the first case, above
- -- (dereference of an unconstrained bit packed array).
-
- -----------------------
- -- Is_UBPA_Reference --
- -----------------------
-
- function Is_UBPA_Reference (Opnd : Node_Id) return Boolean is
- Typ : constant Entity_Id := Underlying_Type (Etype (Opnd));
- P_Type : Entity_Id;
- Des_Type : Entity_Id;
-
- begin
- if Present (Packed_Array_Type (Typ))
- and then Is_Array_Type (Packed_Array_Type (Typ))
- and then not Is_Constrained (Packed_Array_Type (Typ))
- then
- return True;
-
- elsif Nkind (Opnd) = N_Explicit_Dereference then
- P_Type := Underlying_Type (Etype (Prefix (Opnd)));
-
- if not Is_Access_Type (P_Type) then
- return False;
-
- else
- Des_Type := Designated_Type (P_Type);
- return
- Is_Bit_Packed_Array (Des_Type)
- and then not Is_Constrained (Des_Type);
- end if;
-
- else
- return False;
- end if;
- end Is_UBPA_Reference;
-
- -- Start of processing for Check_Unconstrained_Bit_Packed_Array
-
- begin
- if Is_UBPA_Reference (Lhs)
- or else
- Is_UBPA_Reference (Rhs)
- then
- Loop_Required := True;
-
- -- Here if we do not have the case of a reference to a bit packed
- -- unconstrained array case. In this case gigi can most certainly
- -- handle the assignment if a forwards move is allowed.
-
- -- (could it handle the backwards case also???)
-
- elsif Forwards_OK (N) then
- return;
- end if;
- end Check_Unconstrained_Bit_Packed_Array;
-
- -- The back end can always handle the assignment if the right side is a
- -- string literal (note that overlap is definitely impossible in this
- -- case). If the type is packed, a string literal is always converted
- -- into an aggregate, except in the case of a null slice, for which no
- -- aggregate can be written. In that case, rewrite the assignment as a
- -- null statement, a length check has already been emitted to verify
- -- that the range of the left-hand side is empty.
-
- -- Note that this code is not executed if we have an assignment of a
- -- string literal to a non-bit aligned component of a record, a case
- -- which cannot be handled by the backend.
-
- elsif Nkind (Rhs) = N_String_Literal then
- if String_Length (Strval (Rhs)) = 0
- and then Is_Bit_Packed_Array (L_Type)
- then
- Rewrite (N, Make_Null_Statement (Loc));
- Analyze (N);
- end if;
-
- return;
-
- -- If either operand is bit packed, then we need a loop, since we can't
- -- be sure that the slice is byte aligned. Similarly, if either operand
- -- is a possibly unaligned slice, then we need a loop (since the back
- -- end cannot handle unaligned slices).
-
- elsif Is_Bit_Packed_Array (L_Type)
- or else Is_Bit_Packed_Array (R_Type)
- or else Is_Possibly_Unaligned_Slice (Lhs)
- or else Is_Possibly_Unaligned_Slice (Rhs)
- then
- Loop_Required := True;
-
- -- If we are not bit-packed, and we have only one slice, then no overlap
- -- is possible except in the parameter case, so we can let the back end
- -- handle things.
-
- elsif not (L_Slice and R_Slice) then
- if Forwards_OK (N) then
- return;
- end if;
- end if;
-
- -- If the right-hand side is a string literal, introduce a temporary for
- -- it, for use in the generated loop that will follow.
-
- if Nkind (Rhs) = N_String_Literal then
- declare
- Temp : constant Entity_Id := Make_Temporary (Loc, 'T', Rhs);
- Decl : Node_Id;
-
- begin
- Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Temp,
- Object_Definition => New_Occurrence_Of (L_Type, Loc),
- Expression => Relocate_Node (Rhs));
-
- Insert_Action (N, Decl);
- Rewrite (Rhs, New_Occurrence_Of (Temp, Loc));
- R_Type := Etype (Temp);
- end;
- end if;
-
- -- Come here to complete the analysis
-
- -- Loop_Required: Set to True if we know that a loop is required
- -- regardless of overlap considerations.
-
- -- Forwards_OK: Set to False if we already know that a forwards
- -- move is not safe, else set to True.
-
- -- Backwards_OK: Set to False if we already know that a backwards
- -- move is not safe, else set to True
-
- -- Our task at this stage is to complete the overlap analysis, which can
- -- result in possibly setting Forwards_OK or Backwards_OK to False, and
- -- then generating the final code, either by deciding that it is OK
- -- after all to let Gigi handle it, or by generating appropriate code
- -- in the front end.
-
- declare
- L_Index_Typ : constant Node_Id := Etype (First_Index (L_Type));
- R_Index_Typ : constant Node_Id := Etype (First_Index (R_Type));
-
- Left_Lo : constant Node_Id := Type_Low_Bound (L_Index_Typ);
- Left_Hi : constant Node_Id := Type_High_Bound (L_Index_Typ);
- Right_Lo : constant Node_Id := Type_Low_Bound (R_Index_Typ);
- Right_Hi : constant Node_Id := Type_High_Bound (R_Index_Typ);
-
- Act_L_Array : Node_Id;
- Act_R_Array : Node_Id;
-
- Cleft_Lo : Node_Id;
- Cright_Lo : Node_Id;
- Condition : Node_Id;
-
- Cresult : Compare_Result;
-
- begin
- -- Get the expressions for the arrays. If we are dealing with a
- -- private type, then convert to the underlying type. We can do
- -- direct assignments to an array that is a private type, but we
- -- cannot assign to elements of the array without this extra
- -- unchecked conversion.
-
- -- Note: We propagate Parent to the conversion nodes to generate
- -- a well-formed subtree.
-
- if Nkind (Act_Lhs) = N_Slice then
- Larray := Prefix (Act_Lhs);
- else
- Larray := Act_Lhs;
-
- if Is_Private_Type (Etype (Larray)) then
- declare
- Par : constant Node_Id := Parent (Larray);
- begin
- Larray :=
- Unchecked_Convert_To
- (Underlying_Type (Etype (Larray)), Larray);
- Set_Parent (Larray, Par);
- end;
- end if;
- end if;
-
- if Nkind (Act_Rhs) = N_Slice then
- Rarray := Prefix (Act_Rhs);
- else
- Rarray := Act_Rhs;
-
- if Is_Private_Type (Etype (Rarray)) then
- declare
- Par : constant Node_Id := Parent (Rarray);
- begin
- Rarray :=
- Unchecked_Convert_To
- (Underlying_Type (Etype (Rarray)), Rarray);
- Set_Parent (Rarray, Par);
- end;
- end if;
- end if;
-
- -- If both sides are slices, we must figure out whether it is safe
- -- to do the move in one direction or the other. It is always safe
- -- if there is a change of representation since obviously two arrays
- -- with different representations cannot possibly overlap.
-
- if (not Crep) and L_Slice and R_Slice then
- Act_L_Array := Get_Referenced_Object (Prefix (Act_Lhs));
- Act_R_Array := Get_Referenced_Object (Prefix (Act_Rhs));
-
- -- If both left and right hand arrays are entity names, and refer
- -- to different entities, then we know that the move is safe (the
- -- two storage areas are completely disjoint).
-
- if Is_Entity_Name (Act_L_Array)
- and then Is_Entity_Name (Act_R_Array)
- and then Entity (Act_L_Array) /= Entity (Act_R_Array)
- then
- null;
-
- -- Otherwise, we assume the worst, which is that the two arrays
- -- are the same array. There is no need to check if we know that
- -- is the case, because if we don't know it, we still have to
- -- assume it!
-
- -- Generally if the same array is involved, then we have an
- -- overlapping case. We will have to really assume the worst (i.e.
- -- set neither of the OK flags) unless we can determine the lower
- -- or upper bounds at compile time and compare them.
-
- else
- Cresult :=
- Compile_Time_Compare
- (Left_Lo, Right_Lo, Assume_Valid => True);
-
- if Cresult = Unknown then
- Cresult :=
- Compile_Time_Compare
- (Left_Hi, Right_Hi, Assume_Valid => True);
- end if;
-
- case Cresult is
- when LT | LE | EQ => Set_Backwards_OK (N, False);
- when GT | GE => Set_Forwards_OK (N, False);
- when NE | Unknown => Set_Backwards_OK (N, False);
- Set_Forwards_OK (N, False);
- end case;
- end if;
- end if;
-
- -- If after that analysis Loop_Required is False, meaning that we
- -- have not discovered some non-overlap reason for requiring a loop,
- -- then the outcome depends on the capabilities of the back end.
-
- if not Loop_Required then
-
- -- The GCC back end can deal with all cases of overlap by falling
- -- back to memmove if it cannot use a more efficient approach.
-
- if VM_Target = No_VM and not AAMP_On_Target then
- return;
-
- -- Assume other back ends can handle it if Forwards_OK is set
-
- elsif Forwards_OK (N) then
- return;
-
- -- If Forwards_OK is not set, the back end will need something
- -- like memmove to handle the move. For now, this processing is
- -- activated using the .s debug flag (-gnatd.s).
-
- elsif Debug_Flag_Dot_S then
- return;
- end if;
- end if;
-
- -- At this stage we have to generate an explicit loop, and we have
- -- the following cases:
-
- -- Forwards_OK = True
-
- -- Rnn : right_index := right_index'First;
- -- for Lnn in left-index loop
- -- left (Lnn) := right (Rnn);
- -- Rnn := right_index'Succ (Rnn);
- -- end loop;
-
- -- Note: the above code MUST be analyzed with checks off, because
- -- otherwise the Succ could overflow. But in any case this is more
- -- efficient!
-
- -- Forwards_OK = False, Backwards_OK = True
-
- -- Rnn : right_index := right_index'Last;
- -- for Lnn in reverse left-index loop
- -- left (Lnn) := right (Rnn);
- -- Rnn := right_index'Pred (Rnn);
- -- end loop;
-
- -- Note: the above code MUST be analyzed with checks off, because
- -- otherwise the Pred could overflow. But in any case this is more
- -- efficient!
-
- -- Forwards_OK = Backwards_OK = False
-
- -- This only happens if we have the same array on each side. It is
- -- possible to create situations using overlays that violate this,
- -- but we simply do not promise to get this "right" in this case.
-
- -- There are two possible subcases. If the No_Implicit_Conditionals
- -- restriction is set, then we generate the following code:
-
- -- declare
- -- T : constant <operand-type> := rhs;
- -- begin
- -- lhs := T;
- -- end;
-
- -- If implicit conditionals are permitted, then we generate:
-
- -- if Left_Lo <= Right_Lo then
- -- <code for Forwards_OK = True above>
- -- else
- -- <code for Backwards_OK = True above>
- -- end if;
-
- -- In order to detect possible aliasing, we examine the renamed
- -- expression when the source or target is a renaming. However,
- -- the renaming may be intended to capture an address that may be
- -- affected by subsequent code, and therefore we must recover
- -- the actual entity for the expansion that follows, not the
- -- object it renames. In particular, if source or target designate
- -- a portion of a dynamically allocated object, the pointer to it
- -- may be reassigned but the renaming preserves the proper location.
-
- if Is_Entity_Name (Rhs)
- and then
- Nkind (Parent (Entity (Rhs))) = N_Object_Renaming_Declaration
- and then Nkind (Act_Rhs) = N_Slice
- then
- Rarray := Rhs;
- end if;
-
- if Is_Entity_Name (Lhs)
- and then
- Nkind (Parent (Entity (Lhs))) = N_Object_Renaming_Declaration
- and then Nkind (Act_Lhs) = N_Slice
- then
- Larray := Lhs;
- end if;
-
- -- Cases where either Forwards_OK or Backwards_OK is true
-
- if Forwards_OK (N) or else Backwards_OK (N) then
- if Needs_Finalization (Component_Type (L_Type))
- and then Base_Type (L_Type) = Base_Type (R_Type)
- and then Ndim = 1
- and then not No_Ctrl_Actions (N)
- then
- declare
- Proc : constant Entity_Id :=
- TSS (Base_Type (L_Type), TSS_Slice_Assign);
- Actuals : List_Id;
-
- begin
- Apply_Dereference (Larray);
- Apply_Dereference (Rarray);
- Actuals := New_List (
- Duplicate_Subexpr (Larray, Name_Req => True),
- Duplicate_Subexpr (Rarray, Name_Req => True),
- Duplicate_Subexpr (Left_Lo, Name_Req => True),
- Duplicate_Subexpr (Left_Hi, Name_Req => True),
- Duplicate_Subexpr (Right_Lo, Name_Req => True),
- Duplicate_Subexpr (Right_Hi, Name_Req => True));
-
- Append_To (Actuals,
- New_Occurrence_Of (
- Boolean_Literals (not Forwards_OK (N)), Loc));
-
- Rewrite (N,
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (Proc, Loc),
- Parameter_Associations => Actuals));
- end;
-
- else
- Rewrite (N,
- Expand_Assign_Array_Loop
- (N, Larray, Rarray, L_Type, R_Type, Ndim,
- Rev => not Forwards_OK (N)));
- end if;
-
- -- Case of both are false with No_Implicit_Conditionals
-
- elsif Restriction_Active (No_Implicit_Conditionals) then
- declare
- T : constant Entity_Id :=
- Make_Defining_Identifier (Loc, Chars => Name_T);
-
- begin
- Rewrite (N,
- Make_Block_Statement (Loc,
- Declarations => New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => T,
- Constant_Present => True,
- Object_Definition =>
- New_Occurrence_Of (Etype (Rhs), Loc),
- Expression => Relocate_Node (Rhs))),
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Make_Assignment_Statement (Loc,
- Name => Relocate_Node (Lhs),
- Expression => New_Occurrence_Of (T, Loc))))));
- end;
-
- -- Case of both are false with implicit conditionals allowed
-
- else
- -- Before we generate this code, we must ensure that the left and
- -- right side array types are defined. They may be itypes, and we
- -- cannot let them be defined inside the if, since the first use
- -- in the then may not be executed.
-
- Ensure_Defined (L_Type, N);
- Ensure_Defined (R_Type, N);
-
- -- We normally compare addresses to find out which way round to
- -- do the loop, since this is reliable, and handles the cases of
- -- parameters, conversions etc. But we can't do that in the bit
- -- packed case or the VM case, because addresses don't work there.
-
- if not Is_Bit_Packed_Array (L_Type) and then VM_Target = No_VM then
- Condition :=
- Make_Op_Le (Loc,
- Left_Opnd =>
- Unchecked_Convert_To (RTE (RE_Integer_Address),
- Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Indexed_Component (Loc,
- Prefix =>
- Duplicate_Subexpr_Move_Checks (Larray, True),
- Expressions => New_List (
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Reference_To
- (L_Index_Typ, Loc),
- Attribute_Name => Name_First))),
- Attribute_Name => Name_Address)),
-
- Right_Opnd =>
- Unchecked_Convert_To (RTE (RE_Integer_Address),
- Make_Attribute_Reference (Loc,
- Prefix =>
- Make_Indexed_Component (Loc,
- Prefix =>
- Duplicate_Subexpr_Move_Checks (Rarray, True),
- Expressions => New_List (
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Reference_To
- (R_Index_Typ, Loc),
- Attribute_Name => Name_First))),
- Attribute_Name => Name_Address)));
-
- -- For the bit packed and VM cases we use the bounds. That's OK,
- -- because we don't have to worry about parameters, since they
- -- cannot cause overlap. Perhaps we should worry about weird slice
- -- conversions ???
-
- else
- -- Copy the bounds
-
- Cleft_Lo := New_Copy_Tree (Left_Lo);
- Cright_Lo := New_Copy_Tree (Right_Lo);
-
- -- If the types do not match we add an implicit conversion
- -- here to ensure proper match
-
- if Etype (Left_Lo) /= Etype (Right_Lo) then
- Cright_Lo :=
- Unchecked_Convert_To (Etype (Left_Lo), Cright_Lo);
- end if;
-
- -- Reset the Analyzed flag, because the bounds of the index
- -- type itself may be universal, and must must be reanalyzed
- -- to acquire the proper type for the back end.
-
- Set_Analyzed (Cleft_Lo, False);
- Set_Analyzed (Cright_Lo, False);
-
- Condition :=
- Make_Op_Le (Loc,
- Left_Opnd => Cleft_Lo,
- Right_Opnd => Cright_Lo);
- end if;
-
- if Needs_Finalization (Component_Type (L_Type))
- and then Base_Type (L_Type) = Base_Type (R_Type)
- and then Ndim = 1
- and then not No_Ctrl_Actions (N)
- then
-
- -- Call TSS procedure for array assignment, passing the
- -- explicit bounds of right and left hand sides.
-
- declare
- Proc : constant Entity_Id :=
- TSS (Base_Type (L_Type), TSS_Slice_Assign);
- Actuals : List_Id;
-
- begin
- Apply_Dereference (Larray);
- Apply_Dereference (Rarray);
- Actuals := New_List (
- Duplicate_Subexpr (Larray, Name_Req => True),
- Duplicate_Subexpr (Rarray, Name_Req => True),
- Duplicate_Subexpr (Left_Lo, Name_Req => True),
- Duplicate_Subexpr (Left_Hi, Name_Req => True),
- Duplicate_Subexpr (Right_Lo, Name_Req => True),
- Duplicate_Subexpr (Right_Hi, Name_Req => True));
-
- Append_To (Actuals,
- Make_Op_Not (Loc,
- Right_Opnd => Condition));
-
- Rewrite (N,
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (Proc, Loc),
- Parameter_Associations => Actuals));
- end;
-
- else
- Rewrite (N,
- Make_Implicit_If_Statement (N,
- Condition => Condition,
-
- Then_Statements => New_List (
- Expand_Assign_Array_Loop
- (N, Larray, Rarray, L_Type, R_Type, Ndim,
- Rev => False)),
-
- Else_Statements => New_List (
- Expand_Assign_Array_Loop
- (N, Larray, Rarray, L_Type, R_Type, Ndim,
- Rev => True))));
- end if;
- end if;
-
- Analyze (N, Suppress => All_Checks);
- end;
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_Assign_Array;
-
- ------------------------------
- -- Expand_Assign_Array_Loop --
- ------------------------------
-
- -- The following is an example of the loop generated for the case of a
- -- two-dimensional array:
-
- -- declare
- -- R2b : Tm1X1 := 1;
- -- begin
- -- for L1b in 1 .. 100 loop
- -- declare
- -- R4b : Tm1X2 := 1;
- -- begin
- -- for L3b in 1 .. 100 loop
- -- vm1 (L1b, L3b) := vm2 (R2b, R4b);
- -- R4b := Tm1X2'succ(R4b);
- -- end loop;
- -- end;
- -- R2b := Tm1X1'succ(R2b);
- -- end loop;
- -- end;
-
- -- Here Rev is False, and Tm1Xn are the subscript types for the right hand
- -- side. The declarations of R2b and R4b are inserted before the original
- -- assignment statement.
-
- function Expand_Assign_Array_Loop
- (N : Node_Id;
- Larray : Entity_Id;
- Rarray : Entity_Id;
- L_Type : Entity_Id;
- R_Type : Entity_Id;
- Ndim : Pos;
- Rev : Boolean) return Node_Id
- is
- Loc : constant Source_Ptr := Sloc (N);
-
- Lnn : array (1 .. Ndim) of Entity_Id;
- Rnn : array (1 .. Ndim) of Entity_Id;
- -- Entities used as subscripts on left and right sides
-
- L_Index_Type : array (1 .. Ndim) of Entity_Id;
- R_Index_Type : array (1 .. Ndim) of Entity_Id;
- -- Left and right index types
-
- Assign : Node_Id;
-
- F_Or_L : Name_Id;
- S_Or_P : Name_Id;
-
- function Build_Step (J : Nat) return Node_Id;
- -- The increment step for the index of the right-hand side is written
- -- as an attribute reference (Succ or Pred). This function returns
- -- the corresponding node, which is placed at the end of the loop body.
-
- ----------------
- -- Build_Step --
- ----------------
-
- function Build_Step (J : Nat) return Node_Id is
- Step : Node_Id;
- Lim : Name_Id;
-
- begin
- if Rev then
- Lim := Name_First;
- else
- Lim := Name_Last;
- end if;
-
- Step :=
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Rnn (J), Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Occurrence_Of (R_Index_Type (J), Loc),
- Attribute_Name => S_Or_P,
- Expressions => New_List (
- New_Occurrence_Of (Rnn (J), Loc))));
-
- -- Note that on the last iteration of the loop, the index is increased
- -- (or decreased) past the corresponding bound. This is consistent with
- -- the C semantics of the back-end, where such an off-by-one value on a
- -- dead index variable is OK. However, in CodePeer mode this leads to
- -- spurious warnings, and thus we place a guard around the attribute
- -- reference. For obvious reasons we only do this for CodePeer.
-
- if CodePeer_Mode then
- Step :=
- Make_If_Statement (Loc,
- Condition =>
- Make_Op_Ne (Loc,
- Left_Opnd => New_Occurrence_Of (Lnn (J), Loc),
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (L_Index_Type (J), Loc),
- Attribute_Name => Lim)),
- Then_Statements => New_List (Step));
- end if;
-
- return Step;
- end Build_Step;
-
- -- Start of processing for Expand_Assign_Array_Loop
-
- begin
- if Rev then
- F_Or_L := Name_Last;
- S_Or_P := Name_Pred;
- else
- F_Or_L := Name_First;
- S_Or_P := Name_Succ;
- end if;
-
- -- Setup index types and subscript entities
-
- declare
- L_Index : Node_Id;
- R_Index : Node_Id;
-
- begin
- L_Index := First_Index (L_Type);
- R_Index := First_Index (R_Type);
-
- for J in 1 .. Ndim loop
- Lnn (J) := Make_Temporary (Loc, 'L');
- Rnn (J) := Make_Temporary (Loc, 'R');
-
- L_Index_Type (J) := Etype (L_Index);
- R_Index_Type (J) := Etype (R_Index);
-
- Next_Index (L_Index);
- Next_Index (R_Index);
- end loop;
- end;
-
- -- Now construct the assignment statement
-
- declare
- ExprL : constant List_Id := New_List;
- ExprR : constant List_Id := New_List;
-
- begin
- for J in 1 .. Ndim loop
- Append_To (ExprL, New_Occurrence_Of (Lnn (J), Loc));
- Append_To (ExprR, New_Occurrence_Of (Rnn (J), Loc));
- end loop;
-
- Assign :=
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Indexed_Component (Loc,
- Prefix => Duplicate_Subexpr (Larray, Name_Req => True),
- Expressions => ExprL),
- Expression =>
- Make_Indexed_Component (Loc,
- Prefix => Duplicate_Subexpr (Rarray, Name_Req => True),
- Expressions => ExprR));
-
- -- We set assignment OK, since there are some cases, e.g. in object
- -- declarations, where we are actually assigning into a constant.
- -- If there really is an illegality, it was caught long before now,
- -- and was flagged when the original assignment was analyzed.
-
- Set_Assignment_OK (Name (Assign));
-
- -- Propagate the No_Ctrl_Actions flag to individual assignments
-
- Set_No_Ctrl_Actions (Assign, No_Ctrl_Actions (N));
- end;
-
- -- Now construct the loop from the inside out, with the last subscript
- -- varying most rapidly. Note that Assign is first the raw assignment
- -- statement, and then subsequently the loop that wraps it up.
-
- for J in reverse 1 .. Ndim loop
- Assign :=
- Make_Block_Statement (Loc,
- Declarations => New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => Rnn (J),
- Object_Definition =>
- New_Occurrence_Of (R_Index_Type (J), Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (R_Index_Type (J), Loc),
- Attribute_Name => F_Or_L))),
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Make_Implicit_Loop_Statement (N,
- Iteration_Scheme =>
- Make_Iteration_Scheme (Loc,
- Loop_Parameter_Specification =>
- Make_Loop_Parameter_Specification (Loc,
- Defining_Identifier => Lnn (J),
- Reverse_Present => Rev,
- Discrete_Subtype_Definition =>
- New_Reference_To (L_Index_Type (J), Loc))),
-
- Statements => New_List (Assign, Build_Step (J))))));
- end loop;
-
- return Assign;
- end Expand_Assign_Array_Loop;
-
- --------------------------
- -- Expand_Assign_Record --
- --------------------------
-
- procedure Expand_Assign_Record (N : Node_Id) is
- Lhs : constant Node_Id := Name (N);
- Rhs : Node_Id := Expression (N);
- L_Typ : constant Entity_Id := Base_Type (Etype (Lhs));
-
- begin
- -- If change of representation, then extract the real right hand side
- -- from the type conversion, and proceed with component-wise assignment,
- -- since the two types are not the same as far as the back end is
- -- concerned.
-
- if Change_Of_Representation (N) then
- Rhs := Expression (Rhs);
-
- -- If this may be a case of a large bit aligned component, then proceed
- -- with component-wise assignment, to avoid possible clobbering of other
- -- components sharing bits in the first or last byte of the component to
- -- be assigned.
-
- elsif Possible_Bit_Aligned_Component (Lhs)
- or
- Possible_Bit_Aligned_Component (Rhs)
- then
- null;
-
- -- If we have a tagged type that has a complete record representation
- -- clause, we must do we must do component-wise assignments, since child
- -- types may have used gaps for their components, and we might be
- -- dealing with a view conversion.
-
- elsif Is_Fully_Repped_Tagged_Type (L_Typ) then
- null;
-
- -- If neither condition met, then nothing special to do, the back end
- -- can handle assignment of the entire component as a single entity.
-
- else
- return;
- end if;
-
- -- At this stage we know that we must do a component wise assignment
-
- declare
- Loc : constant Source_Ptr := Sloc (N);
- R_Typ : constant Entity_Id := Base_Type (Etype (Rhs));
- Decl : constant Node_Id := Declaration_Node (R_Typ);
- RDef : Node_Id;
- F : Entity_Id;
-
- function Find_Component
- (Typ : Entity_Id;
- Comp : Entity_Id) return Entity_Id;
- -- Find the component with the given name in the underlying record
- -- declaration for Typ. We need to use the actual entity because the
- -- type may be private and resolution by identifier alone would fail.
-
- function Make_Component_List_Assign
- (CL : Node_Id;
- U_U : Boolean := False) return List_Id;
- -- Returns a sequence of statements to assign the components that
- -- are referenced in the given component list. The flag U_U is
- -- used to force the usage of the inferred value of the variant
- -- part expression as the switch for the generated case statement.
-
- function Make_Field_Assign
- (C : Entity_Id;
- U_U : Boolean := False) return Node_Id;
- -- Given C, the entity for a discriminant or component, build an
- -- assignment for the corresponding field values. The flag U_U
- -- signals the presence of an Unchecked_Union and forces the usage
- -- of the inferred discriminant value of C as the right hand side
- -- of the assignment.
-
- function Make_Field_Assigns (CI : List_Id) return List_Id;
- -- Given CI, a component items list, construct series of statements
- -- for fieldwise assignment of the corresponding components.
-
- --------------------
- -- Find_Component --
- --------------------
-
- function Find_Component
- (Typ : Entity_Id;
- Comp : Entity_Id) return Entity_Id
- is
- Utyp : constant Entity_Id := Underlying_Type (Typ);
- C : Entity_Id;
-
- begin
- C := First_Entity (Utyp);
- while Present (C) loop
- if Chars (C) = Chars (Comp) then
- return C;
- end if;
-
- Next_Entity (C);
- end loop;
-
- raise Program_Error;
- end Find_Component;
-
- --------------------------------
- -- Make_Component_List_Assign --
- --------------------------------
-
- function Make_Component_List_Assign
- (CL : Node_Id;
- U_U : Boolean := False) return List_Id
- is
- CI : constant List_Id := Component_Items (CL);
- VP : constant Node_Id := Variant_Part (CL);
-
- Alts : List_Id;
- DC : Node_Id;
- DCH : List_Id;
- Expr : Node_Id;
- Result : List_Id;
- V : Node_Id;
-
- begin
- Result := Make_Field_Assigns (CI);
-
- if Present (VP) then
- V := First_Non_Pragma (Variants (VP));
- Alts := New_List;
- while Present (V) loop
- DCH := New_List;
- DC := First (Discrete_Choices (V));
- while Present (DC) loop
- Append_To (DCH, New_Copy_Tree (DC));
- Next (DC);
- end loop;
-
- Append_To (Alts,
- Make_Case_Statement_Alternative (Loc,
- Discrete_Choices => DCH,
- Statements =>
- Make_Component_List_Assign (Component_List (V))));
- Next_Non_Pragma (V);
- end loop;
-
- -- If we have an Unchecked_Union, use the value of the inferred
- -- discriminant of the variant part expression as the switch
- -- for the case statement. The case statement may later be
- -- folded.
-
- if U_U then
- Expr :=
- New_Copy (Get_Discriminant_Value (
- Entity (Name (VP)),
- Etype (Rhs),
- Discriminant_Constraint (Etype (Rhs))));
- else
- Expr :=
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr (Rhs),
- Selector_Name =>
- Make_Identifier (Loc, Chars (Name (VP))));
- end if;
-
- Append_To (Result,
- Make_Case_Statement (Loc,
- Expression => Expr,
- Alternatives => Alts));
- end if;
-
- return Result;
- end Make_Component_List_Assign;
-
- -----------------------
- -- Make_Field_Assign --
- -----------------------
-
- function Make_Field_Assign
- (C : Entity_Id;
- U_U : Boolean := False) return Node_Id
- is
- A : Node_Id;
- Expr : Node_Id;
-
- begin
- -- In the case of an Unchecked_Union, use the discriminant
- -- constraint value as on the right hand side of the assignment.
-
- if U_U then
- Expr :=
- New_Copy (Get_Discriminant_Value (C,
- Etype (Rhs),
- Discriminant_Constraint (Etype (Rhs))));
- else
- Expr :=
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr (Rhs),
- Selector_Name => New_Occurrence_Of (C, Loc));
- end if;
-
- A :=
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr (Lhs),
- Selector_Name =>
- New_Occurrence_Of (Find_Component (L_Typ, C), Loc)),
- Expression => Expr);
-
- -- Set Assignment_OK, so discriminants can be assigned
-
- Set_Assignment_OK (Name (A), True);
-
- if Componentwise_Assignment (N)
- and then Nkind (Name (A)) = N_Selected_Component
- and then Chars (Selector_Name (Name (A))) = Name_uParent
- then
- Set_Componentwise_Assignment (A);
- end if;
-
- return A;
- end Make_Field_Assign;
-
- ------------------------
- -- Make_Field_Assigns --
- ------------------------
-
- function Make_Field_Assigns (CI : List_Id) return List_Id is
- Item : Node_Id;
- Result : List_Id;
-
- begin
- Item := First (CI);
- Result := New_List;
-
- while Present (Item) loop
-
- -- Look for components, but exclude _tag field assignment if
- -- the special Componentwise_Assignment flag is set.
-
- if Nkind (Item) = N_Component_Declaration
- and then not (Is_Tag (Defining_Identifier (Item))
- and then Componentwise_Assignment (N))
- then
- Append_To
- (Result, Make_Field_Assign (Defining_Identifier (Item)));
- end if;
-
- Next (Item);
- end loop;
-
- return Result;
- end Make_Field_Assigns;
-
- -- Start of processing for Expand_Assign_Record
-
- begin
- -- Note that we use the base types for this processing. This results
- -- in some extra work in the constrained case, but the change of
- -- representation case is so unusual that it is not worth the effort.
-
- -- First copy the discriminants. This is done unconditionally. It
- -- is required in the unconstrained left side case, and also in the
- -- case where this assignment was constructed during the expansion
- -- of a type conversion (since initialization of discriminants is
- -- suppressed in this case). It is unnecessary but harmless in
- -- other cases.
-
- if Has_Discriminants (L_Typ) then
- F := First_Discriminant (R_Typ);
- while Present (F) loop
-
- -- If we are expanding the initialization of a derived record
- -- that constrains or renames discriminants of the parent, we
- -- must use the corresponding discriminant in the parent.
-
- declare
- CF : Entity_Id;
-
- begin
- if Inside_Init_Proc
- and then Present (Corresponding_Discriminant (F))
- then
- CF := Corresponding_Discriminant (F);
- else
- CF := F;
- end if;
-
- if Is_Unchecked_Union (Base_Type (R_Typ)) then
-
- -- Within an initialization procedure this is the
- -- assignment to an unchecked union component, in which
- -- case there is no discriminant to initialize.
-
- if Inside_Init_Proc then
- null;
-
- else
- -- The assignment is part of a conversion from a
- -- derived unchecked union type with an inferable
- -- discriminant, to a parent type.
-
- Insert_Action (N, Make_Field_Assign (CF, True));
- end if;
-
- else
- Insert_Action (N, Make_Field_Assign (CF));
- end if;
-
- Next_Discriminant (F);
- end;
- end loop;
- end if;
-
- -- We know the underlying type is a record, but its current view
- -- may be private. We must retrieve the usable record declaration.
-
- if Nkind_In (Decl, N_Private_Type_Declaration,
- N_Private_Extension_Declaration)
- and then Present (Full_View (R_Typ))
- then
- RDef := Type_Definition (Declaration_Node (Full_View (R_Typ)));
- else
- RDef := Type_Definition (Decl);
- end if;
-
- if Nkind (RDef) = N_Derived_Type_Definition then
- RDef := Record_Extension_Part (RDef);
- end if;
-
- if Nkind (RDef) = N_Record_Definition
- and then Present (Component_List (RDef))
- then
- if Is_Unchecked_Union (R_Typ) then
- Insert_Actions (N,
- Make_Component_List_Assign (Component_List (RDef), True));
- else
- Insert_Actions
- (N, Make_Component_List_Assign (Component_List (RDef)));
- end if;
-
- Rewrite (N, Make_Null_Statement (Loc));
- end if;
- end;
- end Expand_Assign_Record;
-
- -----------------------------------
- -- Expand_N_Assignment_Statement --
- -----------------------------------
-
- -- This procedure implements various cases where an assignment statement
- -- cannot just be passed on to the back end in untransformed state.
-
- procedure Expand_N_Assignment_Statement (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Crep : constant Boolean := Change_Of_Representation (N);
- Lhs : constant Node_Id := Name (N);
- Rhs : constant Node_Id := Expression (N);
- Typ : constant Entity_Id := Underlying_Type (Etype (Lhs));
- Exp : Node_Id;
-
- begin
- -- Special case to check right away, if the Componentwise_Assignment
- -- flag is set, this is a reanalysis from the expansion of the primitive
- -- assignment procedure for a tagged type, and all we need to do is to
- -- expand to assignment of components, because otherwise, we would get
- -- infinite recursion (since this looks like a tagged assignment which
- -- would normally try to *call* the primitive assignment procedure).
-
- if Componentwise_Assignment (N) then
- Expand_Assign_Record (N);
- return;
- end if;
-
- -- Defend against invalid subscripts on left side if we are in standard
- -- validity checking mode. No need to do this if we are checking all
- -- subscripts.
-
- -- Note that we do this right away, because there are some early return
- -- paths in this procedure, and this is required on all paths.
-
- if Validity_Checks_On
- and then Validity_Check_Default
- and then not Validity_Check_Subscripts
- then
- Check_Valid_Lvalue_Subscripts (Lhs);
- end if;
-
- -- Ada 2005 (AI-327): Handle assignment to priority of protected object
-
- -- Rewrite an assignment to X'Priority into a run-time call
-
- -- For example: X'Priority := New_Prio_Expr;
- -- ...is expanded into Set_Ceiling (X._Object, New_Prio_Expr);
-
- -- Note that although X'Priority is notionally an object, it is quite
- -- deliberately not defined as an aliased object in the RM. This means
- -- that it works fine to rewrite it as a call, without having to worry
- -- about complications that would other arise from X'Priority'Access,
- -- which is illegal, because of the lack of aliasing.
-
- if Ada_Version >= Ada_2005 then
- declare
- Call : Node_Id;
- Conctyp : Entity_Id;
- Ent : Entity_Id;
- Subprg : Entity_Id;
- RT_Subprg_Name : Node_Id;
-
- begin
- -- Handle chains of renamings
-
- Ent := Name (N);
- while Nkind (Ent) in N_Has_Entity
- and then Present (Entity (Ent))
- and then Present (Renamed_Object (Entity (Ent)))
- loop
- Ent := Renamed_Object (Entity (Ent));
- end loop;
-
- -- The attribute Priority applied to protected objects has been
- -- previously expanded into a call to the Get_Ceiling run-time
- -- subprogram.
-
- if Nkind (Ent) = N_Function_Call
- and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
- or else
- Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling))
- then
- -- Look for the enclosing concurrent type
-
- Conctyp := Current_Scope;
- while not Is_Concurrent_Type (Conctyp) loop
- Conctyp := Scope (Conctyp);
- end loop;
-
- pragma Assert (Is_Protected_Type (Conctyp));
-
- -- Generate the first actual of the call
-
- Subprg := Current_Scope;
- while not Present (Protected_Body_Subprogram (Subprg)) loop
- Subprg := Scope (Subprg);
- end loop;
-
- -- Select the appropriate run-time call
-
- if Number_Entries (Conctyp) = 0 then
- RT_Subprg_Name :=
- New_Reference_To (RTE (RE_Set_Ceiling), Loc);
- else
- RT_Subprg_Name :=
- New_Reference_To (RTE (RO_PE_Set_Ceiling), Loc);
- end if;
-
- Call :=
- Make_Procedure_Call_Statement (Loc,
- Name => RT_Subprg_Name,
- Parameter_Associations => New_List (
- New_Copy_Tree (First (Parameter_Associations (Ent))),
- Relocate_Node (Expression (N))));
-
- Rewrite (N, Call);
- Analyze (N);
- return;
- end if;
- end;
- end if;
-
- -- Deal with assignment checks unless suppressed
-
- if not Suppress_Assignment_Checks (N) then
-
- -- First deal with generation of range check if required
-
- if Do_Range_Check (Rhs) then
- Set_Do_Range_Check (Rhs, False);
- Generate_Range_Check (Rhs, Typ, CE_Range_Check_Failed);
- end if;
-
- -- Then generate predicate check if required
-
- Apply_Predicate_Check (Rhs, Typ);
- end if;
-
- -- Check for a special case where a high level transformation is
- -- required. If we have either of:
-
- -- P.field := rhs;
- -- P (sub) := rhs;
-
- -- where P is a reference to a bit packed array, then we have to unwind
- -- the assignment. The exact meaning of being a reference to a bit
- -- packed array is as follows:
-
- -- An indexed component whose prefix is a bit packed array is a
- -- reference to a bit packed array.
-
- -- An indexed component or selected component whose prefix is a
- -- reference to a bit packed array is itself a reference ot a
- -- bit packed array.
-
- -- The required transformation is
-
- -- Tnn : prefix_type := P;
- -- Tnn.field := rhs;
- -- P := Tnn;
-
- -- or
-
- -- Tnn : prefix_type := P;
- -- Tnn (subscr) := rhs;
- -- P := Tnn;
-
- -- Since P is going to be evaluated more than once, any subscripts
- -- in P must have their evaluation forced.
-
- if Nkind_In (Lhs, N_Indexed_Component, N_Selected_Component)
- and then Is_Ref_To_Bit_Packed_Array (Prefix (Lhs))
- then
- declare
- BPAR_Expr : constant Node_Id := Relocate_Node (Prefix (Lhs));
- BPAR_Typ : constant Entity_Id := Etype (BPAR_Expr);
- Tnn : constant Entity_Id :=
- Make_Temporary (Loc, 'T', BPAR_Expr);
-
- begin
- -- Insert the post assignment first, because we want to copy the
- -- BPAR_Expr tree before it gets analyzed in the context of the
- -- pre assignment. Note that we do not analyze the post assignment
- -- yet (we cannot till we have completed the analysis of the pre
- -- assignment). As usual, the analysis of this post assignment
- -- will happen on its own when we "run into" it after finishing
- -- the current assignment.
-
- Insert_After (N,
- Make_Assignment_Statement (Loc,
- Name => New_Copy_Tree (BPAR_Expr),
- Expression => New_Occurrence_Of (Tnn, Loc)));
-
- -- At this stage BPAR_Expr is a reference to a bit packed array
- -- where the reference was not expanded in the original tree,
- -- since it was on the left side of an assignment. But in the
- -- pre-assignment statement (the object definition), BPAR_Expr
- -- will end up on the right hand side, and must be reexpanded. To
- -- achieve this, we reset the analyzed flag of all selected and
- -- indexed components down to the actual indexed component for
- -- the packed array.
-
- Exp := BPAR_Expr;
- loop
- Set_Analyzed (Exp, False);
-
- if Nkind_In
- (Exp, N_Selected_Component, N_Indexed_Component)
- then
- Exp := Prefix (Exp);
- else
- exit;
- end if;
- end loop;
-
- -- Now we can insert and analyze the pre-assignment
-
- -- If the right-hand side requires a transient scope, it has
- -- already been placed on the stack. However, the declaration is
- -- inserted in the tree outside of this scope, and must reflect
- -- the proper scope for its variable. This awkward bit is forced
- -- by the stricter scope discipline imposed by GCC 2.97.
-
- declare
- Uses_Transient_Scope : constant Boolean :=
- Scope_Is_Transient
- and then N = Node_To_Be_Wrapped;
-
- begin
- if Uses_Transient_Scope then
- Push_Scope (Scope (Current_Scope));
- end if;
-
- Insert_Before_And_Analyze (N,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Tnn,
- Object_Definition => New_Occurrence_Of (BPAR_Typ, Loc),
- Expression => BPAR_Expr));
-
- if Uses_Transient_Scope then
- Pop_Scope;
- end if;
- end;
-
- -- Now fix up the original assignment and continue processing
-
- Rewrite (Prefix (Lhs),
- New_Occurrence_Of (Tnn, Loc));
-
- -- We do not need to reanalyze that assignment, and we do not need
- -- to worry about references to the temporary, but we do need to
- -- make sure that the temporary is not marked as a true constant
- -- since we now have a generated assignment to it!
-
- Set_Is_True_Constant (Tnn, False);
- end;
- end if;
-
- -- When we have the appropriate type of aggregate in the expression (it
- -- has been determined during analysis of the aggregate by setting the
- -- delay flag), let's perform in place assignment and thus avoid
- -- creating a temporary.
-
- if Is_Delayed_Aggregate (Rhs) then
- Convert_Aggr_In_Assignment (N);
- Rewrite (N, Make_Null_Statement (Loc));
- Analyze (N);
- return;
- end if;
-
- -- Apply discriminant check if required. If Lhs is an access type to a
- -- designated type with discriminants, we must always check.
-
- if Has_Discriminants (Etype (Lhs)) then
-
- -- Skip discriminant check if change of representation. Will be
- -- done when the change of representation is expanded out.
-
- if not Crep then
- Apply_Discriminant_Check (Rhs, Etype (Lhs), Lhs);
- end if;
-
- -- If the type is private without discriminants, and the full type
- -- has discriminants (necessarily with defaults) a check may still be
- -- necessary if the Lhs is aliased. The private discriminants must be
- -- visible to build the discriminant constraints.
-
- -- Only an explicit dereference that comes from source indicates
- -- aliasing. Access to formals of protected operations and entries
- -- create dereferences but are not semantic aliasings.
-
- elsif Is_Private_Type (Etype (Lhs))
- and then Has_Discriminants (Typ)
- and then Nkind (Lhs) = N_Explicit_Dereference
- and then Comes_From_Source (Lhs)
- then
- declare
- Lt : constant Entity_Id := Etype (Lhs);
- Ubt : Entity_Id := Base_Type (Typ);
-
- begin
- -- In the case of an expander-generated record subtype whose base
- -- type still appears private, Typ will have been set to that
- -- private type rather than the underlying record type (because
- -- Underlying type will have returned the record subtype), so it's
- -- necessary to apply Underlying_Type again to the base type to
- -- get the record type we need for the discriminant check. Such
- -- subtypes can be created for assignments in certain cases, such
- -- as within an instantiation passed this kind of private type.
- -- It would be good to avoid this special test, but making changes
- -- to prevent this odd form of record subtype seems difficult. ???
-
- if Is_Private_Type (Ubt) then
- Ubt := Underlying_Type (Ubt);
- end if;
-
- Set_Etype (Lhs, Ubt);
- Rewrite (Rhs, OK_Convert_To (Base_Type (Ubt), Rhs));
- Apply_Discriminant_Check (Rhs, Ubt, Lhs);
- Set_Etype (Lhs, Lt);
- end;
-
- -- If the Lhs has a private type with unknown discriminants, it
- -- may have a full view with discriminants, but those are nameable
- -- only in the underlying type, so convert the Rhs to it before
- -- potential checking.
-
- elsif Has_Unknown_Discriminants (Base_Type (Etype (Lhs)))
- and then Has_Discriminants (Typ)
- then
- Rewrite (Rhs, OK_Convert_To (Base_Type (Typ), Rhs));
- Apply_Discriminant_Check (Rhs, Typ, Lhs);
-
- -- In the access type case, we need the same discriminant check, and
- -- also range checks if we have an access to constrained array.
-
- elsif Is_Access_Type (Etype (Lhs))
- and then Is_Constrained (Designated_Type (Etype (Lhs)))
- then
- if Has_Discriminants (Designated_Type (Etype (Lhs))) then
-
- -- Skip discriminant check if change of representation. Will be
- -- done when the change of representation is expanded out.
-
- if not Crep then
- Apply_Discriminant_Check (Rhs, Etype (Lhs));
- end if;
-
- elsif Is_Array_Type (Designated_Type (Etype (Lhs))) then
- Apply_Range_Check (Rhs, Etype (Lhs));
-
- if Is_Constrained (Etype (Lhs)) then
- Apply_Length_Check (Rhs, Etype (Lhs));
- end if;
-
- if Nkind (Rhs) = N_Allocator then
- declare
- Target_Typ : constant Entity_Id := Etype (Expression (Rhs));
- C_Es : Check_Result;
-
- begin
- C_Es :=
- Get_Range_Checks
- (Lhs,
- Target_Typ,
- Etype (Designated_Type (Etype (Lhs))));
-
- Insert_Range_Checks
- (C_Es,
- N,
- Target_Typ,
- Sloc (Lhs),
- Lhs);
- end;
- end if;
- end if;
-
- -- Apply range check for access type case
-
- elsif Is_Access_Type (Etype (Lhs))
- and then Nkind (Rhs) = N_Allocator
- and then Nkind (Expression (Rhs)) = N_Qualified_Expression
- then
- Analyze_And_Resolve (Expression (Rhs));
- Apply_Range_Check
- (Expression (Rhs), Designated_Type (Etype (Lhs)));
- end if;
-
- -- Ada 2005 (AI-231): Generate the run-time check
-
- if Is_Access_Type (Typ)
- and then Can_Never_Be_Null (Etype (Lhs))
- and then not Can_Never_Be_Null (Etype (Rhs))
- then
- Apply_Constraint_Check (Rhs, Etype (Lhs));
- end if;
-
- -- Ada 2012 (AI05-148): Update current accessibility level if Rhs is a
- -- stand-alone obj of an anonymous access type.
-
- if Is_Access_Type (Typ)
- and then Is_Entity_Name (Lhs)
- and then Present (Effective_Extra_Accessibility (Entity (Lhs))) then
- declare
- function Lhs_Entity return Entity_Id;
- -- Look through renames to find the underlying entity.
- -- For assignment to a rename, we don't care about the
- -- Enclosing_Dynamic_Scope of the rename declaration.
-
- ----------------
- -- Lhs_Entity --
- ----------------
-
- function Lhs_Entity return Entity_Id is
- Result : Entity_Id := Entity (Lhs);
-
- begin
- while Present (Renamed_Object (Result)) loop
-
- -- Renamed_Object must return an Entity_Name here
- -- because of preceding "Present (E_E_A (...))" test.
-
- Result := Entity (Renamed_Object (Result));
- end loop;
-
- return Result;
- end Lhs_Entity;
-
- -- Local Declarations
-
- Access_Check : constant Node_Id :=
- Make_Raise_Program_Error (Loc,
- Condition =>
- Make_Op_Gt (Loc,
- Left_Opnd =>
- Dynamic_Accessibility_Level (Rhs),
- Right_Opnd =>
- Make_Integer_Literal (Loc,
- Intval =>
- Scope_Depth
- (Enclosing_Dynamic_Scope
- (Lhs_Entity)))),
- Reason => PE_Accessibility_Check_Failed);
-
- Access_Level_Update : constant Node_Id :=
- Make_Assignment_Statement (Loc,
- Name =>
- New_Occurrence_Of
- (Effective_Extra_Accessibility
- (Entity (Lhs)), Loc),
- Expression =>
- Dynamic_Accessibility_Level (Rhs));
-
- begin
- if not Accessibility_Checks_Suppressed (Entity (Lhs)) then
- Insert_Action (N, Access_Check);
- end if;
-
- Insert_Action (N, Access_Level_Update);
- end;
- end if;
-
- -- Case of assignment to a bit packed array element. If there is a
- -- change of representation this must be expanded into components,
- -- otherwise this is a bit-field assignment.
-
- if Nkind (Lhs) = N_Indexed_Component
- and then Is_Bit_Packed_Array (Etype (Prefix (Lhs)))
- then
- -- Normal case, no change of representation
-
- if not Crep then
- Expand_Bit_Packed_Element_Set (N);
- return;
-
- -- Change of representation case
-
- else
- -- Generate the following, to force component-by-component
- -- assignments in an efficient way. Otherwise each component
- -- will require a temporary and two bit-field manipulations.
-
- -- T1 : Elmt_Type;
- -- T1 := RhS;
- -- Lhs := T1;
-
- declare
- Tnn : constant Entity_Id := Make_Temporary (Loc, 'T');
- Stats : List_Id;
-
- begin
- Stats :=
- New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => Tnn,
- Object_Definition =>
- New_Occurrence_Of (Etype (Lhs), Loc)),
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Tnn, Loc),
- Expression => Relocate_Node (Rhs)),
- Make_Assignment_Statement (Loc,
- Name => Relocate_Node (Lhs),
- Expression => New_Occurrence_Of (Tnn, Loc)));
-
- Insert_Actions (N, Stats);
- Rewrite (N, Make_Null_Statement (Loc));
- Analyze (N);
- end;
- end if;
-
- -- Build-in-place function call case. Note that we're not yet doing
- -- build-in-place for user-written assignment statements (the assignment
- -- here came from an aggregate.)
-
- elsif Ada_Version >= Ada_2005
- and then Is_Build_In_Place_Function_Call (Rhs)
- then
- Make_Build_In_Place_Call_In_Assignment (N, Rhs);
-
- elsif Is_Tagged_Type (Typ) and then Is_Value_Type (Etype (Lhs)) then
-
- -- Nothing to do for valuetypes
- -- ??? Set_Scope_Is_Transient (False);
-
- return;
-
- elsif Is_Tagged_Type (Typ)
- or else (Needs_Finalization (Typ) and then not Is_Array_Type (Typ))
- then
- Tagged_Case : declare
- L : List_Id := No_List;
- Expand_Ctrl_Actions : constant Boolean := not No_Ctrl_Actions (N);
-
- begin
- -- In the controlled case, we ensure that function calls are
- -- evaluated before finalizing the target. In all cases, it makes
- -- the expansion easier if the side-effects are removed first.
-
- Remove_Side_Effects (Lhs);
- Remove_Side_Effects (Rhs);
-
- -- Avoid recursion in the mechanism
-
- Set_Analyzed (N);
-
- -- If dispatching assignment, we need to dispatch to _assign
-
- if Is_Class_Wide_Type (Typ)
-
- -- If the type is tagged, we may as well use the predefined
- -- primitive assignment. This avoids inlining a lot of code
- -- and in the class-wide case, the assignment is replaced
- -- by a dispatching call to _assign. It is suppressed in the
- -- case of assignments created by the expander that correspond
- -- to initializations, where we do want to copy the tag
- -- (Expand_Ctrl_Actions flag is set True in this case). It is
- -- also suppressed if restriction No_Dispatching_Calls is in
- -- force because in that case predefined primitives are not
- -- generated.
-
- or else (Is_Tagged_Type (Typ)
- and then not Is_Value_Type (Etype (Lhs))
- and then Chars (Current_Scope) /= Name_uAssign
- and then Expand_Ctrl_Actions
- and then
- not Restriction_Active (No_Dispatching_Calls))
- then
- if Is_Limited_Type (Typ) then
-
- -- This can happen in an instance when the formal is an
- -- extension of a limited interface, and the actual is
- -- limited. This is an error according to AI05-0087, but
- -- is not caught at the point of instantiation in earlier
- -- versions.
-
- -- This is wrong, error messages cannot be issued during
- -- expansion, since they would be missed in -gnatc mode ???
-
- Error_Msg_N ("assignment not available on limited type", N);
- return;
- end if;
-
- -- Fetch the primitive op _assign and proper type to call it.
- -- Because of possible conflicts between private and full view,
- -- fetch the proper type directly from the operation profile.
-
- declare
- Op : constant Entity_Id :=
- Find_Prim_Op (Typ, Name_uAssign);
- F_Typ : Entity_Id := Etype (First_Formal (Op));
-
- begin
- -- If the assignment is dispatching, make sure to use the
- -- proper type.
-
- if Is_Class_Wide_Type (Typ) then
- F_Typ := Class_Wide_Type (F_Typ);
- end if;
-
- L := New_List;
-
- -- In case of assignment to a class-wide tagged type, before
- -- the assignment we generate run-time check to ensure that
- -- the tags of source and target match.
-
- if Is_Class_Wide_Type (Typ)
- and then Is_Tagged_Type (Typ)
- and then Is_Tagged_Type (Underlying_Type (Etype (Rhs)))
- then
- Append_To (L,
- Make_Raise_Constraint_Error (Loc,
- Condition =>
- Make_Op_Ne (Loc,
- Left_Opnd =>
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr (Lhs),
- Selector_Name =>
- Make_Identifier (Loc, Name_uTag)),
- Right_Opnd =>
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr (Rhs),
- Selector_Name =>
- Make_Identifier (Loc, Name_uTag))),
- Reason => CE_Tag_Check_Failed));
- end if;
-
- declare
- Left_N : Node_Id := Duplicate_Subexpr (Lhs);
- Right_N : Node_Id := Duplicate_Subexpr (Rhs);
-
- begin
- -- In order to dispatch the call to _assign the type of
- -- the actuals must match. Add conversion (if required).
-
- if Etype (Lhs) /= F_Typ then
- Left_N := Unchecked_Convert_To (F_Typ, Left_N);
- end if;
-
- if Etype (Rhs) /= F_Typ then
- Right_N := Unchecked_Convert_To (F_Typ, Right_N);
- end if;
-
- Append_To (L,
- Make_Procedure_Call_Statement (Loc,
- Name => New_Reference_To (Op, Loc),
- Parameter_Associations => New_List (
- Node1 => Left_N,
- Node2 => Right_N)));
- end;
- end;
-
- else
- L := Make_Tag_Ctrl_Assignment (N);
-
- -- We can't afford to have destructive Finalization Actions in
- -- the Self assignment case, so if the target and the source
- -- are not obviously different, code is generated to avoid the
- -- self assignment case:
-
- -- if lhs'address /= rhs'address then
- -- <code for controlled and/or tagged assignment>
- -- end if;
-
- -- Skip this if Restriction (No_Finalization) is active
-
- if not Statically_Different (Lhs, Rhs)
- and then Expand_Ctrl_Actions
- and then not Restriction_Active (No_Finalization)
- then
- L := New_List (
- Make_Implicit_If_Statement (N,
- Condition =>
- Make_Op_Ne (Loc,
- Left_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => Duplicate_Subexpr (Lhs),
- Attribute_Name => Name_Address),
-
- Right_Opnd =>
- Make_Attribute_Reference (Loc,
- Prefix => Duplicate_Subexpr (Rhs),
- Attribute_Name => Name_Address)),
-
- Then_Statements => L));
- end if;
-
- -- We need to set up an exception handler for implementing
- -- 7.6.1(18). The remaining adjustments are tackled by the
- -- implementation of adjust for record_controllers (see
- -- s-finimp.adb).
-
- -- This is skipped if we have no finalization
-
- if Expand_Ctrl_Actions
- and then not Restriction_Active (No_Finalization)
- then
- L := New_List (
- Make_Block_Statement (Loc,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => L,
- Exception_Handlers => New_List (
- Make_Handler_For_Ctrl_Operation (Loc)))));
- end if;
- end if;
-
- Rewrite (N,
- Make_Block_Statement (Loc,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc, Statements => L)));
-
- -- If no restrictions on aborts, protect the whole assignment
- -- for controlled objects as per 9.8(11).
-
- if Needs_Finalization (Typ)
- and then Expand_Ctrl_Actions
- and then Abort_Allowed
- then
- declare
- Blk : constant Entity_Id :=
- New_Internal_Entity
- (E_Block, Current_Scope, Sloc (N), 'B');
-
- begin
- Set_Scope (Blk, Current_Scope);
- Set_Etype (Blk, Standard_Void_Type);
- Set_Identifier (N, New_Occurrence_Of (Blk, Sloc (N)));
-
- Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
- Set_At_End_Proc (Handled_Statement_Sequence (N),
- New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
- Expand_At_End_Handler
- (Handled_Statement_Sequence (N), Blk);
- end;
- end if;
-
- -- N has been rewritten to a block statement for which it is
- -- known by construction that no checks are necessary: analyze
- -- it with all checks suppressed.
-
- Analyze (N, Suppress => All_Checks);
- return;
- end Tagged_Case;
-
- -- Array types
-
- elsif Is_Array_Type (Typ) then
- declare
- Actual_Rhs : Node_Id := Rhs;
-
- begin
- while Nkind_In (Actual_Rhs, N_Type_Conversion,
- N_Qualified_Expression)
- loop
- Actual_Rhs := Expression (Actual_Rhs);
- end loop;
-
- Expand_Assign_Array (N, Actual_Rhs);
- return;
- end;
-
- -- Record types
-
- elsif Is_Record_Type (Typ) then
- Expand_Assign_Record (N);
- return;
-
- -- Scalar types. This is where we perform the processing related to the
- -- requirements of (RM 13.9.1(9-11)) concerning the handling of invalid
- -- scalar values.
-
- elsif Is_Scalar_Type (Typ) then
-
- -- Case where right side is known valid
-
- if Expr_Known_Valid (Rhs) then
-
- -- Here the right side is valid, so it is fine. The case to deal
- -- with is when the left side is a local variable reference whose
- -- value is not currently known to be valid. If this is the case,
- -- and the assignment appears in an unconditional context, then
- -- we can mark the left side as now being valid if one of these
- -- conditions holds:
-
- -- The expression of the right side has Do_Range_Check set so
- -- that we know a range check will be performed. Note that it
- -- can be the case that a range check is omitted because we
- -- make the assumption that we can assume validity for operands
- -- appearing in the right side in determining whether a range
- -- check is required
-
- -- The subtype of the right side matches the subtype of the
- -- left side. In this case, even though we have not checked
- -- the range of the right side, we know it is in range of its
- -- subtype if the expression is valid.
-
- if Is_Local_Variable_Reference (Lhs)
- and then not Is_Known_Valid (Entity (Lhs))
- and then In_Unconditional_Context (N)
- then
- if Do_Range_Check (Rhs)
- or else Etype (Lhs) = Etype (Rhs)
- then
- Set_Is_Known_Valid (Entity (Lhs), True);
- end if;
- end if;
-
- -- Case where right side may be invalid in the sense of the RM
- -- reference above. The RM does not require that we check for the
- -- validity on an assignment, but it does require that the assignment
- -- of an invalid value not cause erroneous behavior.
-
- -- The general approach in GNAT is to use the Is_Known_Valid flag
- -- to avoid the need for validity checking on assignments. However
- -- in some cases, we have to do validity checking in order to make
- -- sure that the setting of this flag is correct.
-
- else
- -- Validate right side if we are validating copies
-
- if Validity_Checks_On
- and then Validity_Check_Copies
- then
- -- Skip this if left hand side is an array or record component
- -- and elementary component validity checks are suppressed.
-
- if Nkind_In (Lhs, N_Selected_Component, N_Indexed_Component)
- and then not Validity_Check_Components
- then
- null;
- else
- Ensure_Valid (Rhs);
- end if;
-
- -- We can propagate this to the left side where appropriate
-
- if Is_Local_Variable_Reference (Lhs)
- and then not Is_Known_Valid (Entity (Lhs))
- and then In_Unconditional_Context (N)
- then
- Set_Is_Known_Valid (Entity (Lhs), True);
- end if;
-
- -- Otherwise check to see what should be done
-
- -- If left side is a local variable, then we just set its flag to
- -- indicate that its value may no longer be valid, since we are
- -- copying a potentially invalid value.
-
- elsif Is_Local_Variable_Reference (Lhs) then
- Set_Is_Known_Valid (Entity (Lhs), False);
-
- -- Check for case of a nonlocal variable on the left side which
- -- is currently known to be valid. In this case, we simply ensure
- -- that the right side is valid. We only play the game of copying
- -- validity status for local variables, since we are doing this
- -- statically, not by tracing the full flow graph.
-
- elsif Is_Entity_Name (Lhs)
- and then Is_Known_Valid (Entity (Lhs))
- then
- -- Note: If Validity_Checking mode is set to none, we ignore
- -- the Ensure_Valid call so don't worry about that case here.
-
- Ensure_Valid (Rhs);
-
- -- In all other cases, we can safely copy an invalid value without
- -- worrying about the status of the left side. Since it is not a
- -- variable reference it will not be considered
- -- as being known to be valid in any case.
-
- else
- null;
- end if;
- end if;
- end if;
-
- exception
- when RE_Not_Available =>
- return;
- end Expand_N_Assignment_Statement;
-
- ------------------------------
- -- Expand_N_Block_Statement --
- ------------------------------
-
- -- Encode entity names defined in block statement
-
- procedure Expand_N_Block_Statement (N : Node_Id) is
- begin
- Qualify_Entity_Names (N);
- end Expand_N_Block_Statement;
-
- -----------------------------
- -- Expand_N_Case_Statement --
- -----------------------------
-
- procedure Expand_N_Case_Statement (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Expr : constant Node_Id := Expression (N);
- Alt : Node_Id;
- Len : Nat;
- Cond : Node_Id;
- Choice : Node_Id;
- Chlist : List_Id;
-
- begin
- -- Check for the situation where we know at compile time which branch
- -- will be taken
-
- if Compile_Time_Known_Value (Expr) then
- Alt := Find_Static_Alternative (N);
-
- Process_Statements_For_Controlled_Objects (Alt);
-
- -- Move statements from this alternative after the case statement.
- -- They are already analyzed, so will be skipped by the analyzer.
-
- Insert_List_After (N, Statements (Alt));
-
- -- That leaves the case statement as a shell. So now we can kill all
- -- other alternatives in the case statement.
-
- Kill_Dead_Code (Expression (N));
-
- declare
- Dead_Alt : Node_Id;
-
- begin
- -- Loop through case alternatives, skipping pragmas, and skipping
- -- the one alternative that we select (and therefore retain).
-
- Dead_Alt := First (Alternatives (N));
- while Present (Dead_Alt) loop
- if Dead_Alt /= Alt
- and then Nkind (Dead_Alt) = N_Case_Statement_Alternative
- then
- Kill_Dead_Code (Statements (Dead_Alt), Warn_On_Deleted_Code);
- end if;
-
- Next (Dead_Alt);
- end loop;
- end;
-
- Rewrite (N, Make_Null_Statement (Loc));
- return;
- end if;
-
- -- Here if the choice is not determined at compile time
-
- declare
- Last_Alt : constant Node_Id := Last (Alternatives (N));
-
- Others_Present : Boolean;
- Others_Node : Node_Id;
-
- Then_Stms : List_Id;
- Else_Stms : List_Id;
-
- begin
- if Nkind (First (Discrete_Choices (Last_Alt))) = N_Others_Choice then
- Others_Present := True;
- Others_Node := Last_Alt;
- else
- Others_Present := False;
- end if;
-
- -- First step is to worry about possible invalid argument. The RM
- -- requires (RM 5.4(13)) that if the result is invalid (e.g. it is
- -- outside the base range), then Constraint_Error must be raised.
-
- -- Case of validity check required (validity checks are on, the
- -- expression is not known to be valid, and the case statement
- -- comes from source -- no need to validity check internally
- -- generated case statements).
-
- if Validity_Check_Default then
- Ensure_Valid (Expr);
- end if;
-
- -- If there is only a single alternative, just replace it with the
- -- sequence of statements since obviously that is what is going to
- -- be executed in all cases.
-
- Len := List_Length (Alternatives (N));
-
- if Len = 1 then
-
- -- We still need to evaluate the expression if it has any side
- -- effects.
-
- Remove_Side_Effects (Expression (N));
-
- Alt := First (Alternatives (N));
-
- Process_Statements_For_Controlled_Objects (Alt);
- Insert_List_After (N, Statements (Alt));
-
- -- That leaves the case statement as a shell. The alternative that
- -- will be executed is reset to a null list. So now we can kill
- -- the entire case statement.
-
- Kill_Dead_Code (Expression (N));
- Rewrite (N, Make_Null_Statement (Loc));
- return;
-
- -- An optimization. If there are only two alternatives, and only
- -- a single choice, then rewrite the whole case statement as an
- -- if statement, since this can result in subsequent optimizations.
- -- This helps not only with case statements in the source of a
- -- simple form, but also with generated code (discriminant check
- -- functions in particular)
-
- elsif Len = 2 then
- Chlist := Discrete_Choices (First (Alternatives (N)));
-
- if List_Length (Chlist) = 1 then
- Choice := First (Chlist);
-
- Then_Stms := Statements (First (Alternatives (N)));
- Else_Stms := Statements (Last (Alternatives (N)));
-
- -- For TRUE, generate "expression", not expression = true
-
- if Nkind (Choice) = N_Identifier
- and then Entity (Choice) = Standard_True
- then
- Cond := Expression (N);
-
- -- For FALSE, generate "expression" and switch then/else
-
- elsif Nkind (Choice) = N_Identifier
- and then Entity (Choice) = Standard_False
- then
- Cond := Expression (N);
- Else_Stms := Statements (First (Alternatives (N)));
- Then_Stms := Statements (Last (Alternatives (N)));
-
- -- For a range, generate "expression in range"
-
- elsif Nkind (Choice) = N_Range
- or else (Nkind (Choice) = N_Attribute_Reference
- and then Attribute_Name (Choice) = Name_Range)
- or else (Is_Entity_Name (Choice)
- and then Is_Type (Entity (Choice)))
- or else Nkind (Choice) = N_Subtype_Indication
- then
- Cond :=
- Make_In (Loc,
- Left_Opnd => Expression (N),
- Right_Opnd => Relocate_Node (Choice));
-
- -- For any other subexpression "expression = value"
-
- else
- Cond :=
- Make_Op_Eq (Loc,
- Left_Opnd => Expression (N),
- Right_Opnd => Relocate_Node (Choice));
- end if;
-
- -- Now rewrite the case as an IF
-
- Rewrite (N,
- Make_If_Statement (Loc,
- Condition => Cond,
- Then_Statements => Then_Stms,
- Else_Statements => Else_Stms));
- Analyze (N);
- return;
- end if;
- end if;
-
- -- If the last alternative is not an Others choice, replace it with
- -- an N_Others_Choice. Note that we do not bother to call Analyze on
- -- the modified case statement, since it's only effect would be to
- -- compute the contents of the Others_Discrete_Choices which is not
- -- needed by the back end anyway.
-
- -- The reason we do this is that the back end always needs some
- -- default for a switch, so if we have not supplied one in the
- -- processing above for validity checking, then we need to supply
- -- one here.
-
- if not Others_Present then
- Others_Node := Make_Others_Choice (Sloc (Last_Alt));
- Set_Others_Discrete_Choices
- (Others_Node, Discrete_Choices (Last_Alt));
- Set_Discrete_Choices (Last_Alt, New_List (Others_Node));
- end if;
-
- Alt := First (Alternatives (N));
- while Present (Alt)
- and then Nkind (Alt) = N_Case_Statement_Alternative
- loop
- Process_Statements_For_Controlled_Objects (Alt);
- Next (Alt);
- end loop;
- end;
- end Expand_N_Case_Statement;
-
- -----------------------------
- -- Expand_N_Exit_Statement --
- -----------------------------
-
- -- The only processing required is to deal with a possible C/Fortran
- -- boolean value used as the condition for the exit statement.
-
- procedure Expand_N_Exit_Statement (N : Node_Id) is
- begin
- Adjust_Condition (Condition (N));
- end Expand_N_Exit_Statement;
-
- -----------------------------
- -- Expand_N_Goto_Statement --
- -----------------------------
-
- -- Add poll before goto if polling active
-
- procedure Expand_N_Goto_Statement (N : Node_Id) is
- begin
- Generate_Poll_Call (N);
- end Expand_N_Goto_Statement;
-
- ---------------------------
- -- Expand_N_If_Statement --
- ---------------------------
-
- -- First we deal with the case of C and Fortran convention boolean values,
- -- with zero/non-zero semantics.
-
- -- Second, we deal with the obvious rewriting for the cases where the
- -- condition of the IF is known at compile time to be True or False.
-
- -- Third, we remove elsif parts which have non-empty Condition_Actions and
- -- rewrite as independent if statements. For example:
-
- -- if x then xs
- -- elsif y then ys
- -- ...
- -- end if;
-
- -- becomes
- --
- -- if x then xs
- -- else
- -- <<condition actions of y>>
- -- if y then ys
- -- ...
- -- end if;
- -- end if;
-
- -- This rewriting is needed if at least one elsif part has a non-empty
- -- Condition_Actions list. We also do the same processing if there is a
- -- constant condition in an elsif part (in conjunction with the first
- -- processing step mentioned above, for the recursive call made to deal
- -- with the created inner if, this deals with properly optimizing the
- -- cases of constant elsif conditions).
-
- procedure Expand_N_If_Statement (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Hed : Node_Id;
- E : Node_Id;
- New_If : Node_Id;
-
- Warn_If_Deleted : constant Boolean :=
- Warn_On_Deleted_Code and then Comes_From_Source (N);
- -- Indicates whether we want warnings when we delete branches of the
- -- if statement based on constant condition analysis. We never want
- -- these warnings for expander generated code.
-
- begin
- Process_Statements_For_Controlled_Objects (N);
-
- Adjust_Condition (Condition (N));
-
- -- The following loop deals with constant conditions for the IF. We
- -- need a loop because as we eliminate False conditions, we grab the
- -- first elsif condition and use it as the primary condition.
-
- while Compile_Time_Known_Value (Condition (N)) loop
-
- -- If condition is True, we can simply rewrite the if statement now
- -- by replacing it by the series of then statements.
-
- if Is_True (Expr_Value (Condition (N))) then
-
- -- All the else parts can be killed
-
- Kill_Dead_Code (Elsif_Parts (N), Warn_If_Deleted);
- Kill_Dead_Code (Else_Statements (N), Warn_If_Deleted);
-
- Hed := Remove_Head (Then_Statements (N));
- Insert_List_After (N, Then_Statements (N));
- Rewrite (N, Hed);
- return;
-
- -- If condition is False, then we can delete the condition and
- -- the Then statements
-
- else
- -- We do not delete the condition if constant condition warnings
- -- are enabled, since otherwise we end up deleting the desired
- -- warning. Of course the backend will get rid of this True/False
- -- test anyway, so nothing is lost here.
-
- if not Constant_Condition_Warnings then
- Kill_Dead_Code (Condition (N));
- end if;
-
- Kill_Dead_Code (Then_Statements (N), Warn_If_Deleted);
-
- -- If there are no elsif statements, then we simply replace the
- -- entire if statement by the sequence of else statements.
-
- if No (Elsif_Parts (N)) then
- if No (Else_Statements (N))
- or else Is_Empty_List (Else_Statements (N))
- then
- Rewrite (N,
- Make_Null_Statement (Sloc (N)));
- else
- Hed := Remove_Head (Else_Statements (N));
- Insert_List_After (N, Else_Statements (N));
- Rewrite (N, Hed);
- end if;
-
- return;
-
- -- If there are elsif statements, the first of them becomes the
- -- if/then section of the rebuilt if statement This is the case
- -- where we loop to reprocess this copied condition.
-
- else
- Hed := Remove_Head (Elsif_Parts (N));
- Insert_Actions (N, Condition_Actions (Hed));
- Set_Condition (N, Condition (Hed));
- Set_Then_Statements (N, Then_Statements (Hed));
-
- -- Hed might have been captured as the condition determining
- -- the current value for an entity. Now it is detached from
- -- the tree, so a Current_Value pointer in the condition might
- -- need to be updated.
-
- Set_Current_Value_Condition (N);
-
- if Is_Empty_List (Elsif_Parts (N)) then
- Set_Elsif_Parts (N, No_List);
- end if;
- end if;
- end if;
- end loop;
-
- -- Loop through elsif parts, dealing with constant conditions and
- -- possible expression actions that are present.
-
- if Present (Elsif_Parts (N)) then
- E := First (Elsif_Parts (N));
- while Present (E) loop
- Process_Statements_For_Controlled_Objects (E);
-
- Adjust_Condition (Condition (E));
-
- -- If there are condition actions, then rewrite the if statement
- -- as indicated above. We also do the same rewrite for a True or
- -- False condition. The further processing of this constant
- -- condition is then done by the recursive call to expand the
- -- newly created if statement
-
- if Present (Condition_Actions (E))
- or else Compile_Time_Known_Value (Condition (E))
- then
- -- Note this is not an implicit if statement, since it is part
- -- of an explicit if statement in the source (or of an implicit
- -- if statement that has already been tested).
-
- New_If :=
- Make_If_Statement (Sloc (E),
- Condition => Condition (E),
- Then_Statements => Then_Statements (E),
- Elsif_Parts => No_List,
- Else_Statements => Else_Statements (N));
-
- -- Elsif parts for new if come from remaining elsif's of parent
-
- while Present (Next (E)) loop
- if No (Elsif_Parts (New_If)) then
- Set_Elsif_Parts (New_If, New_List);
- end if;
-
- Append (Remove_Next (E), Elsif_Parts (New_If));
- end loop;
-
- Set_Else_Statements (N, New_List (New_If));
-
- if Present (Condition_Actions (E)) then
- Insert_List_Before (New_If, Condition_Actions (E));
- end if;
-
- Remove (E);
-
- if Is_Empty_List (Elsif_Parts (N)) then
- Set_Elsif_Parts (N, No_List);
- end if;
-
- Analyze (New_If);
- return;
-
- -- No special processing for that elsif part, move to next
-
- else
- Next (E);
- end if;
- end loop;
- end if;
-
- -- Some more optimizations applicable if we still have an IF statement
-
- if Nkind (N) /= N_If_Statement then
- return;
- end if;
-
- -- Another optimization, special cases that can be simplified
-
- -- if expression then
- -- return true;
- -- else
- -- return false;
- -- end if;
-
- -- can be changed to:
-
- -- return expression;
-
- -- and
-
- -- if expression then
- -- return false;
- -- else
- -- return true;
- -- end if;
-
- -- can be changed to:
-
- -- return not (expression);
-
- -- Only do these optimizations if we are at least at -O1 level and
- -- do not do them if control flow optimizations are suppressed.
-
- if Optimization_Level > 0
- and then not Opt.Suppress_Control_Flow_Optimizations
- then
- if Nkind (N) = N_If_Statement
- and then No (Elsif_Parts (N))
- and then Present (Else_Statements (N))
- and then List_Length (Then_Statements (N)) = 1
- and then List_Length (Else_Statements (N)) = 1
- then
- declare
- Then_Stm : constant Node_Id := First (Then_Statements (N));
- Else_Stm : constant Node_Id := First (Else_Statements (N));
-
- begin
- if Nkind (Then_Stm) = N_Simple_Return_Statement
- and then
- Nkind (Else_Stm) = N_Simple_Return_Statement
- then
- declare
- Then_Expr : constant Node_Id := Expression (Then_Stm);
- Else_Expr : constant Node_Id := Expression (Else_Stm);
-
- begin
- if Nkind (Then_Expr) = N_Identifier
- and then
- Nkind (Else_Expr) = N_Identifier
- then
- if Entity (Then_Expr) = Standard_True
- and then Entity (Else_Expr) = Standard_False
- then
- Rewrite (N,
- Make_Simple_Return_Statement (Loc,
- Expression => Relocate_Node (Condition (N))));
- Analyze (N);
- return;
-
- elsif Entity (Then_Expr) = Standard_False
- and then Entity (Else_Expr) = Standard_True
- then
- Rewrite (N,
- Make_Simple_Return_Statement (Loc,
- Expression =>
- Make_Op_Not (Loc,
- Right_Opnd =>
- Relocate_Node (Condition (N)))));
- Analyze (N);
- return;
- end if;
- end if;
- end;
- end if;
- end;
- end if;
- end if;
- end Expand_N_If_Statement;
-
- --------------------------
- -- Expand_Iterator_Loop --
- --------------------------
-
- procedure Expand_Iterator_Loop (N : Node_Id) is
- Isc : constant Node_Id := Iteration_Scheme (N);
- I_Spec : constant Node_Id := Iterator_Specification (Isc);
- Id : constant Entity_Id := Defining_Identifier (I_Spec);
- Loc : constant Source_Ptr := Sloc (N);
-
- Container : constant Node_Id := Name (I_Spec);
- Container_Typ : constant Entity_Id := Base_Type (Etype (Container));
- Cursor : Entity_Id;
- Iterator : Entity_Id;
- New_Loop : Node_Id;
- Stats : List_Id := Statements (N);
-
- begin
- -- Processing for arrays
-
- if Is_Array_Type (Container_Typ) then
-
- -- for Element of Array loop
- --
- -- This case requires an internally generated cursor to iterate over
- -- the array.
-
- if Of_Present (I_Spec) then
- Iterator := Make_Temporary (Loc, 'C');
-
- -- Generate:
- -- Element : Component_Type renames Container (Iterator);
-
- Prepend_To (Stats,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Id,
- Subtype_Mark =>
- New_Reference_To (Component_Type (Container_Typ), Loc),
- Name =>
- Make_Indexed_Component (Loc,
- Prefix => Relocate_Node (Container),
- Expressions => New_List (
- New_Reference_To (Iterator, Loc)))));
-
- -- for Index in Array loop
-
- -- This case utilizes the already given iterator name
-
- else
- Iterator := Id;
- end if;
-
- -- Generate:
- -- for Iterator in [reverse] Container'Range loop
- -- Element : Component_Type renames Container (Iterator);
- -- -- for the "of" form
-
- -- <original loop statements>
- -- end loop;
-
- New_Loop :=
- Make_Loop_Statement (Loc,
- Iteration_Scheme =>
- Make_Iteration_Scheme (Loc,
- Loop_Parameter_Specification =>
- Make_Loop_Parameter_Specification (Loc,
- Defining_Identifier => Iterator,
- Discrete_Subtype_Definition =>
- Make_Attribute_Reference (Loc,
- Prefix => Relocate_Node (Container),
- Attribute_Name => Name_Range),
- Reverse_Present => Reverse_Present (I_Spec))),
- Statements => Stats,
- End_Label => Empty);
-
- -- Processing for containers
-
- else
- -- For an "of" iterator the name is a container expression, which
- -- is transformed into a call to the default iterator.
-
- -- For an iterator of the form "in" the name is a function call
- -- that delivers an iterator type.
-
- -- In both cases, analysis of the iterator has introduced an object
- -- declaration to capture the domain, so that Container is an entity.
-
- -- The for loop is expanded into a while loop which uses a container
- -- specific cursor to desgnate each element.
-
- -- Iter : Iterator_Type := Container.Iterate;
- -- Cursor : Cursor_type := First (Iter);
- -- while Has_Element (Iter) loop
- -- declare
- -- -- The block is added when Element_Type is controlled
-
- -- Obj : Pack.Element_Type := Element (Cursor);
- -- -- for the "of" loop form
- -- begin
- -- <original loop statements>
- -- end;
-
- -- Cursor := Iter.Next (Cursor);
- -- end loop;
-
- -- If "reverse" is present, then the initialization of the cursor
- -- uses Last and the step becomes Prev. Pack is the name of the
- -- scope where the container package is instantiated.
-
- declare
- Element_Type : constant Entity_Id := Etype (Id);
- Iter_Type : Entity_Id;
- Pack : Entity_Id;
- Decl : Node_Id;
- Name_Init : Name_Id;
- Name_Step : Name_Id;
-
- begin
- -- The type of the iterator is the return type of the Iterate
- -- function used. For the "of" form this is the default iterator
- -- for the type, otherwise it is the type of the explicit
- -- function used in the iterator specification. The most common
- -- case will be an Iterate function in the container package.
-
- -- The primitive operations of the container type may not be
- -- use-visible, so we introduce the name of the enclosing package
- -- in the declarations below. The Iterator type is declared in a
- -- an instance within the container package itself.
-
- -- If the container type is a derived type, the cursor type is
- -- found in the package of the parent type.
-
- if Is_Derived_Type (Container_Typ) then
- Pack := Scope (Root_Type (Container_Typ));
- else
- Pack := Scope (Container_Typ);
- end if;
-
- Iter_Type := Etype (Name (I_Spec));
-
- -- The "of" case uses an internally generated cursor whose type
- -- is found in the container package. The domain of iteration
- -- is expanded into a call to the default Iterator function, but
- -- this expansion does not take place in quantified expressions
- -- that are analyzed with expansion disabled, and in that case the
- -- type of the iterator must be obtained from the aspect.
-
- if Of_Present (I_Spec) then
- declare
- Default_Iter : constant Entity_Id :=
- Entity
- (Find_Aspect
- (Etype (Container),
- Aspect_Default_Iterator));
-
- Container_Arg : Node_Id;
- Ent : Entity_Id;
-
- begin
- Cursor := Make_Temporary (Loc, 'I');
-
- -- For an container element iterator, the iterator type
- -- is obtained from the corresponding aspect.
-
- Iter_Type := Etype (Default_Iter);
- Pack := Scope (Iter_Type);
-
- -- Rewrite domain of iteration as a call to the default
- -- iterator for the container type. If the container is
- -- a derived type and the aspect is inherited, convert
- -- container to parent type. The Cursor type is also
- -- inherited from the scope of the parent.
-
- if Base_Type (Etype (Container)) =
- Base_Type (Etype (First_Formal (Default_Iter)))
- then
- Container_Arg := New_Copy_Tree (Container);
-
- else
- Container_Arg :=
- Make_Type_Conversion (Loc,
- Subtype_Mark =>
- New_Occurrence_Of
- (Etype (First_Formal (Default_Iter)), Loc),
- Expression => New_Copy_Tree (Container));
- end if;
-
- Rewrite (Name (I_Spec),
- Make_Function_Call (Loc,
- Name => New_Occurrence_Of (Default_Iter, Loc),
- Parameter_Associations =>
- New_List (Container_Arg)));
- Analyze_And_Resolve (Name (I_Spec));
-
- -- Find cursor type in proper iterator package, which is an
- -- instantiation of Iterator_Interfaces.
-
- Ent := First_Entity (Pack);
- while Present (Ent) loop
- if Chars (Ent) = Name_Cursor then
- Set_Etype (Cursor, Etype (Ent));
- exit;
- end if;
- Next_Entity (Ent);
- end loop;
-
- -- Generate:
- -- Id : Element_Type renames Container (Cursor);
- -- This assumes that the container type has an indexing
- -- operation with Cursor. The check that this operation
- -- exists is performed in Check_Container_Indexing.
-
- Decl :=
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Id,
- Subtype_Mark =>
- New_Reference_To (Element_Type, Loc),
- Name =>
- Make_Indexed_Component (Loc,
- Prefix => Relocate_Node (Container_Arg),
- Expressions =>
- New_List (New_Occurrence_Of (Cursor, Loc))));
-
- -- If the container holds controlled objects, wrap the loop
- -- statements and element renaming declaration with a block.
- -- This ensures that the result of Element (Cusor) is
- -- cleaned up after each iteration of the loop.
-
- if Needs_Finalization (Element_Type) then
-
- -- Generate:
- -- declare
- -- Id : Element_Type := Element (curosr);
- -- begin
- -- <original loop statements>
- -- end;
-
- Stats := New_List (
- Make_Block_Statement (Loc,
- Declarations => New_List (Decl),
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => Stats)));
-
- -- Elements do not need finalization
-
- else
- Prepend_To (Stats, Decl);
- end if;
- end;
-
- -- X in Iterate (S) : type of iterator is type of explicitly
- -- given Iterate function, and the loop variable is the cursor.
- -- It will be assigned in the loop and must be a variable.
-
- else
- Cursor := Id;
- Set_Ekind (Cursor, E_Variable);
- end if;
-
- Iterator := Make_Temporary (Loc, 'I');
-
- -- Determine the advancement and initialization steps for the
- -- cursor.
-
- -- Analysis of the expanded loop will verify that the container
- -- has a reverse iterator.
-
- if Reverse_Present (I_Spec) then
- Name_Init := Name_Last;
- Name_Step := Name_Previous;
-
- else
- Name_Init := Name_First;
- Name_Step := Name_Next;
- end if;
-
- -- For both iterator forms, add a call to the step operation to
- -- advance the cursor. Generate:
-
- -- Cursor := Iterator.Next (Cursor);
-
- -- or else
-
- -- Cursor := Next (Cursor);
-
- declare
- Rhs : Node_Id;
-
- begin
- Rhs :=
- Make_Function_Call (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => New_Reference_To (Iterator, Loc),
- Selector_Name => Make_Identifier (Loc, Name_Step)),
- Parameter_Associations => New_List (
- New_Reference_To (Cursor, Loc)));
-
- Append_To (Stats,
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Cursor, Loc),
- Expression => Rhs));
- end;
-
- -- Generate:
- -- while Iterator.Has_Element loop
- -- <Stats>
- -- end loop;
-
- -- Has_Element is the second actual in the iterator package
-
- New_Loop :=
- Make_Loop_Statement (Loc,
- Iteration_Scheme =>
- Make_Iteration_Scheme (Loc,
- Condition =>
- Make_Function_Call (Loc,
- Name =>
- New_Occurrence_Of (
- Next_Entity (First_Entity (Pack)), Loc),
- Parameter_Associations =>
- New_List (
- New_Reference_To (Cursor, Loc)))),
-
- Statements => Stats,
- End_Label => Empty);
-
- -- Create the declarations for Iterator and cursor and insert them
- -- before the source loop. Given that the domain of iteration is
- -- already an entity, the iterator is just a renaming of that
- -- entity. Possible optimization ???
- -- Generate:
-
- -- I : Iterator_Type renames Container;
- -- C : Cursor_Type := Container.[First | Last];
-
- Insert_Action (N,
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => Iterator,
- Subtype_Mark => New_Occurrence_Of (Iter_Type, Loc),
- Name => Relocate_Node (Name (I_Spec))));
-
- -- Create declaration for cursor
-
- declare
- Decl : Node_Id;
-
- begin
- Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Cursor,
- Object_Definition =>
- New_Occurrence_Of (Etype (Cursor), Loc),
- Expression =>
- Make_Selected_Component (Loc,
- Prefix => New_Reference_To (Iterator, Loc),
- Selector_Name =>
- Make_Identifier (Loc, Name_Init)));
-
- -- The cursor is only modified in expanded code, so it appears
- -- as unassigned to the warning machinery. We must suppress
- -- this spurious warning explicitly.
-
- Set_Warnings_Off (Cursor);
- Set_Assignment_OK (Decl);
-
- Insert_Action (N, Decl);
- end;
-
- -- If the range of iteration is given by a function call that
- -- returns a container, the finalization actions have been saved
- -- in the Condition_Actions of the iterator. Insert them now at
- -- the head of the loop.
-
- if Present (Condition_Actions (Isc)) then
- Insert_List_Before (N, Condition_Actions (Isc));
- end if;
- end;
- end if;
-
- Rewrite (N, New_Loop);
- Analyze (N);
- end Expand_Iterator_Loop;
-
- -----------------------------
- -- Expand_N_Loop_Statement --
- -----------------------------
-
- -- 1. Remove null loop entirely
- -- 2. Deal with while condition for C/Fortran boolean
- -- 3. Deal with loops with a non-standard enumeration type range
- -- 4. Deal with while loops where Condition_Actions is set
- -- 5. Deal with loops over predicated subtypes
- -- 6. Deal with loops with iterators over arrays and containers
- -- 7. Insert polling call if required
-
- procedure Expand_N_Loop_Statement (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Isc : constant Node_Id := Iteration_Scheme (N);
-
- begin
- -- Delete null loop
-
- if Is_Null_Loop (N) then
- Rewrite (N, Make_Null_Statement (Loc));
- return;
- end if;
-
- Process_Statements_For_Controlled_Objects (N);
-
- -- Deal with condition for C/Fortran Boolean
-
- if Present (Isc) then
- Adjust_Condition (Condition (Isc));
- end if;
-
- -- Generate polling call
-
- if Is_Non_Empty_List (Statements (N)) then
- Generate_Poll_Call (First (Statements (N)));
- end if;
-
- -- Nothing more to do for plain loop with no iteration scheme
-
- if No (Isc) then
- null;
-
- -- Case of for loop (Loop_Parameter_Specification present)
-
- -- Note: we do not have to worry about validity checking of the for loop
- -- range bounds here, since they were frozen with constant declarations
- -- and it is during that process that the validity checking is done.
-
- elsif Present (Loop_Parameter_Specification (Isc)) then
- declare
- LPS : constant Node_Id := Loop_Parameter_Specification (Isc);
- Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
- Ltype : constant Entity_Id := Etype (Loop_Id);
- Btype : constant Entity_Id := Base_Type (Ltype);
- Expr : Node_Id;
- New_Id : Entity_Id;
-
- begin
- -- Deal with loop over predicates
-
- if Is_Discrete_Type (Ltype)
- and then Present (Predicate_Function (Ltype))
- then
- Expand_Predicated_Loop (N);
-
- -- Handle the case where we have a for loop with the range type
- -- being an enumeration type with non-standard representation.
- -- In this case we expand:
-
- -- for x in [reverse] a .. b loop
- -- ...
- -- end loop;
-
- -- to
-
- -- for xP in [reverse] integer
- -- range etype'Pos (a) .. etype'Pos (b)
- -- loop
- -- declare
- -- x : constant etype := Pos_To_Rep (xP);
- -- begin
- -- ...
- -- end;
- -- end loop;
-
- elsif Is_Enumeration_Type (Btype)
- and then Present (Enum_Pos_To_Rep (Btype))
- then
- New_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_External_Name (Chars (Loop_Id), 'P'));
-
- -- If the type has a contiguous representation, successive
- -- values can be generated as offsets from the first literal.
-
- if Has_Contiguous_Rep (Btype) then
- Expr :=
- Unchecked_Convert_To (Btype,
- Make_Op_Add (Loc,
- Left_Opnd =>
- Make_Integer_Literal (Loc,
- Enumeration_Rep (First_Literal (Btype))),
- Right_Opnd => New_Reference_To (New_Id, Loc)));
- else
- -- Use the constructed array Enum_Pos_To_Rep
-
- Expr :=
- Make_Indexed_Component (Loc,
- Prefix =>
- New_Reference_To (Enum_Pos_To_Rep (Btype), Loc),
- Expressions =>
- New_List (New_Reference_To (New_Id, Loc)));
- end if;
-
- Rewrite (N,
- Make_Loop_Statement (Loc,
- Identifier => Identifier (N),
-
- Iteration_Scheme =>
- Make_Iteration_Scheme (Loc,
- Loop_Parameter_Specification =>
- Make_Loop_Parameter_Specification (Loc,
- Defining_Identifier => New_Id,
- Reverse_Present => Reverse_Present (LPS),
-
- Discrete_Subtype_Definition =>
- Make_Subtype_Indication (Loc,
-
- Subtype_Mark =>
- New_Reference_To (Standard_Natural, Loc),
-
- Constraint =>
- Make_Range_Constraint (Loc,
- Range_Expression =>
- Make_Range (Loc,
-
- Low_Bound =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Reference_To (Btype, Loc),
-
- Attribute_Name => Name_Pos,
-
- Expressions => New_List (
- Relocate_Node
- (Type_Low_Bound (Ltype)))),
-
- High_Bound =>
- Make_Attribute_Reference (Loc,
- Prefix =>
- New_Reference_To (Btype, Loc),
-
- Attribute_Name => Name_Pos,
-
- Expressions => New_List (
- Relocate_Node
- (Type_High_Bound
- (Ltype))))))))),
-
- Statements => New_List (
- Make_Block_Statement (Loc,
- Declarations => New_List (
- Make_Object_Declaration (Loc,
- Defining_Identifier => Loop_Id,
- Constant_Present => True,
- Object_Definition =>
- New_Reference_To (Ltype, Loc),
- Expression => Expr)),
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => Statements (N)))),
-
- End_Label => End_Label (N)));
-
- -- The loop parameter's entity must be removed from the loop
- -- scope's entity list, since it will now be located in the
- -- new block scope. Any other entities already associated with
- -- the loop scope, such as the loop parameter's subtype, will
- -- remain there.
-
- pragma Assert (First_Entity (Scope (Loop_Id)) = Loop_Id);
- Set_First_Entity (Scope (Loop_Id), Next_Entity (Loop_Id));
-
- if Last_Entity (Scope (Loop_Id)) = Loop_Id then
- Set_Last_Entity (Scope (Loop_Id), Empty);
- end if;
-
- Analyze (N);
-
- -- Nothing to do with other cases of for loops
-
- else
- null;
- end if;
- end;
-
- -- Second case, if we have a while loop with Condition_Actions set, then
- -- we change it into a plain loop:
-
- -- while C loop
- -- ...
- -- end loop;
-
- -- changed to:
-
- -- loop
- -- <<condition actions>>
- -- exit when not C;
- -- ...
- -- end loop
-
- elsif Present (Isc)
- and then Present (Condition_Actions (Isc))
- and then Present (Condition (Isc))
- then
- declare
- ES : Node_Id;
-
- begin
- ES :=
- Make_Exit_Statement (Sloc (Condition (Isc)),
- Condition =>
- Make_Op_Not (Sloc (Condition (Isc)),
- Right_Opnd => Condition (Isc)));
-
- Prepend (ES, Statements (N));
- Insert_List_Before (ES, Condition_Actions (Isc));
-
- -- This is not an implicit loop, since it is generated in response
- -- to the loop statement being processed. If this is itself
- -- implicit, the restriction has already been checked. If not,
- -- it is an explicit loop.
-
- Rewrite (N,
- Make_Loop_Statement (Sloc (N),
- Identifier => Identifier (N),
- Statements => Statements (N),
- End_Label => End_Label (N)));
-
- Analyze (N);
- end;
-
- -- Here to deal with iterator case
-
- elsif Present (Isc)
- and then Present (Iterator_Specification (Isc))
- then
- Expand_Iterator_Loop (N);
- end if;
- end Expand_N_Loop_Statement;
-
- ----------------------------
- -- Expand_Predicated_Loop --
- ----------------------------
-
- -- Note: the expander can handle generation of loops over predicated
- -- subtypes for both the dynamic and static cases. Depending on what
- -- we decide is allowed in Ada 2012 mode and/or extensions allowed
- -- mode, the semantic analyzer may disallow one or both forms.
-
- procedure Expand_Predicated_Loop (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Isc : constant Node_Id := Iteration_Scheme (N);
- LPS : constant Node_Id := Loop_Parameter_Specification (Isc);
- Loop_Id : constant Entity_Id := Defining_Identifier (LPS);
- Ltype : constant Entity_Id := Etype (Loop_Id);
- Stat : constant List_Id := Static_Predicate (Ltype);
- Stmts : constant List_Id := Statements (N);
-
- begin
- -- Case of iteration over non-static predicate, should not be possible
- -- since this is not allowed by the semantics and should have been
- -- caught during analysis of the loop statement.
-
- if No (Stat) then
- raise Program_Error;
-
- -- If the predicate list is empty, that corresponds to a predicate of
- -- False, in which case the loop won't run at all, and we rewrite the
- -- entire loop as a null statement.
-
- elsif Is_Empty_List (Stat) then
- Rewrite (N, Make_Null_Statement (Loc));
- Analyze (N);
-
- -- For expansion over a static predicate we generate the following
-
- -- declare
- -- J : Ltype := min-val;
- -- begin
- -- loop
- -- body
- -- case J is
- -- when endpoint => J := startpoint;
- -- when endpoint => J := startpoint;
- -- ...
- -- when max-val => exit;
- -- when others => J := Lval'Succ (J);
- -- end case;
- -- end loop;
- -- end;
-
- -- To make this a little clearer, let's take a specific example:
-
- -- type Int is range 1 .. 10;
- -- subtype L is Int with
- -- predicate => L in 3 | 10 | 5 .. 7;
- -- ...
- -- for L in StaticP loop
- -- Put_Line ("static:" & J'Img);
- -- end loop;
-
- -- In this case, the loop is transformed into
-
- -- begin
- -- J : L := 3;
- -- loop
- -- body
- -- case J is
- -- when 3 => J := 5;
- -- when 7 => J := 10;
- -- when 10 => exit;
- -- when others => J := L'Succ (J);
- -- end case;
- -- end loop;
- -- end;
-
- else
- Static_Predicate : declare
- S : Node_Id;
- D : Node_Id;
- P : Node_Id;
- Alts : List_Id;
- Cstm : Node_Id;
-
- function Lo_Val (N : Node_Id) return Node_Id;
- -- Given static expression or static range, returns an identifier
- -- whose value is the low bound of the expression value or range.
-
- function Hi_Val (N : Node_Id) return Node_Id;
- -- Given static expression or static range, returns an identifier
- -- whose value is the high bound of the expression value or range.
-
- ------------
- -- Hi_Val --
- ------------
-
- function Hi_Val (N : Node_Id) return Node_Id is
- begin
- if Is_Static_Expression (N) then
- return New_Copy (N);
- else
- pragma Assert (Nkind (N) = N_Range);
- return New_Copy (High_Bound (N));
- end if;
- end Hi_Val;
-
- ------------
- -- Lo_Val --
- ------------
-
- function Lo_Val (N : Node_Id) return Node_Id is
- begin
- if Is_Static_Expression (N) then
- return New_Copy (N);
- else
- pragma Assert (Nkind (N) = N_Range);
- return New_Copy (Low_Bound (N));
- end if;
- end Lo_Val;
-
- -- Start of processing for Static_Predicate
-
- begin
- -- Convert loop identifier to normal variable and reanalyze it so
- -- that this conversion works. We have to use the same defining
- -- identifier, since there may be references in the loop body.
-
- Set_Analyzed (Loop_Id, False);
- Set_Ekind (Loop_Id, E_Variable);
-
- -- Loop to create branches of case statement
-
- Alts := New_List;
- P := First (Stat);
- while Present (P) loop
- if No (Next (P)) then
- S := Make_Exit_Statement (Loc);
- else
- S :=
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Loop_Id, Loc),
- Expression => Lo_Val (Next (P)));
- Set_Suppress_Assignment_Checks (S);
- end if;
-
- Append_To (Alts,
- Make_Case_Statement_Alternative (Loc,
- Statements => New_List (S),
- Discrete_Choices => New_List (Hi_Val (P))));
-
- Next (P);
- end loop;
-
- -- Add others choice
-
- S :=
- Make_Assignment_Statement (Loc,
- Name => New_Occurrence_Of (Loop_Id, Loc),
- Expression =>
- Make_Attribute_Reference (Loc,
- Prefix => New_Occurrence_Of (Ltype, Loc),
- Attribute_Name => Name_Succ,
- Expressions => New_List (
- New_Occurrence_Of (Loop_Id, Loc))));
- Set_Suppress_Assignment_Checks (S);
-
- Append_To (Alts,
- Make_Case_Statement_Alternative (Loc,
- Discrete_Choices => New_List (Make_Others_Choice (Loc)),
- Statements => New_List (S)));
-
- -- Construct case statement and append to body statements
-
- Cstm :=
- Make_Case_Statement (Loc,
- Expression => New_Occurrence_Of (Loop_Id, Loc),
- Alternatives => Alts);
- Append_To (Stmts, Cstm);
-
- -- Rewrite the loop
-
- D :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => Loop_Id,
- Object_Definition => New_Occurrence_Of (Ltype, Loc),
- Expression => Lo_Val (First (Stat)));
- Set_Suppress_Assignment_Checks (D);
-
- Rewrite (N,
- Make_Block_Statement (Loc,
- Declarations => New_List (D),
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (
- Make_Loop_Statement (Loc,
- Statements => Stmts,
- End_Label => Empty)))));
-
- Analyze (N);
- end Static_Predicate;
- end if;
- end Expand_Predicated_Loop;
-
- ------------------------------
- -- Make_Tag_Ctrl_Assignment --
- ------------------------------
-
- function Make_Tag_Ctrl_Assignment (N : Node_Id) return List_Id is
- Asn : constant Node_Id := Relocate_Node (N);
- L : constant Node_Id := Name (N);
- Loc : constant Source_Ptr := Sloc (N);
- Res : constant List_Id := New_List;
- T : constant Entity_Id := Underlying_Type (Etype (L));
-
- Comp_Asn : constant Boolean := Is_Fully_Repped_Tagged_Type (T);
- Ctrl_Act : constant Boolean := Needs_Finalization (T)
- and then not No_Ctrl_Actions (N);
- Save_Tag : constant Boolean := Is_Tagged_Type (T)
- and then not Comp_Asn
- and then not No_Ctrl_Actions (N)
- and then Tagged_Type_Expansion;
- -- Tags are not saved and restored when VM_Target because VM tags are
- -- represented implicitly in objects.
-
- Next_Id : Entity_Id;
- Prev_Id : Entity_Id;
- Tag_Id : Entity_Id;
-
- begin
- -- Finalize the target of the assignment when controlled
-
- -- We have two exceptions here:
-
- -- 1. If we are in an init proc since it is an initialization more
- -- than an assignment.
-
- -- 2. If the left-hand side is a temporary that was not initialized
- -- (or the parent part of a temporary since it is the case in
- -- extension aggregates). Such a temporary does not come from
- -- source. We must examine the original node for the prefix, because
- -- it may be a component of an entry formal, in which case it has
- -- been rewritten and does not appear to come from source either.
-
- -- Case of init proc
-
- if not Ctrl_Act then
- null;
-
- -- The left hand side is an uninitialized temporary object
-
- elsif Nkind (L) = N_Type_Conversion
- and then Is_Entity_Name (Expression (L))
- and then Nkind (Parent (Entity (Expression (L)))) =
- N_Object_Declaration
- and then No_Initialization (Parent (Entity (Expression (L))))
- then
- null;
-
- else
- Append_To (Res,
- Make_Final_Call
- (Obj_Ref => Duplicate_Subexpr_No_Checks (L),
- Typ => Etype (L)));
- end if;
-
- -- Save the Tag in a local variable Tag_Id
-
- if Save_Tag then
- Tag_Id := Make_Temporary (Loc, 'A');
-
- Append_To (Res,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Tag_Id,
- Object_Definition => New_Reference_To (RTE (RE_Tag), Loc),
- Expression =>
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr_No_Checks (L),
- Selector_Name =>
- New_Reference_To (First_Tag_Component (T), Loc))));
-
- -- Otherwise Tag_Id is not used
-
- else
- Tag_Id := Empty;
- end if;
-
- -- Save the Prev and Next fields on .NET/JVM. This is not needed on non
- -- VM targets since the fields are not part of the object.
-
- if VM_Target /= No_VM
- and then Is_Controlled (T)
- then
- Prev_Id := Make_Temporary (Loc, 'P');
- Next_Id := Make_Temporary (Loc, 'N');
-
- -- Generate:
- -- Pnn : Root_Controlled_Ptr := Root_Controlled (L).Prev;
-
- Append_To (Res,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Prev_Id,
- Object_Definition =>
- New_Reference_To (RTE (RE_Root_Controlled_Ptr), Loc),
- Expression =>
- Make_Selected_Component (Loc,
- Prefix =>
- Unchecked_Convert_To
- (RTE (RE_Root_Controlled), New_Copy_Tree (L)),
- Selector_Name =>
- Make_Identifier (Loc, Name_Prev))));
-
- -- Generate:
- -- Nnn : Root_Controlled_Ptr := Root_Controlled (L).Next;
-
- Append_To (Res,
- Make_Object_Declaration (Loc,
- Defining_Identifier => Next_Id,
- Object_Definition =>
- New_Reference_To (RTE (RE_Root_Controlled_Ptr), Loc),
- Expression =>
- Make_Selected_Component (Loc,
- Prefix =>
- Unchecked_Convert_To
- (RTE (RE_Root_Controlled), New_Copy_Tree (L)),
- Selector_Name =>
- Make_Identifier (Loc, Name_Next))));
- end if;
-
- -- If the tagged type has a full rep clause, expand the assignment into
- -- component-wise assignments. Mark the node as unanalyzed in order to
- -- generate the proper code and propagate this scenario by setting a
- -- flag to avoid infinite recursion.
-
- if Comp_Asn then
- Set_Analyzed (Asn, False);
- Set_Componentwise_Assignment (Asn, True);
- end if;
-
- Append_To (Res, Asn);
-
- -- Restore the tag
-
- if Save_Tag then
- Append_To (Res,
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix => Duplicate_Subexpr_No_Checks (L),
- Selector_Name =>
- New_Reference_To (First_Tag_Component (T), Loc)),
- Expression => New_Reference_To (Tag_Id, Loc)));
- end if;
-
- -- Restore the Prev and Next fields on .NET/JVM
-
- if VM_Target /= No_VM
- and then Is_Controlled (T)
- then
- -- Generate:
- -- Root_Controlled (L).Prev := Prev_Id;
-
- Append_To (Res,
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix =>
- Unchecked_Convert_To
- (RTE (RE_Root_Controlled), New_Copy_Tree (L)),
- Selector_Name =>
- Make_Identifier (Loc, Name_Prev)),
- Expression => New_Reference_To (Prev_Id, Loc)));
-
- -- Generate:
- -- Root_Controlled (L).Next := Next_Id;
-
- Append_To (Res,
- Make_Assignment_Statement (Loc,
- Name =>
- Make_Selected_Component (Loc,
- Prefix =>
- Unchecked_Convert_To
- (RTE (RE_Root_Controlled), New_Copy_Tree (L)),
- Selector_Name => Make_Identifier (Loc, Name_Next)),
- Expression => New_Reference_To (Next_Id, Loc)));
- end if;
-
- -- Adjust the target after the assignment when controlled (not in the
- -- init proc since it is an initialization more than an assignment).
-
- if Ctrl_Act then
- Append_To (Res,
- Make_Adjust_Call
- (Obj_Ref => Duplicate_Subexpr_Move_Checks (L),
- Typ => Etype (L)));
- end if;
-
- return Res;
-
- exception
-
- -- Could use comment here ???
-
- when RE_Not_Available =>
- return Empty_List;
- end Make_Tag_Ctrl_Assignment;
-
-end Exp_Ch5;