aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.7/gcc/ada/a-cimutr.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.7/gcc/ada/a-cimutr.adb')
-rw-r--r--gcc-4.7/gcc/ada/a-cimutr.adb2786
1 files changed, 0 insertions, 2786 deletions
diff --git a/gcc-4.7/gcc/ada/a-cimutr.adb b/gcc-4.7/gcc/ada/a-cimutr.adb
deleted file mode 100644
index 050c0395d..000000000
--- a/gcc-4.7/gcc/ada/a-cimutr.adb
+++ /dev/null
@@ -1,2786 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT LIBRARY COMPONENTS --
--- --
--- ADA.CONTAINERS.INDEFINITE_MULTIWAY_TREES --
--- --
--- B o d y --
--- --
--- Copyright (C) 2004-2012, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- This unit was originally developed by Matthew J Heaney. --
-------------------------------------------------------------------------------
-
-with Ada.Unchecked_Deallocation;
-
-with System; use type System.Address;
-
-package body Ada.Containers.Indefinite_Multiway_Trees is
-
- --------------------
- -- Root_Iterator --
- --------------------
-
- type Root_Iterator is abstract new Limited_Controlled and
- Tree_Iterator_Interfaces.Forward_Iterator with
- record
- Container : Tree_Access;
- Subtree : Tree_Node_Access;
- end record;
-
- overriding procedure Finalize (Object : in out Root_Iterator);
-
- -----------------------
- -- Subtree_Iterator --
- -----------------------
-
- type Subtree_Iterator is new Root_Iterator with null record;
-
- overriding function First (Object : Subtree_Iterator) return Cursor;
-
- overriding function Next
- (Object : Subtree_Iterator;
- Position : Cursor) return Cursor;
-
- ---------------------
- -- Child_Iterator --
- ---------------------
-
- type Child_Iterator is new Root_Iterator and
- Tree_Iterator_Interfaces.Reversible_Iterator with null record;
-
- overriding function First (Object : Child_Iterator) return Cursor;
-
- overriding function Next
- (Object : Child_Iterator;
- Position : Cursor) return Cursor;
-
- overriding function Last (Object : Child_Iterator) return Cursor;
-
- overriding function Previous
- (Object : Child_Iterator;
- Position : Cursor) return Cursor;
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- function Root_Node (Container : Tree) return Tree_Node_Access;
-
- procedure Free_Element is
- new Ada.Unchecked_Deallocation (Element_Type, Element_Access);
-
- procedure Deallocate_Node (X : in out Tree_Node_Access);
-
- procedure Deallocate_Children
- (Subtree : Tree_Node_Access;
- Count : in out Count_Type);
-
- procedure Deallocate_Subtree
- (Subtree : in out Tree_Node_Access;
- Count : in out Count_Type);
-
- function Equal_Children
- (Left_Subtree, Right_Subtree : Tree_Node_Access) return Boolean;
-
- function Equal_Subtree
- (Left_Subtree, Right_Subtree : Tree_Node_Access) return Boolean;
-
- procedure Iterate_Children
- (Container : Tree_Access;
- Subtree : Tree_Node_Access;
- Process : not null access procedure (Position : Cursor));
-
- procedure Iterate_Subtree
- (Container : Tree_Access;
- Subtree : Tree_Node_Access;
- Process : not null access procedure (Position : Cursor));
-
- procedure Copy_Children
- (Source : Children_Type;
- Parent : Tree_Node_Access;
- Count : in out Count_Type);
-
- procedure Copy_Subtree
- (Source : Tree_Node_Access;
- Parent : Tree_Node_Access;
- Target : out Tree_Node_Access;
- Count : in out Count_Type);
-
- function Find_In_Children
- (Subtree : Tree_Node_Access;
- Item : Element_Type) return Tree_Node_Access;
-
- function Find_In_Subtree
- (Subtree : Tree_Node_Access;
- Item : Element_Type) return Tree_Node_Access;
-
- function Child_Count (Children : Children_Type) return Count_Type;
-
- function Subtree_Node_Count
- (Subtree : Tree_Node_Access) return Count_Type;
-
- function Is_Reachable (From, To : Tree_Node_Access) return Boolean;
-
- procedure Remove_Subtree (Subtree : Tree_Node_Access);
-
- procedure Insert_Subtree_Node
- (Subtree : Tree_Node_Access;
- Parent : Tree_Node_Access;
- Before : Tree_Node_Access);
-
- procedure Insert_Subtree_List
- (First : Tree_Node_Access;
- Last : Tree_Node_Access;
- Parent : Tree_Node_Access;
- Before : Tree_Node_Access);
-
- procedure Splice_Children
- (Target_Parent : Tree_Node_Access;
- Before : Tree_Node_Access;
- Source_Parent : Tree_Node_Access);
-
- ---------
- -- "=" --
- ---------
-
- function "=" (Left, Right : Tree) return Boolean is
- begin
- if Left'Address = Right'Address then
- return True;
- end if;
-
- return Equal_Children (Root_Node (Left), Root_Node (Right));
- end "=";
-
- ------------
- -- Adjust --
- ------------
-
- procedure Adjust (Container : in out Tree) is
- Source : constant Children_Type := Container.Root.Children;
- Source_Count : constant Count_Type := Container.Count;
- Target_Count : Count_Type;
-
- begin
- -- We first restore the target container to its default-initialized
- -- state, before we attempt any allocation, to ensure that invariants
- -- are preserved in the event that the allocation fails.
-
- Container.Root.Children := Children_Type'(others => null);
- Container.Busy := 0;
- Container.Lock := 0;
- Container.Count := 0;
-
- -- Copy_Children returns a count of the number of nodes that it
- -- allocates, but it works by incrementing the value that is passed in.
- -- We must therefore initialize the count value before calling
- -- Copy_Children.
-
- Target_Count := 0;
-
- -- Now we attempt the allocation of subtrees. The invariants are
- -- satisfied even if the allocation fails.
-
- Copy_Children (Source, Root_Node (Container), Target_Count);
- pragma Assert (Target_Count = Source_Count);
-
- Container.Count := Source_Count;
- end Adjust;
-
- procedure Adjust (Control : in out Reference_Control_Type) is
- begin
- if Control.Container /= null then
- declare
- C : Tree renames Control.Container.all;
- B : Natural renames C.Busy;
- L : Natural renames C.Lock;
- begin
- B := B + 1;
- L := L + 1;
- end;
- end if;
- end Adjust;
-
- -------------------
- -- Ancestor_Find --
- -------------------
-
- function Ancestor_Find
- (Position : Cursor;
- Item : Element_Type) return Cursor
- is
- R, N : Tree_Node_Access;
-
- begin
- if Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- -- Commented-out pending ARG ruling. ???
-
- -- if Position.Container /= Container'Unrestricted_Access then
- -- raise Program_Error with "Position cursor not in container";
- -- end if;
-
- -- AI-0136 says to raise PE if Position equals the root node. This does
- -- not seem correct, as this value is just the limiting condition of the
- -- search. For now we omit this check pending a ruling from the ARG.???
-
- -- if Is_Root (Position) then
- -- raise Program_Error with "Position cursor designates root";
- -- end if;
-
- R := Root_Node (Position.Container.all);
- N := Position.Node;
- while N /= R loop
- if N.Element.all = Item then
- return Cursor'(Position.Container, N);
- end if;
-
- N := N.Parent;
- end loop;
-
- return No_Element;
- end Ancestor_Find;
-
- ------------------
- -- Append_Child --
- ------------------
-
- procedure Append_Child
- (Container : in out Tree;
- Parent : Cursor;
- New_Item : Element_Type;
- Count : Count_Type := 1)
- is
- First, Last : Tree_Node_Access;
- Element : Element_Access;
-
- begin
- if Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Parent.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- if Count = 0 then
- return;
- end if;
-
- if Container.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (tree is busy)";
- end if;
-
- Element := new Element_Type'(New_Item);
- First := new Tree_Node_Type'(Parent => Parent.Node,
- Element => Element,
- others => <>);
-
- Last := First;
-
- for J in Count_Type'(2) .. Count loop
-
- -- Reclaim other nodes if Storage_Error. ???
-
- Element := new Element_Type'(New_Item);
- Last.Next := new Tree_Node_Type'(Parent => Parent.Node,
- Prev => Last,
- Element => Element,
- others => <>);
-
- Last := Last.Next;
- end loop;
-
- Insert_Subtree_List
- (First => First,
- Last => Last,
- Parent => Parent.Node,
- Before => null); -- null means "insert at end of list"
-
- -- In order for operation Node_Count to complete in O(1) time, we cache
- -- the count value. Here we increment the total count by the number of
- -- nodes we just inserted.
-
- Container.Count := Container.Count + Count;
- end Append_Child;
-
- ------------
- -- Assign --
- ------------
-
- procedure Assign (Target : in out Tree; Source : Tree) is
- Source_Count : constant Count_Type := Source.Count;
- Target_Count : Count_Type;
-
- begin
- if Target'Address = Source'Address then
- return;
- end if;
-
- Target.Clear; -- checks busy bit
-
- -- Copy_Children returns the number of nodes that it allocates, but it
- -- does this by incrementing the count value passed in, so we must
- -- initialize the count before calling Copy_Children.
-
- Target_Count := 0;
-
- -- Note that Copy_Children inserts the newly-allocated children into
- -- their parent list only after the allocation of all the children has
- -- succeeded. This preserves invariants even if the allocation fails.
-
- Copy_Children (Source.Root.Children, Root_Node (Target), Target_Count);
- pragma Assert (Target_Count = Source_Count);
-
- Target.Count := Source_Count;
- end Assign;
-
- -----------------
- -- Child_Count --
- -----------------
-
- function Child_Count (Parent : Cursor) return Count_Type is
- begin
- if Parent = No_Element then
- return 0;
- else
- return Child_Count (Parent.Node.Children);
- end if;
- end Child_Count;
-
- function Child_Count (Children : Children_Type) return Count_Type is
- Result : Count_Type;
- Node : Tree_Node_Access;
-
- begin
- Result := 0;
- Node := Children.First;
- while Node /= null loop
- Result := Result + 1;
- Node := Node.Next;
- end loop;
-
- return Result;
- end Child_Count;
-
- -----------------
- -- Child_Depth --
- -----------------
-
- function Child_Depth (Parent, Child : Cursor) return Count_Type is
- Result : Count_Type;
- N : Tree_Node_Access;
-
- begin
- if Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Child = No_Element then
- raise Constraint_Error with "Child cursor has no element";
- end if;
-
- if Parent.Container /= Child.Container then
- raise Program_Error with "Parent and Child in different containers";
- end if;
-
- Result := 0;
- N := Child.Node;
- while N /= Parent.Node loop
- Result := Result + 1;
- N := N.Parent;
-
- if N = null then
- raise Program_Error with "Parent is not ancestor of Child";
- end if;
- end loop;
-
- return Result;
- end Child_Depth;
-
- -----------
- -- Clear --
- -----------
-
- procedure Clear (Container : in out Tree) is
- Container_Count : Count_Type;
- Children_Count : Count_Type;
-
- begin
- if Container.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (tree is busy)";
- end if;
-
- -- We first set the container count to 0, in order to preserve
- -- invariants in case the deallocation fails. (This works because
- -- Deallocate_Children immediately removes the children from their
- -- parent, and then does the actual deallocation.)
-
- Container_Count := Container.Count;
- Container.Count := 0;
-
- -- Deallocate_Children returns the number of nodes that it deallocates,
- -- but it does this by incrementing the count value that is passed in,
- -- so we must first initialize the count return value before calling it.
-
- Children_Count := 0;
-
- -- See comment above. Deallocate_Children immediately removes the
- -- children list from their parent node (here, the root of the tree),
- -- and only after that does it attempt the actual deallocation. So even
- -- if the deallocation fails, the representation invariants
-
- Deallocate_Children (Root_Node (Container), Children_Count);
- pragma Assert (Children_Count = Container_Count);
- end Clear;
-
- ------------------------
- -- Constant_Reference --
- ------------------------
-
- function Constant_Reference
- (Container : aliased Tree;
- Position : Cursor) return Constant_Reference_Type
- is
- begin
- if Position.Container = null then
- raise Constraint_Error with
- "Position cursor has no element";
- end if;
-
- if Position.Container /= Container'Unrestricted_Access then
- raise Program_Error with
- "Position cursor designates wrong container";
- end if;
-
- if Position.Node = Root_Node (Container) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- if Position.Node.Element = null then
- raise Program_Error with "Node has no element";
- end if;
-
- -- Implement Vet for multiway tree???
- -- pragma Assert (Vet (Position),
- -- "Position cursor in Constant_Reference is bad");
-
- declare
- C : Tree renames Position.Container.all;
- B : Natural renames C.Busy;
- L : Natural renames C.Lock;
- begin
- return R : constant Constant_Reference_Type :=
- (Element => Position.Node.Element.all'Access,
- Control =>
- (Controlled with Container'Unrestricted_Access))
- do
- B := B + 1;
- L := L + 1;
- end return;
- end;
- end Constant_Reference;
-
- --------------
- -- Contains --
- --------------
-
- function Contains
- (Container : Tree;
- Item : Element_Type) return Boolean
- is
- begin
- return Find (Container, Item) /= No_Element;
- end Contains;
-
- ----------
- -- Copy --
- ----------
-
- function Copy (Source : Tree) return Tree is
- begin
- return Target : Tree do
- Copy_Children
- (Source => Source.Root.Children,
- Parent => Root_Node (Target),
- Count => Target.Count);
-
- pragma Assert (Target.Count = Source.Count);
- end return;
- end Copy;
-
- -------------------
- -- Copy_Children --
- -------------------
-
- procedure Copy_Children
- (Source : Children_Type;
- Parent : Tree_Node_Access;
- Count : in out Count_Type)
- is
- pragma Assert (Parent /= null);
- pragma Assert (Parent.Children.First = null);
- pragma Assert (Parent.Children.Last = null);
-
- CC : Children_Type;
- C : Tree_Node_Access;
-
- begin
- -- We special-case the first allocation, in order to establish the
- -- representation invariants for type Children_Type.
-
- C := Source.First;
-
- if C = null then
- return;
- end if;
-
- Copy_Subtree
- (Source => C,
- Parent => Parent,
- Target => CC.First,
- Count => Count);
-
- CC.Last := CC.First;
-
- -- The representation invariants for the Children_Type list have been
- -- established, so we can now copy the remaining children of Source.
-
- C := C.Next;
- while C /= null loop
- Copy_Subtree
- (Source => C,
- Parent => Parent,
- Target => CC.Last.Next,
- Count => Count);
-
- CC.Last.Next.Prev := CC.Last;
- CC.Last := CC.Last.Next;
-
- C := C.Next;
- end loop;
-
- -- We add the newly-allocated children to their parent list only after
- -- the allocation has succeeded, in order to preserve invariants of the
- -- parent.
-
- Parent.Children := CC;
- end Copy_Children;
-
- ------------------
- -- Copy_Subtree --
- ------------------
-
- procedure Copy_Subtree
- (Target : in out Tree;
- Parent : Cursor;
- Before : Cursor;
- Source : Cursor)
- is
- Target_Subtree : Tree_Node_Access;
- Target_Count : Count_Type;
-
- begin
- if Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Parent.Container /= Target'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- if Before /= No_Element then
- if Before.Container /= Target'Unrestricted_Access then
- raise Program_Error with "Before cursor not in container";
- end if;
-
- if Before.Node.Parent /= Parent.Node then
- raise Constraint_Error with "Before cursor not child of Parent";
- end if;
- end if;
-
- if Source = No_Element then
- return;
- end if;
-
- if Is_Root (Source) then
- raise Constraint_Error with "Source cursor designates root";
- end if;
-
- -- Copy_Subtree returns a count of the number of nodes that it
- -- allocates, but it works by incrementing the value that is passed in.
- -- We must therefore initialize the count value before calling
- -- Copy_Subtree.
-
- Target_Count := 0;
-
- Copy_Subtree
- (Source => Source.Node,
- Parent => Parent.Node,
- Target => Target_Subtree,
- Count => Target_Count);
-
- pragma Assert (Target_Subtree /= null);
- pragma Assert (Target_Subtree.Parent = Parent.Node);
- pragma Assert (Target_Count >= 1);
-
- Insert_Subtree_Node
- (Subtree => Target_Subtree,
- Parent => Parent.Node,
- Before => Before.Node);
-
- -- In order for operation Node_Count to complete in O(1) time, we cache
- -- the count value. Here we increment the total count by the number of
- -- nodes we just inserted.
-
- Target.Count := Target.Count + Target_Count;
- end Copy_Subtree;
-
- procedure Copy_Subtree
- (Source : Tree_Node_Access;
- Parent : Tree_Node_Access;
- Target : out Tree_Node_Access;
- Count : in out Count_Type)
- is
- E : constant Element_Access := new Element_Type'(Source.Element.all);
-
- begin
- Target := new Tree_Node_Type'(Element => E,
- Parent => Parent,
- others => <>);
-
- Count := Count + 1;
-
- Copy_Children
- (Source => Source.Children,
- Parent => Target,
- Count => Count);
- end Copy_Subtree;
-
- -------------------------
- -- Deallocate_Children --
- -------------------------
-
- procedure Deallocate_Children
- (Subtree : Tree_Node_Access;
- Count : in out Count_Type)
- is
- pragma Assert (Subtree /= null);
-
- CC : Children_Type := Subtree.Children;
- C : Tree_Node_Access;
-
- begin
- -- We immediately remove the children from their parent, in order to
- -- preserve invariants in case the deallocation fails.
-
- Subtree.Children := Children_Type'(others => null);
-
- while CC.First /= null loop
- C := CC.First;
- CC.First := C.Next;
-
- Deallocate_Subtree (C, Count);
- end loop;
- end Deallocate_Children;
-
- ---------------------
- -- Deallocate_Node --
- ---------------------
-
- procedure Deallocate_Node (X : in out Tree_Node_Access) is
- procedure Free_Node is
- new Ada.Unchecked_Deallocation (Tree_Node_Type, Tree_Node_Access);
-
- -- Start of processing for Deallocate_Node
-
- begin
- if X /= null then
- Free_Element (X.Element);
- Free_Node (X);
- end if;
- end Deallocate_Node;
-
- ------------------------
- -- Deallocate_Subtree --
- ------------------------
-
- procedure Deallocate_Subtree
- (Subtree : in out Tree_Node_Access;
- Count : in out Count_Type)
- is
- begin
- Deallocate_Children (Subtree, Count);
- Deallocate_Node (Subtree);
- Count := Count + 1;
- end Deallocate_Subtree;
-
- ---------------------
- -- Delete_Children --
- ---------------------
-
- procedure Delete_Children
- (Container : in out Tree;
- Parent : Cursor)
- is
- Count : Count_Type;
-
- begin
- if Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Parent.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- if Container.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (tree is busy)";
- end if;
-
- -- Deallocate_Children returns a count of the number of nodes
- -- that it deallocates, but it works by incrementing the
- -- value that is passed in. We must therefore initialize
- -- the count value before calling Deallocate_Children.
-
- Count := 0;
-
- Deallocate_Children (Parent.Node, Count);
- pragma Assert (Count <= Container.Count);
-
- Container.Count := Container.Count - Count;
- end Delete_Children;
-
- -----------------
- -- Delete_Leaf --
- -----------------
-
- procedure Delete_Leaf
- (Container : in out Tree;
- Position : in out Cursor)
- is
- X : Tree_Node_Access;
-
- begin
- if Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Position.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Position cursor not in container";
- end if;
-
- if Is_Root (Position) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- if not Is_Leaf (Position) then
- raise Constraint_Error with "Position cursor does not designate leaf";
- end if;
-
- if Container.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (tree is busy)";
- end if;
-
- X := Position.Node;
- Position := No_Element;
-
- -- Restore represention invariants before attempting the actual
- -- deallocation.
-
- Remove_Subtree (X);
- Container.Count := Container.Count - 1;
-
- -- It is now safe to attempt the deallocation. This leaf node has been
- -- disassociated from the tree, so even if the deallocation fails,
- -- representation invariants will remain satisfied.
-
- Deallocate_Node (X);
- end Delete_Leaf;
-
- --------------------
- -- Delete_Subtree --
- --------------------
-
- procedure Delete_Subtree
- (Container : in out Tree;
- Position : in out Cursor)
- is
- X : Tree_Node_Access;
- Count : Count_Type;
-
- begin
- if Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Position.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Position cursor not in container";
- end if;
-
- if Is_Root (Position) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- if Container.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (tree is busy)";
- end if;
-
- X := Position.Node;
- Position := No_Element;
-
- -- Here is one case where a deallocation failure can result in the
- -- violation of a representation invariant. We disassociate the subtree
- -- from the tree now, but we only decrement the total node count after
- -- we attempt the deallocation. However, if the deallocation fails, the
- -- total node count will not get decremented.
-
- -- One way around this dilemma is to count the nodes in the subtree
- -- before attempt to delete the subtree, but that is an O(n) operation,
- -- so it does not seem worth it.
-
- -- Perhaps this is much ado about nothing, since the only way
- -- deallocation can fail is if Controlled Finalization fails: this
- -- propagates Program_Error so all bets are off anyway. ???
-
- Remove_Subtree (X);
-
- -- Deallocate_Subtree returns a count of the number of nodes that it
- -- deallocates, but it works by incrementing the value that is passed
- -- in. We must therefore initialize the count value before calling
- -- Deallocate_Subtree.
-
- Count := 0;
-
- Deallocate_Subtree (X, Count);
- pragma Assert (Count <= Container.Count);
-
- -- See comments above. We would prefer to do this sooner, but there's no
- -- way to satisfy that goal without an potentially severe execution
- -- penalty.
-
- Container.Count := Container.Count - Count;
- end Delete_Subtree;
-
- -----------
- -- Depth --
- -----------
-
- function Depth (Position : Cursor) return Count_Type is
- Result : Count_Type;
- N : Tree_Node_Access;
-
- begin
- Result := 0;
- N := Position.Node;
- while N /= null loop
- N := N.Parent;
- Result := Result + 1;
- end loop;
-
- return Result;
- end Depth;
-
- -------------
- -- Element --
- -------------
-
- function Element (Position : Cursor) return Element_Type is
- begin
- if Position.Container = null then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Position.Node = Root_Node (Position.Container.all) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- return Position.Node.Element.all;
- end Element;
-
- --------------------
- -- Equal_Children --
- --------------------
-
- function Equal_Children
- (Left_Subtree : Tree_Node_Access;
- Right_Subtree : Tree_Node_Access) return Boolean
- is
- Left_Children : Children_Type renames Left_Subtree.Children;
- Right_Children : Children_Type renames Right_Subtree.Children;
-
- L, R : Tree_Node_Access;
-
- begin
- if Child_Count (Left_Children) /= Child_Count (Right_Children) then
- return False;
- end if;
-
- L := Left_Children.First;
- R := Right_Children.First;
- while L /= null loop
- if not Equal_Subtree (L, R) then
- return False;
- end if;
-
- L := L.Next;
- R := R.Next;
- end loop;
-
- return True;
- end Equal_Children;
-
- -------------------
- -- Equal_Subtree --
- -------------------
-
- function Equal_Subtree
- (Left_Position : Cursor;
- Right_Position : Cursor) return Boolean
- is
- begin
- if Left_Position = No_Element then
- raise Constraint_Error with "Left cursor has no element";
- end if;
-
- if Right_Position = No_Element then
- raise Constraint_Error with "Right cursor has no element";
- end if;
-
- if Left_Position = Right_Position then
- return True;
- end if;
-
- if Is_Root (Left_Position) then
- if not Is_Root (Right_Position) then
- return False;
- end if;
-
- return Equal_Children (Left_Position.Node, Right_Position.Node);
- end if;
-
- if Is_Root (Right_Position) then
- return False;
- end if;
-
- return Equal_Subtree (Left_Position.Node, Right_Position.Node);
- end Equal_Subtree;
-
- function Equal_Subtree
- (Left_Subtree : Tree_Node_Access;
- Right_Subtree : Tree_Node_Access) return Boolean
- is
- begin
- if Left_Subtree.Element.all /= Right_Subtree.Element.all then
- return False;
- end if;
-
- return Equal_Children (Left_Subtree, Right_Subtree);
- end Equal_Subtree;
-
- --------------
- -- Finalize --
- --------------
-
- procedure Finalize (Object : in out Root_Iterator) is
- B : Natural renames Object.Container.Busy;
- begin
- B := B - 1;
- end Finalize;
-
- procedure Finalize (Control : in out Reference_Control_Type) is
- begin
- if Control.Container /= null then
- declare
- C : Tree renames Control.Container.all;
- B : Natural renames C.Busy;
- L : Natural renames C.Lock;
- begin
- B := B - 1;
- L := L - 1;
- end;
-
- Control.Container := null;
- end if;
- end Finalize;
-
- ----------
- -- Find --
- ----------
-
- function Find
- (Container : Tree;
- Item : Element_Type) return Cursor
- is
- N : constant Tree_Node_Access :=
- Find_In_Children (Root_Node (Container), Item);
-
- begin
- if N = null then
- return No_Element;
- end if;
-
- return Cursor'(Container'Unrestricted_Access, N);
- end Find;
-
- -----------
- -- First --
- -----------
-
- overriding function First (Object : Subtree_Iterator) return Cursor is
- begin
- if Object.Subtree = Root_Node (Object.Container.all) then
- return First_Child (Root (Object.Container.all));
- else
- return Cursor'(Object.Container, Object.Subtree);
- end if;
- end First;
-
- overriding function First (Object : Child_Iterator) return Cursor is
- begin
- return First_Child (Cursor'(Object.Container, Object.Subtree));
- end First;
-
- -----------------
- -- First_Child --
- -----------------
-
- function First_Child (Parent : Cursor) return Cursor is
- Node : Tree_Node_Access;
-
- begin
- if Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- Node := Parent.Node.Children.First;
-
- if Node = null then
- return No_Element;
- end if;
-
- return Cursor'(Parent.Container, Node);
- end First_Child;
-
- -------------------------
- -- First_Child_Element --
- -------------------------
-
- function First_Child_Element (Parent : Cursor) return Element_Type is
- begin
- return Element (First_Child (Parent));
- end First_Child_Element;
-
- ----------------------
- -- Find_In_Children --
- ----------------------
-
- function Find_In_Children
- (Subtree : Tree_Node_Access;
- Item : Element_Type) return Tree_Node_Access
- is
- N, Result : Tree_Node_Access;
-
- begin
- N := Subtree.Children.First;
- while N /= null loop
- Result := Find_In_Subtree (N, Item);
-
- if Result /= null then
- return Result;
- end if;
-
- N := N.Next;
- end loop;
-
- return null;
- end Find_In_Children;
-
- ---------------------
- -- Find_In_Subtree --
- ---------------------
-
- function Find_In_Subtree
- (Position : Cursor;
- Item : Element_Type) return Cursor
- is
- Result : Tree_Node_Access;
-
- begin
- if Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- -- Commented-out pending ruling from ARG. ???
-
- -- if Position.Container /= Container'Unrestricted_Access then
- -- raise Program_Error with "Position cursor not in container";
- -- end if;
-
- if Is_Root (Position) then
- Result := Find_In_Children (Position.Node, Item);
-
- else
- Result := Find_In_Subtree (Position.Node, Item);
- end if;
-
- if Result = null then
- return No_Element;
- end if;
-
- return Cursor'(Position.Container, Result);
- end Find_In_Subtree;
-
- function Find_In_Subtree
- (Subtree : Tree_Node_Access;
- Item : Element_Type) return Tree_Node_Access
- is
- begin
- if Subtree.Element.all = Item then
- return Subtree;
- end if;
-
- return Find_In_Children (Subtree, Item);
- end Find_In_Subtree;
-
- -----------------
- -- Has_Element --
- -----------------
-
- function Has_Element (Position : Cursor) return Boolean is
- begin
- if Position = No_Element then
- return False;
- end if;
-
- return Position.Node.Parent /= null;
- end Has_Element;
-
- ------------------
- -- Insert_Child --
- ------------------
-
- procedure Insert_Child
- (Container : in out Tree;
- Parent : Cursor;
- Before : Cursor;
- New_Item : Element_Type;
- Count : Count_Type := 1)
- is
- Position : Cursor;
- pragma Unreferenced (Position);
-
- begin
- Insert_Child (Container, Parent, Before, New_Item, Position, Count);
- end Insert_Child;
-
- procedure Insert_Child
- (Container : in out Tree;
- Parent : Cursor;
- Before : Cursor;
- New_Item : Element_Type;
- Position : out Cursor;
- Count : Count_Type := 1)
- is
- Last : Tree_Node_Access;
- Element : Element_Access;
-
- begin
- if Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Parent.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- if Before /= No_Element then
- if Before.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Before cursor not in container";
- end if;
-
- if Before.Node.Parent /= Parent.Node then
- raise Constraint_Error with "Parent cursor not parent of Before";
- end if;
- end if;
-
- if Count = 0 then
- Position := No_Element; -- Need ruling from ARG ???
- return;
- end if;
-
- if Container.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (tree is busy)";
- end if;
-
- Position.Container := Parent.Container;
-
- Element := new Element_Type'(New_Item);
- Position.Node := new Tree_Node_Type'(Parent => Parent.Node,
- Element => Element,
- others => <>);
-
- Last := Position.Node;
-
- for J in Count_Type'(2) .. Count loop
- -- Reclaim other nodes if Storage_Error. ???
-
- Element := new Element_Type'(New_Item);
- Last.Next := new Tree_Node_Type'(Parent => Parent.Node,
- Prev => Last,
- Element => Element,
- others => <>);
-
- Last := Last.Next;
- end loop;
-
- Insert_Subtree_List
- (First => Position.Node,
- Last => Last,
- Parent => Parent.Node,
- Before => Before.Node);
-
- -- In order for operation Node_Count to complete in O(1) time, we cache
- -- the count value. Here we increment the total count by the number of
- -- nodes we just inserted.
-
- Container.Count := Container.Count + Count;
- end Insert_Child;
-
- -------------------------
- -- Insert_Subtree_List --
- -------------------------
-
- procedure Insert_Subtree_List
- (First : Tree_Node_Access;
- Last : Tree_Node_Access;
- Parent : Tree_Node_Access;
- Before : Tree_Node_Access)
- is
- pragma Assert (Parent /= null);
- C : Children_Type renames Parent.Children;
-
- begin
- -- This is a simple utility operation to insert a list of nodes (from
- -- First..Last) as children of Parent. The Before node specifies where
- -- the new children should be inserted relative to the existing
- -- children.
-
- if First = null then
- pragma Assert (Last = null);
- return;
- end if;
-
- pragma Assert (Last /= null);
- pragma Assert (Before = null or else Before.Parent = Parent);
-
- if C.First = null then
- C.First := First;
- C.First.Prev := null;
- C.Last := Last;
- C.Last.Next := null;
-
- elsif Before = null then -- means "insert after existing nodes"
- C.Last.Next := First;
- First.Prev := C.Last;
- C.Last := Last;
- C.Last.Next := null;
-
- elsif Before = C.First then
- Last.Next := C.First;
- C.First.Prev := Last;
- C.First := First;
- C.First.Prev := null;
-
- else
- Before.Prev.Next := First;
- First.Prev := Before.Prev;
- Last.Next := Before;
- Before.Prev := Last;
- end if;
- end Insert_Subtree_List;
-
- -------------------------
- -- Insert_Subtree_Node --
- -------------------------
-
- procedure Insert_Subtree_Node
- (Subtree : Tree_Node_Access;
- Parent : Tree_Node_Access;
- Before : Tree_Node_Access)
- is
- begin
- -- This is a simple wrapper operation to insert a single child into the
- -- Parent's children list.
-
- Insert_Subtree_List
- (First => Subtree,
- Last => Subtree,
- Parent => Parent,
- Before => Before);
- end Insert_Subtree_Node;
-
- --------------
- -- Is_Empty --
- --------------
-
- function Is_Empty (Container : Tree) return Boolean is
- begin
- return Container.Root.Children.First = null;
- end Is_Empty;
-
- -------------
- -- Is_Leaf --
- -------------
-
- function Is_Leaf (Position : Cursor) return Boolean is
- begin
- if Position = No_Element then
- return False;
- end if;
-
- return Position.Node.Children.First = null;
- end Is_Leaf;
-
- ------------------
- -- Is_Reachable --
- ------------------
-
- function Is_Reachable (From, To : Tree_Node_Access) return Boolean is
- pragma Assert (From /= null);
- pragma Assert (To /= null);
-
- N : Tree_Node_Access;
-
- begin
- N := From;
- while N /= null loop
- if N = To then
- return True;
- end if;
-
- N := N.Parent;
- end loop;
-
- return False;
- end Is_Reachable;
-
- -------------
- -- Is_Root --
- -------------
-
- function Is_Root (Position : Cursor) return Boolean is
- begin
- if Position.Container = null then
- return False;
- end if;
-
- return Position = Root (Position.Container.all);
- end Is_Root;
-
- -------------
- -- Iterate --
- -------------
-
- procedure Iterate
- (Container : Tree;
- Process : not null access procedure (Position : Cursor))
- is
- B : Natural renames Container'Unrestricted_Access.all.Busy;
-
- begin
- B := B + 1;
-
- Iterate_Children
- (Container => Container'Unrestricted_Access,
- Subtree => Root_Node (Container),
- Process => Process);
-
- B := B - 1;
-
- exception
- when others =>
- B := B - 1;
- raise;
- end Iterate;
-
- function Iterate (Container : Tree)
- return Tree_Iterator_Interfaces.Forward_Iterator'Class
- is
- begin
- return Iterate_Subtree (Root (Container));
- end Iterate;
-
- ----------------------
- -- Iterate_Children --
- ----------------------
-
- procedure Iterate_Children
- (Parent : Cursor;
- Process : not null access procedure (Position : Cursor))
- is
- begin
- if Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- declare
- B : Natural renames Parent.Container.Busy;
- C : Tree_Node_Access;
-
- begin
- B := B + 1;
-
- C := Parent.Node.Children.First;
- while C /= null loop
- Process (Position => Cursor'(Parent.Container, Node => C));
- C := C.Next;
- end loop;
-
- B := B - 1;
-
- exception
- when others =>
- B := B - 1;
- raise;
- end;
- end Iterate_Children;
-
- procedure Iterate_Children
- (Container : Tree_Access;
- Subtree : Tree_Node_Access;
- Process : not null access procedure (Position : Cursor))
- is
- Node : Tree_Node_Access;
-
- begin
- -- This is a helper function to recursively iterate over all the nodes
- -- in a subtree, in depth-first fashion. This particular helper just
- -- visits the children of this subtree, not the root of the subtree node
- -- itself. This is useful when starting from the ultimate root of the
- -- entire tree (see Iterate), as that root does not have an element.
-
- Node := Subtree.Children.First;
- while Node /= null loop
- Iterate_Subtree (Container, Node, Process);
- Node := Node.Next;
- end loop;
- end Iterate_Children;
-
- function Iterate_Children
- (Container : Tree;
- Parent : Cursor)
- return Tree_Iterator_Interfaces.Reversible_Iterator'Class
- is
- C : constant Tree_Access := Container'Unrestricted_Access;
- B : Natural renames C.Busy;
-
- begin
- if Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Parent.Container /= C then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- return It : constant Child_Iterator :=
- Child_Iterator'(Limited_Controlled with
- Container => C,
- Subtree => Parent.Node)
- do
- B := B + 1;
- end return;
- end Iterate_Children;
-
- ---------------------
- -- Iterate_Subtree --
- ---------------------
-
- function Iterate_Subtree
- (Position : Cursor)
- return Tree_Iterator_Interfaces.Forward_Iterator'Class
- is
- begin
- if Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- -- Implement Vet for multiway trees???
- -- pragma Assert (Vet (Position), "bad subtree cursor");
-
- declare
- B : Natural renames Position.Container.Busy;
- begin
- return It : constant Subtree_Iterator :=
- (Limited_Controlled with
- Container => Position.Container,
- Subtree => Position.Node)
- do
- B := B + 1;
- end return;
- end;
- end Iterate_Subtree;
-
- procedure Iterate_Subtree
- (Position : Cursor;
- Process : not null access procedure (Position : Cursor))
- is
- begin
- if Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- declare
- B : Natural renames Position.Container.Busy;
-
- begin
- B := B + 1;
-
- if Is_Root (Position) then
- Iterate_Children (Position.Container, Position.Node, Process);
- else
- Iterate_Subtree (Position.Container, Position.Node, Process);
- end if;
-
- B := B - 1;
-
- exception
- when others =>
- B := B - 1;
- raise;
- end;
- end Iterate_Subtree;
-
- procedure Iterate_Subtree
- (Container : Tree_Access;
- Subtree : Tree_Node_Access;
- Process : not null access procedure (Position : Cursor))
- is
- begin
- -- This is a helper function to recursively iterate over all the nodes
- -- in a subtree, in depth-first fashion. It first visits the root of the
- -- subtree, then visits its children.
-
- Process (Cursor'(Container, Subtree));
- Iterate_Children (Container, Subtree, Process);
- end Iterate_Subtree;
-
- ----------
- -- Last --
- ----------
-
- overriding function Last (Object : Child_Iterator) return Cursor is
- begin
- return Last_Child (Cursor'(Object.Container, Object.Subtree));
- end Last;
-
- ----------------
- -- Last_Child --
- ----------------
-
- function Last_Child (Parent : Cursor) return Cursor is
- Node : Tree_Node_Access;
-
- begin
- if Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- Node := Parent.Node.Children.Last;
-
- if Node = null then
- return No_Element;
- end if;
-
- return (Parent.Container, Node);
- end Last_Child;
-
- ------------------------
- -- Last_Child_Element --
- ------------------------
-
- function Last_Child_Element (Parent : Cursor) return Element_Type is
- begin
- return Element (Last_Child (Parent));
- end Last_Child_Element;
-
- ----------
- -- Move --
- ----------
-
- procedure Move (Target : in out Tree; Source : in out Tree) is
- Node : Tree_Node_Access;
-
- begin
- if Target'Address = Source'Address then
- return;
- end if;
-
- if Source.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors of Source (tree is busy)";
- end if;
-
- Target.Clear; -- checks busy bit
-
- Target.Root.Children := Source.Root.Children;
- Source.Root.Children := Children_Type'(others => null);
-
- Node := Target.Root.Children.First;
- while Node /= null loop
- Node.Parent := Root_Node (Target);
- Node := Node.Next;
- end loop;
-
- Target.Count := Source.Count;
- Source.Count := 0;
- end Move;
-
- ----------
- -- Next --
- ----------
-
- function Next
- (Object : Subtree_Iterator;
- Position : Cursor) return Cursor
- is
- Node : Tree_Node_Access;
-
- begin
- if Position.Container = null then
- return No_Element;
- end if;
-
- if Position.Container /= Object.Container then
- raise Program_Error with
- "Position cursor of Next designates wrong tree";
- end if;
-
- Node := Position.Node;
-
- if Node.Children.First /= null then
- return Cursor'(Object.Container, Node.Children.First);
- end if;
-
- while Node /= Object.Subtree loop
- if Node.Next /= null then
- return Cursor'(Object.Container, Node.Next);
- end if;
-
- Node := Node.Parent;
- end loop;
-
- return No_Element;
- end Next;
-
- function Next
- (Object : Child_Iterator;
- Position : Cursor) return Cursor
- is
- begin
- if Position.Container = null then
- return No_Element;
- end if;
-
- if Position.Container /= Object.Container then
- raise Program_Error with
- "Position cursor of Next designates wrong tree";
- end if;
-
- return Next_Sibling (Position);
- end Next;
-
- ------------------
- -- Next_Sibling --
- ------------------
-
- function Next_Sibling (Position : Cursor) return Cursor is
- begin
- if Position = No_Element then
- return No_Element;
- end if;
-
- if Position.Node.Next = null then
- return No_Element;
- end if;
-
- return Cursor'(Position.Container, Position.Node.Next);
- end Next_Sibling;
-
- procedure Next_Sibling (Position : in out Cursor) is
- begin
- Position := Next_Sibling (Position);
- end Next_Sibling;
-
- ----------------
- -- Node_Count --
- ----------------
-
- function Node_Count (Container : Tree) return Count_Type is
- begin
- -- Container.Count is the number of nodes we have actually allocated. We
- -- cache the value specifically so this Node_Count operation can execute
- -- in O(1) time, which makes it behave similarly to how the Length
- -- selector function behaves for other containers.
- --
- -- The cached node count value only describes the nodes we have
- -- allocated; the root node itself is not included in that count. The
- -- Node_Count operation returns a value that includes the root node
- -- (because the RM says so), so we must add 1 to our cached value.
-
- return 1 + Container.Count;
- end Node_Count;
-
- ------------
- -- Parent --
- ------------
-
- function Parent (Position : Cursor) return Cursor is
- begin
- if Position = No_Element then
- return No_Element;
- end if;
-
- if Position.Node.Parent = null then
- return No_Element;
- end if;
-
- return Cursor'(Position.Container, Position.Node.Parent);
- end Parent;
-
- -------------------
- -- Prepent_Child --
- -------------------
-
- procedure Prepend_Child
- (Container : in out Tree;
- Parent : Cursor;
- New_Item : Element_Type;
- Count : Count_Type := 1)
- is
- First, Last : Tree_Node_Access;
- Element : Element_Access;
-
- begin
- if Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Parent.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- if Count = 0 then
- return;
- end if;
-
- if Container.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (tree is busy)";
- end if;
-
- Element := new Element_Type'(New_Item);
- First := new Tree_Node_Type'(Parent => Parent.Node,
- Element => Element,
- others => <>);
-
- Last := First;
-
- for J in Count_Type'(2) .. Count loop
-
- -- Reclaim other nodes if Storage_Error. ???
-
- Element := new Element_Type'(New_Item);
- Last.Next := new Tree_Node_Type'(Parent => Parent.Node,
- Prev => Last,
- Element => Element,
- others => <>);
-
- Last := Last.Next;
- end loop;
-
- Insert_Subtree_List
- (First => First,
- Last => Last,
- Parent => Parent.Node,
- Before => Parent.Node.Children.First);
-
- -- In order for operation Node_Count to complete in O(1) time, we cache
- -- the count value. Here we increment the total count by the number of
- -- nodes we just inserted.
-
- Container.Count := Container.Count + Count;
- end Prepend_Child;
-
- --------------
- -- Previous --
- --------------
-
- overriding function Previous
- (Object : Child_Iterator;
- Position : Cursor) return Cursor
- is
- begin
- if Position.Container = null then
- return No_Element;
- end if;
-
- if Position.Container /= Object.Container then
- raise Program_Error with
- "Position cursor of Previous designates wrong tree";
- end if;
-
- return Previous_Sibling (Position);
- end Previous;
-
- ----------------------
- -- Previous_Sibling --
- ----------------------
-
- function Previous_Sibling (Position : Cursor) return Cursor is
- begin
- if Position = No_Element then
- return No_Element;
- end if;
-
- if Position.Node.Prev = null then
- return No_Element;
- end if;
-
- return Cursor'(Position.Container, Position.Node.Prev);
- end Previous_Sibling;
-
- procedure Previous_Sibling (Position : in out Cursor) is
- begin
- Position := Previous_Sibling (Position);
- end Previous_Sibling;
-
- -------------------
- -- Query_Element --
- -------------------
-
- procedure Query_Element
- (Position : Cursor;
- Process : not null access procedure (Element : Element_Type))
- is
- begin
- if Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Is_Root (Position) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- declare
- T : Tree renames Position.Container.all'Unrestricted_Access.all;
- B : Natural renames T.Busy;
- L : Natural renames T.Lock;
-
- begin
- B := B + 1;
- L := L + 1;
-
- Process (Position.Node.Element.all);
-
- L := L - 1;
- B := B - 1;
-
- exception
- when others =>
- L := L - 1;
- B := B - 1;
- raise;
- end;
- end Query_Element;
-
- ----------
- -- Read --
- ----------
-
- procedure Read
- (Stream : not null access Root_Stream_Type'Class;
- Container : out Tree)
- is
- procedure Read_Children (Subtree : Tree_Node_Access);
-
- function Read_Subtree
- (Parent : Tree_Node_Access) return Tree_Node_Access;
-
- Total_Count : Count_Type'Base;
- -- Value read from the stream that says how many elements follow
-
- Read_Count : Count_Type'Base;
- -- Actual number of elements read from the stream
-
- -------------------
- -- Read_Children --
- -------------------
-
- procedure Read_Children (Subtree : Tree_Node_Access) is
- pragma Assert (Subtree /= null);
- pragma Assert (Subtree.Children.First = null);
- pragma Assert (Subtree.Children.Last = null);
-
- Count : Count_Type'Base;
- -- Number of child subtrees
-
- C : Children_Type;
-
- begin
- Count_Type'Read (Stream, Count);
-
- if Count < 0 then
- raise Program_Error with "attempt to read from corrupt stream";
- end if;
-
- if Count = 0 then
- return;
- end if;
-
- C.First := Read_Subtree (Parent => Subtree);
- C.Last := C.First;
-
- for J in Count_Type'(2) .. Count loop
- C.Last.Next := Read_Subtree (Parent => Subtree);
- C.Last.Next.Prev := C.Last;
- C.Last := C.Last.Next;
- end loop;
-
- -- Now that the allocation and reads have completed successfully, it
- -- is safe to link the children to their parent.
-
- Subtree.Children := C;
- end Read_Children;
-
- ------------------
- -- Read_Subtree --
- ------------------
-
- function Read_Subtree
- (Parent : Tree_Node_Access) return Tree_Node_Access
- is
- Element : constant Element_Access :=
- new Element_Type'(Element_Type'Input (Stream));
-
- Subtree : constant Tree_Node_Access :=
- new Tree_Node_Type'
- (Parent => Parent,
- Element => Element,
- others => <>);
-
- begin
- Read_Count := Read_Count + 1;
-
- Read_Children (Subtree);
-
- return Subtree;
- end Read_Subtree;
-
- -- Start of processing for Read
-
- begin
- Container.Clear; -- checks busy bit
-
- Count_Type'Read (Stream, Total_Count);
-
- if Total_Count < 0 then
- raise Program_Error with "attempt to read from corrupt stream";
- end if;
-
- if Total_Count = 0 then
- return;
- end if;
-
- Read_Count := 0;
-
- Read_Children (Root_Node (Container));
-
- if Read_Count /= Total_Count then
- raise Program_Error with "attempt to read from corrupt stream";
- end if;
-
- Container.Count := Total_Count;
- end Read;
-
- procedure Read
- (Stream : not null access Root_Stream_Type'Class;
- Position : out Cursor)
- is
- begin
- raise Program_Error with "attempt to read tree cursor from stream";
- end Read;
-
- procedure Read
- (Stream : not null access Root_Stream_Type'Class;
- Item : out Reference_Type)
- is
- begin
- raise Program_Error with "attempt to stream reference";
- end Read;
-
- procedure Read
- (Stream : not null access Root_Stream_Type'Class;
- Item : out Constant_Reference_Type)
- is
- begin
- raise Program_Error with "attempt to stream reference";
- end Read;
-
- ---------------
- -- Reference --
- ---------------
-
- function Reference
- (Container : aliased in out Tree;
- Position : Cursor) return Reference_Type
- is
- begin
- if Position.Container = null then
- raise Constraint_Error with
- "Position cursor has no element";
- end if;
-
- if Position.Container /= Container'Unrestricted_Access then
- raise Program_Error with
- "Position cursor designates wrong container";
- end if;
-
- if Position.Node = Root_Node (Container) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- if Position.Node.Element = null then
- raise Program_Error with "Node has no element";
- end if;
-
- -- Implement Vet for multiway tree???
- -- pragma Assert (Vet (Position),
- -- "Position cursor in Constant_Reference is bad");
-
- declare
- C : Tree renames Position.Container.all;
- B : Natural renames C.Busy;
- L : Natural renames C.Lock;
- begin
- return R : constant Reference_Type :=
- (Element => Position.Node.Element.all'Access,
- Control => (Controlled with Position.Container))
- do
- B := B + 1;
- L := L + 1;
- end return;
- end;
- end Reference;
-
- --------------------
- -- Remove_Subtree --
- --------------------
-
- procedure Remove_Subtree (Subtree : Tree_Node_Access) is
- C : Children_Type renames Subtree.Parent.Children;
-
- begin
- -- This is a utility operation to remove a subtree node from its
- -- parent's list of children.
-
- if C.First = Subtree then
- pragma Assert (Subtree.Prev = null);
-
- if C.Last = Subtree then
- pragma Assert (Subtree.Next = null);
- C.First := null;
- C.Last := null;
-
- else
- C.First := Subtree.Next;
- C.First.Prev := null;
- end if;
-
- elsif C.Last = Subtree then
- pragma Assert (Subtree.Next = null);
- C.Last := Subtree.Prev;
- C.Last.Next := null;
-
- else
- Subtree.Prev.Next := Subtree.Next;
- Subtree.Next.Prev := Subtree.Prev;
- end if;
- end Remove_Subtree;
-
- ----------------------
- -- Replace_Element --
- ----------------------
-
- procedure Replace_Element
- (Container : in out Tree;
- Position : Cursor;
- New_Item : Element_Type)
- is
- E, X : Element_Access;
-
- begin
- if Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Position.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Position cursor not in container";
- end if;
-
- if Is_Root (Position) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- if Container.Lock > 0 then
- raise Program_Error
- with "attempt to tamper with elements (tree is locked)";
- end if;
-
- E := new Element_Type'(New_Item);
-
- X := Position.Node.Element;
- Position.Node.Element := E;
-
- Free_Element (X);
- end Replace_Element;
-
- ------------------------------
- -- Reverse_Iterate_Children --
- ------------------------------
-
- procedure Reverse_Iterate_Children
- (Parent : Cursor;
- Process : not null access procedure (Position : Cursor))
- is
- begin
- if Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- declare
- B : Natural renames Parent.Container.Busy;
- C : Tree_Node_Access;
-
- begin
- B := B + 1;
-
- C := Parent.Node.Children.Last;
- while C /= null loop
- Process (Position => Cursor'(Parent.Container, Node => C));
- C := C.Prev;
- end loop;
-
- B := B - 1;
-
- exception
- when others =>
- B := B - 1;
- raise;
- end;
- end Reverse_Iterate_Children;
-
- ----------
- -- Root --
- ----------
-
- function Root (Container : Tree) return Cursor is
- begin
- return (Container'Unrestricted_Access, Root_Node (Container));
- end Root;
-
- ---------------
- -- Root_Node --
- ---------------
-
- function Root_Node (Container : Tree) return Tree_Node_Access is
- begin
- return Container.Root'Unrestricted_Access;
- end Root_Node;
-
- ---------------------
- -- Splice_Children --
- ---------------------
-
- procedure Splice_Children
- (Target : in out Tree;
- Target_Parent : Cursor;
- Before : Cursor;
- Source : in out Tree;
- Source_Parent : Cursor)
- is
- Count : Count_Type;
-
- begin
- if Target_Parent = No_Element then
- raise Constraint_Error with "Target_Parent cursor has no element";
- end if;
-
- if Target_Parent.Container /= Target'Unrestricted_Access then
- raise Program_Error
- with "Target_Parent cursor not in Target container";
- end if;
-
- if Before /= No_Element then
- if Before.Container /= Target'Unrestricted_Access then
- raise Program_Error
- with "Before cursor not in Target container";
- end if;
-
- if Before.Node.Parent /= Target_Parent.Node then
- raise Constraint_Error
- with "Before cursor not child of Target_Parent";
- end if;
- end if;
-
- if Source_Parent = No_Element then
- raise Constraint_Error with "Source_Parent cursor has no element";
- end if;
-
- if Source_Parent.Container /= Source'Unrestricted_Access then
- raise Program_Error
- with "Source_Parent cursor not in Source container";
- end if;
-
- if Target'Address = Source'Address then
- if Target_Parent = Source_Parent then
- return;
- end if;
-
- if Target.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (Target tree is busy)";
- end if;
-
- if Is_Reachable (From => Target_Parent.Node,
- To => Source_Parent.Node)
- then
- raise Constraint_Error
- with "Source_Parent is ancestor of Target_Parent";
- end if;
-
- Splice_Children
- (Target_Parent => Target_Parent.Node,
- Before => Before.Node,
- Source_Parent => Source_Parent.Node);
-
- return;
- end if;
-
- if Target.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (Target tree is busy)";
- end if;
-
- if Source.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (Source tree is busy)";
- end if;
-
- -- We cache the count of the nodes we have allocated, so that operation
- -- Node_Count can execute in O(1) time. But that means we must count the
- -- nodes in the subtree we remove from Source and insert into Target, in
- -- order to keep the count accurate.
-
- Count := Subtree_Node_Count (Source_Parent.Node);
- pragma Assert (Count >= 1);
-
- Count := Count - 1; -- because Source_Parent node does not move
-
- Splice_Children
- (Target_Parent => Target_Parent.Node,
- Before => Before.Node,
- Source_Parent => Source_Parent.Node);
-
- Source.Count := Source.Count - Count;
- Target.Count := Target.Count + Count;
- end Splice_Children;
-
- procedure Splice_Children
- (Container : in out Tree;
- Target_Parent : Cursor;
- Before : Cursor;
- Source_Parent : Cursor)
- is
- begin
- if Target_Parent = No_Element then
- raise Constraint_Error with "Target_Parent cursor has no element";
- end if;
-
- if Target_Parent.Container /= Container'Unrestricted_Access then
- raise Program_Error
- with "Target_Parent cursor not in container";
- end if;
-
- if Before /= No_Element then
- if Before.Container /= Container'Unrestricted_Access then
- raise Program_Error
- with "Before cursor not in container";
- end if;
-
- if Before.Node.Parent /= Target_Parent.Node then
- raise Constraint_Error
- with "Before cursor not child of Target_Parent";
- end if;
- end if;
-
- if Source_Parent = No_Element then
- raise Constraint_Error with "Source_Parent cursor has no element";
- end if;
-
- if Source_Parent.Container /= Container'Unrestricted_Access then
- raise Program_Error
- with "Source_Parent cursor not in container";
- end if;
-
- if Target_Parent = Source_Parent then
- return;
- end if;
-
- if Container.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (tree is busy)";
- end if;
-
- if Is_Reachable (From => Target_Parent.Node,
- To => Source_Parent.Node)
- then
- raise Constraint_Error
- with "Source_Parent is ancestor of Target_Parent";
- end if;
-
- Splice_Children
- (Target_Parent => Target_Parent.Node,
- Before => Before.Node,
- Source_Parent => Source_Parent.Node);
- end Splice_Children;
-
- procedure Splice_Children
- (Target_Parent : Tree_Node_Access;
- Before : Tree_Node_Access;
- Source_Parent : Tree_Node_Access)
- is
- CC : constant Children_Type := Source_Parent.Children;
- C : Tree_Node_Access;
-
- begin
- -- This is a utility operation to remove the children from Source parent
- -- and insert them into Target parent.
-
- Source_Parent.Children := Children_Type'(others => null);
-
- -- Fix up the Parent pointers of each child to designate its new Target
- -- parent.
-
- C := CC.First;
- while C /= null loop
- C.Parent := Target_Parent;
- C := C.Next;
- end loop;
-
- Insert_Subtree_List
- (First => CC.First,
- Last => CC.Last,
- Parent => Target_Parent,
- Before => Before);
- end Splice_Children;
-
- --------------------
- -- Splice_Subtree --
- --------------------
-
- procedure Splice_Subtree
- (Target : in out Tree;
- Parent : Cursor;
- Before : Cursor;
- Source : in out Tree;
- Position : in out Cursor)
- is
- Subtree_Count : Count_Type;
-
- begin
- if Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Parent.Container /= Target'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in Target container";
- end if;
-
- if Before /= No_Element then
- if Before.Container /= Target'Unrestricted_Access then
- raise Program_Error with "Before cursor not in Target container";
- end if;
-
- if Before.Node.Parent /= Parent.Node then
- raise Constraint_Error with "Before cursor not child of Parent";
- end if;
- end if;
-
- if Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Position.Container /= Source'Unrestricted_Access then
- raise Program_Error with "Position cursor not in Source container";
- end if;
-
- if Is_Root (Position) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- if Target'Address = Source'Address then
- if Position.Node.Parent = Parent.Node then
- if Position.Node = Before.Node then
- return;
- end if;
-
- if Position.Node.Next = Before.Node then
- return;
- end if;
- end if;
-
- if Target.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (Target tree is busy)";
- end if;
-
- if Is_Reachable (From => Parent.Node, To => Position.Node) then
- raise Constraint_Error with "Position is ancestor of Parent";
- end if;
-
- Remove_Subtree (Position.Node);
-
- Position.Node.Parent := Parent.Node;
- Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
-
- return;
- end if;
-
- if Target.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (Target tree is busy)";
- end if;
-
- if Source.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (Source tree is busy)";
- end if;
-
- -- This is an unfortunate feature of this API: we must count the nodes
- -- in the subtree that we remove from the source tree, which is an O(n)
- -- operation. It would have been better if the Tree container did not
- -- have a Node_Count selector; a user that wants the number of nodes in
- -- the tree could simply call Subtree_Node_Count, with the understanding
- -- that such an operation is O(n).
- --
- -- Of course, we could choose to implement the Node_Count selector as an
- -- O(n) operation, which would turn this splice operation into an O(1)
- -- operation. ???
-
- Subtree_Count := Subtree_Node_Count (Position.Node);
- pragma Assert (Subtree_Count <= Source.Count);
-
- Remove_Subtree (Position.Node);
- Source.Count := Source.Count - Subtree_Count;
-
- Position.Node.Parent := Parent.Node;
- Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
-
- Target.Count := Target.Count + Subtree_Count;
-
- Position.Container := Target'Unrestricted_Access;
- end Splice_Subtree;
-
- procedure Splice_Subtree
- (Container : in out Tree;
- Parent : Cursor;
- Before : Cursor;
- Position : Cursor)
- is
- begin
- if Parent = No_Element then
- raise Constraint_Error with "Parent cursor has no element";
- end if;
-
- if Parent.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Parent cursor not in container";
- end if;
-
- if Before /= No_Element then
- if Before.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Before cursor not in container";
- end if;
-
- if Before.Node.Parent /= Parent.Node then
- raise Constraint_Error with "Before cursor not child of Parent";
- end if;
- end if;
-
- if Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Position.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Position cursor not in container";
- end if;
-
- if Is_Root (Position) then
-
- -- Should this be PE instead? Need ARG confirmation. ???
-
- raise Constraint_Error with "Position cursor designates root";
- end if;
-
- if Position.Node.Parent = Parent.Node then
- if Position.Node = Before.Node then
- return;
- end if;
-
- if Position.Node.Next = Before.Node then
- return;
- end if;
- end if;
-
- if Container.Busy > 0 then
- raise Program_Error
- with "attempt to tamper with cursors (tree is busy)";
- end if;
-
- if Is_Reachable (From => Parent.Node, To => Position.Node) then
- raise Constraint_Error with "Position is ancestor of Parent";
- end if;
-
- Remove_Subtree (Position.Node);
-
- Position.Node.Parent := Parent.Node;
- Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
- end Splice_Subtree;
-
- ------------------------
- -- Subtree_Node_Count --
- ------------------------
-
- function Subtree_Node_Count (Position : Cursor) return Count_Type is
- begin
- if Position = No_Element then
- return 0;
- end if;
-
- return Subtree_Node_Count (Position.Node);
- end Subtree_Node_Count;
-
- function Subtree_Node_Count
- (Subtree : Tree_Node_Access) return Count_Type
- is
- Result : Count_Type;
- Node : Tree_Node_Access;
-
- begin
- Result := 1;
- Node := Subtree.Children.First;
- while Node /= null loop
- Result := Result + Subtree_Node_Count (Node);
- Node := Node.Next;
- end loop;
-
- return Result;
- end Subtree_Node_Count;
-
- ----------
- -- Swap --
- ----------
-
- procedure Swap
- (Container : in out Tree;
- I, J : Cursor)
- is
- begin
- if I = No_Element then
- raise Constraint_Error with "I cursor has no element";
- end if;
-
- if I.Container /= Container'Unrestricted_Access then
- raise Program_Error with "I cursor not in container";
- end if;
-
- if Is_Root (I) then
- raise Program_Error with "I cursor designates root";
- end if;
-
- if I = J then -- make this test sooner???
- return;
- end if;
-
- if J = No_Element then
- raise Constraint_Error with "J cursor has no element";
- end if;
-
- if J.Container /= Container'Unrestricted_Access then
- raise Program_Error with "J cursor not in container";
- end if;
-
- if Is_Root (J) then
- raise Program_Error with "J cursor designates root";
- end if;
-
- if Container.Lock > 0 then
- raise Program_Error
- with "attempt to tamper with elements (tree is locked)";
- end if;
-
- declare
- EI : constant Element_Access := I.Node.Element;
-
- begin
- I.Node.Element := J.Node.Element;
- J.Node.Element := EI;
- end;
- end Swap;
-
- --------------------
- -- Update_Element --
- --------------------
-
- procedure Update_Element
- (Container : in out Tree;
- Position : Cursor;
- Process : not null access procedure (Element : in out Element_Type))
- is
- begin
- if Position = No_Element then
- raise Constraint_Error with "Position cursor has no element";
- end if;
-
- if Position.Container /= Container'Unrestricted_Access then
- raise Program_Error with "Position cursor not in container";
- end if;
-
- if Is_Root (Position) then
- raise Program_Error with "Position cursor designates root";
- end if;
-
- declare
- T : Tree renames Position.Container.all'Unrestricted_Access.all;
- B : Natural renames T.Busy;
- L : Natural renames T.Lock;
-
- begin
- B := B + 1;
- L := L + 1;
-
- Process (Position.Node.Element.all);
-
- L := L - 1;
- B := B - 1;
-
- exception
- when others =>
- L := L - 1;
- B := B - 1;
- raise;
- end;
- end Update_Element;
-
- -----------
- -- Write --
- -----------
-
- procedure Write
- (Stream : not null access Root_Stream_Type'Class;
- Container : Tree)
- is
- procedure Write_Children (Subtree : Tree_Node_Access);
- procedure Write_Subtree (Subtree : Tree_Node_Access);
-
- --------------------
- -- Write_Children --
- --------------------
-
- procedure Write_Children (Subtree : Tree_Node_Access) is
- CC : Children_Type renames Subtree.Children;
- C : Tree_Node_Access;
-
- begin
- Count_Type'Write (Stream, Child_Count (CC));
-
- C := CC.First;
- while C /= null loop
- Write_Subtree (C);
- C := C.Next;
- end loop;
- end Write_Children;
-
- -------------------
- -- Write_Subtree --
- -------------------
-
- procedure Write_Subtree (Subtree : Tree_Node_Access) is
- begin
- Element_Type'Output (Stream, Subtree.Element.all);
- Write_Children (Subtree);
- end Write_Subtree;
-
- -- Start of processing for Write
-
- begin
- Count_Type'Write (Stream, Container.Count);
-
- if Container.Count = 0 then
- return;
- end if;
-
- Write_Children (Root_Node (Container));
- end Write;
-
- procedure Write
- (Stream : not null access Root_Stream_Type'Class;
- Position : Cursor)
- is
- begin
- raise Program_Error with "attempt to write tree cursor to stream";
- end Write;
-
- procedure Write
- (Stream : not null access Root_Stream_Type'Class;
- Item : Reference_Type)
- is
- begin
- raise Program_Error with "attempt to stream reference";
- end Write;
-
- procedure Write
- (Stream : not null access Root_Stream_Type'Class;
- Item : Constant_Reference_Type)
- is
- begin
- raise Program_Error with "attempt to stream reference";
- end Write;
-
-end Ada.Containers.Indefinite_Multiway_Trees;