aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libstdc++-v3/include/tr1/ell_integral.tcc
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/libstdc++-v3/include/tr1/ell_integral.tcc')
-rw-r--r--gcc-4.4.3/libstdc++-v3/include/tr1/ell_integral.tcc750
1 files changed, 0 insertions, 750 deletions
diff --git a/gcc-4.4.3/libstdc++-v3/include/tr1/ell_integral.tcc b/gcc-4.4.3/libstdc++-v3/include/tr1/ell_integral.tcc
deleted file mode 100644
index 09bda9aa9..000000000
--- a/gcc-4.4.3/libstdc++-v3/include/tr1/ell_integral.tcc
+++ /dev/null
@@ -1,750 +0,0 @@
-// Special functions -*- C++ -*-
-
-// Copyright (C) 2006, 2007, 2008, 2009
-// Free Software Foundation, Inc.
-//
-// This file is part of the GNU ISO C++ Library. This library is free
-// software; you can redistribute it and/or modify it under the
-// terms of the GNU General Public License as published by the
-// Free Software Foundation; either version 3, or (at your option)
-// any later version.
-//
-// This library is distributed in the hope that it will be useful,
-// but WITHOUT ANY WARRANTY; without even the implied warranty of
-// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-// GNU General Public License for more details.
-//
-// Under Section 7 of GPL version 3, you are granted additional
-// permissions described in the GCC Runtime Library Exception, version
-// 3.1, as published by the Free Software Foundation.
-
-// You should have received a copy of the GNU General Public License and
-// a copy of the GCC Runtime Library Exception along with this program;
-// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
-// <http://www.gnu.org/licenses/>.
-
-/** @file tr1/ell_integral.tcc
- * This is an internal header file, included by other library headers.
- * You should not attempt to use it directly.
- */
-
-//
-// ISO C++ 14882 TR1: 5.2 Special functions
-//
-
-// Written by Edward Smith-Rowland based on:
-// (1) B. C. Carlson Numer. Math. 33, 1 (1979)
-// (2) B. C. Carlson, Special Functions of Applied Mathematics (1977)
-// (3) The Gnu Scientific Library, http://www.gnu.org/software/gsl
-// (4) Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky,
-// W. T. Vetterling, B. P. Flannery, Cambridge University Press
-// (1992), pp. 261-269
-
-#ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC
-#define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1
-
-namespace std
-{
-namespace tr1
-{
-
- // [5.2] Special functions
-
- // Implementation-space details.
- namespace __detail
- {
-
- /**
- * @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$
- * of the first kind.
- *
- * The Carlson elliptic function of the first kind is defined by:
- * @f[
- * R_F(x,y,z) = \frac{1}{2} \int_0^\infty
- * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}}
- * @f]
- *
- * @param __x The first of three symmetric arguments.
- * @param __y The second of three symmetric arguments.
- * @param __z The third of three symmetric arguments.
- * @return The Carlson elliptic function of the first kind.
- */
- template<typename _Tp>
- _Tp
- __ellint_rf(const _Tp __x, const _Tp __y, const _Tp __z)
- {
- const _Tp __min = std::numeric_limits<_Tp>::min();
- const _Tp __max = std::numeric_limits<_Tp>::max();
- const _Tp __lolim = _Tp(5) * __min;
- const _Tp __uplim = __max / _Tp(5);
-
- if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
- std::__throw_domain_error(__N("Argument less than zero "
- "in __ellint_rf."));
- else if (__x + __y < __lolim || __x + __z < __lolim
- || __y + __z < __lolim)
- std::__throw_domain_error(__N("Argument too small in __ellint_rf"));
- else
- {
- const _Tp __c0 = _Tp(1) / _Tp(4);
- const _Tp __c1 = _Tp(1) / _Tp(24);
- const _Tp __c2 = _Tp(1) / _Tp(10);
- const _Tp __c3 = _Tp(3) / _Tp(44);
- const _Tp __c4 = _Tp(1) / _Tp(14);
-
- _Tp __xn = __x;
- _Tp __yn = __y;
- _Tp __zn = __z;
-
- const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
- const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6));
- _Tp __mu;
- _Tp __xndev, __yndev, __zndev;
-
- const unsigned int __max_iter = 100;
- for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
- {
- __mu = (__xn + __yn + __zn) / _Tp(3);
- __xndev = 2 - (__mu + __xn) / __mu;
- __yndev = 2 - (__mu + __yn) / __mu;
- __zndev = 2 - (__mu + __zn) / __mu;
- _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
- __epsilon = std::max(__epsilon, std::abs(__zndev));
- if (__epsilon < __errtol)
- break;
- const _Tp __xnroot = std::sqrt(__xn);
- const _Tp __ynroot = std::sqrt(__yn);
- const _Tp __znroot = std::sqrt(__zn);
- const _Tp __lambda = __xnroot * (__ynroot + __znroot)
- + __ynroot * __znroot;
- __xn = __c0 * (__xn + __lambda);
- __yn = __c0 * (__yn + __lambda);
- __zn = __c0 * (__zn + __lambda);
- }
-
- const _Tp __e2 = __xndev * __yndev - __zndev * __zndev;
- const _Tp __e3 = __xndev * __yndev * __zndev;
- const _Tp __s = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2
- + __c4 * __e3;
-
- return __s / std::sqrt(__mu);
- }
- }
-
-
- /**
- * @brief Return the complete elliptic integral of the first kind
- * @f$ K(k) @f$ by series expansion.
- *
- * The complete elliptic integral of the first kind is defined as
- * @f[
- * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
- * {\sqrt{1 - k^2sin^2\theta}}
- * @f]
- *
- * This routine is not bad as long as |k| is somewhat smaller than 1
- * but is not is good as the Carlson elliptic integral formulation.
- *
- * @param __k The argument of the complete elliptic function.
- * @return The complete elliptic function of the first kind.
- */
- template<typename _Tp>
- _Tp
- __comp_ellint_1_series(const _Tp __k)
- {
-
- const _Tp __kk = __k * __k;
-
- _Tp __term = __kk / _Tp(4);
- _Tp __sum = _Tp(1) + __term;
-
- const unsigned int __max_iter = 1000;
- for (unsigned int __i = 2; __i < __max_iter; ++__i)
- {
- __term *= (2 * __i - 1) * __kk / (2 * __i);
- if (__term < std::numeric_limits<_Tp>::epsilon())
- break;
- __sum += __term;
- }
-
- return __numeric_constants<_Tp>::__pi_2() * __sum;
- }
-
-
- /**
- * @brief Return the complete elliptic integral of the first kind
- * @f$ K(k) @f$ using the Carlson formulation.
- *
- * The complete elliptic integral of the first kind is defined as
- * @f[
- * K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
- * {\sqrt{1 - k^2 sin^2\theta}}
- * @f]
- * where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the
- * first kind.
- *
- * @param __k The argument of the complete elliptic function.
- * @return The complete elliptic function of the first kind.
- */
- template<typename _Tp>
- _Tp
- __comp_ellint_1(const _Tp __k)
- {
-
- if (__isnan(__k))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (std::abs(__k) >= _Tp(1))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else
- return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1));
- }
-
-
- /**
- * @brief Return the incomplete elliptic integral of the first kind
- * @f$ F(k,\phi) @f$ using the Carlson formulation.
- *
- * The incomplete elliptic integral of the first kind is defined as
- * @f[
- * F(k,\phi) = \int_0^{\phi}\frac{d\theta}
- * {\sqrt{1 - k^2 sin^2\theta}}
- * @f]
- *
- * @param __k The argument of the elliptic function.
- * @param __phi The integral limit argument of the elliptic function.
- * @return The elliptic function of the first kind.
- */
- template<typename _Tp>
- _Tp
- __ellint_1(const _Tp __k, const _Tp __phi)
- {
-
- if (__isnan(__k) || __isnan(__phi))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (std::abs(__k) > _Tp(1))
- std::__throw_domain_error(__N("Bad argument in __ellint_1."));
- else
- {
- // Reduce phi to -pi/2 < phi < +pi/2.
- const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
- + _Tp(0.5L));
- const _Tp __phi_red = __phi
- - __n * __numeric_constants<_Tp>::__pi();
-
- const _Tp __s = std::sin(__phi_red);
- const _Tp __c = std::cos(__phi_red);
-
- const _Tp __F = __s
- * __ellint_rf(__c * __c,
- _Tp(1) - __k * __k * __s * __s, _Tp(1));
-
- if (__n == 0)
- return __F;
- else
- return __F + _Tp(2) * __n * __comp_ellint_1(__k);
- }
- }
-
-
- /**
- * @brief Return the complete elliptic integral of the second kind
- * @f$ E(k) @f$ by series expansion.
- *
- * The complete elliptic integral of the second kind is defined as
- * @f[
- * E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
- * @f]
- *
- * This routine is not bad as long as |k| is somewhat smaller than 1
- * but is not is good as the Carlson elliptic integral formulation.
- *
- * @param __k The argument of the complete elliptic function.
- * @return The complete elliptic function of the second kind.
- */
- template<typename _Tp>
- _Tp
- __comp_ellint_2_series(const _Tp __k)
- {
-
- const _Tp __kk = __k * __k;
-
- _Tp __term = __kk;
- _Tp __sum = __term;
-
- const unsigned int __max_iter = 1000;
- for (unsigned int __i = 2; __i < __max_iter; ++__i)
- {
- const _Tp __i2m = 2 * __i - 1;
- const _Tp __i2 = 2 * __i;
- __term *= __i2m * __i2m * __kk / (__i2 * __i2);
- if (__term < std::numeric_limits<_Tp>::epsilon())
- break;
- __sum += __term / __i2m;
- }
-
- return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum);
- }
-
-
- /**
- * @brief Return the Carlson elliptic function of the second kind
- * @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where
- * @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function
- * of the third kind.
- *
- * The Carlson elliptic function of the second kind is defined by:
- * @f[
- * R_D(x,y,z) = \frac{3}{2} \int_0^\infty
- * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}}
- * @f]
- *
- * Based on Carlson's algorithms:
- * - B. C. Carlson Numer. Math. 33, 1 (1979)
- * - B. C. Carlson, Special Functions of Applied Mathematics (1977)
- * - Numerical Recipes in C, 2nd ed, pp. 261-269,
- * by Press, Teukolsky, Vetterling, Flannery (1992)
- *
- * @param __x The first of two symmetric arguments.
- * @param __y The second of two symmetric arguments.
- * @param __z The third argument.
- * @return The Carlson elliptic function of the second kind.
- */
- template<typename _Tp>
- _Tp
- __ellint_rd(const _Tp __x, const _Tp __y, const _Tp __z)
- {
- const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
- const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
- const _Tp __min = std::numeric_limits<_Tp>::min();
- const _Tp __max = std::numeric_limits<_Tp>::max();
- const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3));
- const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3));
-
- if (__x < _Tp(0) || __y < _Tp(0))
- std::__throw_domain_error(__N("Argument less than zero "
- "in __ellint_rd."));
- else if (__x + __y < __lolim || __z < __lolim)
- std::__throw_domain_error(__N("Argument too small "
- "in __ellint_rd."));
- else
- {
- const _Tp __c0 = _Tp(1) / _Tp(4);
- const _Tp __c1 = _Tp(3) / _Tp(14);
- const _Tp __c2 = _Tp(1) / _Tp(6);
- const _Tp __c3 = _Tp(9) / _Tp(22);
- const _Tp __c4 = _Tp(3) / _Tp(26);
-
- _Tp __xn = __x;
- _Tp __yn = __y;
- _Tp __zn = __z;
- _Tp __sigma = _Tp(0);
- _Tp __power4 = _Tp(1);
-
- _Tp __mu;
- _Tp __xndev, __yndev, __zndev;
-
- const unsigned int __max_iter = 100;
- for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
- {
- __mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5);
- __xndev = (__mu - __xn) / __mu;
- __yndev = (__mu - __yn) / __mu;
- __zndev = (__mu - __zn) / __mu;
- _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
- __epsilon = std::max(__epsilon, std::abs(__zndev));
- if (__epsilon < __errtol)
- break;
- _Tp __xnroot = std::sqrt(__xn);
- _Tp __ynroot = std::sqrt(__yn);
- _Tp __znroot = std::sqrt(__zn);
- _Tp __lambda = __xnroot * (__ynroot + __znroot)
- + __ynroot * __znroot;
- __sigma += __power4 / (__znroot * (__zn + __lambda));
- __power4 *= __c0;
- __xn = __c0 * (__xn + __lambda);
- __yn = __c0 * (__yn + __lambda);
- __zn = __c0 * (__zn + __lambda);
- }
-
- // Note: __ea is an SPU badname.
- _Tp __eaa = __xndev * __yndev;
- _Tp __eb = __zndev * __zndev;
- _Tp __ec = __eaa - __eb;
- _Tp __ed = __eaa - _Tp(6) * __eb;
- _Tp __ef = __ed + __ec + __ec;
- _Tp __s1 = __ed * (-__c1 + __c3 * __ed
- / _Tp(3) - _Tp(3) * __c4 * __zndev * __ef
- / _Tp(2));
- _Tp __s2 = __zndev
- * (__c2 * __ef
- + __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa));
-
- return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2)
- / (__mu * std::sqrt(__mu));
- }
- }
-
-
- /**
- * @brief Return the complete elliptic integral of the second kind
- * @f$ E(k) @f$ using the Carlson formulation.
- *
- * The complete elliptic integral of the second kind is defined as
- * @f[
- * E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
- * @f]
- *
- * @param __k The argument of the complete elliptic function.
- * @return The complete elliptic function of the second kind.
- */
- template<typename _Tp>
- _Tp
- __comp_ellint_2(const _Tp __k)
- {
-
- if (__isnan(__k))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (std::abs(__k) == 1)
- return _Tp(1);
- else if (std::abs(__k) > _Tp(1))
- std::__throw_domain_error(__N("Bad argument in __comp_ellint_2."));
- else
- {
- const _Tp __kk = __k * __k;
-
- return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
- - __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3);
- }
- }
-
-
- /**
- * @brief Return the incomplete elliptic integral of the second kind
- * @f$ E(k,\phi) @f$ using the Carlson formulation.
- *
- * The incomplete elliptic integral of the second kind is defined as
- * @f[
- * E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}
- * @f]
- *
- * @param __k The argument of the elliptic function.
- * @param __phi The integral limit argument of the elliptic function.
- * @return The elliptic function of the second kind.
- */
- template<typename _Tp>
- _Tp
- __ellint_2(const _Tp __k, const _Tp __phi)
- {
-
- if (__isnan(__k) || __isnan(__phi))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (std::abs(__k) > _Tp(1))
- std::__throw_domain_error(__N("Bad argument in __ellint_2."));
- else
- {
- // Reduce phi to -pi/2 < phi < +pi/2.
- const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
- + _Tp(0.5L));
- const _Tp __phi_red = __phi
- - __n * __numeric_constants<_Tp>::__pi();
-
- const _Tp __kk = __k * __k;
- const _Tp __s = std::sin(__phi_red);
- const _Tp __ss = __s * __s;
- const _Tp __sss = __ss * __s;
- const _Tp __c = std::cos(__phi_red);
- const _Tp __cc = __c * __c;
-
- const _Tp __E = __s
- * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
- - __kk * __sss
- * __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1))
- / _Tp(3);
-
- if (__n == 0)
- return __E;
- else
- return __E + _Tp(2) * __n * __comp_ellint_2(__k);
- }
- }
-
-
- /**
- * @brief Return the Carlson elliptic function
- * @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$
- * is the Carlson elliptic function of the first kind.
- *
- * The Carlson elliptic function is defined by:
- * @f[
- * R_C(x,y) = \frac{1}{2} \int_0^\infty
- * \frac{dt}{(t + x)^{1/2}(t + y)}
- * @f]
- *
- * Based on Carlson's algorithms:
- * - B. C. Carlson Numer. Math. 33, 1 (1979)
- * - B. C. Carlson, Special Functions of Applied Mathematics (1977)
- * - Numerical Recipes in C, 2nd ed, pp. 261-269,
- * by Press, Teukolsky, Vetterling, Flannery (1992)
- *
- * @param __x The first argument.
- * @param __y The second argument.
- * @return The Carlson elliptic function.
- */
- template<typename _Tp>
- _Tp
- __ellint_rc(const _Tp __x, const _Tp __y)
- {
- const _Tp __min = std::numeric_limits<_Tp>::min();
- const _Tp __max = std::numeric_limits<_Tp>::max();
- const _Tp __lolim = _Tp(5) * __min;
- const _Tp __uplim = __max / _Tp(5);
-
- if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim)
- std::__throw_domain_error(__N("Argument less than zero "
- "in __ellint_rc."));
- else
- {
- const _Tp __c0 = _Tp(1) / _Tp(4);
- const _Tp __c1 = _Tp(1) / _Tp(7);
- const _Tp __c2 = _Tp(9) / _Tp(22);
- const _Tp __c3 = _Tp(3) / _Tp(10);
- const _Tp __c4 = _Tp(3) / _Tp(8);
-
- _Tp __xn = __x;
- _Tp __yn = __y;
-
- const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
- const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6));
- _Tp __mu;
- _Tp __sn;
-
- const unsigned int __max_iter = 100;
- for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
- {
- __mu = (__xn + _Tp(2) * __yn) / _Tp(3);
- __sn = (__yn + __mu) / __mu - _Tp(2);
- if (std::abs(__sn) < __errtol)
- break;
- const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn)
- + __yn;
- __xn = __c0 * (__xn + __lambda);
- __yn = __c0 * (__yn + __lambda);
- }
-
- _Tp __s = __sn * __sn
- * (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2)));
-
- return (_Tp(1) + __s) / std::sqrt(__mu);
- }
- }
-
-
- /**
- * @brief Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$
- * of the third kind.
- *
- * The Carlson elliptic function of the third kind is defined by:
- * @f[
- * R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty
- * \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)}
- * @f]
- *
- * Based on Carlson's algorithms:
- * - B. C. Carlson Numer. Math. 33, 1 (1979)
- * - B. C. Carlson, Special Functions of Applied Mathematics (1977)
- * - Numerical Recipes in C, 2nd ed, pp. 261-269,
- * by Press, Teukolsky, Vetterling, Flannery (1992)
- *
- * @param __x The first of three symmetric arguments.
- * @param __y The second of three symmetric arguments.
- * @param __z The third of three symmetric arguments.
- * @param __p The fourth argument.
- * @return The Carlson elliptic function of the fourth kind.
- */
- template<typename _Tp>
- _Tp
- __ellint_rj(const _Tp __x, const _Tp __y, const _Tp __z, const _Tp __p)
- {
- const _Tp __min = std::numeric_limits<_Tp>::min();
- const _Tp __max = std::numeric_limits<_Tp>::max();
- const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3));
- const _Tp __uplim = _Tp(0.3L)
- * std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3));
-
- if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
- std::__throw_domain_error(__N("Argument less than zero "
- "in __ellint_rj."));
- else if (__x + __y < __lolim || __x + __z < __lolim
- || __y + __z < __lolim || __p < __lolim)
- std::__throw_domain_error(__N("Argument too small "
- "in __ellint_rj"));
- else
- {
- const _Tp __c0 = _Tp(1) / _Tp(4);
- const _Tp __c1 = _Tp(3) / _Tp(14);
- const _Tp __c2 = _Tp(1) / _Tp(3);
- const _Tp __c3 = _Tp(3) / _Tp(22);
- const _Tp __c4 = _Tp(3) / _Tp(26);
-
- _Tp __xn = __x;
- _Tp __yn = __y;
- _Tp __zn = __z;
- _Tp __pn = __p;
- _Tp __sigma = _Tp(0);
- _Tp __power4 = _Tp(1);
-
- const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
- const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
-
- _Tp __lambda, __mu;
- _Tp __xndev, __yndev, __zndev, __pndev;
-
- const unsigned int __max_iter = 100;
- for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
- {
- __mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5);
- __xndev = (__mu - __xn) / __mu;
- __yndev = (__mu - __yn) / __mu;
- __zndev = (__mu - __zn) / __mu;
- __pndev = (__mu - __pn) / __mu;
- _Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
- __epsilon = std::max(__epsilon, std::abs(__zndev));
- __epsilon = std::max(__epsilon, std::abs(__pndev));
- if (__epsilon < __errtol)
- break;
- const _Tp __xnroot = std::sqrt(__xn);
- const _Tp __ynroot = std::sqrt(__yn);
- const _Tp __znroot = std::sqrt(__zn);
- const _Tp __lambda = __xnroot * (__ynroot + __znroot)
- + __ynroot * __znroot;
- const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot)
- + __xnroot * __ynroot * __znroot;
- const _Tp __alpha2 = __alpha1 * __alpha1;
- const _Tp __beta = __pn * (__pn + __lambda)
- * (__pn + __lambda);
- __sigma += __power4 * __ellint_rc(__alpha2, __beta);
- __power4 *= __c0;
- __xn = __c0 * (__xn + __lambda);
- __yn = __c0 * (__yn + __lambda);
- __zn = __c0 * (__zn + __lambda);
- __pn = __c0 * (__pn + __lambda);
- }
-
- // Note: __ea is an SPU badname.
- _Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev;
- _Tp __eb = __xndev * __yndev * __zndev;
- _Tp __ec = __pndev * __pndev;
- _Tp __e2 = __eaa - _Tp(3) * __ec;
- _Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec);
- _Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4)
- - _Tp(3) * __c4 * __e3 / _Tp(2));
- _Tp __s2 = __eb * (__c2 / _Tp(2)
- + __pndev * (-__c3 - __c3 + __pndev * __c4));
- _Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3)
- - __c2 * __pndev * __ec;
-
- return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3)
- / (__mu * std::sqrt(__mu));
- }
- }
-
-
- /**
- * @brief Return the complete elliptic integral of the third kind
- * @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the
- * Carlson formulation.
- *
- * The complete elliptic integral of the third kind is defined as
- * @f[
- * \Pi(k,\nu) = \int_0^{\pi/2}
- * \frac{d\theta}
- * {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}
- * @f]
- *
- * @param __k The argument of the elliptic function.
- * @param __nu The second argument of the elliptic function.
- * @return The complete elliptic function of the third kind.
- */
- template<typename _Tp>
- _Tp
- __comp_ellint_3(const _Tp __k, const _Tp __nu)
- {
-
- if (__isnan(__k) || __isnan(__nu))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (__nu == _Tp(1))
- return std::numeric_limits<_Tp>::infinity();
- else if (std::abs(__k) > _Tp(1))
- std::__throw_domain_error(__N("Bad argument in __comp_ellint_3."));
- else
- {
- const _Tp __kk = __k * __k;
-
- return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
- - __nu
- * __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) + __nu)
- / _Tp(3);
- }
- }
-
-
- /**
- * @brief Return the incomplete elliptic integral of the third kind
- * @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation.
- *
- * The incomplete elliptic integral of the third kind is defined as
- * @f[
- * \Pi(k,\nu,\phi) = \int_0^{\phi}
- * \frac{d\theta}
- * {(1 - \nu \sin^2\theta)
- * \sqrt{1 - k^2 \sin^2\theta}}
- * @f]
- *
- * @param __k The argument of the elliptic function.
- * @param __nu The second argument of the elliptic function.
- * @param __phi The integral limit argument of the elliptic function.
- * @return The elliptic function of the third kind.
- */
- template<typename _Tp>
- _Tp
- __ellint_3(const _Tp __k, const _Tp __nu, const _Tp __phi)
- {
-
- if (__isnan(__k) || __isnan(__nu) || __isnan(__phi))
- return std::numeric_limits<_Tp>::quiet_NaN();
- else if (std::abs(__k) > _Tp(1))
- std::__throw_domain_error(__N("Bad argument in __ellint_3."));
- else
- {
- // Reduce phi to -pi/2 < phi < +pi/2.
- const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
- + _Tp(0.5L));
- const _Tp __phi_red = __phi
- - __n * __numeric_constants<_Tp>::__pi();
-
- const _Tp __kk = __k * __k;
- const _Tp __s = std::sin(__phi_red);
- const _Tp __ss = __s * __s;
- const _Tp __sss = __ss * __s;
- const _Tp __c = std::cos(__phi_red);
- const _Tp __cc = __c * __c;
-
- const _Tp __Pi = __s
- * __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
- - __nu * __sss
- * __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1),
- _Tp(1) + __nu * __ss) / _Tp(3);
-
- if (__n == 0)
- return __Pi;
- else
- return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu);
- }
- }
-
- } // namespace std::tr1::__detail
-}
-}
-
-#endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC
-