aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libstdc++-v3/include/parallel/multiseq_selection.h
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/libstdc++-v3/include/parallel/multiseq_selection.h')
-rw-r--r--gcc-4.4.3/libstdc++-v3/include/parallel/multiseq_selection.h619
1 files changed, 619 insertions, 0 deletions
diff --git a/gcc-4.4.3/libstdc++-v3/include/parallel/multiseq_selection.h b/gcc-4.4.3/libstdc++-v3/include/parallel/multiseq_selection.h
new file mode 100644
index 000000000..279e298e9
--- /dev/null
+++ b/gcc-4.4.3/libstdc++-v3/include/parallel/multiseq_selection.h
@@ -0,0 +1,619 @@
+// -*- C++ -*-
+
+// Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library. This library is free
+// software; you can redistribute it and/or modify it under the terms
+// of the GNU General Public License as published by the Free Software
+// Foundation; either version 3, or (at your option) any later
+// version.
+
+// This library is distributed in the hope that it will be useful, but
+// WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// General Public License for more details.
+
+// Under Section 7 of GPL version 3, you are granted additional
+// permissions described in the GCC Runtime Library Exception, version
+// 3.1, as published by the Free Software Foundation.
+
+// You should have received a copy of the GNU General Public License and
+// a copy of the GCC Runtime Library Exception along with this program;
+// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+// <http://www.gnu.org/licenses/>.
+
+/** @file parallel/multiseq_selection.h
+ * @brief Functions to find elements of a certain global rank in
+ * multiple sorted sequences. Also serves for splitting such
+ * sequence sets.
+ *
+ * The algorithm description can be found in
+ *
+ * P. J. Varman, S. D. Scheufler, B. R. Iyer, and G. R. Ricard.
+ * Merging Multiple Lists on Hierarchical-Memory Multiprocessors.
+ * Journal of Parallel and Distributed Computing, 12(2):171–177, 1991.
+ *
+ * This file is a GNU parallel extension to the Standard C++ Library.
+ */
+
+// Written by Johannes Singler.
+
+#ifndef _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H
+#define _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H 1
+
+#include <vector>
+#include <queue>
+
+#include <bits/stl_algo.h>
+
+#include <parallel/sort.h>
+
+namespace __gnu_parallel
+{
+ /** @brief Compare a pair of types lexicographically, ascending. */
+ template<typename T1, typename T2, typename Comparator>
+ class lexicographic
+ : public std::binary_function<std::pair<T1, T2>, std::pair<T1, T2>, bool>
+ {
+ private:
+ Comparator& comp;
+
+ public:
+ lexicographic(Comparator& _comp) : comp(_comp) { }
+
+ bool
+ operator()(const std::pair<T1, T2>& p1,
+ const std::pair<T1, T2>& p2) const
+ {
+ if (comp(p1.first, p2.first))
+ return true;
+
+ if (comp(p2.first, p1.first))
+ return false;
+
+ // Firsts are equal.
+ return p1.second < p2.second;
+ }
+ };
+
+ /** @brief Compare a pair of types lexicographically, descending. */
+ template<typename T1, typename T2, typename Comparator>
+ class lexicographic_reverse : public std::binary_function<T1, T2, bool>
+ {
+ private:
+ Comparator& comp;
+
+ public:
+ lexicographic_reverse(Comparator& _comp) : comp(_comp) { }
+
+ bool
+ operator()(const std::pair<T1, T2>& p1,
+ const std::pair<T1, T2>& p2) const
+ {
+ if (comp(p2.first, p1.first))
+ return true;
+
+ if (comp(p1.first, p2.first))
+ return false;
+
+ // Firsts are equal.
+ return p2.second < p1.second;
+ }
+ };
+
+ /**
+ * @brief Splits several sorted sequences at a certain global rank,
+ * resulting in a splitting point for each sequence.
+ * The sequences are passed via a sequence of random-access
+ * iterator pairs, none of the sequences may be empty. If there
+ * are several equal elements across the split, the ones on the
+ * left side will be chosen from sequences with smaller number.
+ * @param begin_seqs Begin of the sequence of iterator pairs.
+ * @param end_seqs End of the sequence of iterator pairs.
+ * @param rank The global rank to partition at.
+ * @param begin_offsets A random-access sequence begin where the
+ * result will be stored in. Each element of the sequence is an
+ * iterator that points to the first element on the greater part of
+ * the respective sequence.
+ * @param comp The ordering functor, defaults to std::less<T>.
+ */
+ template<typename RanSeqs, typename RankType, typename RankIterator,
+ typename Comparator>
+ void
+ multiseq_partition(RanSeqs begin_seqs, RanSeqs end_seqs,
+ RankType rank,
+ RankIterator begin_offsets,
+ Comparator comp = std::less<
+ typename std::iterator_traits<typename
+ std::iterator_traits<RanSeqs>::value_type::
+ first_type>::value_type>()) // std::less<T>
+ {
+ _GLIBCXX_CALL(end_seqs - begin_seqs)
+
+ typedef typename std::iterator_traits<RanSeqs>::value_type::first_type
+ It;
+ typedef typename std::iterator_traits<It>::difference_type
+ difference_type;
+ typedef typename std::iterator_traits<It>::value_type value_type;
+
+ lexicographic<value_type, int, Comparator> lcomp(comp);
+ lexicographic_reverse<value_type, int, Comparator> lrcomp(comp);
+
+ // Number of sequences, number of elements in total (possibly
+ // including padding).
+ difference_type m = std::distance(begin_seqs, end_seqs), N = 0,
+ nmax, n, r;
+
+ for (int i = 0; i < m; i++)
+ {
+ N += std::distance(begin_seqs[i].first, begin_seqs[i].second);
+ _GLIBCXX_PARALLEL_ASSERT(
+ std::distance(begin_seqs[i].first, begin_seqs[i].second) > 0);
+ }
+
+ if (rank == N)
+ {
+ for (int i = 0; i < m; i++)
+ begin_offsets[i] = begin_seqs[i].second; // Very end.
+ // Return m - 1;
+ return;
+ }
+
+ _GLIBCXX_PARALLEL_ASSERT(m != 0);
+ _GLIBCXX_PARALLEL_ASSERT(N != 0);
+ _GLIBCXX_PARALLEL_ASSERT(rank >= 0);
+ _GLIBCXX_PARALLEL_ASSERT(rank < N);
+
+ difference_type* ns = new difference_type[m];
+ difference_type* a = new difference_type[m];
+ difference_type* b = new difference_type[m];
+ difference_type l;
+
+ ns[0] = std::distance(begin_seqs[0].first, begin_seqs[0].second);
+ nmax = ns[0];
+ for (int i = 0; i < m; i++)
+ {
+ ns[i] = std::distance(begin_seqs[i].first, begin_seqs[i].second);
+ nmax = std::max(nmax, ns[i]);
+ }
+
+ r = __log2(nmax) + 1;
+
+ // Pad all lists to this length, at least as long as any ns[i],
+ // equality iff nmax = 2^k - 1.
+ l = (1ULL << r) - 1;
+
+ for (int i = 0; i < m; i++)
+ {
+ a[i] = 0;
+ b[i] = l;
+ }
+ n = l / 2;
+
+ // Invariants:
+ // 0 <= a[i] <= ns[i], 0 <= b[i] <= l
+
+#define S(i) (begin_seqs[i].first)
+
+ // Initial partition.
+ std::vector<std::pair<value_type, int> > sample;
+
+ for (int i = 0; i < m; i++)
+ if (n < ns[i]) //sequence long enough
+ sample.push_back(std::make_pair(S(i)[n], i));
+ __gnu_sequential::sort(sample.begin(), sample.end(), lcomp);
+
+ for (int i = 0; i < m; i++) //conceptual infinity
+ if (n >= ns[i]) //sequence too short, conceptual infinity
+ sample.push_back(std::make_pair(S(i)[0] /*dummy element*/, i));
+
+ difference_type localrank = rank / l;
+
+ int j;
+ for (j = 0; j < localrank && ((n + 1) <= ns[sample[j].second]); ++j)
+ a[sample[j].second] += n + 1;
+ for (; j < m; j++)
+ b[sample[j].second] -= n + 1;
+
+ // Further refinement.
+ while (n > 0)
+ {
+ n /= 2;
+
+ int lmax_seq = -1; // to avoid warning
+ const value_type* lmax = NULL; // impossible to avoid the warning?
+ for (int i = 0; i < m; i++)
+ {
+ if (a[i] > 0)
+ {
+ if (!lmax)
+ {
+ lmax = &(S(i)[a[i] - 1]);
+ lmax_seq = i;
+ }
+ else
+ {
+ // Max, favor rear sequences.
+ if (!comp(S(i)[a[i] - 1], *lmax))
+ {
+ lmax = &(S(i)[a[i] - 1]);
+ lmax_seq = i;
+ }
+ }
+ }
+ }
+
+ int i;
+ for (i = 0; i < m; i++)
+ {
+ difference_type middle = (b[i] + a[i]) / 2;
+ if (lmax && middle < ns[i] &&
+ lcomp(std::make_pair(S(i)[middle], i),
+ std::make_pair(*lmax, lmax_seq)))
+ a[i] = std::min(a[i] + n + 1, ns[i]);
+ else
+ b[i] -= n + 1;
+ }
+
+ difference_type leftsize = 0;
+ for (int i = 0; i < m; i++)
+ leftsize += a[i] / (n + 1);
+
+ difference_type skew = rank / (n + 1) - leftsize;
+
+ if (skew > 0)
+ {
+ // Move to the left, find smallest.
+ std::priority_queue<std::pair<value_type, int>,
+ std::vector<std::pair<value_type, int> >,
+ lexicographic_reverse<value_type, int, Comparator> >
+ pq(lrcomp);
+
+ for (int i = 0; i < m; i++)
+ if (b[i] < ns[i])
+ pq.push(std::make_pair(S(i)[b[i]], i));
+
+ for (; skew != 0 && !pq.empty(); --skew)
+ {
+ int source = pq.top().second;
+ pq.pop();
+
+ a[source] = std::min(a[source] + n + 1, ns[source]);
+ b[source] += n + 1;
+
+ if (b[source] < ns[source])
+ pq.push(std::make_pair(S(source)[b[source]], source));
+ }
+ }
+ else if (skew < 0)
+ {
+ // Move to the right, find greatest.
+ std::priority_queue<std::pair<value_type, int>,
+ std::vector<std::pair<value_type, int> >,
+ lexicographic<value_type, int, Comparator> > pq(lcomp);
+
+ for (int i = 0; i < m; i++)
+ if (a[i] > 0)
+ pq.push(std::make_pair(S(i)[a[i] - 1], i));
+
+ for (; skew != 0; ++skew)
+ {
+ int source = pq.top().second;
+ pq.pop();
+
+ a[source] -= n + 1;
+ b[source] -= n + 1;
+
+ if (a[source] > 0)
+ pq.push(std::make_pair(S(source)[a[source] - 1], source));
+ }
+ }
+ }
+
+ // Postconditions:
+ // a[i] == b[i] in most cases, except when a[i] has been clamped
+ // because of having reached the boundary
+
+ // Now return the result, calculate the offset.
+
+ // Compare the keys on both edges of the border.
+
+ // Maximum of left edge, minimum of right edge.
+ value_type* maxleft = NULL;
+ value_type* minright = NULL;
+ for (int i = 0; i < m; i++)
+ {
+ if (a[i] > 0)
+ {
+ if (!maxleft)
+ maxleft = &(S(i)[a[i] - 1]);
+ else
+ {
+ // Max, favor rear sequences.
+ if (!comp(S(i)[a[i] - 1], *maxleft))
+ maxleft = &(S(i)[a[i] - 1]);
+ }
+ }
+ if (b[i] < ns[i])
+ {
+ if (!minright)
+ minright = &(S(i)[b[i]]);
+ else
+ {
+ // Min, favor fore sequences.
+ if (comp(S(i)[b[i]], *minright))
+ minright = &(S(i)[b[i]]);
+ }
+ }
+ }
+
+ int seq = 0;
+ for (int i = 0; i < m; i++)
+ begin_offsets[i] = S(i) + a[i];
+
+ delete[] ns;
+ delete[] a;
+ delete[] b;
+ }
+
+
+ /**
+ * @brief Selects the element at a certain global rank from several
+ * sorted sequences.
+ *
+ * The sequences are passed via a sequence of random-access
+ * iterator pairs, none of the sequences may be empty.
+ * @param begin_seqs Begin of the sequence of iterator pairs.
+ * @param end_seqs End of the sequence of iterator pairs.
+ * @param rank The global rank to partition at.
+ * @param offset The rank of the selected element in the global
+ * subsequence of elements equal to the selected element. If the
+ * selected element is unique, this number is 0.
+ * @param comp The ordering functor, defaults to std::less.
+ */
+ template<typename T, typename RanSeqs, typename RankType,
+ typename Comparator>
+ T
+ multiseq_selection(RanSeqs begin_seqs, RanSeqs end_seqs, RankType rank,
+ RankType& offset, Comparator comp = std::less<T>())
+ {
+ _GLIBCXX_CALL(end_seqs - begin_seqs)
+
+ typedef typename std::iterator_traits<RanSeqs>::value_type::first_type
+ It;
+ typedef typename std::iterator_traits<It>::difference_type
+ difference_type;
+
+ lexicographic<T, int, Comparator> lcomp(comp);
+ lexicographic_reverse<T, int, Comparator> lrcomp(comp);
+
+ // Number of sequences, number of elements in total (possibly
+ // including padding).
+ difference_type m = std::distance(begin_seqs, end_seqs);
+ difference_type N = 0;
+ difference_type nmax, n, r;
+
+ for (int i = 0; i < m; i++)
+ N += std::distance(begin_seqs[i].first, begin_seqs[i].second);
+
+ if (m == 0 || N == 0 || rank < 0 || rank >= N)
+ {
+ // Result undefined when there is no data or rank is outside bounds.
+ throw std::exception();
+ }
+
+
+ difference_type* ns = new difference_type[m];
+ difference_type* a = new difference_type[m];
+ difference_type* b = new difference_type[m];
+ difference_type l;
+
+ ns[0] = std::distance(begin_seqs[0].first, begin_seqs[0].second);
+ nmax = ns[0];
+ for (int i = 0; i < m; ++i)
+ {
+ ns[i] = std::distance(begin_seqs[i].first, begin_seqs[i].second);
+ nmax = std::max(nmax, ns[i]);
+ }
+
+ r = __log2(nmax) + 1;
+
+ // Pad all lists to this length, at least as long as any ns[i],
+ // equality iff nmax = 2^k - 1
+ l = pow2(r) - 1;
+
+ for (int i = 0; i < m; ++i)
+ {
+ a[i] = 0;
+ b[i] = l;
+ }
+ n = l / 2;
+
+ // Invariants:
+ // 0 <= a[i] <= ns[i], 0 <= b[i] <= l
+
+#define S(i) (begin_seqs[i].first)
+
+ // Initial partition.
+ std::vector<std::pair<T, int> > sample;
+
+ for (int i = 0; i < m; i++)
+ if (n < ns[i])
+ sample.push_back(std::make_pair(S(i)[n], i));
+ __gnu_sequential::sort(sample.begin(), sample.end(),
+ lcomp, sequential_tag());
+
+ // Conceptual infinity.
+ for (int i = 0; i < m; i++)
+ if (n >= ns[i])
+ sample.push_back(std::make_pair(S(i)[0] /*dummy element*/, i));
+
+ difference_type localrank = rank / l;
+
+ int j;
+ for (j = 0; j < localrank && ((n + 1) <= ns[sample[j].second]); ++j)
+ a[sample[j].second] += n + 1;
+ for (; j < m; ++j)
+ b[sample[j].second] -= n + 1;
+
+ // Further refinement.
+ while (n > 0)
+ {
+ n /= 2;
+
+ const T* lmax = NULL;
+ for (int i = 0; i < m; ++i)
+ {
+ if (a[i] > 0)
+ {
+ if (!lmax)
+ lmax = &(S(i)[a[i] - 1]);
+ else
+ {
+ if (comp(*lmax, S(i)[a[i] - 1])) //max
+ lmax = &(S(i)[a[i] - 1]);
+ }
+ }
+ }
+
+ int i;
+ for (i = 0; i < m; i++)
+ {
+ difference_type middle = (b[i] + a[i]) / 2;
+ if (lmax && middle < ns[i] && comp(S(i)[middle], *lmax))
+ a[i] = std::min(a[i] + n + 1, ns[i]);
+ else
+ b[i] -= n + 1;
+ }
+
+ difference_type leftsize = 0;
+ for (int i = 0; i < m; ++i)
+ leftsize += a[i] / (n + 1);
+
+ difference_type skew = rank / (n + 1) - leftsize;
+
+ if (skew > 0)
+ {
+ // Move to the left, find smallest.
+ std::priority_queue<std::pair<T, int>,
+ std::vector<std::pair<T, int> >,
+ lexicographic_reverse<T, int, Comparator> > pq(lrcomp);
+
+ for (int i = 0; i < m; ++i)
+ if (b[i] < ns[i])
+ pq.push(std::make_pair(S(i)[b[i]], i));
+
+ for (; skew != 0 && !pq.empty(); --skew)
+ {
+ int source = pq.top().second;
+ pq.pop();
+
+ a[source] = std::min(a[source] + n + 1, ns[source]);
+ b[source] += n + 1;
+
+ if (b[source] < ns[source])
+ pq.push(std::make_pair(S(source)[b[source]], source));
+ }
+ }
+ else if (skew < 0)
+ {
+ // Move to the right, find greatest.
+ std::priority_queue<std::pair<T, int>,
+ std::vector<std::pair<T, int> >,
+ lexicographic<T, int, Comparator> > pq(lcomp);
+
+ for (int i = 0; i < m; ++i)
+ if (a[i] > 0)
+ pq.push(std::make_pair(S(i)[a[i] - 1], i));
+
+ for (; skew != 0; ++skew)
+ {
+ int source = pq.top().second;
+ pq.pop();
+
+ a[source] -= n + 1;
+ b[source] -= n + 1;
+
+ if (a[source] > 0)
+ pq.push(std::make_pair(S(source)[a[source] - 1], source));
+ }
+ }
+ }
+
+ // Postconditions:
+ // a[i] == b[i] in most cases, except when a[i] has been clamped
+ // because of having reached the boundary
+
+ // Now return the result, calculate the offset.
+
+ // Compare the keys on both edges of the border.
+
+ // Maximum of left edge, minimum of right edge.
+ bool maxleftset = false, minrightset = false;
+
+ // Impossible to avoid the warning?
+ T maxleft, minright;
+ for (int i = 0; i < m; ++i)
+ {
+ if (a[i] > 0)
+ {
+ if (!maxleftset)
+ {
+ maxleft = S(i)[a[i] - 1];
+ maxleftset = true;
+ }
+ else
+ {
+ // Max.
+ if (comp(maxleft, S(i)[a[i] - 1]))
+ maxleft = S(i)[a[i] - 1];
+ }
+ }
+ if (b[i] < ns[i])
+ {
+ if (!minrightset)
+ {
+ minright = S(i)[b[i]];
+ minrightset = true;
+ }
+ else
+ {
+ // Min.
+ if (comp(S(i)[b[i]], minright))
+ minright = S(i)[b[i]];
+ }
+ }
+ }
+
+ // Minright is the splitter, in any case.
+
+ if (!maxleftset || comp(minright, maxleft))
+ {
+ // Good luck, everything is split unambiguously.
+ offset = 0;
+ }
+ else
+ {
+ // We have to calculate an offset.
+ offset = 0;
+
+ for (int i = 0; i < m; ++i)
+ {
+ difference_type lb = std::lower_bound(S(i), S(i) + ns[i],
+ minright,
+ comp) - S(i);
+ offset += a[i] - lb;
+ }
+ }
+
+ delete[] ns;
+ delete[] a;
+ delete[] b;
+
+ return minright;
+ }
+}
+
+#undef S
+
+#endif /* _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H */