aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libstdc++-v3/doc/html/manual/memory.html
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/libstdc++-v3/doc/html/manual/memory.html')
-rw-r--r--gcc-4.4.3/libstdc++-v3/doc/html/manual/memory.html349
1 files changed, 0 insertions, 349 deletions
diff --git a/gcc-4.4.3/libstdc++-v3/doc/html/manual/memory.html b/gcc-4.4.3/libstdc++-v3/doc/html/manual/memory.html
deleted file mode 100644
index 47327f3f1..000000000
--- a/gcc-4.4.3/libstdc++-v3/doc/html/manual/memory.html
+++ /dev/null
@@ -1,349 +0,0 @@
-<?xml version="1.0" encoding="UTF-8" standalone="no"?>
-<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
-<html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>Chapter 11. Memory</title><meta name="generator" content="DocBook XSL Stylesheets V1.74.0" /><meta name="keywords" content="&#10; ISO C++&#10; , &#10; library&#10; " /><link rel="home" href="../spine.html" title="The GNU C++ Library Documentation" /><link rel="up" href="utilities.html" title="Part IV.  Utilities" /><link rel="prev" href="pairs.html" title="Chapter 10. Pairs" /><link rel="next" href="auto_ptr.html" title="auto_ptr" /></head><body><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Chapter 11. Memory</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="pairs.html">Prev</a> </td><th width="60%" align="center">Part IV. 
- Utilities
-
-</th><td width="20%" align="right"> <a accesskey="n" href="auto_ptr.html">Next</a></td></tr></table><hr /></div><div class="chapter" lang="en" xml:lang="en"><div class="titlepage"><div><div><h2 class="title"><a id="manual.util.memory"></a>Chapter 11. Memory</h2></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl><dt><span class="sect1"><a href="memory.html#manual.util.memory.allocator">Allocators</a></span></dt><dd><dl><dt><span class="sect2"><a href="memory.html#allocator.req">Requirements</a></span></dt><dt><span class="sect2"><a href="memory.html#allocator.design_issues">Design Issues</a></span></dt><dt><span class="sect2"><a href="memory.html#allocator.impl">Implementation</a></span></dt><dt><span class="sect2"><a href="memory.html#allocator.using">Using a Specific Allocator</a></span></dt><dt><span class="sect2"><a href="memory.html#allocator.custom">Custom Allocators</a></span></dt><dt><span class="sect2"><a href="memory.html#allocator.ext">Extension Allocators</a></span></dt></dl></dd><dt><span class="sect1"><a href="auto_ptr.html">auto_ptr</a></span></dt><dd><dl><dt><span class="sect2"><a href="auto_ptr.html#auto_ptr.limitations">Limitations</a></span></dt><dt><span class="sect2"><a href="auto_ptr.html#auto_ptr.using">Use in Containers</a></span></dt></dl></dd><dt><span class="sect1"><a href="shared_ptr.html">shared_ptr</a></span></dt><dd><dl><dt><span class="sect2"><a href="shared_ptr.html#shared_ptr.req">Requirements</a></span></dt><dt><span class="sect2"><a href="shared_ptr.html#shared_ptr.design_issues">Design Issues</a></span></dt><dt><span class="sect2"><a href="shared_ptr.html#shared_ptr.impl">Implementation</a></span></dt><dt><span class="sect2"><a href="shared_ptr.html#shared_ptr.using">Use</a></span></dt><dt><span class="sect2"><a href="shared_ptr.html#shared_ptr.ack">Acknowledgments</a></span></dt></dl></dd></dl></div><p>
- Memory contains three general areas. First, function and operator
- calls via <code class="function">new</code> and <code class="function">delete</code>
- operator or member function calls. Second, allocation via
- <code class="classname">allocator</code>. And finally, smart pointer and
- intelligent pointer abstractions.
- </p><div class="sect1" lang="en" xml:lang="en"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="manual.util.memory.allocator"></a>Allocators</h2></div></div></div><p>
- Memory management for Standard Library entities is encapsulated in a
- class template called <code class="classname">allocator</code>. The
- <code class="classname">allocator</code> abstraction is used throughout the
- library in <code class="classname">string</code>, container classes,
- algorithms, and parts of iostreams. This class, and base classes of
- it, are the superset of available free store (“<span class="quote">heap</span>”)
- management classes.
-</p><div class="sect2" lang="en" xml:lang="en"><div class="titlepage"><div><div><h3 class="title"><a id="allocator.req"></a>Requirements</h3></div></div></div><p>
- The C++ standard only gives a few directives in this area:
- </p><div class="itemizedlist"><ul type="disc"><li><p>
- When you add elements to a container, and the container must
- allocate more memory to hold them, the container makes the
- request via its <span class="type">Allocator</span> template
- parameter, which is usually aliased to
- <span class="type">allocator_type</span>. This includes adding chars
- to the string class, which acts as a regular STL container in
- this respect.
- </p></li><li><p>
- The default <span class="type">Allocator</span> argument of every
- container-of-T is <code class="classname">allocator&lt;T&gt;</code>.
- </p></li><li><p>
- The interface of the <code class="classname">allocator&lt;T&gt;</code> class is
- extremely simple. It has about 20 public declarations (nested
- typedefs, member functions, etc), but the two which concern us most
- are:
- </p><pre class="programlisting">
- T* allocate (size_type n, const void* hint = 0);
- void deallocate (T* p, size_type n);
- </pre><p>
- The <code class="varname">n</code> arguments in both those
- functions is a <span class="emphasis"><em>count</em></span> of the number of
- <span class="type">T</span>'s to allocate space for, <span class="emphasis"><em>not their
- total size</em></span>.
- (This is a simplification; the real signatures use nested typedefs.)
- </p></li><li><p>
- The storage is obtained by calling <code class="function">::operator
- new</code>, but it is unspecified when or how
- often this function is called. The use of the
- <code class="varname">hint</code> is unspecified, but intended as an
- aid to locality if an implementation so
- desires. <code class="constant">[20.4.1.1]/6</code>
- </p></li></ul></div><p>
- Complete details cam be found in the C++ standard, look in
- <code class="constant">[20.4 Memory]</code>.
- </p></div><div class="sect2" lang="en" xml:lang="en"><div class="titlepage"><div><div><h3 class="title"><a id="allocator.design_issues"></a>Design Issues</h3></div></div></div><p>
- The easiest way of fulfilling the requirements is to call
- <code class="function">operator new</code> each time a container needs
- memory, and to call <code class="function">operator delete</code> each time
- the container releases memory. This method may be <a class="ulink" href="http://gcc.gnu.org/ml/libstdc++/2001-05/msg00105.html" target="_top">slower</a>
- than caching the allocations and re-using previously-allocated
- memory, but has the advantage of working correctly across a wide
- variety of hardware and operating systems, including large
- clusters. The <code class="classname">__gnu_cxx::new_allocator</code>
- implements the simple operator new and operator delete semantics,
- while <code class="classname">__gnu_cxx::malloc_allocator</code>
- implements much the same thing, only with the C language functions
- <code class="function">std::malloc</code> and <code class="function">free</code>.
- </p><p>
- Another approach is to use intelligence within the allocator
- class to cache allocations. This extra machinery can take a variety
- of forms: a bitmap index, an index into an exponentially increasing
- power-of-two-sized buckets, or simpler fixed-size pooling cache.
- The cache is shared among all the containers in the program: when
- your program's <code class="classname">std::vector&lt;int&gt;</code> gets
- cut in half and frees a bunch of its storage, that memory can be
- reused by the private
- <code class="classname">std::list&lt;WonkyWidget&gt;</code> brought in from
- a KDE library that you linked against. And operators
- <code class="function">new</code> and <code class="function">delete</code> are not
- always called to pass the memory on, either, which is a speed
- bonus. Examples of allocators that use these techniques are
- <code class="classname">__gnu_cxx::bitmap_allocator</code>,
- <code class="classname">__gnu_cxx::pool_allocator</code>, and
- <code class="classname">__gnu_cxx::__mt_alloc</code>.
- </p><p>
- Depending on the implementation techniques used, the underlying
- operating system, and compilation environment, scaling caching
- allocators can be tricky. In particular, order-of-destruction and
- order-of-creation for memory pools may be difficult to pin down
- with certainty, which may create problems when used with plugins
- or loading and unloading shared objects in memory. As such, using
- caching allocators on systems that do not support
- <code class="function">abi::__cxa_atexit</code> is not recommended.
- </p></div><div class="sect2" lang="en" xml:lang="en"><div class="titlepage"><div><div><h3 class="title"><a id="allocator.impl"></a>Implementation</h3></div></div></div><div class="sect3" lang="en" xml:lang="en"><div class="titlepage"><div><div><h4 class="title"><a id="id419128"></a>Interface Design</h4></div></div></div><p>
- The only allocator interface that
- is support is the standard C++ interface. As such, all STL
- containers have been adjusted, and all external allocators have
- been modified to support this change.
- </p><p>
- The class <code class="classname">allocator</code> just has typedef,
- constructor, and rebind members. It inherits from one of the
- high-speed extension allocators, covered below. Thus, all
- allocation and deallocation depends on the base class.
- </p><p>
- The base class that <code class="classname">allocator</code> is derived from
- may not be user-configurable.
-</p></div><div class="sect3" lang="en" xml:lang="en"><div class="titlepage"><div><div><h4 class="title"><a id="id410525"></a>Selecting Default Allocation Policy</h4></div></div></div><p>
- It's difficult to pick an allocation strategy that will provide
- maximum utility, without excessively penalizing some behavior. In
- fact, it's difficult just deciding which typical actions to measure
- for speed.
- </p><p>
- Three synthetic benchmarks have been created that provide data
- that is used to compare different C++ allocators. These tests are:
- </p><div class="orderedlist"><ol type="1"><li><p>
- Insertion.
- </p><p>
- Over multiple iterations, various STL container
- objects have elements inserted to some maximum amount. A variety
- of allocators are tested.
- Test source for <a class="ulink" href="http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert/sequence.cc?view=markup" target="_top">sequence</a>
- and <a class="ulink" href="http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert/associative.cc?view=markup" target="_top">associative</a>
- containers.
- </p></li><li><p>
- Insertion and erasure in a multi-threaded environment.
- </p><p>
- This test shows the ability of the allocator to reclaim memory
- on a pre-thread basis, as well as measuring thread contention
- for memory resources.
- Test source
- <a class="ulink" href="http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/insert_erase/associative.cc?view=markup" target="_top">here</a>.
- </p></li><li><p>
- A threaded producer/consumer model.
- </p><p>
- Test source for
- <a class="ulink" href="http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/producer_consumer/sequence.cc?view=markup" target="_top">sequence</a>
- and
- <a class="ulink" href="http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/testsuite/performance/23_containers/producer_consumer/associative.cc?view=markup" target="_top">associative</a>
- containers.
- </p></li></ol></div><p>
- The current default choice for
- <code class="classname">allocator</code> is
- <code class="classname">__gnu_cxx::new_allocator</code>.
- </p></div><div class="sect3" lang="en" xml:lang="en"><div class="titlepage"><div><div><h4 class="title"><a id="id457524"></a>Disabling Memory Caching</h4></div></div></div><p>
- In use, <code class="classname">allocator</code> may allocate and
- deallocate using implementation-specified strategies and
- heuristics. Because of this, every call to an allocator object's
- <code class="function">allocate</code> member function may not actually
- call the global operator new. This situation is also duplicated
- for calls to the <code class="function">deallocate</code> member
- function.
- </p><p>
- This can be confusing.
- </p><p>
- In particular, this can make debugging memory errors more
- difficult, especially when using third party tools like valgrind or
- debug versions of <code class="function">new</code>.
- </p><p>
- There are various ways to solve this problem. One would be to use
- a custom allocator that just called operators
- <code class="function">new</code> and <code class="function">delete</code>
- directly, for every allocation. (See
- <code class="filename">include/ext/new_allocator.h</code>, for instance.)
- However, that option would involve changing source code to use
- a non-default allocator. Another option is to force the
- default allocator to remove caching and pools, and to directly
- allocate with every call of <code class="function">allocate</code> and
- directly deallocate with every call of
- <code class="function">deallocate</code>, regardless of efficiency. As it
- turns out, this last option is also available.
- </p><p>
- To globally disable memory caching within the library for the
- default allocator, merely set
- <code class="constant">GLIBCXX_FORCE_NEW</code> (with any value) in the
- system's environment before running the program. If your program
- crashes with <code class="constant">GLIBCXX_FORCE_NEW</code> in the
- environment, it likely means that you linked against objects
- built against the older library (objects which might still using the
- cached allocations...).
- </p></div></div><div class="sect2" lang="en" xml:lang="en"><div class="titlepage"><div><div><h3 class="title"><a id="allocator.using"></a>Using a Specific Allocator</h3></div></div></div><p>
- You can specify different memory management schemes on a
- per-container basis, by overriding the default
- <span class="type">Allocator</span> template parameter. For example, an easy
- (but non-portable) method of specifying that only <code class="function">malloc</code> or <code class="function">free</code>
- should be used instead of the default node allocator is:
- </p><pre class="programlisting">
- std::list &lt;int, __gnu_cxx::malloc_allocator&lt;int&gt; &gt; malloc_list;</pre><p>
- Likewise, a debugging form of whichever allocator is currently in use:
- </p><pre class="programlisting">
- std::deque &lt;int, __gnu_cxx::debug_allocator&lt;std::allocator&lt;int&gt; &gt; &gt; debug_deque;
- </pre></div><div class="sect2" lang="en" xml:lang="en"><div class="titlepage"><div><div><h3 class="title"><a id="allocator.custom"></a>Custom Allocators</h3></div></div></div><p>
- Writing a portable C++ allocator would dictate that the interface
- would look much like the one specified for
- <code class="classname">allocator</code>. Additional member functions, but
- not subtractions, would be permissible.
- </p><p>
- Probably the best place to start would be to copy one of the
- extension allocators: say a simple one like
- <code class="classname">new_allocator</code>.
- </p></div><div class="sect2" lang="en" xml:lang="en"><div class="titlepage"><div><div><h3 class="title"><a id="allocator.ext"></a>Extension Allocators</h3></div></div></div><p>
- Several other allocators are provided as part of this
- implementation. The location of the extension allocators and their
- names have changed, but in all cases, functionality is
- equivalent. Starting with gcc-3.4, all extension allocators are
- standard style. Before this point, SGI style was the norm. Because of
- this, the number of template arguments also changed. Here's a simple
- chart to track the changes.
- </p><p>
- More details on each of these extension allocators follows.
- </p><div class="orderedlist"><ol type="1"><li><p>
- <code class="classname">new_allocator</code>
- </p><p>
- Simply wraps <code class="function">::operator new</code>
- and <code class="function">::operator delete</code>.
- </p></li><li><p>
- <code class="classname">malloc_allocator</code>
- </p><p>
- Simply wraps <code class="function">malloc</code> and
- <code class="function">free</code>. There is also a hook for an
- out-of-memory handler (for
- <code class="function">new</code>/<code class="function">delete</code> this is
- taken care of elsewhere).
- </p></li><li><p>
- <code class="classname">array_allocator</code>
- </p><p>
- Allows allocations of known and fixed sizes using existing
- global or external storage allocated via construction of
- <code class="classname">std::tr1::array</code> objects. By using this
- allocator, fixed size containers (including
- <code class="classname">std::string</code>) can be used without
- instances calling <code class="function">::operator new</code> and
- <code class="function">::operator delete</code>. This capability
- allows the use of STL abstractions without runtime
- complications or overhead, even in situations such as program
- startup. For usage examples, please consult the testsuite.
- </p></li><li><p>
- <code class="classname">debug_allocator</code>
- </p><p>
- A wrapper around an arbitrary allocator A. It passes on
- slightly increased size requests to A, and uses the extra
- memory to store size information. When a pointer is passed
- to <code class="function">deallocate()</code>, the stored size is
- checked, and <code class="function">assert()</code> is used to
- guarantee they match.
- </p></li><li><p>
- <code class="classname">throw_allocator</code>
- </p><p>
- Includes memory tracking and marking abilities as well as hooks for
- throwing exceptions at configurable intervals (including random,
- all, none).
- </p></li><li><p>
- <code class="classname">__pool_alloc</code>
- </p><p>
- A high-performance, single pool allocator. The reusable
- memory is shared among identical instantiations of this type.
- It calls through <code class="function">::operator new</code> to
- obtain new memory when its lists run out. If a client
- container requests a block larger than a certain threshold
- size, then the pool is bypassed, and the allocate/deallocate
- request is passed to <code class="function">::operator new</code>
- directly.
- </p><p>
- Older versions of this class take a boolean template
- parameter, called <code class="varname">thr</code>, and an integer template
- parameter, called <code class="varname">inst</code>.
- </p><p>
- The <code class="varname">inst</code> number is used to track additional memory
- pools. The point of the number is to allow multiple
- instantiations of the classes without changing the semantics at
- all. All three of
- </p><pre class="programlisting">
- typedef __pool_alloc&lt;true,0&gt; normal;
- typedef __pool_alloc&lt;true,1&gt; private;
- typedef __pool_alloc&lt;true,42&gt; also_private;
- </pre><p>
- behave exactly the same way. However, the memory pool for each type
- (and remember that different instantiations result in different types)
- remains separate.
- </p><p>
- The library uses <span class="emphasis"><em>0</em></span> in all its instantiations. If you
- wish to keep separate free lists for a particular purpose, use a
- different number.
- </p><p>The <code class="varname">thr</code> boolean determines whether the
- pool should be manipulated atomically or not. When
- <code class="varname">thr</code> = <code class="constant">true</code>, the allocator
- is is thread-safe, while <code class="varname">thr</code> =
- <code class="constant">false</code>, and is slightly faster but unsafe for
- multiple threads.
- </p><p>
- For thread-enabled configurations, the pool is locked with a
- single big lock. In some situations, this implementation detail
- may result in severe performance degradation.
- </p><p>
- (Note that the GCC thread abstraction layer allows us to provide
- safe zero-overhead stubs for the threading routines, if threads
- were disabled at configuration time.)
- </p></li><li><p>
- <code class="classname">__mt_alloc</code>
- </p><p>
- A high-performance fixed-size allocator with
- exponentially-increasing allocations. It has its own
- documentation, found <a class="link" href="ext_allocators.html#manual.ext.allocator.mt" title="mt_allocator">here</a>.
- </p></li><li><p>
- <code class="classname">bitmap_allocator</code>
- </p><p>
- A high-performance allocator that uses a bit-map to keep track
- of the used and unused memory locations. It has its own
- documentation, found <a class="link" href="bitmap_allocator.html" title="bitmap_allocator">here</a>.
- </p></li></ol></div></div><div class="bibliography"><div class="titlepage"><div><div><h3 class="title"><a id="allocator.biblio"></a>Bibliography</h3></div></div></div><div class="biblioentry"><a id="id455580"></a><p><span class="title"><i>
- ISO/IEC 14882:1998 Programming languages - C++
- </i>. </span>
- isoc++_1998
- <span class="pagenums">20.4 Memory. </span></p></div><div class="biblioentry"><a id="id408540"></a><p><span class="title"><i>The Standard Librarian: What Are Allocators Good
- </i>. </span>
- austernm
- <span class="author"><span class="firstname">Matt</span> <span class="surname">Austern</span>. </span><span class="publisher"><span class="publishername">
- C/C++ Users Journal
- . </span></span><span class="biblioid">
- <a class="ulink" href="http://www.cuj.com/documents/s=8000/cujcexp1812austern/" target="_top">
- </a>
- . </span></p></div><div class="biblioentry"><a id="id411757"></a><p><span class="title"><i>The Hoard Memory Allocator</i>. </span>
- emeryb
- <span class="author"><span class="firstname">Emery</span> <span class="surname">Berger</span>. </span><span class="biblioid">
- <a class="ulink" href="http://www.cs.umass.edu/~emery/hoard/" target="_top">
- </a>
- . </span></p></div><div class="biblioentry"><a id="id392744"></a><p><span class="title"><i>Reconsidering Custom Memory Allocation</i>. </span>
- bergerzorn
- <span class="author"><span class="firstname">Emery</span> <span class="surname">Berger</span>. </span><span class="author"><span class="firstname">Ben</span> <span class="surname">Zorn</span>. </span><span class="author"><span class="firstname">Kathryn</span> <span class="surname">McKinley</span>. </span><span class="copyright">Copyright © 2002 OOPSLA. </span><span class="biblioid">
- <a class="ulink" href="http://www.cs.umass.edu/~emery/pubs/berger-oopsla2002.pdf" target="_top">
- </a>
- . </span></p></div><div class="biblioentry"><a id="id422908"></a><p><span class="title"><i>Allocator Types</i>. </span>
- kreftlanger
- <span class="author"><span class="firstname">Klaus</span> <span class="surname">Kreft</span>. </span><span class="author"><span class="firstname">Angelika</span> <span class="surname">Langer</span>. </span><span class="publisher"><span class="publishername">
- C/C++ Users Journal
- . </span></span><span class="biblioid">
- <a class="ulink" href="http://www.langer.camelot.de/Articles/C++Report/Allocators/Allocators.html" target="_top">
- </a>
- . </span></p></div><div class="biblioentry"><a id="id395999"></a><p><span class="title"><i>The C++ Programming Language</i>. </span>
- tcpl
- <span class="author"><span class="firstname">Bjarne</span> <span class="surname">Stroustrup</span>. </span><span class="copyright">Copyright © 2000 . </span><span class="pagenums">19.4 Allocators. </span><span class="publisher"><span class="publishername">
- Addison Wesley
- . </span></span></p></div><div class="biblioentry"><a id="id398620"></a><p><span class="title"><i>Yalloc: A Recycling C++ Allocator</i>. </span>
- yenf
- <span class="author"><span class="firstname">Felix</span> <span class="surname">Yen</span>. </span><span class="copyright">Copyright © . </span><span class="biblioid">
- <a class="ulink" href="http://home.earthlink.net/~brimar/yalloc/" target="_top">
- </a>
- . </span></p></div></div></div></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="pairs.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="utilities.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="auto_ptr.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 10. Pairs </td><td width="20%" align="center"><a accesskey="h" href="../spine.html">Home</a></td><td width="40%" align="right" valign="top"> auto_ptr</td></tr></table></div></body></html>