aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libstdc++-v3/doc/html/ext/pb_ds/hash_based_containers.html
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/libstdc++-v3/doc/html/ext/pb_ds/hash_based_containers.html')
-rw-r--r--gcc-4.4.3/libstdc++-v3/doc/html/ext/pb_ds/hash_based_containers.html835
1 files changed, 0 insertions, 835 deletions
diff --git a/gcc-4.4.3/libstdc++-v3/doc/html/ext/pb_ds/hash_based_containers.html b/gcc-4.4.3/libstdc++-v3/doc/html/ext/pb_ds/hash_based_containers.html
deleted file mode 100644
index 21d092a76..000000000
--- a/gcc-4.4.3/libstdc++-v3/doc/html/ext/pb_ds/hash_based_containers.html
+++ /dev/null
@@ -1,835 +0,0 @@
-<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
- "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
-
-<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
-<head>
- <meta name="generator" content=
- "HTML Tidy for Linux/x86 (vers 12 April 2005), see www.w3.org" />
-
- <title>Hash-Based Containers</title>
- <meta http-equiv="Content-Type" content=
- "text/html; charset=us-ascii" />
- </head>
-
-<body>
- <div id="page">
- <h1>Hash Table Design</h1>
-
- <h2><a name="overview" id="overview">Overview</a></h2>
-
- <p>The collision-chaining hash-based container has the
- following declaration.</p>
- <pre>
-<b>template</b>&lt;
- <b>typename</b> Key,
- <b>typename</b> Mapped,
- <b>typename</b> Hash_Fn = std::hash&lt;Key&gt;,
- <b>typename</b> Eq_Fn = std::equal_to&lt;Key&gt;,
- <b>typename</b> Comb_Hash_Fn = <a href=
-"direct_mask_range_hashing.html">direct_mask_range_hashing</a>&lt;&gt;
- <b>typename</b> Resize_Policy = <i>default explained below.</i>
- <b>bool</b> Store_Hash = <b>false</b>,
- <b>typename</b> Allocator = std::allocator&lt;<b>char</b>&gt; &gt;
-<b>class</b> <a href=
-"cc_hash_table.html">cc_hash_table</a>;
-</pre>
-
- <p>The parameters have the following meaning:</p>
-
- <ol>
- <li><tt>Key</tt> is the key type.</li>
-
- <li><tt>Mapped</tt> is the mapped-policy, and is explained in
- <a href="tutorial.html#assoc_ms">Tutorial::Associative
- Containers::Associative Containers Others than Maps</a>.</li>
-
- <li><tt>Hash_Fn</tt> is a key hashing functor.</li>
-
- <li><tt>Eq_Fn</tt> is a key equivalence functor.</li>
-
- <li><tt>Comb_Hash_Fn</tt> is a <i>range-hashing_functor</i>;
- it describes how to translate hash values into positions
- within the table. This is described in <a href=
- "#hash_policies">Hash Policies</a>.</li>
-
- <li><tt>Resize_Policy</tt> describes how a container object
- should change its internal size. This is described in
- <a href="#resize_policies">Resize Policies</a>.</li>
-
- <li><tt>Store_Hash</tt> indicates whether the hash value
- should be stored with each entry. This is described in
- <a href="#policy_interaction">Policy Interaction</a>.</li>
-
- <li><tt>Allocator</tt> is an allocator
- type.</li>
- </ol>
-
- <p>The probing hash-based container has the following
- declaration.</p>
- <pre>
-<b>template</b>&lt;
- <b>typename</b> Key,
- <b>typename</b> Mapped,
- <b>typename</b> Hash_Fn = std::hash&lt;Key&gt;,
- <b>typename</b> Eq_Fn = std::equal_to&lt;Key&gt;,
- <b>typename</b> Comb_Probe_Fn = <a href=
-"direct_mask_range_hashing.html">direct_mask_range_hashing</a>&lt;&gt;
- <b>typename</b> Probe_Fn = <i>default explained below.</i>
- <b>typename</b> Resize_Policy = <i>default explained below.</i>
- <b>bool</b> Store_Hash = <b>false</b>,
- <b>typename</b> Allocator = std::allocator&lt;<b>char</b>&gt; &gt;
-<b>class</b> <a href=
-"gp_hash_table.html">gp_hash_table</a>;
-</pre>
-
- <p>The parameters are identical to those of the
- collision-chaining container, except for the following.</p>
-
- <ol>
- <li><tt>Comb_Probe_Fn</tt> describes how to transform a probe
- sequence into a sequence of positions within the table.</li>
-
- <li><tt>Probe_Fn</tt> describes a probe sequence policy.</li>
- </ol>
-
- <p>Some of the default template values depend on the values of
- other parameters, and are explained in <a href=
- "#policy_interaction">Policy Interaction</a>.</p>
-
- <h2><a name="hash_policies" id="hash_policies">Hash
- Policies</a></h2>
-
- <h3><a name="general_terms" id="general_terms">General
- Terms</a></h3>
-
- <p>Following is an explanation of some functions which hashing
- involves. Figure <a href=
- "#hash_ranged_hash_range_hashing_fns">Hash functions,
- ranged-hash functions, and range-hashing functions</a>)
- illustrates the discussion.</p>
-
- <h6 class="c1"><a name="hash_ranged_hash_range_hashing_fns" id=
- "hash_ranged_hash_range_hashing_fns"><img src=
- "hash_ranged_hash_range_hashing_fns.png" alt=
- "no image" /></a></h6>
-
- <h6 class="c1">Hash functions, ranged-hash functions, and
- range-hashing functions.</h6>
-
- <p>Let <i>U</i> be a domain (<i>e.g.</i>, the integers, or the
- strings of 3 characters). A hash-table algorithm needs to map
- elements of <i>U</i> "uniformly" into the range <i>[0,..., m -
- 1]</i> (where <i>m</i> is a non-negative integral value, and
- is, in general, time varying). <i>I.e.</i>, the algorithm needs
- a <i>ranged-hash</i> function</p>
-
- <p><i>f : U &times; Z<sub>+</sub> &rarr; Z<sub>+</sub></i>
- ,</p>
-
- <p>such that for any <i>u</i> in <i>U</i> ,</p>
-
- <p><i>0 &le; f(u, m) &le; m - 1</i> ,</p>
-
- <p>and which has "good uniformity" properties [<a href=
- "references.html#knuth98sorting">knuth98sorting</a>]. One
- common solution is to use the composition of the hash
- function</p>
-
- <p><i>h : U &rarr; Z<sub>+</sub></i> ,</p>
-
- <p>which maps elements of <i>U</i> into the non-negative
- integrals, and</p>
-
- <p class="c2">g : Z<sub>+</sub> &times; Z<sub>+</sub> &rarr;
- Z<sub>+</sub>,</p>
-
- <p>which maps a non-negative hash value, and a non-negative
- range upper-bound into a non-negative integral in the range
- between 0 (inclusive) and the range upper bound (exclusive),
- <i>i.e.</i>, for any <i>r</i> in <i>Z<sub>+</sub></i>,</p>
-
- <p><i>0 &le; g(r, m) &le; m - 1</i> .</p>
-
- <p>The resulting ranged-hash function, is</p>
-
- <p><i><a name="ranged_hash_composed_of_hash_and_range_hashing"
- id="ranged_hash_composed_of_hash_and_range_hashing">f(u , m) =
- g(h(u), m)</a></i> (1) .</p>
-
- <p>From the above, it is obvious that given <i>g</i> and
- <i>h</i>, <i>f</i> can always be composed (however the converse
- is not true). The STL's hash-based containers allow specifying
- a hash function, and use a hard-wired range-hashing function;
- the ranged-hash function is implicitly composed.</p>
-
- <p>The above describes the case where a key is to be mapped
- into a <i>single position</i> within a hash table, <i>e.g.</i>,
- in a collision-chaining table. In other cases, a key is to be
- mapped into a <i>sequence of positions</i> within a table,
- <i>e.g.</i>, in a probing table. Similar terms apply in this
- case: the table requires a <i>ranged probe</i> function,
- mapping a key into a sequence of positions withing the table.
- This is typically achieved by composing a <i>hash function</i>
- mapping the key into a non-negative integral type, a
- <i>probe</i> function transforming the hash value into a
- sequence of hash values, and a <i>range-hashing</i> function
- transforming the sequence of hash values into a sequence of
- positions.</p>
-
- <h3><a name="range_hashing_fns" id=
- "range_hashing_fns">Range-Hashing Functions</a></h3>
-
- <p>Some common choices for range-hashing functions are the
- division, multiplication, and middle-square methods [<a href=
- "references.html#knuth98sorting">knuth98sorting</a>], defined
- as</p>
-
- <p><i><a name="division_method" id="division_method">g(r, m) =
- r mod m</a></i> (2) ,</p>
-
- <p><i>g(r, m) = &lceil; u/v ( a r mod v ) &rceil;</i> ,</p>
-
- <p>and</p>
-
- <p><i>g(r, m) = &lceil; u/v ( r<sup>2</sup> mod v ) &rceil;</i>
- ,</p>
-
- <p>respectively, for some positive integrals <i>u</i> and
- <i>v</i> (typically powers of 2), and some <i>a</i>. Each of
- these range-hashing functions works best for some different
- setting.</p>
-
- <p>The division method <a href="#division_method">(2)</a> is a
- very common choice. However, even this single method can be
- implemented in two very different ways. It is possible to
- implement <a href="#division_method">(2)</a> using the low
- level <i>%</i> (modulo) operation (for any <i>m</i>), or the
- low level <i>&amp;</i> (bit-mask) operation (for the case where
- <i>m</i> is a power of 2), <i>i.e.</i>,</p>
-
- <p><i><a name="division_method_prime_mod" id=
- "division_method_prime_mod">g(r, m) = r % m</a></i> (3) ,</p>
-
- <p>and</p>
-
- <p><i><a name="division_method_bit_mask" id=
- "division_method_bit_mask">g(r, m) = r &amp; m - 1, (m =
- 2<sup>k</sup>)</a></i> for some <i>k)</i> (4),</p>
-
- <p>respectively.</p>
-
- <p>The <i>%</i> (modulo) implementation <a href=
- "#division_method_prime_mod">(3)</a> has the advantage that for
- <i>m</i> a prime far from a power of 2, <i>g(r, m)</i> is
- affected by all the bits of <i>r</i> (minimizing the chance of
- collision). It has the disadvantage of using the costly modulo
- operation. This method is hard-wired into SGI's implementation
- [<a href="references.html#sgi_stl">sgi_stl</a>].</p>
-
- <p>The <i>&amp;</i> (bit-mask) implementation <a href=
- "#division_method_bit_mask">(4)</a> has the advantage of
- relying on the fast bit-wise and operation. It has the
- disadvantage that for <i>g(r, m)</i> is affected only by the
- low order bits of <i>r</i>. This method is hard-wired into
- Dinkumware's implementation [<a href=
- "references.html#dinkumware_stl">dinkumware_stl</a>].</p>
-
- <h3><a name="hash_policies_ranged_hash_policies" id=
- "hash_policies_ranged_hash_policies">Ranged-Hash
- Functions</a></h3>
-
- <p>In cases it is beneficial to allow the
- client to directly specify a ranged-hash hash function. It is
- true, that the writer of the ranged-hash function cannot rely
- on the values of <i>m</i> having specific numerical properties
- suitable for hashing (in the sense used in [<a href=
- "references.html#knuth98sorting">knuth98sorting</a>]), since
- the values of <i>m</i> are determined by a resize policy with
- possibly orthogonal considerations.</p>
-
- <p>There are two cases where a ranged-hash function can be
- superior. The firs is when using perfect hashing [<a href=
- "references.html#knuth98sorting">knuth98sorting</a>]; the
- second is when the values of <i>m</i> can be used to estimate
- the "general" number of distinct values required. This is
- described in the following.</p>
-
- <p>Let</p>
-
- <p class="c2">s = [ s<sub>0</sub>,..., s<sub>t - 1</sub>]</p>
-
- <p>be a string of <i>t</i> characters, each of which is from
- domain <i>S</i>. Consider the following ranged-hash
- function:</p>
-
- <p><a name="total_string_dna_hash" id=
- "total_string_dna_hash"><i>f<sub>1</sub>(s, m) = &sum; <sub>i =
- 0</sub><sup>t - 1</sup> s<sub>i</sub> a<sup>i</sup></i> mod
- <i>m</i></a> (5) ,</p>
-
- <p>where <i>a</i> is some non-negative integral value. This is
- the standard string-hashing function used in SGI's
- implementation (with <i>a = 5</i>) [<a href=
- "references.html#sgi_stl">sgi_stl</a>]. Its advantage is that
- it takes into account all of the characters of the string.</p>
-
- <p>Now assume that <i>s</i> is the string representation of a
- of a long DNA sequence (and so <i>S = {'A', 'C', 'G',
- 'T'}</i>). In this case, scanning the entire string might be
- prohibitively expensive. A possible alternative might be to use
- only the first <i>k</i> characters of the string, where</p>
-
- <p>|S|<sup>k</sup> &ge; m ,</p>
-
- <p><i>i.e.</i>, using the hash function</p>
-
- <p><a name="only_k_string_dna_hash" id=
- "only_k_string_dna_hash"><i>f<sub>2</sub>(s, m) = &sum; <sub>i
- = 0</sub><sup>k - 1</sup> s<sub>i</sub> a<sup>i</sup></i> mod
- <i>m</i></a> , (6)</p>
-
- <p>requiring scanning over only</p>
-
- <p><i>k =</i> log<i><sub>4</sub>( m )</i></p>
-
- <p>characters.</p>
-
- <p>Other more elaborate hash-functions might scan <i>k</i>
- characters starting at a random position (determined at each
- resize), or scanning <i>k</i> random positions (determined at
- each resize), <i>i.e.</i>, using</p>
-
- <p><i>f<sub>3</sub>(s, m) = &sum; <sub>i =
- r</sub>0</i><sup>r<sub>0</sub> + k - 1</sup> s<sub>i</sub>
- a<sup>i</sup> mod <i>m</i> ,</p>
-
- <p>or</p>
-
- <p><i>f<sub>4</sub>(s, m) = &sum; <sub>i = 0</sub><sup>k -
- 1</sup> s<sub>r</sub>i</i> a<sup>r<sub>i</sub></sup> mod
- <i>m</i> ,</p>
-
- <p>respectively, for <i>r<sub>0</sub>,..., r<sub>k-1</sub></i>
- each in the (inclusive) range <i>[0,...,t-1]</i>.</p>
-
- <p>It should be noted that the above functions cannot be
- decomposed as <a href=
- "#ranged_hash_composed_of_hash_and_range_hashing">(1)</a> .</p>
-
- <h3><a name="pb_ds_imp" id="pb_ds_imp">Implementation</a></h3>
-
- <p>This sub-subsection describes the implementation of the
- above in <tt>pb_ds</tt>. It first explains range-hashing
- functions in collision-chaining tables, then ranged-hash
- functions in collision-chaining tables, then probing-based
- tables, and, finally, lists the relevant classes in
- <tt>pb_ds</tt>.</p>
-
- <h4>Range-Hashing and Ranged-Hashes in Collision-Chaining
- Tables</h4>
-
- <p><a href=
- "cc_hash_table.html"><tt>cc_hash_table</tt></a> is
- parametrized by <tt>Hash_Fn</tt> and <tt>Comb_Hash_Fn</tt>, a
- hash functor and a combining hash functor, respectively.</p>
-
- <p>In general, <tt>Comb_Hash_Fn</tt> is considered a
- range-hashing functor. <a href=
- "cc_hash_table.html"><tt>cc_hash_table</tt></a>
- synthesizes a ranged-hash function from <tt>Hash_Fn</tt> and
- <tt>Comb_Hash_Fn</tt> (see <a href=
- "#ranged_hash_composed_of_hash_and_range_hashing">(1)</a>
- above). Figure <a href="#hash_range_hashing_seq_diagram">Insert
- hash sequence diagram</a> shows an <tt>insert</tt> sequence
- diagram for this case. The user inserts an element (point A),
- the container transforms the key into a non-negative integral
- using the hash functor (points B and C), and transforms the
- result into a position using the combining functor (points D
- and E).</p>
-
- <h6 class="c1"><a name="hash_range_hashing_seq_diagram" id=
- "hash_range_hashing_seq_diagram"><img src=
- "hash_range_hashing_seq_diagram.png" alt="no image" /></a></h6>
-
- <h6 class="c1">Insert hash sequence diagram.</h6>
-
- <p>If <a href=
- "cc_hash_table.html"><tt>cc_hash_table</tt></a>'s
- hash-functor, <tt>Hash_Fn</tt> is instantiated by <a href=
- "null_hash_fn.html"><tt>null_hash_fn</tt></a> (see <a href=
- "concepts.html#concepts_null_policies">Interface::Concepts::Null
- Policy Classes</a>), then <tt>Comb_Hash_Fn</tt> is taken to be
- a ranged-hash function. Figure <a href=
- "#hash_range_hashing_seq_diagram2">Insert hash sequence diagram
- with a null hash policy</a> shows an <tt>insert</tt> sequence
- diagram. The user inserts an element (point A), the container
- transforms the key into a position using the combining functor
- (points B and C).</p>
-
- <h6 class="c1"><a name="hash_range_hashing_seq_diagram2" id=
- "hash_range_hashing_seq_diagram2"><img src=
- "hash_range_hashing_seq_diagram2.png" alt=
- "no image" /></a></h6>
-
- <h6 class="c1">Insert hash sequence diagram with a null hash
- policy.</h6>
-
- <h4>Probing Tables</h4>
-
- <p><a href=
- "gp_hash_table.html"></a><tt>gp_hash_table</tt> is
- parametrized by <tt>Hash_Fn</tt>, <tt>Probe_Fn</tt>, and
- <tt>Comb_Probe_Fn</tt>. As before, if <tt>Hash_Fn</tt> and
- <tt>Probe_Fn</tt> are, respectively, <a href=
- "null_hash_fn.html"><tt>null_hash_fn</tt></a> and <a href=
- "null_probe_fn.html"><tt>null_probe_fn</tt></a>, then
- <tt>Comb_Probe_Fn</tt> is a ranged-probe functor. Otherwise,
- <tt>Hash_Fn</tt> is a hash functor, <tt>Probe_Fn</tt> is a
- functor for offsets from a hash value, and
- <tt>Comb_Probe_Fn</tt> transforms a probe sequence into a
- sequence of positions within the table.</p>
-
- <h4>Pre-Defined Policies</h4>
-
- <p><tt>pb_ds</tt> contains some pre-defined classes
- implementing range-hashing and probing functions:</p>
-
- <ol>
- <li><a href=
- "direct_mask_range_hashing.html"><tt>direct_mask_range_hashing</tt></a>
- and <a href=
- "direct_mod_range_hashing.html"><tt>direct_mod_range_hashing</tt></a>
- are range-hashing functions based on a bit-mask and a modulo
- operation, respectively.</li>
-
- <li><a href=
- "linear_probe_fn.html"><tt>linear_probe_fn</tt></a>, and
- <a href=
- "quadratic_probe_fn.html"><tt>quadratic_probe_fn</tt></a> are
- a linear probe and a quadratic probe function,
- respectively.</li>
- </ol>Figure <a href="#hash_policy_cd">Hash policy class
- diagram</a> shows a class diagram.
-
- <h6 class="c1"><a name="hash_policy_cd" id=
- "hash_policy_cd"><img src="hash_policy_cd.png" alt=
- "no image" /></a></h6>
-
- <h6 class="c1">Hash policy class diagram.</h6>
-
- <h2><a name="resize_policies" id="resize_policies">Resize
- Policies</a></h2>
-
- <h3><a name="general" id="general">General Terms</a></h3>
-
- <p>Hash-tables, as opposed to trees, do not naturally grow or
- shrink. It is necessary to specify policies to determine how
- and when a hash table should change its size. Usually, resize
- policies can be decomposed into orthogonal policies:</p>
-
- <ol>
- <li>A <i>size policy</i> indicating <i>how</i> a hash table
- should grow (<i>e.g.,</i> it should multiply by powers of
- 2).</li>
-
- <li>A <i>trigger policy</i> indicating <i>when</i> a hash
- table should grow (<i>e.g.,</i> a load factor is
- exceeded).</li>
- </ol>
-
- <h3><a name="size_policies" id="size_policies">Size
- Policies</a></h3>
-
- <p>Size policies determine how a hash table changes size. These
- policies are simple, and there are relatively few sensible
- options. An exponential-size policy (with the initial size and
- growth factors both powers of 2) works well with a mask-based
- range-hashing function (see <a href=
- "#hash_policies">Range-Hashing Policies</a>), and is the
- hard-wired policy used by Dinkumware [<a href=
- "references.html#dinkumware_stl">dinkumware_stl</a>]. A
- prime-list based policy works well with a modulo-prime range
- hashing function (see <a href="#hash_policies">Range-Hashing
- Policies</a>), and is the hard-wired policy used by SGI's
- implementation [<a href=
- "references.html#sgi_stl">sgi_stl</a>].</p>
-
- <h3><a name="trigger_policies" id="trigger_policies">Trigger
- Policies</a></h3>
-
- <p>Trigger policies determine when a hash table changes size.
- Following is a description of two policies: <i>load-check</i>
- policies, and collision-check policies.</p>
-
- <p>Load-check policies are straightforward. The user specifies
- two factors, <i>&alpha;<sub>min</sub></i> and
- <i>&alpha;<sub>max</sub></i>, and the hash table maintains the
- invariant that</p>
-
- <p><i><a name="load_factor_min_max" id=
- "load_factor_min_max">&alpha;<sub>min</sub> &le; (number of
- stored elements) / (hash-table size) &le;
- &alpha;<sub>max</sub></a></i> (1) .</p>
-
- <p>Collision-check policies work in the opposite direction of
- load-check policies. They focus on keeping the number of
- collisions moderate and hoping that the size of the table will
- not grow very large, instead of keeping a moderate load-factor
- and hoping that the number of collisions will be small. A
- maximal collision-check policy resizes when the longest
- probe-sequence grows too large.</p>
-
- <p>Consider Figure <a href="#balls_and_bins">Balls and
- bins</a>. Let the size of the hash table be denoted by
- <i>m</i>, the length of a probe sequence be denoted by
- <i>k</i>, and some load factor be denoted by &alpha;. We would
- like to calculate the minimal length of <i>k</i>, such that if
- there were <i>&alpha; m</i> elements in the hash table, a probe
- sequence of length <i>k</i> would be found with probability at
- most <i>1/m</i>.</p>
-
- <h6 class="c1"><a name="balls_and_bins" id=
- "balls_and_bins"><img src="balls_and_bins.png" alt=
- "no image" /></a></h6>
-
- <h6 class="c1">Balls and bins.</h6>
-
- <p>Denote the probability that a probe sequence of length
- <i>k</i> appears in bin <i>i</i> by <i>p<sub>i</sub></i>, the
- length of the probe sequence of bin <i>i</i> by
- <i>l<sub>i</sub></i>, and assume uniform distribution. Then</p>
-
- <p><a name="prob_of_p1" id=
- "prob_of_p1"><i>p<sub>1</sub></i></a> = (3)</p>
-
- <p class="c2"><b>P</b>(l<sub>1</sub> &ge; k) =</p>
-
- <p><i><b>P</b>(l<sub>1</sub> &ge; &alpha; ( 1 + k / &alpha; - 1
- ) &le;</i> (a)</p>
-
- <p><i>e ^ ( - ( &alpha; ( k / &alpha; - 1 )<sup>2</sup> ) /2
- )</i> ,</p>
-
- <p>where (a) follows from the Chernoff bound [<a href=
- "references.html#motwani95random">motwani95random</a>]. To
- calculate the probability that <i>some</i> bin contains a probe
- sequence greater than <i>k</i>, we note that the
- <i>l<sub>i</sub></i> are negatively-dependent [<a href=
- "references.html#dubhashi98neg">dubhashi98neg</a>]. Let
- <i><b>I</b>(.)</i> denote the indicator function. Then</p>
-
- <p><a name="at_least_k_i_n_some_bin" id=
- "at_least_k_i_n_some_bin"><i><b>P</b>( exists<sub>i</sub>
- l<sub>i</sub> &ge; k ) =</i> (3)</a></p>
-
- <p class="c2"><b>P</b> ( &sum; <sub>i = 1</sub><sup>m</sup>
- <b>I</b>(l<sub>i</sub> &ge; k) &ge; 1 ) =</p>
-
- <p><i><b>P</b> ( &sum; <sub>i = 1</sub><sup>m</sup> <b>I</b> (
- l<sub>i</sub> &ge; k ) &ge; m p<sub>1</sub> ( 1 + 1 / (m
- p<sub>1</sub>) - 1 ) ) &le;</i> (a)</p>
-
- <p class="c2">e ^ ( ( - m p<sub>1</sub> ( 1 / (m p<sub>1</sub>)
- - 1 ) <sup>2</sup> ) / 2 ) ,</p>
-
- <p>where (a) follows from the fact that the Chernoff bound can
- be applied to negatively-dependent variables [<a href=
- "references.html#dubhashi98neg">dubhashi98neg</a>]. Inserting
- <a href="#prob_of_p1">(2)</a> into <a href=
- "#at_least_k_i_n_some_bin">(3)</a>, and equating with
- <i>1/m</i>, we obtain</p>
-
- <p><i>k ~ &radic; ( 2 &alpha;</i> ln <i>2 m</i> ln<i>(m) )
- )</i> .</p>
-
- <h3><a name="imp_pb_ds" id="imp_pb_ds">Implementation</a></h3>
-
- <p>This sub-subsection describes the implementation of the
- above in <tt>pb_ds</tt>. It first describes resize policies and
- their decomposition into trigger and size policies, then
- describes pre-defined classes, and finally discusses controlled
- access the policies' internals.</p>
-
- <h4>Resize Policies and Their Decomposition</h4>
-
- <p>Each hash-based container is parametrized by a
- <tt>Resize_Policy</tt> parameter; the container derives
- <tt><b>public</b></tt>ly from <tt>Resize_Policy</tt>. For
- example:</p>
- <pre>
-<a href="cc_hash_table.html">cc_hash_table</a>&lt;
- <b>typename</b> Key,
- <b>typename</b> Mapped,
- ...
- <b>typename</b> Resize_Policy
- ...&gt; :
- <b>public</b> Resize_Policy
-</pre>
-
- <p>As a container object is modified, it continuously notifies
- its <tt>Resize_Policy</tt> base of internal changes
- (<i>e.g.</i>, collisions encountered and elements being
- inserted). It queries its <tt>Resize_Policy</tt> base whether
- it needs to be resized, and if so, to what size.</p>
-
- <p>Figure <a href="#insert_resize_sequence_diagram1">Insert
- resize sequence diagram</a> shows a (possible) sequence diagram
- of an insert operation. The user inserts an element; the hash
- table notifies its resize policy that a search has started
- (point A); in this case, a single collision is encountered -
- the table notifies its resize policy of this (point B); the
- container finally notifies its resize policy that the search
- has ended (point C); it then queries its resize policy whether
- a resize is needed, and if so, what is the new size (points D
- to G); following the resize, it notifies the policy that a
- resize has completed (point H); finally, the element is
- inserted, and the policy notified (point I).</p>
-
- <h6 class="c1"><a name="insert_resize_sequence_diagram1" id=
- "insert_resize_sequence_diagram1"><img src=
- "insert_resize_sequence_diagram1.png" alt=
- "no image" /></a></h6>
-
- <h6 class="c1">Insert resize sequence diagram.</h6>
-
- <p>In practice, a resize policy can be usually orthogonally
- decomposed to a size policy and a trigger policy. Consequently,
- the library contains a single class for instantiating a resize
- policy: <a href=
- "hash_standard_resize_policy.html"><tt>hash_standard_resize_policy</tt></a>
- is parametrized by <tt>Size_Policy</tt> and
- <tt>Trigger_Policy</tt>, derives <tt><b>public</b></tt>ly from
- both, and acts as a standard delegate [<a href=
- "references.html#gamma95designpatterns">gamma95designpatterns</a>]
- to these policies.</p>
-
- <p>Figures <a href="#insert_resize_sequence_diagram2">Standard
- resize policy trigger sequence diagram</a> and <a href=
- "#insert_resize_sequence_diagram3">Standard resize policy size
- sequence diagram</a> show sequence diagrams illustrating the
- interaction between the standard resize policy and its trigger
- and size policies, respectively.</p>
-
- <h6 class="c1"><a name="insert_resize_sequence_diagram2" id=
- "insert_resize_sequence_diagram2"><img src=
- "insert_resize_sequence_diagram2.png" alt=
- "no image" /></a></h6>
-
- <h6 class="c1">Standard resize policy trigger sequence
- diagram.</h6>
-
- <h6 class="c1"><a name="insert_resize_sequence_diagram3" id=
- "insert_resize_sequence_diagram3"><img src=
- "insert_resize_sequence_diagram3.png" alt=
- "no image" /></a></h6>
-
- <h6 class="c1">Standard resize policy size sequence
- diagram.</h6>
-
- <h4>Pre-Defined Policies</h4>
-
- <p>The library includes the following
- instantiations of size and trigger policies:</p>
-
- <ol>
- <li><a href=
- "hash_load_check_resize_trigger.html"><tt>hash_load_check_resize_trigger</tt></a>
- implements a load check trigger policy.</li>
-
- <li><a href=
- "cc_hash_max_collision_check_resize_trigger.html"><tt>cc_hash_max_collision_check_resize_trigger</tt></a>
- implements a collision check trigger policy.</li>
-
- <li><a href=
- "hash_exponential_size_policy.html"><tt>hash_exponential_size_policy</tt></a>
- implements an exponential-size policy (which should be used
- with mask range hashing).</li>
-
- <li><a href=
- "hash_prime_size_policy.html"><tt>hash_prime_size_policy</tt></a>
- implementing a size policy based on a sequence of primes
- [<a href="references.html#sgi_stl">sgi_stl</a>] (which should
- be used with mod range hashing</li>
- </ol>
-
- <p>Figure <a href="#resize_policy_cd">Resize policy class
- diagram</a> gives an overall picture of the resize-related
- classes. <a href=
- "basic_hash_table.html"><tt>basic_hash_table</tt></a>
- is parametrized by <tt>Resize_Policy</tt>, which it subclasses
- publicly. This class is currently instantiated only by <a href=
- "hash_standard_resize_policy.html"><tt>hash_standard_resize_policy</tt></a>.
- <a href=
- "hash_standard_resize_policy.html"><tt>hash_standard_resize_policy</tt></a>
- itself is parametrized by <tt>Trigger_Policy</tt> and
- <tt>Size_Policy</tt>. Currently, <tt>Trigger_Policy</tt> is
- instantiated by <a href=
- "hash_load_check_resize_trigger.html"><tt>hash_load_check_resize_trigger</tt></a>,
- or <a href=
- "cc_hash_max_collision_check_resize_trigger.html"><tt>cc_hash_max_collision_check_resize_trigger</tt></a>;
- <tt>Size_Policy</tt> is instantiated by <a href=
- "hash_exponential_size_policy.html"><tt>hash_exponential_size_policy</tt></a>,
- or <a href=
- "hash_prime_size_policy.html"><tt>hash_prime_size_policy</tt></a>.</p>
-
- <h6 class="c1"><a name="resize_policy_cd" id=
- "resize_policy_cd"><img src="resize_policy_cd.png" alt=
- "no image" /></a></h6>
-
- <h6 class="c1">Resize policy class diagram.</h6>
-
- <h4>Controlled Access to Policies' Internals</h4>
-
- <p>There are cases where (controlled) access to resize
- policies' internals is beneficial. <i>E.g.</i>, it is sometimes
- useful to query a hash-table for the table's actual size (as
- opposed to its <tt>size()</tt> - the number of values it
- currently holds); it is sometimes useful to set a table's
- initial size, externally resize it, or change load factors.</p>
-
- <p>Clearly, supporting such methods both decreases the
- encapsulation of hash-based containers, and increases the
- diversity between different associative-containers' interfaces.
- Conversely, omitting such methods can decrease containers'
- flexibility.</p>
-
- <p>In order to avoid, to the extent possible, the above
- conflict, the hash-based containers themselves do not address
- any of these questions; this is deferred to the resize policies,
- which are easier to change or replace. Thus, for example,
- neither <a href=
- "cc_hash_table.html"><tt>cc_hash_table</tt></a> nor
- <a href=
- "gp_hash_table.html"><tt>gp_hash_table</tt></a>
- contain methods for querying the actual size of the table; this
- is deferred to <a href=
- "hash_standard_resize_policy.html"><tt>hash_standard_resize_policy</tt></a>.</p>
-
- <p>Furthermore, the policies themselves are parametrized by
- template arguments that determine the methods they support
- ([<a href=
- "references.html#alexandrescu01modern">alexandrescu01modern</a>]
- shows techniques for doing so). <a href=
- "hash_standard_resize_policy.html"><tt>hash_standard_resize_policy</tt></a>
- is parametrized by <tt>External_Size_Access</tt> that
- determines whether it supports methods for querying the actual
- size of the table or resizing it. <a href=
- "hash_load_check_resize_trigger.html"><tt>hash_load_check_resize_trigger</tt></a>
- is parametrized by <tt>External_Load_Access</tt> that
- determines whether it supports methods for querying or
- modifying the loads. <a href=
- "cc_hash_max_collision_check_resize_trigger.html"><tt>cc_hash_max_collision_check_resize_trigger</tt></a>
- is parametrized by <tt>External_Load_Access</tt> that
- determines whether it supports methods for querying the
- load.</p>
-
- <p>Some operations, for example, resizing a container at
- run time, or changing the load factors of a load-check trigger
- policy, require the container itself to resize. As mentioned
- above, the hash-based containers themselves do not contain
- these types of methods, only their resize policies.
- Consequently, there must be some mechanism for a resize policy
- to manipulate the hash-based container. As the hash-based
- container is a subclass of the resize policy, this is done
- through virtual methods. Each hash-based container has a
- <tt><b>private</b></tt> <tt><b>virtual</b></tt> method:</p>
- <pre>
-<b>virtual void</b>
- do_resize
- (size_type new_size);
-</pre>
-
- <p>which resizes the container. Implementations of
- <tt>Resize_Policy</tt> can export public methods for resizing
- the container externally; these methods internally call
- <tt>do_resize</tt> to resize the table.</p>
-
- <h2><a name="policy_interaction" id="policy_interaction">Policy
- Interaction</a></h2>
-
- <p>Hash-tables are unfortunately especially susceptible to
- choice of policies. One of the more complicated aspects of this
- is that poor combinations of good policies can form a poor
- container. Following are some considerations.</p>
-
- <h3><a name="policy_interaction_probe_size_trigger" id=
- "policy_interaction_probe_size_trigger">Probe Policies, Size
- Policies, and Trigger Policies</a></h3>
-
- <p>Some combinations do not work well for probing containers.
- For example, combining a quadratic probe policy with an
- exponential size policy can yield a poor container: when an
- element is inserted, a trigger policy might decide that there
- is no need to resize, as the table still contains unused
- entries; the probe sequence, however, might never reach any of
- the unused entries.</p>
-
- <p>Unfortunately, <tt>pb_ds</tt> cannot detect such problems at
- compilation (they are halting reducible). It therefore defines
- an exception class <a href=
- "insert_error.html"><tt>insert_error</tt></a> to throw an
- exception in this case.</p>
-
- <h3><a name="policy_interaction_hash_trigger" id=
- "policy_interaction_hash_trigger">Hash Policies and Trigger
- Policies</a></h3>
-
- <p>Some trigger policies are especially susceptible to poor
- hash functions. Suppose, as an extreme case, that the hash
- function transforms each key to the same hash value. After some
- inserts, a collision detecting policy will always indicate that
- the container needs to grow.</p>
-
- <p>The library, therefore, by design, limits each operation to
- one resize. For each <tt>insert</tt>, for example, it queries
- only once whether a resize is needed.</p>
-
- <h3><a name="policy_interaction_eq_sth_hash" id=
- "policy_interaction_eq_sth_hash">Equivalence Functors, Storing
- Hash Values, and Hash Functions</a></h3>
-
- <p><a href=
- "cc_hash_table.html"><tt>cc_hash_table</tt></a> and
- <a href=
- "gp_hash_table.html"><tt>gp_hash_table</tt></a> are
- parametrized by an equivalence functor and by a
- <tt>Store_Hash</tt> parameter. If the latter parameter is
- <tt><b>true</b></tt>, then the container stores with each entry
- a hash value, and uses this value in case of collisions to
- determine whether to apply a hash value. This can lower the
- cost of collision for some types, but increase the cost of
- collisions for other types.</p>
-
- <p>If a ranged-hash function or ranged probe function is
- directly supplied, however, then it makes no sense to store the
- hash value with each entry. <tt>pb_ds</tt>'s container will
- fail at compilation, by design, if this is attempted.</p>
-
- <h3><a name="policy_interaction_size_load_check" id=
- "policy_interaction_size_load_check">Size Policies and
- Load-Check Trigger Policies</a></h3>
-
- <p>Assume a size policy issues an increasing sequence of sizes
- <i>a, a q, a q<sup>1</sup>, a q<sup>2</sup>, ...</i> For
- example, an exponential size policy might issue the sequence of
- sizes <i>8, 16, 32, 64, ...</i></p>
-
- <p>If a load-check trigger policy is used, with loads
- <i>&alpha;<sub>min</sub></i> and <i>&alpha;<sub>max</sub></i>,
- respectively, then it is a good idea to have:</p>
-
- <ol>
- <li><i>&alpha;<sub>max</sub> ~ 1 / q</i></li>
-
- <li><i>&alpha;<sub>min</sub> &lt; 1 / (2 q)</i></li>
- </ol>
-
- <p>This will ensure that the amortized hash cost of each
- modifying operation is at most approximately 3.</p>
-
- <p><i>&alpha;<sub>min</sub> ~ &alpha;<sub>max</sub></i> is, in
- any case, a bad choice, and <i>&alpha;<sub>min</sub> &gt;
- &alpha;<sub>max</sub></i> is horrendous.</p>
- </div>
-</body>
-</html>