aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libjava/classpath/gnu/javax/crypto/key/dh/RFC2631.java
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/libjava/classpath/gnu/javax/crypto/key/dh/RFC2631.java')
-rw-r--r--gcc-4.4.3/libjava/classpath/gnu/javax/crypto/key/dh/RFC2631.java217
1 files changed, 217 insertions, 0 deletions
diff --git a/gcc-4.4.3/libjava/classpath/gnu/javax/crypto/key/dh/RFC2631.java b/gcc-4.4.3/libjava/classpath/gnu/javax/crypto/key/dh/RFC2631.java
new file mode 100644
index 000000000..a814d2c0b
--- /dev/null
+++ b/gcc-4.4.3/libjava/classpath/gnu/javax/crypto/key/dh/RFC2631.java
@@ -0,0 +1,217 @@
+/* RFC2631.java --
+ Copyright (C) 2003, 2006 Free Software Foundation, Inc.
+
+This file is a part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or (at
+your option) any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
+USA
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package gnu.javax.crypto.key.dh;
+
+import gnu.java.security.hash.Sha160;
+import gnu.java.security.util.PRNG;
+
+import java.math.BigInteger;
+import java.security.SecureRandom;
+
+/**
+ * An implementation of the Diffie-Hellman parameter generation as defined in
+ * RFC-2631.
+ * <p>
+ * Reference:
+ * <ol>
+ * <li><a href="http://www.ietf.org/rfc/rfc2631.txt">Diffie-Hellman Key
+ * Agreement Method</a><br>
+ * Eric Rescorla.</li>
+ * </ol>
+ */
+public class RFC2631
+{
+ public static final int DH_PARAMS_SEED = 0;
+ public static final int DH_PARAMS_COUNTER = 1;
+ public static final int DH_PARAMS_Q = 2;
+ public static final int DH_PARAMS_P = 3;
+ public static final int DH_PARAMS_J = 4;
+ public static final int DH_PARAMS_G = 5;
+ private static final BigInteger TWO = BigInteger.valueOf(2L);
+ /** The SHA instance to use. */
+ private Sha160 sha = new Sha160();
+ /** Length of private modulus and of q. */
+ private int m;
+ /** Length of public modulus p. */
+ private int L;
+ /** The optional {@link SecureRandom} instance to use. */
+ private SecureRandom rnd = null;
+ /** Our default source of randomness. */
+ private PRNG prng = null;
+
+ public RFC2631(int m, int L, SecureRandom rnd)
+ {
+ super();
+
+ this.m = m;
+ this.L = L;
+ this.rnd = rnd;
+ }
+
+ public BigInteger[] generateParameters()
+ {
+ int i, j, counter;
+ byte[] u1, u2, v;
+ byte[] seedBytes = new byte[m / 8];
+ BigInteger SEED, U, q, R, V, W, X, p, g;
+ // start by genrating p and q, where q is of length m and p is of length L
+ // 1. Set m' = m/160 where / represents integer division with rounding
+ // upwards. I.e. 200/160 = 2.
+ int m_ = (m + 159) / 160;
+ // 2. Set L'= L/160
+ int L_ = (L + 159) / 160;
+ // 3. Set N'= L/1024
+ int N_ = (L + 1023) / 1024;
+ algorithm: while (true)
+ {
+ step4: while (true)
+ {
+ // 4. Select an arbitrary bit string SEED such that length of
+ // SEED >= m
+ nextRandomBytes(seedBytes);
+ SEED = new BigInteger(1, seedBytes).setBit(m - 1).setBit(0);
+ // 5. Set U = 0
+ U = BigInteger.ZERO;
+ // 6. For i = 0 to m' - 1
+ // U = U + (SHA1[SEED + i] XOR SHA1[(SEED + m' + i)) * 2^(160 * i)
+ // Note that for m=160, this reduces to the algorithm of FIPS-186
+ // U = SHA1[SEED] XOR SHA1[(SEED+1) mod 2^160 ].
+ for (i = 0; i < m_; i++)
+ {
+ u1 = SEED.add(BigInteger.valueOf(i)).toByteArray();
+ u2 = SEED.add(BigInteger.valueOf(m_ + i)).toByteArray();
+ sha.update(u1, 0, u1.length);
+ u1 = sha.digest();
+ sha.update(u2, 0, u2.length);
+ u2 = sha.digest();
+ for (j = 0; j < u1.length; j++)
+ u1[j] ^= u2[j];
+ U = U.add(new BigInteger(1, u1).multiply(TWO.pow(160 * i)));
+ }
+ // 5. Form q from U by computing U mod (2^m) and setting the most
+ // significant bit (the 2^(m-1) bit) and the least significant
+ // bit to 1. In terms of boolean operations, q = U OR 2^(m-1) OR
+ // 1. Note that 2^(m-1) < q < 2^m
+ q = U.setBit(m - 1).setBit(0);
+ // 6. Use a robust primality algorithm to test whether q is prime.
+ // 7. If q is not prime then go to 4.
+ if (q.isProbablePrime(80))
+ break step4;
+ }
+ // 8. Let counter = 0
+ counter = 0;
+ while (true)
+ {
+ // 9. Set R = seed + 2*m' + (L' * counter)
+ R = SEED
+ .add(BigInteger.valueOf(2 * m_))
+ .add(BigInteger.valueOf(L_ * counter));
+ // 10. Set V = 0
+ V = BigInteger.ZERO;
+ // 12. For i = 0 to L'-1 do: V = V + SHA1(R + i) * 2^(160 * i)
+ for (i = 0; i < L_; i++)
+ {
+ v = R.toByteArray();
+ sha.update(v, 0, v.length);
+ v = sha.digest();
+ V = V.add(new BigInteger(1, v).multiply(TWO.pow(160 * i)));
+ }
+ // 13. Set W = V mod 2^L
+ W = V.mod(TWO.pow(L));
+ // 14. Set X = W OR 2^(L-1)
+ // Note that 0 <= W < 2^(L-1) and hence X >= 2^(L-1)
+ X = W.setBit(L - 1);
+ // 15. Set p = X - (X mod (2*q)) + 1
+ p = X.add(BigInteger.ONE).subtract(X.mod(TWO.multiply(q)));
+ // 16. If p > 2^(L-1) use a robust primality test to test whether p
+ // is prime. Else go to 18.
+ // 17. If p is prime output p, q, seed, counter and stop.
+ if (p.isProbablePrime(80))
+ {
+ break algorithm;
+ }
+ // 18. Set counter = counter + 1
+ counter++;
+ // 19. If counter < (4096 * N) then go to 8.
+ // 20. Output "failure"
+ if (counter >= 4096 * N_)
+ continue algorithm;
+ }
+ }
+ // compute g. from FIPS-186, Appendix 4:
+ // 1. Generate p and q as specified in Appendix 2.
+ // 2. Let e = (p - 1) / q
+ BigInteger e = p.subtract(BigInteger.ONE).divide(q);
+ BigInteger h = TWO;
+ BigInteger p_minus_1 = p.subtract(BigInteger.ONE);
+ g = TWO;
+ // 3. Set h = any integer, where 1 < h < p - 1 and h differs from any
+ // value previously tried
+ for (; h.compareTo(p_minus_1) < 0; h = h.add(BigInteger.ONE))
+ {
+ // 4. Set g = h**e mod p
+ g = h.modPow(e, p);
+ // 5. If g = 1, go to step 3
+ if (! g.equals(BigInteger.ONE))
+ break;
+ }
+ return new BigInteger[] { SEED, BigInteger.valueOf(counter), q, p, e, g };
+ }
+
+ /**
+ * Fills the designated byte array with random data.
+ *
+ * @param buffer the byte array to fill with random data.
+ */
+ private void nextRandomBytes(byte[] buffer)
+ {
+ if (rnd != null)
+ rnd.nextBytes(buffer);
+ else
+ getDefaultPRNG().nextBytes(buffer);
+ }
+
+ private PRNG getDefaultPRNG()
+ {
+ if (prng == null)
+ prng = PRNG.getInstance();
+
+ return prng;
+ }
+}