aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libjava/classpath/gnu/javax/crypto/cipher/Rijndael.java
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/libjava/classpath/gnu/javax/crypto/cipher/Rijndael.java')
-rw-r--r--gcc-4.4.3/libjava/classpath/gnu/javax/crypto/cipher/Rijndael.java704
1 files changed, 704 insertions, 0 deletions
diff --git a/gcc-4.4.3/libjava/classpath/gnu/javax/crypto/cipher/Rijndael.java b/gcc-4.4.3/libjava/classpath/gnu/javax/crypto/cipher/Rijndael.java
new file mode 100644
index 000000000..d1bc958c3
--- /dev/null
+++ b/gcc-4.4.3/libjava/classpath/gnu/javax/crypto/cipher/Rijndael.java
@@ -0,0 +1,704 @@
+/* Rijndael.java --
+ Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
+
+This file is a part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or (at
+your option) any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
+USA
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package gnu.javax.crypto.cipher;
+
+import gnu.java.security.Configuration;
+import gnu.java.security.Registry;
+import gnu.java.security.util.Util;
+
+import java.security.InvalidKeyException;
+import java.util.ArrayList;
+import java.util.Collections;
+import java.util.Iterator;
+import java.util.logging.Logger;
+
+/**
+ * Rijndael --pronounced Reindaal-- is the AES. It is a variable block-size
+ * (128-, 192- and 256-bit), variable key-size (128-, 192- and 256-bit)
+ * symmetric key block cipher.
+ * <p>
+ * References:
+ * <ol>
+ * <li><a href="http://www.esat.kuleuven.ac.be/~rijmen/rijndael/">The Rijndael
+ * Block Cipher - AES Proposal</a>.<br>
+ * <a href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a> and
+ * <a href="mailto:daemen.j@protonworld.com">Joan Daemen</a>.</li>
+ * </ol>
+ */
+public final class Rijndael
+ extends BaseCipher
+{
+ private static final Logger log = Logger.getLogger(Rijndael.class.getName());
+ private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
+ private static final int DEFAULT_KEY_SIZE = 16; // in bytes
+ private static final String SS =
+ "\u637C\u777B\uF26B\u6FC5\u3001\u672B\uFED7\uAB76"
+ + "\uCA82\uC97D\uFA59\u47F0\uADD4\uA2AF\u9CA4\u72C0"
+ + "\uB7FD\u9326\u363F\uF7CC\u34A5\uE5F1\u71D8\u3115"
+ + "\u04C7\u23C3\u1896\u059A\u0712\u80E2\uEB27\uB275"
+ + "\u0983\u2C1A\u1B6E\u5AA0\u523B\uD6B3\u29E3\u2F84"
+ + "\u53D1\u00ED\u20FC\uB15B\u6ACB\uBE39\u4A4C\u58CF"
+ + "\uD0EF\uAAFB\u434D\u3385\u45F9\u027F\u503C\u9FA8"
+ + "\u51A3\u408F\u929D\u38F5\uBCB6\uDA21\u10FF\uF3D2"
+ + "\uCD0C\u13EC\u5F97\u4417\uC4A7\u7E3D\u645D\u1973"
+ + "\u6081\u4FDC\u222A\u9088\u46EE\uB814\uDE5E\u0BDB"
+ + "\uE032\u3A0A\u4906\u245C\uC2D3\uAC62\u9195\uE479"
+ + "\uE7C8\u376D\u8DD5\u4EA9\u6C56\uF4EA\u657A\uAE08"
+ + "\uBA78\u252E\u1CA6\uB4C6\uE8DD\u741F\u4BBD\u8B8A"
+ + "\u703E\uB566\u4803\uF60E\u6135\u57B9\u86C1\u1D9E"
+ + "\uE1F8\u9811\u69D9\u8E94\u9B1E\u87E9\uCE55\u28DF"
+ + "\u8CA1\u890D\uBFE6\u4268\u4199\u2D0F\uB054\uBB16";
+ private static final byte[] S = new byte[256];
+ private static final byte[] Si = new byte[256];
+ private static final int[] T1 = new int[256];
+ private static final int[] T2 = new int[256];
+ private static final int[] T3 = new int[256];
+ private static final int[] T4 = new int[256];
+ private static final int[] T5 = new int[256];
+ private static final int[] T6 = new int[256];
+ private static final int[] T7 = new int[256];
+ private static final int[] T8 = new int[256];
+ private static final int[] U1 = new int[256];
+ private static final int[] U2 = new int[256];
+ private static final int[] U3 = new int[256];
+ private static final int[] U4 = new int[256];
+ private static final byte[] rcon = new byte[30];
+ private static final int[][][] shifts = new int[][][] {
+ { { 0, 0 }, { 1, 3 }, { 2, 2 }, { 3, 1 } },
+ { { 0, 0 }, { 1, 5 }, { 2, 4 }, { 3, 3 } },
+ { { 0, 0 }, { 1, 7 }, { 3, 5 }, { 4, 4 } } };
+ /**
+ * KAT vector (from ecb_vk): I=96
+ * KEY=0000000000000000000000010000000000000000000000000000000000000000
+ * CT=E44429474D6FC3084EB2A6B8B46AF754
+ */
+ private static final byte[] KAT_KEY = Util.toBytesFromString(
+ "0000000000000000000000010000000000000000000000000000000000000000");
+ private static final byte[] KAT_CT = Util.toBytesFromString(
+ "E44429474D6FC3084EB2A6B8B46AF754");
+ /** caches the result of the correctness test, once executed. */
+ private static Boolean valid;
+
+ static
+ {
+ long time = System.currentTimeMillis();
+ int ROOT = 0x11B;
+ int i, j = 0;
+ // S-box, inverse S-box, T-boxes, U-boxes
+ int s, s2, s3, i2, i4, i8, i9, ib, id, ie, t;
+ char c;
+ for (i = 0; i < 256; i++)
+ {
+ c = SS.charAt(i >>> 1);
+ S[i] = (byte)(((i & 1) == 0) ? c >>> 8 : c & 0xFF);
+ s = S[i] & 0xFF;
+ Si[s] = (byte) i;
+ s2 = s << 1;
+ if (s2 >= 0x100)
+ s2 ^= ROOT;
+ s3 = s2 ^ s;
+ i2 = i << 1;
+ if (i2 >= 0x100)
+ i2 ^= ROOT;
+ i4 = i2 << 1;
+ if (i4 >= 0x100)
+ i4 ^= ROOT;
+ i8 = i4 << 1;
+ if (i8 >= 0x100)
+ i8 ^= ROOT;
+ i9 = i8 ^ i;
+ ib = i9 ^ i2;
+ id = i9 ^ i4;
+ ie = i8 ^ i4 ^ i2;
+ T1[i] = t = (s2 << 24) | (s << 16) | (s << 8) | s3;
+ T2[i] = (t >>> 8) | (t << 24);
+ T3[i] = (t >>> 16) | (t << 16);
+ T4[i] = (t >>> 24) | (t << 8);
+ T5[s] = U1[i] = t = (ie << 24) | (i9 << 16) | (id << 8) | ib;
+ T6[s] = U2[i] = (t >>> 8) | (t << 24);
+ T7[s] = U3[i] = (t >>> 16) | (t << 16);
+ T8[s] = U4[i] = (t >>> 24) | (t << 8);
+ }
+ // round constants
+ int r = 1;
+ rcon[0] = 1;
+ for (i = 1; i < 30; i++)
+ {
+ r <<= 1;
+ if (r >= 0x100)
+ r ^= ROOT;
+ rcon[i] = (byte) r;
+ }
+ time = System.currentTimeMillis() - time;
+ if (Configuration.DEBUG)
+ {
+ log.fine("Static Data");
+ log.fine("S[]:");
+ StringBuilder sb;
+ for (i = 0; i < 16; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 16; j++)
+ sb.append("0x").append(Util.toString(S[i * 16 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("Si[]:");
+ for (i = 0; i < 16; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 16; j++)
+ sb.append("0x").append(Util.toString(Si[i * 16 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+
+ log.fine("T1[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(T1[i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("T2[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(T2[i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("T3[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(T3[i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("T4[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(T4[i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("T5[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(T5[i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("T6[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(T6[i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("T7[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(T7[i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("T8[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(T8[i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+
+ log.fine("U1[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(U1[i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("U2[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(U2[i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("U3[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(U3[i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("U4[]:");
+ for (i = 0; i < 64; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 4; j++)
+ sb.append("0x").append(Util.toString(U4[i * 4 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+
+ log.fine("rcon[]:");
+ for (i = 0; i < 5; i++)
+ {
+ sb = new StringBuilder();
+ for (j = 0; j < 6; j++)
+ sb.append("0x").append(Util.toString(rcon[i * 6 + j])).append(", ");
+ log.fine(sb.toString());
+ }
+ log.fine("Total initialization time: " + time + " ms.");
+ }
+ }
+
+ /** Trivial 0-arguments constructor. */
+ public Rijndael()
+ {
+ super(Registry.RIJNDAEL_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
+ }
+
+ /**
+ * Returns the number of rounds for a given Rijndael's key and block sizes.
+ *
+ * @param ks the size of the user key material in bytes.
+ * @param bs the desired block size in bytes.
+ * @return the number of rounds for a given Rijndael's key and block sizes.
+ */
+ public static int getRounds(int ks, int bs)
+ {
+ switch (ks)
+ {
+ case 16:
+ return bs == 16 ? 10 : (bs == 24 ? 12 : 14);
+ case 24:
+ return bs != 32 ? 12 : 14;
+ default: // 32 bytes = 256 bits
+ return 14;
+ }
+ }
+
+ private static void rijndaelEncrypt(byte[] in, int inOffset, byte[] out,
+ int outOffset, Object sessionKey, int bs)
+ {
+ Object[] sKey = (Object[]) sessionKey; // extract encryption round keys
+ int[][] Ke = (int[][]) sKey[0];
+ int BC = bs / 4;
+ int ROUNDS = Ke.length - 1;
+ int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2);
+ int s1 = shifts[SC][1][0];
+ int s2 = shifts[SC][2][0];
+ int s3 = shifts[SC][3][0];
+ int[] a = new int[BC];
+ int[] t = new int[BC]; // temporary work array
+ int i, tt;
+ for (i = 0; i < BC; i++) // plaintext to ints + key
+ t[i] = (in[inOffset++] << 24
+ | (in[inOffset++] & 0xFF) << 16
+ | (in[inOffset++] & 0xFF) << 8
+ | (in[inOffset++] & 0xFF) ) ^ Ke[0][i];
+ for (int r = 1; r < ROUNDS; r++) // apply round transforms
+ {
+ for (i = 0; i < BC; i++)
+ a[i] = (T1[(t[ i ] >>> 24) ]
+ ^ T2[(t[(i + s1) % BC] >>> 16) & 0xFF]
+ ^ T3[(t[(i + s2) % BC] >>> 8) & 0xFF]
+ ^ T4[ t[(i + s3) % BC] & 0xFF]) ^ Ke[r][i];
+ System.arraycopy(a, 0, t, 0, BC);
+ if (Configuration.DEBUG)
+ log.fine("CT" + r + "=" + Util.toString(t));
+ }
+ for (i = 0; i < BC; i++) // last round is special
+ {
+ tt = Ke[ROUNDS][i];
+ out[outOffset++] = (byte)(S[(t[ i ] >>> 24) ] ^ (tt >>> 24));
+ out[outOffset++] = (byte)(S[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16));
+ out[outOffset++] = (byte)(S[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8));
+ out[outOffset++] = (byte)(S[ t[(i + s3) % BC] & 0xFF] ^ tt );
+ }
+ if (Configuration.DEBUG)
+ log.fine("CT=" + Util.toString(out, outOffset - bs, bs));
+ }
+
+ private static void rijndaelDecrypt(byte[] in, int inOffset, byte[] out,
+ int outOffset, Object sessionKey, int bs)
+ {
+ Object[] sKey = (Object[]) sessionKey; // extract decryption round keys
+ int[][] Kd = (int[][]) sKey[1];
+ int BC = bs / 4;
+ int ROUNDS = Kd.length - 1;
+ int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2);
+ int s1 = shifts[SC][1][1];
+ int s2 = shifts[SC][2][1];
+ int s3 = shifts[SC][3][1];
+ int[] a = new int[BC];
+ int[] t = new int[BC]; // temporary work array
+ int i, tt;
+ for (i = 0; i < BC; i++) // ciphertext to ints + key
+ t[i] = (in[inOffset++] << 24
+ | (in[inOffset++] & 0xFF) << 16
+ | (in[inOffset++] & 0xFF) << 8
+ | (in[inOffset++] & 0xFF) ) ^ Kd[0][i];
+ for (int r = 1; r < ROUNDS; r++) // apply round transforms
+ {
+ for (i = 0; i < BC; i++)
+ a[i] = (T5[(t[ i ] >>> 24) ]
+ ^ T6[(t[(i + s1) % BC] >>> 16) & 0xFF]
+ ^ T7[(t[(i + s2) % BC] >>> 8) & 0xFF]
+ ^ T8[ t[(i + s3) % BC] & 0xFF]) ^ Kd[r][i];
+ System.arraycopy(a, 0, t, 0, BC);
+ if (Configuration.DEBUG)
+ log.fine("PT" + r + "=" + Util.toString(t));
+ }
+ for (i = 0; i < BC; i++) // last round is special
+ {
+ tt = Kd[ROUNDS][i];
+ out[outOffset++] = (byte)(Si[(t[ i ] >>> 24) ] ^ (tt >>> 24));
+ out[outOffset++] = (byte)(Si[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16));
+ out[outOffset++] = (byte)(Si[(t[(i + s2) % BC] >>> 8) & 0xFF] ^ (tt >>> 8));
+ out[outOffset++] = (byte)(Si[ t[(i + s3) % BC] & 0xFF] ^ tt );
+ }
+ if (Configuration.DEBUG)
+ log.fine("PT=" + Util.toString(out, outOffset - bs, bs));
+ }
+
+ private static void aesEncrypt(byte[] in, int i, byte[] out, int j, Object key)
+ {
+ int[][] Ke = (int[][])((Object[]) key)[0]; // extract encryption round keys
+ int ROUNDS = Ke.length - 1;
+ int[] Ker = Ke[0];
+ // plaintext to ints + key
+ int t0 = (in[i++] << 24
+ | (in[i++] & 0xFF) << 16
+ | (in[i++] & 0xFF) << 8
+ | (in[i++] & 0xFF) ) ^ Ker[0];
+ int t1 = (in[i++] << 24
+ | (in[i++] & 0xFF) << 16
+ | (in[i++] & 0xFF) << 8
+ | (in[i++] & 0xFF) ) ^ Ker[1];
+ int t2 = (in[i++] << 24
+ | (in[i++] & 0xFF) << 16
+ | (in[i++] & 0xFF) << 8
+ | (in[i++] & 0xFF) ) ^ Ker[2];
+ int t3 = (in[i++] << 24
+ | (in[i++] & 0xFF) << 16
+ | (in[i++] & 0xFF) << 8
+ | (in[i++] & 0xFF) ) ^ Ker[3];
+ int a0, a1, a2, a3;
+ for (int r = 1; r < ROUNDS; r++) // apply round transforms
+ {
+ Ker = Ke[r];
+ a0 = (T1[(t0 >>> 24) ]
+ ^ T2[(t1 >>> 16) & 0xFF]
+ ^ T3[(t2 >>> 8) & 0xFF]
+ ^ T4[ t3 & 0xFF]) ^ Ker[0];
+ a1 = (T1[(t1 >>> 24) ]
+ ^ T2[(t2 >>> 16) & 0xFF]
+ ^ T3[(t3 >>> 8) & 0xFF]
+ ^ T4[ t0 & 0xFF]) ^ Ker[1];
+ a2 = (T1[(t2 >>> 24) ]
+ ^ T2[(t3 >>> 16) & 0xFF]
+ ^ T3[(t0 >>> 8) & 0xFF]
+ ^ T4[ t1 & 0xFF]) ^ Ker[2];
+ a3 = (T1[(t3 >>> 24) ]
+ ^ T2[(t0 >>> 16) & 0xFF]
+ ^ T3[(t1 >>> 8) & 0xFF]
+ ^ T4[ t2 & 0xFF]) ^ Ker[3];
+ t0 = a0;
+ t1 = a1;
+ t2 = a2;
+ t3 = a3;
+ if (Configuration.DEBUG)
+ log.fine("CT" + r + "=" + Util.toString(t0) + Util.toString(t1)
+ + Util.toString(t2) + Util.toString(t3));
+ }
+ // last round is special
+ Ker = Ke[ROUNDS];
+ int tt = Ker[0];
+ out[j++] = (byte)(S[(t0 >>> 24) ] ^ (tt >>> 24));
+ out[j++] = (byte)(S[(t1 >>> 16) & 0xFF] ^ (tt >>> 16));
+ out[j++] = (byte)(S[(t2 >>> 8) & 0xFF] ^ (tt >>> 8));
+ out[j++] = (byte)(S[ t3 & 0xFF] ^ tt );
+ tt = Ker[1];
+ out[j++] = (byte)(S[(t1 >>> 24) ] ^ (tt >>> 24));
+ out[j++] = (byte)(S[(t2 >>> 16) & 0xFF] ^ (tt >>> 16));
+ out[j++] = (byte)(S[(t3 >>> 8) & 0xFF] ^ (tt >>> 8));
+ out[j++] = (byte)(S[ t0 & 0xFF] ^ tt );
+ tt = Ker[2];
+ out[j++] = (byte)(S[(t2 >>> 24) ] ^ (tt >>> 24));
+ out[j++] = (byte)(S[(t3 >>> 16) & 0xFF] ^ (tt >>> 16));
+ out[j++] = (byte)(S[(t0 >>> 8) & 0xFF] ^ (tt >>> 8));
+ out[j++] = (byte)(S[ t1 & 0xFF] ^ tt );
+ tt = Ker[3];
+ out[j++] = (byte)(S[(t3 >>> 24) ] ^ (tt >>> 24));
+ out[j++] = (byte)(S[(t0 >>> 16) & 0xFF] ^ (tt >>> 16));
+ out[j++] = (byte)(S[(t1 >>> 8) & 0xFF] ^ (tt >>> 8));
+ out[j++] = (byte)(S[ t2 & 0xFF] ^ tt );
+ if (Configuration.DEBUG)
+ log.fine("CT=" + Util.toString(out, j - 16, 16));
+ }
+
+ private static void aesDecrypt(byte[] in, int i, byte[] out, int j, Object key)
+ {
+ int[][] Kd = (int[][])((Object[]) key)[1]; // extract decryption round keys
+ int ROUNDS = Kd.length - 1;
+ int[] Kdr = Kd[0];
+ // ciphertext to ints + key
+ int t0 = (in[i++] << 24
+ | (in[i++] & 0xFF) << 16
+ | (in[i++] & 0xFF) << 8
+ | (in[i++] & 0xFF) ) ^ Kdr[0];
+ int t1 = (in[i++] << 24
+ | (in[i++] & 0xFF) << 16
+ | (in[i++] & 0xFF) << 8
+ | (in[i++] & 0xFF) ) ^ Kdr[1];
+ int t2 = (in[i++] << 24
+ | (in[i++] & 0xFF) << 16
+ | (in[i++] & 0xFF) << 8
+ | (in[i++] & 0xFF) ) ^ Kdr[2];
+ int t3 = (in[i++] << 24
+ | (in[i++] & 0xFF) << 16
+ | (in[i++] & 0xFF) << 8
+ | (in[i++] & 0xFF) ) ^ Kdr[3];
+
+ int a0, a1, a2, a3;
+ for (int r = 1; r < ROUNDS; r++) // apply round transforms
+ {
+ Kdr = Kd[r];
+ a0 = (T5[(t0 >>> 24) ]
+ ^ T6[(t3 >>> 16) & 0xFF]
+ ^ T7[(t2 >>> 8) & 0xFF]
+ ^ T8[ t1 & 0xFF]) ^ Kdr[0];
+ a1 = (T5[(t1 >>> 24) ]
+ ^ T6[(t0 >>> 16) & 0xFF]
+ ^ T7[(t3 >>> 8) & 0xFF]
+ ^ T8[ t2 & 0xFF]) ^ Kdr[1];
+ a2 = (T5[(t2 >>> 24) ]
+ ^ T6[(t1 >>> 16) & 0xFF]
+ ^ T7[(t0 >>> 8) & 0xFF]
+ ^ T8[ t3 & 0xFF]) ^ Kdr[2];
+ a3 = (T5[(t3 >>> 24) ]
+ ^ T6[(t2 >>> 16) & 0xFF]
+ ^ T7[(t1 >>> 8) & 0xFF]
+ ^ T8[ t0 & 0xFF]) ^ Kdr[3];
+ t0 = a0;
+ t1 = a1;
+ t2 = a2;
+ t3 = a3;
+ if (Configuration.DEBUG)
+ log.fine("PT" + r + "=" + Util.toString(t0) + Util.toString(t1)
+ + Util.toString(t2) + Util.toString(t3));
+ }
+ // last round is special
+ Kdr = Kd[ROUNDS];
+ int tt = Kdr[0];
+ out[j++] = (byte)(Si[(t0 >>> 24) ] ^ (tt >>> 24));
+ out[j++] = (byte)(Si[(t3 >>> 16) & 0xFF] ^ (tt >>> 16));
+ out[j++] = (byte)(Si[(t2 >>> 8) & 0xFF] ^ (tt >>> 8));
+ out[j++] = (byte)(Si[ t1 & 0xFF] ^ tt );
+ tt = Kdr[1];
+ out[j++] = (byte)(Si[(t1 >>> 24) ] ^ (tt >>> 24));
+ out[j++] = (byte)(Si[(t0 >>> 16) & 0xFF] ^ (tt >>> 16));
+ out[j++] = (byte)(Si[(t3 >>> 8) & 0xFF] ^ (tt >>> 8));
+ out[j++] = (byte)(Si[ t2 & 0xFF] ^ tt );
+ tt = Kdr[2];
+ out[j++] = (byte)(Si[(t2 >>> 24) ] ^ (tt >>> 24));
+ out[j++] = (byte)(Si[(t1 >>> 16) & 0xFF] ^ (tt >>> 16));
+ out[j++] = (byte)(Si[(t0 >>> 8) & 0xFF] ^ (tt >>> 8));
+ out[j++] = (byte)(Si[ t3 & 0xFF] ^ tt );
+ tt = Kdr[3];
+ out[j++] = (byte)(Si[(t3 >>> 24) ] ^ (tt >>> 24));
+ out[j++] = (byte)(Si[(t2 >>> 16) & 0xFF] ^ (tt >>> 16));
+ out[j++] = (byte)(Si[(t1 >>> 8) & 0xFF] ^ (tt >>> 8));
+ out[j++] = (byte)(Si[ t0 & 0xFF] ^ tt );
+ if (Configuration.DEBUG)
+ log.fine("PT=" + Util.toString(out, j - 16, 16));
+ }
+
+ public Object clone()
+ {
+ Rijndael result = new Rijndael();
+ result.currentBlockSize = this.currentBlockSize;
+
+ return result;
+ }
+
+ public Iterator blockSizes()
+ {
+ ArrayList al = new ArrayList();
+ al.add(Integer.valueOf(128 / 8));
+ al.add(Integer.valueOf(192 / 8));
+ al.add(Integer.valueOf(256 / 8));
+
+ return Collections.unmodifiableList(al).iterator();
+ }
+
+ public Iterator keySizes()
+ {
+ ArrayList al = new ArrayList();
+ al.add(Integer.valueOf(128 / 8));
+ al.add(Integer.valueOf(192 / 8));
+ al.add(Integer.valueOf(256 / 8));
+
+ return Collections.unmodifiableList(al).iterator();
+ }
+
+ /**
+ * Expands a user-supplied key material into a session key for a designated
+ * <i>block size</i>.
+ *
+ * @param k the 128/192/256-bit user-key to use.
+ * @param bs the block size in bytes of this Rijndael.
+ * @return an Object encapsulating the session key.
+ * @exception IllegalArgumentException if the block size is not 16, 24 or 32.
+ * @exception InvalidKeyException if the key data is invalid.
+ */
+ public Object makeKey(byte[] k, int bs) throws InvalidKeyException
+ {
+ if (k == null)
+ throw new InvalidKeyException("Empty key");
+ if (! (k.length == 16 || k.length == 24 || k.length == 32))
+ throw new InvalidKeyException("Incorrect key length");
+ if (! (bs == 16 || bs == 24 || bs == 32))
+ throw new IllegalArgumentException();
+ int ROUNDS = getRounds(k.length, bs);
+ int BC = bs / 4;
+ int[][] Ke = new int[ROUNDS + 1][BC]; // encryption round keys
+ int[][] Kd = new int[ROUNDS + 1][BC]; // decryption round keys
+ int ROUND_KEY_COUNT = (ROUNDS + 1) * BC;
+ int KC = k.length / 4;
+ int[] tk = new int[KC];
+ int i, j;
+ // copy user material bytes into temporary ints
+ for (i = 0, j = 0; i < KC;)
+ tk[i++] = k[j++] << 24
+ | (k[j++] & 0xFF) << 16
+ | (k[j++] & 0xFF) << 8
+ | (k[j++] & 0xFF);
+ // copy values into round key arrays
+ int t = 0;
+ for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++)
+ {
+ Ke[t / BC][t % BC] = tk[j];
+ Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
+ }
+ int tt, rconpointer = 0;
+ while (t < ROUND_KEY_COUNT)
+ {
+ // extrapolate using phi (the round key evolution function)
+ tt = tk[KC - 1];
+ tk[0] ^= (S[(tt >>> 16) & 0xFF] & 0xFF) << 24
+ ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 16
+ ^ (S[ tt & 0xFF] & 0xFF) << 8
+ ^ (S[(tt >>> 24) ] & 0xFF) ^ rcon[rconpointer++] << 24;
+ if (KC != 8)
+ for (i = 1, j = 0; i < KC;)
+ tk[i++] ^= tk[j++];
+ else
+ {
+ for (i = 1, j = 0; i < KC / 2;)
+ tk[i++] ^= tk[j++];
+ tt = tk[KC / 2 - 1];
+ tk[KC / 2] ^= (S[ tt & 0xFF] & 0xFF)
+ ^ (S[(tt >>> 8) & 0xFF] & 0xFF) << 8
+ ^ (S[(tt >>> 16) & 0xFF] & 0xFF) << 16
+ ^ S[(tt >>> 24) & 0xFF] << 24;
+ for (j = KC / 2, i = j + 1; i < KC;)
+ tk[i++] ^= tk[j++];
+ }
+ // copy values into round key arrays
+ for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++)
+ {
+ Ke[t / BC][t % BC] = tk[j];
+ Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
+ }
+ }
+ for (int r = 1; r < ROUNDS; r++) // inverse MixColumn where needed
+ for (j = 0; j < BC; j++)
+ {
+ tt = Kd[r][j];
+ Kd[r][j] = U1[(tt >>> 24) ]
+ ^ U2[(tt >>> 16) & 0xFF]
+ ^ U3[(tt >>> 8) & 0xFF]
+ ^ U4[ tt & 0xFF];
+ }
+ return new Object[] { Ke, Kd };
+ }
+
+ public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
+ {
+ if (! (bs == 16 || bs == 24 || bs == 32))
+ throw new IllegalArgumentException();
+ if (bs == DEFAULT_BLOCK_SIZE)
+ aesEncrypt(in, i, out, j, k);
+ else
+ rijndaelEncrypt(in, i, out, j, k, bs);
+ }
+
+ public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
+ {
+ if (! (bs == 16 || bs == 24 || bs == 32))
+ throw new IllegalArgumentException();
+ if (bs == DEFAULT_BLOCK_SIZE)
+ aesDecrypt(in, i, out, j, k);
+ else
+ rijndaelDecrypt(in, i, out, j, k, bs);
+ }
+
+ public boolean selfTest()
+ {
+ if (valid == null)
+ {
+ boolean result = super.selfTest(); // do symmetry tests
+ if (result)
+ result = testKat(KAT_KEY, KAT_CT);
+ valid = Boolean.valueOf(result);
+ }
+ return valid.booleanValue();
+ }
+}