aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libjava/classpath/gnu/javax/crypto/cipher/DES.java
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/libjava/classpath/gnu/javax/crypto/cipher/DES.java')
-rw-r--r--gcc-4.4.3/libjava/classpath/gnu/javax/crypto/cipher/DES.java652
1 files changed, 652 insertions, 0 deletions
diff --git a/gcc-4.4.3/libjava/classpath/gnu/javax/crypto/cipher/DES.java b/gcc-4.4.3/libjava/classpath/gnu/javax/crypto/cipher/DES.java
new file mode 100644
index 000000000..3ced62c3f
--- /dev/null
+++ b/gcc-4.4.3/libjava/classpath/gnu/javax/crypto/cipher/DES.java
@@ -0,0 +1,652 @@
+/* DES.java --
+ Copyright (C) 2002, 2003, 2006 Free Software Foundation, Inc.
+
+This file is a part of GNU Classpath.
+
+GNU Classpath is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or (at
+your option) any later version.
+
+GNU Classpath is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU Classpath; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
+USA
+
+Linking this library statically or dynamically with other modules is
+making a combined work based on this library. Thus, the terms and
+conditions of the GNU General Public License cover the whole
+combination.
+
+As a special exception, the copyright holders of this library give you
+permission to link this library with independent modules to produce an
+executable, regardless of the license terms of these independent
+modules, and to copy and distribute the resulting executable under
+terms of your choice, provided that you also meet, for each linked
+independent module, the terms and conditions of the license of that
+module. An independent module is a module which is not derived from
+or based on this library. If you modify this library, you may extend
+this exception to your version of the library, but you are not
+obligated to do so. If you do not wish to do so, delete this
+exception statement from your version. */
+
+
+package gnu.javax.crypto.cipher;
+
+import gnu.java.security.Registry;
+import gnu.java.security.Properties;
+import gnu.java.security.util.Util;
+
+import java.security.InvalidKeyException;
+import java.util.Arrays;
+import java.util.Collections;
+import java.util.Iterator;
+
+/**
+ * The Data Encryption Standard. DES is a 64-bit block cipher with a 56-bit
+ * key, developed by IBM in the 1970's for the standardization process begun by
+ * the National Bureau of Standards (now NIST).
+ * <p>
+ * New applications should not use DES except for compatibility.
+ * <p>
+ * This version is based upon the description and sample implementation in
+ * [1].
+ * <p>
+ * References:
+ * <ol>
+ * <li>Bruce Schneier, <i>Applied Cryptography: Protocols, Algorithms, and
+ * Source Code in C, Second Edition</i>. (1996 John Wiley and Sons) ISBN
+ * 0-471-11709-9. Pages 265--301, 623--632.</li>
+ * </ol>
+ */
+public class DES
+ extends BaseCipher
+{
+ /** DES operates on 64 bit blocks. */
+ public static final int BLOCK_SIZE = 8;
+ /** DES uses 56 bits of a 64 bit parity-adjusted key. */
+ public static final int KEY_SIZE = 8;
+ // S-Boxes 1 through 8.
+ private static final int[] SP1 = new int[] {
+ 0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404,
+ 0x00000004, 0x00010000, 0x00000400, 0x01010400, 0x01010404, 0x00000400,
+ 0x01000404, 0x01010004, 0x01000000, 0x00000004, 0x00000404, 0x01000400,
+ 0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404,
+ 0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404,
+ 0x00010404, 0x01000000, 0x00010000, 0x01010404, 0x00000004, 0x01010000,
+ 0x01010400, 0x01000000, 0x01000000, 0x00000400, 0x01010004, 0x00010000,
+ 0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404,
+ 0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404,
+ 0x00010404, 0x01010400, 0x00000404, 0x01000400, 0x01000400, 0x00000000,
+ 0x00010004, 0x00010400, 0x00000000, 0x01010004 };
+ private static final int[] SP2 = new int[] {
+ 0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020,
+ 0x80100020, 0x80008020, 0x80000020, 0x80108020, 0x80108000, 0x80000000,
+ 0x80008000, 0x00100000, 0x00000020, 0x80100020, 0x00108000, 0x00100020,
+ 0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000,
+ 0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000,
+ 0x80100000, 0x00008020, 0x00000000, 0x00108020, 0x80100020, 0x00100000,
+ 0x80008020, 0x80100000, 0x80108000, 0x00008000, 0x80100000, 0x80008000,
+ 0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000,
+ 0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020,
+ 0x80000020, 0x00100020, 0x00108000, 0x00000000, 0x80008000, 0x00008020,
+ 0x80000000, 0x80100020, 0x80108020, 0x00108000 };
+ private static final int[] SP3 = new int[] {
+ 0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000,
+ 0x00020208, 0x08000200, 0x00020008, 0x08000008, 0x08000008, 0x00020000,
+ 0x08020208, 0x00020008, 0x08020000, 0x00000208, 0x08000000, 0x00000008,
+ 0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208,
+ 0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208,
+ 0x00000200, 0x08000000, 0x08020200, 0x08000000, 0x00020008, 0x00000208,
+ 0x00020000, 0x08020200, 0x08000200, 0x00000000, 0x00000200, 0x00020008,
+ 0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008,
+ 0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208,
+ 0x00020200, 0x08000008, 0x08020000, 0x08000208, 0x00000208, 0x08020000,
+ 0x00020208, 0x00000008, 0x08020008, 0x00020200 };
+ private static final int[] SP4 = new int[] {
+ 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081,
+ 0x00800001, 0x00002001, 0x00000000, 0x00802000, 0x00802000, 0x00802081,
+ 0x00000081, 0x00000000, 0x00800080, 0x00800001, 0x00000001, 0x00002000,
+ 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080,
+ 0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080,
+ 0x00802081, 0x00000081, 0x00800080, 0x00800001, 0x00802000, 0x00802081,
+ 0x00000081, 0x00000000, 0x00000000, 0x00802000, 0x00002080, 0x00800080,
+ 0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080,
+ 0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001,
+ 0x00802080, 0x00800081, 0x00002001, 0x00002080, 0x00800000, 0x00802001,
+ 0x00000080, 0x00800000, 0x00002000, 0x00802080 };
+ private static final int[] SP5 = new int[] {
+ 0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100,
+ 0x40000000, 0x02080000, 0x40080100, 0x00080000, 0x02000100, 0x40080100,
+ 0x42000100, 0x42080000, 0x00080100, 0x40000000, 0x02000000, 0x40080000,
+ 0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100,
+ 0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000,
+ 0x42000000, 0x00080100, 0x00080000, 0x42000100, 0x00000100, 0x02000000,
+ 0x40000000, 0x02080000, 0x42000100, 0x40080100, 0x02000100, 0x40000000,
+ 0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000,
+ 0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000,
+ 0x40080000, 0x42000000, 0x00080100, 0x02000100, 0x40000100, 0x00080000,
+ 0x00000000, 0x40080000, 0x02080100, 0x40000100 };
+ private static final int[] SP6 = new int[] {
+ 0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010,
+ 0x20404010, 0x00400000, 0x20004000, 0x00404010, 0x00400000, 0x20000010,
+ 0x00400010, 0x20004000, 0x20000000, 0x00004010, 0x00000000, 0x00400010,
+ 0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010,
+ 0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000,
+ 0x20404000, 0x20000000, 0x20004000, 0x00000010, 0x20400010, 0x00404000,
+ 0x20404010, 0x00400000, 0x00004010, 0x20000010, 0x00400000, 0x20004000,
+ 0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000,
+ 0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000,
+ 0x20400000, 0x00404010, 0x00004000, 0x00400010, 0x20004010, 0x00000000,
+ 0x20404000, 0x20000000, 0x00400010, 0x20004010 };
+ private static final int[] SP7 = new int[] {
+ 0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802,
+ 0x00200802, 0x04200800, 0x04200802, 0x00200000, 0x00000000, 0x04000002,
+ 0x00000002, 0x04000000, 0x04200002, 0x00000802, 0x04000800, 0x00200802,
+ 0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002,
+ 0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002,
+ 0x04000000, 0x00200800, 0x04000000, 0x00200800, 0x00200000, 0x04000802,
+ 0x04000802, 0x04200002, 0x04200002, 0x00000002, 0x00200002, 0x04000000,
+ 0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800,
+ 0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000,
+ 0x00000002, 0x04200802, 0x00000000, 0x00200802, 0x04200000, 0x00000800,
+ 0x04000002, 0x04000800, 0x00000800, 0x00200002 };
+ private static final int[] SP8 = new int[] {
+ 0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040,
+ 0x00000040, 0x10000000, 0x00040040, 0x10040000, 0x10041040, 0x00041000,
+ 0x10041000, 0x00041040, 0x00001000, 0x00000040, 0x10040000, 0x10000040,
+ 0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000,
+ 0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000,
+ 0x00041040, 0x00040000, 0x00041040, 0x00040000, 0x10041000, 0x00001000,
+ 0x00000040, 0x10040040, 0x00001000, 0x00041040, 0x10001000, 0x00000040,
+ 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040,
+ 0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000,
+ 0x10001040, 0x00000000, 0x10041040, 0x00041000, 0x00041000, 0x00001040,
+ 0x00001040, 0x00040040, 0x10000000, 0x10041000 };
+ /**
+ * Constants that help in determining whether or not a byte array is parity
+ * adjusted.
+ */
+ private static final byte[] PARITY = {
+ 8, 1, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 2, 8,
+ 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 3,
+ 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
+ 8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8,
+ 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
+ 8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8,
+ 8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8,
+ 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
+ 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
+ 8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8,
+ 8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8,
+ 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
+ 8, 0, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 0, 8,
+ 0, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
+ 4, 8, 8, 0, 8, 0, 0, 8, 8, 0, 0, 8, 0, 8, 8, 0,
+ 8, 5, 0, 8, 0, 8, 8, 0, 0, 8, 8, 0, 8, 0, 6, 8 };
+ // Key schedule constants.
+ private static final byte[] ROTARS = {
+ 1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28 };
+ private static final byte[] PC1 = {
+ 56, 48, 40, 32, 24, 16, 8, 0, 57, 49, 41, 33, 25, 17, 9, 1,
+ 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 62, 54, 46, 38,
+ 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 60, 52, 44, 36,
+ 28, 20, 12, 4, 27, 19, 11, 3 };
+ private static final byte[] PC2 = {
+ 13, 16, 10, 23, 0, 4, 2, 27, 14, 5, 20, 9, 22, 18, 11, 3,
+ 25, 7, 15, 6, 26, 19, 12, 1, 40, 51, 30, 36, 46, 54, 29, 39,
+ 50, 44, 32, 47, 43, 48, 38, 55, 33, 52, 45, 41, 49, 35, 28, 31 };
+ /**
+ * Weak keys (parity adjusted): If all the bits in each half are either 0
+ * or 1, then the key used for any cycle of the algorithm is the same as
+ * all other cycles.
+ */
+ public static final byte[][] WEAK_KEYS = {
+ Util.toBytesFromString("0101010101010101"),
+ Util.toBytesFromString("01010101FEFEFEFE"),
+ Util.toBytesFromString("FEFEFEFE01010101"),
+ Util.toBytesFromString("FEFEFEFEFEFEFEFE") };
+ /**
+ * Semi-weak keys (parity adjusted): Some pairs of keys encrypt plain text
+ * to identical cipher text. In other words, one key in the pair can decrypt
+ * messages that were encrypted with the other key. These keys are called
+ * semi-weak keys. This occurs because instead of 16 different sub-keys being
+ * generated, these semi-weak keys produce only two different sub-keys.
+ */
+ public static final byte[][] SEMIWEAK_KEYS = {
+ Util.toBytesFromString("01FE01FE01FE01FE"),
+ Util.toBytesFromString("FE01FE01FE01FE01"),
+ Util.toBytesFromString("1FE01FE00EF10EF1"),
+ Util.toBytesFromString("E01FE01FF10EF10E"),
+ Util.toBytesFromString("01E001E001F101F1"),
+ Util.toBytesFromString("E001E001F101F101"),
+ Util.toBytesFromString("1FFE1FFE0EFE0EFE"),
+ Util.toBytesFromString("FE1FFE1FFE0EFE0E"),
+ Util.toBytesFromString("011F011F010E010E"),
+ Util.toBytesFromString("1F011F010E010E01"),
+ Util.toBytesFromString("E0FEE0FEF1FEF1FE"),
+ Util.toBytesFromString("FEE0FEE0FEF1FEF1") };
+ /** Possible weak keys (parity adjusted) --produce 4 instead of 16 subkeys. */
+ public static final byte[][] POSSIBLE_WEAK_KEYS = {
+ Util.toBytesFromString("1F1F01010E0E0101"),
+ Util.toBytesFromString("011F1F01010E0E01"),
+ Util.toBytesFromString("1F01011F0E01010E"),
+ Util.toBytesFromString("01011F1F01010E0E"),
+ Util.toBytesFromString("E0E00101F1F10101"),
+ Util.toBytesFromString("FEFE0101FEFE0101"),
+ Util.toBytesFromString("FEE01F01FEF10E01"),
+ Util.toBytesFromString("E0FE1F01F1FE0E01"),
+ Util.toBytesFromString("FEE0011FFEF1010E"),
+ Util.toBytesFromString("E0FE011FF1FE010E"),
+ Util.toBytesFromString("E0E01F1FF1F10E0E"),
+ Util.toBytesFromString("FEFE1F1FFEFE0E0E"),
+ Util.toBytesFromString("1F1F01010E0E0101"),
+ Util.toBytesFromString("011F1F01010E0E01"),
+ Util.toBytesFromString("1F01011F0E01010E"),
+ Util.toBytesFromString("01011F1F01010E0E"),
+ Util.toBytesFromString("01E0E00101F1F101"),
+ Util.toBytesFromString("1FFEE0010EFEF001"),
+ Util.toBytesFromString("1FE0FE010EF1FE01"),
+ Util.toBytesFromString("01FEFE0101FEFE01"),
+ Util.toBytesFromString("1FE0E01F0EF1F10E"),
+ Util.toBytesFromString("01FEE01F01FEF10E"),
+ Util.toBytesFromString("01E0FE1F01F1FE0E"),
+ Util.toBytesFromString("1FFEFE1F0EFEFE0E"),
+
+ Util.toBytesFromString("E00101E0F10101F1"),
+ Util.toBytesFromString("FE1F01E0FE0E0EF1"),
+ Util.toBytesFromString("FE011FE0FE010EF1"),
+ Util.toBytesFromString("E01F1FE0F10E0EF1"),
+ Util.toBytesFromString("FE0101FEFE0101FE"),
+ Util.toBytesFromString("E01F01FEF10E01FE"),
+ Util.toBytesFromString("E0011FFEF1010EFE"),
+ Util.toBytesFromString("FE1F1FFEFE0E0EFE"),
+ Util.toBytesFromString("1FFE01E00EFE01F1"),
+ Util.toBytesFromString("01FE1FE001FE0EF1"),
+ Util.toBytesFromString("1FE001FE0EF101FE"),
+ Util.toBytesFromString("01E01FFE01F10EFE"),
+ Util.toBytesFromString("0101E0E00101F1F1"),
+ Util.toBytesFromString("1F1FE0E00E0EF1F1"),
+ Util.toBytesFromString("1F01FEE00E01FEF1"),
+ Util.toBytesFromString("011FFEE0010EFEF1"),
+ Util.toBytesFromString("1F01E0FE0E01F1FE"),
+ Util.toBytesFromString("011FE0FE010EF1FE"),
+ Util.toBytesFromString("0101FEFE0001FEFE"),
+ Util.toBytesFromString("1F1FFEFE0E0EFEFE"),
+ Util.toBytesFromString("FEFEE0E0FEFEF1F1"),
+ Util.toBytesFromString("E0FEFEE0F1FEFEF1"),
+ Util.toBytesFromString("FEE0E0FEFEF1F1FE"),
+ Util.toBytesFromString("E0E0FEFEF1F1FEFE") };
+
+ /** Default 0-argument constructor. */
+ public DES()
+ {
+ super(Registry.DES_CIPHER, BLOCK_SIZE, KEY_SIZE);
+ }
+
+ /**
+ * Adjust the parity for a raw key array. This essentially means that each
+ * byte in the array will have an odd number of '1' bits (the last bit in
+ * each byte is unused.
+ *
+ * @param kb The key array, to be parity-adjusted.
+ * @param offset The starting index into the key bytes.
+ */
+ public static void adjustParity(byte[] kb, int offset)
+ {
+ for (int i = offset; i < offset + KEY_SIZE; i++)
+ kb[i] ^= (PARITY[kb[i] & 0xff] == 8) ? 1 : 0;
+ }
+
+ /**
+ * Test if a byte array, which must be at least 8 bytes long, is parity
+ * adjusted.
+ *
+ * @param kb The key bytes.
+ * @param offset The starting index into the key bytes.
+ * @return <code>true</code> if the first 8 bytes of <i>kb</i> have been
+ * parity adjusted. <code>false</code> otherwise.
+ */
+ public static boolean isParityAdjusted(byte[] kb, int offset)
+ {
+ int w = 0x88888888;
+ int n = PARITY[kb[offset + 0] & 0xff];
+ n <<= 4;
+ n |= PARITY[kb[offset + 1] & 0xff];
+ n <<= 4;
+ n |= PARITY[kb[offset + 2] & 0xff];
+ n <<= 4;
+ n |= PARITY[kb[offset + 3] & 0xff];
+ n <<= 4;
+ n |= PARITY[kb[offset + 4] & 0xff];
+ n <<= 4;
+ n |= PARITY[kb[offset + 5] & 0xff];
+ n <<= 4;
+ n |= PARITY[kb[offset + 6] & 0xff];
+ n <<= 4;
+ n |= PARITY[kb[offset + 7] & 0xff];
+ return (n & w) == 0;
+ }
+
+ /**
+ * Test if a key is a weak key.
+ *
+ * @param kb The key to test.
+ * @return <code>true</code> if the key is weak.
+ */
+ public static boolean isWeak(byte[] kb)
+ {
+ for (int i = 0; i < WEAK_KEYS.length; i++)
+ if (Arrays.equals(WEAK_KEYS[i], kb))
+ return true;
+ return false;
+ }
+
+ /**
+ * Test if a key is a semi-weak key.
+ *
+ * @param kb The key to test.
+ * @return <code>true</code> if this key is semi-weak.
+ */
+ public static boolean isSemiWeak(byte[] kb)
+ {
+ for (int i = 0; i < SEMIWEAK_KEYS.length; i++)
+ if (Arrays.equals(SEMIWEAK_KEYS[i], kb))
+ return true;
+ return false;
+ }
+
+ /**
+ * Test if the designated byte array represents a possibly weak key.
+ *
+ * @param kb the byte array to test.
+ * @return <code>true</code> if <code>kb</code>represents a possibly weak key.
+ * Returns <code>false</code> otherwise.
+ */
+ public static boolean isPossibleWeak(byte[] kb)
+ {
+ for (int i = 0; i < POSSIBLE_WEAK_KEYS.length; i++)
+ if (Arrays.equals(POSSIBLE_WEAK_KEYS[i], kb))
+ return true;
+ return false;
+ }
+
+ /**
+ * The core DES function. This is used for both encryption and decryption,
+ * the only difference being the key.
+ *
+ * @param in The input bytes.
+ * @param i The starting offset into the input bytes.
+ * @param out The output bytes.
+ * @param o The starting offset into the output bytes.
+ * @param key The working key.
+ */
+ private static void desFunc(byte[] in, int i, byte[] out, int o, int[] key)
+ {
+ int right, left, work;
+ // Load.
+ left = (in[i++] & 0xff) << 24
+ | (in[i++] & 0xff) << 16
+ | (in[i++] & 0xff) << 8
+ | in[i++] & 0xff;
+ right = (in[i++] & 0xff) << 24
+ | (in[i++] & 0xff) << 16
+ | (in[i++] & 0xff) << 8
+ | in[i ] & 0xff;
+ // Initial permutation.
+ work = ((left >>> 4) ^ right) & 0x0F0F0F0F;
+ left ^= work << 4;
+ right ^= work;
+
+ work = ((left >>> 16) ^ right) & 0x0000FFFF;
+ left ^= work << 16;
+ right ^= work;
+
+ work = ((right >>> 2) ^ left) & 0x33333333;
+ right ^= work << 2;
+ left ^= work;
+
+ work = ((right >>> 8) ^ left) & 0x00FF00FF;
+ right ^= work << 8;
+ left ^= work;
+
+ right = ((right << 1) | ((right >>> 31) & 1)) & 0xFFFFFFFF;
+ work = (left ^ right) & 0xAAAAAAAA;
+ left ^= work;
+ right ^= work;
+ left = ((left << 1) | ((left >>> 31) & 1)) & 0xFFFFFFFF;
+
+ int k = 0, t;
+ for (int round = 0; round < 8; round++)
+ {
+ work = right >>> 4 | right << 28;
+ work ^= key[k++];
+ t = SP7[work & 0x3F];
+ work >>>= 8;
+ t |= SP5[work & 0x3F];
+ work >>>= 8;
+ t |= SP3[work & 0x3F];
+ work >>>= 8;
+ t |= SP1[work & 0x3F];
+ work = right ^ key[k++];
+ t |= SP8[work & 0x3F];
+ work >>>= 8;
+ t |= SP6[work & 0x3F];
+ work >>>= 8;
+ t |= SP4[work & 0x3F];
+ work >>>= 8;
+ t |= SP2[work & 0x3F];
+ left ^= t;
+
+ work = left >>> 4 | left << 28;
+ work ^= key[k++];
+ t = SP7[work & 0x3F];
+ work >>>= 8;
+ t |= SP5[work & 0x3F];
+ work >>>= 8;
+ t |= SP3[work & 0x3F];
+ work >>>= 8;
+ t |= SP1[work & 0x3F];
+ work = left ^ key[k++];
+ t |= SP8[work & 0x3F];
+ work >>>= 8;
+ t |= SP6[work & 0x3F];
+ work >>>= 8;
+ t |= SP4[work & 0x3F];
+ work >>>= 8;
+ t |= SP2[work & 0x3F];
+ right ^= t;
+ }
+ // The final permutation.
+ right = (right << 31) | (right >>> 1);
+ work = (left ^ right) & 0xAAAAAAAA;
+ left ^= work;
+ right ^= work;
+ left = (left << 31) | (left >>> 1);
+
+ work = ((left >>> 8) ^ right) & 0x00FF00FF;
+ left ^= work << 8;
+ right ^= work;
+
+ work = ((left >>> 2) ^ right) & 0x33333333;
+ left ^= work << 2;
+ right ^= work;
+
+ work = ((right >>> 16) ^ left) & 0x0000FFFF;
+ right ^= work << 16;
+ left ^= work;
+
+ work = ((right >>> 4) ^ left) & 0x0F0F0F0F;
+ right ^= work << 4;
+ left ^= work;
+
+ out[o++] = (byte)(right >>> 24);
+ out[o++] = (byte)(right >>> 16);
+ out[o++] = (byte)(right >>> 8);
+ out[o++] = (byte) right;
+ out[o++] = (byte)(left >>> 24);
+ out[o++] = (byte)(left >>> 16);
+ out[o++] = (byte)(left >>> 8);
+ out[o ] = (byte) left;
+ }
+
+ public Object clone()
+ {
+ return new DES();
+ }
+
+ public Iterator blockSizes()
+ {
+ return Collections.singleton(Integer.valueOf(BLOCK_SIZE)).iterator();
+ }
+
+ public Iterator keySizes()
+ {
+ return Collections.singleton(Integer.valueOf(KEY_SIZE)).iterator();
+ }
+
+ public Object makeKey(byte[] kb, int bs) throws InvalidKeyException
+ {
+ if (kb == null || kb.length != KEY_SIZE)
+ throw new InvalidKeyException("DES keys must be 8 bytes long");
+
+ if (Properties.checkForWeakKeys()
+ && (isWeak(kb) || isSemiWeak(kb) || isPossibleWeak(kb)))
+ throw new WeakKeyException();
+
+ int i, j, l, m, n;
+ long pc1m = 0, pcr = 0;
+
+ for (i = 0; i < 56; i++)
+ {
+ l = PC1[i];
+ pc1m |= ((kb[l >>> 3] & (0x80 >>> (l & 7))) != 0) ? (1L << (55 - i))
+ : 0;
+ }
+ Context ctx = new Context();
+ // Encryption key first.
+ for (i = 0; i < 16; i++)
+ {
+ pcr = 0;
+ m = i << 1;
+ n = m + 1;
+ for (j = 0; j < 28; j++)
+ {
+ l = j + ROTARS[i];
+ if (l < 28)
+ pcr |= ((pc1m & 1L << (55 - l)) != 0) ? (1L << (55 - j)) : 0;
+ else
+ pcr |= ((pc1m & 1L << (55 - (l - 28))) != 0) ? (1L << (55 - j))
+ : 0;
+ }
+ for (j = 28; j < 56; j++)
+ {
+ l = j + ROTARS[i];
+ if (l < 56)
+ pcr |= ((pc1m & 1L << (55 - l)) != 0) ? (1L << (55 - j)) : 0;
+ else
+ pcr |= ((pc1m & 1L << (55 - (l - 28))) != 0) ? (1L << (55 - j))
+ : 0;
+ }
+ for (j = 0; j < 24; j++)
+ {
+ if ((pcr & 1L << (55 - PC2[j])) != 0)
+ ctx.ek[m] |= 1 << (23 - j);
+ if ((pcr & 1L << (55 - PC2[j + 24])) != 0)
+ ctx.ek[n] |= 1 << (23 - j);
+ }
+ }
+ // The decryption key is the same, but in reversed order.
+ for (i = 0; i < Context.EXPANDED_KEY_SIZE; i += 2)
+ {
+ ctx.dk[30 - i] = ctx.ek[i];
+ ctx.dk[31 - i] = ctx.ek[i + 1];
+ }
+ // "Cook" the keys.
+ for (i = 0; i < 32; i += 2)
+ {
+ int x, y;
+ x = ctx.ek[i];
+ y = ctx.ek[i + 1];
+ ctx.ek[i ] = ((x & 0x00FC0000) << 6)
+ | ((x & 0x00000FC0) << 10)
+ | ((y & 0x00FC0000) >>> 10)
+ | ((y & 0x00000FC0) >>> 6);
+ ctx.ek[i + 1] = ((x & 0x0003F000) << 12)
+ | ((x & 0x0000003F) << 16)
+ | ((y & 0x0003F000) >>> 4)
+ | (y & 0x0000003F);
+ x = ctx.dk[i];
+ y = ctx.dk[i + 1];
+ ctx.dk[i ] = ((x & 0x00FC0000) << 6)
+ | ((x & 0x00000FC0) << 10)
+ | ((y & 0x00FC0000) >>> 10)
+ | ((y & 0x00000FC0) >>> 6);
+ ctx.dk[i + 1] = ((x & 0x0003F000) << 12)
+ | ((x & 0x0000003F) << 16)
+ | ((y & 0x0003F000) >>> 4)
+ | (y & 0x0000003F);
+ }
+ return ctx;
+ }
+
+ public void encrypt(byte[] in, int i, byte[] out, int o, Object K, int bs)
+ {
+ desFunc(in, i, out, o, ((Context) K).ek);
+ }
+
+ public void decrypt(byte[] in, int i, byte[] out, int o, Object K, int bs)
+ {
+ desFunc(in, i, out, o, ((Context) K).dk);
+ }
+
+ /**
+ * Simple wrapper class around the session keys. Package-private so TripleDES
+ * can see it.
+ */
+ final class Context
+ {
+ private static final int EXPANDED_KEY_SIZE = 32;
+
+ /** The encryption key. */
+ int[] ek;
+
+ /** The decryption key. */
+ int[] dk;
+
+ /** Default 0-arguments constructor. */
+ Context()
+ {
+ ek = new int[EXPANDED_KEY_SIZE];
+ dk = new int[EXPANDED_KEY_SIZE];
+ }
+
+ byte[] getEncryptionKeyBytes()
+ {
+ return toByteArray(ek);
+ }
+
+ byte[] getDecryptionKeyBytes()
+ {
+ return toByteArray(dk);
+ }
+
+ byte[] toByteArray(int[] k)
+ {
+ byte[] result = new byte[4 * k.length];
+ for (int i = 0, j = 0; i < k.length; i++)
+ {
+ result[j++] = (byte)(k[i] >>> 24);
+ result[j++] = (byte)(k[i] >>> 16);
+ result[j++] = (byte)(k[i] >>> 8);
+ result[j++] = (byte) k[i];
+ }
+ return result;
+ }
+ }
+}