aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/SynchronousQueue.java
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/SynchronousQueue.java')
-rw-r--r--gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/SynchronousQueue.java1127
1 files changed, 1127 insertions, 0 deletions
diff --git a/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/SynchronousQueue.java b/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/SynchronousQueue.java
new file mode 100644
index 000000000..e47e0401c
--- /dev/null
+++ b/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/SynchronousQueue.java
@@ -0,0 +1,1127 @@
+/*
+ * Written by Doug Lea, Bill Scherer, and Michael Scott with
+ * assistance from members of JCP JSR-166 Expert Group and released to
+ * the public domain, as explained at
+ * http://creativecommons.org/licenses/publicdomain
+ */
+
+package java.util.concurrent;
+import java.util.concurrent.locks.*;
+import java.util.concurrent.atomic.*;
+import java.util.*;
+
+/**
+ * A {@linkplain BlockingQueue blocking queue} in which each insert
+ * operation must wait for a corresponding remove operation by another
+ * thread, and vice versa. A synchronous queue does not have any
+ * internal capacity, not even a capacity of one. You cannot
+ * <tt>peek</tt> at a synchronous queue because an element is only
+ * present when you try to remove it; you cannot insert an element
+ * (using any method) unless another thread is trying to remove it;
+ * you cannot iterate as there is nothing to iterate. The
+ * <em>head</em> of the queue is the element that the first queued
+ * inserting thread is trying to add to the queue; if there is no such
+ * queued thread then no element is available for removal and
+ * <tt>poll()</tt> will return <tt>null</tt>. For purposes of other
+ * <tt>Collection</tt> methods (for example <tt>contains</tt>), a
+ * <tt>SynchronousQueue</tt> acts as an empty collection. This queue
+ * does not permit <tt>null</tt> elements.
+ *
+ * <p>Synchronous queues are similar to rendezvous channels used in
+ * CSP and Ada. They are well suited for handoff designs, in which an
+ * object running in one thread must sync up with an object running
+ * in another thread in order to hand it some information, event, or
+ * task.
+ *
+ * <p> This class supports an optional fairness policy for ordering
+ * waiting producer and consumer threads. By default, this ordering
+ * is not guaranteed. However, a queue constructed with fairness set
+ * to <tt>true</tt> grants threads access in FIFO order.
+ *
+ * <p>This class and its iterator implement all of the
+ * <em>optional</em> methods of the {@link Collection} and {@link
+ * Iterator} interfaces.
+ *
+ * <p>This class is a member of the
+ * <a href="{@docRoot}/../technotes/guides/collections/index.html">
+ * Java Collections Framework</a>.
+ *
+ * @since 1.5
+ * @author Doug Lea and Bill Scherer and Michael Scott
+ * @param <E> the type of elements held in this collection
+ */
+public class SynchronousQueue<E> extends AbstractQueue<E>
+ implements BlockingQueue<E>, java.io.Serializable {
+ private static final long serialVersionUID = -3223113410248163686L;
+
+ /*
+ * This class implements extensions of the dual stack and dual
+ * queue algorithms described in "Nonblocking Concurrent Objects
+ * with Condition Synchronization", by W. N. Scherer III and
+ * M. L. Scott. 18th Annual Conf. on Distributed Computing,
+ * Oct. 2004 (see also
+ * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
+ * The (Lifo) stack is used for non-fair mode, and the (Fifo)
+ * queue for fair mode. The performance of the two is generally
+ * similar. Fifo usually supports higher throughput under
+ * contention but Lifo maintains higher thread locality in common
+ * applications.
+ *
+ * A dual queue (and similarly stack) is one that at any given
+ * time either holds "data" -- items provided by put operations,
+ * or "requests" -- slots representing take operations, or is
+ * empty. A call to "fulfill" (i.e., a call requesting an item
+ * from a queue holding data or vice versa) dequeues a
+ * complementary node. The most interesting feature of these
+ * queues is that any operation can figure out which mode the
+ * queue is in, and act accordingly without needing locks.
+ *
+ * Both the queue and stack extend abstract class Transferer
+ * defining the single method transfer that does a put or a
+ * take. These are unified into a single method because in dual
+ * data structures, the put and take operations are symmetrical,
+ * so nearly all code can be combined. The resulting transfer
+ * methods are on the long side, but are easier to follow than
+ * they would be if broken up into nearly-duplicated parts.
+ *
+ * The queue and stack data structures share many conceptual
+ * similarities but very few concrete details. For simplicity,
+ * they are kept distinct so that they can later evolve
+ * separately.
+ *
+ * The algorithms here differ from the versions in the above paper
+ * in extending them for use in synchronous queues, as well as
+ * dealing with cancellation. The main differences include:
+ *
+ * 1. The original algorithms used bit-marked pointers, but
+ * the ones here use mode bits in nodes, leading to a number
+ * of further adaptations.
+ * 2. SynchronousQueues must block threads waiting to become
+ * fulfilled.
+ * 3. Support for cancellation via timeout and interrupts,
+ * including cleaning out cancelled nodes/threads
+ * from lists to avoid garbage retention and memory depletion.
+ *
+ * Blocking is mainly accomplished using LockSupport park/unpark,
+ * except that nodes that appear to be the next ones to become
+ * fulfilled first spin a bit (on multiprocessors only). On very
+ * busy synchronous queues, spinning can dramatically improve
+ * throughput. And on less busy ones, the amount of spinning is
+ * small enough not to be noticeable.
+ *
+ * Cleaning is done in different ways in queues vs stacks. For
+ * queues, we can almost always remove a node immediately in O(1)
+ * time (modulo retries for consistency checks) when it is
+ * cancelled. But if it may be pinned as the current tail, it must
+ * wait until some subsequent cancellation. For stacks, we need a
+ * potentially O(n) traversal to be sure that we can remove the
+ * node, but this can run concurrently with other threads
+ * accessing the stack.
+ *
+ * While garbage collection takes care of most node reclamation
+ * issues that otherwise complicate nonblocking algorithms, care
+ * is taken to "forget" references to data, other nodes, and
+ * threads that might be held on to long-term by blocked
+ * threads. In cases where setting to null would otherwise
+ * conflict with main algorithms, this is done by changing a
+ * node's link to now point to the node itself. This doesn't arise
+ * much for Stack nodes (because blocked threads do not hang on to
+ * old head pointers), but references in Queue nodes must be
+ * aggressively forgotten to avoid reachability of everything any
+ * node has ever referred to since arrival.
+ */
+
+ /**
+ * Shared internal API for dual stacks and queues.
+ */
+ static abstract class Transferer {
+ /**
+ * Performs a put or take.
+ *
+ * @param e if non-null, the item to be handed to a consumer;
+ * if null, requests that transfer return an item
+ * offered by producer.
+ * @param timed if this operation should timeout
+ * @param nanos the timeout, in nanoseconds
+ * @return if non-null, the item provided or received; if null,
+ * the operation failed due to timeout or interrupt --
+ * the caller can distinguish which of these occurred
+ * by checking Thread.interrupted.
+ */
+ abstract Object transfer(Object e, boolean timed, long nanos);
+ }
+
+ /** The number of CPUs, for spin control */
+ static final int NCPUS = Runtime.getRuntime().availableProcessors();
+
+ /**
+ * The number of times to spin before blocking in timed waits.
+ * The value is empirically derived -- it works well across a
+ * variety of processors and OSes. Empirically, the best value
+ * seems not to vary with number of CPUs (beyond 2) so is just
+ * a constant.
+ */
+ static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
+
+ /**
+ * The number of times to spin before blocking in untimed waits.
+ * This is greater than timed value because untimed waits spin
+ * faster since they don't need to check times on each spin.
+ */
+ static final int maxUntimedSpins = maxTimedSpins * 16;
+
+ /**
+ * The number of nanoseconds for which it is faster to spin
+ * rather than to use timed park. A rough estimate suffices.
+ */
+ static final long spinForTimeoutThreshold = 1000L;
+
+ /** Dual stack */
+ static final class TransferStack extends Transferer {
+ /*
+ * This extends Scherer-Scott dual stack algorithm, differing,
+ * among other ways, by using "covering" nodes rather than
+ * bit-marked pointers: Fulfilling operations push on marker
+ * nodes (with FULFILLING bit set in mode) to reserve a spot
+ * to match a waiting node.
+ */
+
+ /* Modes for SNodes, ORed together in node fields */
+ /** Node represents an unfulfilled consumer */
+ static final int REQUEST = 0;
+ /** Node represents an unfulfilled producer */
+ static final int DATA = 1;
+ /** Node is fulfilling another unfulfilled DATA or REQUEST */
+ static final int FULFILLING = 2;
+
+ /** Return true if m has fulfilling bit set */
+ static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
+
+ /** Node class for TransferStacks. */
+ static final class SNode {
+ volatile SNode next; // next node in stack
+ volatile SNode match; // the node matched to this
+ volatile Thread waiter; // to control park/unpark
+ Object item; // data; or null for REQUESTs
+ int mode;
+ // Note: item and mode fields don't need to be volatile
+ // since they are always written before, and read after,
+ // other volatile/atomic operations.
+
+ SNode(Object item) {
+ this.item = item;
+ }
+
+ static final AtomicReferenceFieldUpdater<SNode, SNode>
+ nextUpdater = AtomicReferenceFieldUpdater.newUpdater
+ (SNode.class, SNode.class, "next");
+
+ boolean casNext(SNode cmp, SNode val) {
+ return (cmp == next &&
+ nextUpdater.compareAndSet(this, cmp, val));
+ }
+
+ static final AtomicReferenceFieldUpdater<SNode, SNode>
+ matchUpdater = AtomicReferenceFieldUpdater.newUpdater
+ (SNode.class, SNode.class, "match");
+
+ /**
+ * Tries to match node s to this node, if so, waking up thread.
+ * Fulfillers call tryMatch to identify their waiters.
+ * Waiters block until they have been matched.
+ *
+ * @param s the node to match
+ * @return true if successfully matched to s
+ */
+ boolean tryMatch(SNode s) {
+ if (match == null &&
+ matchUpdater.compareAndSet(this, null, s)) {
+ Thread w = waiter;
+ if (w != null) { // waiters need at most one unpark
+ waiter = null;
+ LockSupport.unpark(w);
+ }
+ return true;
+ }
+ return match == s;
+ }
+
+ /**
+ * Tries to cancel a wait by matching node to itself.
+ */
+ void tryCancel() {
+ matchUpdater.compareAndSet(this, null, this);
+ }
+
+ boolean isCancelled() {
+ return match == this;
+ }
+ }
+
+ /** The head (top) of the stack */
+ volatile SNode head;
+
+ static final AtomicReferenceFieldUpdater<TransferStack, SNode>
+ headUpdater = AtomicReferenceFieldUpdater.newUpdater
+ (TransferStack.class, SNode.class, "head");
+
+ boolean casHead(SNode h, SNode nh) {
+ return h == head && headUpdater.compareAndSet(this, h, nh);
+ }
+
+ /**
+ * Creates or resets fields of a node. Called only from transfer
+ * where the node to push on stack is lazily created and
+ * reused when possible to help reduce intervals between reads
+ * and CASes of head and to avoid surges of garbage when CASes
+ * to push nodes fail due to contention.
+ */
+ static SNode snode(SNode s, Object e, SNode next, int mode) {
+ if (s == null) s = new SNode(e);
+ s.mode = mode;
+ s.next = next;
+ return s;
+ }
+
+ /**
+ * Puts or takes an item.
+ */
+ Object transfer(Object e, boolean timed, long nanos) {
+ /*
+ * Basic algorithm is to loop trying one of three actions:
+ *
+ * 1. If apparently empty or already containing nodes of same
+ * mode, try to push node on stack and wait for a match,
+ * returning it, or null if cancelled.
+ *
+ * 2. If apparently containing node of complementary mode,
+ * try to push a fulfilling node on to stack, match
+ * with corresponding waiting node, pop both from
+ * stack, and return matched item. The matching or
+ * unlinking might not actually be necessary because of
+ * other threads performing action 3:
+ *
+ * 3. If top of stack already holds another fulfilling node,
+ * help it out by doing its match and/or pop
+ * operations, and then continue. The code for helping
+ * is essentially the same as for fulfilling, except
+ * that it doesn't return the item.
+ */
+
+ SNode s = null; // constructed/reused as needed
+ int mode = (e == null)? REQUEST : DATA;
+
+ for (;;) {
+ SNode h = head;
+ if (h == null || h.mode == mode) { // empty or same-mode
+ if (timed && nanos <= 0) { // can't wait
+ if (h != null && h.isCancelled())
+ casHead(h, h.next); // pop cancelled node
+ else
+ return null;
+ } else if (casHead(h, s = snode(s, e, h, mode))) {
+ SNode m = awaitFulfill(s, timed, nanos);
+ if (m == s) { // wait was cancelled
+ clean(s);
+ return null;
+ }
+ if ((h = head) != null && h.next == s)
+ casHead(h, s.next); // help s's fulfiller
+ return mode == REQUEST? m.item : s.item;
+ }
+ } else if (!isFulfilling(h.mode)) { // try to fulfill
+ if (h.isCancelled()) // already cancelled
+ casHead(h, h.next); // pop and retry
+ else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
+ for (;;) { // loop until matched or waiters disappear
+ SNode m = s.next; // m is s's match
+ if (m == null) { // all waiters are gone
+ casHead(s, null); // pop fulfill node
+ s = null; // use new node next time
+ break; // restart main loop
+ }
+ SNode mn = m.next;
+ if (m.tryMatch(s)) {
+ casHead(s, mn); // pop both s and m
+ return (mode == REQUEST)? m.item : s.item;
+ } else // lost match
+ s.casNext(m, mn); // help unlink
+ }
+ }
+ } else { // help a fulfiller
+ SNode m = h.next; // m is h's match
+ if (m == null) // waiter is gone
+ casHead(h, null); // pop fulfilling node
+ else {
+ SNode mn = m.next;
+ if (m.tryMatch(h)) // help match
+ casHead(h, mn); // pop both h and m
+ else // lost match
+ h.casNext(m, mn); // help unlink
+ }
+ }
+ }
+ }
+
+ /**
+ * Spins/blocks until node s is matched by a fulfill operation.
+ *
+ * @param s the waiting node
+ * @param timed true if timed wait
+ * @param nanos timeout value
+ * @return matched node, or s if cancelled
+ */
+ SNode awaitFulfill(SNode s, boolean timed, long nanos) {
+ /*
+ * When a node/thread is about to block, it sets its waiter
+ * field and then rechecks state at least one more time
+ * before actually parking, thus covering race vs
+ * fulfiller noticing that waiter is non-null so should be
+ * woken.
+ *
+ * When invoked by nodes that appear at the point of call
+ * to be at the head of the stack, calls to park are
+ * preceded by spins to avoid blocking when producers and
+ * consumers are arriving very close in time. This can
+ * happen enough to bother only on multiprocessors.
+ *
+ * The order of checks for returning out of main loop
+ * reflects fact that interrupts have precedence over
+ * normal returns, which have precedence over
+ * timeouts. (So, on timeout, one last check for match is
+ * done before giving up.) Except that calls from untimed
+ * SynchronousQueue.{poll/offer} don't check interrupts
+ * and don't wait at all, so are trapped in transfer
+ * method rather than calling awaitFulfill.
+ */
+ long lastTime = (timed)? System.nanoTime() : 0;
+ Thread w = Thread.currentThread();
+ SNode h = head;
+ int spins = (shouldSpin(s)?
+ (timed? maxTimedSpins : maxUntimedSpins) : 0);
+ for (;;) {
+ if (w.isInterrupted())
+ s.tryCancel();
+ SNode m = s.match;
+ if (m != null)
+ return m;
+ if (timed) {
+ long now = System.nanoTime();
+ nanos -= now - lastTime;
+ lastTime = now;
+ if (nanos <= 0) {
+ s.tryCancel();
+ continue;
+ }
+ }
+ if (spins > 0)
+ spins = shouldSpin(s)? (spins-1) : 0;
+ else if (s.waiter == null)
+ s.waiter = w; // establish waiter so can park next iter
+ else if (!timed)
+ LockSupport.park(this);
+ else if (nanos > spinForTimeoutThreshold)
+ LockSupport.parkNanos(this, nanos);
+ }
+ }
+
+ /**
+ * Returns true if node s is at head or there is an active
+ * fulfiller.
+ */
+ boolean shouldSpin(SNode s) {
+ SNode h = head;
+ return (h == s || h == null || isFulfilling(h.mode));
+ }
+
+ /**
+ * Unlinks s from the stack.
+ */
+ void clean(SNode s) {
+ s.item = null; // forget item
+ s.waiter = null; // forget thread
+
+ /*
+ * At worst we may need to traverse entire stack to unlink
+ * s. If there are multiple concurrent calls to clean, we
+ * might not see s if another thread has already removed
+ * it. But we can stop when we see any node known to
+ * follow s. We use s.next unless it too is cancelled, in
+ * which case we try the node one past. We don't check any
+ * further because we don't want to doubly traverse just to
+ * find sentinel.
+ */
+
+ SNode past = s.next;
+ if (past != null && past.isCancelled())
+ past = past.next;
+
+ // Absorb cancelled nodes at head
+ SNode p;
+ while ((p = head) != null && p != past && p.isCancelled())
+ casHead(p, p.next);
+
+ // Unsplice embedded nodes
+ while (p != null && p != past) {
+ SNode n = p.next;
+ if (n != null && n.isCancelled())
+ p.casNext(n, n.next);
+ else
+ p = n;
+ }
+ }
+ }
+
+ /** Dual Queue */
+ static final class TransferQueue extends Transferer {
+ /*
+ * This extends Scherer-Scott dual queue algorithm, differing,
+ * among other ways, by using modes within nodes rather than
+ * marked pointers. The algorithm is a little simpler than
+ * that for stacks because fulfillers do not need explicit
+ * nodes, and matching is done by CAS'ing QNode.item field
+ * from non-null to null (for put) or vice versa (for take).
+ */
+
+ /** Node class for TransferQueue. */
+ static final class QNode {
+ volatile QNode next; // next node in queue
+ volatile Object item; // CAS'ed to or from null
+ volatile Thread waiter; // to control park/unpark
+ final boolean isData;
+
+ QNode(Object item, boolean isData) {
+ this.item = item;
+ this.isData = isData;
+ }
+
+ static final AtomicReferenceFieldUpdater<QNode, QNode>
+ nextUpdater = AtomicReferenceFieldUpdater.newUpdater
+ (QNode.class, QNode.class, "next");
+
+ boolean casNext(QNode cmp, QNode val) {
+ return (next == cmp &&
+ nextUpdater.compareAndSet(this, cmp, val));
+ }
+
+ static final AtomicReferenceFieldUpdater<QNode, Object>
+ itemUpdater = AtomicReferenceFieldUpdater.newUpdater
+ (QNode.class, Object.class, "item");
+
+ boolean casItem(Object cmp, Object val) {
+ return (item == cmp &&
+ itemUpdater.compareAndSet(this, cmp, val));
+ }
+
+ /**
+ * Tries to cancel by CAS'ing ref to this as item.
+ */
+ void tryCancel(Object cmp) {
+ itemUpdater.compareAndSet(this, cmp, this);
+ }
+
+ boolean isCancelled() {
+ return item == this;
+ }
+
+ /**
+ * Returns true if this node is known to be off the queue
+ * because its next pointer has been forgotten due to
+ * an advanceHead operation.
+ */
+ boolean isOffList() {
+ return next == this;
+ }
+ }
+
+ /** Head of queue */
+ transient volatile QNode head;
+ /** Tail of queue */
+ transient volatile QNode tail;
+ /**
+ * Reference to a cancelled node that might not yet have been
+ * unlinked from queue because it was the last inserted node
+ * when it cancelled.
+ */
+ transient volatile QNode cleanMe;
+
+ TransferQueue() {
+ QNode h = new QNode(null, false); // initialize to dummy node.
+ head = h;
+ tail = h;
+ }
+
+ static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
+ headUpdater = AtomicReferenceFieldUpdater.newUpdater
+ (TransferQueue.class, QNode.class, "head");
+
+ /**
+ * Tries to cas nh as new head; if successful, unlink
+ * old head's next node to avoid garbage retention.
+ */
+ void advanceHead(QNode h, QNode nh) {
+ if (h == head && headUpdater.compareAndSet(this, h, nh))
+ h.next = h; // forget old next
+ }
+
+ static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
+ tailUpdater = AtomicReferenceFieldUpdater.newUpdater
+ (TransferQueue.class, QNode.class, "tail");
+
+ /**
+ * Tries to cas nt as new tail.
+ */
+ void advanceTail(QNode t, QNode nt) {
+ if (tail == t)
+ tailUpdater.compareAndSet(this, t, nt);
+ }
+
+ static final AtomicReferenceFieldUpdater<TransferQueue, QNode>
+ cleanMeUpdater = AtomicReferenceFieldUpdater.newUpdater
+ (TransferQueue.class, QNode.class, "cleanMe");
+
+ /**
+ * Tries to CAS cleanMe slot.
+ */
+ boolean casCleanMe(QNode cmp, QNode val) {
+ return (cleanMe == cmp &&
+ cleanMeUpdater.compareAndSet(this, cmp, val));
+ }
+
+ /**
+ * Puts or takes an item.
+ */
+ Object transfer(Object e, boolean timed, long nanos) {
+ /* Basic algorithm is to loop trying to take either of
+ * two actions:
+ *
+ * 1. If queue apparently empty or holding same-mode nodes,
+ * try to add node to queue of waiters, wait to be
+ * fulfilled (or cancelled) and return matching item.
+ *
+ * 2. If queue apparently contains waiting items, and this
+ * call is of complementary mode, try to fulfill by CAS'ing
+ * item field of waiting node and dequeuing it, and then
+ * returning matching item.
+ *
+ * In each case, along the way, check for and try to help
+ * advance head and tail on behalf of other stalled/slow
+ * threads.
+ *
+ * The loop starts off with a null check guarding against
+ * seeing uninitialized head or tail values. This never
+ * happens in current SynchronousQueue, but could if
+ * callers held non-volatile/final ref to the
+ * transferer. The check is here anyway because it places
+ * null checks at top of loop, which is usually faster
+ * than having them implicitly interspersed.
+ */
+
+ QNode s = null; // constructed/reused as needed
+ boolean isData = (e != null);
+
+ for (;;) {
+ QNode t = tail;
+ QNode h = head;
+ if (t == null || h == null) // saw uninitialized value
+ continue; // spin
+
+ if (h == t || t.isData == isData) { // empty or same-mode
+ QNode tn = t.next;
+ if (t != tail) // inconsistent read
+ continue;
+ if (tn != null) { // lagging tail
+ advanceTail(t, tn);
+ continue;
+ }
+ if (timed && nanos <= 0) // can't wait
+ return null;
+ if (s == null)
+ s = new QNode(e, isData);
+ if (!t.casNext(null, s)) // failed to link in
+ continue;
+
+ advanceTail(t, s); // swing tail and wait
+ Object x = awaitFulfill(s, e, timed, nanos);
+ if (x == s) { // wait was cancelled
+ clean(t, s);
+ return null;
+ }
+
+ if (!s.isOffList()) { // not already unlinked
+ advanceHead(t, s); // unlink if head
+ if (x != null) // and forget fields
+ s.item = s;
+ s.waiter = null;
+ }
+ return (x != null)? x : e;
+
+ } else { // complementary-mode
+ QNode m = h.next; // node to fulfill
+ if (t != tail || m == null || h != head)
+ continue; // inconsistent read
+
+ Object x = m.item;
+ if (isData == (x != null) || // m already fulfilled
+ x == m || // m cancelled
+ !m.casItem(x, e)) { // lost CAS
+ advanceHead(h, m); // dequeue and retry
+ continue;
+ }
+
+ advanceHead(h, m); // successfully fulfilled
+ LockSupport.unpark(m.waiter);
+ return (x != null)? x : e;
+ }
+ }
+ }
+
+ /**
+ * Spins/blocks until node s is fulfilled.
+ *
+ * @param s the waiting node
+ * @param e the comparison value for checking match
+ * @param timed true if timed wait
+ * @param nanos timeout value
+ * @return matched item, or s if cancelled
+ */
+ Object awaitFulfill(QNode s, Object e, boolean timed, long nanos) {
+ /* Same idea as TransferStack.awaitFulfill */
+ long lastTime = (timed)? System.nanoTime() : 0;
+ Thread w = Thread.currentThread();
+ int spins = ((head.next == s) ?
+ (timed? maxTimedSpins : maxUntimedSpins) : 0);
+ for (;;) {
+ if (w.isInterrupted())
+ s.tryCancel(e);
+ Object x = s.item;
+ if (x != e)
+ return x;
+ if (timed) {
+ long now = System.nanoTime();
+ nanos -= now - lastTime;
+ lastTime = now;
+ if (nanos <= 0) {
+ s.tryCancel(e);
+ continue;
+ }
+ }
+ if (spins > 0)
+ --spins;
+ else if (s.waiter == null)
+ s.waiter = w;
+ else if (!timed)
+ LockSupport.park(this);
+ else if (nanos > spinForTimeoutThreshold)
+ LockSupport.parkNanos(this, nanos);
+ }
+ }
+
+ /**
+ * Gets rid of cancelled node s with original predecessor pred.
+ */
+ void clean(QNode pred, QNode s) {
+ s.waiter = null; // forget thread
+ /*
+ * At any given time, exactly one node on list cannot be
+ * deleted -- the last inserted node. To accommodate this,
+ * if we cannot delete s, we save its predecessor as
+ * "cleanMe", deleting the previously saved version
+ * first. At least one of node s or the node previously
+ * saved can always be deleted, so this always terminates.
+ */
+ while (pred.next == s) { // Return early if already unlinked
+ QNode h = head;
+ QNode hn = h.next; // Absorb cancelled first node as head
+ if (hn != null && hn.isCancelled()) {
+ advanceHead(h, hn);
+ continue;
+ }
+ QNode t = tail; // Ensure consistent read for tail
+ if (t == h)
+ return;
+ QNode tn = t.next;
+ if (t != tail)
+ continue;
+ if (tn != null) {
+ advanceTail(t, tn);
+ continue;
+ }
+ if (s != t) { // If not tail, try to unsplice
+ QNode sn = s.next;
+ if (sn == s || pred.casNext(s, sn))
+ return;
+ }
+ QNode dp = cleanMe;
+ if (dp != null) { // Try unlinking previous cancelled node
+ QNode d = dp.next;
+ QNode dn;
+ if (d == null || // d is gone or
+ d == dp || // d is off list or
+ !d.isCancelled() || // d not cancelled or
+ (d != t && // d not tail and
+ (dn = d.next) != null && // has successor
+ dn != d && // that is on list
+ dp.casNext(d, dn))) // d unspliced
+ casCleanMe(dp, null);
+ if (dp == pred)
+ return; // s is already saved node
+ } else if (casCleanMe(null, pred))
+ return; // Postpone cleaning s
+ }
+ }
+ }
+
+ /**
+ * The transferer. Set only in constructor, but cannot be declared
+ * as final without further complicating serialization. Since
+ * this is accessed only at most once per public method, there
+ * isn't a noticeable performance penalty for using volatile
+ * instead of final here.
+ */
+ private transient volatile Transferer transferer;
+
+ /**
+ * Creates a <tt>SynchronousQueue</tt> with nonfair access policy.
+ */
+ public SynchronousQueue() {
+ this(false);
+ }
+
+ /**
+ * Creates a <tt>SynchronousQueue</tt> with the specified fairness policy.
+ *
+ * @param fair if true, waiting threads contend in FIFO order for
+ * access; otherwise the order is unspecified.
+ */
+ public SynchronousQueue(boolean fair) {
+ transferer = (fair)? new TransferQueue() : new TransferStack();
+ }
+
+ /**
+ * Adds the specified element to this queue, waiting if necessary for
+ * another thread to receive it.
+ *
+ * @throws InterruptedException {@inheritDoc}
+ * @throws NullPointerException {@inheritDoc}
+ */
+ public void put(E o) throws InterruptedException {
+ if (o == null) throw new NullPointerException();
+ if (transferer.transfer(o, false, 0) == null) {
+ Thread.interrupted();
+ throw new InterruptedException();
+ }
+ }
+
+ /**
+ * Inserts the specified element into this queue, waiting if necessary
+ * up to the specified wait time for another thread to receive it.
+ *
+ * @return <tt>true</tt> if successful, or <tt>false</tt> if the
+ * specified waiting time elapses before a consumer appears.
+ * @throws InterruptedException {@inheritDoc}
+ * @throws NullPointerException {@inheritDoc}
+ */
+ public boolean offer(E o, long timeout, TimeUnit unit)
+ throws InterruptedException {
+ if (o == null) throw new NullPointerException();
+ if (transferer.transfer(o, true, unit.toNanos(timeout)) != null)
+ return true;
+ if (!Thread.interrupted())
+ return false;
+ throw new InterruptedException();
+ }
+
+ /**
+ * Inserts the specified element into this queue, if another thread is
+ * waiting to receive it.
+ *
+ * @param e the element to add
+ * @return <tt>true</tt> if the element was added to this queue, else
+ * <tt>false</tt>
+ * @throws NullPointerException if the specified element is null
+ */
+ public boolean offer(E e) {
+ if (e == null) throw new NullPointerException();
+ return transferer.transfer(e, true, 0) != null;
+ }
+
+ /**
+ * Retrieves and removes the head of this queue, waiting if necessary
+ * for another thread to insert it.
+ *
+ * @return the head of this queue
+ * @throws InterruptedException {@inheritDoc}
+ */
+ public E take() throws InterruptedException {
+ Object e = transferer.transfer(null, false, 0);
+ if (e != null)
+ return (E)e;
+ Thread.interrupted();
+ throw new InterruptedException();
+ }
+
+ /**
+ * Retrieves and removes the head of this queue, waiting
+ * if necessary up to the specified wait time, for another thread
+ * to insert it.
+ *
+ * @return the head of this queue, or <tt>null</tt> if the
+ * specified waiting time elapses before an element is present.
+ * @throws InterruptedException {@inheritDoc}
+ */
+ public E poll(long timeout, TimeUnit unit) throws InterruptedException {
+ Object e = transferer.transfer(null, true, unit.toNanos(timeout));
+ if (e != null || !Thread.interrupted())
+ return (E)e;
+ throw new InterruptedException();
+ }
+
+ /**
+ * Retrieves and removes the head of this queue, if another thread
+ * is currently making an element available.
+ *
+ * @return the head of this queue, or <tt>null</tt> if no
+ * element is available.
+ */
+ public E poll() {
+ return (E)transferer.transfer(null, true, 0);
+ }
+
+ /**
+ * Always returns <tt>true</tt>.
+ * A <tt>SynchronousQueue</tt> has no internal capacity.
+ *
+ * @return <tt>true</tt>
+ */
+ public boolean isEmpty() {
+ return true;
+ }
+
+ /**
+ * Always returns zero.
+ * A <tt>SynchronousQueue</tt> has no internal capacity.
+ *
+ * @return zero.
+ */
+ public int size() {
+ return 0;
+ }
+
+ /**
+ * Always returns zero.
+ * A <tt>SynchronousQueue</tt> has no internal capacity.
+ *
+ * @return zero.
+ */
+ public int remainingCapacity() {
+ return 0;
+ }
+
+ /**
+ * Does nothing.
+ * A <tt>SynchronousQueue</tt> has no internal capacity.
+ */
+ public void clear() {
+ }
+
+ /**
+ * Always returns <tt>false</tt>.
+ * A <tt>SynchronousQueue</tt> has no internal capacity.
+ *
+ * @param o the element
+ * @return <tt>false</tt>
+ */
+ public boolean contains(Object o) {
+ return false;
+ }
+
+ /**
+ * Always returns <tt>false</tt>.
+ * A <tt>SynchronousQueue</tt> has no internal capacity.
+ *
+ * @param o the element to remove
+ * @return <tt>false</tt>
+ */
+ public boolean remove(Object o) {
+ return false;
+ }
+
+ /**
+ * Returns <tt>false</tt> unless the given collection is empty.
+ * A <tt>SynchronousQueue</tt> has no internal capacity.
+ *
+ * @param c the collection
+ * @return <tt>false</tt> unless given collection is empty
+ */
+ public boolean containsAll(Collection<?> c) {
+ return c.isEmpty();
+ }
+
+ /**
+ * Always returns <tt>false</tt>.
+ * A <tt>SynchronousQueue</tt> has no internal capacity.
+ *
+ * @param c the collection
+ * @return <tt>false</tt>
+ */
+ public boolean removeAll(Collection<?> c) {
+ return false;
+ }
+
+ /**
+ * Always returns <tt>false</tt>.
+ * A <tt>SynchronousQueue</tt> has no internal capacity.
+ *
+ * @param c the collection
+ * @return <tt>false</tt>
+ */
+ public boolean retainAll(Collection<?> c) {
+ return false;
+ }
+
+ /**
+ * Always returns <tt>null</tt>.
+ * A <tt>SynchronousQueue</tt> does not return elements
+ * unless actively waited on.
+ *
+ * @return <tt>null</tt>
+ */
+ public E peek() {
+ return null;
+ }
+
+ static class EmptyIterator<E> implements Iterator<E> {
+ public boolean hasNext() {
+ return false;
+ }
+ public E next() {
+ throw new NoSuchElementException();
+ }
+ public void remove() {
+ throw new IllegalStateException();
+ }
+ }
+
+ /**
+ * Returns an empty iterator in which <tt>hasNext</tt> always returns
+ * <tt>false</tt>.
+ *
+ * @return an empty iterator
+ */
+ public Iterator<E> iterator() {
+ return new EmptyIterator<E>();
+ }
+
+ /**
+ * Returns a zero-length array.
+ * @return a zero-length array
+ */
+ public Object[] toArray() {
+ return new Object[0];
+ }
+
+ /**
+ * Sets the zeroeth element of the specified array to <tt>null</tt>
+ * (if the array has non-zero length) and returns it.
+ *
+ * @param a the array
+ * @return the specified array
+ * @throws NullPointerException if the specified array is null
+ */
+ public <T> T[] toArray(T[] a) {
+ if (a.length > 0)
+ a[0] = null;
+ return a;
+ }
+
+ /**
+ * @throws UnsupportedOperationException {@inheritDoc}
+ * @throws ClassCastException {@inheritDoc}
+ * @throws NullPointerException {@inheritDoc}
+ * @throws IllegalArgumentException {@inheritDoc}
+ */
+ public int drainTo(Collection<? super E> c) {
+ if (c == null)
+ throw new NullPointerException();
+ if (c == this)
+ throw new IllegalArgumentException();
+ int n = 0;
+ E e;
+ while ( (e = poll()) != null) {
+ c.add(e);
+ ++n;
+ }
+ return n;
+ }
+
+ /**
+ * @throws UnsupportedOperationException {@inheritDoc}
+ * @throws ClassCastException {@inheritDoc}
+ * @throws NullPointerException {@inheritDoc}
+ * @throws IllegalArgumentException {@inheritDoc}
+ */
+ public int drainTo(Collection<? super E> c, int maxElements) {
+ if (c == null)
+ throw new NullPointerException();
+ if (c == this)
+ throw new IllegalArgumentException();
+ int n = 0;
+ E e;
+ while (n < maxElements && (e = poll()) != null) {
+ c.add(e);
+ ++n;
+ }
+ return n;
+ }
+
+ /*
+ * To cope with serialization strategy in the 1.5 version of
+ * SynchronousQueue, we declare some unused classes and fields
+ * that exist solely to enable serializability across versions.
+ * These fields are never used, so are initialized only if this
+ * object is ever serialized or deserialized.
+ */
+
+ static class WaitQueue implements java.io.Serializable { }
+ static class LifoWaitQueue extends WaitQueue {
+ private static final long serialVersionUID = -3633113410248163686L;
+ }
+ static class FifoWaitQueue extends WaitQueue {
+ private static final long serialVersionUID = -3623113410248163686L;
+ }
+ private ReentrantLock qlock;
+ private WaitQueue waitingProducers;
+ private WaitQueue waitingConsumers;
+
+ /**
+ * Save the state to a stream (that is, serialize it).
+ *
+ * @param s the stream
+ */
+ private void writeObject(java.io.ObjectOutputStream s)
+ throws java.io.IOException {
+ boolean fair = transferer instanceof TransferQueue;
+ if (fair) {
+ qlock = new ReentrantLock(true);
+ waitingProducers = new FifoWaitQueue();
+ waitingConsumers = new FifoWaitQueue();
+ }
+ else {
+ qlock = new ReentrantLock();
+ waitingProducers = new LifoWaitQueue();
+ waitingConsumers = new LifoWaitQueue();
+ }
+ s.defaultWriteObject();
+ }
+
+ private void readObject(final java.io.ObjectInputStream s)
+ throws java.io.IOException, ClassNotFoundException {
+ s.defaultReadObject();
+ if (waitingProducers instanceof FifoWaitQueue)
+ transferer = new TransferQueue();
+ else
+ transferer = new TransferStack();
+ }
+
+}