aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/FutureTask.java
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/FutureTask.java')
-rw-r--r--gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/FutureTask.java325
1 files changed, 325 insertions, 0 deletions
diff --git a/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/FutureTask.java b/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/FutureTask.java
new file mode 100644
index 000000000..bbe49d7ae
--- /dev/null
+++ b/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/FutureTask.java
@@ -0,0 +1,325 @@
+/*
+ * Written by Doug Lea with assistance from members of JCP JSR-166
+ * Expert Group and released to the public domain, as explained at
+ * http://creativecommons.org/licenses/publicdomain
+ */
+
+package java.util.concurrent;
+import java.util.concurrent.locks.*;
+
+/**
+ * A cancellable asynchronous computation. This class provides a base
+ * implementation of {@link Future}, with methods to start and cancel
+ * a computation, query to see if the computation is complete, and
+ * retrieve the result of the computation. The result can only be
+ * retrieved when the computation has completed; the <tt>get</tt>
+ * method will block if the computation has not yet completed. Once
+ * the computation has completed, the computation cannot be restarted
+ * or cancelled.
+ *
+ * <p>A <tt>FutureTask</tt> can be used to wrap a {@link Callable} or
+ * {@link java.lang.Runnable} object. Because <tt>FutureTask</tt>
+ * implements <tt>Runnable</tt>, a <tt>FutureTask</tt> can be
+ * submitted to an {@link Executor} for execution.
+ *
+ * <p>In addition to serving as a standalone class, this class provides
+ * <tt>protected</tt> functionality that may be useful when creating
+ * customized task classes.
+ *
+ * @since 1.5
+ * @author Doug Lea
+ * @param <V> The result type returned by this FutureTask's <tt>get</tt> method
+ */
+public class FutureTask<V> implements RunnableFuture<V> {
+ /** Synchronization control for FutureTask */
+ private final Sync sync;
+
+ /**
+ * Creates a <tt>FutureTask</tt> that will upon running, execute the
+ * given <tt>Callable</tt>.
+ *
+ * @param callable the callable task
+ * @throws NullPointerException if callable is null
+ */
+ public FutureTask(Callable<V> callable) {
+ if (callable == null)
+ throw new NullPointerException();
+ sync = new Sync(callable);
+ }
+
+ /**
+ * Creates a <tt>FutureTask</tt> that will upon running, execute the
+ * given <tt>Runnable</tt>, and arrange that <tt>get</tt> will return the
+ * given result on successful completion.
+ *
+ * @param runnable the runnable task
+ * @param result the result to return on successful completion. If
+ * you don't need a particular result, consider using
+ * constructions of the form:
+ * <tt>Future&lt;?&gt; f = new FutureTask&lt;Object&gt;(runnable, null)</tt>
+ * @throws NullPointerException if runnable is null
+ */
+ public FutureTask(Runnable runnable, V result) {
+ sync = new Sync(Executors.callable(runnable, result));
+ }
+
+ public boolean isCancelled() {
+ return sync.innerIsCancelled();
+ }
+
+ public boolean isDone() {
+ return sync.innerIsDone();
+ }
+
+ public boolean cancel(boolean mayInterruptIfRunning) {
+ return sync.innerCancel(mayInterruptIfRunning);
+ }
+
+ /**
+ * @throws CancellationException {@inheritDoc}
+ */
+ public V get() throws InterruptedException, ExecutionException {
+ return sync.innerGet();
+ }
+
+ /**
+ * @throws CancellationException {@inheritDoc}
+ */
+ public V get(long timeout, TimeUnit unit)
+ throws InterruptedException, ExecutionException, TimeoutException {
+ return sync.innerGet(unit.toNanos(timeout));
+ }
+
+ /**
+ * Protected method invoked when this task transitions to state
+ * <tt>isDone</tt> (whether normally or via cancellation). The
+ * default implementation does nothing. Subclasses may override
+ * this method to invoke completion callbacks or perform
+ * bookkeeping. Note that you can query status inside the
+ * implementation of this method to determine whether this task
+ * has been cancelled.
+ */
+ protected void done() { }
+
+ /**
+ * Sets the result of this Future to the given value unless
+ * this future has already been set or has been cancelled.
+ * This method is invoked internally by the <tt>run</tt> method
+ * upon successful completion of the computation.
+ * @param v the value
+ */
+ protected void set(V v) {
+ sync.innerSet(v);
+ }
+
+ /**
+ * Causes this future to report an <tt>ExecutionException</tt>
+ * with the given throwable as its cause, unless this Future has
+ * already been set or has been cancelled.
+ * This method is invoked internally by the <tt>run</tt> method
+ * upon failure of the computation.
+ * @param t the cause of failure
+ */
+ protected void setException(Throwable t) {
+ sync.innerSetException(t);
+ }
+
+ // The following (duplicated) doc comment can be removed once
+ //
+ // 6270645: Javadoc comments should be inherited from most derived
+ // superinterface or superclass
+ // is fixed.
+ /**
+ * Sets this Future to the result of its computation
+ * unless it has been cancelled.
+ */
+ public void run() {
+ sync.innerRun();
+ }
+
+ /**
+ * Executes the computation without setting its result, and then
+ * resets this Future to initial state, failing to do so if the
+ * computation encounters an exception or is cancelled. This is
+ * designed for use with tasks that intrinsically execute more
+ * than once.
+ * @return true if successfully run and reset
+ */
+ protected boolean runAndReset() {
+ return sync.innerRunAndReset();
+ }
+
+ /**
+ * Synchronization control for FutureTask. Note that this must be
+ * a non-static inner class in order to invoke the protected
+ * <tt>done</tt> method. For clarity, all inner class support
+ * methods are same as outer, prefixed with "inner".
+ *
+ * Uses AQS sync state to represent run status
+ */
+ private final class Sync extends AbstractQueuedSynchronizer {
+ private static final long serialVersionUID = -7828117401763700385L;
+
+ /** State value representing that task is running */
+ private static final int RUNNING = 1;
+ /** State value representing that task ran */
+ private static final int RAN = 2;
+ /** State value representing that task was cancelled */
+ private static final int CANCELLED = 4;
+
+ /** The underlying callable */
+ private final Callable<V> callable;
+ /** The result to return from get() */
+ private V result;
+ /** The exception to throw from get() */
+ private Throwable exception;
+
+ /**
+ * The thread running task. When nulled after set/cancel, this
+ * indicates that the results are accessible. Must be
+ * volatile, to ensure visibility upon completion.
+ */
+ private volatile Thread runner;
+
+ Sync(Callable<V> callable) {
+ this.callable = callable;
+ }
+
+ private boolean ranOrCancelled(int state) {
+ return (state & (RAN | CANCELLED)) != 0;
+ }
+
+ /**
+ * Implements AQS base acquire to succeed if ran or cancelled
+ */
+ protected int tryAcquireShared(int ignore) {
+ return innerIsDone()? 1 : -1;
+ }
+
+ /**
+ * Implements AQS base release to always signal after setting
+ * final done status by nulling runner thread.
+ */
+ protected boolean tryReleaseShared(int ignore) {
+ runner = null;
+ return true;
+ }
+
+ boolean innerIsCancelled() {
+ return getState() == CANCELLED;
+ }
+
+ boolean innerIsDone() {
+ return ranOrCancelled(getState()) && runner == null;
+ }
+
+ V innerGet() throws InterruptedException, ExecutionException {
+ acquireSharedInterruptibly(0);
+ if (getState() == CANCELLED)
+ throw new CancellationException();
+ if (exception != null)
+ throw new ExecutionException(exception);
+ return result;
+ }
+
+ V innerGet(long nanosTimeout) throws InterruptedException, ExecutionException, TimeoutException {
+ if (!tryAcquireSharedNanos(0, nanosTimeout))
+ throw new TimeoutException();
+ if (getState() == CANCELLED)
+ throw new CancellationException();
+ if (exception != null)
+ throw new ExecutionException(exception);
+ return result;
+ }
+
+ void innerSet(V v) {
+ for (;;) {
+ int s = getState();
+ if (s == RAN)
+ return;
+ if (s == CANCELLED) {
+ // aggressively release to set runner to null,
+ // in case we are racing with a cancel request
+ // that will try to interrupt runner
+ releaseShared(0);
+ return;
+ }
+ if (compareAndSetState(s, RAN)) {
+ result = v;
+ releaseShared(0);
+ done();
+ return;
+ }
+ }
+ }
+
+ void innerSetException(Throwable t) {
+ for (;;) {
+ int s = getState();
+ if (s == RAN)
+ return;
+ if (s == CANCELLED) {
+ // aggressively release to set runner to null,
+ // in case we are racing with a cancel request
+ // that will try to interrupt runner
+ releaseShared(0);
+ return;
+ }
+ if (compareAndSetState(s, RAN)) {
+ exception = t;
+ result = null;
+ releaseShared(0);
+ done();
+ return;
+ }
+ }
+ }
+
+ boolean innerCancel(boolean mayInterruptIfRunning) {
+ for (;;) {
+ int s = getState();
+ if (ranOrCancelled(s))
+ return false;
+ if (compareAndSetState(s, CANCELLED))
+ break;
+ }
+ if (mayInterruptIfRunning) {
+ Thread r = runner;
+ if (r != null)
+ r.interrupt();
+ }
+ releaseShared(0);
+ done();
+ return true;
+ }
+
+ void innerRun() {
+ if (!compareAndSetState(0, RUNNING))
+ return;
+ try {
+ runner = Thread.currentThread();
+ if (getState() == RUNNING) // recheck after setting thread
+ innerSet(callable.call());
+ else
+ releaseShared(0); // cancel
+ } catch (Throwable ex) {
+ innerSetException(ex);
+ }
+ }
+
+ boolean innerRunAndReset() {
+ if (!compareAndSetState(0, RUNNING))
+ return false;
+ try {
+ runner = Thread.currentThread();
+ if (getState() == RUNNING)
+ callable.call(); // don't set result
+ runner = null;
+ return compareAndSetState(RUNNING, 0);
+ } catch (Throwable ex) {
+ innerSetException(ex);
+ return false;
+ }
+ }
+ }
+}