aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/CountDownLatch.java
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/CountDownLatch.java')
-rw-r--r--gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/CountDownLatch.java290
1 files changed, 290 insertions, 0 deletions
diff --git a/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/CountDownLatch.java b/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/CountDownLatch.java
new file mode 100644
index 000000000..016c1a7a5
--- /dev/null
+++ b/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/CountDownLatch.java
@@ -0,0 +1,290 @@
+/*
+ * Written by Doug Lea with assistance from members of JCP JSR-166
+ * Expert Group and released to the public domain, as explained at
+ * http://creativecommons.org/licenses/publicdomain
+ */
+
+package java.util.concurrent;
+import java.util.concurrent.locks.*;
+import java.util.concurrent.atomic.*;
+
+/**
+ * A synchronization aid that allows one or more threads to wait until
+ * a set of operations being performed in other threads completes.
+ *
+ * <p>A {@code CountDownLatch} is initialized with a given <em>count</em>.
+ * The {@link #await await} methods block until the current count reaches
+ * zero due to invocations of the {@link #countDown} method, after which
+ * all waiting threads are released and any subsequent invocations of
+ * {@link #await await} return immediately. This is a one-shot phenomenon
+ * -- the count cannot be reset. If you need a version that resets the
+ * count, consider using a {@link CyclicBarrier}.
+ *
+ * <p>A {@code CountDownLatch} is a versatile synchronization tool
+ * and can be used for a number of purposes. A
+ * {@code CountDownLatch} initialized with a count of one serves as a
+ * simple on/off latch, or gate: all threads invoking {@link #await await}
+ * wait at the gate until it is opened by a thread invoking {@link
+ * #countDown}. A {@code CountDownLatch} initialized to <em>N</em>
+ * can be used to make one thread wait until <em>N</em> threads have
+ * completed some action, or some action has been completed N times.
+ *
+ * <p>A useful property of a {@code CountDownLatch} is that it
+ * doesn't require that threads calling {@code countDown} wait for
+ * the count to reach zero before proceeding, it simply prevents any
+ * thread from proceeding past an {@link #await await} until all
+ * threads could pass.
+ *
+ * <p><b>Sample usage:</b> Here is a pair of classes in which a group
+ * of worker threads use two countdown latches:
+ * <ul>
+ * <li>The first is a start signal that prevents any worker from proceeding
+ * until the driver is ready for them to proceed;
+ * <li>The second is a completion signal that allows the driver to wait
+ * until all workers have completed.
+ * </ul>
+ *
+ * <pre>
+ * class Driver { // ...
+ * void main() throws InterruptedException {
+ * CountDownLatch startSignal = new CountDownLatch(1);
+ * CountDownLatch doneSignal = new CountDownLatch(N);
+ *
+ * for (int i = 0; i < N; ++i) // create and start threads
+ * new Thread(new Worker(startSignal, doneSignal)).start();
+ *
+ * doSomethingElse(); // don't let run yet
+ * startSignal.countDown(); // let all threads proceed
+ * doSomethingElse();
+ * doneSignal.await(); // wait for all to finish
+ * }
+ * }
+ *
+ * class Worker implements Runnable {
+ * private final CountDownLatch startSignal;
+ * private final CountDownLatch doneSignal;
+ * Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {
+ * this.startSignal = startSignal;
+ * this.doneSignal = doneSignal;
+ * }
+ * public void run() {
+ * try {
+ * startSignal.await();
+ * doWork();
+ * doneSignal.countDown();
+ * } catch (InterruptedException ex) {} // return;
+ * }
+ *
+ * void doWork() { ... }
+ * }
+ *
+ * </pre>
+ *
+ * <p>Another typical usage would be to divide a problem into N parts,
+ * describe each part with a Runnable that executes that portion and
+ * counts down on the latch, and queue all the Runnables to an
+ * Executor. When all sub-parts are complete, the coordinating thread
+ * will be able to pass through await. (When threads must repeatedly
+ * count down in this way, instead use a {@link CyclicBarrier}.)
+ *
+ * <pre>
+ * class Driver2 { // ...
+ * void main() throws InterruptedException {
+ * CountDownLatch doneSignal = new CountDownLatch(N);
+ * Executor e = ...
+ *
+ * for (int i = 0; i < N; ++i) // create and start threads
+ * e.execute(new WorkerRunnable(doneSignal, i));
+ *
+ * doneSignal.await(); // wait for all to finish
+ * }
+ * }
+ *
+ * class WorkerRunnable implements Runnable {
+ * private final CountDownLatch doneSignal;
+ * private final int i;
+ * WorkerRunnable(CountDownLatch doneSignal, int i) {
+ * this.doneSignal = doneSignal;
+ * this.i = i;
+ * }
+ * public void run() {
+ * try {
+ * doWork(i);
+ * doneSignal.countDown();
+ * } catch (InterruptedException ex) {} // return;
+ * }
+ *
+ * void doWork() { ... }
+ * }
+ *
+ * </pre>
+ *
+ * <p>Memory consistency effects: Actions in a thread prior to calling
+ * {@code countDown()}
+ * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
+ * actions following a successful return from a corresponding
+ * {@code await()} in another thread.
+ *
+ * @since 1.5
+ * @author Doug Lea
+ */
+public class CountDownLatch {
+ /**
+ * Synchronization control For CountDownLatch.
+ * Uses AQS state to represent count.
+ */
+ private static final class Sync extends AbstractQueuedSynchronizer {
+ private static final long serialVersionUID = 4982264981922014374L;
+
+ Sync(int count) {
+ setState(count);
+ }
+
+ int getCount() {
+ return getState();
+ }
+
+ public int tryAcquireShared(int acquires) {
+ return getState() == 0? 1 : -1;
+ }
+
+ public boolean tryReleaseShared(int releases) {
+ // Decrement count; signal when transition to zero
+ for (;;) {
+ int c = getState();
+ if (c == 0)
+ return false;
+ int nextc = c-1;
+ if (compareAndSetState(c, nextc))
+ return nextc == 0;
+ }
+ }
+ }
+
+ private final Sync sync;
+
+ /**
+ * Constructs a {@code CountDownLatch} initialized with the given count.
+ *
+ * @param count the number of times {@link #countDown} must be invoked
+ * before threads can pass through {@link #await}
+ * @throws IllegalArgumentException if {@code count} is negative
+ */
+ public CountDownLatch(int count) {
+ if (count < 0) throw new IllegalArgumentException("count < 0");
+ this.sync = new Sync(count);
+ }
+
+ /**
+ * Causes the current thread to wait until the latch has counted down to
+ * zero, unless the thread is {@linkplain Thread#interrupt interrupted}.
+ *
+ * <p>If the current count is zero then this method returns immediately.
+ *
+ * <p>If the current count is greater than zero then the current
+ * thread becomes disabled for thread scheduling purposes and lies
+ * dormant until one of two things happen:
+ * <ul>
+ * <li>The count reaches zero due to invocations of the
+ * {@link #countDown} method; or
+ * <li>Some other thread {@linkplain Thread#interrupt interrupts}
+ * the current thread.
+ * </ul>
+ *
+ * <p>If the current thread:
+ * <ul>
+ * <li>has its interrupted status set on entry to this method; or
+ * <li>is {@linkplain Thread#interrupt interrupted} while waiting,
+ * </ul>
+ * then {@link InterruptedException} is thrown and the current thread's
+ * interrupted status is cleared.
+ *
+ * @throws InterruptedException if the current thread is interrupted
+ * while waiting
+ */
+ public void await() throws InterruptedException {
+ sync.acquireSharedInterruptibly(1);
+ }
+
+ /**
+ * Causes the current thread to wait until the latch has counted down to
+ * zero, unless the thread is {@linkplain Thread#interrupt interrupted},
+ * or the specified waiting time elapses.
+ *
+ * <p>If the current count is zero then this method returns immediately
+ * with the value {@code true}.
+ *
+ * <p>If the current count is greater than zero then the current
+ * thread becomes disabled for thread scheduling purposes and lies
+ * dormant until one of three things happen:
+ * <ul>
+ * <li>The count reaches zero due to invocations of the
+ * {@link #countDown} method; or
+ * <li>Some other thread {@linkplain Thread#interrupt interrupts}
+ * the current thread; or
+ * <li>The specified waiting time elapses.
+ * </ul>
+ *
+ * <p>If the count reaches zero then the method returns with the
+ * value {@code true}.
+ *
+ * <p>If the current thread:
+ * <ul>
+ * <li>has its interrupted status set on entry to this method; or
+ * <li>is {@linkplain Thread#interrupt interrupted} while waiting,
+ * </ul>
+ * then {@link InterruptedException} is thrown and the current thread's
+ * interrupted status is cleared.
+ *
+ * <p>If the specified waiting time elapses then the value {@code false}
+ * is returned. If the time is less than or equal to zero, the method
+ * will not wait at all.
+ *
+ * @param timeout the maximum time to wait
+ * @param unit the time unit of the {@code timeout} argument
+ * @return {@code true} if the count reached zero and {@code false}
+ * if the waiting time elapsed before the count reached zero
+ * @throws InterruptedException if the current thread is interrupted
+ * while waiting
+ */
+ public boolean await(long timeout, TimeUnit unit)
+ throws InterruptedException {
+ return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
+ }
+
+ /**
+ * Decrements the count of the latch, releasing all waiting threads if
+ * the count reaches zero.
+ *
+ * <p>If the current count is greater than zero then it is decremented.
+ * If the new count is zero then all waiting threads are re-enabled for
+ * thread scheduling purposes.
+ *
+ * <p>If the current count equals zero then nothing happens.
+ */
+ public void countDown() {
+ sync.releaseShared(1);
+ }
+
+ /**
+ * Returns the current count.
+ *
+ * <p>This method is typically used for debugging and testing purposes.
+ *
+ * @return the current count
+ */
+ public long getCount() {
+ return sync.getCount();
+ }
+
+ /**
+ * Returns a string identifying this latch, as well as its state.
+ * The state, in brackets, includes the String {@code "Count ="}
+ * followed by the current count.
+ *
+ * @return a string identifying this latch, as well as its state
+ */
+ public String toString() {
+ return super.toString() + "[Count = " + sync.getCount() + "]";
+ }
+}