aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/BlockingQueue.java
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/BlockingQueue.java')
-rw-r--r--gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/BlockingQueue.java344
1 files changed, 344 insertions, 0 deletions
diff --git a/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/BlockingQueue.java b/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/BlockingQueue.java
new file mode 100644
index 000000000..b47cc9842
--- /dev/null
+++ b/gcc-4.4.3/libjava/classpath/external/jsr166/java/util/concurrent/BlockingQueue.java
@@ -0,0 +1,344 @@
+/*
+ * Written by Doug Lea with assistance from members of JCP JSR-166
+ * Expert Group and released to the public domain, as explained at
+ * http://creativecommons.org/licenses/publicdomain
+ */
+
+package java.util.concurrent;
+
+import java.util.Collection;
+import java.util.Queue;
+
+/**
+ * A {@link java.util.Queue} that additionally supports operations
+ * that wait for the queue to become non-empty when retrieving an
+ * element, and wait for space to become available in the queue when
+ * storing an element.
+ *
+ * <p><tt>BlockingQueue</tt> methods come in four forms, with different ways
+ * of handling operations that cannot be satisfied immediately, but may be
+ * satisfied at some point in the future:
+ * one throws an exception, the second returns a special value (either
+ * <tt>null</tt> or <tt>false</tt>, depending on the operation), the third
+ * blocks the current thread indefinitely until the operation can succeed,
+ * and the fourth blocks for only a given maximum time limit before giving
+ * up. These methods are summarized in the following table:
+ *
+ * <p>
+ * <table BORDER CELLPADDING=3 CELLSPACING=1>
+ * <tr>
+ * <td></td>
+ * <td ALIGN=CENTER><em>Throws exception</em></td>
+ * <td ALIGN=CENTER><em>Special value</em></td>
+ * <td ALIGN=CENTER><em>Blocks</em></td>
+ * <td ALIGN=CENTER><em>Times out</em></td>
+ * </tr>
+ * <tr>
+ * <td><b>Insert</b></td>
+ * <td>{@link #add add(e)}</td>
+ * <td>{@link #offer offer(e)}</td>
+ * <td>{@link #put put(e)}</td>
+ * <td>{@link #offer(Object, long, TimeUnit) offer(e, time, unit)}</td>
+ * </tr>
+ * <tr>
+ * <td><b>Remove</b></td>
+ * <td>{@link #remove remove()}</td>
+ * <td>{@link #poll poll()}</td>
+ * <td>{@link #take take()}</td>
+ * <td>{@link #poll(long, TimeUnit) poll(time, unit)}</td>
+ * </tr>
+ * <tr>
+ * <td><b>Examine</b></td>
+ * <td>{@link #element element()}</td>
+ * <td>{@link #peek peek()}</td>
+ * <td><em>not applicable</em></td>
+ * <td><em>not applicable</em></td>
+ * </tr>
+ * </table>
+ *
+ * <p>A <tt>BlockingQueue</tt> does not accept <tt>null</tt> elements.
+ * Implementations throw <tt>NullPointerException</tt> on attempts
+ * to <tt>add</tt>, <tt>put</tt> or <tt>offer</tt> a <tt>null</tt>. A
+ * <tt>null</tt> is used as a sentinel value to indicate failure of
+ * <tt>poll</tt> operations.
+ *
+ * <p>A <tt>BlockingQueue</tt> may be capacity bounded. At any given
+ * time it may have a <tt>remainingCapacity</tt> beyond which no
+ * additional elements can be <tt>put</tt> without blocking.
+ * A <tt>BlockingQueue</tt> without any intrinsic capacity constraints always
+ * reports a remaining capacity of <tt>Integer.MAX_VALUE</tt>.
+ *
+ * <p> <tt>BlockingQueue</tt> implementations are designed to be used
+ * primarily for producer-consumer queues, but additionally support
+ * the {@link java.util.Collection} interface. So, for example, it is
+ * possible to remove an arbitrary element from a queue using
+ * <tt>remove(x)</tt>. However, such operations are in general
+ * <em>not</em> performed very efficiently, and are intended for only
+ * occasional use, such as when a queued message is cancelled.
+ *
+ * <p> <tt>BlockingQueue</tt> implementations are thread-safe. All
+ * queuing methods achieve their effects atomically using internal
+ * locks or other forms of concurrency control. However, the
+ * <em>bulk</em> Collection operations <tt>addAll</tt>,
+ * <tt>containsAll</tt>, <tt>retainAll</tt> and <tt>removeAll</tt> are
+ * <em>not</em> necessarily performed atomically unless specified
+ * otherwise in an implementation. So it is possible, for example, for
+ * <tt>addAll(c)</tt> to fail (throwing an exception) after adding
+ * only some of the elements in <tt>c</tt>.
+ *
+ * <p>A <tt>BlockingQueue</tt> does <em>not</em> intrinsically support
+ * any kind of &quot;close&quot; or &quot;shutdown&quot; operation to
+ * indicate that no more items will be added. The needs and usage of
+ * such features tend to be implementation-dependent. For example, a
+ * common tactic is for producers to insert special
+ * <em>end-of-stream</em> or <em>poison</em> objects, that are
+ * interpreted accordingly when taken by consumers.
+ *
+ * <p>
+ * Usage example, based on a typical producer-consumer scenario.
+ * Note that a <tt>BlockingQueue</tt> can safely be used with multiple
+ * producers and multiple consumers.
+ * <pre>
+ * class Producer implements Runnable {
+ * private final BlockingQueue queue;
+ * Producer(BlockingQueue q) { queue = q; }
+ * public void run() {
+ * try {
+ * while (true) { queue.put(produce()); }
+ * } catch (InterruptedException ex) { ... handle ...}
+ * }
+ * Object produce() { ... }
+ * }
+ *
+ * class Consumer implements Runnable {
+ * private final BlockingQueue queue;
+ * Consumer(BlockingQueue q) { queue = q; }
+ * public void run() {
+ * try {
+ * while (true) { consume(queue.take()); }
+ * } catch (InterruptedException ex) { ... handle ...}
+ * }
+ * void consume(Object x) { ... }
+ * }
+ *
+ * class Setup {
+ * void main() {
+ * BlockingQueue q = new SomeQueueImplementation();
+ * Producer p = new Producer(q);
+ * Consumer c1 = new Consumer(q);
+ * Consumer c2 = new Consumer(q);
+ * new Thread(p).start();
+ * new Thread(c1).start();
+ * new Thread(c2).start();
+ * }
+ * }
+ * </pre>
+ *
+ * <p>Memory consistency effects: As with other concurrent
+ * collections, actions in a thread prior to placing an object into a
+ * {@code BlockingQueue}
+ * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
+ * actions subsequent to the access or removal of that element from
+ * the {@code BlockingQueue} in another thread.
+ *
+ * <p>This interface is a member of the
+ * <a href="{@docRoot}/../technotes/guides/collections/index.html">
+ * Java Collections Framework</a>.
+ *
+ * @since 1.5
+ * @author Doug Lea
+ * @param <E> the type of elements held in this collection
+ */
+public interface BlockingQueue<E> extends Queue<E> {
+ /**
+ * Inserts the specified element into this queue if it is possible to do
+ * so immediately without violating capacity restrictions, returning
+ * <tt>true</tt> upon success and throwing an
+ * <tt>IllegalStateException</tt> if no space is currently available.
+ * When using a capacity-restricted queue, it is generally preferable to
+ * use {@link #offer(Object) offer}.
+ *
+ * @param e the element to add
+ * @return <tt>true</tt> (as specified by {@link Collection#add})
+ * @throws IllegalStateException if the element cannot be added at this
+ * time due to capacity restrictions
+ * @throws ClassCastException if the class of the specified element
+ * prevents it from being added to this queue
+ * @throws NullPointerException if the specified element is null
+ * @throws IllegalArgumentException if some property of the specified
+ * element prevents it from being added to this queue
+ */
+ boolean add(E e);
+
+ /**
+ * Inserts the specified element into this queue if it is possible to do
+ * so immediately without violating capacity restrictions, returning
+ * <tt>true</tt> upon success and <tt>false</tt> if no space is currently
+ * available. When using a capacity-restricted queue, this method is
+ * generally preferable to {@link #add}, which can fail to insert an
+ * element only by throwing an exception.
+ *
+ * @param e the element to add
+ * @return <tt>true</tt> if the element was added to this queue, else
+ * <tt>false</tt>
+ * @throws ClassCastException if the class of the specified element
+ * prevents it from being added to this queue
+ * @throws NullPointerException if the specified element is null
+ * @throws IllegalArgumentException if some property of the specified
+ * element prevents it from being added to this queue
+ */
+ boolean offer(E e);
+
+ /**
+ * Inserts the specified element into this queue, waiting if necessary
+ * for space to become available.
+ *
+ * @param e the element to add
+ * @throws InterruptedException if interrupted while waiting
+ * @throws ClassCastException if the class of the specified element
+ * prevents it from being added to this queue
+ * @throws NullPointerException if the specified element is null
+ * @throws IllegalArgumentException if some property of the specified
+ * element prevents it from being added to this queue
+ */
+ void put(E e) throws InterruptedException;
+
+ /**
+ * Inserts the specified element into this queue, waiting up to the
+ * specified wait time if necessary for space to become available.
+ *
+ * @param e the element to add
+ * @param timeout how long to wait before giving up, in units of
+ * <tt>unit</tt>
+ * @param unit a <tt>TimeUnit</tt> determining how to interpret the
+ * <tt>timeout</tt> parameter
+ * @return <tt>true</tt> if successful, or <tt>false</tt> if
+ * the specified waiting time elapses before space is available
+ * @throws InterruptedException if interrupted while waiting
+ * @throws ClassCastException if the class of the specified element
+ * prevents it from being added to this queue
+ * @throws NullPointerException if the specified element is null
+ * @throws IllegalArgumentException if some property of the specified
+ * element prevents it from being added to this queue
+ */
+ boolean offer(E e, long timeout, TimeUnit unit)
+ throws InterruptedException;
+
+ /**
+ * Retrieves and removes the head of this queue, waiting if necessary
+ * until an element becomes available.
+ *
+ * @return the head of this queue
+ * @throws InterruptedException if interrupted while waiting
+ */
+ E take() throws InterruptedException;
+
+ /**
+ * Retrieves and removes the head of this queue, waiting up to the
+ * specified wait time if necessary for an element to become available.
+ *
+ * @param timeout how long to wait before giving up, in units of
+ * <tt>unit</tt>
+ * @param unit a <tt>TimeUnit</tt> determining how to interpret the
+ * <tt>timeout</tt> parameter
+ * @return the head of this queue, or <tt>null</tt> if the
+ * specified waiting time elapses before an element is available
+ * @throws InterruptedException if interrupted while waiting
+ */
+ E poll(long timeout, TimeUnit unit)
+ throws InterruptedException;
+
+ /**
+ * Returns the number of additional elements that this queue can ideally
+ * (in the absence of memory or resource constraints) accept without
+ * blocking, or <tt>Integer.MAX_VALUE</tt> if there is no intrinsic
+ * limit.
+ *
+ * <p>Note that you <em>cannot</em> always tell if an attempt to insert
+ * an element will succeed by inspecting <tt>remainingCapacity</tt>
+ * because it may be the case that another thread is about to
+ * insert or remove an element.
+ *
+ * @return the remaining capacity
+ */
+ int remainingCapacity();
+
+ /**
+ * Removes a single instance of the specified element from this queue,
+ * if it is present. More formally, removes an element <tt>e</tt> such
+ * that <tt>o.equals(e)</tt>, if this queue contains one or more such
+ * elements.
+ * Returns <tt>true</tt> if this queue contained the specified element
+ * (or equivalently, if this queue changed as a result of the call).
+ *
+ * @param o element to be removed from this queue, if present
+ * @return <tt>true</tt> if this queue changed as a result of the call
+ * @throws ClassCastException if the class of the specified element
+ * is incompatible with this queue (optional)
+ * @throws NullPointerException if the specified element is null (optional)
+ */
+ boolean remove(Object o);
+
+ /**
+ * Returns <tt>true</tt> if this queue contains the specified element.
+ * More formally, returns <tt>true</tt> if and only if this queue contains
+ * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
+ *
+ * @param o object to be checked for containment in this queue
+ * @return <tt>true</tt> if this queue contains the specified element
+ * @throws ClassCastException if the class of the specified element
+ * is incompatible with this queue (optional)
+ * @throws NullPointerException if the specified element is null (optional)
+ */
+ public boolean contains(Object o);
+
+ /**
+ * Removes all available elements from this queue and adds them
+ * to the given collection. This operation may be more
+ * efficient than repeatedly polling this queue. A failure
+ * encountered while attempting to add elements to
+ * collection <tt>c</tt> may result in elements being in neither,
+ * either or both collections when the associated exception is
+ * thrown. Attempts to drain a queue to itself result in
+ * <tt>IllegalArgumentException</tt>. Further, the behavior of
+ * this operation is undefined if the specified collection is
+ * modified while the operation is in progress.
+ *
+ * @param c the collection to transfer elements into
+ * @return the number of elements transferred
+ * @throws UnsupportedOperationException if addition of elements
+ * is not supported by the specified collection
+ * @throws ClassCastException if the class of an element of this queue
+ * prevents it from being added to the specified collection
+ * @throws NullPointerException if the specified collection is null
+ * @throws IllegalArgumentException if the specified collection is this
+ * queue, or some property of an element of this queue prevents
+ * it from being added to the specified collection
+ */
+ int drainTo(Collection<? super E> c);
+
+ /**
+ * Removes at most the given number of available elements from
+ * this queue and adds them to the given collection. A failure
+ * encountered while attempting to add elements to
+ * collection <tt>c</tt> may result in elements being in neither,
+ * either or both collections when the associated exception is
+ * thrown. Attempts to drain a queue to itself result in
+ * <tt>IllegalArgumentException</tt>. Further, the behavior of
+ * this operation is undefined if the specified collection is
+ * modified while the operation is in progress.
+ *
+ * @param c the collection to transfer elements into
+ * @param maxElements the maximum number of elements to transfer
+ * @return the number of elements transferred
+ * @throws UnsupportedOperationException if addition of elements
+ * is not supported by the specified collection
+ * @throws ClassCastException if the class of an element of this queue
+ * prevents it from being added to the specified collection
+ * @throws NullPointerException if the specified collection is null
+ * @throws IllegalArgumentException if the specified collection is this
+ * queue, or some property of an element of this queue prevents
+ * it from being added to the specified collection
+ */
+ int drainTo(Collection<? super E> c, int maxElements);
+}