aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libgfortran/generated/minloc1_4_i16.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/libgfortran/generated/minloc1_4_i16.c')
-rw-r--r--gcc-4.4.3/libgfortran/generated/minloc1_4_i16.c557
1 files changed, 0 insertions, 557 deletions
diff --git a/gcc-4.4.3/libgfortran/generated/minloc1_4_i16.c b/gcc-4.4.3/libgfortran/generated/minloc1_4_i16.c
deleted file mode 100644
index 93f7ca2ab..000000000
--- a/gcc-4.4.3/libgfortran/generated/minloc1_4_i16.c
+++ /dev/null
@@ -1,557 +0,0 @@
-/* Implementation of the MINLOC intrinsic
- Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
- Contributed by Paul Brook <paul@nowt.org>
-
-This file is part of the GNU Fortran 95 runtime library (libgfortran).
-
-Libgfortran is free software; you can redistribute it and/or
-modify it under the terms of the GNU General Public
-License as published by the Free Software Foundation; either
-version 3 of the License, or (at your option) any later version.
-
-Libgfortran is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-Under Section 7 of GPL version 3, you are granted additional
-permissions described in the GCC Runtime Library Exception, version
-3.1, as published by the Free Software Foundation.
-
-You should have received a copy of the GNU General Public License and
-a copy of the GCC Runtime Library Exception along with this program;
-see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
-<http://www.gnu.org/licenses/>. */
-
-#include "libgfortran.h"
-#include <stdlib.h>
-#include <assert.h>
-#include <limits.h>
-
-
-#if defined (HAVE_GFC_INTEGER_16) && defined (HAVE_GFC_INTEGER_4)
-
-
-extern void minloc1_4_i16 (gfc_array_i4 * const restrict,
- gfc_array_i16 * const restrict, const index_type * const restrict);
-export_proto(minloc1_4_i16);
-
-void
-minloc1_4_i16 (gfc_array_i4 * const restrict retarray,
- gfc_array_i16 * const restrict array,
- const index_type * const restrict pdim)
-{
- index_type count[GFC_MAX_DIMENSIONS];
- index_type extent[GFC_MAX_DIMENSIONS];
- index_type sstride[GFC_MAX_DIMENSIONS];
- index_type dstride[GFC_MAX_DIMENSIONS];
- const GFC_INTEGER_16 * restrict base;
- GFC_INTEGER_4 * restrict dest;
- index_type rank;
- index_type n;
- index_type len;
- index_type delta;
- index_type dim;
- int continue_loop;
-
- /* Make dim zero based to avoid confusion. */
- dim = (*pdim) - 1;
- rank = GFC_DESCRIPTOR_RANK (array) - 1;
-
- len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
- if (len < 0)
- len = 0;
- delta = array->dim[dim].stride;
-
- for (n = 0; n < dim; n++)
- {
- sstride[n] = array->dim[n].stride;
- extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
-
- if (extent[n] < 0)
- extent[n] = 0;
- }
- for (n = dim; n < rank; n++)
- {
- sstride[n] = array->dim[n + 1].stride;
- extent[n] =
- array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
-
- if (extent[n] < 0)
- extent[n] = 0;
- }
-
- if (retarray->data == NULL)
- {
- size_t alloc_size;
-
- for (n = 0; n < rank; n++)
- {
- retarray->dim[n].lbound = 0;
- retarray->dim[n].ubound = extent[n]-1;
- if (n == 0)
- retarray->dim[n].stride = 1;
- else
- retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
- }
-
- retarray->offset = 0;
- retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
-
- alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
- * extent[rank-1];
-
- if (alloc_size == 0)
- {
- /* Make sure we have a zero-sized array. */
- retarray->dim[0].lbound = 0;
- retarray->dim[0].ubound = -1;
- return;
- }
- else
- retarray->data = internal_malloc_size (alloc_size);
- }
- else
- {
- if (rank != GFC_DESCRIPTOR_RANK (retarray))
- runtime_error ("rank of return array incorrect in"
- " MINLOC intrinsic: is %ld, should be %ld",
- (long int) (GFC_DESCRIPTOR_RANK (retarray)),
- (long int) rank);
-
- if (unlikely (compile_options.bounds_check))
- {
- for (n=0; n < rank; n++)
- {
- index_type ret_extent;
-
- ret_extent = retarray->dim[n].ubound + 1
- - retarray->dim[n].lbound;
- if (extent[n] != ret_extent)
- runtime_error ("Incorrect extent in return value of"
- " MINLOC intrinsic in dimension %ld:"
- " is %ld, should be %ld", (long int) n + 1,
- (long int) ret_extent, (long int) extent[n]);
- }
- }
- }
-
- for (n = 0; n < rank; n++)
- {
- count[n] = 0;
- dstride[n] = retarray->dim[n].stride;
- if (extent[n] <= 0)
- len = 0;
- }
-
- base = array->data;
- dest = retarray->data;
-
- continue_loop = 1;
- while (continue_loop)
- {
- const GFC_INTEGER_16 * restrict src;
- GFC_INTEGER_4 result;
- src = base;
- {
-
- GFC_INTEGER_16 minval;
- minval = GFC_INTEGER_16_HUGE;
- result = 0;
- if (len <= 0)
- *dest = 0;
- else
- {
- for (n = 0; n < len; n++, src += delta)
- {
-
- if (*src < minval || !result)
- {
- minval = *src;
- result = (GFC_INTEGER_4)n + 1;
- }
- }
- *dest = result;
- }
- }
- /* Advance to the next element. */
- count[0]++;
- base += sstride[0];
- dest += dstride[0];
- n = 0;
- while (count[n] == extent[n])
- {
- /* When we get to the end of a dimension, reset it and increment
- the next dimension. */
- count[n] = 0;
- /* We could precalculate these products, but this is a less
- frequently used path so probably not worth it. */
- base -= sstride[n] * extent[n];
- dest -= dstride[n] * extent[n];
- n++;
- if (n == rank)
- {
- /* Break out of the look. */
- continue_loop = 0;
- break;
- }
- else
- {
- count[n]++;
- base += sstride[n];
- dest += dstride[n];
- }
- }
- }
-}
-
-
-extern void mminloc1_4_i16 (gfc_array_i4 * const restrict,
- gfc_array_i16 * const restrict, const index_type * const restrict,
- gfc_array_l1 * const restrict);
-export_proto(mminloc1_4_i16);
-
-void
-mminloc1_4_i16 (gfc_array_i4 * const restrict retarray,
- gfc_array_i16 * const restrict array,
- const index_type * const restrict pdim,
- gfc_array_l1 * const restrict mask)
-{
- index_type count[GFC_MAX_DIMENSIONS];
- index_type extent[GFC_MAX_DIMENSIONS];
- index_type sstride[GFC_MAX_DIMENSIONS];
- index_type dstride[GFC_MAX_DIMENSIONS];
- index_type mstride[GFC_MAX_DIMENSIONS];
- GFC_INTEGER_4 * restrict dest;
- const GFC_INTEGER_16 * restrict base;
- const GFC_LOGICAL_1 * restrict mbase;
- int rank;
- int dim;
- index_type n;
- index_type len;
- index_type delta;
- index_type mdelta;
- int mask_kind;
-
- dim = (*pdim) - 1;
- rank = GFC_DESCRIPTOR_RANK (array) - 1;
-
- len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
- if (len <= 0)
- return;
-
- mbase = mask->data;
-
- mask_kind = GFC_DESCRIPTOR_SIZE (mask);
-
- if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
-#ifdef HAVE_GFC_LOGICAL_16
- || mask_kind == 16
-#endif
- )
- mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
- else
- runtime_error ("Funny sized logical array");
-
- delta = array->dim[dim].stride;
- mdelta = mask->dim[dim].stride * mask_kind;
-
- for (n = 0; n < dim; n++)
- {
- sstride[n] = array->dim[n].stride;
- mstride[n] = mask->dim[n].stride * mask_kind;
- extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
-
- if (extent[n] < 0)
- extent[n] = 0;
-
- }
- for (n = dim; n < rank; n++)
- {
- sstride[n] = array->dim[n + 1].stride;
- mstride[n] = mask->dim[n + 1].stride * mask_kind;
- extent[n] =
- array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
-
- if (extent[n] < 0)
- extent[n] = 0;
- }
-
- if (retarray->data == NULL)
- {
- size_t alloc_size;
-
- for (n = 0; n < rank; n++)
- {
- retarray->dim[n].lbound = 0;
- retarray->dim[n].ubound = extent[n]-1;
- if (n == 0)
- retarray->dim[n].stride = 1;
- else
- retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
- }
-
- alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
- * extent[rank-1];
-
- retarray->offset = 0;
- retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
-
- if (alloc_size == 0)
- {
- /* Make sure we have a zero-sized array. */
- retarray->dim[0].lbound = 0;
- retarray->dim[0].ubound = -1;
- return;
- }
- else
- retarray->data = internal_malloc_size (alloc_size);
-
- }
- else
- {
- if (rank != GFC_DESCRIPTOR_RANK (retarray))
- runtime_error ("rank of return array incorrect in MINLOC intrinsic");
-
- if (unlikely (compile_options.bounds_check))
- {
- for (n=0; n < rank; n++)
- {
- index_type ret_extent;
-
- ret_extent = retarray->dim[n].ubound + 1
- - retarray->dim[n].lbound;
- if (extent[n] != ret_extent)
- runtime_error ("Incorrect extent in return value of"
- " MINLOC intrinsic in dimension %ld:"
- " is %ld, should be %ld", (long int) n + 1,
- (long int) ret_extent, (long int) extent[n]);
- }
- for (n=0; n<= rank; n++)
- {
- index_type mask_extent, array_extent;
-
- array_extent = array->dim[n].ubound + 1 - array->dim[n].lbound;
- mask_extent = mask->dim[n].ubound + 1 - mask->dim[n].lbound;
- if (array_extent != mask_extent)
- runtime_error ("Incorrect extent in MASK argument of"
- " MINLOC intrinsic in dimension %ld:"
- " is %ld, should be %ld", (long int) n + 1,
- (long int) mask_extent, (long int) array_extent);
- }
- }
- }
-
- for (n = 0; n < rank; n++)
- {
- count[n] = 0;
- dstride[n] = retarray->dim[n].stride;
- if (extent[n] <= 0)
- return;
- }
-
- dest = retarray->data;
- base = array->data;
-
- while (base)
- {
- const GFC_INTEGER_16 * restrict src;
- const GFC_LOGICAL_1 * restrict msrc;
- GFC_INTEGER_4 result;
- src = base;
- msrc = mbase;
- {
-
- GFC_INTEGER_16 minval;
- minval = GFC_INTEGER_16_HUGE;
- result = 0;
- if (len <= 0)
- *dest = 0;
- else
- {
- for (n = 0; n < len; n++, src += delta, msrc += mdelta)
- {
-
- if (*msrc && (*src < minval || !result))
- {
- minval = *src;
- result = (GFC_INTEGER_4)n + 1;
- }
- }
- *dest = result;
- }
- }
- /* Advance to the next element. */
- count[0]++;
- base += sstride[0];
- mbase += mstride[0];
- dest += dstride[0];
- n = 0;
- while (count[n] == extent[n])
- {
- /* When we get to the end of a dimension, reset it and increment
- the next dimension. */
- count[n] = 0;
- /* We could precalculate these products, but this is a less
- frequently used path so probably not worth it. */
- base -= sstride[n] * extent[n];
- mbase -= mstride[n] * extent[n];
- dest -= dstride[n] * extent[n];
- n++;
- if (n == rank)
- {
- /* Break out of the look. */
- base = NULL;
- break;
- }
- else
- {
- count[n]++;
- base += sstride[n];
- mbase += mstride[n];
- dest += dstride[n];
- }
- }
- }
-}
-
-
-extern void sminloc1_4_i16 (gfc_array_i4 * const restrict,
- gfc_array_i16 * const restrict, const index_type * const restrict,
- GFC_LOGICAL_4 *);
-export_proto(sminloc1_4_i16);
-
-void
-sminloc1_4_i16 (gfc_array_i4 * const restrict retarray,
- gfc_array_i16 * const restrict array,
- const index_type * const restrict pdim,
- GFC_LOGICAL_4 * mask)
-{
- index_type count[GFC_MAX_DIMENSIONS];
- index_type extent[GFC_MAX_DIMENSIONS];
- index_type sstride[GFC_MAX_DIMENSIONS];
- index_type dstride[GFC_MAX_DIMENSIONS];
- GFC_INTEGER_4 * restrict dest;
- index_type rank;
- index_type n;
- index_type dim;
-
-
- if (*mask)
- {
- minloc1_4_i16 (retarray, array, pdim);
- return;
- }
- /* Make dim zero based to avoid confusion. */
- dim = (*pdim) - 1;
- rank = GFC_DESCRIPTOR_RANK (array) - 1;
-
- for (n = 0; n < dim; n++)
- {
- sstride[n] = array->dim[n].stride;
- extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
-
- if (extent[n] <= 0)
- extent[n] = 0;
- }
-
- for (n = dim; n < rank; n++)
- {
- sstride[n] = array->dim[n + 1].stride;
- extent[n] =
- array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
-
- if (extent[n] <= 0)
- extent[n] = 0;
- }
-
- if (retarray->data == NULL)
- {
- size_t alloc_size;
-
- for (n = 0; n < rank; n++)
- {
- retarray->dim[n].lbound = 0;
- retarray->dim[n].ubound = extent[n]-1;
- if (n == 0)
- retarray->dim[n].stride = 1;
- else
- retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
- }
-
- retarray->offset = 0;
- retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
-
- alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
- * extent[rank-1];
-
- if (alloc_size == 0)
- {
- /* Make sure we have a zero-sized array. */
- retarray->dim[0].lbound = 0;
- retarray->dim[0].ubound = -1;
- return;
- }
- else
- retarray->data = internal_malloc_size (alloc_size);
- }
- else
- {
- if (rank != GFC_DESCRIPTOR_RANK (retarray))
- runtime_error ("rank of return array incorrect in"
- " MINLOC intrinsic: is %ld, should be %ld",
- (long int) (GFC_DESCRIPTOR_RANK (retarray)),
- (long int) rank);
-
- if (unlikely (compile_options.bounds_check))
- {
- for (n=0; n < rank; n++)
- {
- index_type ret_extent;
-
- ret_extent = retarray->dim[n].ubound + 1
- - retarray->dim[n].lbound;
- if (extent[n] != ret_extent)
- runtime_error ("Incorrect extent in return value of"
- " MINLOC intrinsic in dimension %ld:"
- " is %ld, should be %ld", (long int) n + 1,
- (long int) ret_extent, (long int) extent[n]);
- }
- }
- }
-
- for (n = 0; n < rank; n++)
- {
- count[n] = 0;
- dstride[n] = retarray->dim[n].stride;
- }
-
- dest = retarray->data;
-
- while(1)
- {
- *dest = 0;
- count[0]++;
- dest += dstride[0];
- n = 0;
- while (count[n] == extent[n])
- {
- /* When we get to the end of a dimension, reset it and increment
- the next dimension. */
- count[n] = 0;
- /* We could precalculate these products, but this is a less
- frequently used path so probably not worth it. */
- dest -= dstride[n] * extent[n];
- n++;
- if (n == rank)
- return;
- else
- {
- count[n]++;
- dest += dstride[n];
- }
- }
- }
-}
-
-#endif