aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/libgcc/config/libbid/bid64_compare.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/libgcc/config/libbid/bid64_compare.c')
-rw-r--r--gcc-4.4.3/libgcc/config/libbid/bid64_compare.c3172
1 files changed, 3172 insertions, 0 deletions
diff --git a/gcc-4.4.3/libgcc/config/libbid/bid64_compare.c b/gcc-4.4.3/libgcc/config/libbid/bid64_compare.c
new file mode 100644
index 000000000..a1118df9f
--- /dev/null
+++ b/gcc-4.4.3/libgcc/config/libbid/bid64_compare.c
@@ -0,0 +1,3172 @@
+/* Copyright (C) 2007, 2009 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+Under Section 7 of GPL version 3, you are granted additional
+permissions described in the GCC Runtime Library Exception, version
+3.1, as published by the Free Software Foundation.
+
+You should have received a copy of the GNU General Public License and
+a copy of the GCC Runtime Library Exception along with this program;
+see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
+<http://www.gnu.org/licenses/>. */
+
+#include "bid_internal.h"
+
+static const UINT64 mult_factor[16] = {
+ 1ull, 10ull, 100ull, 1000ull,
+ 10000ull, 100000ull, 1000000ull, 10000000ull,
+ 100000000ull, 1000000000ull, 10000000000ull, 100000000000ull,
+ 1000000000000ull, 10000000000000ull,
+ 100000000000000ull, 1000000000000000ull
+};
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_quiet_equal (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_quiet_equal (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y, exp_t;
+ UINT64 sig_x, sig_y, sig_t;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered,
+ // rather than equal : return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+ }
+ res = 0;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equivalent.
+ if (x == y) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) {
+ res = (((x ^ y) & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // ONE INFINITY (CASE3')
+ if (((x & MASK_INF) == MASK_INF) || ((y & MASK_INF) == MASK_INF)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ if (x_is_zero && y_is_zero) {
+ res = 1;
+ BID_RETURN (res);
+ } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ => not equal : return 0
+ if ((x ^ y) & MASK_SIGN) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ if (exp_x > exp_y) { // to simplify the loop below,
+ SWAP (exp_x, exp_y, exp_t); // put the larger exp in y,
+ SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x
+ }
+ if (exp_y - exp_x > 15) {
+ res = 0; // difference cannot be greater than 10^15
+ BID_RETURN (res);
+ }
+ for (lcv = 0; lcv < (exp_y - exp_x); lcv++) {
+ // recalculate y's significand upwards
+ sig_y = sig_y * 10;
+ if (sig_y > 9999999999999999ull) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ }
+ res = (sig_y == sig_x);
+ BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_quiet_greater (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_quiet_greater (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered, rather than equal :
+ // return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+ }
+ res = 0;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal (not Greater).
+ if (x == y) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x is neg infinity, there is no way it is greater than y, return 0
+ if (((x & MASK_SIGN) == MASK_SIGN)) {
+ res = 0;
+ BID_RETURN (res);
+ } else {
+ // x is pos infinity, it is greater, unless y is positive
+ // infinity => return y!=pos_infinity
+ res = (((y & MASK_INF) != MASK_INF)
+ || ((y & MASK_SIGN) == MASK_SIGN));
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so if y is positive infinity, then x is less, return 0
+ // if y is negative infinity, then x is greater, return 1
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+ // ZERO (CASE4)
+ // some properties:
+ //(+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ //(ZERO x 10^A == ZERO x 10^B) for any valid A, B => therefore ignore the
+ // exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ // if both numbers are zero, neither is greater => return NOTGREATERTHAN
+ if (x_is_zero && y_is_zero) {
+ res = 0;
+ BID_RETURN (res);
+ } else if (x_is_zero) {
+ // is x is zero, it is greater if Y is negative
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ } else if (y_is_zero) {
+ // is y is zero, X is greater if it is positive
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is greater if y is negative
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller,
+ // it is clear what needs to be done
+ if (sig_x > sig_y && exp_x > exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x < exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) { // difference cannot be greater than 10^15
+ if (x & MASK_SIGN) // if both are negative
+ res = 0;
+ else // if both are positive
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ if (x & MASK_SIGN) // if both are negative
+ res = 1;
+ else // if both are positive
+ res = 0;
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+ // if postitive, return whichever significand is larger (converse if neg.)
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ res = (((sig_n_prime.w[1] > 0)
+ || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+ // if postitive, return whichever significand is larger
+ // (converse if negative)
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ res = (((sig_n_prime.w[1] == 0)
+ && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_quiet_greater_equal (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_quiet_greater_equal (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered : return 1
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+ }
+ res = 0;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal.
+ if (x == y) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
+ if ((x & MASK_SIGN) == MASK_SIGN) {
+ // x is -inf, so it is less than y unless y is -inf
+ res = (((y & MASK_INF) == MASK_INF)
+ && (y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ } else { // x is pos_inf, no way for it to be less than y
+ res = 1;
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so:
+ // if y is +inf, x<y
+ // if y is -inf, x>y
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ if (x_is_zero && y_is_zero) {
+ // if both numbers are zero, they are equal
+ res = 1;
+ BID_RETURN (res);
+ } else if (x_is_zero) {
+ // if x is zero, it is lessthan if Y is positive
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ } else if (y_is_zero) {
+ // if y is zero, X is less if it is negative
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is less than if y is positive
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ // difference cannot be greater than 10^15
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+ // return 1 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if postitive, return whichever significand abs is smaller
+ // (converse if negative)
+ res = (((sig_n_prime.w[1] == 0)
+ && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) !=
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if positive, return whichever significand abs is smaller
+ // (converse if negative)
+ res = (((sig_n_prime.w[1] > 0)
+ || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) !=
+ MASK_SIGN));
+ BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_quiet_greater_unordered (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_quiet_greater_unordered (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM
+ _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered, rather than equal :
+ // return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+ }
+ res = 1;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal (not Greater).
+ if (x == y) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x is neg infinity, there is no way it is greater than y, return 0
+ if (((x & MASK_SIGN) == MASK_SIGN)) {
+ res = 0;
+ BID_RETURN (res);
+ } else {
+ // x is pos infinity, it is greater, unless y is positive infinity =>
+ // return y!=pos_infinity
+ res = (((y & MASK_INF) != MASK_INF)
+ || ((y & MASK_SIGN) == MASK_SIGN));
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so if y is positive infinity, then x is less, return 0
+ // if y is negative infinity, then x is greater, return 1
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ // if both numbers are zero, neither is greater => return NOTGREATERTHAN
+ if (x_is_zero && y_is_zero) {
+ res = 0;
+ BID_RETURN (res);
+ } else if (x_is_zero) {
+ // is x is zero, it is greater if Y is negative
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ } else if (y_is_zero) {
+ // is y is zero, X is greater if it is positive
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is greater if y is negative
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ // difference cannot be greater than 10^15
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+ // if postitive, return whichever significand is larger
+ // (converse if negative)
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ res = (((sig_n_prime.w[1] > 0)
+ || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+ // if postitive, return whichever significand is larger (converse if negative)
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ res = (((sig_n_prime.w[1] == 0)
+ && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_quiet_less (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM _EXC_INFO_PARAM)
+{
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_quiet_less (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered : return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+ }
+ res = 0;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal.
+ if (x == y) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) }
+ if ((x & MASK_SIGN) == MASK_SIGN) {
+ // x is -inf, so it is less than y unless y is -inf
+ res = (((y & MASK_INF) != MASK_INF)
+ || (y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ } else {
+ // x is pos_inf, no way for it to be less than y
+ res = 0;
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so:
+ // if y is +inf, x<y
+ // if y is -inf, x>y
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ if (x_is_zero && y_is_zero) {
+ // if both numbers are zero, they are equal
+ res = 0;
+ BID_RETURN (res);
+ } else if (x_is_zero) {
+ // if x is zero, it is lessthan if Y is positive
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ } else if (y_is_zero) {
+ // if y is zero, X is less if it is negative
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is less than if y is positive
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller,
+ // it is clear what needs to be done
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ // difference cannot be greater than 10^15
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // if postitive, return whichever significand abs is smaller
+ // (converse if negative)
+ res = (((sig_n_prime.w[1] == 0)
+ && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // if positive, return whichever significand abs is smaller
+ // (converse if negative)
+ res = (((sig_n_prime.w[1] > 0)
+ || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_quiet_less_equal (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_quiet_less_equal (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered, rather than equal :
+ // return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+ }
+ res = 0;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal (LESSEQUAL).
+ if (x == y) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ if (((x & MASK_SIGN) == MASK_SIGN)) {
+ // if x is neg infinity, it must be lessthan or equal to y return 1
+ res = 1;
+ BID_RETURN (res);
+ } else {
+ // x is pos infinity, it is greater, unless y is positive infinity =>
+ // return y==pos_infinity
+ res = !(((y & MASK_INF) != MASK_INF)
+ || ((y & MASK_SIGN) == MASK_SIGN));
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so if y is positive infinity, then x is less, return 1
+ // if y is negative infinity, then x is greater, return 0
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ if (x_is_zero && y_is_zero) {
+ // if both numbers are zero, they are equal -> return 1
+ res = 1;
+ BID_RETURN (res);
+ } else if (x_is_zero) {
+ // if x is zero, it is lessthan if Y is positive
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ } else if (y_is_zero) {
+ // if y is zero, X is less if it is negative
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is less than if y is positive
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ // difference cannot be greater than 10^15
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+ // return 1 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if postitive, return whichever significand abs is smaller
+ // (converse if negative)
+ res = (((sig_n_prime.w[1] == 0)
+ && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+ // return 1 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if positive, return whichever significand abs is smaller
+ // (converse if negative)
+ res = (((sig_n_prime.w[1] > 0)
+ || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_quiet_less_unordered (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_quiet_less_unordered (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered : return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+ }
+ res = 1;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal.
+ if (x == y) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) }
+ if ((x & MASK_SIGN) == MASK_SIGN) {
+ // x is -inf, so it is less than y unless y is -inf
+ res = (((y & MASK_INF) != MASK_INF)
+ || (y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ } else {
+ // x is pos_inf, no way for it to be less than y
+ res = 0;
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so:
+ // if y is +inf, x<y
+ // if y is -inf, x>y
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ if (x_is_zero && y_is_zero) {
+ // if both numbers are zero, they are equal
+ res = 0;
+ BID_RETURN (res);
+ } else if (x_is_zero) {
+ // if x is zero, it is lessthan if Y is positive
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ } else if (y_is_zero) {
+ // if y is zero, X is less if it is negative
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is less than if y is positive
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ // difference cannot be greater than 10^15
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // if postitive, return whichever significand abs is smaller
+ // (converse if negative)
+ res = (((sig_n_prime.w[1] == 0)
+ && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // if positive, return whichever significand abs is smaller
+ // (converse if negative)
+ res = (((sig_n_prime.w[1] > 0)
+ || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_quiet_not_equal (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_quiet_not_equal (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y, exp_t;
+ UINT64 sig_x, sig_y, sig_t;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y, lcv;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered,
+ // rather than equal : return 1
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+ }
+ res = 1;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equivalent.
+ if (x == y) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if (((x & MASK_INF) == MASK_INF) && ((y & MASK_INF) == MASK_INF)) {
+ res = (((x ^ y) & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // ONE INFINITY (CASE3')
+ if (((x & MASK_INF) == MASK_INF) || ((y & MASK_INF) == MASK_INF)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+
+ if (x_is_zero && y_is_zero) {
+ res = 0;
+ BID_RETURN (res);
+ } else if ((x_is_zero && !y_is_zero) || (!x_is_zero && y_is_zero)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ => not equal : return 1
+ if ((x ^ y) & MASK_SIGN) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ if (exp_x > exp_y) { // to simplify the loop below,
+ SWAP (exp_x, exp_y, exp_t); // put the larger exp in y,
+ SWAP (sig_x, sig_y, sig_t); // and the smaller exp in x
+ }
+
+ if (exp_y - exp_x > 15) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // difference cannot be greater than 10^16
+
+ for (lcv = 0; lcv < (exp_y - exp_x); lcv++) {
+
+ // recalculate y's significand upwards
+ sig_y = sig_y * 10;
+ if (sig_y > 9999999999999999ull) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ }
+
+ {
+ res = sig_y != sig_x;
+ BID_RETURN (res);
+ }
+
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_quiet_not_greater (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_quiet_not_greater (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered,
+ // rather than equal : return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+ }
+ res = 1;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal (LESSEQUAL).
+ if (x == y) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x is neg infinity, it must be lessthan or equal to y return 1
+ if (((x & MASK_SIGN) == MASK_SIGN)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // x is pos infinity, it is greater, unless y is positive
+ // infinity => return y==pos_infinity
+ else {
+ res = !(((y & MASK_INF) != MASK_INF)
+ || ((y & MASK_SIGN) == MASK_SIGN));
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so if y is positive infinity, then x is less, return 1
+ // if y is negative infinity, then x is greater, return 0
+ {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither
+ // number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ // if both numbers are zero, they are equal -> return 1
+ if (x_is_zero && y_is_zero) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if x is zero, it is lessthan if Y is positive
+ else if (x_is_zero) {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if y is zero, X is less if it is negative
+ else if (y_is_zero) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is less than if y is positive
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // difference cannot be greater than 10^15
+
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+
+ // return 1 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if postitive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] == 0)
+ && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ // return 1 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if positive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] > 0)
+ || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_quiet_not_less (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_quiet_not_less (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered : return 1
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+ }
+ res = 1;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal.
+ if (x == y) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
+ if ((x & MASK_SIGN) == MASK_SIGN)
+ // x is -inf, so it is less than y unless y is -inf
+ {
+ res = (((y & MASK_INF) == MASK_INF)
+ && (y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ } else
+ // x is pos_inf, no way for it to be less than y
+ {
+ res = 1;
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so:
+ // if y is +inf, x<y
+ // if y is -inf, x>y
+ {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither
+ // number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ // if both numbers are zero, they are equal
+ if (x_is_zero && y_is_zero) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if x is zero, it is lessthan if Y is positive
+ else if (x_is_zero) {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if y is zero, X is less if it is negative
+ else if (y_is_zero) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is less than if y is positive
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // difference cannot be greater than 10^15
+
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if postitive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] == 0)
+ && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) !=
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if positive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] > 0)
+ || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) !=
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_quiet_ordered (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_quiet_ordered (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is ordered, rather than equal : return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+ }
+ res = 0;
+ BID_RETURN (res);
+ } else {
+ res = 1;
+ BID_RETURN (res);
+ }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_quiet_unordered (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_quiet_unordered (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered,
+ // rather than equal : return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ if ((x & MASK_SNAN) == MASK_SNAN || (y & MASK_SNAN) == MASK_SNAN) {
+ *pfpsf |= INVALID_EXCEPTION; // set exception if sNaN
+ }
+ res = 1;
+ BID_RETURN (res);
+ } else {
+ res = 0;
+ BID_RETURN (res);
+ }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_signaling_greater (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_signaling_greater (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered,
+ // rather than equal : return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+ res = 0;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal (not Greater).
+ if (x == y) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x is neg infinity, there is no way it is greater than y, return 0
+ if (((x & MASK_SIGN) == MASK_SIGN)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // x is pos infinity, it is greater,
+ // unless y is positive infinity => return y!=pos_infinity
+ else {
+ res = (((y & MASK_INF) != MASK_INF)
+ || ((y & MASK_SIGN) == MASK_SIGN));
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so if y is positive infinity, then x is less, return 0
+ // if y is negative infinity, then x is greater, return 1
+ {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ // if both numbers are zero, neither is greater => return NOTGREATERTHAN
+ if (x_is_zero && y_is_zero) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // is x is zero, it is greater if Y is negative
+ else if (x_is_zero) {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // is y is zero, X is greater if it is positive
+ else if (y_is_zero) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is greater if y is negative
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // difference cannot be greater than 10^15
+
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+
+
+ // if postitive, return whichever significand is larger
+ // (converse if negative)
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+
+ {
+ res = (((sig_n_prime.w[1] > 0)
+ || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ // if postitive, return whichever significand is larger
+ // (converse if negative)
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ {
+ res = (((sig_n_prime.w[1] == 0)
+ && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_signaling_greater_equal (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_signaling_greater_equal (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM
+ _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered : return 1
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+ res = 0;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal.
+ if (x == y) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
+ if ((x & MASK_SIGN) == MASK_SIGN)
+ // x is -inf, so it is less than y unless y is -inf
+ {
+ res = (((y & MASK_INF) == MASK_INF)
+ && (y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ } else
+ // x is pos_inf, no way for it to be less than y
+ {
+ res = 1;
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so:
+ // if y is +inf, x<y
+ // if y is -inf, x>y
+ {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ // if both numbers are zero, they are equal
+ if (x_is_zero && y_is_zero) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if x is zero, it is lessthan if Y is positive
+ else if (x_is_zero) {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if y is zero, X is less if it is negative
+ else if (y_is_zero) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is less than if y is positive
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // difference cannot be greater than 10^15
+
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+
+ // return 1 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if postitive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] == 0)
+ && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) !=
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if positive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] > 0)
+ || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) !=
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_signaling_greater_unordered (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_signaling_greater_unordered (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM
+ _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered,
+ // rather than equal : return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+ res = 1;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal (not Greater).
+ if (x == y) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x is neg infinity, there is no way it is greater than y, return 0
+ if (((x & MASK_SIGN) == MASK_SIGN)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // x is pos infinity, it is greater,
+ // unless y is positive infinity => return y!=pos_infinity
+ else {
+ res = (((y & MASK_INF) != MASK_INF)
+ || ((y & MASK_SIGN) == MASK_SIGN));
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so if y is positive infinity, then x is less, return 0
+ // if y is negative infinity, then x is greater, return 1
+ {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ // if both numbers are zero, neither is greater => return NOTGREATERTHAN
+ if (x_is_zero && y_is_zero) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // is x is zero, it is greater if Y is negative
+ else if (x_is_zero) {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // is y is zero, X is greater if it is positive
+ else if (y_is_zero) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is greater if y is negative
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // difference cannot be greater than 10^15
+
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+
+ // if postitive, return whichever significand is larger
+ // (converse if negative)
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+
+ {
+ res = (((sig_n_prime.w[1] > 0)
+ || sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ // if postitive, return whichever significand is larger
+ // (converse if negative)
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ {
+ res = (((sig_n_prime.w[1] == 0)
+ && (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_signaling_less (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_signaling_less (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered : return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+ res = 0;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal.
+ if (x == y) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) }
+ if ((x & MASK_SIGN) == MASK_SIGN)
+ // x is -inf, so it is less than y unless y is -inf
+ {
+ res = (((y & MASK_INF) != MASK_INF)
+ || (y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ } else
+ // x is pos_inf, no way for it to be less than y
+ {
+ res = 0;
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so:
+ // if y is +inf, x<y
+ // if y is -inf, x>y
+ {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ // if both numbers are zero, they are equal
+ if (x_is_zero && y_is_zero) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // if x is zero, it is lessthan if Y is positive
+ else if (x_is_zero) {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if y is zero, X is less if it is negative
+ else if (y_is_zero) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is less than if y is positive
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // difference cannot be greater than 10^15
+
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // if postitive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] == 0)
+ && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // if positive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] > 0)
+ || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_signaling_less_equal (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_signaling_less_equal (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered,
+ // rather than equal : return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+ res = 0;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal (LESSEQUAL).
+ if (x == y) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x is neg infinity, it must be lessthan or equal to y return 1
+ if (((x & MASK_SIGN) == MASK_SIGN)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // x is pos infinity, it is greater,
+ // unless y is positive infinity => return y==pos_infinity
+ else {
+ res = !(((y & MASK_INF) != MASK_INF)
+ || ((y & MASK_SIGN) == MASK_SIGN));
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so if y is positive infinity, then x is less, return 1
+ // if y is negative infinity, then x is greater, return 0
+ {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ // if both numbers are zero, they are equal -> return 1
+ if (x_is_zero && y_is_zero) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if x is zero, it is lessthan if Y is positive
+ else if (x_is_zero) {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if y is zero, X is less if it is negative
+ else if (y_is_zero) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is less than if y is positive
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // difference cannot be greater than 10^15
+
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+
+ // return 1 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if postitive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] == 0)
+ && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ // return 1 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if positive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] > 0)
+ || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_signaling_less_unordered (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_signaling_less_unordered (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM
+ _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered : return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+ res = 1;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal.
+ if (x == y) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x==neg_inf, { res = (y == neg_inf)?0:1; BID_RETURN (res) }
+ if ((x & MASK_SIGN) == MASK_SIGN)
+ // x is -inf, so it is less than y unless y is -inf
+ {
+ res = (((y & MASK_INF) != MASK_INF)
+ || (y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ } else
+ // x is pos_inf, no way for it to be less than y
+ {
+ res = 0;
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so:
+ // if y is +inf, x<y
+ // if y is -inf, x>y
+ {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ // if both numbers are zero, they are equal
+ if (x_is_zero && y_is_zero) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // if x is zero, it is lessthan if Y is positive
+ else if (x_is_zero) {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if y is zero, X is less if it is negative
+ else if (y_is_zero) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is less than if y is positive
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // difference cannot be greater than 10^15
+
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // if postitive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] == 0)
+ && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 0;
+ BID_RETURN (res);
+ }
+ // if positive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] > 0)
+ || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_signaling_not_greater (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_signaling_not_greater (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered,
+ // rather than equal : return 0
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+ res = 1;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal (LESSEQUAL).
+ if (x == y) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x is neg infinity, it must be lessthan or equal to y return 1
+ if (((x & MASK_SIGN) == MASK_SIGN)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // x is pos infinity, it is greater,
+ // unless y is positive infinity => return y==pos_infinity
+ else {
+ res = !(((y & MASK_INF) != MASK_INF)
+ || ((y & MASK_SIGN) == MASK_SIGN));
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so if y is positive infinity, then x is less, return 1
+ // if y is negative infinity, then x is greater, return 0
+ {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ // if both numbers are zero, they are equal -> return 1
+ if (x_is_zero && y_is_zero) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if x is zero, it is lessthan if Y is positive
+ else if (x_is_zero) {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if y is zero, X is less if it is negative
+ else if (y_is_zero) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is less than if y is positive
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // difference cannot be greater than 10^15
+
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+
+ // return 1 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if postitive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] == 0)
+ && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ // return 1 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if positive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] > 0)
+ || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+}
+
+#if DECIMAL_CALL_BY_REFERENCE
+void
+bid64_signaling_not_less (int *pres, UINT64 * px,
+ UINT64 *
+ py _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+ UINT64 x = *px;
+ UINT64 y = *py;
+#else
+int
+bid64_signaling_not_less (UINT64 x,
+ UINT64 y _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
+ _EXC_INFO_PARAM) {
+#endif
+ int res;
+ int exp_x, exp_y;
+ UINT64 sig_x, sig_y;
+ UINT128 sig_n_prime;
+ char x_is_zero = 0, y_is_zero = 0, non_canon_x, non_canon_y;
+
+ // NaN (CASE1)
+ // if either number is NAN, the comparison is unordered : return 1
+ if (((x & MASK_NAN) == MASK_NAN) || ((y & MASK_NAN) == MASK_NAN)) {
+ *pfpsf |= INVALID_EXCEPTION; // set invalid exception if NaN
+ res = 1;
+ BID_RETURN (res);
+ }
+ // SIMPLE (CASE2)
+ // if all the bits are the same, these numbers are equal.
+ if (x == y) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // INFINITY (CASE3)
+ if ((x & MASK_INF) == MASK_INF) {
+ // if x==neg_inf, { res = (y == neg_inf)?1:0; BID_RETURN (res) }
+ if ((x & MASK_SIGN) == MASK_SIGN)
+ // x is -inf, so it is less than y unless y is -inf
+ {
+ res = (((y & MASK_INF) == MASK_INF)
+ && (y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ } else
+ // x is pos_inf, no way for it to be less than y
+ {
+ res = 1;
+ BID_RETURN (res);
+ }
+ } else if ((y & MASK_INF) == MASK_INF) {
+ // x is finite, so:
+ // if y is +inf, x<y
+ // if y is -inf, x>y
+ {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ }
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
+ sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_x > 9999999999999999ull) {
+ non_canon_x = 1;
+ } else {
+ non_canon_x = 0;
+ }
+ } else {
+ exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
+ sig_x = (x & MASK_BINARY_SIG1);
+ non_canon_x = 0;
+ }
+
+ // if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
+ if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
+ exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
+ sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
+ if (sig_y > 9999999999999999ull) {
+ non_canon_y = 1;
+ } else {
+ non_canon_y = 0;
+ }
+ } else {
+ exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
+ sig_y = (y & MASK_BINARY_SIG1);
+ non_canon_y = 0;
+ }
+
+ // ZERO (CASE4)
+ // some properties:
+ // (+ZERO==-ZERO) => therefore ignore the sign, and neither number is greater
+ // (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
+ // therefore ignore the exponent field
+ // (Any non-canonical # is considered 0)
+ if (non_canon_x || sig_x == 0) {
+ x_is_zero = 1;
+ }
+ if (non_canon_y || sig_y == 0) {
+ y_is_zero = 1;
+ }
+ // if both numbers are zero, they are equal
+ if (x_is_zero && y_is_zero) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if x is zero, it is lessthan if Y is positive
+ else if (x_is_zero) {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if y is zero, X is less if it is negative
+ else if (y_is_zero) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // OPPOSITE SIGN (CASE5)
+ // now, if the sign bits differ, x is less than if y is positive
+ if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
+ res = ((y & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // REDUNDANT REPRESENTATIONS (CASE6)
+ // if both components are either bigger or smaller
+ if (sig_x > sig_y && exp_x >= exp_y) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ if (sig_x < sig_y && exp_x <= exp_y) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if exp_x is 15 greater than exp_y, no need for compensation
+ if (exp_x - exp_y > 15) {
+ res = ((x & MASK_SIGN) != MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // difference cannot be greater than 10^15
+
+ // if exp_x is 15 less than exp_y, no need for compensation
+ if (exp_y - exp_x > 15) {
+ res = ((x & MASK_SIGN) == MASK_SIGN);
+ BID_RETURN (res);
+ }
+ // if |exp_x - exp_y| < 15, it comes down to the compensated significand
+ if (exp_x > exp_y) { // to simplify the loop below,
+
+ // otherwise adjust the x significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_x,
+ mult_factor[exp_x - exp_y]);
+
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if postitive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] == 0)
+ && sig_n_prime.w[0] < sig_y) ^ ((x & MASK_SIGN) !=
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+ }
+ // adjust the y significand upwards
+ __mul_64x64_to_128MACH (sig_n_prime, sig_y,
+ mult_factor[exp_y - exp_x]);
+
+ // return 0 if values are equal
+ if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
+ res = 1;
+ BID_RETURN (res);
+ }
+ // if positive, return whichever significand abs is smaller
+ // (converse if negative)
+ {
+ res = (((sig_n_prime.w[1] > 0)
+ || (sig_x < sig_n_prime.w[0])) ^ ((x & MASK_SIGN) !=
+ MASK_SIGN));
+ BID_RETURN (res);
+ }
+}