aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/sem_util.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/sem_util.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/sem_util.adb9910
1 files changed, 9910 insertions, 0 deletions
diff --git a/gcc-4.4.3/gcc/ada/sem_util.adb b/gcc-4.4.3/gcc/ada/sem_util.adb
new file mode 100644
index 000000000..82dca5662
--- /dev/null
+++ b/gcc-4.4.3/gcc/ada/sem_util.adb
@@ -0,0 +1,9910 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT COMPILER COMPONENTS --
+-- --
+-- S E M _ U T I L --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING3. If not, go to --
+-- http://www.gnu.org/licenses for a complete copy of the license. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with Atree; use Atree;
+with Casing; use Casing;
+with Checks; use Checks;
+with Debug; use Debug;
+with Errout; use Errout;
+with Elists; use Elists;
+with Exp_Disp; use Exp_Disp;
+with Exp_Tss; use Exp_Tss;
+with Exp_Util; use Exp_Util;
+with Fname; use Fname;
+with Freeze; use Freeze;
+with Lib; use Lib;
+with Lib.Xref; use Lib.Xref;
+with Nlists; use Nlists;
+with Output; use Output;
+with Opt; use Opt;
+with Rtsfind; use Rtsfind;
+with Scans; use Scans;
+with Scn; use Scn;
+with Sem; use Sem;
+with Sem_Attr; use Sem_Attr;
+with Sem_Ch8; use Sem_Ch8;
+with Sem_Eval; use Sem_Eval;
+with Sem_Res; use Sem_Res;
+with Sem_Type; use Sem_Type;
+with Sinfo; use Sinfo;
+with Sinput; use Sinput;
+with Stand; use Stand;
+with Style;
+with Stringt; use Stringt;
+with Targparm; use Targparm;
+with Tbuild; use Tbuild;
+with Ttypes; use Ttypes;
+with Uname; use Uname;
+
+package body Sem_Util is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ function Build_Component_Subtype
+ (C : List_Id;
+ Loc : Source_Ptr;
+ T : Entity_Id) return Node_Id;
+ -- This function builds the subtype for Build_Actual_Subtype_Of_Component
+ -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
+ -- Loc is the source location, T is the original subtype.
+
+ function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
+ -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
+ -- with discriminants whose default values are static, examine only the
+ -- components in the selected variant to determine whether all of them
+ -- have a default.
+
+ function Has_Null_Extension (T : Entity_Id) return Boolean;
+ -- T is a derived tagged type. Check whether the type extension is null.
+ -- If the parent type is fully initialized, T can be treated as such.
+
+ ------------------------------
+ -- Abstract_Interface_List --
+ ------------------------------
+
+ function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
+ Nod : Node_Id;
+
+ begin
+ if Is_Concurrent_Type (Typ) then
+
+ -- If we are dealing with a synchronized subtype, go to the base
+ -- type, whose declaration has the interface list.
+
+ -- Shouldn't this be Declaration_Node???
+
+ Nod := Parent (Base_Type (Typ));
+
+ if Nkind (Nod) = N_Full_Type_Declaration then
+ return Empty_List;
+ end if;
+
+ elsif Ekind (Typ) = E_Record_Type_With_Private then
+ if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
+ Nod := Type_Definition (Parent (Typ));
+
+ elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
+ if Present (Full_View (Typ)) then
+ Nod := Type_Definition (Parent (Full_View (Typ)));
+
+ -- If the full-view is not available we cannot do anything else
+ -- here (the source has errors).
+
+ else
+ return Empty_List;
+ end if;
+
+ -- Support for generic formals with interfaces is still missing ???
+
+ elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
+ return Empty_List;
+
+ else
+ pragma Assert
+ (Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
+ Nod := Parent (Typ);
+ end if;
+
+ elsif Ekind (Typ) = E_Record_Subtype then
+ Nod := Type_Definition (Parent (Etype (Typ)));
+
+ elsif Ekind (Typ) = E_Record_Subtype_With_Private then
+
+ -- Recurse, because parent may still be a private extension. Also
+ -- note that the full view of the subtype or the full view of its
+ -- base type may (both) be unavailable.
+
+ return Abstract_Interface_List (Etype (Typ));
+
+ else pragma Assert ((Ekind (Typ)) = E_Record_Type);
+ if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
+ Nod := Formal_Type_Definition (Parent (Typ));
+ else
+ Nod := Type_Definition (Parent (Typ));
+ end if;
+ end if;
+
+ return Interface_List (Nod);
+ end Abstract_Interface_List;
+
+ --------------------------------
+ -- Add_Access_Type_To_Process --
+ --------------------------------
+
+ procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
+ L : Elist_Id;
+
+ begin
+ Ensure_Freeze_Node (E);
+ L := Access_Types_To_Process (Freeze_Node (E));
+
+ if No (L) then
+ L := New_Elmt_List;
+ Set_Access_Types_To_Process (Freeze_Node (E), L);
+ end if;
+
+ Append_Elmt (A, L);
+ end Add_Access_Type_To_Process;
+
+ ----------------------------
+ -- Add_Global_Declaration --
+ ----------------------------
+
+ procedure Add_Global_Declaration (N : Node_Id) is
+ Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
+
+ begin
+ if No (Declarations (Aux_Node)) then
+ Set_Declarations (Aux_Node, New_List);
+ end if;
+
+ Append_To (Declarations (Aux_Node), N);
+ Analyze (N);
+ end Add_Global_Declaration;
+
+ -----------------------
+ -- Alignment_In_Bits --
+ -----------------------
+
+ function Alignment_In_Bits (E : Entity_Id) return Uint is
+ begin
+ return Alignment (E) * System_Storage_Unit;
+ end Alignment_In_Bits;
+
+ -----------------------------------------
+ -- Apply_Compile_Time_Constraint_Error --
+ -----------------------------------------
+
+ procedure Apply_Compile_Time_Constraint_Error
+ (N : Node_Id;
+ Msg : String;
+ Reason : RT_Exception_Code;
+ Ent : Entity_Id := Empty;
+ Typ : Entity_Id := Empty;
+ Loc : Source_Ptr := No_Location;
+ Rep : Boolean := True;
+ Warn : Boolean := False)
+ is
+ Stat : constant Boolean := Is_Static_Expression (N);
+ R_Stat : constant Node_Id :=
+ Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
+ Rtyp : Entity_Id;
+
+ begin
+ if No (Typ) then
+ Rtyp := Etype (N);
+ else
+ Rtyp := Typ;
+ end if;
+
+ Discard_Node
+ (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
+
+ if not Rep then
+ return;
+ end if;
+
+ -- Now we replace the node by an N_Raise_Constraint_Error node
+ -- This does not need reanalyzing, so set it as analyzed now.
+
+ Rewrite (N, R_Stat);
+ Set_Analyzed (N, True);
+
+ Set_Etype (N, Rtyp);
+ Set_Raises_Constraint_Error (N);
+
+ -- If the original expression was marked as static, the result is
+ -- still marked as static, but the Raises_Constraint_Error flag is
+ -- always set so that further static evaluation is not attempted.
+
+ if Stat then
+ Set_Is_Static_Expression (N);
+ end if;
+ end Apply_Compile_Time_Constraint_Error;
+
+ --------------------------
+ -- Build_Actual_Subtype --
+ --------------------------
+
+ function Build_Actual_Subtype
+ (T : Entity_Id;
+ N : Node_Or_Entity_Id) return Node_Id
+ is
+ Loc : Source_Ptr;
+ -- Normally Sloc (N), but may point to corresponding body in some cases
+
+ Constraints : List_Id;
+ Decl : Node_Id;
+ Discr : Entity_Id;
+ Hi : Node_Id;
+ Lo : Node_Id;
+ Subt : Entity_Id;
+ Disc_Type : Entity_Id;
+ Obj : Node_Id;
+
+ begin
+ Loc := Sloc (N);
+
+ if Nkind (N) = N_Defining_Identifier then
+ Obj := New_Reference_To (N, Loc);
+
+ -- If this is a formal parameter of a subprogram declaration, and
+ -- we are compiling the body, we want the declaration for the
+ -- actual subtype to carry the source position of the body, to
+ -- prevent anomalies in gdb when stepping through the code.
+
+ if Is_Formal (N) then
+ declare
+ Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
+ begin
+ if Nkind (Decl) = N_Subprogram_Declaration
+ and then Present (Corresponding_Body (Decl))
+ then
+ Loc := Sloc (Corresponding_Body (Decl));
+ end if;
+ end;
+ end if;
+
+ else
+ Obj := N;
+ end if;
+
+ if Is_Array_Type (T) then
+ Constraints := New_List;
+ for J in 1 .. Number_Dimensions (T) loop
+
+ -- Build an array subtype declaration with the nominal subtype and
+ -- the bounds of the actual. Add the declaration in front of the
+ -- local declarations for the subprogram, for analysis before any
+ -- reference to the formal in the body.
+
+ Lo :=
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
+ Attribute_Name => Name_First,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J)));
+
+ Hi :=
+ Make_Attribute_Reference (Loc,
+ Prefix =>
+ Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
+ Attribute_Name => Name_Last,
+ Expressions => New_List (
+ Make_Integer_Literal (Loc, J)));
+
+ Append (Make_Range (Loc, Lo, Hi), Constraints);
+ end loop;
+
+ -- If the type has unknown discriminants there is no constrained
+ -- subtype to build. This is never called for a formal or for a
+ -- lhs, so returning the type is ok ???
+
+ elsif Has_Unknown_Discriminants (T) then
+ return T;
+
+ else
+ Constraints := New_List;
+
+ -- Type T is a generic derived type, inherit the discriminants from
+ -- the parent type.
+
+ if Is_Private_Type (T)
+ and then No (Full_View (T))
+
+ -- T was flagged as an error if it was declared as a formal
+ -- derived type with known discriminants. In this case there
+ -- is no need to look at the parent type since T already carries
+ -- its own discriminants.
+
+ and then not Error_Posted (T)
+ then
+ Disc_Type := Etype (Base_Type (T));
+ else
+ Disc_Type := T;
+ end if;
+
+ Discr := First_Discriminant (Disc_Type);
+ while Present (Discr) loop
+ Append_To (Constraints,
+ Make_Selected_Component (Loc,
+ Prefix =>
+ Duplicate_Subexpr_No_Checks (Obj),
+ Selector_Name => New_Occurrence_Of (Discr, Loc)));
+ Next_Discriminant (Discr);
+ end loop;
+ end if;
+
+ Subt :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('S'));
+ Set_Is_Internal (Subt);
+
+ Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Subt,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (T, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => Constraints)));
+
+ Mark_Rewrite_Insertion (Decl);
+ return Decl;
+ end Build_Actual_Subtype;
+
+ ---------------------------------------
+ -- Build_Actual_Subtype_Of_Component --
+ ---------------------------------------
+
+ function Build_Actual_Subtype_Of_Component
+ (T : Entity_Id;
+ N : Node_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ P : constant Node_Id := Prefix (N);
+ D : Elmt_Id;
+ Id : Node_Id;
+ Indx_Type : Entity_Id;
+
+ Deaccessed_T : Entity_Id;
+ -- This is either a copy of T, or if T is an access type, then it is
+ -- the directly designated type of this access type.
+
+ function Build_Actual_Array_Constraint return List_Id;
+ -- If one or more of the bounds of the component depends on
+ -- discriminants, build actual constraint using the discriminants
+ -- of the prefix.
+
+ function Build_Actual_Record_Constraint return List_Id;
+ -- Similar to previous one, for discriminated components constrained
+ -- by the discriminant of the enclosing object.
+
+ -----------------------------------
+ -- Build_Actual_Array_Constraint --
+ -----------------------------------
+
+ function Build_Actual_Array_Constraint return List_Id is
+ Constraints : constant List_Id := New_List;
+ Indx : Node_Id;
+ Hi : Node_Id;
+ Lo : Node_Id;
+ Old_Hi : Node_Id;
+ Old_Lo : Node_Id;
+
+ begin
+ Indx := First_Index (Deaccessed_T);
+ while Present (Indx) loop
+ Old_Lo := Type_Low_Bound (Etype (Indx));
+ Old_Hi := Type_High_Bound (Etype (Indx));
+
+ if Denotes_Discriminant (Old_Lo) then
+ Lo :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (P),
+ Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
+
+ else
+ Lo := New_Copy_Tree (Old_Lo);
+
+ -- The new bound will be reanalyzed in the enclosing
+ -- declaration. For literal bounds that come from a type
+ -- declaration, the type of the context must be imposed, so
+ -- insure that analysis will take place. For non-universal
+ -- types this is not strictly necessary.
+
+ Set_Analyzed (Lo, False);
+ end if;
+
+ if Denotes_Discriminant (Old_Hi) then
+ Hi :=
+ Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (P),
+ Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
+
+ else
+ Hi := New_Copy_Tree (Old_Hi);
+ Set_Analyzed (Hi, False);
+ end if;
+
+ Append (Make_Range (Loc, Lo, Hi), Constraints);
+ Next_Index (Indx);
+ end loop;
+
+ return Constraints;
+ end Build_Actual_Array_Constraint;
+
+ ------------------------------------
+ -- Build_Actual_Record_Constraint --
+ ------------------------------------
+
+ function Build_Actual_Record_Constraint return List_Id is
+ Constraints : constant List_Id := New_List;
+ D : Elmt_Id;
+ D_Val : Node_Id;
+
+ begin
+ D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
+ while Present (D) loop
+ if Denotes_Discriminant (Node (D)) then
+ D_Val := Make_Selected_Component (Loc,
+ Prefix => New_Copy_Tree (P),
+ Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
+
+ else
+ D_Val := New_Copy_Tree (Node (D));
+ end if;
+
+ Append (D_Val, Constraints);
+ Next_Elmt (D);
+ end loop;
+
+ return Constraints;
+ end Build_Actual_Record_Constraint;
+
+ -- Start of processing for Build_Actual_Subtype_Of_Component
+
+ begin
+ -- Why the test for Spec_Expression mode here???
+
+ if In_Spec_Expression then
+ return Empty;
+
+ -- More comments for the rest of this body would be good ???
+
+ elsif Nkind (N) = N_Explicit_Dereference then
+ if Is_Composite_Type (T)
+ and then not Is_Constrained (T)
+ and then not (Is_Class_Wide_Type (T)
+ and then Is_Constrained (Root_Type (T)))
+ and then not Has_Unknown_Discriminants (T)
+ then
+ -- If the type of the dereference is already constrained, it
+ -- is an actual subtype.
+
+ if Is_Array_Type (Etype (N))
+ and then Is_Constrained (Etype (N))
+ then
+ return Empty;
+ else
+ Remove_Side_Effects (P);
+ return Build_Actual_Subtype (T, N);
+ end if;
+ else
+ return Empty;
+ end if;
+ end if;
+
+ if Ekind (T) = E_Access_Subtype then
+ Deaccessed_T := Designated_Type (T);
+ else
+ Deaccessed_T := T;
+ end if;
+
+ if Ekind (Deaccessed_T) = E_Array_Subtype then
+ Id := First_Index (Deaccessed_T);
+ while Present (Id) loop
+ Indx_Type := Underlying_Type (Etype (Id));
+
+ if Denotes_Discriminant (Type_Low_Bound (Indx_Type))
+ or else
+ Denotes_Discriminant (Type_High_Bound (Indx_Type))
+ then
+ Remove_Side_Effects (P);
+ return
+ Build_Component_Subtype
+ (Build_Actual_Array_Constraint, Loc, Base_Type (T));
+ end if;
+
+ Next_Index (Id);
+ end loop;
+
+ elsif Is_Composite_Type (Deaccessed_T)
+ and then Has_Discriminants (Deaccessed_T)
+ and then not Has_Unknown_Discriminants (Deaccessed_T)
+ then
+ D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
+ while Present (D) loop
+ if Denotes_Discriminant (Node (D)) then
+ Remove_Side_Effects (P);
+ return
+ Build_Component_Subtype (
+ Build_Actual_Record_Constraint, Loc, Base_Type (T));
+ end if;
+
+ Next_Elmt (D);
+ end loop;
+ end if;
+
+ -- If none of the above, the actual and nominal subtypes are the same
+
+ return Empty;
+ end Build_Actual_Subtype_Of_Component;
+
+ -----------------------------
+ -- Build_Component_Subtype --
+ -----------------------------
+
+ function Build_Component_Subtype
+ (C : List_Id;
+ Loc : Source_Ptr;
+ T : Entity_Id) return Node_Id
+ is
+ Subt : Entity_Id;
+ Decl : Node_Id;
+
+ begin
+ -- Unchecked_Union components do not require component subtypes
+
+ if Is_Unchecked_Union (T) then
+ return Empty;
+ end if;
+
+ Subt :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('S'));
+ Set_Is_Internal (Subt);
+
+ Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Subt,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Reference_To (Base_Type (T), Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => C)));
+
+ Mark_Rewrite_Insertion (Decl);
+ return Decl;
+ end Build_Component_Subtype;
+
+ ---------------------------
+ -- Build_Default_Subtype --
+ ---------------------------
+
+ function Build_Default_Subtype
+ (T : Entity_Id;
+ N : Node_Id) return Entity_Id
+ is
+ Loc : constant Source_Ptr := Sloc (N);
+ Disc : Entity_Id;
+
+ begin
+ if not Has_Discriminants (T) or else Is_Constrained (T) then
+ return T;
+ end if;
+
+ Disc := First_Discriminant (T);
+
+ if No (Discriminant_Default_Value (Disc)) then
+ return T;
+ end if;
+
+ declare
+ Act : constant Entity_Id :=
+ Make_Defining_Identifier (Loc,
+ Chars => New_Internal_Name ('S'));
+
+ Constraints : constant List_Id := New_List;
+ Decl : Node_Id;
+
+ begin
+ while Present (Disc) loop
+ Append_To (Constraints,
+ New_Copy_Tree (Discriminant_Default_Value (Disc)));
+ Next_Discriminant (Disc);
+ end loop;
+
+ Decl :=
+ Make_Subtype_Declaration (Loc,
+ Defining_Identifier => Act,
+ Subtype_Indication =>
+ Make_Subtype_Indication (Loc,
+ Subtype_Mark => New_Occurrence_Of (T, Loc),
+ Constraint =>
+ Make_Index_Or_Discriminant_Constraint (Loc,
+ Constraints => Constraints)));
+
+ Insert_Action (N, Decl);
+ Analyze (Decl);
+ return Act;
+ end;
+ end Build_Default_Subtype;
+
+ --------------------------------------------
+ -- Build_Discriminal_Subtype_Of_Component --
+ --------------------------------------------
+
+ function Build_Discriminal_Subtype_Of_Component
+ (T : Entity_Id) return Node_Id
+ is
+ Loc : constant Source_Ptr := Sloc (T);
+ D : Elmt_Id;
+ Id : Node_Id;
+
+ function Build_Discriminal_Array_Constraint return List_Id;
+ -- If one or more of the bounds of the component depends on
+ -- discriminants, build actual constraint using the discriminants
+ -- of the prefix.
+
+ function Build_Discriminal_Record_Constraint return List_Id;
+ -- Similar to previous one, for discriminated components constrained
+ -- by the discriminant of the enclosing object.
+
+ ----------------------------------------
+ -- Build_Discriminal_Array_Constraint --
+ ----------------------------------------
+
+ function Build_Discriminal_Array_Constraint return List_Id is
+ Constraints : constant List_Id := New_List;
+ Indx : Node_Id;
+ Hi : Node_Id;
+ Lo : Node_Id;
+ Old_Hi : Node_Id;
+ Old_Lo : Node_Id;
+
+ begin
+ Indx := First_Index (T);
+ while Present (Indx) loop
+ Old_Lo := Type_Low_Bound (Etype (Indx));
+ Old_Hi := Type_High_Bound (Etype (Indx));
+
+ if Denotes_Discriminant (Old_Lo) then
+ Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
+
+ else
+ Lo := New_Copy_Tree (Old_Lo);
+ end if;
+
+ if Denotes_Discriminant (Old_Hi) then
+ Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
+
+ else
+ Hi := New_Copy_Tree (Old_Hi);
+ end if;
+
+ Append (Make_Range (Loc, Lo, Hi), Constraints);
+ Next_Index (Indx);
+ end loop;
+
+ return Constraints;
+ end Build_Discriminal_Array_Constraint;
+
+ -----------------------------------------
+ -- Build_Discriminal_Record_Constraint --
+ -----------------------------------------
+
+ function Build_Discriminal_Record_Constraint return List_Id is
+ Constraints : constant List_Id := New_List;
+ D : Elmt_Id;
+ D_Val : Node_Id;
+
+ begin
+ D := First_Elmt (Discriminant_Constraint (T));
+ while Present (D) loop
+ if Denotes_Discriminant (Node (D)) then
+ D_Val :=
+ New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
+
+ else
+ D_Val := New_Copy_Tree (Node (D));
+ end if;
+
+ Append (D_Val, Constraints);
+ Next_Elmt (D);
+ end loop;
+
+ return Constraints;
+ end Build_Discriminal_Record_Constraint;
+
+ -- Start of processing for Build_Discriminal_Subtype_Of_Component
+
+ begin
+ if Ekind (T) = E_Array_Subtype then
+ Id := First_Index (T);
+ while Present (Id) loop
+ if Denotes_Discriminant (Type_Low_Bound (Etype (Id))) or else
+ Denotes_Discriminant (Type_High_Bound (Etype (Id)))
+ then
+ return Build_Component_Subtype
+ (Build_Discriminal_Array_Constraint, Loc, T);
+ end if;
+
+ Next_Index (Id);
+ end loop;
+
+ elsif Ekind (T) = E_Record_Subtype
+ and then Has_Discriminants (T)
+ and then not Has_Unknown_Discriminants (T)
+ then
+ D := First_Elmt (Discriminant_Constraint (T));
+ while Present (D) loop
+ if Denotes_Discriminant (Node (D)) then
+ return Build_Component_Subtype
+ (Build_Discriminal_Record_Constraint, Loc, T);
+ end if;
+
+ Next_Elmt (D);
+ end loop;
+ end if;
+
+ -- If none of the above, the actual and nominal subtypes are the same
+
+ return Empty;
+ end Build_Discriminal_Subtype_Of_Component;
+
+ ------------------------------
+ -- Build_Elaboration_Entity --
+ ------------------------------
+
+ procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
+ Loc : constant Source_Ptr := Sloc (N);
+ Decl : Node_Id;
+ Elab_Ent : Entity_Id;
+
+ procedure Set_Package_Name (Ent : Entity_Id);
+ -- Given an entity, sets the fully qualified name of the entity in
+ -- Name_Buffer, with components separated by double underscores. This
+ -- is a recursive routine that climbs the scope chain to Standard.
+
+ ----------------------
+ -- Set_Package_Name --
+ ----------------------
+
+ procedure Set_Package_Name (Ent : Entity_Id) is
+ begin
+ if Scope (Ent) /= Standard_Standard then
+ Set_Package_Name (Scope (Ent));
+
+ declare
+ Nam : constant String := Get_Name_String (Chars (Ent));
+ begin
+ Name_Buffer (Name_Len + 1) := '_';
+ Name_Buffer (Name_Len + 2) := '_';
+ Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
+ Name_Len := Name_Len + Nam'Length + 2;
+ end;
+
+ else
+ Get_Name_String (Chars (Ent));
+ end if;
+ end Set_Package_Name;
+
+ -- Start of processing for Build_Elaboration_Entity
+
+ begin
+ -- Ignore if already constructed
+
+ if Present (Elaboration_Entity (Spec_Id)) then
+ return;
+ end if;
+
+ -- Construct name of elaboration entity as xxx_E, where xxx is the unit
+ -- name with dots replaced by double underscore. We have to manually
+ -- construct this name, since it will be elaborated in the outer scope,
+ -- and thus will not have the unit name automatically prepended.
+
+ Set_Package_Name (Spec_Id);
+
+ -- Append _E
+
+ Name_Buffer (Name_Len + 1) := '_';
+ Name_Buffer (Name_Len + 2) := 'E';
+ Name_Len := Name_Len + 2;
+
+ -- Create elaboration flag
+
+ Elab_Ent :=
+ Make_Defining_Identifier (Loc, Chars => Name_Find);
+ Set_Elaboration_Entity (Spec_Id, Elab_Ent);
+
+ Decl :=
+ Make_Object_Declaration (Loc,
+ Defining_Identifier => Elab_Ent,
+ Object_Definition =>
+ New_Occurrence_Of (Standard_Boolean, Loc),
+ Expression =>
+ New_Occurrence_Of (Standard_False, Loc));
+
+ Push_Scope (Standard_Standard);
+ Add_Global_Declaration (Decl);
+ Pop_Scope;
+
+ -- Reset True_Constant indication, since we will indeed assign a value
+ -- to the variable in the binder main. We also kill the Current_Value
+ -- and Last_Assignment fields for the same reason.
+
+ Set_Is_True_Constant (Elab_Ent, False);
+ Set_Current_Value (Elab_Ent, Empty);
+ Set_Last_Assignment (Elab_Ent, Empty);
+
+ -- We do not want any further qualification of the name (if we did
+ -- not do this, we would pick up the name of the generic package
+ -- in the case of a library level generic instantiation).
+
+ Set_Has_Qualified_Name (Elab_Ent);
+ Set_Has_Fully_Qualified_Name (Elab_Ent);
+ end Build_Elaboration_Entity;
+
+ -----------------------------------
+ -- Cannot_Raise_Constraint_Error --
+ -----------------------------------
+
+ function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
+ begin
+ if Compile_Time_Known_Value (Expr) then
+ return True;
+
+ elsif Do_Range_Check (Expr) then
+ return False;
+
+ elsif Raises_Constraint_Error (Expr) then
+ return False;
+
+ else
+ case Nkind (Expr) is
+ when N_Identifier =>
+ return True;
+
+ when N_Expanded_Name =>
+ return True;
+
+ when N_Selected_Component =>
+ return not Do_Discriminant_Check (Expr);
+
+ when N_Attribute_Reference =>
+ if Do_Overflow_Check (Expr) then
+ return False;
+
+ elsif No (Expressions (Expr)) then
+ return True;
+
+ else
+ declare
+ N : Node_Id;
+
+ begin
+ N := First (Expressions (Expr));
+ while Present (N) loop
+ if Cannot_Raise_Constraint_Error (N) then
+ Next (N);
+ else
+ return False;
+ end if;
+ end loop;
+
+ return True;
+ end;
+ end if;
+
+ when N_Type_Conversion =>
+ if Do_Overflow_Check (Expr)
+ or else Do_Length_Check (Expr)
+ or else Do_Tag_Check (Expr)
+ then
+ return False;
+ else
+ return
+ Cannot_Raise_Constraint_Error (Expression (Expr));
+ end if;
+
+ when N_Unchecked_Type_Conversion =>
+ return Cannot_Raise_Constraint_Error (Expression (Expr));
+
+ when N_Unary_Op =>
+ if Do_Overflow_Check (Expr) then
+ return False;
+ else
+ return
+ Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
+ end if;
+
+ when N_Op_Divide |
+ N_Op_Mod |
+ N_Op_Rem
+ =>
+ if Do_Division_Check (Expr)
+ or else Do_Overflow_Check (Expr)
+ then
+ return False;
+ else
+ return
+ Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
+ and then
+ Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
+ end if;
+
+ when N_Op_Add |
+ N_Op_And |
+ N_Op_Concat |
+ N_Op_Eq |
+ N_Op_Expon |
+ N_Op_Ge |
+ N_Op_Gt |
+ N_Op_Le |
+ N_Op_Lt |
+ N_Op_Multiply |
+ N_Op_Ne |
+ N_Op_Or |
+ N_Op_Rotate_Left |
+ N_Op_Rotate_Right |
+ N_Op_Shift_Left |
+ N_Op_Shift_Right |
+ N_Op_Shift_Right_Arithmetic |
+ N_Op_Subtract |
+ N_Op_Xor
+ =>
+ if Do_Overflow_Check (Expr) then
+ return False;
+ else
+ return
+ Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
+ and then
+ Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
+ end if;
+
+ when others =>
+ return False;
+ end case;
+ end if;
+ end Cannot_Raise_Constraint_Error;
+
+ --------------------------
+ -- Check_Fully_Declared --
+ --------------------------
+
+ procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
+ begin
+ if Ekind (T) = E_Incomplete_Type then
+
+ -- Ada 2005 (AI-50217): If the type is available through a limited
+ -- with_clause, verify that its full view has been analyzed.
+
+ if From_With_Type (T)
+ and then Present (Non_Limited_View (T))
+ and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
+ then
+ -- The non-limited view is fully declared
+ null;
+
+ else
+ Error_Msg_NE
+ ("premature usage of incomplete}", N, First_Subtype (T));
+ end if;
+
+ -- Need comments for these tests ???
+
+ elsif Has_Private_Component (T)
+ and then not Is_Generic_Type (Root_Type (T))
+ and then not In_Spec_Expression
+ then
+ -- Special case: if T is the anonymous type created for a single
+ -- task or protected object, use the name of the source object.
+
+ if Is_Concurrent_Type (T)
+ and then not Comes_From_Source (T)
+ and then Nkind (N) = N_Object_Declaration
+ then
+ Error_Msg_NE ("type of& has incomplete component", N,
+ Defining_Identifier (N));
+
+ else
+ Error_Msg_NE
+ ("premature usage of incomplete}", N, First_Subtype (T));
+ end if;
+ end if;
+ end Check_Fully_Declared;
+
+ -------------------------
+ -- Check_Nested_Access --
+ -------------------------
+
+ procedure Check_Nested_Access (Ent : Entity_Id) is
+ Scop : constant Entity_Id := Current_Scope;
+ Current_Subp : Entity_Id;
+ Enclosing : Entity_Id;
+
+ begin
+ -- Currently only enabled for VM back-ends for efficiency, should we
+ -- enable it more systematically ???
+
+ -- Check for Is_Imported needs commenting below ???
+
+ if VM_Target /= No_VM
+ and then (Ekind (Ent) = E_Variable
+ or else
+ Ekind (Ent) = E_Constant
+ or else
+ Ekind (Ent) = E_Loop_Parameter)
+ and then Scope (Ent) /= Empty
+ and then not Is_Library_Level_Entity (Ent)
+ and then not Is_Imported (Ent)
+ then
+ if Is_Subprogram (Scop)
+ or else Is_Generic_Subprogram (Scop)
+ or else Is_Entry (Scop)
+ then
+ Current_Subp := Scop;
+ else
+ Current_Subp := Current_Subprogram;
+ end if;
+
+ Enclosing := Enclosing_Subprogram (Ent);
+
+ if Enclosing /= Empty
+ and then Enclosing /= Current_Subp
+ then
+ Set_Has_Up_Level_Access (Ent, True);
+ end if;
+ end if;
+ end Check_Nested_Access;
+
+ ------------------------------------------
+ -- Check_Potentially_Blocking_Operation --
+ ------------------------------------------
+
+ procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
+ S : Entity_Id;
+ begin
+ -- N is one of the potentially blocking operations listed in 9.5.1(8).
+ -- When pragma Detect_Blocking is active, the run time will raise
+ -- Program_Error. Here we only issue a warning, since we generally
+ -- support the use of potentially blocking operations in the absence
+ -- of the pragma.
+
+ -- Indirect blocking through a subprogram call cannot be diagnosed
+ -- statically without interprocedural analysis, so we do not attempt
+ -- to do it here.
+
+ S := Scope (Current_Scope);
+ while Present (S) and then S /= Standard_Standard loop
+ if Is_Protected_Type (S) then
+ Error_Msg_N
+ ("potentially blocking operation in protected operation?", N);
+
+ return;
+ end if;
+
+ S := Scope (S);
+ end loop;
+ end Check_Potentially_Blocking_Operation;
+
+ ------------------------------
+ -- Check_Unprotected_Access --
+ ------------------------------
+
+ procedure Check_Unprotected_Access
+ (Context : Node_Id;
+ Expr : Node_Id)
+ is
+ Cont_Encl_Typ : Entity_Id;
+ Pref_Encl_Typ : Entity_Id;
+
+ function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
+ -- Check whether Obj is a private component of a protected object.
+ -- Return the protected type where the component resides, Empty
+ -- otherwise.
+
+ function Is_Public_Operation return Boolean;
+ -- Verify that the enclosing operation is callable from outside the
+ -- protected object, to minimize false positives.
+
+ ------------------------------
+ -- Enclosing_Protected_Type --
+ ------------------------------
+
+ function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
+ begin
+ if Is_Entity_Name (Obj) then
+ declare
+ Ent : Entity_Id := Entity (Obj);
+
+ begin
+ -- The object can be a renaming of a private component, use
+ -- the original record component.
+
+ if Is_Prival (Ent) then
+ Ent := Prival_Link (Ent);
+ end if;
+
+ if Is_Protected_Type (Scope (Ent)) then
+ return Scope (Ent);
+ end if;
+ end;
+ end if;
+
+ -- For indexed and selected components, recursively check the prefix
+
+ if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
+ return Enclosing_Protected_Type (Prefix (Obj));
+
+ -- The object does not denote a protected component
+
+ else
+ return Empty;
+ end if;
+ end Enclosing_Protected_Type;
+
+ -------------------------
+ -- Is_Public_Operation --
+ -------------------------
+
+ function Is_Public_Operation return Boolean is
+ S : Entity_Id;
+ E : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S)
+ and then S /= Pref_Encl_Typ
+ loop
+ if Scope (S) = Pref_Encl_Typ then
+ E := First_Entity (Pref_Encl_Typ);
+ while Present (E)
+ and then E /= First_Private_Entity (Pref_Encl_Typ)
+ loop
+ if E = S then
+ return True;
+ end if;
+ Next_Entity (E);
+ end loop;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end Is_Public_Operation;
+
+ -- Start of processing for Check_Unprotected_Access
+
+ begin
+ if Nkind (Expr) = N_Attribute_Reference
+ and then Attribute_Name (Expr) = Name_Unchecked_Access
+ then
+ Cont_Encl_Typ := Enclosing_Protected_Type (Context);
+ Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
+
+ -- Check whether we are trying to export a protected component to a
+ -- context with an equal or lower access level.
+
+ if Present (Pref_Encl_Typ)
+ and then No (Cont_Encl_Typ)
+ and then Is_Public_Operation
+ and then Scope_Depth (Pref_Encl_Typ) >=
+ Object_Access_Level (Context)
+ then
+ Error_Msg_N
+ ("?possible unprotected access to protected data", Expr);
+ end if;
+ end if;
+ end Check_Unprotected_Access;
+
+ ---------------
+ -- Check_VMS --
+ ---------------
+
+ procedure Check_VMS (Construct : Node_Id) is
+ begin
+ if not OpenVMS_On_Target then
+ Error_Msg_N
+ ("this construct is allowed only in Open'V'M'S", Construct);
+ end if;
+ end Check_VMS;
+
+ ------------------------
+ -- Collect_Interfaces --
+ ------------------------
+
+ procedure Collect_Interfaces
+ (T : Entity_Id;
+ Ifaces_List : out Elist_Id;
+ Exclude_Parents : Boolean := False;
+ Use_Full_View : Boolean := True)
+ is
+ procedure Collect (Typ : Entity_Id);
+ -- Subsidiary subprogram used to traverse the whole list
+ -- of directly and indirectly implemented interfaces
+
+ -------------
+ -- Collect --
+ -------------
+
+ procedure Collect (Typ : Entity_Id) is
+ Ancestor : Entity_Id;
+ Full_T : Entity_Id;
+ Id : Node_Id;
+ Iface : Entity_Id;
+
+ begin
+ Full_T := Typ;
+
+ -- Handle private types
+
+ if Use_Full_View
+ and then Is_Private_Type (Typ)
+ and then Present (Full_View (Typ))
+ then
+ Full_T := Full_View (Typ);
+ end if;
+
+ -- Include the ancestor if we are generating the whole list of
+ -- abstract interfaces.
+
+ if Etype (Full_T) /= Typ
+
+ -- Protect the frontend against wrong sources. For example:
+
+ -- package P is
+ -- type A is tagged null record;
+ -- type B is new A with private;
+ -- type C is new A with private;
+ -- private
+ -- type B is new C with null record;
+ -- type C is new B with null record;
+ -- end P;
+
+ and then Etype (Full_T) /= T
+ then
+ Ancestor := Etype (Full_T);
+ Collect (Ancestor);
+
+ if Is_Interface (Ancestor)
+ and then not Exclude_Parents
+ then
+ Append_Unique_Elmt (Ancestor, Ifaces_List);
+ end if;
+ end if;
+
+ -- Traverse the graph of ancestor interfaces
+
+ if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
+ Id := First (Abstract_Interface_List (Full_T));
+ while Present (Id) loop
+ Iface := Etype (Id);
+
+ -- Protect against wrong uses. For example:
+ -- type I is interface;
+ -- type O is tagged null record;
+ -- type Wrong is new I and O with null record; -- ERROR
+
+ if Is_Interface (Iface) then
+ if Exclude_Parents
+ and then Etype (T) /= T
+ and then Interface_Present_In_Ancestor (Etype (T), Iface)
+ then
+ null;
+ else
+ Collect (Iface);
+ Append_Unique_Elmt (Iface, Ifaces_List);
+ end if;
+ end if;
+
+ Next (Id);
+ end loop;
+ end if;
+ end Collect;
+
+ -- Start of processing for Collect_Interfaces
+
+ begin
+ pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
+ Ifaces_List := New_Elmt_List;
+ Collect (T);
+ end Collect_Interfaces;
+
+ ----------------------------------
+ -- Collect_Interface_Components --
+ ----------------------------------
+
+ procedure Collect_Interface_Components
+ (Tagged_Type : Entity_Id;
+ Components_List : out Elist_Id)
+ is
+ procedure Collect (Typ : Entity_Id);
+ -- Subsidiary subprogram used to climb to the parents
+
+ -------------
+ -- Collect --
+ -------------
+
+ procedure Collect (Typ : Entity_Id) is
+ Tag_Comp : Entity_Id;
+
+ begin
+ if Etype (Typ) /= Typ
+
+ -- Protect the frontend against wrong sources. For example:
+
+ -- package P is
+ -- type A is tagged null record;
+ -- type B is new A with private;
+ -- type C is new A with private;
+ -- private
+ -- type B is new C with null record;
+ -- type C is new B with null record;
+ -- end P;
+
+ and then Etype (Typ) /= Tagged_Type
+ then
+ Collect (Etype (Typ));
+ end if;
+
+ -- Collect the components containing tags of secondary dispatch
+ -- tables.
+
+ Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
+ while Present (Tag_Comp) loop
+ pragma Assert (Present (Related_Type (Tag_Comp)));
+ Append_Elmt (Tag_Comp, Components_List);
+
+ Tag_Comp := Next_Tag_Component (Tag_Comp);
+ end loop;
+ end Collect;
+
+ -- Start of processing for Collect_Interface_Components
+
+ begin
+ pragma Assert (Ekind (Tagged_Type) = E_Record_Type
+ and then Is_Tagged_Type (Tagged_Type));
+
+ Components_List := New_Elmt_List;
+ Collect (Tagged_Type);
+ end Collect_Interface_Components;
+
+ -----------------------------
+ -- Collect_Interfaces_Info --
+ -----------------------------
+
+ procedure Collect_Interfaces_Info
+ (T : Entity_Id;
+ Ifaces_List : out Elist_Id;
+ Components_List : out Elist_Id;
+ Tags_List : out Elist_Id)
+ is
+ Comps_List : Elist_Id;
+ Comp_Elmt : Elmt_Id;
+ Comp_Iface : Entity_Id;
+ Iface_Elmt : Elmt_Id;
+ Iface : Entity_Id;
+
+ function Search_Tag (Iface : Entity_Id) return Entity_Id;
+ -- Search for the secondary tag associated with the interface type
+ -- Iface that is implemented by T.
+
+ ----------------
+ -- Search_Tag --
+ ----------------
+
+ function Search_Tag (Iface : Entity_Id) return Entity_Id is
+ ADT : Elmt_Id;
+
+ begin
+ ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
+ while Present (ADT)
+ and then Ekind (Node (ADT)) = E_Constant
+ and then Related_Type (Node (ADT)) /= Iface
+ loop
+ -- Skip the secondary dispatch tables of Iface
+
+ Next_Elmt (ADT);
+ Next_Elmt (ADT);
+ Next_Elmt (ADT);
+ Next_Elmt (ADT);
+ end loop;
+
+ pragma Assert (Ekind (Node (ADT)) = E_Constant);
+ return Node (ADT);
+ end Search_Tag;
+
+ -- Start of processing for Collect_Interfaces_Info
+
+ begin
+ Collect_Interfaces (T, Ifaces_List);
+ Collect_Interface_Components (T, Comps_List);
+
+ -- Search for the record component and tag associated with each
+ -- interface type of T.
+
+ Components_List := New_Elmt_List;
+ Tags_List := New_Elmt_List;
+
+ Iface_Elmt := First_Elmt (Ifaces_List);
+ while Present (Iface_Elmt) loop
+ Iface := Node (Iface_Elmt);
+
+ -- Associate the primary tag component and the primary dispatch table
+ -- with all the interfaces that are parents of T
+
+ if Is_Ancestor (Iface, T) then
+ Append_Elmt (First_Tag_Component (T), Components_List);
+ Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
+
+ -- Otherwise search for the tag component and secondary dispatch
+ -- table of Iface
+
+ else
+ Comp_Elmt := First_Elmt (Comps_List);
+ while Present (Comp_Elmt) loop
+ Comp_Iface := Related_Type (Node (Comp_Elmt));
+
+ if Comp_Iface = Iface
+ or else Is_Ancestor (Iface, Comp_Iface)
+ then
+ Append_Elmt (Node (Comp_Elmt), Components_List);
+ Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
+ exit;
+ end if;
+
+ Next_Elmt (Comp_Elmt);
+ end loop;
+ pragma Assert (Present (Comp_Elmt));
+ end if;
+
+ Next_Elmt (Iface_Elmt);
+ end loop;
+ end Collect_Interfaces_Info;
+
+ ----------------------------------
+ -- Collect_Primitive_Operations --
+ ----------------------------------
+
+ function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
+ B_Type : constant Entity_Id := Base_Type (T);
+ B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
+ B_Scope : Entity_Id := Scope (B_Type);
+ Op_List : Elist_Id;
+ Formal : Entity_Id;
+ Is_Prim : Boolean;
+ Formal_Derived : Boolean := False;
+ Id : Entity_Id;
+
+ begin
+ -- For tagged types, the primitive operations are collected as they
+ -- are declared, and held in an explicit list which is simply returned.
+
+ if Is_Tagged_Type (B_Type) then
+ return Primitive_Operations (B_Type);
+
+ -- An untagged generic type that is a derived type inherits the
+ -- primitive operations of its parent type. Other formal types only
+ -- have predefined operators, which are not explicitly represented.
+
+ elsif Is_Generic_Type (B_Type) then
+ if Nkind (B_Decl) = N_Formal_Type_Declaration
+ and then Nkind (Formal_Type_Definition (B_Decl))
+ = N_Formal_Derived_Type_Definition
+ then
+ Formal_Derived := True;
+ else
+ return New_Elmt_List;
+ end if;
+ end if;
+
+ Op_List := New_Elmt_List;
+
+ if B_Scope = Standard_Standard then
+ if B_Type = Standard_String then
+ Append_Elmt (Standard_Op_Concat, Op_List);
+
+ elsif B_Type = Standard_Wide_String then
+ Append_Elmt (Standard_Op_Concatw, Op_List);
+
+ else
+ null;
+ end if;
+
+ elsif (Is_Package_Or_Generic_Package (B_Scope)
+ and then
+ Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
+ N_Package_Body)
+ or else Is_Derived_Type (B_Type)
+ then
+ -- The primitive operations appear after the base type, except
+ -- if the derivation happens within the private part of B_Scope
+ -- and the type is a private type, in which case both the type
+ -- and some primitive operations may appear before the base
+ -- type, and the list of candidates starts after the type.
+
+ if In_Open_Scopes (B_Scope)
+ and then Scope (T) = B_Scope
+ and then In_Private_Part (B_Scope)
+ then
+ Id := Next_Entity (T);
+ else
+ Id := Next_Entity (B_Type);
+ end if;
+
+ while Present (Id) loop
+
+ -- Note that generic formal subprograms are not
+ -- considered to be primitive operations and thus
+ -- are never inherited.
+
+ if Is_Overloadable (Id)
+ and then Nkind (Parent (Parent (Id)))
+ not in N_Formal_Subprogram_Declaration
+ then
+ Is_Prim := False;
+
+ if Base_Type (Etype (Id)) = B_Type then
+ Is_Prim := True;
+ else
+ Formal := First_Formal (Id);
+ while Present (Formal) loop
+ if Base_Type (Etype (Formal)) = B_Type then
+ Is_Prim := True;
+ exit;
+
+ elsif Ekind (Etype (Formal)) = E_Anonymous_Access_Type
+ and then Base_Type
+ (Designated_Type (Etype (Formal))) = B_Type
+ then
+ Is_Prim := True;
+ exit;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+ end if;
+
+ -- For a formal derived type, the only primitives are the
+ -- ones inherited from the parent type. Operations appearing
+ -- in the package declaration are not primitive for it.
+
+ if Is_Prim
+ and then (not Formal_Derived
+ or else Present (Alias (Id)))
+ then
+ Append_Elmt (Id, Op_List);
+ end if;
+ end if;
+
+ Next_Entity (Id);
+
+ -- For a type declared in System, some of its operations
+ -- may appear in the target-specific extension to System.
+
+ if No (Id)
+ and then Chars (B_Scope) = Name_System
+ and then Scope (B_Scope) = Standard_Standard
+ and then Present_System_Aux
+ then
+ B_Scope := System_Aux_Id;
+ Id := First_Entity (System_Aux_Id);
+ end if;
+ end loop;
+ end if;
+
+ return Op_List;
+ end Collect_Primitive_Operations;
+
+ -----------------------------------
+ -- Compile_Time_Constraint_Error --
+ -----------------------------------
+
+ function Compile_Time_Constraint_Error
+ (N : Node_Id;
+ Msg : String;
+ Ent : Entity_Id := Empty;
+ Loc : Source_Ptr := No_Location;
+ Warn : Boolean := False) return Node_Id
+ is
+ Msgc : String (1 .. Msg'Length + 2);
+ -- Copy of message, with room for possible ? and ! at end
+
+ Msgl : Natural;
+ Wmsg : Boolean;
+ P : Node_Id;
+ OldP : Node_Id;
+ Msgs : Boolean;
+ Eloc : Source_Ptr;
+
+ begin
+ -- A static constraint error in an instance body is not a fatal error.
+ -- we choose to inhibit the message altogether, because there is no
+ -- obvious node (for now) on which to post it. On the other hand the
+ -- offending node must be replaced with a constraint_error in any case.
+
+ -- No messages are generated if we already posted an error on this node
+
+ if not Error_Posted (N) then
+ if Loc /= No_Location then
+ Eloc := Loc;
+ else
+ Eloc := Sloc (N);
+ end if;
+
+ Msgc (1 .. Msg'Length) := Msg;
+ Msgl := Msg'Length;
+
+ -- Message is a warning, even in Ada 95 case
+
+ if Msg (Msg'Last) = '?' then
+ Wmsg := True;
+
+ -- In Ada 83, all messages are warnings. In the private part and
+ -- the body of an instance, constraint_checks are only warnings.
+ -- We also make this a warning if the Warn parameter is set.
+
+ elsif Warn
+ or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
+ then
+ Msgl := Msgl + 1;
+ Msgc (Msgl) := '?';
+ Wmsg := True;
+
+ elsif In_Instance_Not_Visible then
+ Msgl := Msgl + 1;
+ Msgc (Msgl) := '?';
+ Wmsg := True;
+
+ -- Otherwise we have a real error message (Ada 95 static case)
+ -- and we make this an unconditional message. Note that in the
+ -- warning case we do not make the message unconditional, it seems
+ -- quite reasonable to delete messages like this (about exceptions
+ -- that will be raised) in dead code.
+
+ else
+ Wmsg := False;
+ Msgl := Msgl + 1;
+ Msgc (Msgl) := '!';
+ end if;
+
+ -- Should we generate a warning? The answer is not quite yes. The
+ -- very annoying exception occurs in the case of a short circuit
+ -- operator where the left operand is static and decisive. Climb
+ -- parents to see if that is the case we have here. Conditional
+ -- expressions with decisive conditions are a similar situation.
+
+ Msgs := True;
+ P := N;
+ loop
+ OldP := P;
+ P := Parent (P);
+
+ -- And then with False as left operand
+
+ if Nkind (P) = N_And_Then
+ and then Compile_Time_Known_Value (Left_Opnd (P))
+ and then Is_False (Expr_Value (Left_Opnd (P)))
+ then
+ Msgs := False;
+ exit;
+
+ -- OR ELSE with True as left operand
+
+ elsif Nkind (P) = N_Or_Else
+ and then Compile_Time_Known_Value (Left_Opnd (P))
+ and then Is_True (Expr_Value (Left_Opnd (P)))
+ then
+ Msgs := False;
+ exit;
+
+ -- Conditional expression
+
+ elsif Nkind (P) = N_Conditional_Expression then
+ declare
+ Cond : constant Node_Id := First (Expressions (P));
+ Texp : constant Node_Id := Next (Cond);
+ Fexp : constant Node_Id := Next (Texp);
+
+ begin
+ if Compile_Time_Known_Value (Cond) then
+
+ -- Condition is True and we are in the right operand
+
+ if Is_True (Expr_Value (Cond))
+ and then OldP = Fexp
+ then
+ Msgs := False;
+ exit;
+
+ -- Condition is False and we are in the left operand
+
+ elsif Is_False (Expr_Value (Cond))
+ and then OldP = Texp
+ then
+ Msgs := False;
+ exit;
+ end if;
+ end if;
+ end;
+
+ -- Special case for component association in aggregates, where
+ -- we want to keep climbing up to the parent aggregate.
+
+ elsif Nkind (P) = N_Component_Association
+ and then Nkind (Parent (P)) = N_Aggregate
+ then
+ null;
+
+ -- Keep going if within subexpression
+
+ else
+ exit when Nkind (P) not in N_Subexpr;
+ end if;
+ end loop;
+
+ if Msgs then
+ if Present (Ent) then
+ Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
+ else
+ Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
+ end if;
+
+ if Wmsg then
+ if Inside_Init_Proc then
+ Error_Msg_NEL
+ ("\?& will be raised for objects of this type",
+ N, Standard_Constraint_Error, Eloc);
+ else
+ Error_Msg_NEL
+ ("\?& will be raised at run time",
+ N, Standard_Constraint_Error, Eloc);
+ end if;
+
+ else
+ Error_Msg
+ ("\static expression fails Constraint_Check", Eloc);
+ Set_Error_Posted (N);
+ end if;
+ end if;
+ end if;
+
+ return N;
+ end Compile_Time_Constraint_Error;
+
+ -----------------------
+ -- Conditional_Delay --
+ -----------------------
+
+ procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
+ begin
+ if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
+ Set_Has_Delayed_Freeze (New_Ent);
+ end if;
+ end Conditional_Delay;
+
+ -------------------------
+ -- Copy_Parameter_List --
+ -------------------------
+
+ function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
+ Loc : constant Source_Ptr := Sloc (Subp_Id);
+ Plist : List_Id;
+ Formal : Entity_Id;
+
+ begin
+ if No (First_Formal (Subp_Id)) then
+ return No_List;
+ else
+ Plist := New_List;
+ Formal := First_Formal (Subp_Id);
+ while Present (Formal) loop
+ Append
+ (Make_Parameter_Specification (Loc,
+ Defining_Identifier =>
+ Make_Defining_Identifier (Sloc (Formal),
+ Chars => Chars (Formal)),
+ In_Present => In_Present (Parent (Formal)),
+ Out_Present => Out_Present (Parent (Formal)),
+ Parameter_Type =>
+ New_Reference_To (Etype (Formal), Loc),
+ Expression =>
+ New_Copy_Tree (Expression (Parent (Formal)))),
+ Plist);
+
+ Next_Formal (Formal);
+ end loop;
+ end if;
+
+ return Plist;
+ end Copy_Parameter_List;
+
+ --------------------
+ -- Current_Entity --
+ --------------------
+
+ -- The currently visible definition for a given identifier is the
+ -- one most chained at the start of the visibility chain, i.e. the
+ -- one that is referenced by the Node_Id value of the name of the
+ -- given identifier.
+
+ function Current_Entity (N : Node_Id) return Entity_Id is
+ begin
+ return Get_Name_Entity_Id (Chars (N));
+ end Current_Entity;
+
+ -----------------------------
+ -- Current_Entity_In_Scope --
+ -----------------------------
+
+ function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
+ E : Entity_Id;
+ CS : constant Entity_Id := Current_Scope;
+
+ Transient_Case : constant Boolean := Scope_Is_Transient;
+
+ begin
+ E := Get_Name_Entity_Id (Chars (N));
+ while Present (E)
+ and then Scope (E) /= CS
+ and then (not Transient_Case or else Scope (E) /= Scope (CS))
+ loop
+ E := Homonym (E);
+ end loop;
+
+ return E;
+ end Current_Entity_In_Scope;
+
+ -------------------
+ -- Current_Scope --
+ -------------------
+
+ function Current_Scope return Entity_Id is
+ begin
+ if Scope_Stack.Last = -1 then
+ return Standard_Standard;
+ else
+ declare
+ C : constant Entity_Id :=
+ Scope_Stack.Table (Scope_Stack.Last).Entity;
+ begin
+ if Present (C) then
+ return C;
+ else
+ return Standard_Standard;
+ end if;
+ end;
+ end if;
+ end Current_Scope;
+
+ ------------------------
+ -- Current_Subprogram --
+ ------------------------
+
+ function Current_Subprogram return Entity_Id is
+ Scop : constant Entity_Id := Current_Scope;
+ begin
+ if Is_Subprogram (Scop) or else Is_Generic_Subprogram (Scop) then
+ return Scop;
+ else
+ return Enclosing_Subprogram (Scop);
+ end if;
+ end Current_Subprogram;
+
+ ---------------------
+ -- Defining_Entity --
+ ---------------------
+
+ function Defining_Entity (N : Node_Id) return Entity_Id is
+ K : constant Node_Kind := Nkind (N);
+ Err : Entity_Id := Empty;
+
+ begin
+ case K is
+ when
+ N_Subprogram_Declaration |
+ N_Abstract_Subprogram_Declaration |
+ N_Subprogram_Body |
+ N_Package_Declaration |
+ N_Subprogram_Renaming_Declaration |
+ N_Subprogram_Body_Stub |
+ N_Generic_Subprogram_Declaration |
+ N_Generic_Package_Declaration |
+ N_Formal_Subprogram_Declaration
+ =>
+ return Defining_Entity (Specification (N));
+
+ when
+ N_Component_Declaration |
+ N_Defining_Program_Unit_Name |
+ N_Discriminant_Specification |
+ N_Entry_Body |
+ N_Entry_Declaration |
+ N_Entry_Index_Specification |
+ N_Exception_Declaration |
+ N_Exception_Renaming_Declaration |
+ N_Formal_Object_Declaration |
+ N_Formal_Package_Declaration |
+ N_Formal_Type_Declaration |
+ N_Full_Type_Declaration |
+ N_Implicit_Label_Declaration |
+ N_Incomplete_Type_Declaration |
+ N_Loop_Parameter_Specification |
+ N_Number_Declaration |
+ N_Object_Declaration |
+ N_Object_Renaming_Declaration |
+ N_Package_Body_Stub |
+ N_Parameter_Specification |
+ N_Private_Extension_Declaration |
+ N_Private_Type_Declaration |
+ N_Protected_Body |
+ N_Protected_Body_Stub |
+ N_Protected_Type_Declaration |
+ N_Single_Protected_Declaration |
+ N_Single_Task_Declaration |
+ N_Subtype_Declaration |
+ N_Task_Body |
+ N_Task_Body_Stub |
+ N_Task_Type_Declaration
+ =>
+ return Defining_Identifier (N);
+
+ when N_Subunit =>
+ return Defining_Entity (Proper_Body (N));
+
+ when
+ N_Function_Instantiation |
+ N_Function_Specification |
+ N_Generic_Function_Renaming_Declaration |
+ N_Generic_Package_Renaming_Declaration |
+ N_Generic_Procedure_Renaming_Declaration |
+ N_Package_Body |
+ N_Package_Instantiation |
+ N_Package_Renaming_Declaration |
+ N_Package_Specification |
+ N_Procedure_Instantiation |
+ N_Procedure_Specification
+ =>
+ declare
+ Nam : constant Node_Id := Defining_Unit_Name (N);
+
+ begin
+ if Nkind (Nam) in N_Entity then
+ return Nam;
+
+ -- For Error, make up a name and attach to declaration
+ -- so we can continue semantic analysis
+
+ elsif Nam = Error then
+ Err :=
+ Make_Defining_Identifier (Sloc (N),
+ Chars => New_Internal_Name ('T'));
+ Set_Defining_Unit_Name (N, Err);
+
+ return Err;
+ -- If not an entity, get defining identifier
+
+ else
+ return Defining_Identifier (Nam);
+ end if;
+ end;
+
+ when N_Block_Statement =>
+ return Entity (Identifier (N));
+
+ when others =>
+ raise Program_Error;
+
+ end case;
+ end Defining_Entity;
+
+ --------------------------
+ -- Denotes_Discriminant --
+ --------------------------
+
+ function Denotes_Discriminant
+ (N : Node_Id;
+ Check_Concurrent : Boolean := False) return Boolean
+ is
+ E : Entity_Id;
+ begin
+ if not Is_Entity_Name (N)
+ or else No (Entity (N))
+ then
+ return False;
+ else
+ E := Entity (N);
+ end if;
+
+ -- If we are checking for a protected type, the discriminant may have
+ -- been rewritten as the corresponding discriminal of the original type
+ -- or of the corresponding concurrent record, depending on whether we
+ -- are in the spec or body of the protected type.
+
+ return Ekind (E) = E_Discriminant
+ or else
+ (Check_Concurrent
+ and then Ekind (E) = E_In_Parameter
+ and then Present (Discriminal_Link (E))
+ and then
+ (Is_Concurrent_Type (Scope (Discriminal_Link (E)))
+ or else
+ Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
+
+ end Denotes_Discriminant;
+
+ ----------------------
+ -- Denotes_Variable --
+ ----------------------
+
+ function Denotes_Variable (N : Node_Id) return Boolean is
+ begin
+ return Is_Variable (N) and then Paren_Count (N) = 0;
+ end Denotes_Variable;
+
+ -----------------------------
+ -- Depends_On_Discriminant --
+ -----------------------------
+
+ function Depends_On_Discriminant (N : Node_Id) return Boolean is
+ L : Node_Id;
+ H : Node_Id;
+
+ begin
+ Get_Index_Bounds (N, L, H);
+ return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
+ end Depends_On_Discriminant;
+
+ -------------------------
+ -- Designate_Same_Unit --
+ -------------------------
+
+ function Designate_Same_Unit
+ (Name1 : Node_Id;
+ Name2 : Node_Id) return Boolean
+ is
+ K1 : constant Node_Kind := Nkind (Name1);
+ K2 : constant Node_Kind := Nkind (Name2);
+
+ function Prefix_Node (N : Node_Id) return Node_Id;
+ -- Returns the parent unit name node of a defining program unit name
+ -- or the prefix if N is a selected component or an expanded name.
+
+ function Select_Node (N : Node_Id) return Node_Id;
+ -- Returns the defining identifier node of a defining program unit
+ -- name or the selector node if N is a selected component or an
+ -- expanded name.
+
+ -----------------
+ -- Prefix_Node --
+ -----------------
+
+ function Prefix_Node (N : Node_Id) return Node_Id is
+ begin
+ if Nkind (N) = N_Defining_Program_Unit_Name then
+ return Name (N);
+
+ else
+ return Prefix (N);
+ end if;
+ end Prefix_Node;
+
+ -----------------
+ -- Select_Node --
+ -----------------
+
+ function Select_Node (N : Node_Id) return Node_Id is
+ begin
+ if Nkind (N) = N_Defining_Program_Unit_Name then
+ return Defining_Identifier (N);
+
+ else
+ return Selector_Name (N);
+ end if;
+ end Select_Node;
+
+ -- Start of processing for Designate_Next_Unit
+
+ begin
+ if (K1 = N_Identifier or else
+ K1 = N_Defining_Identifier)
+ and then
+ (K2 = N_Identifier or else
+ K2 = N_Defining_Identifier)
+ then
+ return Chars (Name1) = Chars (Name2);
+
+ elsif
+ (K1 = N_Expanded_Name or else
+ K1 = N_Selected_Component or else
+ K1 = N_Defining_Program_Unit_Name)
+ and then
+ (K2 = N_Expanded_Name or else
+ K2 = N_Selected_Component or else
+ K2 = N_Defining_Program_Unit_Name)
+ then
+ return
+ (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
+ and then
+ Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
+
+ else
+ return False;
+ end if;
+ end Designate_Same_Unit;
+
+ ----------------------------
+ -- Enclosing_Generic_Body --
+ ----------------------------
+
+ function Enclosing_Generic_Body
+ (N : Node_Id) return Node_Id
+ is
+ P : Node_Id;
+ Decl : Node_Id;
+ Spec : Node_Id;
+
+ begin
+ P := Parent (N);
+ while Present (P) loop
+ if Nkind (P) = N_Package_Body
+ or else Nkind (P) = N_Subprogram_Body
+ then
+ Spec := Corresponding_Spec (P);
+
+ if Present (Spec) then
+ Decl := Unit_Declaration_Node (Spec);
+
+ if Nkind (Decl) = N_Generic_Package_Declaration
+ or else Nkind (Decl) = N_Generic_Subprogram_Declaration
+ then
+ return P;
+ end if;
+ end if;
+ end if;
+
+ P := Parent (P);
+ end loop;
+
+ return Empty;
+ end Enclosing_Generic_Body;
+
+ ----------------------------
+ -- Enclosing_Generic_Unit --
+ ----------------------------
+
+ function Enclosing_Generic_Unit
+ (N : Node_Id) return Node_Id
+ is
+ P : Node_Id;
+ Decl : Node_Id;
+ Spec : Node_Id;
+
+ begin
+ P := Parent (N);
+ while Present (P) loop
+ if Nkind (P) = N_Generic_Package_Declaration
+ or else Nkind (P) = N_Generic_Subprogram_Declaration
+ then
+ return P;
+
+ elsif Nkind (P) = N_Package_Body
+ or else Nkind (P) = N_Subprogram_Body
+ then
+ Spec := Corresponding_Spec (P);
+
+ if Present (Spec) then
+ Decl := Unit_Declaration_Node (Spec);
+
+ if Nkind (Decl) = N_Generic_Package_Declaration
+ or else Nkind (Decl) = N_Generic_Subprogram_Declaration
+ then
+ return Decl;
+ end if;
+ end if;
+ end if;
+
+ P := Parent (P);
+ end loop;
+
+ return Empty;
+ end Enclosing_Generic_Unit;
+
+ -------------------------------
+ -- Enclosing_Lib_Unit_Entity --
+ -------------------------------
+
+ function Enclosing_Lib_Unit_Entity return Entity_Id is
+ Unit_Entity : Entity_Id;
+
+ begin
+ -- Look for enclosing library unit entity by following scope links.
+ -- Equivalent to, but faster than indexing through the scope stack.
+
+ Unit_Entity := Current_Scope;
+ while (Present (Scope (Unit_Entity))
+ and then Scope (Unit_Entity) /= Standard_Standard)
+ and not Is_Child_Unit (Unit_Entity)
+ loop
+ Unit_Entity := Scope (Unit_Entity);
+ end loop;
+
+ return Unit_Entity;
+ end Enclosing_Lib_Unit_Entity;
+
+ -----------------------------
+ -- Enclosing_Lib_Unit_Node --
+ -----------------------------
+
+ function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
+ Current_Node : Node_Id;
+
+ begin
+ Current_Node := N;
+ while Present (Current_Node)
+ and then Nkind (Current_Node) /= N_Compilation_Unit
+ loop
+ Current_Node := Parent (Current_Node);
+ end loop;
+
+ if Nkind (Current_Node) /= N_Compilation_Unit then
+ return Empty;
+ end if;
+
+ return Current_Node;
+ end Enclosing_Lib_Unit_Node;
+
+ --------------------------
+ -- Enclosing_Subprogram --
+ --------------------------
+
+ function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
+ Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
+
+ begin
+ if Dynamic_Scope = Standard_Standard then
+ return Empty;
+
+ elsif Dynamic_Scope = Empty then
+ return Empty;
+
+ elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
+ return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
+
+ elsif Ekind (Dynamic_Scope) = E_Block
+ or else Ekind (Dynamic_Scope) = E_Return_Statement
+ then
+ return Enclosing_Subprogram (Dynamic_Scope);
+
+ elsif Ekind (Dynamic_Scope) = E_Task_Type then
+ return Get_Task_Body_Procedure (Dynamic_Scope);
+
+ elsif Convention (Dynamic_Scope) = Convention_Protected then
+ return Protected_Body_Subprogram (Dynamic_Scope);
+
+ else
+ return Dynamic_Scope;
+ end if;
+ end Enclosing_Subprogram;
+
+ ------------------------
+ -- Ensure_Freeze_Node --
+ ------------------------
+
+ procedure Ensure_Freeze_Node (E : Entity_Id) is
+ FN : Node_Id;
+
+ begin
+ if No (Freeze_Node (E)) then
+ FN := Make_Freeze_Entity (Sloc (E));
+ Set_Has_Delayed_Freeze (E);
+ Set_Freeze_Node (E, FN);
+ Set_Access_Types_To_Process (FN, No_Elist);
+ Set_TSS_Elist (FN, No_Elist);
+ Set_Entity (FN, E);
+ end if;
+ end Ensure_Freeze_Node;
+
+ ----------------
+ -- Enter_Name --
+ ----------------
+
+ procedure Enter_Name (Def_Id : Entity_Id) is
+ C : constant Entity_Id := Current_Entity (Def_Id);
+ E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
+ S : constant Entity_Id := Current_Scope;
+
+ begin
+ Generate_Definition (Def_Id);
+
+ -- Add new name to current scope declarations. Check for duplicate
+ -- declaration, which may or may not be a genuine error.
+
+ if Present (E) then
+
+ -- Case of previous entity entered because of a missing declaration
+ -- or else a bad subtype indication. Best is to use the new entity,
+ -- and make the previous one invisible.
+
+ if Etype (E) = Any_Type then
+ Set_Is_Immediately_Visible (E, False);
+
+ -- Case of renaming declaration constructed for package instances.
+ -- if there is an explicit declaration with the same identifier,
+ -- the renaming is not immediately visible any longer, but remains
+ -- visible through selected component notation.
+
+ elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
+ and then not Comes_From_Source (E)
+ then
+ Set_Is_Immediately_Visible (E, False);
+
+ -- The new entity may be the package renaming, which has the same
+ -- same name as a generic formal which has been seen already.
+
+ elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
+ and then not Comes_From_Source (Def_Id)
+ then
+ Set_Is_Immediately_Visible (E, False);
+
+ -- For a fat pointer corresponding to a remote access to subprogram,
+ -- we use the same identifier as the RAS type, so that the proper
+ -- name appears in the stub. This type is only retrieved through
+ -- the RAS type and never by visibility, and is not added to the
+ -- visibility list (see below).
+
+ elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
+ and then Present (Corresponding_Remote_Type (Def_Id))
+ then
+ null;
+
+ -- A controller component for a type extension overrides the
+ -- inherited component.
+
+ elsif Chars (E) = Name_uController then
+ null;
+
+ -- Case of an implicit operation or derived literal. The new entity
+ -- hides the implicit one, which is removed from all visibility,
+ -- i.e. the entity list of its scope, and homonym chain of its name.
+
+ elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
+ or else Is_Internal (E)
+ then
+ declare
+ Prev : Entity_Id;
+ Prev_Vis : Entity_Id;
+ Decl : constant Node_Id := Parent (E);
+
+ begin
+ -- If E is an implicit declaration, it cannot be the first
+ -- entity in the scope.
+
+ Prev := First_Entity (Current_Scope);
+ while Present (Prev)
+ and then Next_Entity (Prev) /= E
+ loop
+ Next_Entity (Prev);
+ end loop;
+
+ if No (Prev) then
+
+ -- If E is not on the entity chain of the current scope,
+ -- it is an implicit declaration in the generic formal
+ -- part of a generic subprogram. When analyzing the body,
+ -- the generic formals are visible but not on the entity
+ -- chain of the subprogram. The new entity will become
+ -- the visible one in the body.
+
+ pragma Assert
+ (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
+ null;
+
+ else
+ Set_Next_Entity (Prev, Next_Entity (E));
+
+ if No (Next_Entity (Prev)) then
+ Set_Last_Entity (Current_Scope, Prev);
+ end if;
+
+ if E = Current_Entity (E) then
+ Prev_Vis := Empty;
+
+ else
+ Prev_Vis := Current_Entity (E);
+ while Homonym (Prev_Vis) /= E loop
+ Prev_Vis := Homonym (Prev_Vis);
+ end loop;
+ end if;
+
+ if Present (Prev_Vis) then
+
+ -- Skip E in the visibility chain
+
+ Set_Homonym (Prev_Vis, Homonym (E));
+
+ else
+ Set_Name_Entity_Id (Chars (E), Homonym (E));
+ end if;
+ end if;
+ end;
+
+ -- This section of code could use a comment ???
+
+ elsif Present (Etype (E))
+ and then Is_Concurrent_Type (Etype (E))
+ and then E = Def_Id
+ then
+ return;
+
+ -- If the homograph is a protected component renaming, it should not
+ -- be hiding the current entity. Such renamings are treated as weak
+ -- declarations.
+
+ elsif Is_Prival (E) then
+ Set_Is_Immediately_Visible (E, False);
+
+ -- In this case the current entity is a protected component renaming.
+ -- Perform minimal decoration by setting the scope and return since
+ -- the prival should not be hiding other visible entities.
+
+ elsif Is_Prival (Def_Id) then
+ Set_Scope (Def_Id, Current_Scope);
+ return;
+
+ -- Analogous to privals, the discriminal generated for an entry
+ -- index parameter acts as a weak declaration. Perform minimal
+ -- decoration to avoid bogus errors.
+
+ elsif Is_Discriminal (Def_Id)
+ and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
+ then
+ Set_Scope (Def_Id, Current_Scope);
+ return;
+
+ -- In the body or private part of an instance, a type extension
+ -- may introduce a component with the same name as that of an
+ -- actual. The legality rule is not enforced, but the semantics
+ -- of the full type with two components of the same name are not
+ -- clear at this point ???
+
+ elsif In_Instance_Not_Visible then
+ null;
+
+ -- When compiling a package body, some child units may have become
+ -- visible. They cannot conflict with local entities that hide them.
+
+ elsif Is_Child_Unit (E)
+ and then In_Open_Scopes (Scope (E))
+ and then not Is_Immediately_Visible (E)
+ then
+ null;
+
+ -- Conversely, with front-end inlining we may compile the parent
+ -- body first, and a child unit subsequently. The context is now
+ -- the parent spec, and body entities are not visible.
+
+ elsif Is_Child_Unit (Def_Id)
+ and then Is_Package_Body_Entity (E)
+ and then not In_Package_Body (Current_Scope)
+ then
+ null;
+
+ -- Case of genuine duplicate declaration
+
+ else
+ Error_Msg_Sloc := Sloc (E);
+
+ -- If the previous declaration is an incomplete type declaration
+ -- this may be an attempt to complete it with a private type.
+ -- The following avoids confusing cascaded errors.
+
+ if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
+ and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
+ then
+ Error_Msg_N
+ ("incomplete type cannot be completed with a private " &
+ "declaration", Parent (Def_Id));
+ Set_Is_Immediately_Visible (E, False);
+ Set_Full_View (E, Def_Id);
+
+ -- An inherited component of a record conflicts with a new
+ -- discriminant. The discriminant is inserted first in the scope,
+ -- but the error should be posted on it, not on the component.
+
+ elsif Ekind (E) = E_Discriminant
+ and then Present (Scope (Def_Id))
+ and then Scope (Def_Id) /= Current_Scope
+ then
+ Error_Msg_Sloc := Sloc (Def_Id);
+ Error_Msg_N ("& conflicts with declaration#", E);
+ return;
+
+ -- If the name of the unit appears in its own context clause,
+ -- a dummy package with the name has already been created, and
+ -- the error emitted. Try to continue quietly.
+
+ elsif Error_Posted (E)
+ and then Sloc (E) = No_Location
+ and then Nkind (Parent (E)) = N_Package_Specification
+ and then Current_Scope = Standard_Standard
+ then
+ Set_Scope (Def_Id, Current_Scope);
+ return;
+
+ else
+ Error_Msg_N ("& conflicts with declaration#", Def_Id);
+
+ -- Avoid cascaded messages with duplicate components in
+ -- derived types.
+
+ if Ekind (E) = E_Component
+ or else Ekind (E) = E_Discriminant
+ then
+ return;
+ end if;
+ end if;
+
+ if Nkind (Parent (Parent (Def_Id))) =
+ N_Generic_Subprogram_Declaration
+ and then Def_Id =
+ Defining_Entity (Specification (Parent (Parent (Def_Id))))
+ then
+ Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
+ end if;
+
+ -- If entity is in standard, then we are in trouble, because
+ -- it means that we have a library package with a duplicated
+ -- name. That's hard to recover from, so abort!
+
+ if S = Standard_Standard then
+ raise Unrecoverable_Error;
+
+ -- Otherwise we continue with the declaration. Having two
+ -- identical declarations should not cause us too much trouble!
+
+ else
+ null;
+ end if;
+ end if;
+ end if;
+
+ -- If we fall through, declaration is OK , or OK enough to continue
+
+ -- If Def_Id is a discriminant or a record component we are in the
+ -- midst of inheriting components in a derived record definition.
+ -- Preserve their Ekind and Etype.
+
+ if Ekind (Def_Id) = E_Discriminant
+ or else Ekind (Def_Id) = E_Component
+ then
+ null;
+
+ -- If a type is already set, leave it alone (happens whey a type
+ -- declaration is reanalyzed following a call to the optimizer)
+
+ elsif Present (Etype (Def_Id)) then
+ null;
+
+ -- Otherwise, the kind E_Void insures that premature uses of the entity
+ -- will be detected. Any_Type insures that no cascaded errors will occur
+
+ else
+ Set_Ekind (Def_Id, E_Void);
+ Set_Etype (Def_Id, Any_Type);
+ end if;
+
+ -- Inherited discriminants and components in derived record types are
+ -- immediately visible. Itypes are not.
+
+ if Ekind (Def_Id) = E_Discriminant
+ or else Ekind (Def_Id) = E_Component
+ or else (No (Corresponding_Remote_Type (Def_Id))
+ and then not Is_Itype (Def_Id))
+ then
+ Set_Is_Immediately_Visible (Def_Id);
+ Set_Current_Entity (Def_Id);
+ end if;
+
+ Set_Homonym (Def_Id, C);
+ Append_Entity (Def_Id, S);
+ Set_Public_Status (Def_Id);
+
+ -- Warn if new entity hides an old one
+
+ if Warn_On_Hiding and then Present (C)
+
+ -- Don't warn for record components since they always have a well
+ -- defined scope which does not confuse other uses. Note that in
+ -- some cases, Ekind has not been set yet.
+
+ and then Ekind (C) /= E_Component
+ and then Ekind (C) /= E_Discriminant
+ and then Nkind (Parent (C)) /= N_Component_Declaration
+ and then Ekind (Def_Id) /= E_Component
+ and then Ekind (Def_Id) /= E_Discriminant
+ and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
+
+ -- Don't warn for one character variables. It is too common to use
+ -- such variables as locals and will just cause too many false hits.
+
+ and then Length_Of_Name (Chars (C)) /= 1
+
+ -- Don't warn for non-source entities
+
+ and then Comes_From_Source (C)
+ and then Comes_From_Source (Def_Id)
+
+ -- Don't warn unless entity in question is in extended main source
+
+ and then In_Extended_Main_Source_Unit (Def_Id)
+
+ -- Finally, the hidden entity must be either immediately visible
+ -- or use visible (from a used package)
+
+ and then
+ (Is_Immediately_Visible (C)
+ or else
+ Is_Potentially_Use_Visible (C))
+ then
+ Error_Msg_Sloc := Sloc (C);
+ Error_Msg_N ("declaration hides &#?", Def_Id);
+ end if;
+ end Enter_Name;
+
+ --------------------------
+ -- Explain_Limited_Type --
+ --------------------------
+
+ procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
+ C : Entity_Id;
+
+ begin
+ -- For array, component type must be limited
+
+ if Is_Array_Type (T) then
+ Error_Msg_Node_2 := T;
+ Error_Msg_NE
+ ("\component type& of type& is limited", N, Component_Type (T));
+ Explain_Limited_Type (Component_Type (T), N);
+
+ elsif Is_Record_Type (T) then
+
+ -- No need for extra messages if explicit limited record
+
+ if Is_Limited_Record (Base_Type (T)) then
+ return;
+ end if;
+
+ -- Otherwise find a limited component. Check only components that
+ -- come from source, or inherited components that appear in the
+ -- source of the ancestor.
+
+ C := First_Component (T);
+ while Present (C) loop
+ if Is_Limited_Type (Etype (C))
+ and then
+ (Comes_From_Source (C)
+ or else
+ (Present (Original_Record_Component (C))
+ and then
+ Comes_From_Source (Original_Record_Component (C))))
+ then
+ Error_Msg_Node_2 := T;
+ Error_Msg_NE ("\component& of type& has limited type", N, C);
+ Explain_Limited_Type (Etype (C), N);
+ return;
+ end if;
+
+ Next_Component (C);
+ end loop;
+
+ -- The type may be declared explicitly limited, even if no component
+ -- of it is limited, in which case we fall out of the loop.
+ return;
+ end if;
+ end Explain_Limited_Type;
+
+ -----------------
+ -- Find_Actual --
+ -----------------
+
+ procedure Find_Actual
+ (N : Node_Id;
+ Formal : out Entity_Id;
+ Call : out Node_Id)
+ is
+ Parnt : constant Node_Id := Parent (N);
+ Actual : Node_Id;
+
+ begin
+ if (Nkind (Parnt) = N_Indexed_Component
+ or else
+ Nkind (Parnt) = N_Selected_Component)
+ and then N = Prefix (Parnt)
+ then
+ Find_Actual (Parnt, Formal, Call);
+ return;
+
+ elsif Nkind (Parnt) = N_Parameter_Association
+ and then N = Explicit_Actual_Parameter (Parnt)
+ then
+ Call := Parent (Parnt);
+
+ elsif Nkind (Parnt) = N_Procedure_Call_Statement then
+ Call := Parnt;
+
+ else
+ Formal := Empty;
+ Call := Empty;
+ return;
+ end if;
+
+ -- If we have a call to a subprogram look for the parameter. Note that
+ -- we exclude overloaded calls, since we don't know enough to be sure
+ -- of giving the right answer in this case.
+
+ if Is_Entity_Name (Name (Call))
+ and then Present (Entity (Name (Call)))
+ and then Is_Overloadable (Entity (Name (Call)))
+ and then not Is_Overloaded (Name (Call))
+ then
+ -- Fall here if we are definitely a parameter
+
+ Actual := First_Actual (Call);
+ Formal := First_Formal (Entity (Name (Call)));
+ while Present (Formal) and then Present (Actual) loop
+ if Actual = N then
+ return;
+ else
+ Actual := Next_Actual (Actual);
+ Formal := Next_Formal (Formal);
+ end if;
+ end loop;
+ end if;
+
+ -- Fall through here if we did not find matching actual
+
+ Formal := Empty;
+ Call := Empty;
+ end Find_Actual;
+
+ -------------------------------------
+ -- Find_Corresponding_Discriminant --
+ -------------------------------------
+
+ function Find_Corresponding_Discriminant
+ (Id : Node_Id;
+ Typ : Entity_Id) return Entity_Id
+ is
+ Par_Disc : Entity_Id;
+ Old_Disc : Entity_Id;
+ New_Disc : Entity_Id;
+
+ begin
+ Par_Disc := Original_Record_Component (Original_Discriminant (Id));
+
+ -- The original type may currently be private, and the discriminant
+ -- only appear on its full view.
+
+ if Is_Private_Type (Scope (Par_Disc))
+ and then not Has_Discriminants (Scope (Par_Disc))
+ and then Present (Full_View (Scope (Par_Disc)))
+ then
+ Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
+ else
+ Old_Disc := First_Discriminant (Scope (Par_Disc));
+ end if;
+
+ if Is_Class_Wide_Type (Typ) then
+ New_Disc := First_Discriminant (Root_Type (Typ));
+ else
+ New_Disc := First_Discriminant (Typ);
+ end if;
+
+ while Present (Old_Disc) and then Present (New_Disc) loop
+ if Old_Disc = Par_Disc then
+ return New_Disc;
+ else
+ Next_Discriminant (Old_Disc);
+ Next_Discriminant (New_Disc);
+ end if;
+ end loop;
+
+ -- Should always find it
+
+ raise Program_Error;
+ end Find_Corresponding_Discriminant;
+
+ --------------------------
+ -- Find_Overlaid_Object --
+ --------------------------
+
+ function Find_Overlaid_Object (N : Node_Id) return Entity_Id is
+ Expr : Node_Id;
+
+ begin
+ -- We are looking for one of the two following forms:
+
+ -- for X'Address use Y'Address
+
+ -- or
+
+ -- Const : constant Address := expr;
+ -- ...
+ -- for X'Address use Const;
+
+ -- In the second case, the expr is either Y'Address, or recursively a
+ -- constant that eventually references Y'Address.
+
+ if Nkind (N) = N_Attribute_Definition_Clause
+ and then Chars (N) = Name_Address
+ then
+ -- This loop checks the form of the expression for Y'Address where Y
+ -- is an object entity name. The first loop checks the original
+ -- expression in the attribute definition clause. Subsequent loops
+ -- check referenced constants.
+
+ Expr := Expression (N);
+ loop
+ -- Check for Y'Address where Y is an object entity
+
+ if Nkind (Expr) = N_Attribute_Reference
+ and then Attribute_Name (Expr) = Name_Address
+ and then Is_Entity_Name (Prefix (Expr))
+ and then Is_Object (Entity (Prefix (Expr)))
+ then
+ return Entity (Prefix (Expr));
+
+ -- Check for Const where Const is a constant entity
+
+ elsif Is_Entity_Name (Expr)
+ and then Ekind (Entity (Expr)) = E_Constant
+ then
+ Expr := Constant_Value (Entity (Expr));
+
+ -- Anything else does not need checking
+
+ else
+ exit;
+ end if;
+ end loop;
+ end if;
+
+ return Empty;
+ end Find_Overlaid_Object;
+
+ -------------------------
+ -- Find_Parameter_Type --
+ -------------------------
+
+ function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
+ begin
+ if Nkind (Param) /= N_Parameter_Specification then
+ return Empty;
+
+ -- For an access parameter, obtain the type from the formal entity
+ -- itself, because access to subprogram nodes do not carry a type.
+ -- Shouldn't we always use the formal entity ???
+
+ elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
+ return Etype (Defining_Identifier (Param));
+
+ else
+ return Etype (Parameter_Type (Param));
+ end if;
+ end Find_Parameter_Type;
+
+ -----------------------------
+ -- Find_Static_Alternative --
+ -----------------------------
+
+ function Find_Static_Alternative (N : Node_Id) return Node_Id is
+ Expr : constant Node_Id := Expression (N);
+ Val : constant Uint := Expr_Value (Expr);
+ Alt : Node_Id;
+ Choice : Node_Id;
+
+ begin
+ Alt := First (Alternatives (N));
+
+ Search : loop
+ if Nkind (Alt) /= N_Pragma then
+ Choice := First (Discrete_Choices (Alt));
+ while Present (Choice) loop
+
+ -- Others choice, always matches
+
+ if Nkind (Choice) = N_Others_Choice then
+ exit Search;
+
+ -- Range, check if value is in the range
+
+ elsif Nkind (Choice) = N_Range then
+ exit Search when
+ Val >= Expr_Value (Low_Bound (Choice))
+ and then
+ Val <= Expr_Value (High_Bound (Choice));
+
+ -- Choice is a subtype name. Note that we know it must
+ -- be a static subtype, since otherwise it would have
+ -- been diagnosed as illegal.
+
+ elsif Is_Entity_Name (Choice)
+ and then Is_Type (Entity (Choice))
+ then
+ exit Search when Is_In_Range (Expr, Etype (Choice));
+
+ -- Choice is a subtype indication
+
+ elsif Nkind (Choice) = N_Subtype_Indication then
+ declare
+ C : constant Node_Id := Constraint (Choice);
+ R : constant Node_Id := Range_Expression (C);
+
+ begin
+ exit Search when
+ Val >= Expr_Value (Low_Bound (R))
+ and then
+ Val <= Expr_Value (High_Bound (R));
+ end;
+
+ -- Choice is a simple expression
+
+ else
+ exit Search when Val = Expr_Value (Choice);
+ end if;
+
+ Next (Choice);
+ end loop;
+ end if;
+
+ Next (Alt);
+ pragma Assert (Present (Alt));
+ end loop Search;
+
+ -- The above loop *must* terminate by finding a match, since
+ -- we know the case statement is valid, and the value of the
+ -- expression is known at compile time. When we fall out of
+ -- the loop, Alt points to the alternative that we know will
+ -- be selected at run time.
+
+ return Alt;
+ end Find_Static_Alternative;
+
+ ------------------
+ -- First_Actual --
+ ------------------
+
+ function First_Actual (Node : Node_Id) return Node_Id is
+ N : Node_Id;
+
+ begin
+ if No (Parameter_Associations (Node)) then
+ return Empty;
+ end if;
+
+ N := First (Parameter_Associations (Node));
+
+ if Nkind (N) = N_Parameter_Association then
+ return First_Named_Actual (Node);
+ else
+ return N;
+ end if;
+ end First_Actual;
+
+ -------------------------
+ -- Full_Qualified_Name --
+ -------------------------
+
+ function Full_Qualified_Name (E : Entity_Id) return String_Id is
+ Res : String_Id;
+ pragma Warnings (Off, Res);
+
+ function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id;
+ -- Compute recursively the qualified name without NUL at the end
+
+ ----------------------------------
+ -- Internal_Full_Qualified_Name --
+ ----------------------------------
+
+ function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id is
+ Ent : Entity_Id := E;
+ Parent_Name : String_Id := No_String;
+
+ begin
+ -- Deals properly with child units
+
+ if Nkind (Ent) = N_Defining_Program_Unit_Name then
+ Ent := Defining_Identifier (Ent);
+ end if;
+
+ -- Compute qualification recursively (only "Standard" has no scope)
+
+ if Present (Scope (Scope (Ent))) then
+ Parent_Name := Internal_Full_Qualified_Name (Scope (Ent));
+ end if;
+
+ -- Every entity should have a name except some expanded blocks
+ -- don't bother about those.
+
+ if Chars (Ent) = No_Name then
+ return Parent_Name;
+ end if;
+
+ -- Add a period between Name and qualification
+
+ if Parent_Name /= No_String then
+ Start_String (Parent_Name);
+ Store_String_Char (Get_Char_Code ('.'));
+
+ else
+ Start_String;
+ end if;
+
+ -- Generates the entity name in upper case
+
+ Get_Decoded_Name_String (Chars (Ent));
+ Set_All_Upper_Case;
+ Store_String_Chars (Name_Buffer (1 .. Name_Len));
+ return End_String;
+ end Internal_Full_Qualified_Name;
+
+ -- Start of processing for Full_Qualified_Name
+
+ begin
+ Res := Internal_Full_Qualified_Name (E);
+ Store_String_Char (Get_Char_Code (ASCII.NUL));
+ return End_String;
+ end Full_Qualified_Name;
+
+ -----------------------
+ -- Gather_Components --
+ -----------------------
+
+ procedure Gather_Components
+ (Typ : Entity_Id;
+ Comp_List : Node_Id;
+ Governed_By : List_Id;
+ Into : Elist_Id;
+ Report_Errors : out Boolean)
+ is
+ Assoc : Node_Id;
+ Variant : Node_Id;
+ Discrete_Choice : Node_Id;
+ Comp_Item : Node_Id;
+
+ Discrim : Entity_Id;
+ Discrim_Name : Node_Id;
+ Discrim_Value : Node_Id;
+
+ begin
+ Report_Errors := False;
+
+ if No (Comp_List) or else Null_Present (Comp_List) then
+ return;
+
+ elsif Present (Component_Items (Comp_List)) then
+ Comp_Item := First (Component_Items (Comp_List));
+
+ else
+ Comp_Item := Empty;
+ end if;
+
+ while Present (Comp_Item) loop
+
+ -- Skip the tag of a tagged record, the interface tags, as well
+ -- as all items that are not user components (anonymous types,
+ -- rep clauses, Parent field, controller field).
+
+ if Nkind (Comp_Item) = N_Component_Declaration then
+ declare
+ Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
+ begin
+ if not Is_Tag (Comp)
+ and then Chars (Comp) /= Name_uParent
+ and then Chars (Comp) /= Name_uController
+ then
+ Append_Elmt (Comp, Into);
+ end if;
+ end;
+ end if;
+
+ Next (Comp_Item);
+ end loop;
+
+ if No (Variant_Part (Comp_List)) then
+ return;
+ else
+ Discrim_Name := Name (Variant_Part (Comp_List));
+ Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
+ end if;
+
+ -- Look for the discriminant that governs this variant part.
+ -- The discriminant *must* be in the Governed_By List
+
+ Assoc := First (Governed_By);
+ Find_Constraint : loop
+ Discrim := First (Choices (Assoc));
+ exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
+ or else (Present (Corresponding_Discriminant (Entity (Discrim)))
+ and then
+ Chars (Corresponding_Discriminant (Entity (Discrim)))
+ = Chars (Discrim_Name))
+ or else Chars (Original_Record_Component (Entity (Discrim)))
+ = Chars (Discrim_Name);
+
+ if No (Next (Assoc)) then
+ if not Is_Constrained (Typ)
+ and then Is_Derived_Type (Typ)
+ and then Present (Stored_Constraint (Typ))
+ then
+ -- If the type is a tagged type with inherited discriminants,
+ -- use the stored constraint on the parent in order to find
+ -- the values of discriminants that are otherwise hidden by an
+ -- explicit constraint. Renamed discriminants are handled in
+ -- the code above.
+
+ -- If several parent discriminants are renamed by a single
+ -- discriminant of the derived type, the call to obtain the
+ -- Corresponding_Discriminant field only retrieves the last
+ -- of them. We recover the constraint on the others from the
+ -- Stored_Constraint as well.
+
+ declare
+ D : Entity_Id;
+ C : Elmt_Id;
+
+ begin
+ D := First_Discriminant (Etype (Typ));
+ C := First_Elmt (Stored_Constraint (Typ));
+ while Present (D) and then Present (C) loop
+ if Chars (Discrim_Name) = Chars (D) then
+ if Is_Entity_Name (Node (C))
+ and then Entity (Node (C)) = Entity (Discrim)
+ then
+ -- D is renamed by Discrim, whose value is given in
+ -- Assoc.
+
+ null;
+
+ else
+ Assoc :=
+ Make_Component_Association (Sloc (Typ),
+ New_List
+ (New_Occurrence_Of (D, Sloc (Typ))),
+ Duplicate_Subexpr_No_Checks (Node (C)));
+ end if;
+ exit Find_Constraint;
+ end if;
+
+ Next_Discriminant (D);
+ Next_Elmt (C);
+ end loop;
+ end;
+ end if;
+ end if;
+
+ if No (Next (Assoc)) then
+ Error_Msg_NE (" missing value for discriminant&",
+ First (Governed_By), Discrim_Name);
+ Report_Errors := True;
+ return;
+ end if;
+
+ Next (Assoc);
+ end loop Find_Constraint;
+
+ Discrim_Value := Expression (Assoc);
+
+ if not Is_OK_Static_Expression (Discrim_Value) then
+ Error_Msg_FE
+ ("value for discriminant & must be static!",
+ Discrim_Value, Discrim);
+ Why_Not_Static (Discrim_Value);
+ Report_Errors := True;
+ return;
+ end if;
+
+ Search_For_Discriminant_Value : declare
+ Low : Node_Id;
+ High : Node_Id;
+
+ UI_High : Uint;
+ UI_Low : Uint;
+ UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
+
+ begin
+ Find_Discrete_Value : while Present (Variant) loop
+ Discrete_Choice := First (Discrete_Choices (Variant));
+ while Present (Discrete_Choice) loop
+
+ exit Find_Discrete_Value when
+ Nkind (Discrete_Choice) = N_Others_Choice;
+
+ Get_Index_Bounds (Discrete_Choice, Low, High);
+
+ UI_Low := Expr_Value (Low);
+ UI_High := Expr_Value (High);
+
+ exit Find_Discrete_Value when
+ UI_Low <= UI_Discrim_Value
+ and then
+ UI_High >= UI_Discrim_Value;
+
+ Next (Discrete_Choice);
+ end loop;
+
+ Next_Non_Pragma (Variant);
+ end loop Find_Discrete_Value;
+ end Search_For_Discriminant_Value;
+
+ if No (Variant) then
+ Error_Msg_NE
+ ("value of discriminant & is out of range", Discrim_Value, Discrim);
+ Report_Errors := True;
+ return;
+ end if;
+
+ -- If we have found the corresponding choice, recursively add its
+ -- components to the Into list.
+
+ Gather_Components (Empty,
+ Component_List (Variant), Governed_By, Into, Report_Errors);
+ end Gather_Components;
+
+ ------------------------
+ -- Get_Actual_Subtype --
+ ------------------------
+
+ function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
+ Typ : constant Entity_Id := Etype (N);
+ Utyp : Entity_Id := Underlying_Type (Typ);
+ Decl : Node_Id;
+ Atyp : Entity_Id;
+
+ begin
+ if No (Utyp) then
+ Utyp := Typ;
+ end if;
+
+ -- If what we have is an identifier that references a subprogram
+ -- formal, or a variable or constant object, then we get the actual
+ -- subtype from the referenced entity if one has been built.
+
+ if Nkind (N) = N_Identifier
+ and then
+ (Is_Formal (Entity (N))
+ or else Ekind (Entity (N)) = E_Constant
+ or else Ekind (Entity (N)) = E_Variable)
+ and then Present (Actual_Subtype (Entity (N)))
+ then
+ return Actual_Subtype (Entity (N));
+
+ -- Actual subtype of unchecked union is always itself. We never need
+ -- the "real" actual subtype. If we did, we couldn't get it anyway
+ -- because the discriminant is not available. The restrictions on
+ -- Unchecked_Union are designed to make sure that this is OK.
+
+ elsif Is_Unchecked_Union (Base_Type (Utyp)) then
+ return Typ;
+
+ -- Here for the unconstrained case, we must find actual subtype
+ -- No actual subtype is available, so we must build it on the fly.
+
+ -- Checking the type, not the underlying type, for constrainedness
+ -- seems to be necessary. Maybe all the tests should be on the type???
+
+ elsif (not Is_Constrained (Typ))
+ and then (Is_Array_Type (Utyp)
+ or else (Is_Record_Type (Utyp)
+ and then Has_Discriminants (Utyp)))
+ and then not Has_Unknown_Discriminants (Utyp)
+ and then not (Ekind (Utyp) = E_String_Literal_Subtype)
+ then
+ -- Nothing to do if in spec expression (why not???)
+
+ if In_Spec_Expression then
+ return Typ;
+
+ elsif Is_Private_Type (Typ)
+ and then not Has_Discriminants (Typ)
+ then
+ -- If the type has no discriminants, there is no subtype to
+ -- build, even if the underlying type is discriminated.
+
+ return Typ;
+
+ -- Else build the actual subtype
+
+ else
+ Decl := Build_Actual_Subtype (Typ, N);
+ Atyp := Defining_Identifier (Decl);
+
+ -- If Build_Actual_Subtype generated a new declaration then use it
+
+ if Atyp /= Typ then
+
+ -- The actual subtype is an Itype, so analyze the declaration,
+ -- but do not attach it to the tree, to get the type defined.
+
+ Set_Parent (Decl, N);
+ Set_Is_Itype (Atyp);
+ Analyze (Decl, Suppress => All_Checks);
+ Set_Associated_Node_For_Itype (Atyp, N);
+ Set_Has_Delayed_Freeze (Atyp, False);
+
+ -- We need to freeze the actual subtype immediately. This is
+ -- needed, because otherwise this Itype will not get frozen
+ -- at all, and it is always safe to freeze on creation because
+ -- any associated types must be frozen at this point.
+
+ Freeze_Itype (Atyp, N);
+ return Atyp;
+
+ -- Otherwise we did not build a declaration, so return original
+
+ else
+ return Typ;
+ end if;
+ end if;
+
+ -- For all remaining cases, the actual subtype is the same as
+ -- the nominal type.
+
+ else
+ return Typ;
+ end if;
+ end Get_Actual_Subtype;
+
+ -------------------------------------
+ -- Get_Actual_Subtype_If_Available --
+ -------------------------------------
+
+ function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ -- If what we have is an identifier that references a subprogram
+ -- formal, or a variable or constant object, then we get the actual
+ -- subtype from the referenced entity if one has been built.
+
+ if Nkind (N) = N_Identifier
+ and then
+ (Is_Formal (Entity (N))
+ or else Ekind (Entity (N)) = E_Constant
+ or else Ekind (Entity (N)) = E_Variable)
+ and then Present (Actual_Subtype (Entity (N)))
+ then
+ return Actual_Subtype (Entity (N));
+
+ -- Otherwise the Etype of N is returned unchanged
+
+ else
+ return Typ;
+ end if;
+ end Get_Actual_Subtype_If_Available;
+
+ -------------------------------
+ -- Get_Default_External_Name --
+ -------------------------------
+
+ function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
+ begin
+ Get_Decoded_Name_String (Chars (E));
+
+ if Opt.External_Name_Imp_Casing = Uppercase then
+ Set_Casing (All_Upper_Case);
+ else
+ Set_Casing (All_Lower_Case);
+ end if;
+
+ return
+ Make_String_Literal (Sloc (E),
+ Strval => String_From_Name_Buffer);
+ end Get_Default_External_Name;
+
+ ---------------------------
+ -- Get_Enum_Lit_From_Pos --
+ ---------------------------
+
+ function Get_Enum_Lit_From_Pos
+ (T : Entity_Id;
+ Pos : Uint;
+ Loc : Source_Ptr) return Node_Id
+ is
+ Lit : Node_Id;
+
+ begin
+ -- In the case where the literal is of type Character, Wide_Character
+ -- or Wide_Wide_Character or of a type derived from them, there needs
+ -- to be some special handling since there is no explicit chain of
+ -- literals to search. Instead, an N_Character_Literal node is created
+ -- with the appropriate Char_Code and Chars fields.
+
+ if Is_Standard_Character_Type (T) then
+ Set_Character_Literal_Name (UI_To_CC (Pos));
+ return
+ Make_Character_Literal (Loc,
+ Chars => Name_Find,
+ Char_Literal_Value => Pos);
+
+ -- For all other cases, we have a complete table of literals, and
+ -- we simply iterate through the chain of literal until the one
+ -- with the desired position value is found.
+ --
+
+ else
+ Lit := First_Literal (Base_Type (T));
+ for J in 1 .. UI_To_Int (Pos) loop
+ Next_Literal (Lit);
+ end loop;
+
+ return New_Occurrence_Of (Lit, Loc);
+ end if;
+ end Get_Enum_Lit_From_Pos;
+
+ ------------------------
+ -- Get_Generic_Entity --
+ ------------------------
+
+ function Get_Generic_Entity (N : Node_Id) return Entity_Id is
+ Ent : constant Entity_Id := Entity (Name (N));
+ begin
+ if Present (Renamed_Object (Ent)) then
+ return Renamed_Object (Ent);
+ else
+ return Ent;
+ end if;
+ end Get_Generic_Entity;
+
+ ----------------------
+ -- Get_Index_Bounds --
+ ----------------------
+
+ procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
+ Kind : constant Node_Kind := Nkind (N);
+ R : Node_Id;
+
+ begin
+ if Kind = N_Range then
+ L := Low_Bound (N);
+ H := High_Bound (N);
+
+ elsif Kind = N_Subtype_Indication then
+ R := Range_Expression (Constraint (N));
+
+ if R = Error then
+ L := Error;
+ H := Error;
+ return;
+
+ else
+ L := Low_Bound (Range_Expression (Constraint (N)));
+ H := High_Bound (Range_Expression (Constraint (N)));
+ end if;
+
+ elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
+ if Error_Posted (Scalar_Range (Entity (N))) then
+ L := Error;
+ H := Error;
+
+ elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
+ Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
+
+ else
+ L := Low_Bound (Scalar_Range (Entity (N)));
+ H := High_Bound (Scalar_Range (Entity (N)));
+ end if;
+
+ else
+ -- N is an expression, indicating a range with one value
+
+ L := N;
+ H := N;
+ end if;
+ end Get_Index_Bounds;
+
+ ----------------------------------
+ -- Get_Library_Unit_Name_string --
+ ----------------------------------
+
+ procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
+ Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
+
+ begin
+ Get_Unit_Name_String (Unit_Name_Id);
+
+ -- Remove seven last character (" (spec)" or " (body)")
+
+ Name_Len := Name_Len - 7;
+ pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
+ end Get_Library_Unit_Name_String;
+
+ ------------------------
+ -- Get_Name_Entity_Id --
+ ------------------------
+
+ function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
+ begin
+ return Entity_Id (Get_Name_Table_Info (Id));
+ end Get_Name_Entity_Id;
+
+ -------------------
+ -- Get_Pragma_Id --
+ -------------------
+
+ function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
+ begin
+ return Get_Pragma_Id (Pragma_Name (N));
+ end Get_Pragma_Id;
+
+ ---------------------------
+ -- Get_Referenced_Object --
+ ---------------------------
+
+ function Get_Referenced_Object (N : Node_Id) return Node_Id is
+ R : Node_Id;
+
+ begin
+ R := N;
+ while Is_Entity_Name (R)
+ and then Present (Renamed_Object (Entity (R)))
+ loop
+ R := Renamed_Object (Entity (R));
+ end loop;
+
+ return R;
+ end Get_Referenced_Object;
+
+ ------------------------
+ -- Get_Renamed_Entity --
+ ------------------------
+
+ function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
+ R : Entity_Id;
+
+ begin
+ R := E;
+ while Present (Renamed_Entity (R)) loop
+ R := Renamed_Entity (R);
+ end loop;
+
+ return R;
+ end Get_Renamed_Entity;
+
+ -------------------------
+ -- Get_Subprogram_Body --
+ -------------------------
+
+ function Get_Subprogram_Body (E : Entity_Id) return Node_Id is
+ Decl : Node_Id;
+
+ begin
+ Decl := Unit_Declaration_Node (E);
+
+ if Nkind (Decl) = N_Subprogram_Body then
+ return Decl;
+
+ -- The below comment is bad, because it is possible for
+ -- Nkind (Decl) to be an N_Subprogram_Body_Stub ???
+
+ else -- Nkind (Decl) = N_Subprogram_Declaration
+
+ if Present (Corresponding_Body (Decl)) then
+ return Unit_Declaration_Node (Corresponding_Body (Decl));
+
+ -- Imported subprogram case
+
+ else
+ return Empty;
+ end if;
+ end if;
+ end Get_Subprogram_Body;
+
+ ---------------------------
+ -- Get_Subprogram_Entity --
+ ---------------------------
+
+ function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
+ Nam : Node_Id;
+ Proc : Entity_Id;
+
+ begin
+ if Nkind (Nod) = N_Accept_Statement then
+ Nam := Entry_Direct_Name (Nod);
+
+ -- For an entry call, the prefix of the call is a selected component.
+ -- Need additional code for internal calls ???
+
+ elsif Nkind (Nod) = N_Entry_Call_Statement then
+ if Nkind (Name (Nod)) = N_Selected_Component then
+ Nam := Entity (Selector_Name (Name (Nod)));
+ else
+ Nam := Empty;
+ end if;
+
+ else
+ Nam := Name (Nod);
+ end if;
+
+ if Nkind (Nam) = N_Explicit_Dereference then
+ Proc := Etype (Prefix (Nam));
+ elsif Is_Entity_Name (Nam) then
+ Proc := Entity (Nam);
+ else
+ return Empty;
+ end if;
+
+ if Is_Object (Proc) then
+ Proc := Etype (Proc);
+ end if;
+
+ if Ekind (Proc) = E_Access_Subprogram_Type then
+ Proc := Directly_Designated_Type (Proc);
+ end if;
+
+ if not Is_Subprogram (Proc)
+ and then Ekind (Proc) /= E_Subprogram_Type
+ then
+ return Empty;
+ else
+ return Proc;
+ end if;
+ end Get_Subprogram_Entity;
+
+ -----------------------------
+ -- Get_Task_Body_Procedure --
+ -----------------------------
+
+ function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
+ begin
+ -- Note: A task type may be the completion of a private type with
+ -- discriminants. When performing elaboration checks on a task
+ -- declaration, the current view of the type may be the private one,
+ -- and the procedure that holds the body of the task is held in its
+ -- underlying type.
+
+ -- This is an odd function, why not have Task_Body_Procedure do
+ -- the following digging???
+
+ return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
+ end Get_Task_Body_Procedure;
+
+ -----------------------
+ -- Has_Access_Values --
+ -----------------------
+
+ function Has_Access_Values (T : Entity_Id) return Boolean is
+ Typ : constant Entity_Id := Underlying_Type (T);
+
+ begin
+ -- Case of a private type which is not completed yet. This can only
+ -- happen in the case of a generic format type appearing directly, or
+ -- as a component of the type to which this function is being applied
+ -- at the top level. Return False in this case, since we certainly do
+ -- not know that the type contains access types.
+
+ if No (Typ) then
+ return False;
+
+ elsif Is_Access_Type (Typ) then
+ return True;
+
+ elsif Is_Array_Type (Typ) then
+ return Has_Access_Values (Component_Type (Typ));
+
+ elsif Is_Record_Type (Typ) then
+ declare
+ Comp : Entity_Id;
+
+ begin
+ -- Loop to Check components
+
+ Comp := First_Component_Or_Discriminant (Typ);
+ while Present (Comp) loop
+
+ -- Check for access component, tag field does not count, even
+ -- though it is implemented internally using an access type.
+
+ if Has_Access_Values (Etype (Comp))
+ and then Chars (Comp) /= Name_uTag
+ then
+ return True;
+ end if;
+
+ Next_Component_Or_Discriminant (Comp);
+ end loop;
+ end;
+
+ return False;
+
+ else
+ return False;
+ end if;
+ end Has_Access_Values;
+
+ ------------------------------
+ -- Has_Compatible_Alignment --
+ ------------------------------
+
+ function Has_Compatible_Alignment
+ (Obj : Entity_Id;
+ Expr : Node_Id) return Alignment_Result
+ is
+ function Has_Compatible_Alignment_Internal
+ (Obj : Entity_Id;
+ Expr : Node_Id;
+ Default : Alignment_Result) return Alignment_Result;
+ -- This is the internal recursive function that actually does the work.
+ -- There is one additional parameter, which says what the result should
+ -- be if no alignment information is found, and there is no definite
+ -- indication of compatible alignments. At the outer level, this is set
+ -- to Unknown, but for internal recursive calls in the case where types
+ -- are known to be correct, it is set to Known_Compatible.
+
+ ---------------------------------------
+ -- Has_Compatible_Alignment_Internal --
+ ---------------------------------------
+
+ function Has_Compatible_Alignment_Internal
+ (Obj : Entity_Id;
+ Expr : Node_Id;
+ Default : Alignment_Result) return Alignment_Result
+ is
+ Result : Alignment_Result := Known_Compatible;
+ -- Set to result if Problem_Prefix or Problem_Offset returns True.
+ -- Note that once a value of Known_Incompatible is set, it is sticky
+ -- and does not get changed to Unknown (the value in Result only gets
+ -- worse as we go along, never better).
+
+ procedure Check_Offset (Offs : Uint);
+ -- Called when Expr is a selected or indexed component with Offs set
+ -- to resp Component_First_Bit or Component_Size. Checks that if the
+ -- offset is specified it is compatible with the object alignment
+ -- requirements. The value in Result is modified accordingly.
+
+ procedure Check_Prefix;
+ -- Checks the prefix recursively in the case where the expression
+ -- is an indexed or selected component.
+
+ procedure Set_Result (R : Alignment_Result);
+ -- If R represents a worse outcome (unknown instead of known
+ -- compatible, or known incompatible), then set Result to R.
+
+ ------------------
+ -- Check_Offset --
+ ------------------
+
+ procedure Check_Offset (Offs : Uint) is
+ begin
+ -- Unspecified or zero offset is always OK
+
+ if Offs = No_Uint or else Offs = Uint_0 then
+ null;
+
+ -- If we do not know required alignment, any non-zero offset is
+ -- a potential problem (but certainly may be OK, so result is
+ -- unknown).
+
+ elsif Unknown_Alignment (Obj) then
+ Set_Result (Unknown);
+
+ -- If we know the required alignment, see if offset is compatible
+
+ else
+ if Offs mod (System_Storage_Unit * Alignment (Obj)) /= 0 then
+ Set_Result (Known_Incompatible);
+ end if;
+ end if;
+ end Check_Offset;
+
+ ------------------
+ -- Check_Prefix --
+ ------------------
+
+ procedure Check_Prefix is
+ begin
+ -- The subtlety here is that in doing a recursive call to check
+ -- the prefix, we have to decide what to do in the case where we
+ -- don't find any specific indication of an alignment problem.
+
+ -- At the outer level, we normally set Unknown as the result in
+ -- this case, since we can only set Known_Compatible if we really
+ -- know that the alignment value is OK, but for the recursive
+ -- call, in the case where the types match, and we have not
+ -- specified a peculiar alignment for the object, we are only
+ -- concerned about suspicious rep clauses, the default case does
+ -- not affect us, since the compiler will, in the absence of such
+ -- rep clauses, ensure that the alignment is correct.
+
+ if Default = Known_Compatible
+ or else
+ (Etype (Obj) = Etype (Expr)
+ and then (Unknown_Alignment (Obj)
+ or else
+ Alignment (Obj) = Alignment (Etype (Obj))))
+ then
+ Set_Result
+ (Has_Compatible_Alignment_Internal
+ (Obj, Prefix (Expr), Known_Compatible));
+
+ -- In all other cases, we need a full check on the prefix
+
+ else
+ Set_Result
+ (Has_Compatible_Alignment_Internal
+ (Obj, Prefix (Expr), Unknown));
+ end if;
+ end Check_Prefix;
+
+ ----------------
+ -- Set_Result --
+ ----------------
+
+ procedure Set_Result (R : Alignment_Result) is
+ begin
+ if R > Result then
+ Result := R;
+ end if;
+ end Set_Result;
+
+ -- Start of processing for Has_Compatible_Alignment_Internal
+
+ begin
+ -- If Expr is a selected component, we must make sure there is no
+ -- potentially troublesome component clause, and that the record is
+ -- not packed.
+
+ if Nkind (Expr) = N_Selected_Component then
+
+ -- Packed record always generate unknown alignment
+
+ if Is_Packed (Etype (Prefix (Expr))) then
+ Set_Result (Unknown);
+ end if;
+
+ -- Check possible bad component offset and check prefix
+
+ Check_Offset
+ (Component_Bit_Offset (Entity (Selector_Name (Expr))));
+ Check_Prefix;
+
+ -- If Expr is an indexed component, we must make sure there is no
+ -- potentially troublesome Component_Size clause and that the array
+ -- is not bit-packed.
+
+ elsif Nkind (Expr) = N_Indexed_Component then
+
+ -- Bit packed array always generates unknown alignment
+
+ if Is_Bit_Packed_Array (Etype (Prefix (Expr))) then
+ Set_Result (Unknown);
+ end if;
+
+ -- Check possible bad component size and check prefix
+
+ Check_Offset (Component_Size (Etype (Prefix (Expr))));
+ Check_Prefix;
+ end if;
+
+ -- Case where we know the alignment of the object
+
+ if Known_Alignment (Obj) then
+ declare
+ ObjA : constant Uint := Alignment (Obj);
+ ExpA : Uint := No_Uint;
+ SizA : Uint := No_Uint;
+
+ begin
+ -- If alignment of Obj is 1, then we are always OK
+
+ if ObjA = 1 then
+ Set_Result (Known_Compatible);
+
+ -- Alignment of Obj is greater than 1, so we need to check
+
+ else
+ -- See if Expr is an object with known alignment
+
+ if Is_Entity_Name (Expr)
+ and then Known_Alignment (Entity (Expr))
+ then
+ ExpA := Alignment (Entity (Expr));
+
+ -- Otherwise, we can use the alignment of the type of
+ -- Expr given that we already checked for
+ -- discombobulating rep clauses for the cases of indexed
+ -- and selected components above.
+
+ elsif Known_Alignment (Etype (Expr)) then
+ ExpA := Alignment (Etype (Expr));
+ end if;
+
+ -- If we got an alignment, see if it is acceptable
+
+ if ExpA /= No_Uint then
+ if ExpA < ObjA then
+ Set_Result (Known_Incompatible);
+ end if;
+
+ -- Case of Expr alignment unknown
+
+ else
+ Set_Result (Default);
+ end if;
+
+ -- See if size is given. If so, check that it is not too
+ -- small for the required alignment.
+ -- See if Expr is an object with known alignment
+
+ if Is_Entity_Name (Expr)
+ and then Known_Static_Esize (Entity (Expr))
+ then
+ SizA := Esize (Entity (Expr));
+
+ -- Otherwise, we check the object size of the Expr type
+
+ elsif Known_Static_Esize (Etype (Expr)) then
+ SizA := Esize (Etype (Expr));
+ end if;
+
+ -- If we got a size, see if it is a multiple of the Obj
+ -- alignment, if not, then the alignment cannot be
+ -- acceptable, since the size is always a multiple of the
+ -- alignment.
+
+ if SizA /= No_Uint then
+ if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
+ Set_Result (Known_Incompatible);
+ end if;
+ end if;
+ end if;
+ end;
+
+ -- If we can't find the result by direct comparison of alignment
+ -- values, then there is still one case that we can determine known
+ -- result, and that is when we can determine that the types are the
+ -- same, and no alignments are specified. Then we known that the
+ -- alignments are compatible, even if we don't know the alignment
+ -- value in the front end.
+
+ elsif Etype (Obj) = Etype (Expr) then
+
+ -- Types are the same, but we have to check for possible size
+ -- and alignments on the Expr object that may make the alignment
+ -- different, even though the types are the same.
+
+ if Is_Entity_Name (Expr) then
+
+ -- First check alignment of the Expr object. Any alignment less
+ -- than Maximum_Alignment is worrisome since this is the case
+ -- where we do not know the alignment of Obj.
+
+ if Known_Alignment (Entity (Expr))
+ and then
+ UI_To_Int (Alignment (Entity (Expr)))
+ < Ttypes.Maximum_Alignment
+ then
+ Set_Result (Unknown);
+
+ -- Now check size of Expr object. Any size that is not an
+ -- even multiple of Maximum_Alignment is also worrisome
+ -- since it may cause the alignment of the object to be less
+ -- than the alignment of the type.
+
+ elsif Known_Static_Esize (Entity (Expr))
+ and then
+ (UI_To_Int (Esize (Entity (Expr))) mod
+ (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
+ /= 0
+ then
+ Set_Result (Unknown);
+
+ -- Otherwise same type is decisive
+
+ else
+ Set_Result (Known_Compatible);
+ end if;
+ end if;
+
+ -- Another case to deal with is when there is an explicit size or
+ -- alignment clause when the types are not the same. If so, then the
+ -- result is Unknown. We don't need to do this test if the Default is
+ -- Unknown, since that result will be set in any case.
+
+ elsif Default /= Unknown
+ and then (Has_Size_Clause (Etype (Expr))
+ or else
+ Has_Alignment_Clause (Etype (Expr)))
+ then
+ Set_Result (Unknown);
+
+ -- If no indication found, set default
+
+ else
+ Set_Result (Default);
+ end if;
+
+ -- Return worst result found
+
+ return Result;
+ end Has_Compatible_Alignment_Internal;
+
+ -- Start of processing for Has_Compatible_Alignment
+
+ begin
+ -- If Obj has no specified alignment, then set alignment from the type
+ -- alignment. Perhaps we should always do this, but for sure we should
+ -- do it when there is an address clause since we can do more if the
+ -- alignment is known.
+
+ if Unknown_Alignment (Obj) then
+ Set_Alignment (Obj, Alignment (Etype (Obj)));
+ end if;
+
+ -- Now do the internal call that does all the work
+
+ return Has_Compatible_Alignment_Internal (Obj, Expr, Unknown);
+ end Has_Compatible_Alignment;
+
+ ----------------------
+ -- Has_Declarations --
+ ----------------------
+
+ function Has_Declarations (N : Node_Id) return Boolean is
+ K : constant Node_Kind := Nkind (N);
+ begin
+ return K = N_Accept_Statement
+ or else K = N_Block_Statement
+ or else K = N_Compilation_Unit_Aux
+ or else K = N_Entry_Body
+ or else K = N_Package_Body
+ or else K = N_Protected_Body
+ or else K = N_Subprogram_Body
+ or else K = N_Task_Body
+ or else K = N_Package_Specification;
+ end Has_Declarations;
+
+ -------------------------------------------
+ -- Has_Discriminant_Dependent_Constraint --
+ -------------------------------------------
+
+ function Has_Discriminant_Dependent_Constraint
+ (Comp : Entity_Id) return Boolean
+ is
+ Comp_Decl : constant Node_Id := Parent (Comp);
+ Subt_Indic : constant Node_Id :=
+ Subtype_Indication (Component_Definition (Comp_Decl));
+ Constr : Node_Id;
+ Assn : Node_Id;
+
+ begin
+ if Nkind (Subt_Indic) = N_Subtype_Indication then
+ Constr := Constraint (Subt_Indic);
+
+ if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
+ Assn := First (Constraints (Constr));
+ while Present (Assn) loop
+ case Nkind (Assn) is
+ when N_Subtype_Indication |
+ N_Range |
+ N_Identifier
+ =>
+ if Depends_On_Discriminant (Assn) then
+ return True;
+ end if;
+
+ when N_Discriminant_Association =>
+ if Depends_On_Discriminant (Expression (Assn)) then
+ return True;
+ end if;
+
+ when others =>
+ null;
+
+ end case;
+
+ Next (Assn);
+ end loop;
+ end if;
+ end if;
+
+ return False;
+ end Has_Discriminant_Dependent_Constraint;
+
+ --------------------
+ -- Has_Infinities --
+ --------------------
+
+ function Has_Infinities (E : Entity_Id) return Boolean is
+ begin
+ return
+ Is_Floating_Point_Type (E)
+ and then Nkind (Scalar_Range (E)) = N_Range
+ and then Includes_Infinities (Scalar_Range (E));
+ end Has_Infinities;
+
+ --------------------
+ -- Has_Interfaces --
+ --------------------
+
+ function Has_Interfaces
+ (T : Entity_Id;
+ Use_Full_View : Boolean := True) return Boolean
+ is
+ Typ : Entity_Id;
+
+ begin
+ -- Handle concurrent types
+
+ if Is_Concurrent_Type (T) then
+ Typ := Corresponding_Record_Type (T);
+ else
+ Typ := T;
+ end if;
+
+ if not Present (Typ)
+ or else not Is_Record_Type (Typ)
+ or else not Is_Tagged_Type (Typ)
+ then
+ return False;
+ end if;
+
+ -- Handle private types
+
+ if Use_Full_View
+ and then Present (Full_View (Typ))
+ then
+ Typ := Full_View (Typ);
+ end if;
+
+ -- Handle concurrent record types
+
+ if Is_Concurrent_Record_Type (Typ)
+ and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
+ then
+ return True;
+ end if;
+
+ loop
+ if Is_Interface (Typ)
+ or else
+ (Is_Record_Type (Typ)
+ and then Present (Interfaces (Typ))
+ and then not Is_Empty_Elmt_List (Interfaces (Typ)))
+ then
+ return True;
+ end if;
+
+ exit when Etype (Typ) = Typ
+
+ -- Handle private types
+
+ or else (Present (Full_View (Etype (Typ)))
+ and then Full_View (Etype (Typ)) = Typ)
+
+ -- Protect the frontend against wrong source with cyclic
+ -- derivations
+
+ or else Etype (Typ) = T;
+
+ -- Climb to the ancestor type handling private types
+
+ if Present (Full_View (Etype (Typ))) then
+ Typ := Full_View (Etype (Typ));
+ else
+ Typ := Etype (Typ);
+ end if;
+ end loop;
+
+ return False;
+ end Has_Interfaces;
+
+ ------------------------
+ -- Has_Null_Exclusion --
+ ------------------------
+
+ function Has_Null_Exclusion (N : Node_Id) return Boolean is
+ begin
+ case Nkind (N) is
+ when N_Access_Definition |
+ N_Access_Function_Definition |
+ N_Access_Procedure_Definition |
+ N_Access_To_Object_Definition |
+ N_Allocator |
+ N_Derived_Type_Definition |
+ N_Function_Specification |
+ N_Subtype_Declaration =>
+ return Null_Exclusion_Present (N);
+
+ when N_Component_Definition |
+ N_Formal_Object_Declaration |
+ N_Object_Renaming_Declaration =>
+ if Present (Subtype_Mark (N)) then
+ return Null_Exclusion_Present (N);
+ else pragma Assert (Present (Access_Definition (N)));
+ return Null_Exclusion_Present (Access_Definition (N));
+ end if;
+
+ when N_Discriminant_Specification =>
+ if Nkind (Discriminant_Type (N)) = N_Access_Definition then
+ return Null_Exclusion_Present (Discriminant_Type (N));
+ else
+ return Null_Exclusion_Present (N);
+ end if;
+
+ when N_Object_Declaration =>
+ if Nkind (Object_Definition (N)) = N_Access_Definition then
+ return Null_Exclusion_Present (Object_Definition (N));
+ else
+ return Null_Exclusion_Present (N);
+ end if;
+
+ when N_Parameter_Specification =>
+ if Nkind (Parameter_Type (N)) = N_Access_Definition then
+ return Null_Exclusion_Present (Parameter_Type (N));
+ else
+ return Null_Exclusion_Present (N);
+ end if;
+
+ when others =>
+ return False;
+
+ end case;
+ end Has_Null_Exclusion;
+
+ ------------------------
+ -- Has_Null_Extension --
+ ------------------------
+
+ function Has_Null_Extension (T : Entity_Id) return Boolean is
+ B : constant Entity_Id := Base_Type (T);
+ Comps : Node_Id;
+ Ext : Node_Id;
+
+ begin
+ if Nkind (Parent (B)) = N_Full_Type_Declaration
+ and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
+ then
+ Ext := Record_Extension_Part (Type_Definition (Parent (B)));
+
+ if Present (Ext) then
+ if Null_Present (Ext) then
+ return True;
+ else
+ Comps := Component_List (Ext);
+
+ -- The null component list is rewritten during analysis to
+ -- include the parent component. Any other component indicates
+ -- that the extension was not originally null.
+
+ return Null_Present (Comps)
+ or else No (Next (First (Component_Items (Comps))));
+ end if;
+ else
+ return False;
+ end if;
+
+ else
+ return False;
+ end if;
+ end Has_Null_Extension;
+
+ -------------------------------
+ -- Has_Overriding_Initialize --
+ -------------------------------
+
+ function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
+ BT : constant Entity_Id := Base_Type (T);
+ Comp : Entity_Id;
+ P : Elmt_Id;
+
+ begin
+ if Is_Controlled (BT) then
+
+ -- For derived types, check immediate ancestor, excluding
+ -- Controlled itself.
+
+ if Is_Derived_Type (BT)
+ and then not In_Predefined_Unit (Etype (BT))
+ and then Has_Overriding_Initialize (Etype (BT))
+ then
+ return True;
+
+ elsif Present (Primitive_Operations (BT)) then
+ P := First_Elmt (Primitive_Operations (BT));
+ while Present (P) loop
+ if Chars (Node (P)) = Name_Initialize
+ and then Comes_From_Source (Node (P))
+ then
+ return True;
+ end if;
+
+ Next_Elmt (P);
+ end loop;
+ end if;
+
+ return False;
+
+ elsif Has_Controlled_Component (BT) then
+ Comp := First_Component (BT);
+ while Present (Comp) loop
+ if Has_Overriding_Initialize (Etype (Comp)) then
+ return True;
+ end if;
+
+ Next_Component (Comp);
+ end loop;
+
+ return False;
+
+ else
+ return False;
+ end if;
+ end Has_Overriding_Initialize;
+
+ --------------------------------------
+ -- Has_Preelaborable_Initialization --
+ --------------------------------------
+
+ function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
+ Has_PE : Boolean;
+
+ procedure Check_Components (E : Entity_Id);
+ -- Check component/discriminant chain, sets Has_PE False if a component
+ -- or discriminant does not meet the preelaborable initialization rules.
+
+ ----------------------
+ -- Check_Components --
+ ----------------------
+
+ procedure Check_Components (E : Entity_Id) is
+ Ent : Entity_Id;
+ Exp : Node_Id;
+
+ function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
+ -- Returns True if and only if the expression denoted by N does not
+ -- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
+
+ ---------------------------------
+ -- Is_Preelaborable_Expression --
+ ---------------------------------
+
+ function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
+ Exp : Node_Id;
+ Assn : Node_Id;
+ Choice : Node_Id;
+ Comp_Type : Entity_Id;
+ Is_Array_Aggr : Boolean;
+
+ begin
+ if Is_Static_Expression (N) then
+ return True;
+
+ elsif Nkind (N) = N_Null then
+ return True;
+
+ -- Attributes are allowed in general, even if their prefix is a
+ -- formal type. (It seems that certain attributes known not to be
+ -- static might not be allowed, but there are no rules to prevent
+ -- them.)
+
+ elsif Nkind (N) = N_Attribute_Reference then
+ return True;
+
+ -- The name of a discriminant evaluated within its parent type is
+ -- defined to be preelaborable (10.2.1(8)). Note that we test for
+ -- names that denote discriminals as well as discriminants to
+ -- catch references occurring within init procs.
+
+ elsif Is_Entity_Name (N)
+ and then
+ (Ekind (Entity (N)) = E_Discriminant
+ or else
+ ((Ekind (Entity (N)) = E_Constant
+ or else Ekind (Entity (N)) = E_In_Parameter)
+ and then Present (Discriminal_Link (Entity (N)))))
+ then
+ return True;
+
+ elsif Nkind (N) = N_Qualified_Expression then
+ return Is_Preelaborable_Expression (Expression (N));
+
+ -- For aggregates we have to check that each of the associations
+ -- is preelaborable.
+
+ elsif Nkind (N) = N_Aggregate
+ or else Nkind (N) = N_Extension_Aggregate
+ then
+ Is_Array_Aggr := Is_Array_Type (Etype (N));
+
+ if Is_Array_Aggr then
+ Comp_Type := Component_Type (Etype (N));
+ end if;
+
+ -- Check the ancestor part of extension aggregates, which must
+ -- be either the name of a type that has preelaborable init or
+ -- an expression that is preelaborable.
+
+ if Nkind (N) = N_Extension_Aggregate then
+ declare
+ Anc_Part : constant Node_Id := Ancestor_Part (N);
+
+ begin
+ if Is_Entity_Name (Anc_Part)
+ and then Is_Type (Entity (Anc_Part))
+ then
+ if not Has_Preelaborable_Initialization
+ (Entity (Anc_Part))
+ then
+ return False;
+ end if;
+
+ elsif not Is_Preelaborable_Expression (Anc_Part) then
+ return False;
+ end if;
+ end;
+ end if;
+
+ -- Check positional associations
+
+ Exp := First (Expressions (N));
+ while Present (Exp) loop
+ if not Is_Preelaborable_Expression (Exp) then
+ return False;
+ end if;
+
+ Next (Exp);
+ end loop;
+
+ -- Check named associations
+
+ Assn := First (Component_Associations (N));
+ while Present (Assn) loop
+ Choice := First (Choices (Assn));
+ while Present (Choice) loop
+ if Is_Array_Aggr then
+ if Nkind (Choice) = N_Others_Choice then
+ null;
+
+ elsif Nkind (Choice) = N_Range then
+ if not Is_Static_Range (Choice) then
+ return False;
+ end if;
+
+ elsif not Is_Static_Expression (Choice) then
+ return False;
+ end if;
+
+ else
+ Comp_Type := Etype (Choice);
+ end if;
+
+ Next (Choice);
+ end loop;
+
+ -- If the association has a <> at this point, then we have
+ -- to check whether the component's type has preelaborable
+ -- initialization. Note that this only occurs when the
+ -- association's corresponding component does not have a
+ -- default expression, the latter case having already been
+ -- expanded as an expression for the association.
+
+ if Box_Present (Assn) then
+ if not Has_Preelaborable_Initialization (Comp_Type) then
+ return False;
+ end if;
+
+ -- In the expression case we check whether the expression
+ -- is preelaborable.
+
+ elsif
+ not Is_Preelaborable_Expression (Expression (Assn))
+ then
+ return False;
+ end if;
+
+ Next (Assn);
+ end loop;
+
+ -- If we get here then aggregate as a whole is preelaborable
+
+ return True;
+
+ -- All other cases are not preelaborable
+
+ else
+ return False;
+ end if;
+ end Is_Preelaborable_Expression;
+
+ -- Start of processing for Check_Components
+
+ begin
+ -- Loop through entities of record or protected type
+
+ Ent := E;
+ while Present (Ent) loop
+
+ -- We are interested only in components and discriminants
+
+ if Ekind (Ent) = E_Component
+ or else
+ Ekind (Ent) = E_Discriminant
+ then
+ -- Get default expression if any. If there is no declaration
+ -- node, it means we have an internal entity. The parent and
+ -- tag fields are examples of such entities. For these cases,
+ -- we just test the type of the entity.
+
+ if Present (Declaration_Node (Ent)) then
+ Exp := Expression (Declaration_Node (Ent));
+ else
+ Exp := Empty;
+ end if;
+
+ -- A component has PI if it has no default expression and the
+ -- component type has PI.
+
+ if No (Exp) then
+ if not Has_Preelaborable_Initialization (Etype (Ent)) then
+ Has_PE := False;
+ exit;
+ end if;
+
+ -- Require the default expression to be preelaborable
+
+ elsif not Is_Preelaborable_Expression (Exp) then
+ Has_PE := False;
+ exit;
+ end if;
+ end if;
+
+ Next_Entity (Ent);
+ end loop;
+ end Check_Components;
+
+ -- Start of processing for Has_Preelaborable_Initialization
+
+ begin
+ -- Immediate return if already marked as known preelaborable init. This
+ -- covers types for which this function has already been called once
+ -- and returned True (in which case the result is cached), and also
+ -- types to which a pragma Preelaborable_Initialization applies.
+
+ if Known_To_Have_Preelab_Init (E) then
+ return True;
+ end if;
+
+ -- If the type is a subtype representing a generic actual type, then
+ -- test whether its base type has preelaborable initialization since
+ -- the subtype representing the actual does not inherit this attribute
+ -- from the actual or formal. (but maybe it should???)
+
+ if Is_Generic_Actual_Type (E) then
+ return Has_Preelaborable_Initialization (Base_Type (E));
+ end if;
+
+ -- All elementary types have preelaborable initialization
+
+ if Is_Elementary_Type (E) then
+ Has_PE := True;
+
+ -- Array types have PI if the component type has PI
+
+ elsif Is_Array_Type (E) then
+ Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
+
+ -- A derived type has preelaborable initialization if its parent type
+ -- has preelaborable initialization and (in the case of a derived record
+ -- extension) if the non-inherited components all have preelaborable
+ -- initialization. However, a user-defined controlled type with an
+ -- overriding Initialize procedure does not have preelaborable
+ -- initialization.
+
+ elsif Is_Derived_Type (E) then
+
+ -- If the derived type is a private extension then it doesn't have
+ -- preelaborable initialization.
+
+ if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
+ return False;
+ end if;
+
+ -- First check whether ancestor type has preelaborable initialization
+
+ Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
+
+ -- If OK, check extension components (if any)
+
+ if Has_PE and then Is_Record_Type (E) then
+ Check_Components (First_Entity (E));
+ end if;
+
+ -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
+ -- with a user defined Initialize procedure does not have PI.
+
+ if Has_PE
+ and then Is_Controlled (E)
+ and then Has_Overriding_Initialize (E)
+ then
+ Has_PE := False;
+ end if;
+
+ -- Private types not derived from a type having preelaborable init and
+ -- that are not marked with pragma Preelaborable_Initialization do not
+ -- have preelaborable initialization.
+
+ elsif Is_Private_Type (E) then
+ return False;
+
+ -- Record type has PI if it is non private and all components have PI
+
+ elsif Is_Record_Type (E) then
+ Has_PE := True;
+ Check_Components (First_Entity (E));
+
+ -- Protected types must not have entries, and components must meet
+ -- same set of rules as for record components.
+
+ elsif Is_Protected_Type (E) then
+ if Has_Entries (E) then
+ Has_PE := False;
+ else
+ Has_PE := True;
+ Check_Components (First_Entity (E));
+ Check_Components (First_Private_Entity (E));
+ end if;
+
+ -- Type System.Address always has preelaborable initialization
+
+ elsif Is_RTE (E, RE_Address) then
+ Has_PE := True;
+
+ -- In all other cases, type does not have preelaborable initialization
+
+ else
+ return False;
+ end if;
+
+ -- If type has preelaborable initialization, cache result
+
+ if Has_PE then
+ Set_Known_To_Have_Preelab_Init (E);
+ end if;
+
+ return Has_PE;
+ end Has_Preelaborable_Initialization;
+
+ ---------------------------
+ -- Has_Private_Component --
+ ---------------------------
+
+ function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
+ Btype : Entity_Id := Base_Type (Type_Id);
+ Component : Entity_Id;
+
+ begin
+ if Error_Posted (Type_Id)
+ or else Error_Posted (Btype)
+ then
+ return False;
+ end if;
+
+ if Is_Class_Wide_Type (Btype) then
+ Btype := Root_Type (Btype);
+ end if;
+
+ if Is_Private_Type (Btype) then
+ declare
+ UT : constant Entity_Id := Underlying_Type (Btype);
+ begin
+ if No (UT) then
+ if No (Full_View (Btype)) then
+ return not Is_Generic_Type (Btype)
+ and then not Is_Generic_Type (Root_Type (Btype));
+ else
+ return not Is_Generic_Type (Root_Type (Full_View (Btype)));
+ end if;
+ else
+ return not Is_Frozen (UT) and then Has_Private_Component (UT);
+ end if;
+ end;
+
+ elsif Is_Array_Type (Btype) then
+ return Has_Private_Component (Component_Type (Btype));
+
+ elsif Is_Record_Type (Btype) then
+ Component := First_Component (Btype);
+ while Present (Component) loop
+ if Has_Private_Component (Etype (Component)) then
+ return True;
+ end if;
+
+ Next_Component (Component);
+ end loop;
+
+ return False;
+
+ elsif Is_Protected_Type (Btype)
+ and then Present (Corresponding_Record_Type (Btype))
+ then
+ return Has_Private_Component (Corresponding_Record_Type (Btype));
+
+ else
+ return False;
+ end if;
+ end Has_Private_Component;
+
+ ----------------
+ -- Has_Stream --
+ ----------------
+
+ function Has_Stream (T : Entity_Id) return Boolean is
+ E : Entity_Id;
+
+ begin
+ if No (T) then
+ return False;
+
+ elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
+ return True;
+
+ elsif Is_Array_Type (T) then
+ return Has_Stream (Component_Type (T));
+
+ elsif Is_Record_Type (T) then
+ E := First_Component (T);
+ while Present (E) loop
+ if Has_Stream (Etype (E)) then
+ return True;
+ else
+ Next_Component (E);
+ end if;
+ end loop;
+
+ return False;
+
+ elsif Is_Private_Type (T) then
+ return Has_Stream (Underlying_Type (T));
+
+ else
+ return False;
+ end if;
+ end Has_Stream;
+
+ --------------------------
+ -- Has_Tagged_Component --
+ --------------------------
+
+ function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
+ Comp : Entity_Id;
+
+ begin
+ if Is_Private_Type (Typ)
+ and then Present (Underlying_Type (Typ))
+ then
+ return Has_Tagged_Component (Underlying_Type (Typ));
+
+ elsif Is_Array_Type (Typ) then
+ return Has_Tagged_Component (Component_Type (Typ));
+
+ elsif Is_Tagged_Type (Typ) then
+ return True;
+
+ elsif Is_Record_Type (Typ) then
+ Comp := First_Component (Typ);
+ while Present (Comp) loop
+ if Has_Tagged_Component (Etype (Comp)) then
+ return True;
+ end if;
+
+ Comp := Next_Component (Typ);
+ end loop;
+
+ return False;
+
+ else
+ return False;
+ end if;
+ end Has_Tagged_Component;
+
+ --------------------------
+ -- Implements_Interface --
+ --------------------------
+
+ function Implements_Interface
+ (Typ_Ent : Entity_Id;
+ Iface_Ent : Entity_Id;
+ Exclude_Parents : Boolean := False) return Boolean
+ is
+ Ifaces_List : Elist_Id;
+ Elmt : Elmt_Id;
+ Iface : Entity_Id;
+ Typ : Entity_Id;
+
+ begin
+ if Is_Class_Wide_Type (Typ_Ent) then
+ Typ := Etype (Typ_Ent);
+ else
+ Typ := Typ_Ent;
+ end if;
+
+ if Is_Class_Wide_Type (Iface_Ent) then
+ Iface := Etype (Iface_Ent);
+ else
+ Iface := Iface_Ent;
+ end if;
+
+ if not Has_Interfaces (Typ) then
+ return False;
+ end if;
+
+ Collect_Interfaces (Typ, Ifaces_List);
+
+ Elmt := First_Elmt (Ifaces_List);
+ while Present (Elmt) loop
+ if Is_Ancestor (Node (Elmt), Typ)
+ and then Exclude_Parents
+ then
+ null;
+
+ elsif Node (Elmt) = Iface then
+ return True;
+ end if;
+
+ Next_Elmt (Elmt);
+ end loop;
+
+ return False;
+ end Implements_Interface;
+
+ -----------------
+ -- In_Instance --
+ -----------------
+
+ function In_Instance return Boolean is
+ Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if (Ekind (S) = E_Function
+ or else Ekind (S) = E_Package
+ or else Ekind (S) = E_Procedure)
+ and then Is_Generic_Instance (S)
+ then
+ -- A child instance is always compiled in the context of a parent
+ -- instance. Nevertheless, the actuals are not analyzed in an
+ -- instance context. We detect this case by examining the current
+ -- compilation unit, which must be a child instance, and checking
+ -- that it is not currently on the scope stack.
+
+ if Is_Child_Unit (Curr_Unit)
+ and then
+ Nkind (Unit (Cunit (Current_Sem_Unit)))
+ = N_Package_Instantiation
+ and then not In_Open_Scopes (Curr_Unit)
+ then
+ return False;
+ else
+ return True;
+ end if;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end In_Instance;
+
+ ----------------------
+ -- In_Instance_Body --
+ ----------------------
+
+ function In_Instance_Body return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if (Ekind (S) = E_Function
+ or else Ekind (S) = E_Procedure)
+ and then Is_Generic_Instance (S)
+ then
+ return True;
+
+ elsif Ekind (S) = E_Package
+ and then In_Package_Body (S)
+ and then Is_Generic_Instance (S)
+ then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end In_Instance_Body;
+
+ -----------------------------
+ -- In_Instance_Not_Visible --
+ -----------------------------
+
+ function In_Instance_Not_Visible return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if (Ekind (S) = E_Function
+ or else Ekind (S) = E_Procedure)
+ and then Is_Generic_Instance (S)
+ then
+ return True;
+
+ elsif Ekind (S) = E_Package
+ and then (In_Package_Body (S) or else In_Private_Part (S))
+ and then Is_Generic_Instance (S)
+ then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end In_Instance_Not_Visible;
+
+ ------------------------------
+ -- In_Instance_Visible_Part --
+ ------------------------------
+
+ function In_Instance_Visible_Part return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if Ekind (S) = E_Package
+ and then Is_Generic_Instance (S)
+ and then not In_Package_Body (S)
+ and then not In_Private_Part (S)
+ then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end In_Instance_Visible_Part;
+
+ ---------------------
+ -- In_Package_Body --
+ ---------------------
+
+ function In_Package_Body return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while Present (S)
+ and then S /= Standard_Standard
+ loop
+ if Ekind (S) = E_Package
+ and then In_Package_Body (S)
+ then
+ return True;
+ else
+ S := Scope (S);
+ end if;
+ end loop;
+
+ return False;
+ end In_Package_Body;
+
+ --------------------------------
+ -- In_Parameter_Specification --
+ --------------------------------
+
+ function In_Parameter_Specification (N : Node_Id) return Boolean is
+ PN : Node_Id;
+
+ begin
+ PN := Parent (N);
+ while Present (PN) loop
+ if Nkind (PN) = N_Parameter_Specification then
+ return True;
+ end if;
+
+ PN := Parent (PN);
+ end loop;
+
+ return False;
+ end In_Parameter_Specification;
+
+ --------------------------------------
+ -- In_Subprogram_Or_Concurrent_Unit --
+ --------------------------------------
+
+ function In_Subprogram_Or_Concurrent_Unit return Boolean is
+ E : Entity_Id;
+ K : Entity_Kind;
+
+ begin
+ -- Use scope chain to check successively outer scopes
+
+ E := Current_Scope;
+ loop
+ K := Ekind (E);
+
+ if K in Subprogram_Kind
+ or else K in Concurrent_Kind
+ or else K in Generic_Subprogram_Kind
+ then
+ return True;
+
+ elsif E = Standard_Standard then
+ return False;
+ end if;
+
+ E := Scope (E);
+ end loop;
+ end In_Subprogram_Or_Concurrent_Unit;
+
+ ---------------------
+ -- In_Visible_Part --
+ ---------------------
+
+ function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
+ begin
+ return
+ Is_Package_Or_Generic_Package (Scope_Id)
+ and then In_Open_Scopes (Scope_Id)
+ and then not In_Package_Body (Scope_Id)
+ and then not In_Private_Part (Scope_Id);
+ end In_Visible_Part;
+
+ ---------------------------------
+ -- Insert_Explicit_Dereference --
+ ---------------------------------
+
+ procedure Insert_Explicit_Dereference (N : Node_Id) is
+ New_Prefix : constant Node_Id := Relocate_Node (N);
+ Ent : Entity_Id := Empty;
+ Pref : Node_Id;
+ I : Interp_Index;
+ It : Interp;
+ T : Entity_Id;
+
+ begin
+ Save_Interps (N, New_Prefix);
+ Rewrite (N,
+ Make_Explicit_Dereference (Sloc (N),
+ Prefix => New_Prefix));
+
+ Set_Etype (N, Designated_Type (Etype (New_Prefix)));
+
+ if Is_Overloaded (New_Prefix) then
+
+ -- The deference is also overloaded, and its interpretations are the
+ -- designated types of the interpretations of the original node.
+
+ Set_Etype (N, Any_Type);
+
+ Get_First_Interp (New_Prefix, I, It);
+ while Present (It.Nam) loop
+ T := It.Typ;
+
+ if Is_Access_Type (T) then
+ Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
+ end if;
+
+ Get_Next_Interp (I, It);
+ end loop;
+
+ End_Interp_List;
+
+ else
+ -- Prefix is unambiguous: mark the original prefix (which might
+ -- Come_From_Source) as a reference, since the new (relocated) one
+ -- won't be taken into account.
+
+ if Is_Entity_Name (New_Prefix) then
+ Ent := Entity (New_Prefix);
+
+ -- For a retrieval of a subcomponent of some composite object,
+ -- retrieve the ultimate entity if there is one.
+
+ elsif Nkind (New_Prefix) = N_Selected_Component
+ or else Nkind (New_Prefix) = N_Indexed_Component
+ then
+ Pref := Prefix (New_Prefix);
+ while Present (Pref)
+ and then
+ (Nkind (Pref) = N_Selected_Component
+ or else Nkind (Pref) = N_Indexed_Component)
+ loop
+ Pref := Prefix (Pref);
+ end loop;
+
+ if Present (Pref) and then Is_Entity_Name (Pref) then
+ Ent := Entity (Pref);
+ end if;
+ end if;
+
+ if Present (Ent) then
+ Generate_Reference (Ent, New_Prefix);
+ end if;
+ end if;
+ end Insert_Explicit_Dereference;
+
+ ------------------------------------------
+ -- Inspect_Deferred_Constant_Completion --
+ ------------------------------------------
+
+ procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
+ Decl : Node_Id;
+
+ begin
+ Decl := First (Decls);
+ while Present (Decl) loop
+
+ -- Deferred constant signature
+
+ if Nkind (Decl) = N_Object_Declaration
+ and then Constant_Present (Decl)
+ and then No (Expression (Decl))
+
+ -- No need to check internally generated constants
+
+ and then Comes_From_Source (Decl)
+
+ -- The constant is not completed. A full object declaration
+ -- or a pragma Import complete a deferred constant.
+
+ and then not Has_Completion (Defining_Identifier (Decl))
+ then
+ Error_Msg_N
+ ("constant declaration requires initialization expression",
+ Defining_Identifier (Decl));
+ end if;
+
+ Decl := Next (Decl);
+ end loop;
+ end Inspect_Deferred_Constant_Completion;
+
+ -------------------
+ -- Is_AAMP_Float --
+ -------------------
+
+ function Is_AAMP_Float (E : Entity_Id) return Boolean is
+ pragma Assert (Is_Type (E));
+ begin
+ return AAMP_On_Target
+ and then Is_Floating_Point_Type (E)
+ and then E = Base_Type (E);
+ end Is_AAMP_Float;
+
+ -------------------------
+ -- Is_Actual_Parameter --
+ -------------------------
+
+ function Is_Actual_Parameter (N : Node_Id) return Boolean is
+ PK : constant Node_Kind := Nkind (Parent (N));
+
+ begin
+ case PK is
+ when N_Parameter_Association =>
+ return N = Explicit_Actual_Parameter (Parent (N));
+
+ when N_Function_Call | N_Procedure_Call_Statement =>
+ return Is_List_Member (N)
+ and then
+ List_Containing (N) = Parameter_Associations (Parent (N));
+
+ when others =>
+ return False;
+ end case;
+ end Is_Actual_Parameter;
+
+ ---------------------
+ -- Is_Aliased_View --
+ ---------------------
+
+ function Is_Aliased_View (Obj : Node_Id) return Boolean is
+ E : Entity_Id;
+
+ begin
+ if Is_Entity_Name (Obj) then
+
+ E := Entity (Obj);
+
+ return
+ (Is_Object (E)
+ and then
+ (Is_Aliased (E)
+ or else (Present (Renamed_Object (E))
+ and then Is_Aliased_View (Renamed_Object (E)))))
+
+ or else ((Is_Formal (E)
+ or else Ekind (E) = E_Generic_In_Out_Parameter
+ or else Ekind (E) = E_Generic_In_Parameter)
+ and then Is_Tagged_Type (Etype (E)))
+
+ or else (Is_Concurrent_Type (E)
+ and then In_Open_Scopes (E))
+
+ -- Current instance of type, either directly or as rewritten
+ -- reference to the current object.
+
+ or else (Is_Entity_Name (Original_Node (Obj))
+ and then Present (Entity (Original_Node (Obj)))
+ and then Is_Type (Entity (Original_Node (Obj))))
+
+ or else (Is_Type (E) and then E = Current_Scope)
+
+ or else (Is_Incomplete_Or_Private_Type (E)
+ and then Full_View (E) = Current_Scope);
+
+ elsif Nkind (Obj) = N_Selected_Component then
+ return Is_Aliased (Entity (Selector_Name (Obj)));
+
+ elsif Nkind (Obj) = N_Indexed_Component then
+ return Has_Aliased_Components (Etype (Prefix (Obj)))
+ or else
+ (Is_Access_Type (Etype (Prefix (Obj)))
+ and then
+ Has_Aliased_Components
+ (Designated_Type (Etype (Prefix (Obj)))));
+
+ elsif Nkind (Obj) = N_Unchecked_Type_Conversion
+ or else Nkind (Obj) = N_Type_Conversion
+ then
+ return Is_Tagged_Type (Etype (Obj))
+ and then Is_Aliased_View (Expression (Obj));
+
+ elsif Nkind (Obj) = N_Explicit_Dereference then
+ return Nkind (Original_Node (Obj)) /= N_Function_Call;
+
+ else
+ return False;
+ end if;
+ end Is_Aliased_View;
+
+ -------------------------
+ -- Is_Ancestor_Package --
+ -------------------------
+
+ function Is_Ancestor_Package
+ (E1 : Entity_Id;
+ E2 : Entity_Id) return Boolean
+ is
+ Par : Entity_Id;
+
+ begin
+ Par := E2;
+ while Present (Par)
+ and then Par /= Standard_Standard
+ loop
+ if Par = E1 then
+ return True;
+ end if;
+
+ Par := Scope (Par);
+ end loop;
+
+ return False;
+ end Is_Ancestor_Package;
+
+ ----------------------
+ -- Is_Atomic_Object --
+ ----------------------
+
+ function Is_Atomic_Object (N : Node_Id) return Boolean is
+
+ function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
+ -- Determines if given object has atomic components
+
+ function Is_Atomic_Prefix (N : Node_Id) return Boolean;
+ -- If prefix is an implicit dereference, examine designated type
+
+ ----------------------
+ -- Is_Atomic_Prefix --
+ ----------------------
+
+ function Is_Atomic_Prefix (N : Node_Id) return Boolean is
+ begin
+ if Is_Access_Type (Etype (N)) then
+ return
+ Has_Atomic_Components (Designated_Type (Etype (N)));
+ else
+ return Object_Has_Atomic_Components (N);
+ end if;
+ end Is_Atomic_Prefix;
+
+ ----------------------------------
+ -- Object_Has_Atomic_Components --
+ ----------------------------------
+
+ function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
+ begin
+ if Has_Atomic_Components (Etype (N))
+ or else Is_Atomic (Etype (N))
+ then
+ return True;
+
+ elsif Is_Entity_Name (N)
+ and then (Has_Atomic_Components (Entity (N))
+ or else Is_Atomic (Entity (N)))
+ then
+ return True;
+
+ elsif Nkind (N) = N_Indexed_Component
+ or else Nkind (N) = N_Selected_Component
+ then
+ return Is_Atomic_Prefix (Prefix (N));
+
+ else
+ return False;
+ end if;
+ end Object_Has_Atomic_Components;
+
+ -- Start of processing for Is_Atomic_Object
+
+ begin
+ if Is_Atomic (Etype (N))
+ or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
+ then
+ return True;
+
+ elsif Nkind (N) = N_Indexed_Component
+ or else Nkind (N) = N_Selected_Component
+ then
+ return Is_Atomic_Prefix (Prefix (N));
+
+ else
+ return False;
+ end if;
+ end Is_Atomic_Object;
+
+ -------------------------
+ -- Is_Coextension_Root --
+ -------------------------
+
+ function Is_Coextension_Root (N : Node_Id) return Boolean is
+ begin
+ return
+ Nkind (N) = N_Allocator
+ and then Present (Coextensions (N))
+
+ -- Anonymous access discriminants carry a list of all nested
+ -- controlled coextensions.
+
+ and then not Is_Dynamic_Coextension (N)
+ and then not Is_Static_Coextension (N);
+ end Is_Coextension_Root;
+
+ -----------------------------
+ -- Is_Concurrent_Interface --
+ -----------------------------
+
+ function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
+ begin
+ return
+ Is_Interface (T)
+ and then
+ (Is_Protected_Interface (T)
+ or else Is_Synchronized_Interface (T)
+ or else Is_Task_Interface (T));
+ end Is_Concurrent_Interface;
+
+ --------------------------------------
+ -- Is_Controlling_Limited_Procedure --
+ --------------------------------------
+
+ function Is_Controlling_Limited_Procedure
+ (Proc_Nam : Entity_Id) return Boolean
+ is
+ Param_Typ : Entity_Id := Empty;
+
+ begin
+ if Ekind (Proc_Nam) = E_Procedure
+ and then Present (Parameter_Specifications (Parent (Proc_Nam)))
+ then
+ Param_Typ := Etype (Parameter_Type (First (
+ Parameter_Specifications (Parent (Proc_Nam)))));
+
+ -- In this case where an Itype was created, the procedure call has been
+ -- rewritten.
+
+ elsif Present (Associated_Node_For_Itype (Proc_Nam))
+ and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
+ and then
+ Present (Parameter_Associations
+ (Associated_Node_For_Itype (Proc_Nam)))
+ then
+ Param_Typ :=
+ Etype (First (Parameter_Associations
+ (Associated_Node_For_Itype (Proc_Nam))));
+ end if;
+
+ if Present (Param_Typ) then
+ return
+ Is_Interface (Param_Typ)
+ and then Is_Limited_Record (Param_Typ);
+ end if;
+
+ return False;
+ end Is_Controlling_Limited_Procedure;
+
+ ----------------------------------------------
+ -- Is_Dependent_Component_Of_Mutable_Object --
+ ----------------------------------------------
+
+ function Is_Dependent_Component_Of_Mutable_Object
+ (Object : Node_Id) return Boolean
+ is
+ P : Node_Id;
+ Prefix_Type : Entity_Id;
+ P_Aliased : Boolean := False;
+ Comp : Entity_Id;
+
+ function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
+ -- Returns True if and only if Comp is declared within a variant part
+
+ --------------------------------
+ -- Is_Declared_Within_Variant --
+ --------------------------------
+
+ function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
+ Comp_Decl : constant Node_Id := Parent (Comp);
+ Comp_List : constant Node_Id := Parent (Comp_Decl);
+ begin
+ return Nkind (Parent (Comp_List)) = N_Variant;
+ end Is_Declared_Within_Variant;
+
+ -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
+
+ begin
+ if Is_Variable (Object) then
+
+ if Nkind (Object) = N_Selected_Component then
+ P := Prefix (Object);
+ Prefix_Type := Etype (P);
+
+ if Is_Entity_Name (P) then
+
+ if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
+ Prefix_Type := Base_Type (Prefix_Type);
+ end if;
+
+ if Is_Aliased (Entity (P)) then
+ P_Aliased := True;
+ end if;
+
+ -- A discriminant check on a selected component may be
+ -- expanded into a dereference when removing side-effects.
+ -- Recover the original node and its type, which may be
+ -- unconstrained.
+
+ elsif Nkind (P) = N_Explicit_Dereference
+ and then not (Comes_From_Source (P))
+ then
+ P := Original_Node (P);
+ Prefix_Type := Etype (P);
+
+ else
+ -- Check for prefix being an aliased component ???
+ null;
+
+ end if;
+
+ -- A heap object is constrained by its initial value
+
+ -- Ada 2005 (AI-363): Always assume the object could be mutable in
+ -- the dereferenced case, since the access value might denote an
+ -- unconstrained aliased object, whereas in Ada 95 the designated
+ -- object is guaranteed to be constrained. A worst-case assumption
+ -- has to apply in Ada 2005 because we can't tell at compile time
+ -- whether the object is "constrained by its initial value"
+ -- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are
+ -- semantic rules -- these rules are acknowledged to need fixing).
+
+ if Ada_Version < Ada_05 then
+ if Is_Access_Type (Prefix_Type)
+ or else Nkind (P) = N_Explicit_Dereference
+ then
+ return False;
+ end if;
+
+ elsif Ada_Version >= Ada_05 then
+ if Is_Access_Type (Prefix_Type) then
+
+ -- If the access type is pool-specific, and there is no
+ -- constrained partial view of the designated type, then the
+ -- designated object is known to be constrained.
+
+ if Ekind (Prefix_Type) = E_Access_Type
+ and then not Has_Constrained_Partial_View
+ (Designated_Type (Prefix_Type))
+ then
+ return False;
+
+ -- Otherwise (general access type, or there is a constrained
+ -- partial view of the designated type), we need to check
+ -- based on the designated type.
+
+ else
+ Prefix_Type := Designated_Type (Prefix_Type);
+ end if;
+ end if;
+ end if;
+
+ Comp :=
+ Original_Record_Component (Entity (Selector_Name (Object)));
+
+ -- As per AI-0017, the renaming is illegal in a generic body,
+ -- even if the subtype is indefinite.
+
+ -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
+
+ if not Is_Constrained (Prefix_Type)
+ and then (not Is_Indefinite_Subtype (Prefix_Type)
+ or else
+ (Is_Generic_Type (Prefix_Type)
+ and then Ekind (Current_Scope) = E_Generic_Package
+ and then In_Package_Body (Current_Scope)))
+
+ and then (Is_Declared_Within_Variant (Comp)
+ or else Has_Discriminant_Dependent_Constraint (Comp))
+ and then (not P_Aliased or else Ada_Version >= Ada_05)
+ then
+ return True;
+
+ else
+ return
+ Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
+
+ end if;
+
+ elsif Nkind (Object) = N_Indexed_Component
+ or else Nkind (Object) = N_Slice
+ then
+ return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
+
+ -- A type conversion that Is_Variable is a view conversion:
+ -- go back to the denoted object.
+
+ elsif Nkind (Object) = N_Type_Conversion then
+ return
+ Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
+ end if;
+ end if;
+
+ return False;
+ end Is_Dependent_Component_Of_Mutable_Object;
+
+ ---------------------
+ -- Is_Dereferenced --
+ ---------------------
+
+ function Is_Dereferenced (N : Node_Id) return Boolean is
+ P : constant Node_Id := Parent (N);
+ begin
+ return
+ (Nkind (P) = N_Selected_Component
+ or else
+ Nkind (P) = N_Explicit_Dereference
+ or else
+ Nkind (P) = N_Indexed_Component
+ or else
+ Nkind (P) = N_Slice)
+ and then Prefix (P) = N;
+ end Is_Dereferenced;
+
+ ----------------------
+ -- Is_Descendent_Of --
+ ----------------------
+
+ function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
+ T : Entity_Id;
+ Etyp : Entity_Id;
+
+ begin
+ pragma Assert (Nkind (T1) in N_Entity);
+ pragma Assert (Nkind (T2) in N_Entity);
+
+ T := Base_Type (T1);
+
+ -- Immediate return if the types match
+
+ if T = T2 then
+ return True;
+
+ -- Comment needed here ???
+
+ elsif Ekind (T) = E_Class_Wide_Type then
+ return Etype (T) = T2;
+
+ -- All other cases
+
+ else
+ loop
+ Etyp := Etype (T);
+
+ -- Done if we found the type we are looking for
+
+ if Etyp = T2 then
+ return True;
+
+ -- Done if no more derivations to check
+
+ elsif T = T1
+ or else T = Etyp
+ then
+ return False;
+
+ -- Following test catches error cases resulting from prev errors
+
+ elsif No (Etyp) then
+ return False;
+
+ elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
+ return False;
+
+ elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
+ return False;
+ end if;
+
+ T := Base_Type (Etyp);
+ end loop;
+ end if;
+ end Is_Descendent_Of;
+
+ --------------
+ -- Is_False --
+ --------------
+
+ function Is_False (U : Uint) return Boolean is
+ begin
+ return (U = 0);
+ end Is_False;
+
+ ---------------------------
+ -- Is_Fixed_Model_Number --
+ ---------------------------
+
+ function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
+ S : constant Ureal := Small_Value (T);
+ M : Urealp.Save_Mark;
+ R : Boolean;
+ begin
+ M := Urealp.Mark;
+ R := (U = UR_Trunc (U / S) * S);
+ Urealp.Release (M);
+ return R;
+ end Is_Fixed_Model_Number;
+
+ -------------------------------
+ -- Is_Fully_Initialized_Type --
+ -------------------------------
+
+ function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
+ begin
+ if Is_Scalar_Type (Typ) then
+ return False;
+
+ elsif Is_Access_Type (Typ) then
+ return True;
+
+ elsif Is_Array_Type (Typ) then
+ if Is_Fully_Initialized_Type (Component_Type (Typ)) then
+ return True;
+ end if;
+
+ -- An interesting case, if we have a constrained type one of whose
+ -- bounds is known to be null, then there are no elements to be
+ -- initialized, so all the elements are initialized!
+
+ if Is_Constrained (Typ) then
+ declare
+ Indx : Node_Id;
+ Indx_Typ : Entity_Id;
+ Lbd, Hbd : Node_Id;
+
+ begin
+ Indx := First_Index (Typ);
+ while Present (Indx) loop
+ if Etype (Indx) = Any_Type then
+ return False;
+
+ -- If index is a range, use directly
+
+ elsif Nkind (Indx) = N_Range then
+ Lbd := Low_Bound (Indx);
+ Hbd := High_Bound (Indx);
+
+ else
+ Indx_Typ := Etype (Indx);
+
+ if Is_Private_Type (Indx_Typ) then
+ Indx_Typ := Full_View (Indx_Typ);
+ end if;
+
+ if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
+ return False;
+ else
+ Lbd := Type_Low_Bound (Indx_Typ);
+ Hbd := Type_High_Bound (Indx_Typ);
+ end if;
+ end if;
+
+ if Compile_Time_Known_Value (Lbd)
+ and then Compile_Time_Known_Value (Hbd)
+ then
+ if Expr_Value (Hbd) < Expr_Value (Lbd) then
+ return True;
+ end if;
+ end if;
+
+ Next_Index (Indx);
+ end loop;
+ end;
+ end if;
+
+ -- If no null indexes, then type is not fully initialized
+
+ return False;
+
+ -- Record types
+
+ elsif Is_Record_Type (Typ) then
+ if Has_Discriminants (Typ)
+ and then
+ Present (Discriminant_Default_Value (First_Discriminant (Typ)))
+ and then Is_Fully_Initialized_Variant (Typ)
+ then
+ return True;
+ end if;
+
+ -- Controlled records are considered to be fully initialized if
+ -- there is a user defined Initialize routine. This may not be
+ -- entirely correct, but as the spec notes, we are guessing here
+ -- what is best from the point of view of issuing warnings.
+
+ if Is_Controlled (Typ) then
+ declare
+ Utyp : constant Entity_Id := Underlying_Type (Typ);
+
+ begin
+ if Present (Utyp) then
+ declare
+ Init : constant Entity_Id :=
+ (Find_Prim_Op
+ (Underlying_Type (Typ), Name_Initialize));
+
+ begin
+ if Present (Init)
+ and then Comes_From_Source (Init)
+ and then not
+ Is_Predefined_File_Name
+ (File_Name (Get_Source_File_Index (Sloc (Init))))
+ then
+ return True;
+
+ elsif Has_Null_Extension (Typ)
+ and then
+ Is_Fully_Initialized_Type
+ (Etype (Base_Type (Typ)))
+ then
+ return True;
+ end if;
+ end;
+ end if;
+ end;
+ end if;
+
+ -- Otherwise see if all record components are initialized
+
+ declare
+ Ent : Entity_Id;
+
+ begin
+ Ent := First_Entity (Typ);
+ while Present (Ent) loop
+ if Chars (Ent) = Name_uController then
+ null;
+
+ elsif Ekind (Ent) = E_Component
+ and then (No (Parent (Ent))
+ or else No (Expression (Parent (Ent))))
+ and then not Is_Fully_Initialized_Type (Etype (Ent))
+
+ -- Special VM case for tag components, which need to be
+ -- defined in this case, but are never initialized as VMs
+ -- are using other dispatching mechanisms. Ignore this
+ -- uninitialized case. Note that this applies both to the
+ -- uTag entry and the main vtable pointer (CPP_Class case).
+
+ and then (VM_Target = No_VM or else not Is_Tag (Ent))
+ then
+ return False;
+ end if;
+
+ Next_Entity (Ent);
+ end loop;
+ end;
+
+ -- No uninitialized components, so type is fully initialized.
+ -- Note that this catches the case of no components as well.
+
+ return True;
+
+ elsif Is_Concurrent_Type (Typ) then
+ return True;
+
+ elsif Is_Private_Type (Typ) then
+ declare
+ U : constant Entity_Id := Underlying_Type (Typ);
+
+ begin
+ if No (U) then
+ return False;
+ else
+ return Is_Fully_Initialized_Type (U);
+ end if;
+ end;
+
+ else
+ return False;
+ end if;
+ end Is_Fully_Initialized_Type;
+
+ ----------------------------------
+ -- Is_Fully_Initialized_Variant --
+ ----------------------------------
+
+ function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
+ Loc : constant Source_Ptr := Sloc (Typ);
+ Constraints : constant List_Id := New_List;
+ Components : constant Elist_Id := New_Elmt_List;
+ Comp_Elmt : Elmt_Id;
+ Comp_Id : Node_Id;
+ Comp_List : Node_Id;
+ Discr : Entity_Id;
+ Discr_Val : Node_Id;
+
+ Report_Errors : Boolean;
+ pragma Warnings (Off, Report_Errors);
+
+ begin
+ if Serious_Errors_Detected > 0 then
+ return False;
+ end if;
+
+ if Is_Record_Type (Typ)
+ and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
+ and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
+ then
+ Comp_List := Component_List (Type_Definition (Parent (Typ)));
+
+ Discr := First_Discriminant (Typ);
+ while Present (Discr) loop
+ if Nkind (Parent (Discr)) = N_Discriminant_Specification then
+ Discr_Val := Expression (Parent (Discr));
+
+ if Present (Discr_Val)
+ and then Is_OK_Static_Expression (Discr_Val)
+ then
+ Append_To (Constraints,
+ Make_Component_Association (Loc,
+ Choices => New_List (New_Occurrence_Of (Discr, Loc)),
+ Expression => New_Copy (Discr_Val)));
+ else
+ return False;
+ end if;
+ else
+ return False;
+ end if;
+
+ Next_Discriminant (Discr);
+ end loop;
+
+ Gather_Components
+ (Typ => Typ,
+ Comp_List => Comp_List,
+ Governed_By => Constraints,
+ Into => Components,
+ Report_Errors => Report_Errors);
+
+ -- Check that each component present is fully initialized
+
+ Comp_Elmt := First_Elmt (Components);
+ while Present (Comp_Elmt) loop
+ Comp_Id := Node (Comp_Elmt);
+
+ if Ekind (Comp_Id) = E_Component
+ and then (No (Parent (Comp_Id))
+ or else No (Expression (Parent (Comp_Id))))
+ and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
+ then
+ return False;
+ end if;
+
+ Next_Elmt (Comp_Elmt);
+ end loop;
+
+ return True;
+
+ elsif Is_Private_Type (Typ) then
+ declare
+ U : constant Entity_Id := Underlying_Type (Typ);
+
+ begin
+ if No (U) then
+ return False;
+ else
+ return Is_Fully_Initialized_Variant (U);
+ end if;
+ end;
+ else
+ return False;
+ end if;
+ end Is_Fully_Initialized_Variant;
+
+ ----------------------------
+ -- Is_Inherited_Operation --
+ ----------------------------
+
+ function Is_Inherited_Operation (E : Entity_Id) return Boolean is
+ Kind : constant Node_Kind := Nkind (Parent (E));
+ begin
+ pragma Assert (Is_Overloadable (E));
+ return Kind = N_Full_Type_Declaration
+ or else Kind = N_Private_Extension_Declaration
+ or else Kind = N_Subtype_Declaration
+ or else (Ekind (E) = E_Enumeration_Literal
+ and then Is_Derived_Type (Etype (E)));
+ end Is_Inherited_Operation;
+
+ -----------------------------
+ -- Is_Library_Level_Entity --
+ -----------------------------
+
+ function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
+ begin
+ -- The following is a small optimization, and it also properly handles
+ -- discriminals, which in task bodies might appear in expressions before
+ -- the corresponding procedure has been created, and which therefore do
+ -- not have an assigned scope.
+
+ if Ekind (E) in Formal_Kind then
+ return False;
+ end if;
+
+ -- Normal test is simply that the enclosing dynamic scope is Standard
+
+ return Enclosing_Dynamic_Scope (E) = Standard_Standard;
+ end Is_Library_Level_Entity;
+
+ ---------------------------------
+ -- Is_Local_Variable_Reference --
+ ---------------------------------
+
+ function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
+ begin
+ if not Is_Entity_Name (Expr) then
+ return False;
+
+ else
+ declare
+ Ent : constant Entity_Id := Entity (Expr);
+ Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
+ begin
+ if Ekind (Ent) /= E_Variable
+ and then
+ Ekind (Ent) /= E_In_Out_Parameter
+ then
+ return False;
+ else
+ return Present (Sub) and then Sub = Current_Subprogram;
+ end if;
+ end;
+ end if;
+ end Is_Local_Variable_Reference;
+
+ -------------------------
+ -- Is_Object_Reference --
+ -------------------------
+
+ function Is_Object_Reference (N : Node_Id) return Boolean is
+ begin
+ if Is_Entity_Name (N) then
+ return Present (Entity (N)) and then Is_Object (Entity (N));
+
+ else
+ case Nkind (N) is
+ when N_Indexed_Component | N_Slice =>
+ return
+ Is_Object_Reference (Prefix (N))
+ or else Is_Access_Type (Etype (Prefix (N)));
+
+ -- In Ada95, a function call is a constant object; a procedure
+ -- call is not.
+
+ when N_Function_Call =>
+ return Etype (N) /= Standard_Void_Type;
+
+ -- A reference to the stream attribute Input is a function call
+
+ when N_Attribute_Reference =>
+ return Attribute_Name (N) = Name_Input;
+
+ when N_Selected_Component =>
+ return
+ Is_Object_Reference (Selector_Name (N))
+ and then
+ (Is_Object_Reference (Prefix (N))
+ or else Is_Access_Type (Etype (Prefix (N))));
+
+ when N_Explicit_Dereference =>
+ return True;
+
+ -- A view conversion of a tagged object is an object reference
+
+ when N_Type_Conversion =>
+ return Is_Tagged_Type (Etype (Subtype_Mark (N)))
+ and then Is_Tagged_Type (Etype (Expression (N)))
+ and then Is_Object_Reference (Expression (N));
+
+ -- An unchecked type conversion is considered to be an object if
+ -- the operand is an object (this construction arises only as a
+ -- result of expansion activities).
+
+ when N_Unchecked_Type_Conversion =>
+ return True;
+
+ when others =>
+ return False;
+ end case;
+ end if;
+ end Is_Object_Reference;
+
+ -----------------------------------
+ -- Is_OK_Variable_For_Out_Formal --
+ -----------------------------------
+
+ function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
+ begin
+ Note_Possible_Modification (AV, Sure => True);
+
+ -- We must reject parenthesized variable names. The check for
+ -- Comes_From_Source is present because there are currently
+ -- cases where the compiler violates this rule (e.g. passing
+ -- a task object to its controlled Initialize routine).
+
+ if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
+ return False;
+
+ -- A variable is always allowed
+
+ elsif Is_Variable (AV) then
+ return True;
+
+ -- Unchecked conversions are allowed only if they come from the
+ -- generated code, which sometimes uses unchecked conversions for out
+ -- parameters in cases where code generation is unaffected. We tell
+ -- source unchecked conversions by seeing if they are rewrites of an
+ -- original Unchecked_Conversion function call, or of an explicit
+ -- conversion of a function call.
+
+ elsif Nkind (AV) = N_Unchecked_Type_Conversion then
+ if Nkind (Original_Node (AV)) = N_Function_Call then
+ return False;
+
+ elsif Comes_From_Source (AV)
+ and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
+ then
+ return False;
+
+ elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
+ return Is_OK_Variable_For_Out_Formal (Expression (AV));
+
+ else
+ return True;
+ end if;
+
+ -- Normal type conversions are allowed if argument is a variable
+
+ elsif Nkind (AV) = N_Type_Conversion then
+ if Is_Variable (Expression (AV))
+ and then Paren_Count (Expression (AV)) = 0
+ then
+ Note_Possible_Modification (Expression (AV), Sure => True);
+ return True;
+
+ -- We also allow a non-parenthesized expression that raises
+ -- constraint error if it rewrites what used to be a variable
+
+ elsif Raises_Constraint_Error (Expression (AV))
+ and then Paren_Count (Expression (AV)) = 0
+ and then Is_Variable (Original_Node (Expression (AV)))
+ then
+ return True;
+
+ -- Type conversion of something other than a variable
+
+ else
+ return False;
+ end if;
+
+ -- If this node is rewritten, then test the original form, if that is
+ -- OK, then we consider the rewritten node OK (for example, if the
+ -- original node is a conversion, then Is_Variable will not be true
+ -- but we still want to allow the conversion if it converts a variable).
+
+ elsif Original_Node (AV) /= AV then
+ return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
+
+ -- All other non-variables are rejected
+
+ else
+ return False;
+ end if;
+ end Is_OK_Variable_For_Out_Formal;
+
+ -----------------------------------
+ -- Is_Partially_Initialized_Type --
+ -----------------------------------
+
+ function Is_Partially_Initialized_Type (Typ : Entity_Id) return Boolean is
+ begin
+ if Is_Scalar_Type (Typ) then
+ return False;
+
+ elsif Is_Access_Type (Typ) then
+ return True;
+
+ elsif Is_Array_Type (Typ) then
+
+ -- If component type is partially initialized, so is array type
+
+ if Is_Partially_Initialized_Type (Component_Type (Typ)) then
+ return True;
+
+ -- Otherwise we are only partially initialized if we are fully
+ -- initialized (this is the empty array case, no point in us
+ -- duplicating that code here).
+
+ else
+ return Is_Fully_Initialized_Type (Typ);
+ end if;
+
+ elsif Is_Record_Type (Typ) then
+
+ -- A discriminated type is always partially initialized
+
+ if Has_Discriminants (Typ) then
+ return True;
+
+ -- A tagged type is always partially initialized
+
+ elsif Is_Tagged_Type (Typ) then
+ return True;
+
+ -- Case of non-discriminated record
+
+ else
+ declare
+ Ent : Entity_Id;
+
+ Component_Present : Boolean := False;
+ -- Set True if at least one component is present. If no
+ -- components are present, then record type is fully
+ -- initialized (another odd case, like the null array).
+
+ begin
+ -- Loop through components
+
+ Ent := First_Entity (Typ);
+ while Present (Ent) loop
+ if Ekind (Ent) = E_Component then
+ Component_Present := True;
+
+ -- If a component has an initialization expression then
+ -- the enclosing record type is partially initialized
+
+ if Present (Parent (Ent))
+ and then Present (Expression (Parent (Ent)))
+ then
+ return True;
+
+ -- If a component is of a type which is itself partially
+ -- initialized, then the enclosing record type is also.
+
+ elsif Is_Partially_Initialized_Type (Etype (Ent)) then
+ return True;
+ end if;
+ end if;
+
+ Next_Entity (Ent);
+ end loop;
+
+ -- No initialized components found. If we found any components
+ -- they were all uninitialized so the result is false.
+
+ if Component_Present then
+ return False;
+
+ -- But if we found no components, then all the components are
+ -- initialized so we consider the type to be initialized.
+
+ else
+ return True;
+ end if;
+ end;
+ end if;
+
+ -- Concurrent types are always fully initialized
+
+ elsif Is_Concurrent_Type (Typ) then
+ return True;
+
+ -- For a private type, go to underlying type. If there is no underlying
+ -- type then just assume this partially initialized. Not clear if this
+ -- can happen in a non-error case, but no harm in testing for this.
+
+ elsif Is_Private_Type (Typ) then
+ declare
+ U : constant Entity_Id := Underlying_Type (Typ);
+ begin
+ if No (U) then
+ return True;
+ else
+ return Is_Partially_Initialized_Type (U);
+ end if;
+ end;
+
+ -- For any other type (are there any?) assume partially initialized
+
+ else
+ return True;
+ end if;
+ end Is_Partially_Initialized_Type;
+
+ ------------------------------------
+ -- Is_Potentially_Persistent_Type --
+ ------------------------------------
+
+ function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
+ Comp : Entity_Id;
+ Indx : Node_Id;
+
+ begin
+ -- For private type, test corresponding full type
+
+ if Is_Private_Type (T) then
+ return Is_Potentially_Persistent_Type (Full_View (T));
+
+ -- Scalar types are potentially persistent
+
+ elsif Is_Scalar_Type (T) then
+ return True;
+
+ -- Record type is potentially persistent if not tagged and the types of
+ -- all it components are potentially persistent, and no component has
+ -- an initialization expression.
+
+ elsif Is_Record_Type (T)
+ and then not Is_Tagged_Type (T)
+ and then not Is_Partially_Initialized_Type (T)
+ then
+ Comp := First_Component (T);
+ while Present (Comp) loop
+ if not Is_Potentially_Persistent_Type (Etype (Comp)) then
+ return False;
+ else
+ Next_Entity (Comp);
+ end if;
+ end loop;
+
+ return True;
+
+ -- Array type is potentially persistent if its component type is
+ -- potentially persistent and if all its constraints are static.
+
+ elsif Is_Array_Type (T) then
+ if not Is_Potentially_Persistent_Type (Component_Type (T)) then
+ return False;
+ end if;
+
+ Indx := First_Index (T);
+ while Present (Indx) loop
+ if not Is_OK_Static_Subtype (Etype (Indx)) then
+ return False;
+ else
+ Next_Index (Indx);
+ end if;
+ end loop;
+
+ return True;
+
+ -- All other types are not potentially persistent
+
+ else
+ return False;
+ end if;
+ end Is_Potentially_Persistent_Type;
+
+ ---------------------------------
+ -- Is_Protected_Self_Reference --
+ ---------------------------------
+
+ function Is_Protected_Self_Reference (N : Node_Id) return Boolean
+ is
+ function In_Access_Definition (N : Node_Id) return Boolean;
+ -- Returns true if N belongs to an access definition
+
+ --------------------------
+ -- In_Access_Definition --
+ --------------------------
+
+ function In_Access_Definition (N : Node_Id) return Boolean
+ is
+ P : Node_Id := Parent (N);
+ begin
+ while Present (P) loop
+ if Nkind (P) = N_Access_Definition then
+ return True;
+ end if;
+ P := Parent (P);
+ end loop;
+ return False;
+ end In_Access_Definition;
+
+ -- Start of processing for Is_Protected_Self_Reference
+
+ begin
+ return Ada_Version >= Ada_05
+ and then Is_Entity_Name (N)
+ and then Is_Protected_Type (Entity (N))
+ and then In_Open_Scopes (Entity (N))
+ and then not In_Access_Definition (N);
+ end Is_Protected_Self_Reference;
+
+ -----------------------------
+ -- Is_RCI_Pkg_Spec_Or_Body --
+ -----------------------------
+
+ function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
+
+ function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
+ -- Return True if the unit of Cunit is an RCI package declaration
+
+ ---------------------------
+ -- Is_RCI_Pkg_Decl_Cunit --
+ ---------------------------
+
+ function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
+ The_Unit : constant Node_Id := Unit (Cunit);
+
+ begin
+ if Nkind (The_Unit) /= N_Package_Declaration then
+ return False;
+ end if;
+
+ return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
+ end Is_RCI_Pkg_Decl_Cunit;
+
+ -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
+
+ begin
+ return Is_RCI_Pkg_Decl_Cunit (Cunit)
+ or else
+ (Nkind (Unit (Cunit)) = N_Package_Body
+ and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
+ end Is_RCI_Pkg_Spec_Or_Body;
+
+ -----------------------------------------
+ -- Is_Remote_Access_To_Class_Wide_Type --
+ -----------------------------------------
+
+ function Is_Remote_Access_To_Class_Wide_Type
+ (E : Entity_Id) return Boolean
+ is
+ begin
+ -- A remote access to class-wide type is a general access to object type
+ -- declared in the visible part of a Remote_Types or Remote_Call_
+ -- Interface unit.
+
+ return Ekind (E) = E_General_Access_Type
+ and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
+ end Is_Remote_Access_To_Class_Wide_Type;
+
+ -----------------------------------------
+ -- Is_Remote_Access_To_Subprogram_Type --
+ -----------------------------------------
+
+ function Is_Remote_Access_To_Subprogram_Type
+ (E : Entity_Id) return Boolean
+ is
+ begin
+ return (Ekind (E) = E_Access_Subprogram_Type
+ or else (Ekind (E) = E_Record_Type
+ and then Present (Corresponding_Remote_Type (E))))
+ and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
+ end Is_Remote_Access_To_Subprogram_Type;
+
+ --------------------
+ -- Is_Remote_Call --
+ --------------------
+
+ function Is_Remote_Call (N : Node_Id) return Boolean is
+ begin
+ if Nkind (N) /= N_Procedure_Call_Statement
+ and then Nkind (N) /= N_Function_Call
+ then
+ -- An entry call cannot be remote
+
+ return False;
+
+ elsif Nkind (Name (N)) in N_Has_Entity
+ and then Is_Remote_Call_Interface (Entity (Name (N)))
+ then
+ -- A subprogram declared in the spec of a RCI package is remote
+
+ return True;
+
+ elsif Nkind (Name (N)) = N_Explicit_Dereference
+ and then Is_Remote_Access_To_Subprogram_Type
+ (Etype (Prefix (Name (N))))
+ then
+ -- The dereference of a RAS is a remote call
+
+ return True;
+
+ elsif Present (Controlling_Argument (N))
+ and then Is_Remote_Access_To_Class_Wide_Type
+ (Etype (Controlling_Argument (N)))
+ then
+ -- Any primitive operation call with a controlling argument of
+ -- a RACW type is a remote call.
+
+ return True;
+ end if;
+
+ -- All other calls are local calls
+
+ return False;
+ end Is_Remote_Call;
+
+ ----------------------
+ -- Is_Renamed_Entry --
+ ----------------------
+
+ function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
+ Orig_Node : Node_Id := Empty;
+ Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
+
+ function Is_Entry (Nam : Node_Id) return Boolean;
+ -- Determine whether Nam is an entry. Traverse selectors if there are
+ -- nested selected components.
+
+ --------------
+ -- Is_Entry --
+ --------------
+
+ function Is_Entry (Nam : Node_Id) return Boolean is
+ begin
+ if Nkind (Nam) = N_Selected_Component then
+ return Is_Entry (Selector_Name (Nam));
+ end if;
+
+ return Ekind (Entity (Nam)) = E_Entry;
+ end Is_Entry;
+
+ -- Start of processing for Is_Renamed_Entry
+
+ begin
+ if Present (Alias (Proc_Nam)) then
+ Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
+ end if;
+
+ -- Look for a rewritten subprogram renaming declaration
+
+ if Nkind (Subp_Decl) = N_Subprogram_Declaration
+ and then Present (Original_Node (Subp_Decl))
+ then
+ Orig_Node := Original_Node (Subp_Decl);
+ end if;
+
+ -- The rewritten subprogram is actually an entry
+
+ if Present (Orig_Node)
+ and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
+ and then Is_Entry (Name (Orig_Node))
+ then
+ return True;
+ end if;
+
+ return False;
+ end Is_Renamed_Entry;
+
+ ----------------------
+ -- Is_Selector_Name --
+ ----------------------
+
+ function Is_Selector_Name (N : Node_Id) return Boolean is
+ begin
+ if not Is_List_Member (N) then
+ declare
+ P : constant Node_Id := Parent (N);
+ K : constant Node_Kind := Nkind (P);
+ begin
+ return
+ (K = N_Expanded_Name or else
+ K = N_Generic_Association or else
+ K = N_Parameter_Association or else
+ K = N_Selected_Component)
+ and then Selector_Name (P) = N;
+ end;
+
+ else
+ declare
+ L : constant List_Id := List_Containing (N);
+ P : constant Node_Id := Parent (L);
+ begin
+ return (Nkind (P) = N_Discriminant_Association
+ and then Selector_Names (P) = L)
+ or else
+ (Nkind (P) = N_Component_Association
+ and then Choices (P) = L);
+ end;
+ end if;
+ end Is_Selector_Name;
+
+ ------------------
+ -- Is_Statement --
+ ------------------
+
+ function Is_Statement (N : Node_Id) return Boolean is
+ begin
+ return
+ Nkind (N) in N_Statement_Other_Than_Procedure_Call
+ or else Nkind (N) = N_Procedure_Call_Statement;
+ end Is_Statement;
+
+ ---------------------------------
+ -- Is_Synchronized_Tagged_Type --
+ ---------------------------------
+
+ function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
+ Kind : constant Entity_Kind := Ekind (Base_Type (E));
+
+ begin
+ -- A task or protected type derived from an interface is a tagged type.
+ -- Such a tagged type is called a synchronized tagged type, as are
+ -- synchronized interfaces and private extensions whose declaration
+ -- includes the reserved word synchronized.
+
+ return (Is_Tagged_Type (E)
+ and then (Kind = E_Task_Type
+ or else Kind = E_Protected_Type))
+ or else
+ (Is_Interface (E)
+ and then Is_Synchronized_Interface (E))
+ or else
+ (Ekind (E) = E_Record_Type_With_Private
+ and then (Synchronized_Present (Parent (E))
+ or else Is_Synchronized_Interface (Etype (E))));
+ end Is_Synchronized_Tagged_Type;
+
+ -----------------
+ -- Is_Transfer --
+ -----------------
+
+ function Is_Transfer (N : Node_Id) return Boolean is
+ Kind : constant Node_Kind := Nkind (N);
+
+ begin
+ if Kind = N_Simple_Return_Statement
+ or else
+ Kind = N_Extended_Return_Statement
+ or else
+ Kind = N_Goto_Statement
+ or else
+ Kind = N_Raise_Statement
+ or else
+ Kind = N_Requeue_Statement
+ then
+ return True;
+
+ elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
+ and then No (Condition (N))
+ then
+ return True;
+
+ elsif Kind = N_Procedure_Call_Statement
+ and then Is_Entity_Name (Name (N))
+ and then Present (Entity (Name (N)))
+ and then No_Return (Entity (Name (N)))
+ then
+ return True;
+
+ elsif Nkind (Original_Node (N)) = N_Raise_Statement then
+ return True;
+
+ else
+ return False;
+ end if;
+ end Is_Transfer;
+
+ -------------
+ -- Is_True --
+ -------------
+
+ function Is_True (U : Uint) return Boolean is
+ begin
+ return (U /= 0);
+ end Is_True;
+
+ -------------------
+ -- Is_Value_Type --
+ -------------------
+
+ function Is_Value_Type (T : Entity_Id) return Boolean is
+ begin
+ return VM_Target = CLI_Target
+ and then Chars (T) /= No_Name
+ and then Get_Name_String (Chars (T)) = "valuetype";
+ end Is_Value_Type;
+
+ -----------------
+ -- Is_Variable --
+ -----------------
+
+ function Is_Variable (N : Node_Id) return Boolean is
+
+ Orig_Node : constant Node_Id := Original_Node (N);
+ -- We do the test on the original node, since this is basically a
+ -- test of syntactic categories, so it must not be disturbed by
+ -- whatever rewriting might have occurred. For example, an aggregate,
+ -- which is certainly NOT a variable, could be turned into a variable
+ -- by expansion.
+
+ function In_Protected_Function (E : Entity_Id) return Boolean;
+ -- Within a protected function, the private components of the
+ -- enclosing protected type are constants. A function nested within
+ -- a (protected) procedure is not itself protected.
+
+ function Is_Variable_Prefix (P : Node_Id) return Boolean;
+ -- Prefixes can involve implicit dereferences, in which case we
+ -- must test for the case of a reference of a constant access
+ -- type, which can never be a variable.
+
+ ---------------------------
+ -- In_Protected_Function --
+ ---------------------------
+
+ function In_Protected_Function (E : Entity_Id) return Boolean is
+ Prot : constant Entity_Id := Scope (E);
+ S : Entity_Id;
+
+ begin
+ if not Is_Protected_Type (Prot) then
+ return False;
+ else
+ S := Current_Scope;
+ while Present (S) and then S /= Prot loop
+ if Ekind (S) = E_Function
+ and then Scope (S) = Prot
+ then
+ return True;
+ end if;
+
+ S := Scope (S);
+ end loop;
+
+ return False;
+ end if;
+ end In_Protected_Function;
+
+ ------------------------
+ -- Is_Variable_Prefix --
+ ------------------------
+
+ function Is_Variable_Prefix (P : Node_Id) return Boolean is
+ begin
+ if Is_Access_Type (Etype (P)) then
+ return not Is_Access_Constant (Root_Type (Etype (P)));
+
+ -- For the case of an indexed component whose prefix has a packed
+ -- array type, the prefix has been rewritten into a type conversion.
+ -- Determine variable-ness from the converted expression.
+
+ elsif Nkind (P) = N_Type_Conversion
+ and then not Comes_From_Source (P)
+ and then Is_Array_Type (Etype (P))
+ and then Is_Packed (Etype (P))
+ then
+ return Is_Variable (Expression (P));
+
+ else
+ return Is_Variable (P);
+ end if;
+ end Is_Variable_Prefix;
+
+ -- Start of processing for Is_Variable
+
+ begin
+ -- Definitely OK if Assignment_OK is set. Since this is something that
+ -- only gets set for expanded nodes, the test is on N, not Orig_Node.
+
+ if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
+ return True;
+
+ -- Normally we go to the original node, but there is one exception
+ -- where we use the rewritten node, namely when it is an explicit
+ -- dereference. The generated code may rewrite a prefix which is an
+ -- access type with an explicit dereference. The dereference is a
+ -- variable, even though the original node may not be (since it could
+ -- be a constant of the access type).
+
+ -- In Ada 2005 we have a further case to consider: the prefix may be
+ -- a function call given in prefix notation. The original node appears
+ -- to be a selected component, but we need to examine the call.
+
+ elsif Nkind (N) = N_Explicit_Dereference
+ and then Nkind (Orig_Node) /= N_Explicit_Dereference
+ and then Present (Etype (Orig_Node))
+ and then Is_Access_Type (Etype (Orig_Node))
+ then
+ return Is_Variable_Prefix (Original_Node (Prefix (N)))
+ or else
+ (Nkind (Orig_Node) = N_Function_Call
+ and then not Is_Access_Constant (Etype (Prefix (N))));
+
+ -- A function call is never a variable
+
+ elsif Nkind (N) = N_Function_Call then
+ return False;
+
+ -- All remaining checks use the original node
+
+ elsif Is_Entity_Name (Orig_Node)
+ and then Present (Entity (Orig_Node))
+ then
+ declare
+ E : constant Entity_Id := Entity (Orig_Node);
+ K : constant Entity_Kind := Ekind (E);
+
+ begin
+ return (K = E_Variable
+ and then Nkind (Parent (E)) /= N_Exception_Handler)
+ or else (K = E_Component
+ and then not In_Protected_Function (E))
+ or else K = E_Out_Parameter
+ or else K = E_In_Out_Parameter
+ or else K = E_Generic_In_Out_Parameter
+
+ -- Current instance of type:
+
+ or else (Is_Type (E) and then In_Open_Scopes (E))
+ or else (Is_Incomplete_Or_Private_Type (E)
+ and then In_Open_Scopes (Full_View (E)));
+ end;
+
+ else
+ case Nkind (Orig_Node) is
+ when N_Indexed_Component | N_Slice =>
+ return Is_Variable_Prefix (Prefix (Orig_Node));
+
+ when N_Selected_Component =>
+ return Is_Variable_Prefix (Prefix (Orig_Node))
+ and then Is_Variable (Selector_Name (Orig_Node));
+
+ -- For an explicit dereference, the type of the prefix cannot
+ -- be an access to constant or an access to subprogram.
+
+ when N_Explicit_Dereference =>
+ declare
+ Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
+ begin
+ return Is_Access_Type (Typ)
+ and then not Is_Access_Constant (Root_Type (Typ))
+ and then Ekind (Typ) /= E_Access_Subprogram_Type;
+ end;
+
+ -- The type conversion is the case where we do not deal with the
+ -- context dependent special case of an actual parameter. Thus
+ -- the type conversion is only considered a variable for the
+ -- purposes of this routine if the target type is tagged. However,
+ -- a type conversion is considered to be a variable if it does not
+ -- come from source (this deals for example with the conversions
+ -- of expressions to their actual subtypes).
+
+ when N_Type_Conversion =>
+ return Is_Variable (Expression (Orig_Node))
+ and then
+ (not Comes_From_Source (Orig_Node)
+ or else
+ (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
+ and then
+ Is_Tagged_Type (Etype (Expression (Orig_Node)))));
+
+ -- GNAT allows an unchecked type conversion as a variable. This
+ -- only affects the generation of internal expanded code, since
+ -- calls to instantiations of Unchecked_Conversion are never
+ -- considered variables (since they are function calls).
+ -- This is also true for expression actions.
+
+ when N_Unchecked_Type_Conversion =>
+ return Is_Variable (Expression (Orig_Node));
+
+ when others =>
+ return False;
+ end case;
+ end if;
+ end Is_Variable;
+
+ ------------------------
+ -- Is_Volatile_Object --
+ ------------------------
+
+ function Is_Volatile_Object (N : Node_Id) return Boolean is
+
+ function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
+ -- Determines if given object has volatile components
+
+ function Is_Volatile_Prefix (N : Node_Id) return Boolean;
+ -- If prefix is an implicit dereference, examine designated type
+
+ ------------------------
+ -- Is_Volatile_Prefix --
+ ------------------------
+
+ function Is_Volatile_Prefix (N : Node_Id) return Boolean is
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ if Is_Access_Type (Typ) then
+ declare
+ Dtyp : constant Entity_Id := Designated_Type (Typ);
+
+ begin
+ return Is_Volatile (Dtyp)
+ or else Has_Volatile_Components (Dtyp);
+ end;
+
+ else
+ return Object_Has_Volatile_Components (N);
+ end if;
+ end Is_Volatile_Prefix;
+
+ ------------------------------------
+ -- Object_Has_Volatile_Components --
+ ------------------------------------
+
+ function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
+ Typ : constant Entity_Id := Etype (N);
+
+ begin
+ if Is_Volatile (Typ)
+ or else Has_Volatile_Components (Typ)
+ then
+ return True;
+
+ elsif Is_Entity_Name (N)
+ and then (Has_Volatile_Components (Entity (N))
+ or else Is_Volatile (Entity (N)))
+ then
+ return True;
+
+ elsif Nkind (N) = N_Indexed_Component
+ or else Nkind (N) = N_Selected_Component
+ then
+ return Is_Volatile_Prefix (Prefix (N));
+
+ else
+ return False;
+ end if;
+ end Object_Has_Volatile_Components;
+
+ -- Start of processing for Is_Volatile_Object
+
+ begin
+ if Is_Volatile (Etype (N))
+ or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
+ then
+ return True;
+
+ elsif Nkind (N) = N_Indexed_Component
+ or else Nkind (N) = N_Selected_Component
+ then
+ return Is_Volatile_Prefix (Prefix (N));
+
+ else
+ return False;
+ end if;
+ end Is_Volatile_Object;
+
+ -------------------------
+ -- Kill_Current_Values --
+ -------------------------
+
+ procedure Kill_Current_Values
+ (Ent : Entity_Id;
+ Last_Assignment_Only : Boolean := False)
+ is
+ begin
+ if Is_Assignable (Ent) then
+ Set_Last_Assignment (Ent, Empty);
+ end if;
+
+ if not Last_Assignment_Only and then Is_Object (Ent) then
+ Kill_Checks (Ent);
+ Set_Current_Value (Ent, Empty);
+
+ if not Can_Never_Be_Null (Ent) then
+ Set_Is_Known_Non_Null (Ent, False);
+ end if;
+
+ Set_Is_Known_Null (Ent, False);
+ end if;
+ end Kill_Current_Values;
+
+ procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
+ S : Entity_Id;
+
+ procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
+ -- Clear current value for entity E and all entities chained to E
+
+ ------------------------------------------
+ -- Kill_Current_Values_For_Entity_Chain --
+ ------------------------------------------
+
+ procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
+ Ent : Entity_Id;
+ begin
+ Ent := E;
+ while Present (Ent) loop
+ Kill_Current_Values (Ent, Last_Assignment_Only);
+ Next_Entity (Ent);
+ end loop;
+ end Kill_Current_Values_For_Entity_Chain;
+
+ -- Start of processing for Kill_Current_Values
+
+ begin
+ -- Kill all saved checks, a special case of killing saved values
+
+ if not Last_Assignment_Only then
+ Kill_All_Checks;
+ end if;
+
+ -- Loop through relevant scopes, which includes the current scope and
+ -- any parent scopes if the current scope is a block or a package.
+
+ S := Current_Scope;
+ Scope_Loop : loop
+
+ -- Clear current values of all entities in current scope
+
+ Kill_Current_Values_For_Entity_Chain (First_Entity (S));
+
+ -- If scope is a package, also clear current values of all
+ -- private entities in the scope.
+
+ if Is_Package_Or_Generic_Package (S)
+ or else Is_Concurrent_Type (S)
+ then
+ Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
+ end if;
+
+ -- If this is a not a subprogram, deal with parents
+
+ if not Is_Subprogram (S) then
+ S := Scope (S);
+ exit Scope_Loop when S = Standard_Standard;
+ else
+ exit Scope_Loop;
+ end if;
+ end loop Scope_Loop;
+ end Kill_Current_Values;
+
+ --------------------------
+ -- Kill_Size_Check_Code --
+ --------------------------
+
+ procedure Kill_Size_Check_Code (E : Entity_Id) is
+ begin
+ if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
+ and then Present (Size_Check_Code (E))
+ then
+ Remove (Size_Check_Code (E));
+ Set_Size_Check_Code (E, Empty);
+ end if;
+ end Kill_Size_Check_Code;
+
+ --------------------------
+ -- Known_To_Be_Assigned --
+ --------------------------
+
+ function Known_To_Be_Assigned (N : Node_Id) return Boolean is
+ P : constant Node_Id := Parent (N);
+
+ begin
+ case Nkind (P) is
+
+ -- Test left side of assignment
+
+ when N_Assignment_Statement =>
+ return N = Name (P);
+
+ -- Function call arguments are never lvalues
+
+ when N_Function_Call =>
+ return False;
+
+ -- Positional parameter for procedure or accept call
+
+ when N_Procedure_Call_Statement |
+ N_Accept_Statement
+ =>
+ declare
+ Proc : Entity_Id;
+ Form : Entity_Id;
+ Act : Node_Id;
+
+ begin
+ Proc := Get_Subprogram_Entity (P);
+
+ if No (Proc) then
+ return False;
+ end if;
+
+ -- If we are not a list member, something is strange, so
+ -- be conservative and return False.
+
+ if not Is_List_Member (N) then
+ return False;
+ end if;
+
+ -- We are going to find the right formal by stepping forward
+ -- through the formals, as we step backwards in the actuals.
+
+ Form := First_Formal (Proc);
+ Act := N;
+ loop
+ -- If no formal, something is weird, so be conservative
+ -- and return False.
+
+ if No (Form) then
+ return False;
+ end if;
+
+ Prev (Act);
+ exit when No (Act);
+ Next_Formal (Form);
+ end loop;
+
+ return Ekind (Form) /= E_In_Parameter;
+ end;
+
+ -- Named parameter for procedure or accept call
+
+ when N_Parameter_Association =>
+ declare
+ Proc : Entity_Id;
+ Form : Entity_Id;
+
+ begin
+ Proc := Get_Subprogram_Entity (Parent (P));
+
+ if No (Proc) then
+ return False;
+ end if;
+
+ -- Loop through formals to find the one that matches
+
+ Form := First_Formal (Proc);
+ loop
+ -- If no matching formal, that's peculiar, some kind of
+ -- previous error, so return False to be conservative.
+
+ if No (Form) then
+ return False;
+ end if;
+
+ -- Else test for match
+
+ if Chars (Form) = Chars (Selector_Name (P)) then
+ return Ekind (Form) /= E_In_Parameter;
+ end if;
+
+ Next_Formal (Form);
+ end loop;
+ end;
+
+ -- Test for appearing in a conversion that itself appears
+ -- in an lvalue context, since this should be an lvalue.
+
+ when N_Type_Conversion =>
+ return Known_To_Be_Assigned (P);
+
+ -- All other references are definitely not known to be modifications
+
+ when others =>
+ return False;
+
+ end case;
+ end Known_To_Be_Assigned;
+
+ -------------------
+ -- May_Be_Lvalue --
+ -------------------
+
+ function May_Be_Lvalue (N : Node_Id) return Boolean is
+ P : constant Node_Id := Parent (N);
+
+ begin
+ case Nkind (P) is
+
+ -- Test left side of assignment
+
+ when N_Assignment_Statement =>
+ return N = Name (P);
+
+ -- Test prefix of component or attribute
+
+ when N_Attribute_Reference =>
+ return N = Prefix (P)
+ and then Name_Implies_Lvalue_Prefix (Attribute_Name (P));
+
+ when N_Expanded_Name |
+ N_Explicit_Dereference |
+ N_Indexed_Component |
+ N_Reference |
+ N_Selected_Component |
+ N_Slice =>
+ return N = Prefix (P);
+
+ -- Function call arguments are never lvalues
+
+ when N_Function_Call =>
+ return False;
+
+ -- Positional parameter for procedure, entry, or accept call
+
+ when N_Procedure_Call_Statement |
+ N_Entry_Call_Statement |
+ N_Accept_Statement
+ =>
+ declare
+ Proc : Entity_Id;
+ Form : Entity_Id;
+ Act : Node_Id;
+
+ begin
+ Proc := Get_Subprogram_Entity (P);
+
+ if No (Proc) then
+ return True;
+ end if;
+
+ -- If we are not a list member, something is strange, so
+ -- be conservative and return True.
+
+ if not Is_List_Member (N) then
+ return True;
+ end if;
+
+ -- We are going to find the right formal by stepping forward
+ -- through the formals, as we step backwards in the actuals.
+
+ Form := First_Formal (Proc);
+ Act := N;
+ loop
+ -- If no formal, something is weird, so be conservative
+ -- and return True.
+
+ if No (Form) then
+ return True;
+ end if;
+
+ Prev (Act);
+ exit when No (Act);
+ Next_Formal (Form);
+ end loop;
+
+ return Ekind (Form) /= E_In_Parameter;
+ end;
+
+ -- Named parameter for procedure or accept call
+
+ when N_Parameter_Association =>
+ declare
+ Proc : Entity_Id;
+ Form : Entity_Id;
+
+ begin
+ Proc := Get_Subprogram_Entity (Parent (P));
+
+ if No (Proc) then
+ return True;
+ end if;
+
+ -- Loop through formals to find the one that matches
+
+ Form := First_Formal (Proc);
+ loop
+ -- If no matching formal, that's peculiar, some kind of
+ -- previous error, so return True to be conservative.
+
+ if No (Form) then
+ return True;
+ end if;
+
+ -- Else test for match
+
+ if Chars (Form) = Chars (Selector_Name (P)) then
+ return Ekind (Form) /= E_In_Parameter;
+ end if;
+
+ Next_Formal (Form);
+ end loop;
+ end;
+
+ -- Test for appearing in a conversion that itself appears in an
+ -- lvalue context, since this should be an lvalue.
+
+ when N_Type_Conversion =>
+ return May_Be_Lvalue (P);
+
+ -- Test for appearance in object renaming declaration
+
+ when N_Object_Renaming_Declaration =>
+ return True;
+
+ -- All other references are definitely not Lvalues
+
+ when others =>
+ return False;
+
+ end case;
+ end May_Be_Lvalue;
+
+ -----------------------
+ -- Mark_Coextensions --
+ -----------------------
+
+ procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
+ Is_Dynamic : Boolean;
+ -- Indicates whether the context causes nested coextensions to be
+ -- dynamic or static
+
+ function Mark_Allocator (N : Node_Id) return Traverse_Result;
+ -- Recognize an allocator node and label it as a dynamic coextension
+
+ --------------------
+ -- Mark_Allocator --
+ --------------------
+
+ function Mark_Allocator (N : Node_Id) return Traverse_Result is
+ begin
+ if Nkind (N) = N_Allocator then
+ if Is_Dynamic then
+ Set_Is_Dynamic_Coextension (N);
+ else
+ Set_Is_Static_Coextension (N);
+ end if;
+ end if;
+
+ return OK;
+ end Mark_Allocator;
+
+ procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
+
+ -- Start of processing Mark_Coextensions
+
+ begin
+ case Nkind (Context_Nod) is
+ when N_Assignment_Statement |
+ N_Simple_Return_Statement =>
+ Is_Dynamic := Nkind (Expression (Context_Nod)) = N_Allocator;
+
+ when N_Object_Declaration =>
+ Is_Dynamic := Nkind (Root_Nod) = N_Allocator;
+
+ -- This routine should not be called for constructs which may not
+ -- contain coextensions.
+
+ when others =>
+ raise Program_Error;
+ end case;
+
+ Mark_Allocators (Root_Nod);
+ end Mark_Coextensions;
+
+ ----------------------
+ -- Needs_One_Actual --
+ ----------------------
+
+ function Needs_One_Actual (E : Entity_Id) return Boolean is
+ Formal : Entity_Id;
+
+ begin
+ if Ada_Version >= Ada_05
+ and then Present (First_Formal (E))
+ then
+ Formal := Next_Formal (First_Formal (E));
+ while Present (Formal) loop
+ if No (Default_Value (Formal)) then
+ return False;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+
+ return True;
+
+ else
+ return False;
+ end if;
+ end Needs_One_Actual;
+
+ -------------------------
+ -- New_External_Entity --
+ -------------------------
+
+ function New_External_Entity
+ (Kind : Entity_Kind;
+ Scope_Id : Entity_Id;
+ Sloc_Value : Source_Ptr;
+ Related_Id : Entity_Id;
+ Suffix : Character;
+ Suffix_Index : Nat := 0;
+ Prefix : Character := ' ') return Entity_Id
+ is
+ N : constant Entity_Id :=
+ Make_Defining_Identifier (Sloc_Value,
+ New_External_Name
+ (Chars (Related_Id), Suffix, Suffix_Index, Prefix));
+
+ begin
+ Set_Ekind (N, Kind);
+ Set_Is_Internal (N, True);
+ Append_Entity (N, Scope_Id);
+ Set_Public_Status (N);
+
+ if Kind in Type_Kind then
+ Init_Size_Align (N);
+ end if;
+
+ return N;
+ end New_External_Entity;
+
+ -------------------------
+ -- New_Internal_Entity --
+ -------------------------
+
+ function New_Internal_Entity
+ (Kind : Entity_Kind;
+ Scope_Id : Entity_Id;
+ Sloc_Value : Source_Ptr;
+ Id_Char : Character) return Entity_Id
+ is
+ N : constant Entity_Id :=
+ Make_Defining_Identifier (Sloc_Value, New_Internal_Name (Id_Char));
+
+ begin
+ Set_Ekind (N, Kind);
+ Set_Is_Internal (N, True);
+ Append_Entity (N, Scope_Id);
+
+ if Kind in Type_Kind then
+ Init_Size_Align (N);
+ end if;
+
+ return N;
+ end New_Internal_Entity;
+
+ -----------------
+ -- Next_Actual --
+ -----------------
+
+ function Next_Actual (Actual_Id : Node_Id) return Node_Id is
+ N : Node_Id;
+
+ begin
+ -- If we are pointing at a positional parameter, it is a member of a
+ -- node list (the list of parameters), and the next parameter is the
+ -- next node on the list, unless we hit a parameter association, then
+ -- we shift to using the chain whose head is the First_Named_Actual in
+ -- the parent, and then is threaded using the Next_Named_Actual of the
+ -- Parameter_Association. All this fiddling is because the original node
+ -- list is in the textual call order, and what we need is the
+ -- declaration order.
+
+ if Is_List_Member (Actual_Id) then
+ N := Next (Actual_Id);
+
+ if Nkind (N) = N_Parameter_Association then
+ return First_Named_Actual (Parent (Actual_Id));
+ else
+ return N;
+ end if;
+
+ else
+ return Next_Named_Actual (Parent (Actual_Id));
+ end if;
+ end Next_Actual;
+
+ procedure Next_Actual (Actual_Id : in out Node_Id) is
+ begin
+ Actual_Id := Next_Actual (Actual_Id);
+ end Next_Actual;
+
+ -----------------------
+ -- Normalize_Actuals --
+ -----------------------
+
+ -- Chain actuals according to formals of subprogram. If there are no named
+ -- associations, the chain is simply the list of Parameter Associations,
+ -- since the order is the same as the declaration order. If there are named
+ -- associations, then the First_Named_Actual field in the N_Function_Call
+ -- or N_Procedure_Call_Statement node points to the Parameter_Association
+ -- node for the parameter that comes first in declaration order. The
+ -- remaining named parameters are then chained in declaration order using
+ -- Next_Named_Actual.
+
+ -- This routine also verifies that the number of actuals is compatible with
+ -- the number and default values of formals, but performs no type checking
+ -- (type checking is done by the caller).
+
+ -- If the matching succeeds, Success is set to True and the caller proceeds
+ -- with type-checking. If the match is unsuccessful, then Success is set to
+ -- False, and the caller attempts a different interpretation, if there is
+ -- one.
+
+ -- If the flag Report is on, the call is not overloaded, and a failure to
+ -- match can be reported here, rather than in the caller.
+
+ procedure Normalize_Actuals
+ (N : Node_Id;
+ S : Entity_Id;
+ Report : Boolean;
+ Success : out Boolean)
+ is
+ Actuals : constant List_Id := Parameter_Associations (N);
+ Actual : Node_Id := Empty;
+ Formal : Entity_Id;
+ Last : Node_Id := Empty;
+ First_Named : Node_Id := Empty;
+ Found : Boolean;
+
+ Formals_To_Match : Integer := 0;
+ Actuals_To_Match : Integer := 0;
+
+ procedure Chain (A : Node_Id);
+ -- Add named actual at the proper place in the list, using the
+ -- Next_Named_Actual link.
+
+ function Reporting return Boolean;
+ -- Determines if an error is to be reported. To report an error, we
+ -- need Report to be True, and also we do not report errors caused
+ -- by calls to init procs that occur within other init procs. Such
+ -- errors must always be cascaded errors, since if all the types are
+ -- declared correctly, the compiler will certainly build decent calls!
+
+ -----------
+ -- Chain --
+ -----------
+
+ procedure Chain (A : Node_Id) is
+ begin
+ if No (Last) then
+
+ -- Call node points to first actual in list
+
+ Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
+
+ else
+ Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
+ end if;
+
+ Last := A;
+ Set_Next_Named_Actual (Last, Empty);
+ end Chain;
+
+ ---------------
+ -- Reporting --
+ ---------------
+
+ function Reporting return Boolean is
+ begin
+ if not Report then
+ return False;
+
+ elsif not Within_Init_Proc then
+ return True;
+
+ elsif Is_Init_Proc (Entity (Name (N))) then
+ return False;
+
+ else
+ return True;
+ end if;
+ end Reporting;
+
+ -- Start of processing for Normalize_Actuals
+
+ begin
+ if Is_Access_Type (S) then
+
+ -- The name in the call is a function call that returns an access
+ -- to subprogram. The designated type has the list of formals.
+
+ Formal := First_Formal (Designated_Type (S));
+ else
+ Formal := First_Formal (S);
+ end if;
+
+ while Present (Formal) loop
+ Formals_To_Match := Formals_To_Match + 1;
+ Next_Formal (Formal);
+ end loop;
+
+ -- Find if there is a named association, and verify that no positional
+ -- associations appear after named ones.
+
+ if Present (Actuals) then
+ Actual := First (Actuals);
+ end if;
+
+ while Present (Actual)
+ and then Nkind (Actual) /= N_Parameter_Association
+ loop
+ Actuals_To_Match := Actuals_To_Match + 1;
+ Next (Actual);
+ end loop;
+
+ if No (Actual) and Actuals_To_Match = Formals_To_Match then
+
+ -- Most common case: positional notation, no defaults
+
+ Success := True;
+ return;
+
+ elsif Actuals_To_Match > Formals_To_Match then
+
+ -- Too many actuals: will not work
+
+ if Reporting then
+ if Is_Entity_Name (Name (N)) then
+ Error_Msg_N ("too many arguments in call to&", Name (N));
+ else
+ Error_Msg_N ("too many arguments in call", N);
+ end if;
+ end if;
+
+ Success := False;
+ return;
+ end if;
+
+ First_Named := Actual;
+
+ while Present (Actual) loop
+ if Nkind (Actual) /= N_Parameter_Association then
+ Error_Msg_N
+ ("positional parameters not allowed after named ones", Actual);
+ Success := False;
+ return;
+
+ else
+ Actuals_To_Match := Actuals_To_Match + 1;
+ end if;
+
+ Next (Actual);
+ end loop;
+
+ if Present (Actuals) then
+ Actual := First (Actuals);
+ end if;
+
+ Formal := First_Formal (S);
+ while Present (Formal) loop
+
+ -- Match the formals in order. If the corresponding actual is
+ -- positional, nothing to do. Else scan the list of named actuals
+ -- to find the one with the right name.
+
+ if Present (Actual)
+ and then Nkind (Actual) /= N_Parameter_Association
+ then
+ Next (Actual);
+ Actuals_To_Match := Actuals_To_Match - 1;
+ Formals_To_Match := Formals_To_Match - 1;
+
+ else
+ -- For named parameters, search the list of actuals to find
+ -- one that matches the next formal name.
+
+ Actual := First_Named;
+ Found := False;
+ while Present (Actual) loop
+ if Chars (Selector_Name (Actual)) = Chars (Formal) then
+ Found := True;
+ Chain (Actual);
+ Actuals_To_Match := Actuals_To_Match - 1;
+ Formals_To_Match := Formals_To_Match - 1;
+ exit;
+ end if;
+
+ Next (Actual);
+ end loop;
+
+ if not Found then
+ if Ekind (Formal) /= E_In_Parameter
+ or else No (Default_Value (Formal))
+ then
+ if Reporting then
+ if (Comes_From_Source (S)
+ or else Sloc (S) = Standard_Location)
+ and then Is_Overloadable (S)
+ then
+ if No (Actuals)
+ and then
+ (Nkind (Parent (N)) = N_Procedure_Call_Statement
+ or else
+ (Nkind (Parent (N)) = N_Function_Call
+ or else
+ Nkind (Parent (N)) = N_Parameter_Association))
+ and then Ekind (S) /= E_Function
+ then
+ Set_Etype (N, Etype (S));
+ else
+ Error_Msg_Name_1 := Chars (S);
+ Error_Msg_Sloc := Sloc (S);
+ Error_Msg_NE
+ ("missing argument for parameter & " &
+ "in call to % declared #", N, Formal);
+ end if;
+
+ elsif Is_Overloadable (S) then
+ Error_Msg_Name_1 := Chars (S);
+
+ -- Point to type derivation that generated the
+ -- operation.
+
+ Error_Msg_Sloc := Sloc (Parent (S));
+
+ Error_Msg_NE
+ ("missing argument for parameter & " &
+ "in call to % (inherited) #", N, Formal);
+
+ else
+ Error_Msg_NE
+ ("missing argument for parameter &", N, Formal);
+ end if;
+ end if;
+
+ Success := False;
+ return;
+
+ else
+ Formals_To_Match := Formals_To_Match - 1;
+ end if;
+ end if;
+ end if;
+
+ Next_Formal (Formal);
+ end loop;
+
+ if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
+ Success := True;
+ return;
+
+ else
+ if Reporting then
+
+ -- Find some superfluous named actual that did not get
+ -- attached to the list of associations.
+
+ Actual := First (Actuals);
+ while Present (Actual) loop
+ if Nkind (Actual) = N_Parameter_Association
+ and then Actual /= Last
+ and then No (Next_Named_Actual (Actual))
+ then
+ Error_Msg_N ("unmatched actual & in call",
+ Selector_Name (Actual));
+ exit;
+ end if;
+
+ Next (Actual);
+ end loop;
+ end if;
+
+ Success := False;
+ return;
+ end if;
+ end Normalize_Actuals;
+
+ --------------------------------
+ -- Note_Possible_Modification --
+ --------------------------------
+
+ procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
+ Modification_Comes_From_Source : constant Boolean :=
+ Comes_From_Source (Parent (N));
+
+ Ent : Entity_Id;
+ Exp : Node_Id;
+
+ begin
+ -- Loop to find referenced entity, if there is one
+
+ Exp := N;
+ loop
+ <<Continue>>
+ Ent := Empty;
+
+ if Is_Entity_Name (Exp) then
+ Ent := Entity (Exp);
+
+ -- If the entity is missing, it is an undeclared identifier,
+ -- and there is nothing to annotate.
+
+ if No (Ent) then
+ return;
+ end if;
+
+ elsif Nkind (Exp) = N_Explicit_Dereference then
+ declare
+ P : constant Node_Id := Prefix (Exp);
+
+ begin
+ if Nkind (P) = N_Selected_Component
+ and then Present (
+ Entry_Formal (Entity (Selector_Name (P))))
+ then
+ -- Case of a reference to an entry formal
+
+ Ent := Entry_Formal (Entity (Selector_Name (P)));
+
+ elsif Nkind (P) = N_Identifier
+ and then Nkind (Parent (Entity (P))) = N_Object_Declaration
+ and then Present (Expression (Parent (Entity (P))))
+ and then Nkind (Expression (Parent (Entity (P))))
+ = N_Reference
+ then
+ -- Case of a reference to a value on which side effects have
+ -- been removed.
+
+ Exp := Prefix (Expression (Parent (Entity (P))));
+ goto Continue;
+
+ else
+ return;
+
+ end if;
+ end;
+
+ elsif Nkind (Exp) = N_Type_Conversion
+ or else Nkind (Exp) = N_Unchecked_Type_Conversion
+ then
+ Exp := Expression (Exp);
+ goto Continue;
+
+ elsif Nkind (Exp) = N_Slice
+ or else Nkind (Exp) = N_Indexed_Component
+ or else Nkind (Exp) = N_Selected_Component
+ then
+ Exp := Prefix (Exp);
+ goto Continue;
+
+ else
+ return;
+ end if;
+
+ -- Now look for entity being referenced
+
+ if Present (Ent) then
+ if Is_Object (Ent) then
+ if Comes_From_Source (Exp)
+ or else Modification_Comes_From_Source
+ then
+ if Has_Pragma_Unmodified (Ent) then
+ Error_Msg_NE ("?pragma Unmodified given for &!", N, Ent);
+ end if;
+
+ Set_Never_Set_In_Source (Ent, False);
+ end if;
+
+ Set_Is_True_Constant (Ent, False);
+ Set_Current_Value (Ent, Empty);
+ Set_Is_Known_Null (Ent, False);
+
+ if not Can_Never_Be_Null (Ent) then
+ Set_Is_Known_Non_Null (Ent, False);
+ end if;
+
+ -- Follow renaming chain
+
+ if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
+ and then Present (Renamed_Object (Ent))
+ then
+ Exp := Renamed_Object (Ent);
+ goto Continue;
+ end if;
+
+ -- Generate a reference only if the assignment comes from
+ -- source. This excludes, for example, calls to a dispatching
+ -- assignment operation when the left-hand side is tagged.
+
+ if Modification_Comes_From_Source then
+ Generate_Reference (Ent, Exp, 'm');
+ end if;
+
+ Check_Nested_Access (Ent);
+ end if;
+
+ Kill_Checks (Ent);
+
+ -- If we are sure this is a modification from source, and we know
+ -- this modifies a constant, then give an appropriate warning.
+
+ if Overlays_Constant (Ent)
+ and then Modification_Comes_From_Source
+ and then Sure
+ then
+ declare
+ A : constant Node_Id := Address_Clause (Ent);
+ begin
+ if Present (A) then
+ declare
+ Exp : constant Node_Id := Expression (A);
+ begin
+ if Nkind (Exp) = N_Attribute_Reference
+ and then Attribute_Name (Exp) = Name_Address
+ and then Is_Entity_Name (Prefix (Exp))
+ then
+ Error_Msg_Sloc := Sloc (A);
+ Error_Msg_NE
+ ("constant& may be modified via address clause#?",
+ N, Entity (Prefix (Exp)));
+ end if;
+ end;
+ end if;
+ end;
+ end if;
+
+ return;
+ end if;
+ end loop;
+ end Note_Possible_Modification;
+
+ -------------------------
+ -- Object_Access_Level --
+ -------------------------
+
+ function Object_Access_Level (Obj : Node_Id) return Uint is
+ E : Entity_Id;
+
+ -- Returns the static accessibility level of the view denoted by Obj. Note
+ -- that the value returned is the result of a call to Scope_Depth. Only
+ -- scope depths associated with dynamic scopes can actually be returned.
+ -- Since only relative levels matter for accessibility checking, the fact
+ -- that the distance between successive levels of accessibility is not
+ -- always one is immaterial (invariant: if level(E2) is deeper than
+ -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
+
+ function Reference_To (Obj : Node_Id) return Node_Id;
+ -- An explicit dereference is created when removing side-effects from
+ -- expressions for constraint checking purposes. In this case a local
+ -- access type is created for it. The correct access level is that of
+ -- the original source node. We detect this case by noting that the
+ -- prefix of the dereference is created by an object declaration whose
+ -- initial expression is a reference.
+
+ ------------------
+ -- Reference_To --
+ ------------------
+
+ function Reference_To (Obj : Node_Id) return Node_Id is
+ Pref : constant Node_Id := Prefix (Obj);
+ begin
+ if Is_Entity_Name (Pref)
+ and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
+ and then Present (Expression (Parent (Entity (Pref))))
+ and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
+ then
+ return (Prefix (Expression (Parent (Entity (Pref)))));
+ else
+ return Empty;
+ end if;
+ end Reference_To;
+
+ -- Start of processing for Object_Access_Level
+
+ begin
+ if Is_Entity_Name (Obj) then
+ E := Entity (Obj);
+
+ if Is_Prival (E) then
+ E := Prival_Link (E);
+ end if;
+
+ -- If E is a type then it denotes a current instance. For this case
+ -- we add one to the normal accessibility level of the type to ensure
+ -- that current instances are treated as always being deeper than
+ -- than the level of any visible named access type (see 3.10.2(21)).
+
+ if Is_Type (E) then
+ return Type_Access_Level (E) + 1;
+
+ elsif Present (Renamed_Object (E)) then
+ return Object_Access_Level (Renamed_Object (E));
+
+ -- Similarly, if E is a component of the current instance of a
+ -- protected type, any instance of it is assumed to be at a deeper
+ -- level than the type. For a protected object (whose type is an
+ -- anonymous protected type) its components are at the same level
+ -- as the type itself.
+
+ elsif not Is_Overloadable (E)
+ and then Ekind (Scope (E)) = E_Protected_Type
+ and then Comes_From_Source (Scope (E))
+ then
+ return Type_Access_Level (Scope (E)) + 1;
+
+ else
+ return Scope_Depth (Enclosing_Dynamic_Scope (E));
+ end if;
+
+ elsif Nkind (Obj) = N_Selected_Component then
+ if Is_Access_Type (Etype (Prefix (Obj))) then
+ return Type_Access_Level (Etype (Prefix (Obj)));
+ else
+ return Object_Access_Level (Prefix (Obj));
+ end if;
+
+ elsif Nkind (Obj) = N_Indexed_Component then
+ if Is_Access_Type (Etype (Prefix (Obj))) then
+ return Type_Access_Level (Etype (Prefix (Obj)));
+ else
+ return Object_Access_Level (Prefix (Obj));
+ end if;
+
+ elsif Nkind (Obj) = N_Explicit_Dereference then
+
+ -- If the prefix is a selected access discriminant then we make a
+ -- recursive call on the prefix, which will in turn check the level
+ -- of the prefix object of the selected discriminant.
+
+ if Nkind (Prefix (Obj)) = N_Selected_Component
+ and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
+ and then
+ Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
+ then
+ return Object_Access_Level (Prefix (Obj));
+
+ elsif not (Comes_From_Source (Obj)) then
+ declare
+ Ref : constant Node_Id := Reference_To (Obj);
+ begin
+ if Present (Ref) then
+ return Object_Access_Level (Ref);
+ else
+ return Type_Access_Level (Etype (Prefix (Obj)));
+ end if;
+ end;
+
+ else
+ return Type_Access_Level (Etype (Prefix (Obj)));
+ end if;
+
+ elsif Nkind (Obj) = N_Type_Conversion
+ or else Nkind (Obj) = N_Unchecked_Type_Conversion
+ then
+ return Object_Access_Level (Expression (Obj));
+
+ -- Function results are objects, so we get either the access level of
+ -- the function or, in the case of an indirect call, the level of the
+ -- access-to-subprogram type.
+
+ elsif Nkind (Obj) = N_Function_Call then
+ if Is_Entity_Name (Name (Obj)) then
+ return Subprogram_Access_Level (Entity (Name (Obj)));
+ else
+ return Type_Access_Level (Etype (Prefix (Name (Obj))));
+ end if;
+
+ -- For convenience we handle qualified expressions, even though
+ -- they aren't technically object names.
+
+ elsif Nkind (Obj) = N_Qualified_Expression then
+ return Object_Access_Level (Expression (Obj));
+
+ -- Otherwise return the scope level of Standard.
+ -- (If there are cases that fall through
+ -- to this point they will be treated as
+ -- having global accessibility for now. ???)
+
+ else
+ return Scope_Depth (Standard_Standard);
+ end if;
+ end Object_Access_Level;
+
+ -----------------------
+ -- Private_Component --
+ -----------------------
+
+ function Private_Component (Type_Id : Entity_Id) return Entity_Id is
+ Ancestor : constant Entity_Id := Base_Type (Type_Id);
+
+ function Trace_Components
+ (T : Entity_Id;
+ Check : Boolean) return Entity_Id;
+ -- Recursive function that does the work, and checks against circular
+ -- definition for each subcomponent type.
+
+ ----------------------
+ -- Trace_Components --
+ ----------------------
+
+ function Trace_Components
+ (T : Entity_Id;
+ Check : Boolean) return Entity_Id
+ is
+ Btype : constant Entity_Id := Base_Type (T);
+ Component : Entity_Id;
+ P : Entity_Id;
+ Candidate : Entity_Id := Empty;
+
+ begin
+ if Check and then Btype = Ancestor then
+ Error_Msg_N ("circular type definition", Type_Id);
+ return Any_Type;
+ end if;
+
+ if Is_Private_Type (Btype)
+ and then not Is_Generic_Type (Btype)
+ then
+ if Present (Full_View (Btype))
+ and then Is_Record_Type (Full_View (Btype))
+ and then not Is_Frozen (Btype)
+ then
+ -- To indicate that the ancestor depends on a private type, the
+ -- current Btype is sufficient. However, to check for circular
+ -- definition we must recurse on the full view.
+
+ Candidate := Trace_Components (Full_View (Btype), True);
+
+ if Candidate = Any_Type then
+ return Any_Type;
+ else
+ return Btype;
+ end if;
+
+ else
+ return Btype;
+ end if;
+
+ elsif Is_Array_Type (Btype) then
+ return Trace_Components (Component_Type (Btype), True);
+
+ elsif Is_Record_Type (Btype) then
+ Component := First_Entity (Btype);
+ while Present (Component) loop
+
+ -- Skip anonymous types generated by constrained components
+
+ if not Is_Type (Component) then
+ P := Trace_Components (Etype (Component), True);
+
+ if Present (P) then
+ if P = Any_Type then
+ return P;
+ else
+ Candidate := P;
+ end if;
+ end if;
+ end if;
+
+ Next_Entity (Component);
+ end loop;
+
+ return Candidate;
+
+ else
+ return Empty;
+ end if;
+ end Trace_Components;
+
+ -- Start of processing for Private_Component
+
+ begin
+ return Trace_Components (Type_Id, False);
+ end Private_Component;
+
+ ---------------------------
+ -- Primitive_Names_Match --
+ ---------------------------
+
+ function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
+
+ function Non_Internal_Name (E : Entity_Id) return Name_Id;
+ -- Given an internal name, returns the corresponding non-internal name
+
+ ------------------------
+ -- Non_Internal_Name --
+ ------------------------
+
+ function Non_Internal_Name (E : Entity_Id) return Name_Id is
+ begin
+ Get_Name_String (Chars (E));
+ Name_Len := Name_Len - 1;
+ return Name_Find;
+ end Non_Internal_Name;
+
+ -- Start of processing for Primitive_Names_Match
+
+ begin
+ pragma Assert (Present (E1) and then Present (E2));
+
+ return Chars (E1) = Chars (E2)
+ or else
+ (not Is_Internal_Name (Chars (E1))
+ and then Is_Internal_Name (Chars (E2))
+ and then Non_Internal_Name (E2) = Chars (E1))
+ or else
+ (not Is_Internal_Name (Chars (E2))
+ and then Is_Internal_Name (Chars (E1))
+ and then Non_Internal_Name (E1) = Chars (E2))
+ or else
+ (Is_Predefined_Dispatching_Operation (E1)
+ and then Is_Predefined_Dispatching_Operation (E2)
+ and then Same_TSS (E1, E2))
+ or else
+ (Is_Init_Proc (E1) and then Is_Init_Proc (E2));
+ end Primitive_Names_Match;
+
+ -----------------------
+ -- Process_End_Label --
+ -----------------------
+
+ procedure Process_End_Label
+ (N : Node_Id;
+ Typ : Character;
+ Ent : Entity_Id)
+ is
+ Loc : Source_Ptr;
+ Nam : Node_Id;
+ Scop : Entity_Id;
+
+ Label_Ref : Boolean;
+ -- Set True if reference to end label itself is required
+
+ Endl : Node_Id;
+ -- Gets set to the operator symbol or identifier that references the
+ -- entity Ent. For the child unit case, this is the identifier from the
+ -- designator. For other cases, this is simply Endl.
+
+ procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
+ -- N is an identifier node that appears as a parent unit reference in
+ -- the case where Ent is a child unit. This procedure generates an
+ -- appropriate cross-reference entry. E is the corresponding entity.
+
+ -------------------------
+ -- Generate_Parent_Ref --
+ -------------------------
+
+ procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
+ begin
+ -- If names do not match, something weird, skip reference
+
+ if Chars (E) = Chars (N) then
+
+ -- Generate the reference. We do NOT consider this as a reference
+ -- for unreferenced symbol purposes.
+
+ Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
+
+ if Style_Check then
+ Style.Check_Identifier (N, E);
+ end if;
+ end if;
+ end Generate_Parent_Ref;
+
+ -- Start of processing for Process_End_Label
+
+ begin
+ -- If no node, ignore. This happens in some error situations, and
+ -- also for some internally generated structures where no end label
+ -- references are required in any case.
+
+ if No (N) then
+ return;
+ end if;
+
+ -- Nothing to do if no End_Label, happens for internally generated
+ -- constructs where we don't want an end label reference anyway. Also
+ -- nothing to do if Endl is a string literal, which means there was
+ -- some prior error (bad operator symbol)
+
+ Endl := End_Label (N);
+
+ if No (Endl) or else Nkind (Endl) = N_String_Literal then
+ return;
+ end if;
+
+ -- Reference node is not in extended main source unit
+
+ if not In_Extended_Main_Source_Unit (N) then
+
+ -- Generally we do not collect references except for the extended
+ -- main source unit. The one exception is the 'e' entry for a
+ -- package spec, where it is useful for a client to have the
+ -- ending information to define scopes.
+
+ if Typ /= 'e' then
+ return;
+
+ else
+ Label_Ref := False;
+
+ -- For this case, we can ignore any parent references, but we
+ -- need the package name itself for the 'e' entry.
+
+ if Nkind (Endl) = N_Designator then
+ Endl := Identifier (Endl);
+ end if;
+ end if;
+
+ -- Reference is in extended main source unit
+
+ else
+ Label_Ref := True;
+
+ -- For designator, generate references for the parent entries
+
+ if Nkind (Endl) = N_Designator then
+
+ -- Generate references for the prefix if the END line comes from
+ -- source (otherwise we do not need these references) We climb the
+ -- scope stack to find the expected entities.
+
+ if Comes_From_Source (Endl) then
+ Nam := Name (Endl);
+ Scop := Current_Scope;
+ while Nkind (Nam) = N_Selected_Component loop
+ Scop := Scope (Scop);
+ exit when No (Scop);
+ Generate_Parent_Ref (Selector_Name (Nam), Scop);
+ Nam := Prefix (Nam);
+ end loop;
+
+ if Present (Scop) then
+ Generate_Parent_Ref (Nam, Scope (Scop));
+ end if;
+ end if;
+
+ Endl := Identifier (Endl);
+ end if;
+ end if;
+
+ -- If the end label is not for the given entity, then either we have
+ -- some previous error, or this is a generic instantiation for which
+ -- we do not need to make a cross-reference in this case anyway. In
+ -- either case we simply ignore the call.
+
+ if Chars (Ent) /= Chars (Endl) then
+ return;
+ end if;
+
+ -- If label was really there, then generate a normal reference and then
+ -- adjust the location in the end label to point past the name (which
+ -- should almost always be the semicolon).
+
+ Loc := Sloc (Endl);
+
+ if Comes_From_Source (Endl) then
+
+ -- If a label reference is required, then do the style check and
+ -- generate an l-type cross-reference entry for the label
+
+ if Label_Ref then
+ if Style_Check then
+ Style.Check_Identifier (Endl, Ent);
+ end if;
+
+ Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
+ end if;
+
+ -- Set the location to point past the label (normally this will
+ -- mean the semicolon immediately following the label). This is
+ -- done for the sake of the 'e' or 't' entry generated below.
+
+ Get_Decoded_Name_String (Chars (Endl));
+ Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
+ end if;
+
+ -- Now generate the e/t reference
+
+ Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
+
+ -- Restore Sloc, in case modified above, since we have an identifier
+ -- and the normal Sloc should be left set in the tree.
+
+ Set_Sloc (Endl, Loc);
+ end Process_End_Label;
+
+ ------------------
+ -- Real_Convert --
+ ------------------
+
+ -- We do the conversion to get the value of the real string by using
+ -- the scanner, see Sinput for details on use of the internal source
+ -- buffer for scanning internal strings.
+
+ function Real_Convert (S : String) return Node_Id is
+ Save_Src : constant Source_Buffer_Ptr := Source;
+ Negative : Boolean;
+
+ begin
+ Source := Internal_Source_Ptr;
+ Scan_Ptr := 1;
+
+ for J in S'Range loop
+ Source (Source_Ptr (J)) := S (J);
+ end loop;
+
+ Source (S'Length + 1) := EOF;
+
+ if Source (Scan_Ptr) = '-' then
+ Negative := True;
+ Scan_Ptr := Scan_Ptr + 1;
+ else
+ Negative := False;
+ end if;
+
+ Scan;
+
+ if Negative then
+ Set_Realval (Token_Node, UR_Negate (Realval (Token_Node)));
+ end if;
+
+ Source := Save_Src;
+ return Token_Node;
+ end Real_Convert;
+
+ --------------------
+ -- Remove_Homonym --
+ --------------------
+
+ procedure Remove_Homonym (E : Entity_Id) is
+ Prev : Entity_Id := Empty;
+ H : Entity_Id;
+
+ begin
+ if E = Current_Entity (E) then
+ if Present (Homonym (E)) then
+ Set_Current_Entity (Homonym (E));
+ else
+ Set_Name_Entity_Id (Chars (E), Empty);
+ end if;
+ else
+ H := Current_Entity (E);
+ while Present (H) and then H /= E loop
+ Prev := H;
+ H := Homonym (H);
+ end loop;
+
+ Set_Homonym (Prev, Homonym (E));
+ end if;
+ end Remove_Homonym;
+
+ ---------------------
+ -- Rep_To_Pos_Flag --
+ ---------------------
+
+ function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
+ begin
+ return New_Occurrence_Of
+ (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
+ end Rep_To_Pos_Flag;
+
+ --------------------
+ -- Require_Entity --
+ --------------------
+
+ procedure Require_Entity (N : Node_Id) is
+ begin
+ if Is_Entity_Name (N) and then No (Entity (N)) then
+ if Total_Errors_Detected /= 0 then
+ Set_Entity (N, Any_Id);
+ else
+ raise Program_Error;
+ end if;
+ end if;
+ end Require_Entity;
+
+ ------------------------------
+ -- Requires_Transient_Scope --
+ ------------------------------
+
+ -- A transient scope is required when variable-sized temporaries are
+ -- allocated in the primary or secondary stack, or when finalization
+ -- actions must be generated before the next instruction.
+
+ function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
+ Typ : constant Entity_Id := Underlying_Type (Id);
+
+ -- Start of processing for Requires_Transient_Scope
+
+ begin
+ -- This is a private type which is not completed yet. This can only
+ -- happen in a default expression (of a formal parameter or of a
+ -- record component). Do not expand transient scope in this case
+
+ if No (Typ) then
+ return False;
+
+ -- Do not expand transient scope for non-existent procedure return
+
+ elsif Typ = Standard_Void_Type then
+ return False;
+
+ -- Elementary types do not require a transient scope
+
+ elsif Is_Elementary_Type (Typ) then
+ return False;
+
+ -- Generally, indefinite subtypes require a transient scope, since the
+ -- back end cannot generate temporaries, since this is not a valid type
+ -- for declaring an object. It might be possible to relax this in the
+ -- future, e.g. by declaring the maximum possible space for the type.
+
+ elsif Is_Indefinite_Subtype (Typ) then
+ return True;
+
+ -- Functions returning tagged types may dispatch on result so their
+ -- returned value is allocated on the secondary stack. Controlled
+ -- type temporaries need finalization.
+
+ elsif Is_Tagged_Type (Typ)
+ or else Has_Controlled_Component (Typ)
+ then
+ return not Is_Value_Type (Typ);
+
+ -- Record type
+
+ elsif Is_Record_Type (Typ) then
+ declare
+ Comp : Entity_Id;
+ begin
+ Comp := First_Entity (Typ);
+ while Present (Comp) loop
+ if Ekind (Comp) = E_Component
+ and then Requires_Transient_Scope (Etype (Comp))
+ then
+ return True;
+ else
+ Next_Entity (Comp);
+ end if;
+ end loop;
+ end;
+
+ return False;
+
+ -- String literal types never require transient scope
+
+ elsif Ekind (Typ) = E_String_Literal_Subtype then
+ return False;
+
+ -- Array type. Note that we already know that this is a constrained
+ -- array, since unconstrained arrays will fail the indefinite test.
+
+ elsif Is_Array_Type (Typ) then
+
+ -- If component type requires a transient scope, the array does too
+
+ if Requires_Transient_Scope (Component_Type (Typ)) then
+ return True;
+
+ -- Otherwise, we only need a transient scope if the size is not
+ -- known at compile time.
+
+ else
+ return not Size_Known_At_Compile_Time (Typ);
+ end if;
+
+ -- All other cases do not require a transient scope
+
+ else
+ return False;
+ end if;
+ end Requires_Transient_Scope;
+
+ --------------------------
+ -- Reset_Analyzed_Flags --
+ --------------------------
+
+ procedure Reset_Analyzed_Flags (N : Node_Id) is
+
+ function Clear_Analyzed (N : Node_Id) return Traverse_Result;
+ -- Function used to reset Analyzed flags in tree. Note that we do
+ -- not reset Analyzed flags in entities, since there is no need to
+ -- reanalyze entities, and indeed, it is wrong to do so, since it
+ -- can result in generating auxiliary stuff more than once.
+
+ --------------------
+ -- Clear_Analyzed --
+ --------------------
+
+ function Clear_Analyzed (N : Node_Id) return Traverse_Result is
+ begin
+ if not Has_Extension (N) then
+ Set_Analyzed (N, False);
+ end if;
+
+ return OK;
+ end Clear_Analyzed;
+
+ procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
+
+ -- Start of processing for Reset_Analyzed_Flags
+
+ begin
+ Reset_Analyzed (N);
+ end Reset_Analyzed_Flags;
+
+ ---------------------------
+ -- Safe_To_Capture_Value --
+ ---------------------------
+
+ function Safe_To_Capture_Value
+ (N : Node_Id;
+ Ent : Entity_Id;
+ Cond : Boolean := False) return Boolean
+ is
+ begin
+ -- The only entities for which we track constant values are variables
+ -- which are not renamings, constants, out parameters, and in out
+ -- parameters, so check if we have this case.
+
+ -- Note: it may seem odd to track constant values for constants, but in
+ -- fact this routine is used for other purposes than simply capturing
+ -- the value. In particular, the setting of Known[_Non]_Null.
+
+ if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
+ or else
+ Ekind (Ent) = E_Constant
+ or else
+ Ekind (Ent) = E_Out_Parameter
+ or else
+ Ekind (Ent) = E_In_Out_Parameter
+ then
+ null;
+
+ -- For conditionals, we also allow loop parameters and all formals,
+ -- including in parameters.
+
+ elsif Cond
+ and then
+ (Ekind (Ent) = E_Loop_Parameter
+ or else
+ Ekind (Ent) = E_In_Parameter)
+ then
+ null;
+
+ -- For all other cases, not just unsafe, but impossible to capture
+ -- Current_Value, since the above are the only entities which have
+ -- Current_Value fields.
+
+ else
+ return False;
+ end if;
+
+ -- Skip if volatile or aliased, since funny things might be going on in
+ -- these cases which we cannot necessarily track. Also skip any variable
+ -- for which an address clause is given, or whose address is taken. Also
+ -- never capture value of library level variables (an attempt to do so
+ -- can occur in the case of package elaboration code).
+
+ if Treat_As_Volatile (Ent)
+ or else Is_Aliased (Ent)
+ or else Present (Address_Clause (Ent))
+ or else Address_Taken (Ent)
+ or else (Is_Library_Level_Entity (Ent)
+ and then Ekind (Ent) = E_Variable)
+ then
+ return False;
+ end if;
+
+ -- OK, all above conditions are met. We also require that the scope of
+ -- the reference be the same as the scope of the entity, not counting
+ -- packages and blocks and loops.
+
+ declare
+ E_Scope : constant Entity_Id := Scope (Ent);
+ R_Scope : Entity_Id;
+
+ begin
+ R_Scope := Current_Scope;
+ while R_Scope /= Standard_Standard loop
+ exit when R_Scope = E_Scope;
+
+ if Ekind (R_Scope) /= E_Package
+ and then
+ Ekind (R_Scope) /= E_Block
+ and then
+ Ekind (R_Scope) /= E_Loop
+ then
+ return False;
+ else
+ R_Scope := Scope (R_Scope);
+ end if;
+ end loop;
+ end;
+
+ -- We also require that the reference does not appear in a context
+ -- where it is not sure to be executed (i.e. a conditional context
+ -- or an exception handler). We skip this if Cond is True, since the
+ -- capturing of values from conditional tests handles this ok.
+
+ if Cond then
+ return True;
+ end if;
+
+ declare
+ Desc : Node_Id;
+ P : Node_Id;
+
+ begin
+ Desc := N;
+
+ P := Parent (N);
+ while Present (P) loop
+ if Nkind (P) = N_If_Statement
+ or else Nkind (P) = N_Case_Statement
+ or else (Nkind (P) = N_And_Then and then Desc = Right_Opnd (P))
+ or else (Nkind (P) = N_Or_Else and then Desc = Right_Opnd (P))
+ or else Nkind (P) = N_Exception_Handler
+ or else Nkind (P) = N_Selective_Accept
+ or else Nkind (P) = N_Conditional_Entry_Call
+ or else Nkind (P) = N_Timed_Entry_Call
+ or else Nkind (P) = N_Asynchronous_Select
+ then
+ return False;
+ else
+ Desc := P;
+ P := Parent (P);
+ end if;
+ end loop;
+ end;
+
+ -- OK, looks safe to set value
+
+ return True;
+ end Safe_To_Capture_Value;
+
+ ---------------
+ -- Same_Name --
+ ---------------
+
+ function Same_Name (N1, N2 : Node_Id) return Boolean is
+ K1 : constant Node_Kind := Nkind (N1);
+ K2 : constant Node_Kind := Nkind (N2);
+
+ begin
+ if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
+ and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
+ then
+ return Chars (N1) = Chars (N2);
+
+ elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
+ and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
+ then
+ return Same_Name (Selector_Name (N1), Selector_Name (N2))
+ and then Same_Name (Prefix (N1), Prefix (N2));
+
+ else
+ return False;
+ end if;
+ end Same_Name;
+
+ -----------------
+ -- Same_Object --
+ -----------------
+
+ function Same_Object (Node1, Node2 : Node_Id) return Boolean is
+ N1 : constant Node_Id := Original_Node (Node1);
+ N2 : constant Node_Id := Original_Node (Node2);
+ -- We do the tests on original nodes, since we are most interested
+ -- in the original source, not any expansion that got in the way.
+
+ K1 : constant Node_Kind := Nkind (N1);
+ K2 : constant Node_Kind := Nkind (N2);
+
+ begin
+ -- First case, both are entities with same entity
+
+ if K1 in N_Has_Entity
+ and then K2 in N_Has_Entity
+ and then Present (Entity (N1))
+ and then Present (Entity (N2))
+ and then (Ekind (Entity (N1)) = E_Variable
+ or else
+ Ekind (Entity (N1)) = E_Constant)
+ and then Entity (N1) = Entity (N2)
+ then
+ return True;
+
+ -- Second case, selected component with same selector, same record
+
+ elsif K1 = N_Selected_Component
+ and then K2 = N_Selected_Component
+ and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
+ then
+ return Same_Object (Prefix (N1), Prefix (N2));
+
+ -- Third case, indexed component with same subscripts, same array
+
+ elsif K1 = N_Indexed_Component
+ and then K2 = N_Indexed_Component
+ and then Same_Object (Prefix (N1), Prefix (N2))
+ then
+ declare
+ E1, E2 : Node_Id;
+ begin
+ E1 := First (Expressions (N1));
+ E2 := First (Expressions (N2));
+ while Present (E1) loop
+ if not Same_Value (E1, E2) then
+ return False;
+ else
+ Next (E1);
+ Next (E2);
+ end if;
+ end loop;
+
+ return True;
+ end;
+
+ -- Fourth case, slice of same array with same bounds
+
+ elsif K1 = N_Slice
+ and then K2 = N_Slice
+ and then Nkind (Discrete_Range (N1)) = N_Range
+ and then Nkind (Discrete_Range (N2)) = N_Range
+ and then Same_Value (Low_Bound (Discrete_Range (N1)),
+ Low_Bound (Discrete_Range (N2)))
+ and then Same_Value (High_Bound (Discrete_Range (N1)),
+ High_Bound (Discrete_Range (N2)))
+ then
+ return Same_Name (Prefix (N1), Prefix (N2));
+
+ -- All other cases, not clearly the same object
+
+ else
+ return False;
+ end if;
+ end Same_Object;
+
+ ---------------
+ -- Same_Type --
+ ---------------
+
+ function Same_Type (T1, T2 : Entity_Id) return Boolean is
+ begin
+ if T1 = T2 then
+ return True;
+
+ elsif not Is_Constrained (T1)
+ and then not Is_Constrained (T2)
+ and then Base_Type (T1) = Base_Type (T2)
+ then
+ return True;
+
+ -- For now don't bother with case of identical constraints, to be
+ -- fiddled with later on perhaps (this is only used for optimization
+ -- purposes, so it is not critical to do a best possible job)
+
+ else
+ return False;
+ end if;
+ end Same_Type;
+
+ ----------------
+ -- Same_Value --
+ ----------------
+
+ function Same_Value (Node1, Node2 : Node_Id) return Boolean is
+ begin
+ if Compile_Time_Known_Value (Node1)
+ and then Compile_Time_Known_Value (Node2)
+ and then Expr_Value (Node1) = Expr_Value (Node2)
+ then
+ return True;
+ elsif Same_Object (Node1, Node2) then
+ return True;
+ else
+ return False;
+ end if;
+ end Same_Value;
+
+ ------------------------
+ -- Scope_Is_Transient --
+ ------------------------
+
+ function Scope_Is_Transient return Boolean is
+ begin
+ return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
+ end Scope_Is_Transient;
+
+ ------------------
+ -- Scope_Within --
+ ------------------
+
+ function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
+ Scop : Entity_Id;
+
+ begin
+ Scop := Scope1;
+ while Scop /= Standard_Standard loop
+ Scop := Scope (Scop);
+
+ if Scop = Scope2 then
+ return True;
+ end if;
+ end loop;
+
+ return False;
+ end Scope_Within;
+
+ --------------------------
+ -- Scope_Within_Or_Same --
+ --------------------------
+
+ function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
+ Scop : Entity_Id;
+
+ begin
+ Scop := Scope1;
+ while Scop /= Standard_Standard loop
+ if Scop = Scope2 then
+ return True;
+ else
+ Scop := Scope (Scop);
+ end if;
+ end loop;
+
+ return False;
+ end Scope_Within_Or_Same;
+
+ --------------------
+ -- Set_Convention --
+ --------------------
+
+ procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
+ begin
+ Basic_Set_Convention (E, Val);
+
+ if Is_Type (E)
+ and then Is_Access_Subprogram_Type (Base_Type (E))
+ and then Has_Foreign_Convention (E)
+ then
+ Set_Can_Use_Internal_Rep (E, False);
+ end if;
+ end Set_Convention;
+
+ ------------------------
+ -- Set_Current_Entity --
+ ------------------------
+
+ -- The given entity is to be set as the currently visible definition
+ -- of its associated name (i.e. the Node_Id associated with its name).
+ -- All we have to do is to get the name from the identifier, and
+ -- then set the associated Node_Id to point to the given entity.
+
+ procedure Set_Current_Entity (E : Entity_Id) is
+ begin
+ Set_Name_Entity_Id (Chars (E), E);
+ end Set_Current_Entity;
+
+ ---------------------------
+ -- Set_Debug_Info_Needed --
+ ---------------------------
+
+ procedure Set_Debug_Info_Needed (T : Entity_Id) is
+
+ procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
+ pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
+ -- Used to set debug info in a related node if not set already
+
+ --------------------------------------
+ -- Set_Debug_Info_Needed_If_Not_Set --
+ --------------------------------------
+
+ procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
+ begin
+ if Present (E)
+ and then not Needs_Debug_Info (E)
+ then
+ Set_Debug_Info_Needed (E);
+
+ -- For a private type, indicate that the full view also needs
+ -- debug information.
+
+ if Is_Type (E)
+ and then Is_Private_Type (E)
+ and then Present (Full_View (E))
+ then
+ Set_Debug_Info_Needed (Full_View (E));
+ end if;
+ end if;
+ end Set_Debug_Info_Needed_If_Not_Set;
+
+ -- Start of processing for Set_Debug_Info_Needed
+
+ begin
+ -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
+ -- indicates that Debug_Info_Needed is never required for the entity.
+
+ if No (T)
+ or else Debug_Info_Off (T)
+ then
+ return;
+ end if;
+
+ -- Set flag in entity itself. Note that we will go through the following
+ -- circuitry even if the flag is already set on T. That's intentional,
+ -- it makes sure that the flag will be set in subsidiary entities.
+
+ Set_Needs_Debug_Info (T);
+
+ -- Set flag on subsidiary entities if not set already
+
+ if Is_Object (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Etype (T));
+
+ elsif Is_Type (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Etype (T));
+
+ if Is_Record_Type (T) then
+ declare
+ Ent : Entity_Id := First_Entity (T);
+ begin
+ while Present (Ent) loop
+ Set_Debug_Info_Needed_If_Not_Set (Ent);
+ Next_Entity (Ent);
+ end loop;
+ end;
+
+ elsif Is_Array_Type (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
+
+ declare
+ Indx : Node_Id := First_Index (T);
+ begin
+ while Present (Indx) loop
+ Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
+ Indx := Next_Index (Indx);
+ end loop;
+ end;
+
+ if Is_Packed (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Type (T));
+ end if;
+
+ elsif Is_Access_Type (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
+
+ elsif Is_Private_Type (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Full_View (T));
+
+ elsif Is_Protected_Type (T) then
+ Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
+ end if;
+ end if;
+ end Set_Debug_Info_Needed;
+
+ ---------------------------------
+ -- Set_Entity_With_Style_Check --
+ ---------------------------------
+
+ procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id) is
+ Val_Actual : Entity_Id;
+ Nod : Node_Id;
+
+ begin
+ Set_Entity (N, Val);
+
+ if Style_Check
+ and then not Suppress_Style_Checks (Val)
+ and then not In_Instance
+ then
+ if Nkind (N) = N_Identifier then
+ Nod := N;
+ elsif Nkind (N) = N_Expanded_Name then
+ Nod := Selector_Name (N);
+ else
+ return;
+ end if;
+
+ -- A special situation arises for derived operations, where we want
+ -- to do the check against the parent (since the Sloc of the derived
+ -- operation points to the derived type declaration itself).
+
+ Val_Actual := Val;
+ while not Comes_From_Source (Val_Actual)
+ and then Nkind (Val_Actual) in N_Entity
+ and then (Ekind (Val_Actual) = E_Enumeration_Literal
+ or else Is_Subprogram (Val_Actual)
+ or else Is_Generic_Subprogram (Val_Actual))
+ and then Present (Alias (Val_Actual))
+ loop
+ Val_Actual := Alias (Val_Actual);
+ end loop;
+
+ -- Renaming declarations for generic actuals do not come from source,
+ -- and have a different name from that of the entity they rename, so
+ -- there is no style check to perform here.
+
+ if Chars (Nod) = Chars (Val_Actual) then
+ Style.Check_Identifier (Nod, Val_Actual);
+ end if;
+ end if;
+
+ Set_Entity (N, Val);
+ end Set_Entity_With_Style_Check;
+
+ ------------------------
+ -- Set_Name_Entity_Id --
+ ------------------------
+
+ procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
+ begin
+ Set_Name_Table_Info (Id, Int (Val));
+ end Set_Name_Entity_Id;
+
+ ---------------------
+ -- Set_Next_Actual --
+ ---------------------
+
+ procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
+ begin
+ if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
+ Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
+ end if;
+ end Set_Next_Actual;
+
+ ----------------------------------
+ -- Set_Optimize_Alignment_Flags --
+ ----------------------------------
+
+ procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
+ begin
+ if Optimize_Alignment = 'S' then
+ Set_Optimize_Alignment_Space (E);
+ elsif Optimize_Alignment = 'T' then
+ Set_Optimize_Alignment_Time (E);
+ end if;
+ end Set_Optimize_Alignment_Flags;
+
+ -----------------------
+ -- Set_Public_Status --
+ -----------------------
+
+ procedure Set_Public_Status (Id : Entity_Id) is
+ S : constant Entity_Id := Current_Scope;
+
+ function Within_HSS_Or_If (E : Entity_Id) return Boolean;
+ -- Determines if E is defined within handled statement sequence or
+ -- an if statement, returns True if so, False otherwise.
+
+ ----------------------
+ -- Within_HSS_Or_If --
+ ----------------------
+
+ function Within_HSS_Or_If (E : Entity_Id) return Boolean is
+ N : Node_Id;
+ begin
+ N := Declaration_Node (E);
+ loop
+ N := Parent (N);
+
+ if No (N) then
+ return False;
+
+ elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
+ N_If_Statement)
+ then
+ return True;
+ end if;
+ end loop;
+ end Within_HSS_Or_If;
+
+ -- Start of processing for Set_Public_Status
+
+ begin
+ -- Everything in the scope of Standard is public
+
+ if S = Standard_Standard then
+ Set_Is_Public (Id);
+
+ -- Entity is definitely not public if enclosing scope is not public
+
+ elsif not Is_Public (S) then
+ return;
+
+ -- An object or function declaration that occurs in a handled sequence
+ -- of statements or within an if statement is the declaration for a
+ -- temporary object or local subprogram generated by the expander. It
+ -- never needs to be made public and furthermore, making it public can
+ -- cause back end problems.
+
+ elsif Nkind_In (Parent (Id), N_Object_Declaration,
+ N_Function_Specification)
+ and then Within_HSS_Or_If (Id)
+ then
+ return;
+
+ -- Entities in public packages or records are public
+
+ elsif Ekind (S) = E_Package or Is_Record_Type (S) then
+ Set_Is_Public (Id);
+
+ -- The bounds of an entry family declaration can generate object
+ -- declarations that are visible to the back-end, e.g. in the
+ -- the declaration of a composite type that contains tasks.
+
+ elsif Is_Concurrent_Type (S)
+ and then not Has_Completion (S)
+ and then Nkind (Parent (Id)) = N_Object_Declaration
+ then
+ Set_Is_Public (Id);
+ end if;
+ end Set_Public_Status;
+
+ -----------------------------
+ -- Set_Referenced_Modified --
+ -----------------------------
+
+ procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
+ Pref : Node_Id;
+
+ begin
+ -- Deal with indexed or selected component where prefix is modified
+
+ if Nkind (N) = N_Indexed_Component
+ or else
+ Nkind (N) = N_Selected_Component
+ then
+ Pref := Prefix (N);
+
+ -- If prefix is access type, then it is the designated object that is
+ -- being modified, which means we have no entity to set the flag on.
+
+ if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
+ return;
+
+ -- Otherwise chase the prefix
+
+ else
+ Set_Referenced_Modified (Pref, Out_Param);
+ end if;
+
+ -- Otherwise see if we have an entity name (only other case to process)
+
+ elsif Is_Entity_Name (N) and then Present (Entity (N)) then
+ Set_Referenced_As_LHS (Entity (N), not Out_Param);
+ Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
+ end if;
+ end Set_Referenced_Modified;
+
+ ----------------------------
+ -- Set_Scope_Is_Transient --
+ ----------------------------
+
+ procedure Set_Scope_Is_Transient (V : Boolean := True) is
+ begin
+ Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
+ end Set_Scope_Is_Transient;
+
+ -------------------
+ -- Set_Size_Info --
+ -------------------
+
+ procedure Set_Size_Info (T1, T2 : Entity_Id) is
+ begin
+ -- We copy Esize, but not RM_Size, since in general RM_Size is
+ -- subtype specific and does not get inherited by all subtypes.
+
+ Set_Esize (T1, Esize (T2));
+ Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
+
+ if Is_Discrete_Or_Fixed_Point_Type (T1)
+ and then
+ Is_Discrete_Or_Fixed_Point_Type (T2)
+ then
+ Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
+ end if;
+
+ Set_Alignment (T1, Alignment (T2));
+ end Set_Size_Info;
+
+ --------------------
+ -- Static_Integer --
+ --------------------
+
+ function Static_Integer (N : Node_Id) return Uint is
+ begin
+ Analyze_And_Resolve (N, Any_Integer);
+
+ if N = Error
+ or else Error_Posted (N)
+ or else Etype (N) = Any_Type
+ then
+ return No_Uint;
+ end if;
+
+ if Is_Static_Expression (N) then
+ if not Raises_Constraint_Error (N) then
+ return Expr_Value (N);
+ else
+ return No_Uint;
+ end if;
+
+ elsif Etype (N) = Any_Type then
+ return No_Uint;
+
+ else
+ Flag_Non_Static_Expr
+ ("static integer expression required here", N);
+ return No_Uint;
+ end if;
+ end Static_Integer;
+
+ --------------------------
+ -- Statically_Different --
+ --------------------------
+
+ function Statically_Different (E1, E2 : Node_Id) return Boolean is
+ R1 : constant Node_Id := Get_Referenced_Object (E1);
+ R2 : constant Node_Id := Get_Referenced_Object (E2);
+ begin
+ return Is_Entity_Name (R1)
+ and then Is_Entity_Name (R2)
+ and then Entity (R1) /= Entity (R2)
+ and then not Is_Formal (Entity (R1))
+ and then not Is_Formal (Entity (R2));
+ end Statically_Different;
+
+ -----------------------------
+ -- Subprogram_Access_Level --
+ -----------------------------
+
+ function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
+ begin
+ if Present (Alias (Subp)) then
+ return Subprogram_Access_Level (Alias (Subp));
+ else
+ return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
+ end if;
+ end Subprogram_Access_Level;
+
+ -----------------
+ -- Trace_Scope --
+ -----------------
+
+ procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
+ begin
+ if Debug_Flag_W then
+ for J in 0 .. Scope_Stack.Last loop
+ Write_Str (" ");
+ end loop;
+
+ Write_Str (Msg);
+ Write_Name (Chars (E));
+ Write_Str (" from ");
+ Write_Location (Sloc (N));
+ Write_Eol;
+ end if;
+ end Trace_Scope;
+
+ -----------------------
+ -- Transfer_Entities --
+ -----------------------
+
+ procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
+ Ent : Entity_Id := First_Entity (From);
+
+ begin
+ if No (Ent) then
+ return;
+ end if;
+
+ if (Last_Entity (To)) = Empty then
+ Set_First_Entity (To, Ent);
+ else
+ Set_Next_Entity (Last_Entity (To), Ent);
+ end if;
+
+ Set_Last_Entity (To, Last_Entity (From));
+
+ while Present (Ent) loop
+ Set_Scope (Ent, To);
+
+ if not Is_Public (Ent) then
+ Set_Public_Status (Ent);
+
+ if Is_Public (Ent)
+ and then Ekind (Ent) = E_Record_Subtype
+
+ then
+ -- The components of the propagated Itype must be public
+ -- as well.
+
+ declare
+ Comp : Entity_Id;
+ begin
+ Comp := First_Entity (Ent);
+ while Present (Comp) loop
+ Set_Is_Public (Comp);
+ Next_Entity (Comp);
+ end loop;
+ end;
+ end if;
+ end if;
+
+ Next_Entity (Ent);
+ end loop;
+
+ Set_First_Entity (From, Empty);
+ Set_Last_Entity (From, Empty);
+ end Transfer_Entities;
+
+ -----------------------
+ -- Type_Access_Level --
+ -----------------------
+
+ function Type_Access_Level (Typ : Entity_Id) return Uint is
+ Btyp : Entity_Id;
+
+ begin
+ Btyp := Base_Type (Typ);
+
+ -- Ada 2005 (AI-230): For most cases of anonymous access types, we
+ -- simply use the level where the type is declared. This is true for
+ -- stand-alone object declarations, and for anonymous access types
+ -- associated with components the level is the same as that of the
+ -- enclosing composite type. However, special treatment is needed for
+ -- the cases of access parameters, return objects of an anonymous access
+ -- type, and, in Ada 95, access discriminants of limited types.
+
+ if Ekind (Btyp) in Access_Kind then
+ if Ekind (Btyp) = E_Anonymous_Access_Type then
+
+ -- If the type is a nonlocal anonymous access type (such as for
+ -- an access parameter) we treat it as being declared at the
+ -- library level to ensure that names such as X.all'access don't
+ -- fail static accessibility checks.
+
+ if not Is_Local_Anonymous_Access (Typ) then
+ return Scope_Depth (Standard_Standard);
+
+ -- If this is a return object, the accessibility level is that of
+ -- the result subtype of the enclosing function. The test here is
+ -- little complicated, because we have to account for extended
+ -- return statements that have been rewritten as blocks, in which
+ -- case we have to find and the Is_Return_Object attribute of the
+ -- itype's associated object. It would be nice to find a way to
+ -- simplify this test, but it doesn't seem worthwhile to add a new
+ -- flag just for purposes of this test. ???
+
+ elsif Ekind (Scope (Btyp)) = E_Return_Statement
+ or else
+ (Is_Itype (Btyp)
+ and then Nkind (Associated_Node_For_Itype (Btyp)) =
+ N_Object_Declaration
+ and then Is_Return_Object
+ (Defining_Identifier
+ (Associated_Node_For_Itype (Btyp))))
+ then
+ declare
+ Scop : Entity_Id;
+
+ begin
+ Scop := Scope (Scope (Btyp));
+ while Present (Scop) loop
+ exit when Ekind (Scop) = E_Function;
+ Scop := Scope (Scop);
+ end loop;
+
+ -- Treat the return object's type as having the level of the
+ -- function's result subtype (as per RM05-6.5(5.3/2)).
+
+ return Type_Access_Level (Etype (Scop));
+ end;
+ end if;
+ end if;
+
+ Btyp := Root_Type (Btyp);
+
+ -- The accessibility level of anonymous access types associated with
+ -- discriminants is that of the current instance of the type, and
+ -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
+
+ -- AI-402: access discriminants have accessibility based on the
+ -- object rather than the type in Ada 2005, so the above paragraph
+ -- doesn't apply.
+
+ -- ??? Needs completion with rules from AI-416
+
+ if Ada_Version <= Ada_95
+ and then Ekind (Typ) = E_Anonymous_Access_Type
+ and then Present (Associated_Node_For_Itype (Typ))
+ and then Nkind (Associated_Node_For_Itype (Typ)) =
+ N_Discriminant_Specification
+ then
+ return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
+ end if;
+ end if;
+
+ return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
+ end Type_Access_Level;
+
+ --------------------
+ -- Ultimate_Alias --
+ --------------------
+ -- To do: add occurrences calling this new subprogram
+
+ function Ultimate_Alias (Prim : Entity_Id) return Entity_Id is
+ E : Entity_Id := Prim;
+
+ begin
+ while Present (Alias (E)) loop
+ E := Alias (E);
+ end loop;
+
+ return E;
+ end Ultimate_Alias;
+
+ --------------------------
+ -- Unit_Declaration_Node --
+ --------------------------
+
+ function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id is
+ N : Node_Id := Parent (Unit_Id);
+
+ begin
+ -- Predefined operators do not have a full function declaration
+
+ if Ekind (Unit_Id) = E_Operator then
+ return N;
+ end if;
+
+ -- Isn't there some better way to express the following ???
+
+ while Nkind (N) /= N_Abstract_Subprogram_Declaration
+ and then Nkind (N) /= N_Formal_Package_Declaration
+ and then Nkind (N) /= N_Function_Instantiation
+ and then Nkind (N) /= N_Generic_Package_Declaration
+ and then Nkind (N) /= N_Generic_Subprogram_Declaration
+ and then Nkind (N) /= N_Package_Declaration
+ and then Nkind (N) /= N_Package_Body
+ and then Nkind (N) /= N_Package_Instantiation
+ and then Nkind (N) /= N_Package_Renaming_Declaration
+ and then Nkind (N) /= N_Procedure_Instantiation
+ and then Nkind (N) /= N_Protected_Body
+ and then Nkind (N) /= N_Subprogram_Declaration
+ and then Nkind (N) /= N_Subprogram_Body
+ and then Nkind (N) /= N_Subprogram_Body_Stub
+ and then Nkind (N) /= N_Subprogram_Renaming_Declaration
+ and then Nkind (N) /= N_Task_Body
+ and then Nkind (N) /= N_Task_Type_Declaration
+ and then Nkind (N) not in N_Formal_Subprogram_Declaration
+ and then Nkind (N) not in N_Generic_Renaming_Declaration
+ loop
+ N := Parent (N);
+ pragma Assert (Present (N));
+ end loop;
+
+ return N;
+ end Unit_Declaration_Node;
+
+ ------------------------------
+ -- Universal_Interpretation --
+ ------------------------------
+
+ function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
+ Index : Interp_Index;
+ It : Interp;
+
+ begin
+ -- The argument may be a formal parameter of an operator or subprogram
+ -- with multiple interpretations, or else an expression for an actual.
+
+ if Nkind (Opnd) = N_Defining_Identifier
+ or else not Is_Overloaded (Opnd)
+ then
+ if Etype (Opnd) = Universal_Integer
+ or else Etype (Opnd) = Universal_Real
+ then
+ return Etype (Opnd);
+ else
+ return Empty;
+ end if;
+
+ else
+ Get_First_Interp (Opnd, Index, It);
+ while Present (It.Typ) loop
+ if It.Typ = Universal_Integer
+ or else It.Typ = Universal_Real
+ then
+ return It.Typ;
+ end if;
+
+ Get_Next_Interp (Index, It);
+ end loop;
+
+ return Empty;
+ end if;
+ end Universal_Interpretation;
+
+ ---------------
+ -- Unqualify --
+ ---------------
+
+ function Unqualify (Expr : Node_Id) return Node_Id is
+ begin
+ -- Recurse to handle unlikely case of multiple levels of qualification
+
+ if Nkind (Expr) = N_Qualified_Expression then
+ return Unqualify (Expression (Expr));
+
+ -- Normal case, not a qualified expression
+
+ else
+ return Expr;
+ end if;
+ end Unqualify;
+
+ ----------------------
+ -- Within_Init_Proc --
+ ----------------------
+
+ function Within_Init_Proc return Boolean is
+ S : Entity_Id;
+
+ begin
+ S := Current_Scope;
+ while not Is_Overloadable (S) loop
+ if S = Standard_Standard then
+ return False;
+ else
+ S := Scope (S);
+ end if;
+ end loop;
+
+ return Is_Init_Proc (S);
+ end Within_Init_Proc;
+
+ ----------------
+ -- Wrong_Type --
+ ----------------
+
+ procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
+ Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
+ Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
+
+ function Has_One_Matching_Field return Boolean;
+ -- Determines if Expec_Type is a record type with a single component or
+ -- discriminant whose type matches the found type or is one dimensional
+ -- array whose component type matches the found type.
+
+ ----------------------------
+ -- Has_One_Matching_Field --
+ ----------------------------
+
+ function Has_One_Matching_Field return Boolean is
+ E : Entity_Id;
+
+ begin
+ if Is_Array_Type (Expec_Type)
+ and then Number_Dimensions (Expec_Type) = 1
+ and then
+ Covers (Etype (Component_Type (Expec_Type)), Found_Type)
+ then
+ return True;
+
+ elsif not Is_Record_Type (Expec_Type) then
+ return False;
+
+ else
+ E := First_Entity (Expec_Type);
+ loop
+ if No (E) then
+ return False;
+
+ elsif (Ekind (E) /= E_Discriminant
+ and then Ekind (E) /= E_Component)
+ or else (Chars (E) = Name_uTag
+ or else Chars (E) = Name_uParent)
+ then
+ Next_Entity (E);
+
+ else
+ exit;
+ end if;
+ end loop;
+
+ if not Covers (Etype (E), Found_Type) then
+ return False;
+
+ elsif Present (Next_Entity (E)) then
+ return False;
+
+ else
+ return True;
+ end if;
+ end if;
+ end Has_One_Matching_Field;
+
+ -- Start of processing for Wrong_Type
+
+ begin
+ -- Don't output message if either type is Any_Type, or if a message
+ -- has already been posted for this node. We need to do the latter
+ -- check explicitly (it is ordinarily done in Errout), because we
+ -- are using ! to force the output of the error messages.
+
+ if Expec_Type = Any_Type
+ or else Found_Type = Any_Type
+ or else Error_Posted (Expr)
+ then
+ return;
+
+ -- In an instance, there is an ongoing problem with completion of
+ -- type derived from private types. Their structure is what Gigi
+ -- expects, but the Etype is the parent type rather than the
+ -- derived private type itself. Do not flag error in this case. The
+ -- private completion is an entity without a parent, like an Itype.
+ -- Similarly, full and partial views may be incorrect in the instance.
+ -- There is no simple way to insure that it is consistent ???
+
+ elsif In_Instance then
+ if Etype (Etype (Expr)) = Etype (Expected_Type)
+ and then
+ (Has_Private_Declaration (Expected_Type)
+ or else Has_Private_Declaration (Etype (Expr)))
+ and then No (Parent (Expected_Type))
+ then
+ return;
+ end if;
+ end if;
+
+ -- An interesting special check. If the expression is parenthesized
+ -- and its type corresponds to the type of the sole component of the
+ -- expected record type, or to the component type of the expected one
+ -- dimensional array type, then assume we have a bad aggregate attempt.
+
+ if Nkind (Expr) in N_Subexpr
+ and then Paren_Count (Expr) /= 0
+ and then Has_One_Matching_Field
+ then
+ Error_Msg_N ("positional aggregate cannot have one component", Expr);
+
+ -- Another special check, if we are looking for a pool-specific access
+ -- type and we found an E_Access_Attribute_Type, then we have the case
+ -- of an Access attribute being used in a context which needs a pool-
+ -- specific type, which is never allowed. The one extra check we make
+ -- is that the expected designated type covers the Found_Type.
+
+ elsif Is_Access_Type (Expec_Type)
+ and then Ekind (Found_Type) = E_Access_Attribute_Type
+ and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
+ and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
+ and then Covers
+ (Designated_Type (Expec_Type), Designated_Type (Found_Type))
+ then
+ Error_Msg_N ("result must be general access type!", Expr);
+ Error_Msg_NE ("add ALL to }!", Expr, Expec_Type);
+
+ -- Another special check, if the expected type is an integer type,
+ -- but the expression is of type System.Address, and the parent is
+ -- an addition or subtraction operation whose left operand is the
+ -- expression in question and whose right operand is of an integral
+ -- type, then this is an attempt at address arithmetic, so give
+ -- appropriate message.
+
+ elsif Is_Integer_Type (Expec_Type)
+ and then Is_RTE (Found_Type, RE_Address)
+ and then (Nkind (Parent (Expr)) = N_Op_Add
+ or else
+ Nkind (Parent (Expr)) = N_Op_Subtract)
+ and then Expr = Left_Opnd (Parent (Expr))
+ and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
+ then
+ Error_Msg_N
+ ("address arithmetic not predefined in package System",
+ Parent (Expr));
+ Error_Msg_N
+ ("\possible missing with/use of System.Storage_Elements",
+ Parent (Expr));
+ return;
+
+ -- If the expected type is an anonymous access type, as for access
+ -- parameters and discriminants, the error is on the designated types.
+
+ elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
+ if Comes_From_Source (Expec_Type) then
+ Error_Msg_NE ("expected}!", Expr, Expec_Type);
+ else
+ Error_Msg_NE
+ ("expected an access type with designated}",
+ Expr, Designated_Type (Expec_Type));
+ end if;
+
+ if Is_Access_Type (Found_Type)
+ and then not Comes_From_Source (Found_Type)
+ then
+ Error_Msg_NE
+ ("\\found an access type with designated}!",
+ Expr, Designated_Type (Found_Type));
+ else
+ if From_With_Type (Found_Type) then
+ Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
+ Error_Msg_Qual_Level := 99;
+ Error_Msg_NE ("\\missing `WITH &;", Expr, Scope (Found_Type));
+ Error_Msg_Qual_Level := 0;
+ else
+ Error_Msg_NE ("found}!", Expr, Found_Type);
+ end if;
+ end if;
+
+ -- Normal case of one type found, some other type expected
+
+ else
+ -- If the names of the two types are the same, see if some number
+ -- of levels of qualification will help. Don't try more than three
+ -- levels, and if we get to standard, it's no use (and probably
+ -- represents an error in the compiler) Also do not bother with
+ -- internal scope names.
+
+ declare
+ Expec_Scope : Entity_Id;
+ Found_Scope : Entity_Id;
+
+ begin
+ Expec_Scope := Expec_Type;
+ Found_Scope := Found_Type;
+
+ for Levels in Int range 0 .. 3 loop
+ if Chars (Expec_Scope) /= Chars (Found_Scope) then
+ Error_Msg_Qual_Level := Levels;
+ exit;
+ end if;
+
+ Expec_Scope := Scope (Expec_Scope);
+ Found_Scope := Scope (Found_Scope);
+
+ exit when Expec_Scope = Standard_Standard
+ or else Found_Scope = Standard_Standard
+ or else not Comes_From_Source (Expec_Scope)
+ or else not Comes_From_Source (Found_Scope);
+ end loop;
+ end;
+
+ if Is_Record_Type (Expec_Type)
+ and then Present (Corresponding_Remote_Type (Expec_Type))
+ then
+ Error_Msg_NE ("expected}!", Expr,
+ Corresponding_Remote_Type (Expec_Type));
+ else
+ Error_Msg_NE ("expected}!", Expr, Expec_Type);
+ end if;
+
+ if Is_Entity_Name (Expr)
+ and then Is_Package_Or_Generic_Package (Entity (Expr))
+ then
+ Error_Msg_N ("\\found package name!", Expr);
+
+ elsif Is_Entity_Name (Expr)
+ and then
+ (Ekind (Entity (Expr)) = E_Procedure
+ or else
+ Ekind (Entity (Expr)) = E_Generic_Procedure)
+ then
+ if Ekind (Expec_Type) = E_Access_Subprogram_Type then
+ Error_Msg_N
+ ("found procedure name, possibly missing Access attribute!",
+ Expr);
+ else
+ Error_Msg_N
+ ("\\found procedure name instead of function!", Expr);
+ end if;
+
+ elsif Nkind (Expr) = N_Function_Call
+ and then Ekind (Expec_Type) = E_Access_Subprogram_Type
+ and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
+ and then No (Parameter_Associations (Expr))
+ then
+ Error_Msg_N
+ ("found function name, possibly missing Access attribute!",
+ Expr);
+
+ -- Catch common error: a prefix or infix operator which is not
+ -- directly visible because the type isn't.
+
+ elsif Nkind (Expr) in N_Op
+ and then Is_Overloaded (Expr)
+ and then not Is_Immediately_Visible (Expec_Type)
+ and then not Is_Potentially_Use_Visible (Expec_Type)
+ and then not In_Use (Expec_Type)
+ and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
+ then
+ Error_Msg_N
+ ("operator of the type is not directly visible!", Expr);
+
+ elsif Ekind (Found_Type) = E_Void
+ and then Present (Parent (Found_Type))
+ and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
+ then
+ Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
+
+ else
+ Error_Msg_NE ("\\found}!", Expr, Found_Type);
+ end if;
+
+ Error_Msg_Qual_Level := 0;
+ end if;
+ end Wrong_Type;
+
+end Sem_Util;