aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/sem_eval.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/sem_eval.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/sem_eval.adb4857
1 files changed, 0 insertions, 4857 deletions
diff --git a/gcc-4.4.3/gcc/ada/sem_eval.adb b/gcc-4.4.3/gcc/ada/sem_eval.adb
deleted file mode 100644
index b9c1d1331..000000000
--- a/gcc-4.4.3/gcc/ada/sem_eval.adb
+++ /dev/null
@@ -1,4857 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- S E M _ E V A L --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Checks; use Checks;
-with Debug; use Debug;
-with Einfo; use Einfo;
-with Elists; use Elists;
-with Errout; use Errout;
-with Eval_Fat; use Eval_Fat;
-with Exp_Util; use Exp_Util;
-with Lib; use Lib;
-with Namet; use Namet;
-with Nmake; use Nmake;
-with Nlists; use Nlists;
-with Opt; use Opt;
-with Sem; use Sem;
-with Sem_Cat; use Sem_Cat;
-with Sem_Ch6; use Sem_Ch6;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Res; use Sem_Res;
-with Sem_Util; use Sem_Util;
-with Sem_Type; use Sem_Type;
-with Sem_Warn; use Sem_Warn;
-with Sinfo; use Sinfo;
-with Snames; use Snames;
-with Stand; use Stand;
-with Stringt; use Stringt;
-with Tbuild; use Tbuild;
-
-package body Sem_Eval is
-
- -----------------------------------------
- -- Handling of Compile Time Evaluation --
- -----------------------------------------
-
- -- The compile time evaluation of expressions is distributed over several
- -- Eval_xxx procedures. These procedures are called immediately after
- -- a subexpression is resolved and is therefore accomplished in a bottom
- -- up fashion. The flags are synthesized using the following approach.
-
- -- Is_Static_Expression is determined by following the detailed rules
- -- in RM 4.9(4-14). This involves testing the Is_Static_Expression
- -- flag of the operands in many cases.
-
- -- Raises_Constraint_Error is set if any of the operands have the flag
- -- set or if an attempt to compute the value of the current expression
- -- results in detection of a runtime constraint error.
-
- -- As described in the spec, the requirement is that Is_Static_Expression
- -- be accurately set, and in addition for nodes for which this flag is set,
- -- Raises_Constraint_Error must also be set. Furthermore a node which has
- -- Is_Static_Expression set, and Raises_Constraint_Error clear, then the
- -- requirement is that the expression value must be precomputed, and the
- -- node is either a literal, or the name of a constant entity whose value
- -- is a static expression.
-
- -- The general approach is as follows. First compute Is_Static_Expression.
- -- If the node is not static, then the flag is left off in the node and
- -- we are all done. Otherwise for a static node, we test if any of the
- -- operands will raise constraint error, and if so, propagate the flag
- -- Raises_Constraint_Error to the result node and we are done (since the
- -- error was already posted at a lower level).
-
- -- For the case of a static node whose operands do not raise constraint
- -- error, we attempt to evaluate the node. If this evaluation succeeds,
- -- then the node is replaced by the result of this computation. If the
- -- evaluation raises constraint error, then we rewrite the node with
- -- Apply_Compile_Time_Constraint_Error to raise the exception and also
- -- to post appropriate error messages.
-
- ----------------
- -- Local Data --
- ----------------
-
- type Bits is array (Nat range <>) of Boolean;
- -- Used to convert unsigned (modular) values for folding logical ops
-
- -- The following definitions are used to maintain a cache of nodes that
- -- have compile time known values. The cache is maintained only for
- -- discrete types (the most common case), and is populated by calls to
- -- Compile_Time_Known_Value and Expr_Value, but only used by Expr_Value
- -- since it is possible for the status to change (in particular it is
- -- possible for a node to get replaced by a constraint error node).
-
- CV_Bits : constant := 5;
- -- Number of low order bits of Node_Id value used to reference entries
- -- in the cache table.
-
- CV_Cache_Size : constant Nat := 2 ** CV_Bits;
- -- Size of cache for compile time values
-
- subtype CV_Range is Nat range 0 .. CV_Cache_Size;
-
- type CV_Entry is record
- N : Node_Id;
- V : Uint;
- end record;
-
- type CV_Cache_Array is array (CV_Range) of CV_Entry;
-
- CV_Cache : CV_Cache_Array := (others => (Node_High_Bound, Uint_0));
- -- This is the actual cache, with entries consisting of node/value pairs,
- -- and the impossible value Node_High_Bound used for unset entries.
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- function From_Bits (B : Bits; T : Entity_Id) return Uint;
- -- Converts a bit string of length B'Length to a Uint value to be used
- -- for a target of type T, which is a modular type. This procedure
- -- includes the necessary reduction by the modulus in the case of a
- -- non-binary modulus (for a binary modulus, the bit string is the
- -- right length any way so all is well).
-
- function Get_String_Val (N : Node_Id) return Node_Id;
- -- Given a tree node for a folded string or character value, returns
- -- the corresponding string literal or character literal (one of the
- -- two must be available, or the operand would not have been marked
- -- as foldable in the earlier analysis of the operation).
-
- function OK_Bits (N : Node_Id; Bits : Uint) return Boolean;
- -- Bits represents the number of bits in an integer value to be computed
- -- (but the value has not been computed yet). If this value in Bits is
- -- reasonable, a result of True is returned, with the implication that
- -- the caller should go ahead and complete the calculation. If the value
- -- in Bits is unreasonably large, then an error is posted on node N, and
- -- False is returned (and the caller skips the proposed calculation).
-
- procedure Out_Of_Range (N : Node_Id);
- -- This procedure is called if it is determined that node N, which
- -- appears in a non-static context, is a compile time known value
- -- which is outside its range, i.e. the range of Etype. This is used
- -- in contexts where this is an illegality if N is static, and should
- -- generate a warning otherwise.
-
- procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id);
- -- N and Exp are nodes representing an expression, Exp is known
- -- to raise CE. N is rewritten in term of Exp in the optimal way.
-
- function String_Type_Len (Stype : Entity_Id) return Uint;
- -- Given a string type, determines the length of the index type, or,
- -- if this index type is non-static, the length of the base type of
- -- this index type. Note that if the string type is itself static,
- -- then the index type is static, so the second case applies only
- -- if the string type passed is non-static.
-
- function Test (Cond : Boolean) return Uint;
- pragma Inline (Test);
- -- This function simply returns the appropriate Boolean'Pos value
- -- corresponding to the value of Cond as a universal integer. It is
- -- used for producing the result of the static evaluation of the
- -- logical operators
-
- procedure Test_Expression_Is_Foldable
- (N : Node_Id;
- Op1 : Node_Id;
- Stat : out Boolean;
- Fold : out Boolean);
- -- Tests to see if expression N whose single operand is Op1 is foldable,
- -- i.e. the operand value is known at compile time. If the operation is
- -- foldable, then Fold is True on return, and Stat indicates whether
- -- the result is static (i.e. both operands were static). Note that it
- -- is quite possible for Fold to be True, and Stat to be False, since
- -- there are cases in which we know the value of an operand even though
- -- it is not technically static (e.g. the static lower bound of a range
- -- whose upper bound is non-static).
- --
- -- If Stat is set False on return, then Expression_Is_Foldable makes a
- -- call to Check_Non_Static_Context on the operand. If Fold is False on
- -- return, then all processing is complete, and the caller should
- -- return, since there is nothing else to do.
-
- procedure Test_Expression_Is_Foldable
- (N : Node_Id;
- Op1 : Node_Id;
- Op2 : Node_Id;
- Stat : out Boolean;
- Fold : out Boolean);
- -- Same processing, except applies to an expression N with two operands
- -- Op1 and Op2.
-
- procedure To_Bits (U : Uint; B : out Bits);
- -- Converts a Uint value to a bit string of length B'Length
-
- ------------------------------
- -- Check_Non_Static_Context --
- ------------------------------
-
- procedure Check_Non_Static_Context (N : Node_Id) is
- T : constant Entity_Id := Etype (N);
- Checks_On : constant Boolean :=
- not Index_Checks_Suppressed (T)
- and not Range_Checks_Suppressed (T);
-
- begin
- -- Ignore cases of non-scalar types or error types
-
- if T = Any_Type or else not Is_Scalar_Type (T) then
- return;
- end if;
-
- -- At this stage we have a scalar type. If we have an expression
- -- that raises CE, then we already issued a warning or error msg
- -- so there is nothing more to be done in this routine.
-
- if Raises_Constraint_Error (N) then
- return;
- end if;
-
- -- Now we have a scalar type which is not marked as raising a
- -- constraint error exception. The main purpose of this routine
- -- is to deal with static expressions appearing in a non-static
- -- context. That means that if we do not have a static expression
- -- then there is not much to do. The one case that we deal with
- -- here is that if we have a floating-point value that is out of
- -- range, then we post a warning that an infinity will result.
-
- if not Is_Static_Expression (N) then
- if Is_Floating_Point_Type (T)
- and then Is_Out_Of_Range (N, Base_Type (T))
- then
- Error_Msg_N
- ("?float value out of range, infinity will be generated", N);
- end if;
-
- return;
- end if;
-
- -- Here we have the case of outer level static expression of
- -- scalar type, where the processing of this procedure is needed.
-
- -- For real types, this is where we convert the value to a machine
- -- number (see RM 4.9(38)). Also see ACVC test C490001. We should
- -- only need to do this if the parent is a constant declaration,
- -- since in other cases, gigi should do the necessary conversion
- -- correctly, but experimentation shows that this is not the case
- -- on all machines, in particular if we do not convert all literals
- -- to machine values in non-static contexts, then ACVC test C490001
- -- fails on Sparc/Solaris and SGI/Irix.
-
- if Nkind (N) = N_Real_Literal
- and then not Is_Machine_Number (N)
- and then not Is_Generic_Type (Etype (N))
- and then Etype (N) /= Universal_Real
- then
- -- Check that value is in bounds before converting to machine
- -- number, so as not to lose case where value overflows in the
- -- least significant bit or less. See B490001.
-
- if Is_Out_Of_Range (N, Base_Type (T)) then
- Out_Of_Range (N);
- return;
- end if;
-
- -- Note: we have to copy the node, to avoid problems with conformance
- -- of very similar numbers (see ACVC tests B4A010C and B63103A).
-
- Rewrite (N, New_Copy (N));
-
- if not Is_Floating_Point_Type (T) then
- Set_Realval
- (N, Corresponding_Integer_Value (N) * Small_Value (T));
-
- elsif not UR_Is_Zero (Realval (N)) then
-
- -- Note: even though RM 4.9(38) specifies biased rounding,
- -- this has been modified by AI-100 in order to prevent
- -- confusing differences in rounding between static and
- -- non-static expressions. AI-100 specifies that the effect
- -- of such rounding is implementation dependent, and in GNAT
- -- we round to nearest even to match the run-time behavior.
-
- Set_Realval
- (N, Machine (Base_Type (T), Realval (N), Round_Even, N));
- end if;
-
- Set_Is_Machine_Number (N);
- end if;
-
- -- Check for out of range universal integer. This is a non-static
- -- context, so the integer value must be in range of the runtime
- -- representation of universal integers.
-
- -- We do this only within an expression, because that is the only
- -- case in which non-static universal integer values can occur, and
- -- furthermore, Check_Non_Static_Context is currently (incorrectly???)
- -- called in contexts like the expression of a number declaration where
- -- we certainly want to allow out of range values.
-
- if Etype (N) = Universal_Integer
- and then Nkind (N) = N_Integer_Literal
- and then Nkind (Parent (N)) in N_Subexpr
- and then
- (Intval (N) < Expr_Value (Type_Low_Bound (Universal_Integer))
- or else
- Intval (N) > Expr_Value (Type_High_Bound (Universal_Integer)))
- then
- Apply_Compile_Time_Constraint_Error
- (N, "non-static universal integer value out of range?",
- CE_Range_Check_Failed);
-
- -- Check out of range of base type
-
- elsif Is_Out_Of_Range (N, Base_Type (T)) then
- Out_Of_Range (N);
-
- -- Give warning if outside subtype (where one or both of the
- -- bounds of the subtype is static). This warning is omitted
- -- if the expression appears in a range that could be null
- -- (warnings are handled elsewhere for this case).
-
- elsif T /= Base_Type (T)
- and then Nkind (Parent (N)) /= N_Range
- then
- if Is_In_Range (N, T) then
- null;
-
- elsif Is_Out_Of_Range (N, T) then
- Apply_Compile_Time_Constraint_Error
- (N, "value not in range of}?", CE_Range_Check_Failed);
-
- elsif Checks_On then
- Enable_Range_Check (N);
-
- else
- Set_Do_Range_Check (N, False);
- end if;
- end if;
- end Check_Non_Static_Context;
-
- ---------------------------------
- -- Check_String_Literal_Length --
- ---------------------------------
-
- procedure Check_String_Literal_Length (N : Node_Id; Ttype : Entity_Id) is
- begin
- if not Raises_Constraint_Error (N)
- and then Is_Constrained (Ttype)
- then
- if
- UI_From_Int (String_Length (Strval (N))) /= String_Type_Len (Ttype)
- then
- Apply_Compile_Time_Constraint_Error
- (N, "string length wrong for}?",
- CE_Length_Check_Failed,
- Ent => Ttype,
- Typ => Ttype);
- end if;
- end if;
- end Check_String_Literal_Length;
-
- --------------------------
- -- Compile_Time_Compare --
- --------------------------
-
- function Compile_Time_Compare
- (L, R : Node_Id;
- Assume_Valid : Boolean;
- Rec : Boolean := False) return Compare_Result
- is
- Ltyp : Entity_Id := Etype (L);
- Rtyp : Entity_Id := Etype (R);
- -- These get reset to the base type for the case of entities where
- -- Is_Known_Valid is not set. This takes care of handling possible
- -- invalid representations using the value of the base type, in
- -- accordance with RM 13.9.1(10).
-
- procedure Compare_Decompose
- (N : Node_Id;
- R : out Node_Id;
- V : out Uint);
- -- This procedure decomposes the node N into an expression node and a
- -- signed offset, so that the value of N is equal to the value of R plus
- -- the value V (which may be negative). If no such decomposition is
- -- possible, then on return R is a copy of N, and V is set to zero.
-
- function Compare_Fixup (N : Node_Id) return Node_Id;
- -- This function deals with replacing 'Last and 'First references with
- -- their corresponding type bounds, which we then can compare. The
- -- argument is the original node, the result is the identity, unless we
- -- have a 'Last/'First reference in which case the value returned is the
- -- appropriate type bound.
-
- function Is_Same_Value (L, R : Node_Id) return Boolean;
- -- Returns True iff L and R represent expressions that definitely
- -- have identical (but not necessarily compile time known) values
- -- Indeed the caller is expected to have already dealt with the
- -- cases of compile time known values, so these are not tested here.
-
- -----------------------
- -- Compare_Decompose --
- -----------------------
-
- procedure Compare_Decompose
- (N : Node_Id;
- R : out Node_Id;
- V : out Uint)
- is
- begin
- if Nkind (N) = N_Op_Add
- and then Nkind (Right_Opnd (N)) = N_Integer_Literal
- then
- R := Left_Opnd (N);
- V := Intval (Right_Opnd (N));
- return;
-
- elsif Nkind (N) = N_Op_Subtract
- and then Nkind (Right_Opnd (N)) = N_Integer_Literal
- then
- R := Left_Opnd (N);
- V := UI_Negate (Intval (Right_Opnd (N)));
- return;
-
- elsif Nkind (N) = N_Attribute_Reference then
- if Attribute_Name (N) = Name_Succ then
- R := First (Expressions (N));
- V := Uint_1;
- return;
-
- elsif Attribute_Name (N) = Name_Pred then
- R := First (Expressions (N));
- V := Uint_Minus_1;
- return;
- end if;
- end if;
-
- R := N;
- V := Uint_0;
- end Compare_Decompose;
-
- -------------------
- -- Compare_Fixup --
- -------------------
-
- function Compare_Fixup (N : Node_Id) return Node_Id is
- Indx : Node_Id;
- Xtyp : Entity_Id;
- Subs : Nat;
-
- begin
- if Nkind (N) = N_Attribute_Reference
- and then (Attribute_Name (N) = Name_First
- or else
- Attribute_Name (N) = Name_Last)
- then
- Xtyp := Etype (Prefix (N));
-
- -- If we have no type, then just abandon the attempt to do
- -- a fixup, this is probably the result of some other error.
-
- if No (Xtyp) then
- return N;
- end if;
-
- -- Dereference an access type
-
- if Is_Access_Type (Xtyp) then
- Xtyp := Designated_Type (Xtyp);
- end if;
-
- -- If we don't have an array type at this stage, something
- -- is peculiar, e.g. another error, and we abandon the attempt
- -- at a fixup.
-
- if not Is_Array_Type (Xtyp) then
- return N;
- end if;
-
- -- Ignore unconstrained array, since bounds are not meaningful
-
- if not Is_Constrained (Xtyp) then
- return N;
- end if;
-
- if Ekind (Xtyp) = E_String_Literal_Subtype then
- if Attribute_Name (N) = Name_First then
- return String_Literal_Low_Bound (Xtyp);
-
- else -- Attribute_Name (N) = Name_Last
- return Make_Integer_Literal (Sloc (N),
- Intval => Intval (String_Literal_Low_Bound (Xtyp))
- + String_Literal_Length (Xtyp));
- end if;
- end if;
-
- -- Find correct index type
-
- Indx := First_Index (Xtyp);
-
- if Present (Expressions (N)) then
- Subs := UI_To_Int (Expr_Value (First (Expressions (N))));
-
- for J in 2 .. Subs loop
- Indx := Next_Index (Indx);
- end loop;
- end if;
-
- Xtyp := Etype (Indx);
-
- if Attribute_Name (N) = Name_First then
- return Type_Low_Bound (Xtyp);
-
- else -- Attribute_Name (N) = Name_Last
- return Type_High_Bound (Xtyp);
- end if;
- end if;
-
- return N;
- end Compare_Fixup;
-
- -------------------
- -- Is_Same_Value --
- -------------------
-
- function Is_Same_Value (L, R : Node_Id) return Boolean is
- Lf : constant Node_Id := Compare_Fixup (L);
- Rf : constant Node_Id := Compare_Fixup (R);
-
- function Is_Same_Subscript (L, R : List_Id) return Boolean;
- -- L, R are the Expressions values from two attribute nodes
- -- for First or Last attributes. Either may be set to No_List
- -- if no expressions are present (indicating subscript 1).
- -- The result is True if both expressions represent the same
- -- subscript (note that one case is where one subscript is
- -- missing and the other is explicitly set to 1).
-
- -----------------------
- -- Is_Same_Subscript --
- -----------------------
-
- function Is_Same_Subscript (L, R : List_Id) return Boolean is
- begin
- if L = No_List then
- if R = No_List then
- return True;
- else
- return Expr_Value (First (R)) = Uint_1;
- end if;
-
- else
- if R = No_List then
- return Expr_Value (First (L)) = Uint_1;
- else
- return Expr_Value (First (L)) = Expr_Value (First (R));
- end if;
- end if;
- end Is_Same_Subscript;
-
- -- Start of processing for Is_Same_Value
-
- begin
- -- Values are the same if they refer to the same entity and the
- -- entity is a constant object (E_Constant). This does not however
- -- apply to Float types, since we may have two NaN values and they
- -- should never compare equal.
-
- if Nkind_In (Lf, N_Identifier, N_Expanded_Name)
- and then Nkind_In (Rf, N_Identifier, N_Expanded_Name)
- and then Entity (Lf) = Entity (Rf)
- and then Present (Entity (Lf))
- and then not Is_Floating_Point_Type (Etype (L))
- and then Is_Constant_Object (Entity (Lf))
- then
- return True;
-
- -- Or if they are compile time known and identical
-
- elsif Compile_Time_Known_Value (Lf)
- and then
- Compile_Time_Known_Value (Rf)
- and then Expr_Value (Lf) = Expr_Value (Rf)
- then
- return True;
-
- -- False if Nkind of the two nodes is different for remaining cases
-
- elsif Nkind (Lf) /= Nkind (Rf) then
- return False;
-
- -- True if both 'First or 'Last values applying to the same entity
- -- (first and last don't change even if value does). Note that we
- -- need this even with the calls to Compare_Fixup, to handle the
- -- case of unconstrained array attributes where Compare_Fixup
- -- cannot find useful bounds.
-
- elsif Nkind (Lf) = N_Attribute_Reference
- and then Attribute_Name (Lf) = Attribute_Name (Rf)
- and then (Attribute_Name (Lf) = Name_First
- or else
- Attribute_Name (Lf) = Name_Last)
- and then Nkind_In (Prefix (Lf), N_Identifier, N_Expanded_Name)
- and then Nkind_In (Prefix (Rf), N_Identifier, N_Expanded_Name)
- and then Entity (Prefix (Lf)) = Entity (Prefix (Rf))
- and then Is_Same_Subscript (Expressions (Lf), Expressions (Rf))
- then
- return True;
-
- -- True if the same selected component from the same record
-
- elsif Nkind (Lf) = N_Selected_Component
- and then Selector_Name (Lf) = Selector_Name (Rf)
- and then Is_Same_Value (Prefix (Lf), Prefix (Rf))
- then
- return True;
-
- -- True if the same unary operator applied to the same operand
-
- elsif Nkind (Lf) in N_Unary_Op
- and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
- then
- return True;
-
- -- True if the same binary operator applied to the same operands
-
- elsif Nkind (Lf) in N_Binary_Op
- and then Is_Same_Value (Left_Opnd (Lf), Left_Opnd (Rf))
- and then Is_Same_Value (Right_Opnd (Lf), Right_Opnd (Rf))
- then
- return True;
-
- -- All other cases, we can't tell, so return False
-
- else
- return False;
- end if;
- end Is_Same_Value;
-
- -- Start of processing for Compile_Time_Compare
-
- begin
- -- If either operand could raise constraint error, then we cannot
- -- know the result at compile time (since CE may be raised!)
-
- if not (Cannot_Raise_Constraint_Error (L)
- and then
- Cannot_Raise_Constraint_Error (R))
- then
- return Unknown;
- end if;
-
- -- Identical operands are most certainly equal
-
- if L = R then
- return EQ;
-
- -- If expressions have no types, then do not attempt to determine
- -- if they are the same, since something funny is going on. One
- -- case in which this happens is during generic template analysis,
- -- when bounds are not fully analyzed.
-
- elsif No (Ltyp) or else No (Rtyp) then
- return Unknown;
-
- -- We only attempt compile time analysis for scalar values, and
- -- not for packed arrays represented as modular types, where the
- -- semantics of comparison is quite different.
-
- elsif not Is_Scalar_Type (Ltyp)
- or else Is_Packed_Array_Type (Ltyp)
- then
- return Unknown;
-
- -- Case where comparison involves two compile time known values
-
- elsif Compile_Time_Known_Value (L)
- and then Compile_Time_Known_Value (R)
- then
- -- For the floating-point case, we have to be a little careful, since
- -- at compile time we are dealing with universal exact values, but at
- -- runtime, these will be in non-exact target form. That's why the
- -- returned results are LE and GE below instead of LT and GT.
-
- if Is_Floating_Point_Type (Ltyp)
- or else
- Is_Floating_Point_Type (Rtyp)
- then
- declare
- Lo : constant Ureal := Expr_Value_R (L);
- Hi : constant Ureal := Expr_Value_R (R);
-
- begin
- if Lo < Hi then
- return LE;
- elsif Lo = Hi then
- return EQ;
- else
- return GE;
- end if;
- end;
-
- -- For the integer case we know exactly (note that this includes the
- -- fixed-point case, where we know the run time integer values now)
-
- else
- declare
- Lo : constant Uint := Expr_Value (L);
- Hi : constant Uint := Expr_Value (R);
-
- begin
- if Lo < Hi then
- return LT;
- elsif Lo = Hi then
- return EQ;
- else
- return GT;
- end if;
- end;
- end if;
-
- -- Cases where at least one operand is not known at compile time
-
- else
- -- Remaining checks apply only for non-generic discrete types
-
- if not Is_Discrete_Type (Ltyp)
- or else not Is_Discrete_Type (Rtyp)
- or else Is_Generic_Type (Ltyp)
- or else Is_Generic_Type (Rtyp)
- then
- return Unknown;
- end if;
-
- -- Replace types by base types for the case of entities which are
- -- not known to have valid representations. This takes care of
- -- properly dealing with invalid representations.
-
- if not Assume_Valid then
- if Is_Entity_Name (L) and then not Is_Known_Valid (Entity (L)) then
- Ltyp := Base_Type (Ltyp);
- end if;
-
- if Is_Entity_Name (R) and then not Is_Known_Valid (Entity (R)) then
- Rtyp := Base_Type (Rtyp);
- end if;
- end if;
-
- -- Here is where we check for comparisons against maximum bounds of
- -- types, where we know that no value can be outside the bounds of
- -- the subtype. Note that this routine is allowed to assume that all
- -- expressions are within their subtype bounds. Callers wishing to
- -- deal with possibly invalid values must in any case take special
- -- steps (e.g. conversions to larger types) to avoid this kind of
- -- optimization, which is always considered to be valid. We do not
- -- attempt this optimization with generic types, since the type
- -- bounds may not be meaningful in this case.
-
- -- We are in danger of an infinite recursion here. It does not seem
- -- useful to go more than one level deep, so the parameter Rec is
- -- used to protect ourselves against this infinite recursion.
-
- if not Rec then
-
- -- See if we can get a decisive check against one operand and
- -- a bound of the other operand (four possible tests here).
-
- case Compile_Time_Compare (L, Type_Low_Bound (Rtyp),
- Assume_Valid, Rec => True) is
- when LT => return LT;
- when LE => return LE;
- when EQ => return LE;
- when others => null;
- end case;
-
- case Compile_Time_Compare (L, Type_High_Bound (Rtyp),
- Assume_Valid, Rec => True) is
- when GT => return GT;
- when GE => return GE;
- when EQ => return GE;
- when others => null;
- end case;
-
- case Compile_Time_Compare (Type_Low_Bound (Ltyp), R,
- Assume_Valid, Rec => True) is
- when GT => return GT;
- when GE => return GE;
- when EQ => return GE;
- when others => null;
- end case;
-
- case Compile_Time_Compare (Type_High_Bound (Ltyp), R,
- Assume_Valid, Rec => True) is
- when LT => return LT;
- when LE => return LE;
- when EQ => return LE;
- when others => null;
- end case;
- end if;
-
- -- Next attempt is to decompose the expressions to extract
- -- a constant offset resulting from the use of any of the forms:
-
- -- expr + literal
- -- expr - literal
- -- typ'Succ (expr)
- -- typ'Pred (expr)
-
- -- Then we see if the two expressions are the same value, and if so
- -- the result is obtained by comparing the offsets.
-
- declare
- Lnode : Node_Id;
- Loffs : Uint;
- Rnode : Node_Id;
- Roffs : Uint;
-
- begin
- Compare_Decompose (L, Lnode, Loffs);
- Compare_Decompose (R, Rnode, Roffs);
-
- if Is_Same_Value (Lnode, Rnode) then
- if Loffs = Roffs then
- return EQ;
-
- elsif Loffs < Roffs then
- return LT;
-
- else
- return GT;
- end if;
- end if;
- end;
-
- -- Next attempt is to see if we have an entity compared with a
- -- compile time known value, where there is a current value
- -- conditional for the entity which can tell us the result.
-
- declare
- Var : Node_Id;
- -- Entity variable (left operand)
-
- Val : Uint;
- -- Value (right operand)
-
- Inv : Boolean;
- -- If False, we have reversed the operands
-
- Op : Node_Kind;
- -- Comparison operator kind from Get_Current_Value_Condition call
-
- Opn : Node_Id;
- -- Value from Get_Current_Value_Condition call
-
- Opv : Uint;
- -- Value of Opn
-
- Result : Compare_Result;
- -- Known result before inversion
-
- begin
- if Is_Entity_Name (L)
- and then Compile_Time_Known_Value (R)
- then
- Var := L;
- Val := Expr_Value (R);
- Inv := False;
-
- elsif Is_Entity_Name (R)
- and then Compile_Time_Known_Value (L)
- then
- Var := R;
- Val := Expr_Value (L);
- Inv := True;
-
- -- That was the last chance at finding a compile time result
-
- else
- return Unknown;
- end if;
-
- Get_Current_Value_Condition (Var, Op, Opn);
-
- -- That was the last chance, so if we got nothing return
-
- if No (Opn) then
- return Unknown;
- end if;
-
- Opv := Expr_Value (Opn);
-
- -- We got a comparison, so we might have something interesting
-
- -- Convert LE to LT and GE to GT, just so we have fewer cases
-
- if Op = N_Op_Le then
- Op := N_Op_Lt;
- Opv := Opv + 1;
- elsif Op = N_Op_Ge then
- Op := N_Op_Gt;
- Opv := Opv - 1;
- end if;
-
- -- Deal with equality case
-
- if Op = N_Op_Eq then
- if Val = Opv then
- Result := EQ;
- elsif Opv < Val then
- Result := LT;
- else
- Result := GT;
- end if;
-
- -- Deal with inequality case
-
- elsif Op = N_Op_Ne then
- if Val = Opv then
- Result := NE;
- else
- return Unknown;
- end if;
-
- -- Deal with greater than case
-
- elsif Op = N_Op_Gt then
- if Opv >= Val then
- Result := GT;
- elsif Opv = Val - 1 then
- Result := GE;
- else
- return Unknown;
- end if;
-
- -- Deal with less than case
-
- else pragma Assert (Op = N_Op_Lt);
- if Opv <= Val then
- Result := LT;
- elsif Opv = Val + 1 then
- Result := LE;
- else
- return Unknown;
- end if;
- end if;
-
- -- Deal with inverting result
-
- if Inv then
- case Result is
- when GT => return LT;
- when GE => return LE;
- when LT => return GT;
- when LE => return GE;
- when others => return Result;
- end case;
- end if;
-
- return Result;
- end;
- end if;
- end Compile_Time_Compare;
-
- -------------------------------
- -- Compile_Time_Known_Bounds --
- -------------------------------
-
- function Compile_Time_Known_Bounds (T : Entity_Id) return Boolean is
- Indx : Node_Id;
- Typ : Entity_Id;
-
- begin
- if not Is_Array_Type (T) then
- return False;
- end if;
-
- Indx := First_Index (T);
- while Present (Indx) loop
- Typ := Underlying_Type (Etype (Indx));
- if not Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
- return False;
- elsif not Compile_Time_Known_Value (Type_High_Bound (Typ)) then
- return False;
- else
- Next_Index (Indx);
- end if;
- end loop;
-
- return True;
- end Compile_Time_Known_Bounds;
-
- ------------------------------
- -- Compile_Time_Known_Value --
- ------------------------------
-
- function Compile_Time_Known_Value (Op : Node_Id) return Boolean is
- K : constant Node_Kind := Nkind (Op);
- CV_Ent : CV_Entry renames CV_Cache (Nat (Op) mod CV_Cache_Size);
-
- begin
- -- Never known at compile time if bad type or raises constraint error
- -- or empty (latter case occurs only as a result of a previous error)
-
- if No (Op)
- or else Op = Error
- or else Etype (Op) = Any_Type
- or else Raises_Constraint_Error (Op)
- then
- return False;
- end if;
-
- -- If this is not a static expression or a null literal, and we are in
- -- configurable run-time mode, then we consider it not known at compile
- -- time. This avoids anomalies where whether something is allowed with a
- -- given configurable run-time library depends on how good the compiler
- -- is at optimizing and knowing that things are constant when they are
- -- nonstatic.
-
- if Configurable_Run_Time_Mode
- and then K /= N_Null
- and then not Is_Static_Expression (Op)
- then
- return False;
- end if;
-
- -- If we have an entity name, then see if it is the name of a constant
- -- and if so, test the corresponding constant value, or the name of
- -- an enumeration literal, which is always a constant.
-
- if Present (Etype (Op)) and then Is_Entity_Name (Op) then
- declare
- E : constant Entity_Id := Entity (Op);
- V : Node_Id;
-
- begin
- -- Never known at compile time if it is a packed array value.
- -- We might want to try to evaluate these at compile time one
- -- day, but we do not make that attempt now.
-
- if Is_Packed_Array_Type (Etype (Op)) then
- return False;
- end if;
-
- if Ekind (E) = E_Enumeration_Literal then
- return True;
-
- elsif Ekind (E) = E_Constant then
- V := Constant_Value (E);
- return Present (V) and then Compile_Time_Known_Value (V);
- end if;
- end;
-
- -- We have a value, see if it is compile time known
-
- else
- -- Integer literals are worth storing in the cache
-
- if K = N_Integer_Literal then
- CV_Ent.N := Op;
- CV_Ent.V := Intval (Op);
- return True;
-
- -- Other literals and NULL are known at compile time
-
- elsif
- K = N_Character_Literal
- or else
- K = N_Real_Literal
- or else
- K = N_String_Literal
- or else
- K = N_Null
- then
- return True;
-
- -- Any reference to Null_Parameter is known at compile time. No
- -- other attribute references (that have not already been folded)
- -- are known at compile time.
-
- elsif K = N_Attribute_Reference then
- return Attribute_Name (Op) = Name_Null_Parameter;
- end if;
- end if;
-
- -- If we fall through, not known at compile time
-
- return False;
-
- -- If we get an exception while trying to do this test, then some error
- -- has occurred, and we simply say that the value is not known after all
-
- exception
- when others =>
- return False;
- end Compile_Time_Known_Value;
-
- --------------------------------------
- -- Compile_Time_Known_Value_Or_Aggr --
- --------------------------------------
-
- function Compile_Time_Known_Value_Or_Aggr (Op : Node_Id) return Boolean is
- begin
- -- If we have an entity name, then see if it is the name of a constant
- -- and if so, test the corresponding constant value, or the name of
- -- an enumeration literal, which is always a constant.
-
- if Is_Entity_Name (Op) then
- declare
- E : constant Entity_Id := Entity (Op);
- V : Node_Id;
-
- begin
- if Ekind (E) = E_Enumeration_Literal then
- return True;
-
- elsif Ekind (E) /= E_Constant then
- return False;
-
- else
- V := Constant_Value (E);
- return Present (V)
- and then Compile_Time_Known_Value_Or_Aggr (V);
- end if;
- end;
-
- -- We have a value, see if it is compile time known
-
- else
- if Compile_Time_Known_Value (Op) then
- return True;
-
- elsif Nkind (Op) = N_Aggregate then
-
- if Present (Expressions (Op)) then
- declare
- Expr : Node_Id;
-
- begin
- Expr := First (Expressions (Op));
- while Present (Expr) loop
- if not Compile_Time_Known_Value_Or_Aggr (Expr) then
- return False;
- end if;
-
- Next (Expr);
- end loop;
- end;
- end if;
-
- if Present (Component_Associations (Op)) then
- declare
- Cass : Node_Id;
-
- begin
- Cass := First (Component_Associations (Op));
- while Present (Cass) loop
- if not
- Compile_Time_Known_Value_Or_Aggr (Expression (Cass))
- then
- return False;
- end if;
-
- Next (Cass);
- end loop;
- end;
- end if;
-
- return True;
-
- -- All other types of values are not known at compile time
-
- else
- return False;
- end if;
-
- end if;
- end Compile_Time_Known_Value_Or_Aggr;
-
- -----------------
- -- Eval_Actual --
- -----------------
-
- -- This is only called for actuals of functions that are not predefined
- -- operators (which have already been rewritten as operators at this
- -- stage), so the call can never be folded, and all that needs doing for
- -- the actual is to do the check for a non-static context.
-
- procedure Eval_Actual (N : Node_Id) is
- begin
- Check_Non_Static_Context (N);
- end Eval_Actual;
-
- --------------------
- -- Eval_Allocator --
- --------------------
-
- -- Allocators are never static, so all we have to do is to do the
- -- check for a non-static context if an expression is present.
-
- procedure Eval_Allocator (N : Node_Id) is
- Expr : constant Node_Id := Expression (N);
-
- begin
- if Nkind (Expr) = N_Qualified_Expression then
- Check_Non_Static_Context (Expression (Expr));
- end if;
- end Eval_Allocator;
-
- ------------------------
- -- Eval_Arithmetic_Op --
- ------------------------
-
- -- Arithmetic operations are static functions, so the result is static
- -- if both operands are static (RM 4.9(7), 4.9(20)).
-
- procedure Eval_Arithmetic_Op (N : Node_Id) is
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
- Ltype : constant Entity_Id := Etype (Left);
- Rtype : constant Entity_Id := Etype (Right);
- Stat : Boolean;
- Fold : Boolean;
-
- begin
- -- If not foldable we are done
-
- Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
-
- if not Fold then
- return;
- end if;
-
- -- Fold for cases where both operands are of integer type
-
- if Is_Integer_Type (Ltype) and then Is_Integer_Type (Rtype) then
- declare
- Left_Int : constant Uint := Expr_Value (Left);
- Right_Int : constant Uint := Expr_Value (Right);
- Result : Uint;
-
- begin
- case Nkind (N) is
-
- when N_Op_Add =>
- Result := Left_Int + Right_Int;
-
- when N_Op_Subtract =>
- Result := Left_Int - Right_Int;
-
- when N_Op_Multiply =>
- if OK_Bits
- (N, UI_From_Int
- (Num_Bits (Left_Int) + Num_Bits (Right_Int)))
- then
- Result := Left_Int * Right_Int;
- else
- Result := Left_Int;
- end if;
-
- when N_Op_Divide =>
-
- -- The exception Constraint_Error is raised by integer
- -- division, rem and mod if the right operand is zero.
-
- if Right_Int = 0 then
- Apply_Compile_Time_Constraint_Error
- (N, "division by zero",
- CE_Divide_By_Zero,
- Warn => not Stat);
- return;
-
- else
- Result := Left_Int / Right_Int;
- end if;
-
- when N_Op_Mod =>
-
- -- The exception Constraint_Error is raised by integer
- -- division, rem and mod if the right operand is zero.
-
- if Right_Int = 0 then
- Apply_Compile_Time_Constraint_Error
- (N, "mod with zero divisor",
- CE_Divide_By_Zero,
- Warn => not Stat);
- return;
- else
- Result := Left_Int mod Right_Int;
- end if;
-
- when N_Op_Rem =>
-
- -- The exception Constraint_Error is raised by integer
- -- division, rem and mod if the right operand is zero.
-
- if Right_Int = 0 then
- Apply_Compile_Time_Constraint_Error
- (N, "rem with zero divisor",
- CE_Divide_By_Zero,
- Warn => not Stat);
- return;
-
- else
- Result := Left_Int rem Right_Int;
- end if;
-
- when others =>
- raise Program_Error;
- end case;
-
- -- Adjust the result by the modulus if the type is a modular type
-
- if Is_Modular_Integer_Type (Ltype) then
- Result := Result mod Modulus (Ltype);
-
- -- For a signed integer type, check non-static overflow
-
- elsif (not Stat) and then Is_Signed_Integer_Type (Ltype) then
- declare
- BT : constant Entity_Id := Base_Type (Ltype);
- Lo : constant Uint := Expr_Value (Type_Low_Bound (BT));
- Hi : constant Uint := Expr_Value (Type_High_Bound (BT));
- begin
- if Result < Lo or else Result > Hi then
- Apply_Compile_Time_Constraint_Error
- (N, "value not in range of }?",
- CE_Overflow_Check_Failed,
- Ent => BT);
- return;
- end if;
- end;
- end if;
-
- -- If we get here we can fold the result
-
- Fold_Uint (N, Result, Stat);
- end;
-
- -- Cases where at least one operand is a real. We handle the cases
- -- of both reals, or mixed/real integer cases (the latter happen
- -- only for divide and multiply, and the result is always real).
-
- elsif Is_Real_Type (Ltype) or else Is_Real_Type (Rtype) then
- declare
- Left_Real : Ureal;
- Right_Real : Ureal;
- Result : Ureal;
-
- begin
- if Is_Real_Type (Ltype) then
- Left_Real := Expr_Value_R (Left);
- else
- Left_Real := UR_From_Uint (Expr_Value (Left));
- end if;
-
- if Is_Real_Type (Rtype) then
- Right_Real := Expr_Value_R (Right);
- else
- Right_Real := UR_From_Uint (Expr_Value (Right));
- end if;
-
- if Nkind (N) = N_Op_Add then
- Result := Left_Real + Right_Real;
-
- elsif Nkind (N) = N_Op_Subtract then
- Result := Left_Real - Right_Real;
-
- elsif Nkind (N) = N_Op_Multiply then
- Result := Left_Real * Right_Real;
-
- else pragma Assert (Nkind (N) = N_Op_Divide);
- if UR_Is_Zero (Right_Real) then
- Apply_Compile_Time_Constraint_Error
- (N, "division by zero", CE_Divide_By_Zero);
- return;
- end if;
-
- Result := Left_Real / Right_Real;
- end if;
-
- Fold_Ureal (N, Result, Stat);
- end;
- end if;
- end Eval_Arithmetic_Op;
-
- ----------------------------
- -- Eval_Character_Literal --
- ----------------------------
-
- -- Nothing to be done!
-
- procedure Eval_Character_Literal (N : Node_Id) is
- pragma Warnings (Off, N);
- begin
- null;
- end Eval_Character_Literal;
-
- ---------------
- -- Eval_Call --
- ---------------
-
- -- Static function calls are either calls to predefined operators
- -- with static arguments, or calls to functions that rename a literal.
- -- Only the latter case is handled here, predefined operators are
- -- constant-folded elsewhere.
-
- -- If the function is itself inherited (see 7423-001) the literal of
- -- the parent type must be explicitly converted to the return type
- -- of the function.
-
- procedure Eval_Call (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Lit : Entity_Id;
-
- begin
- if Nkind (N) = N_Function_Call
- and then No (Parameter_Associations (N))
- and then Is_Entity_Name (Name (N))
- and then Present (Alias (Entity (Name (N))))
- and then Is_Enumeration_Type (Base_Type (Typ))
- then
- Lit := Alias (Entity (Name (N)));
- while Present (Alias (Lit)) loop
- Lit := Alias (Lit);
- end loop;
-
- if Ekind (Lit) = E_Enumeration_Literal then
- if Base_Type (Etype (Lit)) /= Base_Type (Typ) then
- Rewrite
- (N, Convert_To (Typ, New_Occurrence_Of (Lit, Loc)));
- else
- Rewrite (N, New_Occurrence_Of (Lit, Loc));
- end if;
-
- Resolve (N, Typ);
- end if;
- end if;
- end Eval_Call;
-
- ------------------------
- -- Eval_Concatenation --
- ------------------------
-
- -- Concatenation is a static function, so the result is static if
- -- both operands are static (RM 4.9(7), 4.9(21)).
-
- procedure Eval_Concatenation (N : Node_Id) is
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
- C_Typ : constant Entity_Id := Root_Type (Component_Type (Etype (N)));
- Stat : Boolean;
- Fold : Boolean;
-
- begin
- -- Concatenation is never static in Ada 83, so if Ada 83
- -- check operand non-static context
-
- if Ada_Version = Ada_83
- and then Comes_From_Source (N)
- then
- Check_Non_Static_Context (Left);
- Check_Non_Static_Context (Right);
- return;
- end if;
-
- -- If not foldable we are done. In principle concatenation that yields
- -- any string type is static (i.e. an array type of character types).
- -- However, character types can include enumeration literals, and
- -- concatenation in that case cannot be described by a literal, so we
- -- only consider the operation static if the result is an array of
- -- (a descendant of) a predefined character type.
-
- Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
-
- if Is_Standard_Character_Type (C_Typ)
- and then Fold
- then
- null;
- else
- Set_Is_Static_Expression (N, False);
- return;
- end if;
-
- -- Compile time string concatenation
-
- -- ??? Note that operands that are aggregates can be marked as
- -- static, so we should attempt at a later stage to fold
- -- concatenations with such aggregates.
-
- declare
- Left_Str : constant Node_Id := Get_String_Val (Left);
- Left_Len : Nat;
- Right_Str : constant Node_Id := Get_String_Val (Right);
- Folded_Val : String_Id;
-
- begin
- -- Establish new string literal, and store left operand. We make
- -- sure to use the special Start_String that takes an operand if
- -- the left operand is a string literal. Since this is optimized
- -- in the case where that is the most recently created string
- -- literal, we ensure efficient time/space behavior for the
- -- case of a concatenation of a series of string literals.
-
- if Nkind (Left_Str) = N_String_Literal then
- Left_Len := String_Length (Strval (Left_Str));
-
- -- If the left operand is the empty string, and the right operand
- -- is a string literal (the case of "" & "..."), the result is the
- -- value of the right operand. This optimization is important when
- -- Is_Folded_In_Parser, to avoid copying an enormous right
- -- operand.
-
- if Left_Len = 0 and then Nkind (Right_Str) = N_String_Literal then
- Folded_Val := Strval (Right_Str);
- else
- Start_String (Strval (Left_Str));
- end if;
-
- else
- Start_String;
- Store_String_Char (UI_To_CC (Char_Literal_Value (Left_Str)));
- Left_Len := 1;
- end if;
-
- -- Now append the characters of the right operand, unless we
- -- optimized the "" & "..." case above.
-
- if Nkind (Right_Str) = N_String_Literal then
- if Left_Len /= 0 then
- Store_String_Chars (Strval (Right_Str));
- Folded_Val := End_String;
- end if;
- else
- Store_String_Char (UI_To_CC (Char_Literal_Value (Right_Str)));
- Folded_Val := End_String;
- end if;
-
- Set_Is_Static_Expression (N, Stat);
-
- if Stat then
-
- -- If left operand is the empty string, the result is the
- -- right operand, including its bounds if anomalous.
-
- if Left_Len = 0
- and then Is_Array_Type (Etype (Right))
- and then Etype (Right) /= Any_String
- then
- Set_Etype (N, Etype (Right));
- end if;
-
- Fold_Str (N, Folded_Val, Static => True);
- end if;
- end;
- end Eval_Concatenation;
-
- ---------------------------------
- -- Eval_Conditional_Expression --
- ---------------------------------
-
- -- This GNAT internal construct can never be statically folded, so the
- -- only required processing is to do the check for non-static context
- -- for the two expression operands.
-
- procedure Eval_Conditional_Expression (N : Node_Id) is
- Condition : constant Node_Id := First (Expressions (N));
- Then_Expr : constant Node_Id := Next (Condition);
- Else_Expr : constant Node_Id := Next (Then_Expr);
-
- begin
- Check_Non_Static_Context (Then_Expr);
- Check_Non_Static_Context (Else_Expr);
- end Eval_Conditional_Expression;
-
- ----------------------
- -- Eval_Entity_Name --
- ----------------------
-
- -- This procedure is used for identifiers and expanded names other than
- -- named numbers (see Eval_Named_Integer, Eval_Named_Real. These are
- -- static if they denote a static constant (RM 4.9(6)) or if the name
- -- denotes an enumeration literal (RM 4.9(22)).
-
- procedure Eval_Entity_Name (N : Node_Id) is
- Def_Id : constant Entity_Id := Entity (N);
- Val : Node_Id;
-
- begin
- -- Enumeration literals are always considered to be constants
- -- and cannot raise constraint error (RM 4.9(22)).
-
- if Ekind (Def_Id) = E_Enumeration_Literal then
- Set_Is_Static_Expression (N);
- return;
-
- -- A name is static if it denotes a static constant (RM 4.9(5)), and
- -- we also copy Raise_Constraint_Error. Notice that even if non-static,
- -- it does not violate 10.2.1(8) here, since this is not a variable.
-
- elsif Ekind (Def_Id) = E_Constant then
-
- -- Deferred constants must always be treated as nonstatic
- -- outside the scope of their full view.
-
- if Present (Full_View (Def_Id))
- and then not In_Open_Scopes (Scope (Def_Id))
- then
- Val := Empty;
- else
- Val := Constant_Value (Def_Id);
- end if;
-
- if Present (Val) then
- Set_Is_Static_Expression
- (N, Is_Static_Expression (Val)
- and then Is_Static_Subtype (Etype (Def_Id)));
- Set_Raises_Constraint_Error (N, Raises_Constraint_Error (Val));
-
- if not Is_Static_Expression (N)
- and then not Is_Generic_Type (Etype (N))
- then
- Validate_Static_Object_Name (N);
- end if;
-
- return;
- end if;
- end if;
-
- -- Fall through if the name is not static
-
- Validate_Static_Object_Name (N);
- end Eval_Entity_Name;
-
- ----------------------------
- -- Eval_Indexed_Component --
- ----------------------------
-
- -- Indexed components are never static, so we need to perform the check
- -- for non-static context on the index values. Then, we check if the
- -- value can be obtained at compile time, even though it is non-static.
-
- procedure Eval_Indexed_Component (N : Node_Id) is
- Expr : Node_Id;
-
- begin
- -- Check for non-static context on index values
-
- Expr := First (Expressions (N));
- while Present (Expr) loop
- Check_Non_Static_Context (Expr);
- Next (Expr);
- end loop;
-
- -- If the indexed component appears in an object renaming declaration
- -- then we do not want to try to evaluate it, since in this case we
- -- need the identity of the array element.
-
- if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
- return;
-
- -- Similarly if the indexed component appears as the prefix of an
- -- attribute we don't want to evaluate it, because at least for
- -- some cases of attributes we need the identify (e.g. Access, Size)
-
- elsif Nkind (Parent (N)) = N_Attribute_Reference then
- return;
- end if;
-
- -- Note: there are other cases, such as the left side of an assignment,
- -- or an OUT parameter for a call, where the replacement results in the
- -- illegal use of a constant, But these cases are illegal in the first
- -- place, so the replacement, though silly, is harmless.
-
- -- Now see if this is a constant array reference
-
- if List_Length (Expressions (N)) = 1
- and then Is_Entity_Name (Prefix (N))
- and then Ekind (Entity (Prefix (N))) = E_Constant
- and then Present (Constant_Value (Entity (Prefix (N))))
- then
- declare
- Loc : constant Source_Ptr := Sloc (N);
- Arr : constant Node_Id := Constant_Value (Entity (Prefix (N)));
- Sub : constant Node_Id := First (Expressions (N));
-
- Atyp : Entity_Id;
- -- Type of array
-
- Lin : Nat;
- -- Linear one's origin subscript value for array reference
-
- Lbd : Node_Id;
- -- Lower bound of the first array index
-
- Elm : Node_Id;
- -- Value from constant array
-
- begin
- Atyp := Etype (Arr);
-
- if Is_Access_Type (Atyp) then
- Atyp := Designated_Type (Atyp);
- end if;
-
- -- If we have an array type (we should have but perhaps there
- -- are error cases where this is not the case), then see if we
- -- can do a constant evaluation of the array reference.
-
- if Is_Array_Type (Atyp) then
- if Ekind (Atyp) = E_String_Literal_Subtype then
- Lbd := String_Literal_Low_Bound (Atyp);
- else
- Lbd := Type_Low_Bound (Etype (First_Index (Atyp)));
- end if;
-
- if Compile_Time_Known_Value (Sub)
- and then Nkind (Arr) = N_Aggregate
- and then Compile_Time_Known_Value (Lbd)
- and then Is_Discrete_Type (Component_Type (Atyp))
- then
- Lin := UI_To_Int (Expr_Value (Sub) - Expr_Value (Lbd)) + 1;
-
- if List_Length (Expressions (Arr)) >= Lin then
- Elm := Pick (Expressions (Arr), Lin);
-
- -- If the resulting expression is compile time known,
- -- then we can rewrite the indexed component with this
- -- value, being sure to mark the result as non-static.
- -- We also reset the Sloc, in case this generates an
- -- error later on (e.g. 136'Access).
-
- if Compile_Time_Known_Value (Elm) then
- Rewrite (N, Duplicate_Subexpr_No_Checks (Elm));
- Set_Is_Static_Expression (N, False);
- Set_Sloc (N, Loc);
- end if;
- end if;
- end if;
- end if;
- end;
- end if;
- end Eval_Indexed_Component;
-
- --------------------------
- -- Eval_Integer_Literal --
- --------------------------
-
- -- Numeric literals are static (RM 4.9(1)), and have already been marked
- -- as static by the analyzer. The reason we did it that early is to allow
- -- the possibility of turning off the Is_Static_Expression flag after
- -- analysis, but before resolution, when integer literals are generated
- -- in the expander that do not correspond to static expressions.
-
- procedure Eval_Integer_Literal (N : Node_Id) is
- T : constant Entity_Id := Etype (N);
-
- function In_Any_Integer_Context return Boolean;
- -- If the literal is resolved with a specific type in a context
- -- where the expected type is Any_Integer, there are no range checks
- -- on the literal. By the time the literal is evaluated, it carries
- -- the type imposed by the enclosing expression, and we must recover
- -- the context to determine that Any_Integer is meant.
-
- ----------------------------
- -- To_Any_Integer_Context --
- ----------------------------
-
- function In_Any_Integer_Context return Boolean is
- Par : constant Node_Id := Parent (N);
- K : constant Node_Kind := Nkind (Par);
-
- begin
- -- Any_Integer also appears in digits specifications for real types,
- -- but those have bounds smaller that those of any integer base
- -- type, so we can safely ignore these cases.
-
- return K = N_Number_Declaration
- or else K = N_Attribute_Reference
- or else K = N_Attribute_Definition_Clause
- or else K = N_Modular_Type_Definition
- or else K = N_Signed_Integer_Type_Definition;
- end In_Any_Integer_Context;
-
- -- Start of processing for Eval_Integer_Literal
-
- begin
-
- -- If the literal appears in a non-expression context, then it is
- -- certainly appearing in a non-static context, so check it. This
- -- is actually a redundant check, since Check_Non_Static_Context
- -- would check it, but it seems worth while avoiding the call.
-
- if Nkind (Parent (N)) not in N_Subexpr
- and then not In_Any_Integer_Context
- then
- Check_Non_Static_Context (N);
- end if;
-
- -- Modular integer literals must be in their base range
-
- if Is_Modular_Integer_Type (T)
- and then Is_Out_Of_Range (N, Base_Type (T))
- then
- Out_Of_Range (N);
- end if;
- end Eval_Integer_Literal;
-
- ---------------------
- -- Eval_Logical_Op --
- ---------------------
-
- -- Logical operations are static functions, so the result is potentially
- -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
-
- procedure Eval_Logical_Op (N : Node_Id) is
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
- Stat : Boolean;
- Fold : Boolean;
-
- begin
- -- If not foldable we are done
-
- Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
-
- if not Fold then
- return;
- end if;
-
- -- Compile time evaluation of logical operation
-
- declare
- Left_Int : constant Uint := Expr_Value (Left);
- Right_Int : constant Uint := Expr_Value (Right);
-
- begin
- if Is_Modular_Integer_Type (Etype (N)) then
- declare
- Left_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
- Right_Bits : Bits (0 .. UI_To_Int (Esize (Etype (N))) - 1);
-
- begin
- To_Bits (Left_Int, Left_Bits);
- To_Bits (Right_Int, Right_Bits);
-
- -- Note: should really be able to use array ops instead of
- -- these loops, but they weren't working at the time ???
-
- if Nkind (N) = N_Op_And then
- for J in Left_Bits'Range loop
- Left_Bits (J) := Left_Bits (J) and Right_Bits (J);
- end loop;
-
- elsif Nkind (N) = N_Op_Or then
- for J in Left_Bits'Range loop
- Left_Bits (J) := Left_Bits (J) or Right_Bits (J);
- end loop;
-
- else
- pragma Assert (Nkind (N) = N_Op_Xor);
-
- for J in Left_Bits'Range loop
- Left_Bits (J) := Left_Bits (J) xor Right_Bits (J);
- end loop;
- end if;
-
- Fold_Uint (N, From_Bits (Left_Bits, Etype (N)), Stat);
- end;
-
- else
- pragma Assert (Is_Boolean_Type (Etype (N)));
-
- if Nkind (N) = N_Op_And then
- Fold_Uint (N,
- Test (Is_True (Left_Int) and then Is_True (Right_Int)), Stat);
-
- elsif Nkind (N) = N_Op_Or then
- Fold_Uint (N,
- Test (Is_True (Left_Int) or else Is_True (Right_Int)), Stat);
-
- else
- pragma Assert (Nkind (N) = N_Op_Xor);
- Fold_Uint (N,
- Test (Is_True (Left_Int) xor Is_True (Right_Int)), Stat);
- end if;
- end if;
- end;
- end Eval_Logical_Op;
-
- ------------------------
- -- Eval_Membership_Op --
- ------------------------
-
- -- A membership test is potentially static if the expression is static,
- -- and the range is a potentially static range, or is a subtype mark
- -- denoting a static subtype (RM 4.9(12)).
-
- procedure Eval_Membership_Op (N : Node_Id) is
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
- Def_Id : Entity_Id;
- Lo : Node_Id;
- Hi : Node_Id;
- Result : Boolean;
- Stat : Boolean;
- Fold : Boolean;
-
- begin
- -- Ignore if error in either operand, except to make sure that
- -- Any_Type is properly propagated to avoid junk cascaded errors.
-
- if Etype (Left) = Any_Type
- or else Etype (Right) = Any_Type
- then
- Set_Etype (N, Any_Type);
- return;
- end if;
-
- -- Case of right operand is a subtype name
-
- if Is_Entity_Name (Right) then
- Def_Id := Entity (Right);
-
- if (Is_Scalar_Type (Def_Id) or else Is_String_Type (Def_Id))
- and then Is_OK_Static_Subtype (Def_Id)
- then
- Test_Expression_Is_Foldable (N, Left, Stat, Fold);
-
- if not Fold or else not Stat then
- return;
- end if;
- else
- Check_Non_Static_Context (Left);
- return;
- end if;
-
- -- For string membership tests we will check the length
- -- further below.
-
- if not Is_String_Type (Def_Id) then
- Lo := Type_Low_Bound (Def_Id);
- Hi := Type_High_Bound (Def_Id);
-
- else
- Lo := Empty;
- Hi := Empty;
- end if;
-
- -- Case of right operand is a range
-
- else
- if Is_Static_Range (Right) then
- Test_Expression_Is_Foldable (N, Left, Stat, Fold);
-
- if not Fold or else not Stat then
- return;
-
- -- If one bound of range raises CE, then don't try to fold
-
- elsif not Is_OK_Static_Range (Right) then
- Check_Non_Static_Context (Left);
- return;
- end if;
-
- else
- Check_Non_Static_Context (Left);
- return;
- end if;
-
- -- Here we know range is an OK static range
-
- Lo := Low_Bound (Right);
- Hi := High_Bound (Right);
- end if;
-
- -- For strings we check that the length of the string expression is
- -- compatible with the string subtype if the subtype is constrained,
- -- or if unconstrained then the test is always true.
-
- if Is_String_Type (Etype (Right)) then
- if not Is_Constrained (Etype (Right)) then
- Result := True;
-
- else
- declare
- Typlen : constant Uint := String_Type_Len (Etype (Right));
- Strlen : constant Uint :=
- UI_From_Int (String_Length (Strval (Get_String_Val (Left))));
- begin
- Result := (Typlen = Strlen);
- end;
- end if;
-
- -- Fold the membership test. We know we have a static range and Lo
- -- and Hi are set to the expressions for the end points of this range.
-
- elsif Is_Real_Type (Etype (Right)) then
- declare
- Leftval : constant Ureal := Expr_Value_R (Left);
-
- begin
- Result := Expr_Value_R (Lo) <= Leftval
- and then Leftval <= Expr_Value_R (Hi);
- end;
-
- else
- declare
- Leftval : constant Uint := Expr_Value (Left);
-
- begin
- Result := Expr_Value (Lo) <= Leftval
- and then Leftval <= Expr_Value (Hi);
- end;
- end if;
-
- if Nkind (N) = N_Not_In then
- Result := not Result;
- end if;
-
- Fold_Uint (N, Test (Result), True);
- Warn_On_Known_Condition (N);
- end Eval_Membership_Op;
-
- ------------------------
- -- Eval_Named_Integer --
- ------------------------
-
- procedure Eval_Named_Integer (N : Node_Id) is
- begin
- Fold_Uint (N,
- Expr_Value (Expression (Declaration_Node (Entity (N)))), True);
- end Eval_Named_Integer;
-
- ---------------------
- -- Eval_Named_Real --
- ---------------------
-
- procedure Eval_Named_Real (N : Node_Id) is
- begin
- Fold_Ureal (N,
- Expr_Value_R (Expression (Declaration_Node (Entity (N)))), True);
- end Eval_Named_Real;
-
- -------------------
- -- Eval_Op_Expon --
- -------------------
-
- -- Exponentiation is a static functions, so the result is potentially
- -- static if both operands are potentially static (RM 4.9(7), 4.9(20)).
-
- procedure Eval_Op_Expon (N : Node_Id) is
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
- Stat : Boolean;
- Fold : Boolean;
-
- begin
- -- If not foldable we are done
-
- Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
-
- if not Fold then
- return;
- end if;
-
- -- Fold exponentiation operation
-
- declare
- Right_Int : constant Uint := Expr_Value (Right);
-
- begin
- -- Integer case
-
- if Is_Integer_Type (Etype (Left)) then
- declare
- Left_Int : constant Uint := Expr_Value (Left);
- Result : Uint;
-
- begin
- -- Exponentiation of an integer raises the exception
- -- Constraint_Error for a negative exponent (RM 4.5.6)
-
- if Right_Int < 0 then
- Apply_Compile_Time_Constraint_Error
- (N, "integer exponent negative",
- CE_Range_Check_Failed,
- Warn => not Stat);
- return;
-
- else
- if OK_Bits (N, Num_Bits (Left_Int) * Right_Int) then
- Result := Left_Int ** Right_Int;
- else
- Result := Left_Int;
- end if;
-
- if Is_Modular_Integer_Type (Etype (N)) then
- Result := Result mod Modulus (Etype (N));
- end if;
-
- Fold_Uint (N, Result, Stat);
- end if;
- end;
-
- -- Real case
-
- else
- declare
- Left_Real : constant Ureal := Expr_Value_R (Left);
-
- begin
- -- Cannot have a zero base with a negative exponent
-
- if UR_Is_Zero (Left_Real) then
-
- if Right_Int < 0 then
- Apply_Compile_Time_Constraint_Error
- (N, "zero ** negative integer",
- CE_Range_Check_Failed,
- Warn => not Stat);
- return;
- else
- Fold_Ureal (N, Ureal_0, Stat);
- end if;
-
- else
- Fold_Ureal (N, Left_Real ** Right_Int, Stat);
- end if;
- end;
- end if;
- end;
- end Eval_Op_Expon;
-
- -----------------
- -- Eval_Op_Not --
- -----------------
-
- -- The not operation is a static functions, so the result is potentially
- -- static if the operand is potentially static (RM 4.9(7), 4.9(20)).
-
- procedure Eval_Op_Not (N : Node_Id) is
- Right : constant Node_Id := Right_Opnd (N);
- Stat : Boolean;
- Fold : Boolean;
-
- begin
- -- If not foldable we are done
-
- Test_Expression_Is_Foldable (N, Right, Stat, Fold);
-
- if not Fold then
- return;
- end if;
-
- -- Fold not operation
-
- declare
- Rint : constant Uint := Expr_Value (Right);
- Typ : constant Entity_Id := Etype (N);
-
- begin
- -- Negation is equivalent to subtracting from the modulus minus
- -- one. For a binary modulus this is equivalent to the ones-
- -- component of the original value. For non-binary modulus this
- -- is an arbitrary but consistent definition.
-
- if Is_Modular_Integer_Type (Typ) then
- Fold_Uint (N, Modulus (Typ) - 1 - Rint, Stat);
-
- else
- pragma Assert (Is_Boolean_Type (Typ));
- Fold_Uint (N, Test (not Is_True (Rint)), Stat);
- end if;
-
- Set_Is_Static_Expression (N, Stat);
- end;
- end Eval_Op_Not;
-
- -------------------------------
- -- Eval_Qualified_Expression --
- -------------------------------
-
- -- A qualified expression is potentially static if its subtype mark denotes
- -- a static subtype and its expression is potentially static (RM 4.9 (11)).
-
- procedure Eval_Qualified_Expression (N : Node_Id) is
- Operand : constant Node_Id := Expression (N);
- Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
-
- Stat : Boolean;
- Fold : Boolean;
- Hex : Boolean;
-
- begin
- -- Can only fold if target is string or scalar and subtype is static
- -- Also, do not fold if our parent is an allocator (this is because
- -- the qualified expression is really part of the syntactic structure
- -- of an allocator, and we do not want to end up with something that
- -- corresponds to "new 1" where the 1 is the result of folding a
- -- qualified expression).
-
- if not Is_Static_Subtype (Target_Type)
- or else Nkind (Parent (N)) = N_Allocator
- then
- Check_Non_Static_Context (Operand);
-
- -- If operand is known to raise constraint_error, set the
- -- flag on the expression so it does not get optimized away.
-
- if Nkind (Operand) = N_Raise_Constraint_Error then
- Set_Raises_Constraint_Error (N);
- end if;
-
- return;
- end if;
-
- -- If not foldable we are done
-
- Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
-
- if not Fold then
- return;
-
- -- Don't try fold if target type has constraint error bounds
-
- elsif not Is_OK_Static_Subtype (Target_Type) then
- Set_Raises_Constraint_Error (N);
- return;
- end if;
-
- -- Here we will fold, save Print_In_Hex indication
-
- Hex := Nkind (Operand) = N_Integer_Literal
- and then Print_In_Hex (Operand);
-
- -- Fold the result of qualification
-
- if Is_Discrete_Type (Target_Type) then
- Fold_Uint (N, Expr_Value (Operand), Stat);
-
- -- Preserve Print_In_Hex indication
-
- if Hex and then Nkind (N) = N_Integer_Literal then
- Set_Print_In_Hex (N);
- end if;
-
- elsif Is_Real_Type (Target_Type) then
- Fold_Ureal (N, Expr_Value_R (Operand), Stat);
-
- else
- Fold_Str (N, Strval (Get_String_Val (Operand)), Stat);
-
- if not Stat then
- Set_Is_Static_Expression (N, False);
- else
- Check_String_Literal_Length (N, Target_Type);
- end if;
-
- return;
- end if;
-
- -- The expression may be foldable but not static
-
- Set_Is_Static_Expression (N, Stat);
-
- if Is_Out_Of_Range (N, Etype (N)) then
- Out_Of_Range (N);
- end if;
- end Eval_Qualified_Expression;
-
- -----------------------
- -- Eval_Real_Literal --
- -----------------------
-
- -- Numeric literals are static (RM 4.9(1)), and have already been marked
- -- as static by the analyzer. The reason we did it that early is to allow
- -- the possibility of turning off the Is_Static_Expression flag after
- -- analysis, but before resolution, when integer literals are generated
- -- in the expander that do not correspond to static expressions.
-
- procedure Eval_Real_Literal (N : Node_Id) is
- PK : constant Node_Kind := Nkind (Parent (N));
-
- begin
- -- If the literal appears in a non-expression context
- -- and not as part of a number declaration, then it is
- -- appearing in a non-static context, so check it.
-
- if PK not in N_Subexpr and then PK /= N_Number_Declaration then
- Check_Non_Static_Context (N);
- end if;
- end Eval_Real_Literal;
-
- ------------------------
- -- Eval_Relational_Op --
- ------------------------
-
- -- Relational operations are static functions, so the result is static
- -- if both operands are static (RM 4.9(7), 4.9(20)).
-
- procedure Eval_Relational_Op (N : Node_Id) is
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
- Typ : constant Entity_Id := Etype (Left);
- Result : Boolean;
- Stat : Boolean;
- Fold : Boolean;
-
- begin
- -- One special case to deal with first. If we can tell that the result
- -- will be false because the lengths of one or more index subtypes are
- -- compile time known and different, then we can replace the entire
- -- result by False. We only do this for one dimensional arrays, because
- -- the case of multi-dimensional arrays is rare and too much trouble! If
- -- one of the operands is an illegal aggregate, its type might still be
- -- an arbitrary composite type, so nothing to do.
-
- if Is_Array_Type (Typ)
- and then Typ /= Any_Composite
- and then Number_Dimensions (Typ) = 1
- and then (Nkind (N) = N_Op_Eq or else Nkind (N) = N_Op_Ne)
- then
- if Raises_Constraint_Error (Left)
- or else Raises_Constraint_Error (Right)
- then
- return;
- end if;
-
- -- OK, we have the case where we may be able to do this fold
-
- Length_Mismatch : declare
- procedure Get_Static_Length (Op : Node_Id; Len : out Uint);
- -- If Op is an expression for a constrained array with a known
- -- at compile time length, then Len is set to this (non-negative
- -- length). Otherwise Len is set to minus 1.
-
- -----------------------
- -- Get_Static_Length --
- -----------------------
-
- procedure Get_Static_Length (Op : Node_Id; Len : out Uint) is
- T : Entity_Id;
-
- begin
- -- First easy case string literal
-
- if Nkind (Op) = N_String_Literal then
- Len := UI_From_Int (String_Length (Strval (Op)));
- return;
- end if;
-
- -- Second easy case, not constrained subtype, so no length
-
- if not Is_Constrained (Etype (Op)) then
- Len := Uint_Minus_1;
- return;
- end if;
-
- -- General case
-
- T := Etype (First_Index (Etype (Op)));
-
- -- The simple case, both bounds are known at compile time
-
- if Is_Discrete_Type (T)
- and then
- Compile_Time_Known_Value (Type_Low_Bound (T))
- and then
- Compile_Time_Known_Value (Type_High_Bound (T))
- then
- Len := UI_Max (Uint_0,
- Expr_Value (Type_High_Bound (T)) -
- Expr_Value (Type_Low_Bound (T)) + 1);
- return;
- end if;
-
- -- A more complex case, where the bounds are of the form
- -- X [+/- K1] .. X [+/- K2]), where X is an expression that is
- -- either A'First or A'Last (with A an entity name), or X is an
- -- entity name, and the two X's are the same and K1 and K2 are
- -- known at compile time, in this case, the length can also be
- -- computed at compile time, even though the bounds are not
- -- known. A common case of this is e.g. (X'First..X'First+5).
-
- Extract_Length : declare
- procedure Decompose_Expr
- (Expr : Node_Id;
- Ent : out Entity_Id;
- Kind : out Character;
- Cons : out Uint);
- -- Given an expression, see if is of the form above,
- -- X [+/- K]. If so Ent is set to the entity in X,
- -- Kind is 'F','L','E' for 'First/'Last/simple entity,
- -- and Cons is the value of K. If the expression is
- -- not of the required form, Ent is set to Empty.
-
- --------------------
- -- Decompose_Expr --
- --------------------
-
- procedure Decompose_Expr
- (Expr : Node_Id;
- Ent : out Entity_Id;
- Kind : out Character;
- Cons : out Uint)
- is
- Exp : Node_Id;
-
- begin
- if Nkind (Expr) = N_Op_Add
- and then Compile_Time_Known_Value (Right_Opnd (Expr))
- then
- Exp := Left_Opnd (Expr);
- Cons := Expr_Value (Right_Opnd (Expr));
-
- elsif Nkind (Expr) = N_Op_Subtract
- and then Compile_Time_Known_Value (Right_Opnd (Expr))
- then
- Exp := Left_Opnd (Expr);
- Cons := -Expr_Value (Right_Opnd (Expr));
-
- else
- Exp := Expr;
- Cons := Uint_0;
- end if;
-
- -- At this stage Exp is set to the potential X
-
- if Nkind (Exp) = N_Attribute_Reference then
- if Attribute_Name (Exp) = Name_First then
- Kind := 'F';
- elsif Attribute_Name (Exp) = Name_Last then
- Kind := 'L';
- else
- Ent := Empty;
- return;
- end if;
-
- Exp := Prefix (Exp);
-
- else
- Kind := 'E';
- end if;
-
- if Is_Entity_Name (Exp)
- and then Present (Entity (Exp))
- then
- Ent := Entity (Exp);
- else
- Ent := Empty;
- end if;
- end Decompose_Expr;
-
- -- Local Variables
-
- Ent1, Ent2 : Entity_Id;
- Kind1, Kind2 : Character;
- Cons1, Cons2 : Uint;
-
- -- Start of processing for Extract_Length
-
- begin
- Decompose_Expr (Type_Low_Bound (T), Ent1, Kind1, Cons1);
- Decompose_Expr (Type_High_Bound (T), Ent2, Kind2, Cons2);
-
- if Present (Ent1)
- and then Kind1 = Kind2
- and then Ent1 = Ent2
- then
- Len := Cons2 - Cons1 + 1;
- else
- Len := Uint_Minus_1;
- end if;
- end Extract_Length;
- end Get_Static_Length;
-
- -- Local Variables
-
- Len_L : Uint;
- Len_R : Uint;
-
- -- Start of processing for Length_Mismatch
-
- begin
- Get_Static_Length (Left, Len_L);
- Get_Static_Length (Right, Len_R);
-
- if Len_L /= Uint_Minus_1
- and then Len_R /= Uint_Minus_1
- and then Len_L /= Len_R
- then
- Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
- Warn_On_Known_Condition (N);
- return;
- end if;
- end Length_Mismatch;
- end if;
-
- -- Another special case: comparisons of access types, where one or both
- -- operands are known to be null, so the result can be determined.
-
- if Is_Access_Type (Typ) then
- if Known_Null (Left) then
- if Known_Null (Right) then
- Fold_Uint (N, Test (Nkind (N) = N_Op_Eq), False);
- Warn_On_Known_Condition (N);
- return;
-
- elsif Known_Non_Null (Right) then
- Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
- Warn_On_Known_Condition (N);
- return;
- end if;
-
- elsif Known_Non_Null (Left) then
- if Known_Null (Right) then
- Fold_Uint (N, Test (Nkind (N) = N_Op_Ne), False);
- Warn_On_Known_Condition (N);
- return;
- end if;
- end if;
- end if;
-
- -- Can only fold if type is scalar (don't fold string ops)
-
- if not Is_Scalar_Type (Typ) then
- Check_Non_Static_Context (Left);
- Check_Non_Static_Context (Right);
- return;
- end if;
-
- -- If not foldable we are done
-
- Test_Expression_Is_Foldable (N, Left, Right, Stat, Fold);
-
- if not Fold then
- return;
- end if;
-
- -- Integer and Enumeration (discrete) type cases
-
- if Is_Discrete_Type (Typ) then
- declare
- Left_Int : constant Uint := Expr_Value (Left);
- Right_Int : constant Uint := Expr_Value (Right);
-
- begin
- case Nkind (N) is
- when N_Op_Eq => Result := Left_Int = Right_Int;
- when N_Op_Ne => Result := Left_Int /= Right_Int;
- when N_Op_Lt => Result := Left_Int < Right_Int;
- when N_Op_Le => Result := Left_Int <= Right_Int;
- when N_Op_Gt => Result := Left_Int > Right_Int;
- when N_Op_Ge => Result := Left_Int >= Right_Int;
-
- when others =>
- raise Program_Error;
- end case;
-
- Fold_Uint (N, Test (Result), Stat);
- end;
-
- -- Real type case
-
- else
- pragma Assert (Is_Real_Type (Typ));
-
- declare
- Left_Real : constant Ureal := Expr_Value_R (Left);
- Right_Real : constant Ureal := Expr_Value_R (Right);
-
- begin
- case Nkind (N) is
- when N_Op_Eq => Result := (Left_Real = Right_Real);
- when N_Op_Ne => Result := (Left_Real /= Right_Real);
- when N_Op_Lt => Result := (Left_Real < Right_Real);
- when N_Op_Le => Result := (Left_Real <= Right_Real);
- when N_Op_Gt => Result := (Left_Real > Right_Real);
- when N_Op_Ge => Result := (Left_Real >= Right_Real);
-
- when others =>
- raise Program_Error;
- end case;
-
- Fold_Uint (N, Test (Result), Stat);
- end;
- end if;
-
- Warn_On_Known_Condition (N);
- end Eval_Relational_Op;
-
- ----------------
- -- Eval_Shift --
- ----------------
-
- -- Shift operations are intrinsic operations that can never be static,
- -- so the only processing required is to perform the required check for
- -- a non static context for the two operands.
-
- -- Actually we could do some compile time evaluation here some time ???
-
- procedure Eval_Shift (N : Node_Id) is
- begin
- Check_Non_Static_Context (Left_Opnd (N));
- Check_Non_Static_Context (Right_Opnd (N));
- end Eval_Shift;
-
- ------------------------
- -- Eval_Short_Circuit --
- ------------------------
-
- -- A short circuit operation is potentially static if both operands
- -- are potentially static (RM 4.9 (13))
-
- procedure Eval_Short_Circuit (N : Node_Id) is
- Kind : constant Node_Kind := Nkind (N);
- Left : constant Node_Id := Left_Opnd (N);
- Right : constant Node_Id := Right_Opnd (N);
- Left_Int : Uint;
- Rstat : constant Boolean :=
- Is_Static_Expression (Left)
- and then Is_Static_Expression (Right);
-
- begin
- -- Short circuit operations are never static in Ada 83
-
- if Ada_Version = Ada_83
- and then Comes_From_Source (N)
- then
- Check_Non_Static_Context (Left);
- Check_Non_Static_Context (Right);
- return;
- end if;
-
- -- Now look at the operands, we can't quite use the normal call to
- -- Test_Expression_Is_Foldable here because short circuit operations
- -- are a special case, they can still be foldable, even if the right
- -- operand raises constraint error.
-
- -- If either operand is Any_Type, just propagate to result and
- -- do not try to fold, this prevents cascaded errors.
-
- if Etype (Left) = Any_Type or else Etype (Right) = Any_Type then
- Set_Etype (N, Any_Type);
- return;
-
- -- If left operand raises constraint error, then replace node N with
- -- the raise constraint error node, and we are obviously not foldable.
- -- Is_Static_Expression is set from the two operands in the normal way,
- -- and we check the right operand if it is in a non-static context.
-
- elsif Raises_Constraint_Error (Left) then
- if not Rstat then
- Check_Non_Static_Context (Right);
- end if;
-
- Rewrite_In_Raise_CE (N, Left);
- Set_Is_Static_Expression (N, Rstat);
- return;
-
- -- If the result is not static, then we won't in any case fold
-
- elsif not Rstat then
- Check_Non_Static_Context (Left);
- Check_Non_Static_Context (Right);
- return;
- end if;
-
- -- Here the result is static, note that, unlike the normal processing
- -- in Test_Expression_Is_Foldable, we did *not* check above to see if
- -- the right operand raises constraint error, that's because it is not
- -- significant if the left operand is decisive.
-
- Set_Is_Static_Expression (N);
-
- -- It does not matter if the right operand raises constraint error if
- -- it will not be evaluated. So deal specially with the cases where
- -- the right operand is not evaluated. Note that we will fold these
- -- cases even if the right operand is non-static, which is fine, but
- -- of course in these cases the result is not potentially static.
-
- Left_Int := Expr_Value (Left);
-
- if (Kind = N_And_Then and then Is_False (Left_Int))
- or else (Kind = N_Or_Else and Is_True (Left_Int))
- then
- Fold_Uint (N, Left_Int, Rstat);
- return;
- end if;
-
- -- If first operand not decisive, then it does matter if the right
- -- operand raises constraint error, since it will be evaluated, so
- -- we simply replace the node with the right operand. Note that this
- -- properly propagates Is_Static_Expression and Raises_Constraint_Error
- -- (both are set to True in Right).
-
- if Raises_Constraint_Error (Right) then
- Rewrite_In_Raise_CE (N, Right);
- Check_Non_Static_Context (Left);
- return;
- end if;
-
- -- Otherwise the result depends on the right operand
-
- Fold_Uint (N, Expr_Value (Right), Rstat);
- return;
- end Eval_Short_Circuit;
-
- ----------------
- -- Eval_Slice --
- ----------------
-
- -- Slices can never be static, so the only processing required is to
- -- check for non-static context if an explicit range is given.
-
- procedure Eval_Slice (N : Node_Id) is
- Drange : constant Node_Id := Discrete_Range (N);
- begin
- if Nkind (Drange) = N_Range then
- Check_Non_Static_Context (Low_Bound (Drange));
- Check_Non_Static_Context (High_Bound (Drange));
- end if;
-
- -- A slice of the form A (subtype), when the subtype is the index of
- -- the type of A, is redundant, the slice can be replaced with A, and
- -- this is worth a warning.
-
- if Is_Entity_Name (Prefix (N)) then
- declare
- E : constant Entity_Id := Entity (Prefix (N));
- T : constant Entity_Id := Etype (E);
- begin
- if Ekind (E) = E_Constant
- and then Is_Array_Type (T)
- and then Is_Entity_Name (Drange)
- then
- if Is_Entity_Name (Original_Node (First_Index (T)))
- and then Entity (Original_Node (First_Index (T)))
- = Entity (Drange)
- then
- if Warn_On_Redundant_Constructs then
- Error_Msg_N ("redundant slice denotes whole array?", N);
- end if;
-
- -- The following might be a useful optimization ????
-
- -- Rewrite (N, New_Occurrence_Of (E, Sloc (N)));
- end if;
- end if;
- end;
- end if;
- end Eval_Slice;
-
- -------------------------
- -- Eval_String_Literal --
- -------------------------
-
- procedure Eval_String_Literal (N : Node_Id) is
- Typ : constant Entity_Id := Etype (N);
- Bas : constant Entity_Id := Base_Type (Typ);
- Xtp : Entity_Id;
- Len : Nat;
- Lo : Node_Id;
-
- begin
- -- Nothing to do if error type (handles cases like default expressions
- -- or generics where we have not yet fully resolved the type)
-
- if Bas = Any_Type or else Bas = Any_String then
- return;
- end if;
-
- -- String literals are static if the subtype is static (RM 4.9(2)), so
- -- reset the static expression flag (it was set unconditionally in
- -- Analyze_String_Literal) if the subtype is non-static. We tell if
- -- the subtype is static by looking at the lower bound.
-
- if Ekind (Typ) = E_String_Literal_Subtype then
- if not Is_OK_Static_Expression (String_Literal_Low_Bound (Typ)) then
- Set_Is_Static_Expression (N, False);
- return;
- end if;
-
- -- Here if Etype of string literal is normal Etype (not yet possible,
- -- but may be possible in future!)
-
- elsif not Is_OK_Static_Expression
- (Type_Low_Bound (Etype (First_Index (Typ))))
- then
- Set_Is_Static_Expression (N, False);
- return;
- end if;
-
- -- If original node was a type conversion, then result if non-static
-
- if Nkind (Original_Node (N)) = N_Type_Conversion then
- Set_Is_Static_Expression (N, False);
- return;
- end if;
-
- -- Test for illegal Ada 95 cases. A string literal is illegal in
- -- Ada 95 if its bounds are outside the index base type and this
- -- index type is static. This can happen in only two ways. Either
- -- the string literal is too long, or it is null, and the lower
- -- bound is type'First. In either case it is the upper bound that
- -- is out of range of the index type.
-
- if Ada_Version >= Ada_95 then
- if Root_Type (Bas) = Standard_String
- or else
- Root_Type (Bas) = Standard_Wide_String
- then
- Xtp := Standard_Positive;
- else
- Xtp := Etype (First_Index (Bas));
- end if;
-
- if Ekind (Typ) = E_String_Literal_Subtype then
- Lo := String_Literal_Low_Bound (Typ);
- else
- Lo := Type_Low_Bound (Etype (First_Index (Typ)));
- end if;
-
- Len := String_Length (Strval (N));
-
- if UI_From_Int (Len) > String_Type_Len (Bas) then
- Apply_Compile_Time_Constraint_Error
- (N, "string literal too long for}", CE_Length_Check_Failed,
- Ent => Bas,
- Typ => First_Subtype (Bas));
-
- elsif Len = 0
- and then not Is_Generic_Type (Xtp)
- and then
- Expr_Value (Lo) = Expr_Value (Type_Low_Bound (Base_Type (Xtp)))
- then
- Apply_Compile_Time_Constraint_Error
- (N, "null string literal not allowed for}",
- CE_Length_Check_Failed,
- Ent => Bas,
- Typ => First_Subtype (Bas));
- end if;
- end if;
- end Eval_String_Literal;
-
- --------------------------
- -- Eval_Type_Conversion --
- --------------------------
-
- -- A type conversion is potentially static if its subtype mark is for a
- -- static scalar subtype, and its operand expression is potentially static
- -- (RM 4.9 (10))
-
- procedure Eval_Type_Conversion (N : Node_Id) is
- Operand : constant Node_Id := Expression (N);
- Source_Type : constant Entity_Id := Etype (Operand);
- Target_Type : constant Entity_Id := Etype (N);
-
- Stat : Boolean;
- Fold : Boolean;
-
- function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean;
- -- Returns true if type T is an integer type, or if it is a
- -- fixed-point type to be treated as an integer (i.e. the flag
- -- Conversion_OK is set on the conversion node).
-
- function To_Be_Treated_As_Real (T : Entity_Id) return Boolean;
- -- Returns true if type T is a floating-point type, or if it is a
- -- fixed-point type that is not to be treated as an integer (i.e. the
- -- flag Conversion_OK is not set on the conversion node).
-
- ------------------------------
- -- To_Be_Treated_As_Integer --
- ------------------------------
-
- function To_Be_Treated_As_Integer (T : Entity_Id) return Boolean is
- begin
- return
- Is_Integer_Type (T)
- or else (Is_Fixed_Point_Type (T) and then Conversion_OK (N));
- end To_Be_Treated_As_Integer;
-
- ---------------------------
- -- To_Be_Treated_As_Real --
- ---------------------------
-
- function To_Be_Treated_As_Real (T : Entity_Id) return Boolean is
- begin
- return
- Is_Floating_Point_Type (T)
- or else (Is_Fixed_Point_Type (T) and then not Conversion_OK (N));
- end To_Be_Treated_As_Real;
-
- -- Start of processing for Eval_Type_Conversion
-
- begin
- -- Cannot fold if target type is non-static or if semantic error
-
- if not Is_Static_Subtype (Target_Type) then
- Check_Non_Static_Context (Operand);
- return;
-
- elsif Error_Posted (N) then
- return;
- end if;
-
- -- If not foldable we are done
-
- Test_Expression_Is_Foldable (N, Operand, Stat, Fold);
-
- if not Fold then
- return;
-
- -- Don't try fold if target type has constraint error bounds
-
- elsif not Is_OK_Static_Subtype (Target_Type) then
- Set_Raises_Constraint_Error (N);
- return;
- end if;
-
- -- Remaining processing depends on operand types. Note that in the
- -- following type test, fixed-point counts as real unless the flag
- -- Conversion_OK is set, in which case it counts as integer.
-
- -- Fold conversion, case of string type. The result is not static
-
- if Is_String_Type (Target_Type) then
- Fold_Str (N, Strval (Get_String_Val (Operand)), Static => False);
-
- return;
-
- -- Fold conversion, case of integer target type
-
- elsif To_Be_Treated_As_Integer (Target_Type) then
- declare
- Result : Uint;
-
- begin
- -- Integer to integer conversion
-
- if To_Be_Treated_As_Integer (Source_Type) then
- Result := Expr_Value (Operand);
-
- -- Real to integer conversion
-
- else
- Result := UR_To_Uint (Expr_Value_R (Operand));
- end if;
-
- -- If fixed-point type (Conversion_OK must be set), then the
- -- result is logically an integer, but we must replace the
- -- conversion with the corresponding real literal, since the
- -- type from a semantic point of view is still fixed-point.
-
- if Is_Fixed_Point_Type (Target_Type) then
- Fold_Ureal
- (N, UR_From_Uint (Result) * Small_Value (Target_Type), Stat);
-
- -- Otherwise result is integer literal
-
- else
- Fold_Uint (N, Result, Stat);
- end if;
- end;
-
- -- Fold conversion, case of real target type
-
- elsif To_Be_Treated_As_Real (Target_Type) then
- declare
- Result : Ureal;
-
- begin
- if To_Be_Treated_As_Real (Source_Type) then
- Result := Expr_Value_R (Operand);
- else
- Result := UR_From_Uint (Expr_Value (Operand));
- end if;
-
- Fold_Ureal (N, Result, Stat);
- end;
-
- -- Enumeration types
-
- else
- Fold_Uint (N, Expr_Value (Operand), Stat);
- end if;
-
- if Is_Out_Of_Range (N, Etype (N)) then
- Out_Of_Range (N);
- end if;
-
- end Eval_Type_Conversion;
-
- -------------------
- -- Eval_Unary_Op --
- -------------------
-
- -- Predefined unary operators are static functions (RM 4.9(20)) and thus
- -- are potentially static if the operand is potentially static (RM 4.9(7))
-
- procedure Eval_Unary_Op (N : Node_Id) is
- Right : constant Node_Id := Right_Opnd (N);
- Stat : Boolean;
- Fold : Boolean;
-
- begin
- -- If not foldable we are done
-
- Test_Expression_Is_Foldable (N, Right, Stat, Fold);
-
- if not Fold then
- return;
- end if;
-
- -- Fold for integer case
-
- if Is_Integer_Type (Etype (N)) then
- declare
- Rint : constant Uint := Expr_Value (Right);
- Result : Uint;
-
- begin
- -- In the case of modular unary plus and abs there is no need
- -- to adjust the result of the operation since if the original
- -- operand was in bounds the result will be in the bounds of the
- -- modular type. However, in the case of modular unary minus the
- -- result may go out of the bounds of the modular type and needs
- -- adjustment.
-
- if Nkind (N) = N_Op_Plus then
- Result := Rint;
-
- elsif Nkind (N) = N_Op_Minus then
- if Is_Modular_Integer_Type (Etype (N)) then
- Result := (-Rint) mod Modulus (Etype (N));
- else
- Result := (-Rint);
- end if;
-
- else
- pragma Assert (Nkind (N) = N_Op_Abs);
- Result := abs Rint;
- end if;
-
- Fold_Uint (N, Result, Stat);
- end;
-
- -- Fold for real case
-
- elsif Is_Real_Type (Etype (N)) then
- declare
- Rreal : constant Ureal := Expr_Value_R (Right);
- Result : Ureal;
-
- begin
- if Nkind (N) = N_Op_Plus then
- Result := Rreal;
-
- elsif Nkind (N) = N_Op_Minus then
- Result := UR_Negate (Rreal);
-
- else
- pragma Assert (Nkind (N) = N_Op_Abs);
- Result := abs Rreal;
- end if;
-
- Fold_Ureal (N, Result, Stat);
- end;
- end if;
- end Eval_Unary_Op;
-
- -------------------------------
- -- Eval_Unchecked_Conversion --
- -------------------------------
-
- -- Unchecked conversions can never be static, so the only required
- -- processing is to check for a non-static context for the operand.
-
- procedure Eval_Unchecked_Conversion (N : Node_Id) is
- begin
- Check_Non_Static_Context (Expression (N));
- end Eval_Unchecked_Conversion;
-
- --------------------
- -- Expr_Rep_Value --
- --------------------
-
- function Expr_Rep_Value (N : Node_Id) return Uint is
- Kind : constant Node_Kind := Nkind (N);
- Ent : Entity_Id;
-
- begin
- if Is_Entity_Name (N) then
- Ent := Entity (N);
-
- -- An enumeration literal that was either in the source or
- -- created as a result of static evaluation.
-
- if Ekind (Ent) = E_Enumeration_Literal then
- return Enumeration_Rep (Ent);
-
- -- A user defined static constant
-
- else
- pragma Assert (Ekind (Ent) = E_Constant);
- return Expr_Rep_Value (Constant_Value (Ent));
- end if;
-
- -- An integer literal that was either in the source or created
- -- as a result of static evaluation.
-
- elsif Kind = N_Integer_Literal then
- return Intval (N);
-
- -- A real literal for a fixed-point type. This must be the fixed-point
- -- case, either the literal is of a fixed-point type, or it is a bound
- -- of a fixed-point type, with type universal real. In either case we
- -- obtain the desired value from Corresponding_Integer_Value.
-
- elsif Kind = N_Real_Literal then
- pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
- return Corresponding_Integer_Value (N);
-
- -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
-
- elsif Kind = N_Attribute_Reference
- and then Attribute_Name (N) = Name_Null_Parameter
- then
- return Uint_0;
-
- -- Otherwise must be character literal
-
- else
- pragma Assert (Kind = N_Character_Literal);
- Ent := Entity (N);
-
- -- Since Character literals of type Standard.Character don't
- -- have any defining character literals built for them, they
- -- do not have their Entity set, so just use their Char
- -- code. Otherwise for user-defined character literals use
- -- their Pos value as usual which is the same as the Rep value.
-
- if No (Ent) then
- return Char_Literal_Value (N);
- else
- return Enumeration_Rep (Ent);
- end if;
- end if;
- end Expr_Rep_Value;
-
- ----------------
- -- Expr_Value --
- ----------------
-
- function Expr_Value (N : Node_Id) return Uint is
- Kind : constant Node_Kind := Nkind (N);
- CV_Ent : CV_Entry renames CV_Cache (Nat (N) mod CV_Cache_Size);
- Ent : Entity_Id;
- Val : Uint;
-
- begin
- -- If already in cache, then we know it's compile time known and we can
- -- return the value that was previously stored in the cache since
- -- compile time known values cannot change.
-
- if CV_Ent.N = N then
- return CV_Ent.V;
- end if;
-
- -- Otherwise proceed to test value
-
- if Is_Entity_Name (N) then
- Ent := Entity (N);
-
- -- An enumeration literal that was either in the source or
- -- created as a result of static evaluation.
-
- if Ekind (Ent) = E_Enumeration_Literal then
- Val := Enumeration_Pos (Ent);
-
- -- A user defined static constant
-
- else
- pragma Assert (Ekind (Ent) = E_Constant);
- Val := Expr_Value (Constant_Value (Ent));
- end if;
-
- -- An integer literal that was either in the source or created
- -- as a result of static evaluation.
-
- elsif Kind = N_Integer_Literal then
- Val := Intval (N);
-
- -- A real literal for a fixed-point type. This must be the fixed-point
- -- case, either the literal is of a fixed-point type, or it is a bound
- -- of a fixed-point type, with type universal real. In either case we
- -- obtain the desired value from Corresponding_Integer_Value.
-
- elsif Kind = N_Real_Literal then
-
- pragma Assert (Is_Fixed_Point_Type (Underlying_Type (Etype (N))));
- Val := Corresponding_Integer_Value (N);
-
- -- Peculiar VMS case, if we have xxx'Null_Parameter, return zero
-
- elsif Kind = N_Attribute_Reference
- and then Attribute_Name (N) = Name_Null_Parameter
- then
- Val := Uint_0;
-
- -- Otherwise must be character literal
-
- else
- pragma Assert (Kind = N_Character_Literal);
- Ent := Entity (N);
-
- -- Since Character literals of type Standard.Character don't
- -- have any defining character literals built for them, they
- -- do not have their Entity set, so just use their Char
- -- code. Otherwise for user-defined character literals use
- -- their Pos value as usual.
-
- if No (Ent) then
- Val := Char_Literal_Value (N);
- else
- Val := Enumeration_Pos (Ent);
- end if;
- end if;
-
- -- Come here with Val set to value to be returned, set cache
-
- CV_Ent.N := N;
- CV_Ent.V := Val;
- return Val;
- end Expr_Value;
-
- ------------------
- -- Expr_Value_E --
- ------------------
-
- function Expr_Value_E (N : Node_Id) return Entity_Id is
- Ent : constant Entity_Id := Entity (N);
-
- begin
- if Ekind (Ent) = E_Enumeration_Literal then
- return Ent;
- else
- pragma Assert (Ekind (Ent) = E_Constant);
- return Expr_Value_E (Constant_Value (Ent));
- end if;
- end Expr_Value_E;
-
- ------------------
- -- Expr_Value_R --
- ------------------
-
- function Expr_Value_R (N : Node_Id) return Ureal is
- Kind : constant Node_Kind := Nkind (N);
- Ent : Entity_Id;
- Expr : Node_Id;
-
- begin
- if Kind = N_Real_Literal then
- return Realval (N);
-
- elsif Kind = N_Identifier or else Kind = N_Expanded_Name then
- Ent := Entity (N);
- pragma Assert (Ekind (Ent) = E_Constant);
- return Expr_Value_R (Constant_Value (Ent));
-
- elsif Kind = N_Integer_Literal then
- return UR_From_Uint (Expr_Value (N));
-
- -- Strange case of VAX literals, which are at this stage transformed
- -- into Vax_Type!x_To_y(IEEE_Literal). See Expand_N_Real_Literal in
- -- Exp_Vfpt for further details.
-
- elsif Vax_Float (Etype (N))
- and then Nkind (N) = N_Unchecked_Type_Conversion
- then
- Expr := Expression (N);
-
- if Nkind (Expr) = N_Function_Call
- and then Present (Parameter_Associations (Expr))
- then
- Expr := First (Parameter_Associations (Expr));
-
- if Nkind (Expr) = N_Real_Literal then
- return Realval (Expr);
- end if;
- end if;
-
- -- Peculiar VMS case, if we have xxx'Null_Parameter, return 0.0
-
- elsif Kind = N_Attribute_Reference
- and then Attribute_Name (N) = Name_Null_Parameter
- then
- return Ureal_0;
- end if;
-
- -- If we fall through, we have a node that cannot be interpreted
- -- as a compile time constant. That is definitely an error.
-
- raise Program_Error;
- end Expr_Value_R;
-
- ------------------
- -- Expr_Value_S --
- ------------------
-
- function Expr_Value_S (N : Node_Id) return Node_Id is
- begin
- if Nkind (N) = N_String_Literal then
- return N;
- else
- pragma Assert (Ekind (Entity (N)) = E_Constant);
- return Expr_Value_S (Constant_Value (Entity (N)));
- end if;
- end Expr_Value_S;
-
- --------------------------
- -- Flag_Non_Static_Expr --
- --------------------------
-
- procedure Flag_Non_Static_Expr (Msg : String; Expr : Node_Id) is
- begin
- if Error_Posted (Expr) and then not All_Errors_Mode then
- return;
- else
- Error_Msg_F (Msg, Expr);
- Why_Not_Static (Expr);
- end if;
- end Flag_Non_Static_Expr;
-
- --------------
- -- Fold_Str --
- --------------
-
- procedure Fold_Str (N : Node_Id; Val : String_Id; Static : Boolean) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
-
- begin
- Rewrite (N, Make_String_Literal (Loc, Strval => Val));
-
- -- We now have the literal with the right value, both the actual type
- -- and the expected type of this literal are taken from the expression
- -- that was evaluated.
-
- Analyze (N);
- Set_Is_Static_Expression (N, Static);
- Set_Etype (N, Typ);
- Resolve (N);
- end Fold_Str;
-
- ---------------
- -- Fold_Uint --
- ---------------
-
- procedure Fold_Uint (N : Node_Id; Val : Uint; Static : Boolean) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : Entity_Id := Etype (N);
- Ent : Entity_Id;
-
- begin
- -- If we are folding a named number, retain the entity in the
- -- literal, for ASIS use.
-
- if Is_Entity_Name (N)
- and then Ekind (Entity (N)) = E_Named_Integer
- then
- Ent := Entity (N);
- else
- Ent := Empty;
- end if;
-
- if Is_Private_Type (Typ) then
- Typ := Full_View (Typ);
- end if;
-
- -- For a result of type integer, substitute an N_Integer_Literal node
- -- for the result of the compile time evaluation of the expression.
- -- For ASIS use, set a link to the original named number when not in
- -- a generic context.
-
- if Is_Integer_Type (Typ) then
- Rewrite (N, Make_Integer_Literal (Loc, Val));
-
- Set_Original_Entity (N, Ent);
-
- -- Otherwise we have an enumeration type, and we substitute either
- -- an N_Identifier or N_Character_Literal to represent the enumeration
- -- literal corresponding to the given value, which must always be in
- -- range, because appropriate tests have already been made for this.
-
- else pragma Assert (Is_Enumeration_Type (Typ));
- Rewrite (N, Get_Enum_Lit_From_Pos (Etype (N), Val, Loc));
- end if;
-
- -- We now have the literal with the right value, both the actual type
- -- and the expected type of this literal are taken from the expression
- -- that was evaluated.
-
- Analyze (N);
- Set_Is_Static_Expression (N, Static);
- Set_Etype (N, Typ);
- Resolve (N);
- end Fold_Uint;
-
- ----------------
- -- Fold_Ureal --
- ----------------
-
- procedure Fold_Ureal (N : Node_Id; Val : Ureal; Static : Boolean) is
- Loc : constant Source_Ptr := Sloc (N);
- Typ : constant Entity_Id := Etype (N);
- Ent : Entity_Id;
-
- begin
- -- If we are folding a named number, retain the entity in the
- -- literal, for ASIS use.
-
- if Is_Entity_Name (N)
- and then Ekind (Entity (N)) = E_Named_Real
- then
- Ent := Entity (N);
- else
- Ent := Empty;
- end if;
-
- Rewrite (N, Make_Real_Literal (Loc, Realval => Val));
-
- -- Set link to original named number, for ASIS use
-
- Set_Original_Entity (N, Ent);
-
- -- Both the actual and expected type comes from the original expression
-
- Analyze (N);
- Set_Is_Static_Expression (N, Static);
- Set_Etype (N, Typ);
- Resolve (N);
- end Fold_Ureal;
-
- ---------------
- -- From_Bits --
- ---------------
-
- function From_Bits (B : Bits; T : Entity_Id) return Uint is
- V : Uint := Uint_0;
-
- begin
- for J in 0 .. B'Last loop
- if B (J) then
- V := V + 2 ** J;
- end if;
- end loop;
-
- if Non_Binary_Modulus (T) then
- V := V mod Modulus (T);
- end if;
-
- return V;
- end From_Bits;
-
- --------------------
- -- Get_String_Val --
- --------------------
-
- function Get_String_Val (N : Node_Id) return Node_Id is
- begin
- if Nkind (N) = N_String_Literal then
- return N;
-
- elsif Nkind (N) = N_Character_Literal then
- return N;
-
- else
- pragma Assert (Is_Entity_Name (N));
- return Get_String_Val (Constant_Value (Entity (N)));
- end if;
- end Get_String_Val;
-
- ----------------
- -- Initialize --
- ----------------
-
- procedure Initialize is
- begin
- CV_Cache := (others => (Node_High_Bound, Uint_0));
- end Initialize;
-
- --------------------
- -- In_Subrange_Of --
- --------------------
-
- function In_Subrange_Of
- (T1 : Entity_Id;
- T2 : Entity_Id;
- Assume_Valid : Boolean;
- Fixed_Int : Boolean := False) return Boolean
- is
- L1 : Node_Id;
- H1 : Node_Id;
-
- L2 : Node_Id;
- H2 : Node_Id;
-
- begin
- if T1 = T2 or else Is_Subtype_Of (T1, T2) then
- return True;
-
- -- Never in range if both types are not scalar. Don't know if this can
- -- actually happen, but just in case.
-
- elsif not Is_Scalar_Type (T1) or else not Is_Scalar_Type (T1) then
- return False;
-
- else
- L1 := Type_Low_Bound (T1);
- H1 := Type_High_Bound (T1);
-
- L2 := Type_Low_Bound (T2);
- H2 := Type_High_Bound (T2);
-
- -- Check bounds to see if comparison possible at compile time
-
- if Compile_Time_Compare (L1, L2, Assume_Valid) in Compare_GE
- and then
- Compile_Time_Compare (H1, H2, Assume_Valid) in Compare_LE
- then
- return True;
- end if;
-
- -- If bounds not comparable at compile time, then the bounds of T2
- -- must be compile time known or we cannot answer the query.
-
- if not Compile_Time_Known_Value (L2)
- or else not Compile_Time_Known_Value (H2)
- then
- return False;
- end if;
-
- -- If the bounds of T1 are know at compile time then use these
- -- ones, otherwise use the bounds of the base type (which are of
- -- course always static).
-
- if not Compile_Time_Known_Value (L1) then
- L1 := Type_Low_Bound (Base_Type (T1));
- end if;
-
- if not Compile_Time_Known_Value (H1) then
- H1 := Type_High_Bound (Base_Type (T1));
- end if;
-
- -- Fixed point types should be considered as such only if
- -- flag Fixed_Int is set to False.
-
- if Is_Floating_Point_Type (T1) or else Is_Floating_Point_Type (T2)
- or else (Is_Fixed_Point_Type (T1) and then not Fixed_Int)
- or else (Is_Fixed_Point_Type (T2) and then not Fixed_Int)
- then
- return
- Expr_Value_R (L2) <= Expr_Value_R (L1)
- and then
- Expr_Value_R (H2) >= Expr_Value_R (H1);
-
- else
- return
- Expr_Value (L2) <= Expr_Value (L1)
- and then
- Expr_Value (H2) >= Expr_Value (H1);
-
- end if;
- end if;
-
- -- If any exception occurs, it means that we have some bug in the compiler
- -- possibly triggered by a previous error, or by some unforeseen peculiar
- -- occurrence. However, this is only an optimization attempt, so there is
- -- really no point in crashing the compiler. Instead we just decide, too
- -- bad, we can't figure out the answer in this case after all.
-
- exception
- when others =>
-
- -- Debug flag K disables this behavior (useful for debugging)
-
- if Debug_Flag_K then
- raise;
- else
- return False;
- end if;
- end In_Subrange_Of;
-
- -----------------
- -- Is_In_Range --
- -----------------
-
- function Is_In_Range
- (N : Node_Id;
- Typ : Entity_Id;
- Fixed_Int : Boolean := False;
- Int_Real : Boolean := False) return Boolean
- is
- Val : Uint;
- Valr : Ureal;
-
- begin
- -- Universal types have no range limits, so always in range
-
- if Typ = Universal_Integer or else Typ = Universal_Real then
- return True;
-
- -- Never in range if not scalar type. Don't know if this can
- -- actually happen, but our spec allows it, so we must check!
-
- elsif not Is_Scalar_Type (Typ) then
- return False;
-
- -- Never in range unless we have a compile time known value
-
- elsif not Compile_Time_Known_Value (N) then
- return False;
-
- else
- declare
- Lo : constant Node_Id := Type_Low_Bound (Typ);
- Hi : constant Node_Id := Type_High_Bound (Typ);
- LB_Known : constant Boolean := Compile_Time_Known_Value (Lo);
- UB_Known : constant Boolean := Compile_Time_Known_Value (Hi);
-
- begin
- -- Fixed point types should be considered as such only in
- -- flag Fixed_Int is set to False.
-
- if Is_Floating_Point_Type (Typ)
- or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
- or else Int_Real
- then
- Valr := Expr_Value_R (N);
-
- if LB_Known and then Valr >= Expr_Value_R (Lo)
- and then UB_Known and then Valr <= Expr_Value_R (Hi)
- then
- return True;
- else
- return False;
- end if;
-
- else
- Val := Expr_Value (N);
-
- if LB_Known and then Val >= Expr_Value (Lo)
- and then UB_Known and then Val <= Expr_Value (Hi)
- then
- return True;
- else
- return False;
- end if;
- end if;
- end;
- end if;
- end Is_In_Range;
-
- -------------------
- -- Is_Null_Range --
- -------------------
-
- function Is_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
- Typ : constant Entity_Id := Etype (Lo);
-
- begin
- if not Compile_Time_Known_Value (Lo)
- or else not Compile_Time_Known_Value (Hi)
- then
- return False;
- end if;
-
- if Is_Discrete_Type (Typ) then
- return Expr_Value (Lo) > Expr_Value (Hi);
-
- else
- pragma Assert (Is_Real_Type (Typ));
- return Expr_Value_R (Lo) > Expr_Value_R (Hi);
- end if;
- end Is_Null_Range;
-
- -----------------------------
- -- Is_OK_Static_Expression --
- -----------------------------
-
- function Is_OK_Static_Expression (N : Node_Id) return Boolean is
- begin
- return Is_Static_Expression (N)
- and then not Raises_Constraint_Error (N);
- end Is_OK_Static_Expression;
-
- ------------------------
- -- Is_OK_Static_Range --
- ------------------------
-
- -- A static range is a range whose bounds are static expressions, or a
- -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
- -- We have already converted range attribute references, so we get the
- -- "or" part of this rule without needing a special test.
-
- function Is_OK_Static_Range (N : Node_Id) return Boolean is
- begin
- return Is_OK_Static_Expression (Low_Bound (N))
- and then Is_OK_Static_Expression (High_Bound (N));
- end Is_OK_Static_Range;
-
- --------------------------
- -- Is_OK_Static_Subtype --
- --------------------------
-
- -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
- -- where neither bound raises constraint error when evaluated.
-
- function Is_OK_Static_Subtype (Typ : Entity_Id) return Boolean is
- Base_T : constant Entity_Id := Base_Type (Typ);
- Anc_Subt : Entity_Id;
-
- begin
- -- First a quick check on the non static subtype flag. As described
- -- in further detail in Einfo, this flag is not decisive in all cases,
- -- but if it is set, then the subtype is definitely non-static.
-
- if Is_Non_Static_Subtype (Typ) then
- return False;
- end if;
-
- Anc_Subt := Ancestor_Subtype (Typ);
-
- if Anc_Subt = Empty then
- Anc_Subt := Base_T;
- end if;
-
- if Is_Generic_Type (Root_Type (Base_T))
- or else Is_Generic_Actual_Type (Base_T)
- then
- return False;
-
- -- String types
-
- elsif Is_String_Type (Typ) then
- return
- Ekind (Typ) = E_String_Literal_Subtype
- or else
- (Is_OK_Static_Subtype (Component_Type (Typ))
- and then Is_OK_Static_Subtype (Etype (First_Index (Typ))));
-
- -- Scalar types
-
- elsif Is_Scalar_Type (Typ) then
- if Base_T = Typ then
- return True;
-
- else
- -- Scalar_Range (Typ) might be an N_Subtype_Indication, so
- -- use Get_Type_Low,High_Bound.
-
- return Is_OK_Static_Subtype (Anc_Subt)
- and then Is_OK_Static_Expression (Type_Low_Bound (Typ))
- and then Is_OK_Static_Expression (Type_High_Bound (Typ));
- end if;
-
- -- Types other than string and scalar types are never static
-
- else
- return False;
- end if;
- end Is_OK_Static_Subtype;
-
- ---------------------
- -- Is_Out_Of_Range --
- ---------------------
-
- function Is_Out_Of_Range
- (N : Node_Id;
- Typ : Entity_Id;
- Fixed_Int : Boolean := False;
- Int_Real : Boolean := False) return Boolean
- is
- Val : Uint;
- Valr : Ureal;
-
- begin
- -- Universal types have no range limits, so always in range
-
- if Typ = Universal_Integer or else Typ = Universal_Real then
- return False;
-
- -- Never out of range if not scalar type. Don't know if this can
- -- actually happen, but our spec allows it, so we must check!
-
- elsif not Is_Scalar_Type (Typ) then
- return False;
-
- -- Never out of range if this is a generic type, since the bounds
- -- of generic types are junk. Note that if we only checked for
- -- static expressions (instead of compile time known values) below,
- -- we would not need this check, because values of a generic type
- -- can never be static, but they can be known at compile time.
-
- elsif Is_Generic_Type (Typ) then
- return False;
-
- -- Never out of range unless we have a compile time known value
-
- elsif not Compile_Time_Known_Value (N) then
- return False;
-
- else
- declare
- Lo : constant Node_Id := Type_Low_Bound (Typ);
- Hi : constant Node_Id := Type_High_Bound (Typ);
- LB_Known : constant Boolean := Compile_Time_Known_Value (Lo);
- UB_Known : constant Boolean := Compile_Time_Known_Value (Hi);
-
- begin
- -- Real types (note that fixed-point types are not treated
- -- as being of a real type if the flag Fixed_Int is set,
- -- since in that case they are regarded as integer types).
-
- if Is_Floating_Point_Type (Typ)
- or else (Is_Fixed_Point_Type (Typ) and then not Fixed_Int)
- or else Int_Real
- then
- Valr := Expr_Value_R (N);
-
- if LB_Known and then Valr < Expr_Value_R (Lo) then
- return True;
-
- elsif UB_Known and then Expr_Value_R (Hi) < Valr then
- return True;
-
- else
- return False;
- end if;
-
- else
- Val := Expr_Value (N);
-
- if LB_Known and then Val < Expr_Value (Lo) then
- return True;
-
- elsif UB_Known and then Expr_Value (Hi) < Val then
- return True;
-
- else
- return False;
- end if;
- end if;
- end;
- end if;
- end Is_Out_Of_Range;
-
- ---------------------
- -- Is_Static_Range --
- ---------------------
-
- -- A static range is a range whose bounds are static expressions, or a
- -- Range_Attribute_Reference equivalent to such a range (RM 4.9(26)).
- -- We have already converted range attribute references, so we get the
- -- "or" part of this rule without needing a special test.
-
- function Is_Static_Range (N : Node_Id) return Boolean is
- begin
- return Is_Static_Expression (Low_Bound (N))
- and then Is_Static_Expression (High_Bound (N));
- end Is_Static_Range;
-
- -----------------------
- -- Is_Static_Subtype --
- -----------------------
-
- -- Determines if Typ is a static subtype as defined in (RM 4.9(26))
-
- function Is_Static_Subtype (Typ : Entity_Id) return Boolean is
- Base_T : constant Entity_Id := Base_Type (Typ);
- Anc_Subt : Entity_Id;
-
- begin
- -- First a quick check on the non static subtype flag. As described
- -- in further detail in Einfo, this flag is not decisive in all cases,
- -- but if it is set, then the subtype is definitely non-static.
-
- if Is_Non_Static_Subtype (Typ) then
- return False;
- end if;
-
- Anc_Subt := Ancestor_Subtype (Typ);
-
- if Anc_Subt = Empty then
- Anc_Subt := Base_T;
- end if;
-
- if Is_Generic_Type (Root_Type (Base_T))
- or else Is_Generic_Actual_Type (Base_T)
- then
- return False;
-
- -- String types
-
- elsif Is_String_Type (Typ) then
- return
- Ekind (Typ) = E_String_Literal_Subtype
- or else
- (Is_Static_Subtype (Component_Type (Typ))
- and then Is_Static_Subtype (Etype (First_Index (Typ))));
-
- -- Scalar types
-
- elsif Is_Scalar_Type (Typ) then
- if Base_T = Typ then
- return True;
-
- else
- return Is_Static_Subtype (Anc_Subt)
- and then Is_Static_Expression (Type_Low_Bound (Typ))
- and then Is_Static_Expression (Type_High_Bound (Typ));
- end if;
-
- -- Types other than string and scalar types are never static
-
- else
- return False;
- end if;
- end Is_Static_Subtype;
-
- --------------------
- -- Not_Null_Range --
- --------------------
-
- function Not_Null_Range (Lo : Node_Id; Hi : Node_Id) return Boolean is
- Typ : constant Entity_Id := Etype (Lo);
-
- begin
- if not Compile_Time_Known_Value (Lo)
- or else not Compile_Time_Known_Value (Hi)
- then
- return False;
- end if;
-
- if Is_Discrete_Type (Typ) then
- return Expr_Value (Lo) <= Expr_Value (Hi);
-
- else
- pragma Assert (Is_Real_Type (Typ));
-
- return Expr_Value_R (Lo) <= Expr_Value_R (Hi);
- end if;
- end Not_Null_Range;
-
- -------------
- -- OK_Bits --
- -------------
-
- function OK_Bits (N : Node_Id; Bits : Uint) return Boolean is
- begin
- -- We allow a maximum of 500,000 bits which seems a reasonable limit
-
- if Bits < 500_000 then
- return True;
-
- else
- Error_Msg_N ("static value too large, capacity exceeded", N);
- return False;
- end if;
- end OK_Bits;
-
- ------------------
- -- Out_Of_Range --
- ------------------
-
- procedure Out_Of_Range (N : Node_Id) is
- begin
- -- If we have the static expression case, then this is an illegality
- -- in Ada 95 mode, except that in an instance, we never generate an
- -- error (if the error is legitimate, it was already diagnosed in
- -- the template). The expression to compute the length of a packed
- -- array is attached to the array type itself, and deserves a separate
- -- message.
-
- if Is_Static_Expression (N)
- and then not In_Instance
- and then not In_Inlined_Body
- and then Ada_Version >= Ada_95
- then
- if Nkind (Parent (N)) = N_Defining_Identifier
- and then Is_Array_Type (Parent (N))
- and then Present (Packed_Array_Type (Parent (N)))
- and then Present (First_Rep_Item (Parent (N)))
- then
- Error_Msg_N
- ("length of packed array must not exceed Integer''Last",
- First_Rep_Item (Parent (N)));
- Rewrite (N, Make_Integer_Literal (Sloc (N), Uint_1));
-
- else
- Apply_Compile_Time_Constraint_Error
- (N, "value not in range of}", CE_Range_Check_Failed);
- end if;
-
- -- Here we generate a warning for the Ada 83 case, or when we are
- -- in an instance, or when we have a non-static expression case.
-
- else
- Apply_Compile_Time_Constraint_Error
- (N, "value not in range of}?", CE_Range_Check_Failed);
- end if;
- end Out_Of_Range;
-
- -------------------------
- -- Rewrite_In_Raise_CE --
- -------------------------
-
- procedure Rewrite_In_Raise_CE (N : Node_Id; Exp : Node_Id) is
- Typ : constant Entity_Id := Etype (N);
-
- begin
- -- If we want to raise CE in the condition of a raise_CE node
- -- we may as well get rid of the condition
-
- if Present (Parent (N))
- and then Nkind (Parent (N)) = N_Raise_Constraint_Error
- then
- Set_Condition (Parent (N), Empty);
-
- -- If the expression raising CE is a N_Raise_CE node, we can use
- -- that one. We just preserve the type of the context
-
- elsif Nkind (Exp) = N_Raise_Constraint_Error then
- Rewrite (N, Exp);
- Set_Etype (N, Typ);
-
- -- We have to build an explicit raise_ce node
-
- else
- Rewrite (N,
- Make_Raise_Constraint_Error (Sloc (Exp),
- Reason => CE_Range_Check_Failed));
- Set_Raises_Constraint_Error (N);
- Set_Etype (N, Typ);
- end if;
- end Rewrite_In_Raise_CE;
-
- ---------------------
- -- String_Type_Len --
- ---------------------
-
- function String_Type_Len (Stype : Entity_Id) return Uint is
- NT : constant Entity_Id := Etype (First_Index (Stype));
- T : Entity_Id;
-
- begin
- if Is_OK_Static_Subtype (NT) then
- T := NT;
- else
- T := Base_Type (NT);
- end if;
-
- return Expr_Value (Type_High_Bound (T)) -
- Expr_Value (Type_Low_Bound (T)) + 1;
- end String_Type_Len;
-
- ------------------------------------
- -- Subtypes_Statically_Compatible --
- ------------------------------------
-
- function Subtypes_Statically_Compatible
- (T1 : Entity_Id;
- T2 : Entity_Id) return Boolean
- is
- begin
- if Is_Scalar_Type (T1) then
-
- -- Definitely compatible if we match
-
- if Subtypes_Statically_Match (T1, T2) then
- return True;
-
- -- If either subtype is nonstatic then they're not compatible
-
- elsif not Is_Static_Subtype (T1)
- or else not Is_Static_Subtype (T2)
- then
- return False;
-
- -- If either type has constraint error bounds, then consider that
- -- they match to avoid junk cascaded errors here.
-
- elsif not Is_OK_Static_Subtype (T1)
- or else not Is_OK_Static_Subtype (T2)
- then
- return True;
-
- -- Base types must match, but we don't check that (should
- -- we???) but we do at least check that both types are
- -- real, or both types are not real.
-
- elsif Is_Real_Type (T1) /= Is_Real_Type (T2) then
- return False;
-
- -- Here we check the bounds
-
- else
- declare
- LB1 : constant Node_Id := Type_Low_Bound (T1);
- HB1 : constant Node_Id := Type_High_Bound (T1);
- LB2 : constant Node_Id := Type_Low_Bound (T2);
- HB2 : constant Node_Id := Type_High_Bound (T2);
-
- begin
- if Is_Real_Type (T1) then
- return
- (Expr_Value_R (LB1) > Expr_Value_R (HB1))
- or else
- (Expr_Value_R (LB2) <= Expr_Value_R (LB1)
- and then
- Expr_Value_R (HB1) <= Expr_Value_R (HB2));
-
- else
- return
- (Expr_Value (LB1) > Expr_Value (HB1))
- or else
- (Expr_Value (LB2) <= Expr_Value (LB1)
- and then
- Expr_Value (HB1) <= Expr_Value (HB2));
- end if;
- end;
- end if;
-
- elsif Is_Access_Type (T1) then
- return not Is_Constrained (T2)
- or else Subtypes_Statically_Match
- (Designated_Type (T1), Designated_Type (T2));
-
- else
- return (Is_Composite_Type (T1) and then not Is_Constrained (T2))
- or else Subtypes_Statically_Match (T1, T2);
- end if;
- end Subtypes_Statically_Compatible;
-
- -------------------------------
- -- Subtypes_Statically_Match --
- -------------------------------
-
- -- Subtypes statically match if they have statically matching constraints
- -- (RM 4.9.1(2)). Constraints statically match if there are none, or if
- -- they are the same identical constraint, or if they are static and the
- -- values match (RM 4.9.1(1)).
-
- function Subtypes_Statically_Match (T1, T2 : Entity_Id) return Boolean is
- begin
- -- A type always statically matches itself
-
- if T1 = T2 then
- return True;
-
- -- Scalar types
-
- elsif Is_Scalar_Type (T1) then
-
- -- Base types must be the same
-
- if Base_Type (T1) /= Base_Type (T2) then
- return False;
- end if;
-
- -- A constrained numeric subtype never matches an unconstrained
- -- subtype, i.e. both types must be constrained or unconstrained.
-
- -- To understand the requirement for this test, see RM 4.9.1(1).
- -- As is made clear in RM 3.5.4(11), type Integer, for example
- -- is a constrained subtype with constraint bounds matching the
- -- bounds of its corresponding unconstrained base type. In this
- -- situation, Integer and Integer'Base do not statically match,
- -- even though they have the same bounds.
-
- -- We only apply this test to types in Standard and types that
- -- appear in user programs. That way, we do not have to be
- -- too careful about setting Is_Constrained right for itypes.
-
- if Is_Numeric_Type (T1)
- and then (Is_Constrained (T1) /= Is_Constrained (T2))
- and then (Scope (T1) = Standard_Standard
- or else Comes_From_Source (T1))
- and then (Scope (T2) = Standard_Standard
- or else Comes_From_Source (T2))
- then
- return False;
-
- -- A generic scalar type does not statically match its base
- -- type (AI-311). In this case we make sure that the formals,
- -- which are first subtypes of their bases, are constrained.
-
- elsif Is_Generic_Type (T1)
- and then Is_Generic_Type (T2)
- and then (Is_Constrained (T1) /= Is_Constrained (T2))
- then
- return False;
- end if;
-
- -- If there was an error in either range, then just assume
- -- the types statically match to avoid further junk errors
-
- if Error_Posted (Scalar_Range (T1))
- or else
- Error_Posted (Scalar_Range (T2))
- then
- return True;
- end if;
-
- -- Otherwise both types have bound that can be compared
-
- declare
- LB1 : constant Node_Id := Type_Low_Bound (T1);
- HB1 : constant Node_Id := Type_High_Bound (T1);
- LB2 : constant Node_Id := Type_Low_Bound (T2);
- HB2 : constant Node_Id := Type_High_Bound (T2);
-
- begin
- -- If the bounds are the same tree node, then match
-
- if LB1 = LB2 and then HB1 = HB2 then
- return True;
-
- -- Otherwise bounds must be static and identical value
-
- else
- if not Is_Static_Subtype (T1)
- or else not Is_Static_Subtype (T2)
- then
- return False;
-
- -- If either type has constraint error bounds, then say
- -- that they match to avoid junk cascaded errors here.
-
- elsif not Is_OK_Static_Subtype (T1)
- or else not Is_OK_Static_Subtype (T2)
- then
- return True;
-
- elsif Is_Real_Type (T1) then
- return
- (Expr_Value_R (LB1) = Expr_Value_R (LB2))
- and then
- (Expr_Value_R (HB1) = Expr_Value_R (HB2));
-
- else
- return
- Expr_Value (LB1) = Expr_Value (LB2)
- and then
- Expr_Value (HB1) = Expr_Value (HB2);
- end if;
- end if;
- end;
-
- -- Type with discriminants
-
- elsif Has_Discriminants (T1) or else Has_Discriminants (T2) then
-
- -- Because of view exchanges in multiple instantiations, conformance
- -- checking might try to match a partial view of a type with no
- -- discriminants with a full view that has defaulted discriminants.
- -- In such a case, use the discriminant constraint of the full view,
- -- which must exist because we know that the two subtypes have the
- -- same base type.
-
- if Has_Discriminants (T1) /= Has_Discriminants (T2) then
- if In_Instance then
- if Is_Private_Type (T2)
- and then Present (Full_View (T2))
- and then Has_Discriminants (Full_View (T2))
- then
- return Subtypes_Statically_Match (T1, Full_View (T2));
-
- elsif Is_Private_Type (T1)
- and then Present (Full_View (T1))
- and then Has_Discriminants (Full_View (T1))
- then
- return Subtypes_Statically_Match (Full_View (T1), T2);
-
- else
- return False;
- end if;
- else
- return False;
- end if;
- end if;
-
- declare
- DL1 : constant Elist_Id := Discriminant_Constraint (T1);
- DL2 : constant Elist_Id := Discriminant_Constraint (T2);
-
- DA1 : Elmt_Id;
- DA2 : Elmt_Id;
-
- begin
- if DL1 = DL2 then
- return True;
- elsif Is_Constrained (T1) /= Is_Constrained (T2) then
- return False;
- end if;
-
- -- Now loop through the discriminant constraints
-
- -- Note: the guard here seems necessary, since it is possible at
- -- least for DL1 to be No_Elist. Not clear this is reasonable ???
-
- if Present (DL1) and then Present (DL2) then
- DA1 := First_Elmt (DL1);
- DA2 := First_Elmt (DL2);
- while Present (DA1) loop
- declare
- Expr1 : constant Node_Id := Node (DA1);
- Expr2 : constant Node_Id := Node (DA2);
-
- begin
- if not Is_Static_Expression (Expr1)
- or else not Is_Static_Expression (Expr2)
- then
- return False;
-
- -- If either expression raised a constraint error,
- -- consider the expressions as matching, since this
- -- helps to prevent cascading errors.
-
- elsif Raises_Constraint_Error (Expr1)
- or else Raises_Constraint_Error (Expr2)
- then
- null;
-
- elsif Expr_Value (Expr1) /= Expr_Value (Expr2) then
- return False;
- end if;
- end;
-
- Next_Elmt (DA1);
- Next_Elmt (DA2);
- end loop;
- end if;
- end;
-
- return True;
-
- -- A definite type does not match an indefinite or classwide type
- -- However, a generic type with unknown discriminants may be
- -- instantiated with a type with no discriminants, and conformance
- -- checking on an inherited operation may compare the actual with
- -- the subtype that renames it in the instance.
-
- elsif
- Has_Unknown_Discriminants (T1) /= Has_Unknown_Discriminants (T2)
- then
- return
- Is_Generic_Actual_Type (T1) or else Is_Generic_Actual_Type (T2);
-
- -- Array type
-
- elsif Is_Array_Type (T1) then
-
- -- If either subtype is unconstrained then both must be,
- -- and if both are unconstrained then no further checking
- -- is needed.
-
- if not Is_Constrained (T1) or else not Is_Constrained (T2) then
- return not (Is_Constrained (T1) or else Is_Constrained (T2));
- end if;
-
- -- Both subtypes are constrained, so check that the index
- -- subtypes statically match.
-
- declare
- Index1 : Node_Id := First_Index (T1);
- Index2 : Node_Id := First_Index (T2);
-
- begin
- while Present (Index1) loop
- if not
- Subtypes_Statically_Match (Etype (Index1), Etype (Index2))
- then
- return False;
- end if;
-
- Next_Index (Index1);
- Next_Index (Index2);
- end loop;
-
- return True;
- end;
-
- elsif Is_Access_Type (T1) then
- if Can_Never_Be_Null (T1) /= Can_Never_Be_Null (T2) then
- return False;
-
- elsif Ekind (T1) = E_Access_Subprogram_Type
- or else Ekind (T1) = E_Anonymous_Access_Subprogram_Type
- then
- return
- Subtype_Conformant
- (Designated_Type (T1),
- Designated_Type (T2));
- else
- return
- Subtypes_Statically_Match
- (Designated_Type (T1),
- Designated_Type (T2))
- and then Is_Access_Constant (T1) = Is_Access_Constant (T2);
- end if;
-
- -- All other types definitely match
-
- else
- return True;
- end if;
- end Subtypes_Statically_Match;
-
- ----------
- -- Test --
- ----------
-
- function Test (Cond : Boolean) return Uint is
- begin
- if Cond then
- return Uint_1;
- else
- return Uint_0;
- end if;
- end Test;
-
- ---------------------------------
- -- Test_Expression_Is_Foldable --
- ---------------------------------
-
- -- One operand case
-
- procedure Test_Expression_Is_Foldable
- (N : Node_Id;
- Op1 : Node_Id;
- Stat : out Boolean;
- Fold : out Boolean)
- is
- begin
- Stat := False;
- Fold := False;
-
- if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
- return;
- end if;
-
- -- If operand is Any_Type, just propagate to result and do not
- -- try to fold, this prevents cascaded errors.
-
- if Etype (Op1) = Any_Type then
- Set_Etype (N, Any_Type);
- return;
-
- -- If operand raises constraint error, then replace node N with the
- -- raise constraint error node, and we are obviously not foldable.
- -- Note that this replacement inherits the Is_Static_Expression flag
- -- from the operand.
-
- elsif Raises_Constraint_Error (Op1) then
- Rewrite_In_Raise_CE (N, Op1);
- return;
-
- -- If the operand is not static, then the result is not static, and
- -- all we have to do is to check the operand since it is now known
- -- to appear in a non-static context.
-
- elsif not Is_Static_Expression (Op1) then
- Check_Non_Static_Context (Op1);
- Fold := Compile_Time_Known_Value (Op1);
- return;
-
- -- An expression of a formal modular type is not foldable because
- -- the modulus is unknown.
-
- elsif Is_Modular_Integer_Type (Etype (Op1))
- and then Is_Generic_Type (Etype (Op1))
- then
- Check_Non_Static_Context (Op1);
- return;
-
- -- Here we have the case of an operand whose type is OK, which is
- -- static, and which does not raise constraint error, we can fold.
-
- else
- Set_Is_Static_Expression (N);
- Fold := True;
- Stat := True;
- end if;
- end Test_Expression_Is_Foldable;
-
- -- Two operand case
-
- procedure Test_Expression_Is_Foldable
- (N : Node_Id;
- Op1 : Node_Id;
- Op2 : Node_Id;
- Stat : out Boolean;
- Fold : out Boolean)
- is
- Rstat : constant Boolean := Is_Static_Expression (Op1)
- and then Is_Static_Expression (Op2);
-
- begin
- Stat := False;
- Fold := False;
-
- if Debug_Flag_Dot_F and then In_Extended_Main_Source_Unit (N) then
- return;
- end if;
-
- -- If either operand is Any_Type, just propagate to result and
- -- do not try to fold, this prevents cascaded errors.
-
- if Etype (Op1) = Any_Type or else Etype (Op2) = Any_Type then
- Set_Etype (N, Any_Type);
- return;
-
- -- If left operand raises constraint error, then replace node N with
- -- the raise constraint error node, and we are obviously not foldable.
- -- Is_Static_Expression is set from the two operands in the normal way,
- -- and we check the right operand if it is in a non-static context.
-
- elsif Raises_Constraint_Error (Op1) then
- if not Rstat then
- Check_Non_Static_Context (Op2);
- end if;
-
- Rewrite_In_Raise_CE (N, Op1);
- Set_Is_Static_Expression (N, Rstat);
- return;
-
- -- Similar processing for the case of the right operand. Note that
- -- we don't use this routine for the short-circuit case, so we do
- -- not have to worry about that special case here.
-
- elsif Raises_Constraint_Error (Op2) then
- if not Rstat then
- Check_Non_Static_Context (Op1);
- end if;
-
- Rewrite_In_Raise_CE (N, Op2);
- Set_Is_Static_Expression (N, Rstat);
- return;
-
- -- Exclude expressions of a generic modular type, as above
-
- elsif Is_Modular_Integer_Type (Etype (Op1))
- and then Is_Generic_Type (Etype (Op1))
- then
- Check_Non_Static_Context (Op1);
- return;
-
- -- If result is not static, then check non-static contexts on operands
- -- since one of them may be static and the other one may not be static
-
- elsif not Rstat then
- Check_Non_Static_Context (Op1);
- Check_Non_Static_Context (Op2);
- Fold := Compile_Time_Known_Value (Op1)
- and then Compile_Time_Known_Value (Op2);
- return;
-
- -- Else result is static and foldable. Both operands are static,
- -- and neither raises constraint error, so we can definitely fold.
-
- else
- Set_Is_Static_Expression (N);
- Fold := True;
- Stat := True;
- return;
- end if;
- end Test_Expression_Is_Foldable;
-
- --------------
- -- To_Bits --
- --------------
-
- procedure To_Bits (U : Uint; B : out Bits) is
- begin
- for J in 0 .. B'Last loop
- B (J) := (U / (2 ** J)) mod 2 /= 0;
- end loop;
- end To_Bits;
-
- --------------------
- -- Why_Not_Static --
- --------------------
-
- procedure Why_Not_Static (Expr : Node_Id) is
- N : constant Node_Id := Original_Node (Expr);
- Typ : Entity_Id;
- E : Entity_Id;
-
- procedure Why_Not_Static_List (L : List_Id);
- -- A version that can be called on a list of expressions. Finds
- -- all non-static violations in any element of the list.
-
- -------------------------
- -- Why_Not_Static_List --
- -------------------------
-
- procedure Why_Not_Static_List (L : List_Id) is
- N : Node_Id;
-
- begin
- if Is_Non_Empty_List (L) then
- N := First (L);
- while Present (N) loop
- Why_Not_Static (N);
- Next (N);
- end loop;
- end if;
- end Why_Not_Static_List;
-
- -- Start of processing for Why_Not_Static
-
- begin
- -- If in ACATS mode (debug flag 2), then suppress all these
- -- messages, this avoids massive updates to the ACATS base line.
-
- if Debug_Flag_2 then
- return;
- end if;
-
- -- Ignore call on error or empty node
-
- if No (Expr) or else Nkind (Expr) = N_Error then
- return;
- end if;
-
- -- Preprocessing for sub expressions
-
- if Nkind (Expr) in N_Subexpr then
-
- -- Nothing to do if expression is static
-
- if Is_OK_Static_Expression (Expr) then
- return;
- end if;
-
- -- Test for constraint error raised
-
- if Raises_Constraint_Error (Expr) then
- Error_Msg_N
- ("expression raises exception, cannot be static " &
- "(RM 4.9(34))!", N);
- return;
- end if;
-
- -- If no type, then something is pretty wrong, so ignore
-
- Typ := Etype (Expr);
-
- if No (Typ) then
- return;
- end if;
-
- -- Type must be scalar or string type
-
- if not Is_Scalar_Type (Typ)
- and then not Is_String_Type (Typ)
- then
- Error_Msg_N
- ("static expression must have scalar or string type " &
- "(RM 4.9(2))!", N);
- return;
- end if;
- end if;
-
- -- If we got through those checks, test particular node kind
-
- case Nkind (N) is
- when N_Expanded_Name | N_Identifier | N_Operator_Symbol =>
- E := Entity (N);
-
- if Is_Named_Number (E) then
- null;
-
- elsif Ekind (E) = E_Constant then
- if not Is_Static_Expression (Constant_Value (E)) then
- Error_Msg_NE
- ("& is not a static constant (RM 4.9(5))!", N, E);
- end if;
-
- else
- Error_Msg_NE
- ("& is not static constant or named number " &
- "(RM 4.9(5))!", N, E);
- end if;
-
- when N_Binary_Op | N_And_Then | N_Or_Else | N_Membership_Test =>
- if Nkind (N) in N_Op_Shift then
- Error_Msg_N
- ("shift functions are never static (RM 4.9(6,18))!", N);
-
- else
- Why_Not_Static (Left_Opnd (N));
- Why_Not_Static (Right_Opnd (N));
- end if;
-
- when N_Unary_Op =>
- Why_Not_Static (Right_Opnd (N));
-
- when N_Attribute_Reference =>
- Why_Not_Static_List (Expressions (N));
-
- E := Etype (Prefix (N));
-
- if E = Standard_Void_Type then
- return;
- end if;
-
- -- Special case non-scalar'Size since this is a common error
-
- if Attribute_Name (N) = Name_Size then
- Error_Msg_N
- ("size attribute is only static for scalar type " &
- "(RM 4.9(7,8))", N);
-
- -- Flag array cases
-
- elsif Is_Array_Type (E) then
- if Attribute_Name (N) /= Name_First
- and then
- Attribute_Name (N) /= Name_Last
- and then
- Attribute_Name (N) /= Name_Length
- then
- Error_Msg_N
- ("static array attribute must be Length, First, or Last " &
- "(RM 4.9(8))!", N);
-
- -- Since we know the expression is not-static (we already
- -- tested for this, must mean array is not static).
-
- else
- Error_Msg_N
- ("prefix is non-static array (RM 4.9(8))!", Prefix (N));
- end if;
-
- return;
-
- -- Special case generic types, since again this is a common
- -- source of confusion.
-
- elsif Is_Generic_Actual_Type (E)
- or else
- Is_Generic_Type (E)
- then
- Error_Msg_N
- ("attribute of generic type is never static " &
- "(RM 4.9(7,8))!", N);
-
- elsif Is_Static_Subtype (E) then
- null;
-
- elsif Is_Scalar_Type (E) then
- Error_Msg_N
- ("prefix type for attribute is not static scalar subtype " &
- "(RM 4.9(7))!", N);
-
- else
- Error_Msg_N
- ("static attribute must apply to array/scalar type " &
- "(RM 4.9(7,8))!", N);
- end if;
-
- when N_String_Literal =>
- Error_Msg_N
- ("subtype of string literal is non-static (RM 4.9(4))!", N);
-
- when N_Explicit_Dereference =>
- Error_Msg_N
- ("explicit dereference is never static (RM 4.9)!", N);
-
- when N_Function_Call =>
- Why_Not_Static_List (Parameter_Associations (N));
- Error_Msg_N ("non-static function call (RM 4.9(6,18))!", N);
-
- when N_Parameter_Association =>
- Why_Not_Static (Explicit_Actual_Parameter (N));
-
- when N_Indexed_Component =>
- Error_Msg_N
- ("indexed component is never static (RM 4.9)!", N);
-
- when N_Procedure_Call_Statement =>
- Error_Msg_N
- ("procedure call is never static (RM 4.9)!", N);
-
- when N_Qualified_Expression =>
- Why_Not_Static (Expression (N));
-
- when N_Aggregate | N_Extension_Aggregate =>
- Error_Msg_N
- ("an aggregate is never static (RM 4.9)!", N);
-
- when N_Range =>
- Why_Not_Static (Low_Bound (N));
- Why_Not_Static (High_Bound (N));
-
- when N_Range_Constraint =>
- Why_Not_Static (Range_Expression (N));
-
- when N_Subtype_Indication =>
- Why_Not_Static (Constraint (N));
-
- when N_Selected_Component =>
- Error_Msg_N
- ("selected component is never static (RM 4.9)!", N);
-
- when N_Slice =>
- Error_Msg_N
- ("slice is never static (RM 4.9)!", N);
-
- when N_Type_Conversion =>
- Why_Not_Static (Expression (N));
-
- if not Is_Scalar_Type (Etype (Prefix (N)))
- or else not Is_Static_Subtype (Etype (Prefix (N)))
- then
- Error_Msg_N
- ("static conversion requires static scalar subtype result " &
- "(RM 4.9(9))!", N);
- end if;
-
- when N_Unchecked_Type_Conversion =>
- Error_Msg_N
- ("unchecked type conversion is never static (RM 4.9)!", N);
-
- when others =>
- null;
-
- end case;
- end Why_Not_Static;
-
-end Sem_Eval;