aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/sem_ch6.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/sem_ch6.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/sem_ch6.adb8346
1 files changed, 0 insertions, 8346 deletions
diff --git a/gcc-4.4.3/gcc/ada/sem_ch6.adb b/gcc-4.4.3/gcc/ada/sem_ch6.adb
deleted file mode 100644
index a2a5078d6..000000000
--- a/gcc-4.4.3/gcc/ada/sem_ch6.adb
+++ /dev/null
@@ -1,8346 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- S E M _ C H 6 --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Checks; use Checks;
-with Debug; use Debug;
-with Einfo; use Einfo;
-with Elists; use Elists;
-with Errout; use Errout;
-with Expander; use Expander;
-with Exp_Ch6; use Exp_Ch6;
-with Exp_Ch7; use Exp_Ch7;
-with Exp_Ch9; use Exp_Ch9;
-with Exp_Disp; use Exp_Disp;
-with Exp_Tss; use Exp_Tss;
-with Exp_Util; use Exp_Util;
-with Fname; use Fname;
-with Freeze; use Freeze;
-with Itypes; use Itypes;
-with Lib.Xref; use Lib.Xref;
-with Layout; use Layout;
-with Namet; use Namet;
-with Lib; use Lib;
-with Nlists; use Nlists;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Output; use Output;
-with Rtsfind; use Rtsfind;
-with Sem; use Sem;
-with Sem_Cat; use Sem_Cat;
-with Sem_Ch3; use Sem_Ch3;
-with Sem_Ch4; use Sem_Ch4;
-with Sem_Ch5; use Sem_Ch5;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Ch10; use Sem_Ch10;
-with Sem_Ch12; use Sem_Ch12;
-with Sem_Disp; use Sem_Disp;
-with Sem_Dist; use Sem_Dist;
-with Sem_Elim; use Sem_Elim;
-with Sem_Eval; use Sem_Eval;
-with Sem_Mech; use Sem_Mech;
-with Sem_Prag; use Sem_Prag;
-with Sem_Res; use Sem_Res;
-with Sem_Util; use Sem_Util;
-with Sem_Type; use Sem_Type;
-with Sem_Warn; use Sem_Warn;
-with Sinput; use Sinput;
-with Stand; use Stand;
-with Sinfo; use Sinfo;
-with Sinfo.CN; use Sinfo.CN;
-with Snames; use Snames;
-with Stringt; use Stringt;
-with Style;
-with Stylesw; use Stylesw;
-with Tbuild; use Tbuild;
-with Uintp; use Uintp;
-with Urealp; use Urealp;
-with Validsw; use Validsw;
-
-package body Sem_Ch6 is
-
- May_Hide_Profile : Boolean := False;
- -- This flag is used to indicate that two formals in two subprograms being
- -- checked for conformance differ only in that one is an access parameter
- -- while the other is of a general access type with the same designated
- -- type. In this case, if the rest of the signatures match, a call to
- -- either subprogram may be ambiguous, which is worth a warning. The flag
- -- is set in Compatible_Types, and the warning emitted in
- -- New_Overloaded_Entity.
-
- -----------------------
- -- Local Subprograms --
- -----------------------
-
- procedure Analyze_Return_Statement (N : Node_Id);
- -- Common processing for simple_ and extended_return_statements
-
- procedure Analyze_Function_Return (N : Node_Id);
- -- Subsidiary to Analyze_Return_Statement. Called when the return statement
- -- applies to a [generic] function.
-
- procedure Analyze_Return_Type (N : Node_Id);
- -- Subsidiary to Process_Formals: analyze subtype mark in function
- -- specification, in a context where the formals are visible and hide
- -- outer homographs.
-
- procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
- -- Analyze a generic subprogram body. N is the body to be analyzed, and
- -- Gen_Id is the defining entity Id for the corresponding spec.
-
- procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
- -- If a subprogram has pragma Inline and inlining is active, use generic
- -- machinery to build an unexpanded body for the subprogram. This body is
- -- subsequently used for inline expansions at call sites. If subprogram can
- -- be inlined (depending on size and nature of local declarations) this
- -- function returns true. Otherwise subprogram body is treated normally.
- -- If proper warnings are enabled and the subprogram contains a construct
- -- that cannot be inlined, the offending construct is flagged accordingly.
-
- procedure Check_Conformance
- (New_Id : Entity_Id;
- Old_Id : Entity_Id;
- Ctype : Conformance_Type;
- Errmsg : Boolean;
- Conforms : out Boolean;
- Err_Loc : Node_Id := Empty;
- Get_Inst : Boolean := False;
- Skip_Controlling_Formals : Boolean := False);
- -- Given two entities, this procedure checks that the profiles associated
- -- with these entities meet the conformance criterion given by the third
- -- parameter. If they conform, Conforms is set True and control returns
- -- to the caller. If they do not conform, Conforms is set to False, and
- -- in addition, if Errmsg is True on the call, proper messages are output
- -- to complain about the conformance failure. If Err_Loc is non_Empty
- -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
- -- error messages are placed on the appropriate part of the construct
- -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
- -- against a formal access-to-subprogram type so Get_Instance_Of must
- -- be called.
-
- procedure Check_Subprogram_Order (N : Node_Id);
- -- N is the N_Subprogram_Body node for a subprogram. This routine applies
- -- the alpha ordering rule for N if this ordering requirement applicable.
-
- procedure Check_Returns
- (HSS : Node_Id;
- Mode : Character;
- Err : out Boolean;
- Proc : Entity_Id := Empty);
- -- Called to check for missing return statements in a function body, or for
- -- returns present in a procedure body which has No_Return set. HSS is the
- -- handled statement sequence for the subprogram body. This procedure
- -- checks all flow paths to make sure they either have return (Mode = 'F',
- -- used for functions) or do not have a return (Mode = 'P', used for
- -- No_Return procedures). The flag Err is set if there are any control
- -- paths not explicitly terminated by a return in the function case, and is
- -- True otherwise. Proc is the entity for the procedure case and is used
- -- in posting the warning message.
-
- procedure Enter_Overloaded_Entity (S : Entity_Id);
- -- This procedure makes S, a new overloaded entity, into the first visible
- -- entity with that name.
-
- procedure Install_Entity (E : Entity_Id);
- -- Make single entity visible. Used for generic formals as well
-
- function Is_Non_Overriding_Operation
- (Prev_E : Entity_Id;
- New_E : Entity_Id) return Boolean;
- -- Enforce the rule given in 12.3(18): a private operation in an instance
- -- overrides an inherited operation only if the corresponding operation
- -- was overriding in the generic. This can happen for primitive operations
- -- of types derived (in the generic unit) from formal private or formal
- -- derived types.
-
- procedure Make_Inequality_Operator (S : Entity_Id);
- -- Create the declaration for an inequality operator that is implicitly
- -- created by a user-defined equality operator that yields a boolean.
-
- procedure May_Need_Actuals (Fun : Entity_Id);
- -- Flag functions that can be called without parameters, i.e. those that
- -- have no parameters, or those for which defaults exist for all parameters
-
- procedure Process_PPCs
- (N : Node_Id;
- Spec_Id : Entity_Id;
- Body_Id : Entity_Id);
- -- Called from Analyze_Body to deal with scanning post conditions for the
- -- body and assembling and inserting the _postconditions procedure. N is
- -- the node for the subprogram body and Body_Id/Spec_Id are the entities
- -- for the body and separate spec (if there is no separate spec, Spec_Id
- -- is Empty).
-
- procedure Set_Formal_Validity (Formal_Id : Entity_Id);
- -- Formal_Id is an formal parameter entity. This procedure deals with
- -- setting the proper validity status for this entity, which depends
- -- on the kind of parameter and the validity checking mode.
-
- ------------------------------
- -- Analyze_Return_Statement --
- ------------------------------
-
- procedure Analyze_Return_Statement (N : Node_Id) is
-
- pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
- N_Extended_Return_Statement));
-
- Returns_Object : constant Boolean :=
- Nkind (N) = N_Extended_Return_Statement
- or else
- (Nkind (N) = N_Simple_Return_Statement
- and then Present (Expression (N)));
- -- True if we're returning something; that is, "return <expression>;"
- -- or "return Result : T [:= ...]". False for "return;". Used for error
- -- checking: If Returns_Object is True, N should apply to a function
- -- body; otherwise N should apply to a procedure body, entry body,
- -- accept statement, or extended return statement.
-
- function Find_What_It_Applies_To return Entity_Id;
- -- Find the entity representing the innermost enclosing body, accept
- -- statement, or extended return statement. If the result is a callable
- -- construct or extended return statement, then this will be the value
- -- of the Return_Applies_To attribute. Otherwise, the program is
- -- illegal. See RM-6.5(4/2).
-
- -----------------------------
- -- Find_What_It_Applies_To --
- -----------------------------
-
- function Find_What_It_Applies_To return Entity_Id is
- Result : Entity_Id := Empty;
-
- begin
- -- Loop outward through the Scope_Stack, skipping blocks and loops
-
- for J in reverse 0 .. Scope_Stack.Last loop
- Result := Scope_Stack.Table (J).Entity;
- exit when Ekind (Result) /= E_Block and then
- Ekind (Result) /= E_Loop;
- end loop;
-
- pragma Assert (Present (Result));
- return Result;
- end Find_What_It_Applies_To;
-
- -- Local declarations
-
- Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
- Kind : constant Entity_Kind := Ekind (Scope_Id);
- Loc : constant Source_Ptr := Sloc (N);
- Stm_Entity : constant Entity_Id :=
- New_Internal_Entity
- (E_Return_Statement, Current_Scope, Loc, 'R');
-
- -- Start of processing for Analyze_Return_Statement
-
- begin
- Set_Return_Statement_Entity (N, Stm_Entity);
-
- Set_Etype (Stm_Entity, Standard_Void_Type);
- Set_Return_Applies_To (Stm_Entity, Scope_Id);
-
- -- Place Return entity on scope stack, to simplify enforcement of 6.5
- -- (4/2): an inner return statement will apply to this extended return.
-
- if Nkind (N) = N_Extended_Return_Statement then
- Push_Scope (Stm_Entity);
- end if;
-
- -- Check that pragma No_Return is obeyed
-
- if No_Return (Scope_Id) then
- Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
- end if;
-
- -- Warn on any unassigned OUT parameters if in procedure
-
- if Ekind (Scope_Id) = E_Procedure then
- Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
- end if;
-
- -- Check that functions return objects, and other things do not
-
- if Kind = E_Function or else Kind = E_Generic_Function then
- if not Returns_Object then
- Error_Msg_N ("missing expression in return from function", N);
- end if;
-
- elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
- if Returns_Object then
- Error_Msg_N ("procedure cannot return value (use function)", N);
- end if;
-
- elsif Kind = E_Entry or else Kind = E_Entry_Family then
- if Returns_Object then
- if Is_Protected_Type (Scope (Scope_Id)) then
- Error_Msg_N ("entry body cannot return value", N);
- else
- Error_Msg_N ("accept statement cannot return value", N);
- end if;
- end if;
-
- elsif Kind = E_Return_Statement then
-
- -- We are nested within another return statement, which must be an
- -- extended_return_statement.
-
- if Returns_Object then
- Error_Msg_N
- ("extended_return_statement cannot return value; " &
- "use `""RETURN;""`", N);
- end if;
-
- else
- Error_Msg_N ("illegal context for return statement", N);
- end if;
-
- if Kind = E_Function or else Kind = E_Generic_Function then
- Analyze_Function_Return (N);
- end if;
-
- if Nkind (N) = N_Extended_Return_Statement then
- End_Scope;
- end if;
-
- Kill_Current_Values (Last_Assignment_Only => True);
- Check_Unreachable_Code (N);
- end Analyze_Return_Statement;
-
- ---------------------------------------------
- -- Analyze_Abstract_Subprogram_Declaration --
- ---------------------------------------------
-
- procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
- Designator : constant Entity_Id :=
- Analyze_Subprogram_Specification (Specification (N));
- Scop : constant Entity_Id := Current_Scope;
-
- begin
- Generate_Definition (Designator);
- Set_Is_Abstract_Subprogram (Designator);
- New_Overloaded_Entity (Designator);
- Check_Delayed_Subprogram (Designator);
-
- Set_Categorization_From_Scope (Designator, Scop);
-
- if Ekind (Scope (Designator)) = E_Protected_Type then
- Error_Msg_N
- ("abstract subprogram not allowed in protected type", N);
-
- -- Issue a warning if the abstract subprogram is neither a dispatching
- -- operation nor an operation that overrides an inherited subprogram or
- -- predefined operator, since this most likely indicates a mistake.
-
- elsif Warn_On_Redundant_Constructs
- and then not Is_Dispatching_Operation (Designator)
- and then not Is_Overriding_Operation (Designator)
- and then (not Is_Operator_Symbol_Name (Chars (Designator))
- or else Scop /= Scope (Etype (First_Formal (Designator))))
- then
- Error_Msg_N
- ("?abstract subprogram is not dispatching or overriding", N);
- end if;
-
- Generate_Reference_To_Formals (Designator);
- end Analyze_Abstract_Subprogram_Declaration;
-
- ----------------------------------------
- -- Analyze_Extended_Return_Statement --
- ----------------------------------------
-
- procedure Analyze_Extended_Return_Statement (N : Node_Id) is
- begin
- Analyze_Return_Statement (N);
- end Analyze_Extended_Return_Statement;
-
- ----------------------------
- -- Analyze_Function_Call --
- ----------------------------
-
- procedure Analyze_Function_Call (N : Node_Id) is
- P : constant Node_Id := Name (N);
- L : constant List_Id := Parameter_Associations (N);
- Actual : Node_Id;
-
- begin
- Analyze (P);
-
- -- A call of the form A.B (X) may be an Ada05 call, which is rewritten
- -- as B (A, X). If the rewriting is successful, the call has been
- -- analyzed and we just return.
-
- if Nkind (P) = N_Selected_Component
- and then Name (N) /= P
- and then Is_Rewrite_Substitution (N)
- and then Present (Etype (N))
- then
- return;
- end if;
-
- -- If error analyzing name, then set Any_Type as result type and return
-
- if Etype (P) = Any_Type then
- Set_Etype (N, Any_Type);
- return;
- end if;
-
- -- Otherwise analyze the parameters
-
- if Present (L) then
- Actual := First (L);
- while Present (Actual) loop
- Analyze (Actual);
- Check_Parameterless_Call (Actual);
- Next (Actual);
- end loop;
- end if;
-
- Analyze_Call (N);
- end Analyze_Function_Call;
-
- -----------------------------
- -- Analyze_Function_Return --
- -----------------------------
-
- procedure Analyze_Function_Return (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
- Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
-
- R_Type : constant Entity_Id := Etype (Scope_Id);
- -- Function result subtype
-
- procedure Check_Limited_Return (Expr : Node_Id);
- -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
- -- limited types. Used only for simple return statements.
- -- Expr is the expression returned.
-
- procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
- -- Check that the return_subtype_indication properly matches the result
- -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
-
- --------------------------
- -- Check_Limited_Return --
- --------------------------
-
- procedure Check_Limited_Return (Expr : Node_Id) is
- begin
- -- Ada 2005 (AI-318-02): Return-by-reference types have been
- -- removed and replaced by anonymous access results. This is an
- -- incompatibility with Ada 95. Not clear whether this should be
- -- enforced yet or perhaps controllable with special switch. ???
-
- if Is_Limited_Type (R_Type)
- and then Comes_From_Source (N)
- and then not In_Instance_Body
- and then not OK_For_Limited_Init_In_05 (Expr)
- then
- -- Error in Ada 2005
-
- if Ada_Version >= Ada_05
- and then not Debug_Flag_Dot_L
- and then not GNAT_Mode
- then
- Error_Msg_N
- ("(Ada 2005) cannot copy object of a limited type " &
- "(RM-2005 6.5(5.5/2))", Expr);
- if Is_Inherently_Limited_Type (R_Type) then
- Error_Msg_N
- ("\return by reference not permitted in Ada 2005", Expr);
- end if;
-
- -- Warn in Ada 95 mode, to give folks a heads up about this
- -- incompatibility.
-
- -- In GNAT mode, this is just a warning, to allow it to be
- -- evilly turned off. Otherwise it is a real error.
-
- elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
- if Is_Inherently_Limited_Type (R_Type) then
- Error_Msg_N
- ("return by reference not permitted in Ada 2005 " &
- "(RM-2005 6.5(5.5/2))?", Expr);
- else
- Error_Msg_N
- ("cannot copy object of a limited type in Ada 2005 " &
- "(RM-2005 6.5(5.5/2))?", Expr);
- end if;
-
- -- Ada 95 mode, compatibility warnings disabled
-
- else
- return; -- skip continuation messages below
- end if;
-
- Error_Msg_N
- ("\consider switching to return of access type", Expr);
- Explain_Limited_Type (R_Type, Expr);
- end if;
- end Check_Limited_Return;
-
- -------------------------------------
- -- Check_Return_Subtype_Indication --
- -------------------------------------
-
- procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
- Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
- R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
- -- Subtype given in the extended return statement;
- -- this must match R_Type.
-
- Subtype_Ind : constant Node_Id :=
- Object_Definition (Original_Node (Obj_Decl));
-
- R_Type_Is_Anon_Access :
- constant Boolean :=
- Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
- or else
- Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
- or else
- Ekind (R_Type) = E_Anonymous_Access_Type;
- -- True if return type of the function is an anonymous access type
- -- Can't we make Is_Anonymous_Access_Type in einfo ???
-
- R_Stm_Type_Is_Anon_Access :
- constant Boolean :=
- Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
- or else
- Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
- or else
- Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
- -- True if type of the return object is an anonymous access type
-
- begin
- -- First, avoid cascade errors:
-
- if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
- return;
- end if;
-
- -- "return access T" case; check that the return statement also has
- -- "access T", and that the subtypes statically match:
- -- if this is an access to subprogram the signatures must match.
-
- if R_Type_Is_Anon_Access then
- if R_Stm_Type_Is_Anon_Access then
- if
- Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
- then
- if Base_Type (Designated_Type (R_Stm_Type)) /=
- Base_Type (Designated_Type (R_Type))
- or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
- then
- Error_Msg_N
- ("subtype must statically match function result subtype",
- Subtype_Mark (Subtype_Ind));
- end if;
-
- else
- -- For two anonymous access to subprogram types, the
- -- types themselves must be type conformant.
-
- if not Conforming_Types
- (R_Stm_Type, R_Type, Fully_Conformant)
- then
- Error_Msg_N
- ("subtype must statically match function result subtype",
- Subtype_Ind);
- end if;
- end if;
-
- else
- Error_Msg_N ("must use anonymous access type", Subtype_Ind);
- end if;
-
- -- Subtype_indication case; check that the types are the same, and
- -- statically match if appropriate. A null exclusion may be present
- -- on the return type, on the function specification, on the object
- -- declaration or on the subtype itself.
-
- elsif Base_Type (R_Stm_Type) = Base_Type (R_Type) then
- if Is_Access_Type (R_Type)
- and then
- (Can_Never_Be_Null (R_Type)
- or else Null_Exclusion_Present (Parent (Scope_Id))) /=
- Can_Never_Be_Null (R_Stm_Type)
- then
- Error_Msg_N
- ("subtype must statically match function result subtype",
- Subtype_Ind);
- end if;
-
- if Is_Constrained (R_Type) then
- if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
- Error_Msg_N
- ("subtype must statically match function result subtype",
- Subtype_Ind);
- end if;
- end if;
-
- -- If the function's result type doesn't match the return object
- -- entity's type, then we check for the case where the result type
- -- is class-wide, and allow the declaration if the type of the object
- -- definition matches the class-wide type. This prevents rejection
- -- in the case where the object declaration is initialized by a call
- -- to a build-in-place function with a specific result type and the
- -- object entity had its type changed to that specific type. This is
- -- also allowed in the case where Obj_Decl does not come from source,
- -- which can occur for an expansion of a simple return statement of
- -- a build-in-place class-wide function when the result expression
- -- has a specific type, because a return object with a specific type
- -- is created. (Note that the ARG believes that return objects should
- -- be allowed to have a type covered by a class-wide result type in
- -- any case, so once that relaxation is made (see AI05-32), the above
- -- check for type compatibility should be changed to test Covers
- -- rather than equality, and the following special test will no
- -- longer be needed. ???)
-
- elsif Is_Class_Wide_Type (R_Type)
- and then
- (R_Type = Etype (Object_Definition (Original_Node (Obj_Decl)))
- or else not Comes_From_Source (Obj_Decl))
- then
- null;
-
- else
- Error_Msg_N
- ("wrong type for return_subtype_indication", Subtype_Ind);
- end if;
- end Check_Return_Subtype_Indication;
-
- ---------------------
- -- Local Variables --
- ---------------------
-
- Expr : Node_Id;
-
- -- Start of processing for Analyze_Function_Return
-
- begin
- Set_Return_Present (Scope_Id);
-
- if Nkind (N) = N_Simple_Return_Statement then
- Expr := Expression (N);
- Analyze_And_Resolve (Expr, R_Type);
- Check_Limited_Return (Expr);
-
- else
- -- Analyze parts specific to extended_return_statement:
-
- declare
- Obj_Decl : constant Node_Id :=
- Last (Return_Object_Declarations (N));
-
- HSS : constant Node_Id := Handled_Statement_Sequence (N);
-
- begin
- Expr := Expression (Obj_Decl);
-
- -- Note: The check for OK_For_Limited_Init will happen in
- -- Analyze_Object_Declaration; we treat it as a normal
- -- object declaration.
-
- Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
- Analyze (Obj_Decl);
-
- Check_Return_Subtype_Indication (Obj_Decl);
-
- if Present (HSS) then
- Analyze (HSS);
-
- if Present (Exception_Handlers (HSS)) then
-
- -- ???Has_Nested_Block_With_Handler needs to be set.
- -- Probably by creating an actual N_Block_Statement.
- -- Probably in Expand.
-
- null;
- end if;
- end if;
-
- Check_References (Stm_Entity);
- end;
- end if;
-
- -- Case of Expr present
-
- if Present (Expr)
-
- -- Defend against previous errors
-
- and then Nkind (Expr) /= N_Empty
- and then Present (Etype (Expr))
- then
- -- Apply constraint check. Note that this is done before the implicit
- -- conversion of the expression done for anonymous access types to
- -- ensure correct generation of the null-excluding check associated
- -- with null-excluding expressions found in return statements.
-
- Apply_Constraint_Check (Expr, R_Type);
-
- -- Ada 2005 (AI-318-02): When the result type is an anonymous access
- -- type, apply an implicit conversion of the expression to that type
- -- to force appropriate static and run-time accessibility checks.
-
- if Ada_Version >= Ada_05
- and then Ekind (R_Type) = E_Anonymous_Access_Type
- then
- Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
- Analyze_And_Resolve (Expr, R_Type);
- end if;
-
- -- If the result type is class-wide, then check that the return
- -- expression's type is not declared at a deeper level than the
- -- function (RM05-6.5(5.6/2)).
-
- if Ada_Version >= Ada_05
- and then Is_Class_Wide_Type (R_Type)
- then
- if Type_Access_Level (Etype (Expr)) >
- Subprogram_Access_Level (Scope_Id)
- then
- Error_Msg_N
- ("level of return expression type is deeper than " &
- "class-wide function!", Expr);
- end if;
- end if;
-
- if (Is_Class_Wide_Type (Etype (Expr))
- or else Is_Dynamically_Tagged (Expr))
- and then not Is_Class_Wide_Type (R_Type)
- then
- Error_Msg_N
- ("dynamically tagged expression not allowed!", Expr);
- end if;
-
- -- ??? A real run-time accessibility check is needed in cases
- -- involving dereferences of access parameters. For now we just
- -- check the static cases.
-
- if (Ada_Version < Ada_05 or else Debug_Flag_Dot_L)
- and then Is_Inherently_Limited_Type (Etype (Scope_Id))
- and then Object_Access_Level (Expr) >
- Subprogram_Access_Level (Scope_Id)
- then
- Rewrite (N,
- Make_Raise_Program_Error (Loc,
- Reason => PE_Accessibility_Check_Failed));
- Analyze (N);
-
- Error_Msg_N
- ("cannot return a local value by reference?", N);
- Error_Msg_NE
- ("\& will be raised at run time?",
- N, Standard_Program_Error);
- end if;
-
- if Known_Null (Expr)
- and then Nkind (Parent (Scope_Id)) = N_Function_Specification
- and then Null_Exclusion_Present (Parent (Scope_Id))
- then
- Apply_Compile_Time_Constraint_Error
- (N => Expr,
- Msg => "(Ada 2005) null not allowed for "
- & "null-excluding return?",
- Reason => CE_Null_Not_Allowed);
- end if;
- end if;
- end Analyze_Function_Return;
-
- -------------------------------------
- -- Analyze_Generic_Subprogram_Body --
- -------------------------------------
-
- procedure Analyze_Generic_Subprogram_Body
- (N : Node_Id;
- Gen_Id : Entity_Id)
- is
- Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
- Kind : constant Entity_Kind := Ekind (Gen_Id);
- Body_Id : Entity_Id;
- New_N : Node_Id;
- Spec : Node_Id;
-
- begin
- -- Copy body and disable expansion while analyzing the generic For a
- -- stub, do not copy the stub (which would load the proper body), this
- -- will be done when the proper body is analyzed.
-
- if Nkind (N) /= N_Subprogram_Body_Stub then
- New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
- Rewrite (N, New_N);
- Start_Generic;
- end if;
-
- Spec := Specification (N);
-
- -- Within the body of the generic, the subprogram is callable, and
- -- behaves like the corresponding non-generic unit.
-
- Body_Id := Defining_Entity (Spec);
-
- if Kind = E_Generic_Procedure
- and then Nkind (Spec) /= N_Procedure_Specification
- then
- Error_Msg_N ("invalid body for generic procedure ", Body_Id);
- return;
-
- elsif Kind = E_Generic_Function
- and then Nkind (Spec) /= N_Function_Specification
- then
- Error_Msg_N ("invalid body for generic function ", Body_Id);
- return;
- end if;
-
- Set_Corresponding_Body (Gen_Decl, Body_Id);
-
- if Has_Completion (Gen_Id)
- and then Nkind (Parent (N)) /= N_Subunit
- then
- Error_Msg_N ("duplicate generic body", N);
- return;
- else
- Set_Has_Completion (Gen_Id);
- end if;
-
- if Nkind (N) = N_Subprogram_Body_Stub then
- Set_Ekind (Defining_Entity (Specification (N)), Kind);
- else
- Set_Corresponding_Spec (N, Gen_Id);
- end if;
-
- if Nkind (Parent (N)) = N_Compilation_Unit then
- Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
- end if;
-
- -- Make generic parameters immediately visible in the body. They are
- -- needed to process the formals declarations. Then make the formals
- -- visible in a separate step.
-
- Push_Scope (Gen_Id);
-
- declare
- E : Entity_Id;
- First_Ent : Entity_Id;
-
- begin
- First_Ent := First_Entity (Gen_Id);
-
- E := First_Ent;
- while Present (E) and then not Is_Formal (E) loop
- Install_Entity (E);
- Next_Entity (E);
- end loop;
-
- Set_Use (Generic_Formal_Declarations (Gen_Decl));
-
- -- Now generic formals are visible, and the specification can be
- -- analyzed, for subsequent conformance check.
-
- Body_Id := Analyze_Subprogram_Specification (Spec);
-
- -- Make formal parameters visible
-
- if Present (E) then
-
- -- E is the first formal parameter, we loop through the formals
- -- installing them so that they will be visible.
-
- Set_First_Entity (Gen_Id, E);
- while Present (E) loop
- Install_Entity (E);
- Next_Formal (E);
- end loop;
- end if;
-
- -- Visible generic entity is callable within its own body
-
- Set_Ekind (Gen_Id, Ekind (Body_Id));
- Set_Ekind (Body_Id, E_Subprogram_Body);
- Set_Convention (Body_Id, Convention (Gen_Id));
- Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
- Set_Scope (Body_Id, Scope (Gen_Id));
- Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
-
- if Nkind (N) = N_Subprogram_Body_Stub then
-
- -- No body to analyze, so restore state of generic unit
-
- Set_Ekind (Gen_Id, Kind);
- Set_Ekind (Body_Id, Kind);
-
- if Present (First_Ent) then
- Set_First_Entity (Gen_Id, First_Ent);
- end if;
-
- End_Scope;
- return;
- end if;
-
- -- If this is a compilation unit, it must be made visible explicitly,
- -- because the compilation of the declaration, unlike other library
- -- unit declarations, does not. If it is not a unit, the following
- -- is redundant but harmless.
-
- Set_Is_Immediately_Visible (Gen_Id);
- Reference_Body_Formals (Gen_Id, Body_Id);
-
- if Is_Child_Unit (Gen_Id) then
- Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
- end if;
-
- Set_Actual_Subtypes (N, Current_Scope);
- Process_PPCs (N, Gen_Id, Body_Id);
-
- -- If the generic unit carries pre- or post-conditions, copy them
- -- to the original generic tree, so that they are properly added
- -- to any instantiation.
-
- declare
- Orig : constant Node_Id := Original_Node (N);
- Cond : Node_Id;
-
- begin
- Cond := First (Declarations (N));
- while Present (Cond) loop
- if Nkind (Cond) = N_Pragma
- and then Pragma_Name (Cond) = Name_Check
- then
- Prepend (New_Copy_Tree (Cond), Declarations (Orig));
-
- elsif Nkind (Cond) = N_Pragma
- and then Pragma_Name (Cond) = Name_Postcondition
- then
- Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
- Prepend (New_Copy_Tree (Cond), Declarations (Orig));
- else
- exit;
- end if;
-
- Next (Cond);
- end loop;
- end;
-
- Analyze_Declarations (Declarations (N));
- Check_Completion;
- Analyze (Handled_Statement_Sequence (N));
-
- Save_Global_References (Original_Node (N));
-
- -- Prior to exiting the scope, include generic formals again (if any
- -- are present) in the set of local entities.
-
- if Present (First_Ent) then
- Set_First_Entity (Gen_Id, First_Ent);
- end if;
-
- Check_References (Gen_Id);
- end;
-
- Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
- End_Scope;
- Check_Subprogram_Order (N);
-
- -- Outside of its body, unit is generic again
-
- Set_Ekind (Gen_Id, Kind);
- Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
-
- if Style_Check then
- Style.Check_Identifier (Body_Id, Gen_Id);
- end if;
- End_Generic;
- end Analyze_Generic_Subprogram_Body;
-
- -----------------------------
- -- Analyze_Operator_Symbol --
- -----------------------------
-
- -- An operator symbol such as "+" or "and" may appear in context where the
- -- literal denotes an entity name, such as "+"(x, y) or in context when it
- -- is just a string, as in (conjunction = "or"). In these cases the parser
- -- generates this node, and the semantics does the disambiguation. Other
- -- such case are actuals in an instantiation, the generic unit in an
- -- instantiation, and pragma arguments.
-
- procedure Analyze_Operator_Symbol (N : Node_Id) is
- Par : constant Node_Id := Parent (N);
-
- begin
- if (Nkind (Par) = N_Function_Call
- and then N = Name (Par))
- or else Nkind (Par) = N_Function_Instantiation
- or else (Nkind (Par) = N_Indexed_Component
- and then N = Prefix (Par))
- or else (Nkind (Par) = N_Pragma_Argument_Association
- and then not Is_Pragma_String_Literal (Par))
- or else Nkind (Par) = N_Subprogram_Renaming_Declaration
- or else (Nkind (Par) = N_Attribute_Reference
- and then Attribute_Name (Par) /= Name_Value)
- then
- Find_Direct_Name (N);
-
- else
- Change_Operator_Symbol_To_String_Literal (N);
- Analyze (N);
- end if;
- end Analyze_Operator_Symbol;
-
- -----------------------------------
- -- Analyze_Parameter_Association --
- -----------------------------------
-
- procedure Analyze_Parameter_Association (N : Node_Id) is
- begin
- Analyze (Explicit_Actual_Parameter (N));
- end Analyze_Parameter_Association;
-
- ----------------------------
- -- Analyze_Procedure_Call --
- ----------------------------
-
- procedure Analyze_Procedure_Call (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- P : constant Node_Id := Name (N);
- Actuals : constant List_Id := Parameter_Associations (N);
- Actual : Node_Id;
- New_N : Node_Id;
-
- procedure Analyze_Call_And_Resolve;
- -- Do Analyze and Resolve calls for procedure call
-
- ------------------------------
- -- Analyze_Call_And_Resolve --
- ------------------------------
-
- procedure Analyze_Call_And_Resolve is
- begin
- if Nkind (N) = N_Procedure_Call_Statement then
- Analyze_Call (N);
- Resolve (N, Standard_Void_Type);
- else
- Analyze (N);
- end if;
- end Analyze_Call_And_Resolve;
-
- -- Start of processing for Analyze_Procedure_Call
-
- begin
- -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
- -- a procedure call or an entry call. The prefix may denote an access
- -- to subprogram type, in which case an implicit dereference applies.
- -- If the prefix is an indexed component (without implicit dereference)
- -- then the construct denotes a call to a member of an entire family.
- -- If the prefix is a simple name, it may still denote a call to a
- -- parameterless member of an entry family. Resolution of these various
- -- interpretations is delicate.
-
- Analyze (P);
-
- -- If this is a call of the form Obj.Op, the call may have been
- -- analyzed and possibly rewritten into a block, in which case
- -- we are done.
-
- if Analyzed (N) then
- return;
- end if;
-
- -- If error analyzing prefix, then set Any_Type as result and return
-
- if Etype (P) = Any_Type then
- Set_Etype (N, Any_Type);
- return;
- end if;
-
- -- Otherwise analyze the parameters
-
- if Present (Actuals) then
- Actual := First (Actuals);
-
- while Present (Actual) loop
- Analyze (Actual);
- Check_Parameterless_Call (Actual);
- Next (Actual);
- end loop;
- end if;
-
- -- Special processing for Elab_Spec and Elab_Body calls
-
- if Nkind (P) = N_Attribute_Reference
- and then (Attribute_Name (P) = Name_Elab_Spec
- or else Attribute_Name (P) = Name_Elab_Body)
- then
- if Present (Actuals) then
- Error_Msg_N
- ("no parameters allowed for this call", First (Actuals));
- return;
- end if;
-
- Set_Etype (N, Standard_Void_Type);
- Set_Analyzed (N);
-
- elsif Is_Entity_Name (P)
- and then Is_Record_Type (Etype (Entity (P)))
- and then Remote_AST_I_Dereference (P)
- then
- return;
-
- elsif Is_Entity_Name (P)
- and then Ekind (Entity (P)) /= E_Entry_Family
- then
- if Is_Access_Type (Etype (P))
- and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
- and then No (Actuals)
- and then Comes_From_Source (N)
- then
- Error_Msg_N ("missing explicit dereference in call", N);
- end if;
-
- Analyze_Call_And_Resolve;
-
- -- If the prefix is the simple name of an entry family, this is
- -- a parameterless call from within the task body itself.
-
- elsif Is_Entity_Name (P)
- and then Nkind (P) = N_Identifier
- and then Ekind (Entity (P)) = E_Entry_Family
- and then Present (Actuals)
- and then No (Next (First (Actuals)))
- then
- -- Can be call to parameterless entry family. What appears to be the
- -- sole argument is in fact the entry index. Rewrite prefix of node
- -- accordingly. Source representation is unchanged by this
- -- transformation.
-
- New_N :=
- Make_Indexed_Component (Loc,
- Prefix =>
- Make_Selected_Component (Loc,
- Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
- Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
- Expressions => Actuals);
- Set_Name (N, New_N);
- Set_Etype (New_N, Standard_Void_Type);
- Set_Parameter_Associations (N, No_List);
- Analyze_Call_And_Resolve;
-
- elsif Nkind (P) = N_Explicit_Dereference then
- if Ekind (Etype (P)) = E_Subprogram_Type then
- Analyze_Call_And_Resolve;
- else
- Error_Msg_N ("expect access to procedure in call", P);
- end if;
-
- -- The name can be a selected component or an indexed component that
- -- yields an access to subprogram. Such a prefix is legal if the call
- -- has parameter associations.
-
- elsif Is_Access_Type (Etype (P))
- and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
- then
- if Present (Actuals) then
- Analyze_Call_And_Resolve;
- else
- Error_Msg_N ("missing explicit dereference in call ", N);
- end if;
-
- -- If not an access to subprogram, then the prefix must resolve to the
- -- name of an entry, entry family, or protected operation.
-
- -- For the case of a simple entry call, P is a selected component where
- -- the prefix is the task and the selector name is the entry. A call to
- -- a protected procedure will have the same syntax. If the protected
- -- object contains overloaded operations, the entity may appear as a
- -- function, the context will select the operation whose type is Void.
-
- elsif Nkind (P) = N_Selected_Component
- and then (Ekind (Entity (Selector_Name (P))) = E_Entry
- or else
- Ekind (Entity (Selector_Name (P))) = E_Procedure
- or else
- Ekind (Entity (Selector_Name (P))) = E_Function)
- then
- Analyze_Call_And_Resolve;
-
- elsif Nkind (P) = N_Selected_Component
- and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
- and then Present (Actuals)
- and then No (Next (First (Actuals)))
- then
- -- Can be call to parameterless entry family. What appears to be the
- -- sole argument is in fact the entry index. Rewrite prefix of node
- -- accordingly. Source representation is unchanged by this
- -- transformation.
-
- New_N :=
- Make_Indexed_Component (Loc,
- Prefix => New_Copy (P),
- Expressions => Actuals);
- Set_Name (N, New_N);
- Set_Etype (New_N, Standard_Void_Type);
- Set_Parameter_Associations (N, No_List);
- Analyze_Call_And_Resolve;
-
- -- For the case of a reference to an element of an entry family, P is
- -- an indexed component whose prefix is a selected component (task and
- -- entry family), and whose index is the entry family index.
-
- elsif Nkind (P) = N_Indexed_Component
- and then Nkind (Prefix (P)) = N_Selected_Component
- and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
- then
- Analyze_Call_And_Resolve;
-
- -- If the prefix is the name of an entry family, it is a call from
- -- within the task body itself.
-
- elsif Nkind (P) = N_Indexed_Component
- and then Nkind (Prefix (P)) = N_Identifier
- and then Ekind (Entity (Prefix (P))) = E_Entry_Family
- then
- New_N :=
- Make_Selected_Component (Loc,
- Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
- Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
- Rewrite (Prefix (P), New_N);
- Analyze (P);
- Analyze_Call_And_Resolve;
-
- -- Anything else is an error
-
- else
- Error_Msg_N ("invalid procedure or entry call", N);
- end if;
- end Analyze_Procedure_Call;
-
- -------------------------------------
- -- Analyze_Simple_Return_Statement --
- -------------------------------------
-
- procedure Analyze_Simple_Return_Statement (N : Node_Id) is
- begin
- if Present (Expression (N)) then
- Mark_Coextensions (N, Expression (N));
- end if;
-
- Analyze_Return_Statement (N);
- end Analyze_Simple_Return_Statement;
-
- -------------------------
- -- Analyze_Return_Type --
- -------------------------
-
- procedure Analyze_Return_Type (N : Node_Id) is
- Designator : constant Entity_Id := Defining_Entity (N);
- Typ : Entity_Id := Empty;
-
- begin
- -- Normal case where result definition does not indicate an error
-
- if Result_Definition (N) /= Error then
- if Nkind (Result_Definition (N)) = N_Access_Definition then
-
- -- Ada 2005 (AI-254): Handle anonymous access to subprograms
-
- declare
- AD : constant Node_Id :=
- Access_To_Subprogram_Definition (Result_Definition (N));
- begin
- if Present (AD) and then Protected_Present (AD) then
- Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
- else
- Typ := Access_Definition (N, Result_Definition (N));
- end if;
- end;
-
- Set_Parent (Typ, Result_Definition (N));
- Set_Is_Local_Anonymous_Access (Typ);
- Set_Etype (Designator, Typ);
-
- -- Subtype_Mark case
-
- else
- Find_Type (Result_Definition (N));
- Typ := Entity (Result_Definition (N));
- Set_Etype (Designator, Typ);
-
- if Ekind (Typ) = E_Incomplete_Type
- and then Is_Value_Type (Typ)
- then
- null;
-
- elsif Ekind (Typ) = E_Incomplete_Type
- or else (Is_Class_Wide_Type (Typ)
- and then
- Ekind (Root_Type (Typ)) = E_Incomplete_Type)
- then
- Error_Msg_N
- ("invalid use of incomplete type", Result_Definition (N));
- end if;
- end if;
-
- -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
-
- Null_Exclusion_Static_Checks (N);
-
- -- Case where result definition does indicate an error
-
- else
- Set_Etype (Designator, Any_Type);
- end if;
- end Analyze_Return_Type;
-
- -----------------------------
- -- Analyze_Subprogram_Body --
- -----------------------------
-
- -- This procedure is called for regular subprogram bodies, generic bodies,
- -- and for subprogram stubs of both kinds. In the case of stubs, only the
- -- specification matters, and is used to create a proper declaration for
- -- the subprogram, or to perform conformance checks.
-
- procedure Analyze_Subprogram_Body (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Body_Deleted : constant Boolean := False;
- Body_Spec : constant Node_Id := Specification (N);
- Body_Id : Entity_Id := Defining_Entity (Body_Spec);
- Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
- Conformant : Boolean;
- HSS : Node_Id;
- Missing_Ret : Boolean;
- P_Ent : Entity_Id;
- Prot_Typ : Entity_Id := Empty;
- Spec_Id : Entity_Id;
- Spec_Decl : Node_Id := Empty;
-
- Last_Real_Spec_Entity : Entity_Id := Empty;
- -- When we analyze a separate spec, the entity chain ends up containing
- -- the formals, as well as any itypes generated during analysis of the
- -- default expressions for parameters, or the arguments of associated
- -- precondition/postcondition pragmas (which are analyzed in the context
- -- of the spec since they have visibility on formals).
- --
- -- These entities belong with the spec and not the body. However we do
- -- the analysis of the body in the context of the spec (again to obtain
- -- visibility to the formals), and all the entities generated during
- -- this analysis end up also chained to the entity chain of the spec.
- -- But they really belong to the body, and there is circuitry to move
- -- them from the spec to the body.
- --
- -- However, when we do this move, we don't want to move the real spec
- -- entities (first para above) to the body. The Last_Real_Spec_Entity
- -- variable points to the last real spec entity, so we only move those
- -- chained beyond that point. It is initialized to Empty to deal with
- -- the case where there is no separate spec.
-
- procedure Check_Anonymous_Return;
- -- (Ada 2005): if a function returns an access type that denotes a task,
- -- or a type that contains tasks, we must create a master entity for
- -- the anonymous type, which typically will be used in an allocator
- -- in the body of the function.
-
- procedure Check_Inline_Pragma (Spec : in out Node_Id);
- -- Look ahead to recognize a pragma that may appear after the body.
- -- If there is a previous spec, check that it appears in the same
- -- declarative part. If the pragma is Inline_Always, perform inlining
- -- unconditionally, otherwise only if Front_End_Inlining is requested.
- -- If the body acts as a spec, and inlining is required, we create a
- -- subprogram declaration for it, in order to attach the body to inline.
- -- If pragma does not appear after the body, check whether there is
- -- an inline pragma before any local declarations.
-
- function Disambiguate_Spec return Entity_Id;
- -- When a primitive is declared between the private view and the full
- -- view of a concurrent type which implements an interface, a special
- -- mechanism is used to find the corresponding spec of the primitive
- -- body.
-
- function Is_Private_Concurrent_Primitive
- (Subp_Id : Entity_Id) return Boolean;
- -- Determine whether subprogram Subp_Id is a primitive of a concurrent
- -- type that implements an interface and has a private view.
-
- procedure Set_Trivial_Subprogram (N : Node_Id);
- -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
- -- subprogram whose body is being analyzed. N is the statement node
- -- causing the flag to be set, if the following statement is a return
- -- of an entity, we mark the entity as set in source to suppress any
- -- warning on the stylized use of function stubs with a dummy return.
-
- procedure Verify_Overriding_Indicator;
- -- If there was a previous spec, the entity has been entered in the
- -- current scope previously. If the body itself carries an overriding
- -- indicator, check that it is consistent with the known status of the
- -- entity.
-
- ----------------------------
- -- Check_Anonymous_Return --
- ----------------------------
-
- procedure Check_Anonymous_Return is
- Decl : Node_Id;
- Scop : Entity_Id;
-
- begin
- if Present (Spec_Id) then
- Scop := Spec_Id;
- else
- Scop := Body_Id;
- end if;
-
- if Ekind (Scop) = E_Function
- and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
- and then Has_Task (Designated_Type (Etype (Scop)))
- and then Expander_Active
- then
- Decl :=
- Make_Object_Declaration (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, Name_uMaster),
- Constant_Present => True,
- Object_Definition =>
- New_Reference_To (RTE (RE_Master_Id), Loc),
- Expression =>
- Make_Explicit_Dereference (Loc,
- New_Reference_To (RTE (RE_Current_Master), Loc)));
-
- if Present (Declarations (N)) then
- Prepend (Decl, Declarations (N));
- else
- Set_Declarations (N, New_List (Decl));
- end if;
-
- Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
- Set_Has_Master_Entity (Scop);
- end if;
- end Check_Anonymous_Return;
-
- -------------------------
- -- Check_Inline_Pragma --
- -------------------------
-
- procedure Check_Inline_Pragma (Spec : in out Node_Id) is
- Prag : Node_Id;
- Plist : List_Id;
-
- function Is_Inline_Pragma (N : Node_Id) return Boolean;
- -- True when N is a pragma Inline or Inline_Always that applies
- -- to this subprogram.
-
- -----------------------
- -- Is_Inline_Pragma --
- -----------------------
-
- function Is_Inline_Pragma (N : Node_Id) return Boolean is
- begin
- return
- Nkind (N) = N_Pragma
- and then
- (Pragma_Name (N) = Name_Inline_Always
- or else
- (Front_End_Inlining
- and then Pragma_Name (N) = Name_Inline))
- and then
- Chars
- (Expression (First (Pragma_Argument_Associations (N))))
- = Chars (Body_Id);
- end Is_Inline_Pragma;
-
- -- Start of processing for Check_Inline_Pragma
-
- begin
- if not Expander_Active then
- return;
- end if;
-
- if Is_List_Member (N)
- and then Present (Next (N))
- and then Is_Inline_Pragma (Next (N))
- then
- Prag := Next (N);
-
- elsif Nkind (N) /= N_Subprogram_Body_Stub
- and then Present (Declarations (N))
- and then Is_Inline_Pragma (First (Declarations (N)))
- then
- Prag := First (Declarations (N));
-
- else
- Prag := Empty;
- end if;
-
- if Present (Prag) then
- if Present (Spec_Id) then
- if List_Containing (N) =
- List_Containing (Unit_Declaration_Node (Spec_Id))
- then
- Analyze (Prag);
- end if;
-
- else
- -- Create a subprogram declaration, to make treatment uniform
-
- declare
- Subp : constant Entity_Id :=
- Make_Defining_Identifier (Loc, Chars (Body_Id));
- Decl : constant Node_Id :=
- Make_Subprogram_Declaration (Loc,
- Specification => New_Copy_Tree (Specification (N)));
- begin
- Set_Defining_Unit_Name (Specification (Decl), Subp);
-
- if Present (First_Formal (Body_Id)) then
- Plist := Copy_Parameter_List (Body_Id);
- Set_Parameter_Specifications
- (Specification (Decl), Plist);
- end if;
-
- Insert_Before (N, Decl);
- Analyze (Decl);
- Analyze (Prag);
- Set_Has_Pragma_Inline (Subp);
-
- if Pragma_Name (Prag) = Name_Inline_Always then
- Set_Is_Inlined (Subp);
- Set_Has_Pragma_Inline_Always (Subp);
- end if;
-
- Spec := Subp;
- end;
- end if;
- end if;
- end Check_Inline_Pragma;
-
- -----------------------
- -- Disambiguate_Spec --
- -----------------------
-
- function Disambiguate_Spec return Entity_Id is
- Priv_Spec : Entity_Id;
- Spec_N : Entity_Id;
-
- procedure Replace_Types (To_Corresponding : Boolean);
- -- Depending on the flag, replace the type of formal parameters of
- -- Body_Id if it is a concurrent type implementing interfaces with
- -- the corresponding record type or the other way around.
-
- procedure Replace_Types (To_Corresponding : Boolean) is
- Formal : Entity_Id;
- Formal_Typ : Entity_Id;
-
- begin
- Formal := First_Formal (Body_Id);
- while Present (Formal) loop
- Formal_Typ := Etype (Formal);
-
- -- From concurrent type to corresponding record
-
- if To_Corresponding then
- if Is_Concurrent_Type (Formal_Typ)
- and then Present (Corresponding_Record_Type (Formal_Typ))
- and then Present (Interfaces (
- Corresponding_Record_Type (Formal_Typ)))
- then
- Set_Etype (Formal,
- Corresponding_Record_Type (Formal_Typ));
- end if;
-
- -- From corresponding record to concurrent type
-
- else
- if Is_Concurrent_Record_Type (Formal_Typ)
- and then Present (Interfaces (Formal_Typ))
- then
- Set_Etype (Formal,
- Corresponding_Concurrent_Type (Formal_Typ));
- end if;
- end if;
-
- Next_Formal (Formal);
- end loop;
- end Replace_Types;
-
- -- Start of processing for Disambiguate_Spec
-
- begin
- -- Try to retrieve the specification of the body as is. All error
- -- messages are suppressed because the body may not have a spec in
- -- its current state.
-
- Spec_N := Find_Corresponding_Spec (N, False);
-
- -- It is possible that this is the body of a primitive declared
- -- between a private and a full view of a concurrent type. The
- -- controlling parameter of the spec carries the concurrent type,
- -- not the corresponding record type as transformed by Analyze_
- -- Subprogram_Specification. In such cases, we undo the change
- -- made by the analysis of the specification and try to find the
- -- spec again.
-
- -- Note that wrappers already have their corresponding specs and
- -- bodies set during their creation, so if the candidate spec is
- -- a wrapper, then we definitely need to swap all types to their
- -- original concurrent status.
-
- if No (Spec_N)
- or else Is_Primitive_Wrapper (Spec_N)
- then
- -- Restore all references of corresponding record types to the
- -- original concurrent types.
-
- Replace_Types (To_Corresponding => False);
- Priv_Spec := Find_Corresponding_Spec (N, False);
-
- -- The current body truly belongs to a primitive declared between
- -- a private and a full view. We leave the modified body as is,
- -- and return the true spec.
-
- if Present (Priv_Spec)
- and then Is_Private_Primitive (Priv_Spec)
- then
- return Priv_Spec;
- end if;
-
- -- In case that this is some sort of error, restore the original
- -- state of the body.
-
- Replace_Types (To_Corresponding => True);
- end if;
-
- return Spec_N;
- end Disambiguate_Spec;
-
- -------------------------------------
- -- Is_Private_Concurrent_Primitive --
- -------------------------------------
-
- function Is_Private_Concurrent_Primitive
- (Subp_Id : Entity_Id) return Boolean
- is
- Formal_Typ : Entity_Id;
-
- begin
- if Present (First_Formal (Subp_Id)) then
- Formal_Typ := Etype (First_Formal (Subp_Id));
-
- if Is_Concurrent_Record_Type (Formal_Typ) then
- Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
- end if;
-
- -- The type of the first formal is a concurrent tagged type with
- -- a private view.
-
- return
- Is_Concurrent_Type (Formal_Typ)
- and then Is_Tagged_Type (Formal_Typ)
- and then Has_Private_Declaration (Formal_Typ);
- end if;
-
- return False;
- end Is_Private_Concurrent_Primitive;
-
- ----------------------------
- -- Set_Trivial_Subprogram --
- ----------------------------
-
- procedure Set_Trivial_Subprogram (N : Node_Id) is
- Nxt : constant Node_Id := Next (N);
-
- begin
- Set_Is_Trivial_Subprogram (Body_Id);
-
- if Present (Spec_Id) then
- Set_Is_Trivial_Subprogram (Spec_Id);
- end if;
-
- if Present (Nxt)
- and then Nkind (Nxt) = N_Simple_Return_Statement
- and then No (Next (Nxt))
- and then Present (Expression (Nxt))
- and then Is_Entity_Name (Expression (Nxt))
- then
- Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
- end if;
- end Set_Trivial_Subprogram;
-
- ---------------------------------
- -- Verify_Overriding_Indicator --
- ---------------------------------
-
- procedure Verify_Overriding_Indicator is
- begin
- if Must_Override (Body_Spec) then
- if Nkind (Spec_Id) = N_Defining_Operator_Symbol
- and then Operator_Matches_Spec (Spec_Id, Spec_Id)
- then
- null;
-
- elsif not Is_Overriding_Operation (Spec_Id) then
- Error_Msg_NE
- ("subprogram& is not overriding", Body_Spec, Spec_Id);
- end if;
-
- elsif Must_Not_Override (Body_Spec) then
- if Is_Overriding_Operation (Spec_Id) then
- Error_Msg_NE
- ("subprogram& overrides inherited operation",
- Body_Spec, Spec_Id);
-
- elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
- and then Operator_Matches_Spec (Spec_Id, Spec_Id)
- then
- Error_Msg_NE
- ("subprogram & overrides predefined operator ",
- Body_Spec, Spec_Id);
-
- -- If this is not a primitive operation the overriding indicator
- -- is altogether illegal.
-
- elsif not Is_Primitive (Spec_Id) then
- Error_Msg_N ("overriding indicator only allowed " &
- "if subprogram is primitive",
- Body_Spec);
- end if;
-
- elsif Style_Check
- and then Is_Overriding_Operation (Spec_Id)
- then
- pragma Assert (Unit_Declaration_Node (Body_Id) = N);
- Style.Missing_Overriding (N, Body_Id);
- end if;
- end Verify_Overriding_Indicator;
-
- -- Start of processing for Analyze_Subprogram_Body
-
- begin
- if Debug_Flag_C then
- Write_Str ("==== Compiling subprogram body ");
- Write_Name (Chars (Body_Id));
- Write_Str (" from ");
- Write_Location (Loc);
- Write_Eol;
- end if;
-
- Trace_Scope (N, Body_Id, " Analyze subprogram: ");
-
- -- Generic subprograms are handled separately. They always have a
- -- generic specification. Determine whether current scope has a
- -- previous declaration.
-
- -- If the subprogram body is defined within an instance of the same
- -- name, the instance appears as a package renaming, and will be hidden
- -- within the subprogram.
-
- if Present (Prev_Id)
- and then not Is_Overloadable (Prev_Id)
- and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
- or else Comes_From_Source (Prev_Id))
- then
- if Is_Generic_Subprogram (Prev_Id) then
- Spec_Id := Prev_Id;
- Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
- Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
-
- Analyze_Generic_Subprogram_Body (N, Spec_Id);
- return;
-
- else
- -- Previous entity conflicts with subprogram name. Attempting to
- -- enter name will post error.
-
- Enter_Name (Body_Id);
- return;
- end if;
-
- -- Non-generic case, find the subprogram declaration, if one was seen,
- -- or enter new overloaded entity in the current scope. If the
- -- Current_Entity is the Body_Id itself, the unit is being analyzed as
- -- part of the context of one of its subunits. No need to redo the
- -- analysis.
-
- elsif Prev_Id = Body_Id
- and then Has_Completion (Body_Id)
- then
- return;
-
- else
- Body_Id := Analyze_Subprogram_Specification (Body_Spec);
-
- if Nkind (N) = N_Subprogram_Body_Stub
- or else No (Corresponding_Spec (N))
- then
- if Is_Private_Concurrent_Primitive (Body_Id) then
- Spec_Id := Disambiguate_Spec;
- else
- Spec_Id := Find_Corresponding_Spec (N);
- end if;
-
- -- If this is a duplicate body, no point in analyzing it
-
- if Error_Posted (N) then
- return;
- end if;
-
- -- A subprogram body should cause freezing of its own declaration,
- -- but if there was no previous explicit declaration, then the
- -- subprogram will get frozen too late (there may be code within
- -- the body that depends on the subprogram having been frozen,
- -- such as uses of extra formals), so we force it to be frozen
- -- here. Same holds if the body and spec are compilation units.
- -- Finally, if the return type is an anonymous access to protected
- -- subprogram, it must be frozen before the body because its
- -- expansion has generated an equivalent type that is used when
- -- elaborating the body.
-
- if No (Spec_Id) then
- Freeze_Before (N, Body_Id);
-
- elsif Nkind (Parent (N)) = N_Compilation_Unit then
- Freeze_Before (N, Spec_Id);
-
- elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
- Freeze_Before (N, Etype (Body_Id));
- end if;
-
- else
- Spec_Id := Corresponding_Spec (N);
- end if;
- end if;
-
- -- Do not inline any subprogram that contains nested subprograms, since
- -- the backend inlining circuit seems to generate uninitialized
- -- references in this case. We know this happens in the case of front
- -- end ZCX support, but it also appears it can happen in other cases as
- -- well. The backend often rejects attempts to inline in the case of
- -- nested procedures anyway, so little if anything is lost by this.
- -- Note that this is test is for the benefit of the back-end. There is
- -- a separate test for front-end inlining that also rejects nested
- -- subprograms.
-
- -- Do not do this test if errors have been detected, because in some
- -- error cases, this code blows up, and we don't need it anyway if
- -- there have been errors, since we won't get to the linker anyway.
-
- if Comes_From_Source (Body_Id)
- and then Serious_Errors_Detected = 0
- then
- P_Ent := Body_Id;
- loop
- P_Ent := Scope (P_Ent);
- exit when No (P_Ent) or else P_Ent = Standard_Standard;
-
- if Is_Subprogram (P_Ent) then
- Set_Is_Inlined (P_Ent, False);
-
- if Comes_From_Source (P_Ent)
- and then Has_Pragma_Inline (P_Ent)
- then
- Cannot_Inline
- ("cannot inline& (nested subprogram)?",
- N, P_Ent);
- end if;
- end if;
- end loop;
- end if;
-
- Check_Inline_Pragma (Spec_Id);
-
- -- Case of fully private operation in the body of the protected type.
- -- We must create a declaration for the subprogram, in order to attach
- -- the protected subprogram that will be used in internal calls.
-
- if No (Spec_Id)
- and then Comes_From_Source (N)
- and then Is_Protected_Type (Current_Scope)
- then
- declare
- Decl : Node_Id;
- Plist : List_Id;
- Formal : Entity_Id;
- New_Spec : Node_Id;
-
- begin
- Formal := First_Formal (Body_Id);
-
- -- The protected operation always has at least one formal, namely
- -- the object itself, but it is only placed in the parameter list
- -- if expansion is enabled.
-
- if Present (Formal)
- or else Expander_Active
- then
- Plist := Copy_Parameter_List (Body_Id);
- else
- Plist := No_List;
- end if;
-
- if Nkind (Body_Spec) = N_Procedure_Specification then
- New_Spec :=
- Make_Procedure_Specification (Loc,
- Defining_Unit_Name =>
- Make_Defining_Identifier (Sloc (Body_Id),
- Chars => Chars (Body_Id)),
- Parameter_Specifications => Plist);
- else
- New_Spec :=
- Make_Function_Specification (Loc,
- Defining_Unit_Name =>
- Make_Defining_Identifier (Sloc (Body_Id),
- Chars => Chars (Body_Id)),
- Parameter_Specifications => Plist,
- Result_Definition =>
- New_Occurrence_Of (Etype (Body_Id), Loc));
- end if;
-
- Decl :=
- Make_Subprogram_Declaration (Loc,
- Specification => New_Spec);
- Insert_Before (N, Decl);
- Spec_Id := Defining_Unit_Name (New_Spec);
-
- -- Indicate that the entity comes from source, to ensure that
- -- cross-reference information is properly generated. The body
- -- itself is rewritten during expansion, and the body entity will
- -- not appear in calls to the operation.
-
- Set_Comes_From_Source (Spec_Id, True);
- Analyze (Decl);
- Set_Has_Completion (Spec_Id);
- Set_Convention (Spec_Id, Convention_Protected);
- end;
-
- elsif Present (Spec_Id) then
- Spec_Decl := Unit_Declaration_Node (Spec_Id);
- Verify_Overriding_Indicator;
-
- -- In general, the spec will be frozen when we start analyzing the
- -- body. However, for internally generated operations, such as
- -- wrapper functions for inherited operations with controlling
- -- results, the spec may not have been frozen by the time we
- -- expand the freeze actions that include the bodies. In particular,
- -- extra formals for accessibility or for return-in-place may need
- -- to be generated. Freeze nodes, if any, are inserted before the
- -- current body.
-
- if not Is_Frozen (Spec_Id)
- and then Expander_Active
- then
- -- Force the generation of its freezing node to ensure proper
- -- management of access types in the backend.
-
- -- This is definitely needed for some cases, but it is not clear
- -- why, to be investigated further???
-
- Set_Has_Delayed_Freeze (Spec_Id);
- Insert_Actions (N, Freeze_Entity (Spec_Id, Loc));
- end if;
- end if;
-
- if Chars (Body_Id) = Name_uPostconditions then
- Set_Has_Postconditions (Current_Scope);
- end if;
-
- -- Place subprogram on scope stack, and make formals visible. If there
- -- is a spec, the visible entity remains that of the spec.
-
- if Present (Spec_Id) then
- Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
-
- if Is_Child_Unit (Spec_Id) then
- Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
- end if;
-
- if Style_Check then
- Style.Check_Identifier (Body_Id, Spec_Id);
- end if;
-
- Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
- Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
-
- if Is_Abstract_Subprogram (Spec_Id) then
- Error_Msg_N ("an abstract subprogram cannot have a body", N);
- return;
-
- else
- Set_Convention (Body_Id, Convention (Spec_Id));
- Set_Has_Completion (Spec_Id);
-
- if Is_Protected_Type (Scope (Spec_Id)) then
- Prot_Typ := Scope (Spec_Id);
- end if;
-
- -- If this is a body generated for a renaming, do not check for
- -- full conformance. The check is redundant, because the spec of
- -- the body is a copy of the spec in the renaming declaration,
- -- and the test can lead to spurious errors on nested defaults.
-
- if Present (Spec_Decl)
- and then not Comes_From_Source (N)
- and then
- (Nkind (Original_Node (Spec_Decl)) =
- N_Subprogram_Renaming_Declaration
- or else (Present (Corresponding_Body (Spec_Decl))
- and then
- Nkind (Unit_Declaration_Node
- (Corresponding_Body (Spec_Decl))) =
- N_Subprogram_Renaming_Declaration))
- then
- Conformant := True;
-
- else
- Check_Conformance
- (Body_Id, Spec_Id,
- Fully_Conformant, True, Conformant, Body_Id);
- end if;
-
- -- If the body is not fully conformant, we have to decide if we
- -- should analyze it or not. If it has a really messed up profile
- -- then we probably should not analyze it, since we will get too
- -- many bogus messages.
-
- -- Our decision is to go ahead in the non-fully conformant case
- -- only if it is at least mode conformant with the spec. Note
- -- that the call to Check_Fully_Conformant has issued the proper
- -- error messages to complain about the lack of conformance.
-
- if not Conformant
- and then not Mode_Conformant (Body_Id, Spec_Id)
- then
- return;
- end if;
- end if;
-
- if Spec_Id /= Body_Id then
- Reference_Body_Formals (Spec_Id, Body_Id);
- end if;
-
- if Nkind (N) /= N_Subprogram_Body_Stub then
- Set_Corresponding_Spec (N, Spec_Id);
-
- -- Ada 2005 (AI-345): If the operation is a primitive operation
- -- of a concurrent type, the type of the first parameter has been
- -- replaced with the corresponding record, which is the proper
- -- run-time structure to use. However, within the body there may
- -- be uses of the formals that depend on primitive operations
- -- of the type (in particular calls in prefixed form) for which
- -- we need the original concurrent type. The operation may have
- -- several controlling formals, so the replacement must be done
- -- for all of them.
-
- if Comes_From_Source (Spec_Id)
- and then Present (First_Entity (Spec_Id))
- and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
- and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
- and then
- Present (Interfaces (Etype (First_Entity (Spec_Id))))
- and then
- Present
- (Corresponding_Concurrent_Type
- (Etype (First_Entity (Spec_Id))))
- then
- declare
- Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
- Form : Entity_Id;
-
- begin
- Form := First_Formal (Spec_Id);
- while Present (Form) loop
- if Etype (Form) = Typ then
- Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
- end if;
-
- Next_Formal (Form);
- end loop;
- end;
- end if;
-
- -- Make the formals visible, and place subprogram on scope stack.
- -- This is also the point at which we set Last_Real_Spec_Entity
- -- to mark the entities which will not be moved to the body.
-
- Install_Formals (Spec_Id);
- Last_Real_Spec_Entity := Last_Entity (Spec_Id);
- Push_Scope (Spec_Id);
-
- -- Make sure that the subprogram is immediately visible. For
- -- child units that have no separate spec this is indispensable.
- -- Otherwise it is safe albeit redundant.
-
- Set_Is_Immediately_Visible (Spec_Id);
- end if;
-
- Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
- Set_Ekind (Body_Id, E_Subprogram_Body);
- Set_Scope (Body_Id, Scope (Spec_Id));
- Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
-
- -- Case of subprogram body with no previous spec
-
- else
- if Style_Check
- and then Comes_From_Source (Body_Id)
- and then not Suppress_Style_Checks (Body_Id)
- and then not In_Instance
- then
- Style.Body_With_No_Spec (N);
- end if;
-
- New_Overloaded_Entity (Body_Id);
-
- if Nkind (N) /= N_Subprogram_Body_Stub then
- Set_Acts_As_Spec (N);
- Generate_Definition (Body_Id);
- Generate_Reference
- (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
- Generate_Reference_To_Formals (Body_Id);
- Install_Formals (Body_Id);
- Push_Scope (Body_Id);
- end if;
- end if;
-
- -- If the return type is an anonymous access type whose designated type
- -- is the limited view of a class-wide type and the non-limited view is
- -- available, update the return type accordingly.
-
- if Ada_Version >= Ada_05
- and then Comes_From_Source (N)
- then
- declare
- Etyp : Entity_Id;
- Rtyp : Entity_Id;
-
- begin
- Rtyp := Etype (Current_Scope);
-
- if Ekind (Rtyp) = E_Anonymous_Access_Type then
- Etyp := Directly_Designated_Type (Rtyp);
-
- if Is_Class_Wide_Type (Etyp)
- and then From_With_Type (Etyp)
- then
- Set_Directly_Designated_Type
- (Etype (Current_Scope), Available_View (Etyp));
- end if;
- end if;
- end;
- end if;
-
- -- If this is the proper body of a stub, we must verify that the stub
- -- conforms to the body, and to the previous spec if one was present.
- -- we know already that the body conforms to that spec. This test is
- -- only required for subprograms that come from source.
-
- if Nkind (Parent (N)) = N_Subunit
- and then Comes_From_Source (N)
- and then not Error_Posted (Body_Id)
- and then Nkind (Corresponding_Stub (Parent (N))) =
- N_Subprogram_Body_Stub
- then
- declare
- Old_Id : constant Entity_Id :=
- Defining_Entity
- (Specification (Corresponding_Stub (Parent (N))));
-
- Conformant : Boolean := False;
-
- begin
- if No (Spec_Id) then
- Check_Fully_Conformant (Body_Id, Old_Id);
-
- else
- Check_Conformance
- (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
-
- if not Conformant then
-
- -- The stub was taken to be a new declaration. Indicate
- -- that it lacks a body.
-
- Set_Has_Completion (Old_Id, False);
- end if;
- end if;
- end;
- end if;
-
- Set_Has_Completion (Body_Id);
- Check_Eliminated (Body_Id);
-
- if Nkind (N) = N_Subprogram_Body_Stub then
- return;
-
- elsif Present (Spec_Id)
- and then Expander_Active
- and then
- (Has_Pragma_Inline_Always (Spec_Id)
- or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
- then
- Build_Body_To_Inline (N, Spec_Id);
- end if;
-
- -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
- -- if its specification we have to install the private withed units.
- -- This holds for child units as well.
-
- if Is_Compilation_Unit (Body_Id)
- or else Nkind (Parent (N)) = N_Compilation_Unit
- then
- Install_Private_With_Clauses (Body_Id);
- end if;
-
- Check_Anonymous_Return;
-
- -- Set the Protected_Formal field of each extra formal of the protected
- -- subprogram to reference the corresponding extra formal of the
- -- subprogram that implements it. For regular formals this occurs when
- -- the protected subprogram's declaration is expanded, but the extra
- -- formals don't get created until the subprogram is frozen. We need to
- -- do this before analyzing the protected subprogram's body so that any
- -- references to the original subprogram's extra formals will be changed
- -- refer to the implementing subprogram's formals (see Expand_Formal).
-
- if Present (Spec_Id)
- and then Is_Protected_Type (Scope (Spec_Id))
- and then Present (Protected_Body_Subprogram (Spec_Id))
- then
- declare
- Impl_Subp : constant Entity_Id :=
- Protected_Body_Subprogram (Spec_Id);
- Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
- Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
- begin
- while Present (Prot_Ext_Formal) loop
- pragma Assert (Present (Impl_Ext_Formal));
- Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
- Next_Formal_With_Extras (Prot_Ext_Formal);
- Next_Formal_With_Extras (Impl_Ext_Formal);
- end loop;
- end;
- end if;
-
- -- Now we can go on to analyze the body
-
- HSS := Handled_Statement_Sequence (N);
- Set_Actual_Subtypes (N, Current_Scope);
-
- -- Deal with preconditions and postconditions
-
- Process_PPCs (N, Spec_Id, Body_Id);
-
- -- Add a declaration for the Protection object, renaming declarations
- -- for discriminals and privals and finally a declaration for the entry
- -- family index (if applicable). This form of early expansion is done
- -- when the Expander is active because Install_Private_Data_Declarations
- -- references entities which were created during regular expansion.
-
- if Expander_Active
- and then Comes_From_Source (N)
- and then Present (Prot_Typ)
- and then Present (Spec_Id)
- and then not Is_Eliminated (Spec_Id)
- then
- Install_Private_Data_Declarations
- (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
- end if;
-
- -- Analyze the declarations (this call will analyze the precondition
- -- Check pragmas we prepended to the list, as well as the declaration
- -- of the _Postconditions procedure).
-
- Analyze_Declarations (Declarations (N));
-
- -- Check completion, and analyze the statements
-
- Check_Completion;
- Inspect_Deferred_Constant_Completion (Declarations (N));
- Analyze (HSS);
-
- -- Deal with end of scope processing for the body
-
- Process_End_Label (HSS, 't', Current_Scope);
- End_Scope;
- Check_Subprogram_Order (N);
- Set_Analyzed (Body_Id);
-
- -- If we have a separate spec, then the analysis of the declarations
- -- caused the entities in the body to be chained to the spec id, but
- -- we want them chained to the body id. Only the formal parameters
- -- end up chained to the spec id in this case.
-
- if Present (Spec_Id) then
-
- -- We must conform to the categorization of our spec
-
- Validate_Categorization_Dependency (N, Spec_Id);
-
- -- And if this is a child unit, the parent units must conform
-
- if Is_Child_Unit (Spec_Id) then
- Validate_Categorization_Dependency
- (Unit_Declaration_Node (Spec_Id), Spec_Id);
- end if;
-
- -- Here is where we move entities from the spec to the body
-
- -- Case where there are entities that stay with the spec
-
- if Present (Last_Real_Spec_Entity) then
-
- -- No body entities (happens when the only real spec entities
- -- come from precondition and postcondition pragmas)
-
- if No (Last_Entity (Body_Id)) then
- Set_First_Entity
- (Body_Id, Next_Entity (Last_Real_Spec_Entity));
-
- -- Body entities present (formals), so chain stuff past them
-
- else
- Set_Next_Entity
- (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
- end if;
-
- Set_Next_Entity (Last_Real_Spec_Entity, Empty);
- Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
- Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
-
- -- Case where there are no spec entities, in this case there can
- -- be no body entities either, so just move everything.
-
- else
- pragma Assert (No (Last_Entity (Body_Id)));
- Set_First_Entity (Body_Id, First_Entity (Spec_Id));
- Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
- Set_First_Entity (Spec_Id, Empty);
- Set_Last_Entity (Spec_Id, Empty);
- end if;
- end if;
-
- -- If function, check return statements
-
- if Nkind (Body_Spec) = N_Function_Specification then
- declare
- Id : Entity_Id;
-
- begin
- if Present (Spec_Id) then
- Id := Spec_Id;
- else
- Id := Body_Id;
- end if;
-
- if Return_Present (Id) then
- Check_Returns (HSS, 'F', Missing_Ret);
-
- if Missing_Ret then
- Set_Has_Missing_Return (Id);
- end if;
-
- elsif not Is_Machine_Code_Subprogram (Id)
- and then not Body_Deleted
- then
- Error_Msg_N ("missing RETURN statement in function body", N);
- end if;
- end;
-
- -- If procedure with No_Return, check returns
-
- elsif Nkind (Body_Spec) = N_Procedure_Specification
- and then Present (Spec_Id)
- and then No_Return (Spec_Id)
- then
- Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
- end if;
-
- -- Now we are going to check for variables that are never modified in
- -- the body of the procedure. But first we deal with a special case
- -- where we want to modify this check. If the body of the subprogram
- -- starts with a raise statement or its equivalent, or if the body
- -- consists entirely of a null statement, then it is pretty obvious
- -- that it is OK to not reference the parameters. For example, this
- -- might be the following common idiom for a stubbed function:
- -- statement of the procedure raises an exception. In particular this
- -- deals with the common idiom of a stubbed function, which might
- -- appear as something like
-
- -- function F (A : Integer) return Some_Type;
- -- X : Some_Type;
- -- begin
- -- raise Program_Error;
- -- return X;
- -- end F;
-
- -- Here the purpose of X is simply to satisfy the annoying requirement
- -- in Ada that there be at least one return, and we certainly do not
- -- want to go posting warnings on X that it is not initialized! On
- -- the other hand, if X is entirely unreferenced that should still
- -- get a warning.
-
- -- What we do is to detect these cases, and if we find them, flag the
- -- subprogram as being Is_Trivial_Subprogram and then use that flag to
- -- suppress unwanted warnings. For the case of the function stub above
- -- we have a special test to set X as apparently assigned to suppress
- -- the warning.
-
- declare
- Stm : Node_Id;
-
- begin
- -- Skip initial labels (for one thing this occurs when we are in
- -- front end ZCX mode, but in any case it is irrelevant), and also
- -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
-
- Stm := First (Statements (HSS));
- while Nkind (Stm) = N_Label
- or else Nkind (Stm) in N_Push_xxx_Label
- loop
- Next (Stm);
- end loop;
-
- -- Do the test on the original statement before expansion
-
- declare
- Ostm : constant Node_Id := Original_Node (Stm);
-
- begin
- -- If explicit raise statement, turn on flag
-
- if Nkind (Ostm) = N_Raise_Statement then
- Set_Trivial_Subprogram (Stm);
-
- -- If null statement, and no following statements, turn on flag
-
- elsif Nkind (Stm) = N_Null_Statement
- and then Comes_From_Source (Stm)
- and then No (Next (Stm))
- then
- Set_Trivial_Subprogram (Stm);
-
- -- Check for explicit call cases which likely raise an exception
-
- elsif Nkind (Ostm) = N_Procedure_Call_Statement then
- if Is_Entity_Name (Name (Ostm)) then
- declare
- Ent : constant Entity_Id := Entity (Name (Ostm));
-
- begin
- -- If the procedure is marked No_Return, then likely it
- -- raises an exception, but in any case it is not coming
- -- back here, so turn on the flag.
-
- if Ekind (Ent) = E_Procedure
- and then No_Return (Ent)
- then
- Set_Trivial_Subprogram (Stm);
- end if;
- end;
- end if;
- end if;
- end;
- end;
-
- -- Check for variables that are never modified
-
- declare
- E1, E2 : Entity_Id;
-
- begin
- -- If there is a separate spec, then transfer Never_Set_In_Source
- -- flags from out parameters to the corresponding entities in the
- -- body. The reason we do that is we want to post error flags on
- -- the body entities, not the spec entities.
-
- if Present (Spec_Id) then
- E1 := First_Entity (Spec_Id);
- while Present (E1) loop
- if Ekind (E1) = E_Out_Parameter then
- E2 := First_Entity (Body_Id);
- while Present (E2) loop
- exit when Chars (E1) = Chars (E2);
- Next_Entity (E2);
- end loop;
-
- if Present (E2) then
- Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
- end if;
- end if;
-
- Next_Entity (E1);
- end loop;
- end if;
-
- -- Check references in body unless it was deleted. Note that the
- -- check of Body_Deleted here is not just for efficiency, it is
- -- necessary to avoid junk warnings on formal parameters.
-
- if not Body_Deleted then
- Check_References (Body_Id);
- end if;
- end;
- end Analyze_Subprogram_Body;
-
- ------------------------------------
- -- Analyze_Subprogram_Declaration --
- ------------------------------------
-
- procedure Analyze_Subprogram_Declaration (N : Node_Id) is
- Designator : constant Entity_Id :=
- Analyze_Subprogram_Specification (Specification (N));
- Scop : constant Entity_Id := Current_Scope;
-
- -- Start of processing for Analyze_Subprogram_Declaration
-
- begin
- Generate_Definition (Designator);
-
- -- Check for RCI unit subprogram declarations for illegal inlined
- -- subprograms and subprograms having access parameter or limited
- -- parameter without Read and Write attributes (RM E.2.3(12-13)).
-
- Validate_RCI_Subprogram_Declaration (N);
-
- Trace_Scope
- (N,
- Defining_Entity (N),
- " Analyze subprogram spec: ");
-
- if Debug_Flag_C then
- Write_Str ("==== Compiling subprogram spec ");
- Write_Name (Chars (Designator));
- Write_Str (" from ");
- Write_Location (Sloc (N));
- Write_Eol;
- end if;
-
- New_Overloaded_Entity (Designator);
- Check_Delayed_Subprogram (Designator);
-
- -- If the type of the first formal of the current subprogram is a non
- -- generic tagged private type , mark the subprogram as being a private
- -- primitive.
-
- if Present (First_Formal (Designator)) then
- declare
- Formal_Typ : constant Entity_Id :=
- Etype (First_Formal (Designator));
- begin
- Set_Is_Private_Primitive (Designator,
- Is_Tagged_Type (Formal_Typ)
- and then Is_Private_Type (Formal_Typ)
- and then not Is_Generic_Actual_Type (Formal_Typ));
- end;
- end if;
-
- -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
- -- or null.
-
- if Ada_Version >= Ada_05
- and then Comes_From_Source (N)
- and then Is_Dispatching_Operation (Designator)
- then
- declare
- E : Entity_Id;
- Etyp : Entity_Id;
-
- begin
- if Has_Controlling_Result (Designator) then
- Etyp := Etype (Designator);
-
- else
- E := First_Entity (Designator);
- while Present (E)
- and then Is_Formal (E)
- and then not Is_Controlling_Formal (E)
- loop
- Next_Entity (E);
- end loop;
-
- Etyp := Etype (E);
- end if;
-
- if Is_Access_Type (Etyp) then
- Etyp := Directly_Designated_Type (Etyp);
- end if;
-
- if Is_Interface (Etyp)
- and then not Is_Abstract_Subprogram (Designator)
- and then not (Ekind (Designator) = E_Procedure
- and then Null_Present (Specification (N)))
- then
- Error_Msg_Name_1 := Chars (Defining_Entity (N));
- Error_Msg_N
- ("(Ada 2005) interface subprogram % must be abstract or null",
- N);
- end if;
- end;
- end if;
-
- -- What is the following code for, it used to be
-
- -- ??? Set_Suppress_Elaboration_Checks
- -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
-
- -- The following seems equivalent, but a bit dubious
-
- if Elaboration_Checks_Suppressed (Designator) then
- Set_Kill_Elaboration_Checks (Designator);
- end if;
-
- if Scop /= Standard_Standard
- and then not Is_Child_Unit (Designator)
- then
- Set_Categorization_From_Scope (Designator, Scop);
- else
- -- For a compilation unit, check for library-unit pragmas
-
- Push_Scope (Designator);
- Set_Categorization_From_Pragmas (N);
- Validate_Categorization_Dependency (N, Designator);
- Pop_Scope;
- end if;
-
- -- For a compilation unit, set body required. This flag will only be
- -- reset if a valid Import or Interface pragma is processed later on.
-
- if Nkind (Parent (N)) = N_Compilation_Unit then
- Set_Body_Required (Parent (N), True);
-
- if Ada_Version >= Ada_05
- and then Nkind (Specification (N)) = N_Procedure_Specification
- and then Null_Present (Specification (N))
- then
- Error_Msg_N
- ("null procedure cannot be declared at library level", N);
- end if;
- end if;
-
- Generate_Reference_To_Formals (Designator);
- Check_Eliminated (Designator);
-
- -- Ada 2005: if procedure is declared with "is null" qualifier,
- -- it requires no body.
-
- if Nkind (Specification (N)) = N_Procedure_Specification
- and then Null_Present (Specification (N))
- then
- Set_Has_Completion (Designator);
- Set_Is_Inlined (Designator);
-
- if Is_Protected_Type (Current_Scope) then
- Error_Msg_N
- ("protected operation cannot be a null procedure", N);
- end if;
- end if;
- end Analyze_Subprogram_Declaration;
-
- --------------------------------------
- -- Analyze_Subprogram_Specification --
- --------------------------------------
-
- -- Reminder: N here really is a subprogram specification (not a subprogram
- -- declaration). This procedure is called to analyze the specification in
- -- both subprogram bodies and subprogram declarations (specs).
-
- function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
- Designator : constant Entity_Id := Defining_Entity (N);
- Formals : constant List_Id := Parameter_Specifications (N);
-
- -- Start of processing for Analyze_Subprogram_Specification
-
- begin
- Generate_Definition (Designator);
-
- if Nkind (N) = N_Function_Specification then
- Set_Ekind (Designator, E_Function);
- Set_Mechanism (Designator, Default_Mechanism);
-
- else
- Set_Ekind (Designator, E_Procedure);
- Set_Etype (Designator, Standard_Void_Type);
- end if;
-
- -- Introduce new scope for analysis of the formals and the return type
-
- Set_Scope (Designator, Current_Scope);
-
- if Present (Formals) then
- Push_Scope (Designator);
- Process_Formals (Formals, N);
-
- -- Ada 2005 (AI-345): If this is an overriding operation of an
- -- inherited interface operation, and the controlling type is
- -- a synchronized type, replace the type with its corresponding
- -- record, to match the proper signature of an overriding operation.
-
- if Ada_Version >= Ada_05 then
- declare
- Formal : Entity_Id;
- Formal_Typ : Entity_Id;
- Rec_Typ : Entity_Id;
-
- begin
- Formal := First_Formal (Designator);
- while Present (Formal) loop
- Formal_Typ := Etype (Formal);
-
- if Is_Concurrent_Type (Formal_Typ)
- and then Present (Corresponding_Record_Type (Formal_Typ))
- then
- Rec_Typ := Corresponding_Record_Type (Formal_Typ);
-
- if Present (Interfaces (Rec_Typ)) then
- Set_Etype (Formal, Rec_Typ);
- end if;
- end if;
-
- Next_Formal (Formal);
- end loop;
- end;
- end if;
-
- End_Scope;
-
- elsif Nkind (N) = N_Function_Specification then
- Analyze_Return_Type (N);
- end if;
-
- if Nkind (N) = N_Function_Specification then
- if Nkind (Designator) = N_Defining_Operator_Symbol then
- Valid_Operator_Definition (Designator);
- end if;
-
- May_Need_Actuals (Designator);
-
- -- Ada 2005 (AI-251): If the return type is abstract, verify that
- -- the subprogram is abstract also. This does not apply to renaming
- -- declarations, where abstractness is inherited.
- -- In case of primitives associated with abstract interface types
- -- the check is applied later (see Analyze_Subprogram_Declaration).
-
- if Is_Abstract_Type (Etype (Designator))
- and then not Is_Interface (Etype (Designator))
- and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
- and then Nkind (Parent (N)) /=
- N_Abstract_Subprogram_Declaration
- and then
- (Nkind (Parent (N))) /= N_Formal_Abstract_Subprogram_Declaration
- then
- Error_Msg_N
- ("function that returns abstract type must be abstract", N);
- end if;
- end if;
-
- return Designator;
- end Analyze_Subprogram_Specification;
-
- --------------------------
- -- Build_Body_To_Inline --
- --------------------------
-
- procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
- Decl : constant Node_Id := Unit_Declaration_Node (Subp);
- Original_Body : Node_Id;
- Body_To_Analyze : Node_Id;
- Max_Size : constant := 10;
- Stat_Count : Integer := 0;
-
- function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
- -- Check for declarations that make inlining not worthwhile
-
- function Has_Excluded_Statement (Stats : List_Id) return Boolean;
- -- Check for statements that make inlining not worthwhile: any tasking
- -- statement, nested at any level. Keep track of total number of
- -- elementary statements, as a measure of acceptable size.
-
- function Has_Pending_Instantiation return Boolean;
- -- If some enclosing body contains instantiations that appear before the
- -- corresponding generic body, the enclosing body has a freeze node so
- -- that it can be elaborated after the generic itself. This might
- -- conflict with subsequent inlinings, so that it is unsafe to try to
- -- inline in such a case.
-
- function Has_Single_Return return Boolean;
- -- In general we cannot inline functions that return unconstrained type.
- -- However, we can handle such functions if all return statements return
- -- a local variable that is the only declaration in the body of the
- -- function. In that case the call can be replaced by that local
- -- variable as is done for other inlined calls.
-
- procedure Remove_Pragmas;
- -- A pragma Unreferenced or pragma Unmodified that mentions a formal
- -- parameter has no meaning when the body is inlined and the formals
- -- are rewritten. Remove it from body to inline. The analysis of the
- -- non-inlined body will handle the pragma properly.
-
- function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
- -- If the body of the subprogram includes a call that returns an
- -- unconstrained type, the secondary stack is involved, and it
- -- is not worth inlining.
-
- ------------------------------
- -- Has_Excluded_Declaration --
- ------------------------------
-
- function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
- D : Node_Id;
-
- function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
- -- Nested subprograms make a given body ineligible for inlining, but
- -- we make an exception for instantiations of unchecked conversion.
- -- The body has not been analyzed yet, so check the name, and verify
- -- that the visible entity with that name is the predefined unit.
-
- -----------------------------
- -- Is_Unchecked_Conversion --
- -----------------------------
-
- function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
- Id : constant Node_Id := Name (D);
- Conv : Entity_Id;
-
- begin
- if Nkind (Id) = N_Identifier
- and then Chars (Id) = Name_Unchecked_Conversion
- then
- Conv := Current_Entity (Id);
-
- elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
- and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
- then
- Conv := Current_Entity (Selector_Name (Id));
- else
- return False;
- end if;
-
- return Present (Conv)
- and then Is_Predefined_File_Name
- (Unit_File_Name (Get_Source_Unit (Conv)))
- and then Is_Intrinsic_Subprogram (Conv);
- end Is_Unchecked_Conversion;
-
- -- Start of processing for Has_Excluded_Declaration
-
- begin
- D := First (Decls);
- while Present (D) loop
- if (Nkind (D) = N_Function_Instantiation
- and then not Is_Unchecked_Conversion (D))
- or else Nkind_In (D, N_Protected_Type_Declaration,
- N_Package_Declaration,
- N_Package_Instantiation,
- N_Subprogram_Body,
- N_Procedure_Instantiation,
- N_Task_Type_Declaration)
- then
- Cannot_Inline
- ("cannot inline & (non-allowed declaration)?", D, Subp);
- return True;
- end if;
-
- Next (D);
- end loop;
-
- return False;
- end Has_Excluded_Declaration;
-
- ----------------------------
- -- Has_Excluded_Statement --
- ----------------------------
-
- function Has_Excluded_Statement (Stats : List_Id) return Boolean is
- S : Node_Id;
- E : Node_Id;
-
- begin
- S := First (Stats);
- while Present (S) loop
- Stat_Count := Stat_Count + 1;
-
- if Nkind_In (S, N_Abort_Statement,
- N_Asynchronous_Select,
- N_Conditional_Entry_Call,
- N_Delay_Relative_Statement,
- N_Delay_Until_Statement,
- N_Selective_Accept,
- N_Timed_Entry_Call)
- then
- Cannot_Inline
- ("cannot inline & (non-allowed statement)?", S, Subp);
- return True;
-
- elsif Nkind (S) = N_Block_Statement then
- if Present (Declarations (S))
- and then Has_Excluded_Declaration (Declarations (S))
- then
- return True;
-
- elsif Present (Handled_Statement_Sequence (S))
- and then
- (Present
- (Exception_Handlers (Handled_Statement_Sequence (S)))
- or else
- Has_Excluded_Statement
- (Statements (Handled_Statement_Sequence (S))))
- then
- return True;
- end if;
-
- elsif Nkind (S) = N_Case_Statement then
- E := First (Alternatives (S));
- while Present (E) loop
- if Has_Excluded_Statement (Statements (E)) then
- return True;
- end if;
-
- Next (E);
- end loop;
-
- elsif Nkind (S) = N_If_Statement then
- if Has_Excluded_Statement (Then_Statements (S)) then
- return True;
- end if;
-
- if Present (Elsif_Parts (S)) then
- E := First (Elsif_Parts (S));
- while Present (E) loop
- if Has_Excluded_Statement (Then_Statements (E)) then
- return True;
- end if;
- Next (E);
- end loop;
- end if;
-
- if Present (Else_Statements (S))
- and then Has_Excluded_Statement (Else_Statements (S))
- then
- return True;
- end if;
-
- elsif Nkind (S) = N_Loop_Statement
- and then Has_Excluded_Statement (Statements (S))
- then
- return True;
- end if;
-
- Next (S);
- end loop;
-
- return False;
- end Has_Excluded_Statement;
-
- -------------------------------
- -- Has_Pending_Instantiation --
- -------------------------------
-
- function Has_Pending_Instantiation return Boolean is
- S : Entity_Id;
-
- begin
- S := Current_Scope;
- while Present (S) loop
- if Is_Compilation_Unit (S)
- or else Is_Child_Unit (S)
- then
- return False;
- elsif Ekind (S) = E_Package
- and then Has_Forward_Instantiation (S)
- then
- return True;
- end if;
-
- S := Scope (S);
- end loop;
-
- return False;
- end Has_Pending_Instantiation;
-
- ------------------------
- -- Has_Single_Return --
- ------------------------
-
- function Has_Single_Return return Boolean is
- Return_Statement : Node_Id := Empty;
-
- function Check_Return (N : Node_Id) return Traverse_Result;
-
- ------------------
- -- Check_Return --
- ------------------
-
- function Check_Return (N : Node_Id) return Traverse_Result is
- begin
- if Nkind (N) = N_Simple_Return_Statement then
- if Present (Expression (N))
- and then Is_Entity_Name (Expression (N))
- then
- if No (Return_Statement) then
- Return_Statement := N;
- return OK;
-
- elsif Chars (Expression (N)) =
- Chars (Expression (Return_Statement))
- then
- return OK;
-
- else
- return Abandon;
- end if;
-
- else
- -- Expression has wrong form
-
- return Abandon;
- end if;
-
- else
- return OK;
- end if;
- end Check_Return;
-
- function Check_All_Returns is new Traverse_Func (Check_Return);
-
- -- Start of processing for Has_Single_Return
-
- begin
- return Check_All_Returns (N) = OK
- and then Present (Declarations (N))
- and then Present (First (Declarations (N)))
- and then Chars (Expression (Return_Statement)) =
- Chars (Defining_Identifier (First (Declarations (N))));
- end Has_Single_Return;
-
- --------------------
- -- Remove_Pragmas --
- --------------------
-
- procedure Remove_Pragmas is
- Decl : Node_Id;
- Nxt : Node_Id;
-
- begin
- Decl := First (Declarations (Body_To_Analyze));
- while Present (Decl) loop
- Nxt := Next (Decl);
-
- if Nkind (Decl) = N_Pragma
- and then (Pragma_Name (Decl) = Name_Unreferenced
- or else
- Pragma_Name (Decl) = Name_Unmodified)
- then
- Remove (Decl);
- end if;
-
- Decl := Nxt;
- end loop;
- end Remove_Pragmas;
-
- --------------------------
- -- Uses_Secondary_Stack --
- --------------------------
-
- function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
- function Check_Call (N : Node_Id) return Traverse_Result;
- -- Look for function calls that return an unconstrained type
-
- ----------------
- -- Check_Call --
- ----------------
-
- function Check_Call (N : Node_Id) return Traverse_Result is
- begin
- if Nkind (N) = N_Function_Call
- and then Is_Entity_Name (Name (N))
- and then Is_Composite_Type (Etype (Entity (Name (N))))
- and then not Is_Constrained (Etype (Entity (Name (N))))
- then
- Cannot_Inline
- ("cannot inline & (call returns unconstrained type)?",
- N, Subp);
- return Abandon;
- else
- return OK;
- end if;
- end Check_Call;
-
- function Check_Calls is new Traverse_Func (Check_Call);
-
- begin
- return Check_Calls (Bod) = Abandon;
- end Uses_Secondary_Stack;
-
- -- Start of processing for Build_Body_To_Inline
-
- begin
- if Nkind (Decl) = N_Subprogram_Declaration
- and then Present (Body_To_Inline (Decl))
- then
- return; -- Done already.
-
- -- Functions that return unconstrained composite types require
- -- secondary stack handling, and cannot currently be inlined, unless
- -- all return statements return a local variable that is the first
- -- local declaration in the body.
-
- elsif Ekind (Subp) = E_Function
- and then not Is_Scalar_Type (Etype (Subp))
- and then not Is_Access_Type (Etype (Subp))
- and then not Is_Constrained (Etype (Subp))
- then
- if not Has_Single_Return then
- Cannot_Inline
- ("cannot inline & (unconstrained return type)?", N, Subp);
- return;
- end if;
-
- -- Ditto for functions that return controlled types, where controlled
- -- actions interfere in complex ways with inlining.
-
- elsif Ekind (Subp) = E_Function
- and then Needs_Finalization (Etype (Subp))
- then
- Cannot_Inline
- ("cannot inline & (controlled return type)?", N, Subp);
- return;
- end if;
-
- if Present (Declarations (N))
- and then Has_Excluded_Declaration (Declarations (N))
- then
- return;
- end if;
-
- if Present (Handled_Statement_Sequence (N)) then
- if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
- Cannot_Inline
- ("cannot inline& (exception handler)?",
- First (Exception_Handlers (Handled_Statement_Sequence (N))),
- Subp);
- return;
- elsif
- Has_Excluded_Statement
- (Statements (Handled_Statement_Sequence (N)))
- then
- return;
- end if;
- end if;
-
- -- We do not inline a subprogram that is too large, unless it is
- -- marked Inline_Always. This pragma does not suppress the other
- -- checks on inlining (forbidden declarations, handlers, etc).
-
- if Stat_Count > Max_Size
- and then not Has_Pragma_Inline_Always (Subp)
- then
- Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
- return;
- end if;
-
- if Has_Pending_Instantiation then
- Cannot_Inline
- ("cannot inline& (forward instance within enclosing body)?",
- N, Subp);
- return;
- end if;
-
- -- Within an instance, the body to inline must be treated as a nested
- -- generic, so that the proper global references are preserved.
-
- -- Note that we do not do this at the library level, because it is not
- -- needed, and furthermore this causes trouble if front end inlining
- -- is activated (-gnatN).
-
- if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
- Save_Env (Scope (Current_Scope), Scope (Current_Scope));
- Original_Body := Copy_Generic_Node (N, Empty, True);
- else
- Original_Body := Copy_Separate_Tree (N);
- end if;
-
- -- We need to capture references to the formals in order to substitute
- -- the actuals at the point of inlining, i.e. instantiation. To treat
- -- the formals as globals to the body to inline, we nest it within
- -- a dummy parameterless subprogram, declared within the real one.
- -- To avoid generating an internal name (which is never public, and
- -- which affects serial numbers of other generated names), we use
- -- an internal symbol that cannot conflict with user declarations.
-
- Set_Parameter_Specifications (Specification (Original_Body), No_List);
- Set_Defining_Unit_Name
- (Specification (Original_Body),
- Make_Defining_Identifier (Sloc (N), Name_uParent));
- Set_Corresponding_Spec (Original_Body, Empty);
-
- Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
-
- -- Set return type of function, which is also global and does not need
- -- to be resolved.
-
- if Ekind (Subp) = E_Function then
- Set_Result_Definition (Specification (Body_To_Analyze),
- New_Occurrence_Of (Etype (Subp), Sloc (N)));
- end if;
-
- if No (Declarations (N)) then
- Set_Declarations (N, New_List (Body_To_Analyze));
- else
- Append (Body_To_Analyze, Declarations (N));
- end if;
-
- Expander_Mode_Save_And_Set (False);
- Remove_Pragmas;
-
- Analyze (Body_To_Analyze);
- Push_Scope (Defining_Entity (Body_To_Analyze));
- Save_Global_References (Original_Body);
- End_Scope;
- Remove (Body_To_Analyze);
-
- Expander_Mode_Restore;
-
- -- Restore environment if previously saved
-
- if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
- Restore_Env;
- end if;
-
- -- If secondary stk used there is no point in inlining. We have
- -- already issued the warning in this case, so nothing to do.
-
- if Uses_Secondary_Stack (Body_To_Analyze) then
- return;
- end if;
-
- Set_Body_To_Inline (Decl, Original_Body);
- Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
- Set_Is_Inlined (Subp);
- end Build_Body_To_Inline;
-
- -------------------
- -- Cannot_Inline --
- -------------------
-
- procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
- begin
- -- Do not emit warning if this is a predefined unit which is not
- -- the main unit. With validity checks enabled, some predefined
- -- subprograms may contain nested subprograms and become ineligible
- -- for inlining.
-
- if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
- and then not In_Extended_Main_Source_Unit (Subp)
- then
- null;
-
- elsif Has_Pragma_Inline_Always (Subp) then
-
- -- Remove last character (question mark) to make this into an error,
- -- because the Inline_Always pragma cannot be obeyed.
-
- Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
-
- elsif Ineffective_Inline_Warnings then
- Error_Msg_NE (Msg, N, Subp);
- end if;
- end Cannot_Inline;
-
- -----------------------
- -- Check_Conformance --
- -----------------------
-
- procedure Check_Conformance
- (New_Id : Entity_Id;
- Old_Id : Entity_Id;
- Ctype : Conformance_Type;
- Errmsg : Boolean;
- Conforms : out Boolean;
- Err_Loc : Node_Id := Empty;
- Get_Inst : Boolean := False;
- Skip_Controlling_Formals : Boolean := False)
- is
- procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
- -- Post error message for conformance error on given node. Two messages
- -- are output. The first points to the previous declaration with a
- -- general "no conformance" message. The second is the detailed reason,
- -- supplied as Msg. The parameter N provide information for a possible
- -- & insertion in the message, and also provides the location for
- -- posting the message in the absence of a specified Err_Loc location.
-
- -----------------------
- -- Conformance_Error --
- -----------------------
-
- procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
- Enode : Node_Id;
-
- begin
- Conforms := False;
-
- if Errmsg then
- if No (Err_Loc) then
- Enode := N;
- else
- Enode := Err_Loc;
- end if;
-
- Error_Msg_Sloc := Sloc (Old_Id);
-
- case Ctype is
- when Type_Conformant =>
- Error_Msg_N
- ("not type conformant with declaration#!", Enode);
-
- when Mode_Conformant =>
- if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
- Error_Msg_N
- ("not mode conformant with operation inherited#!",
- Enode);
- else
- Error_Msg_N
- ("not mode conformant with declaration#!", Enode);
- end if;
-
- when Subtype_Conformant =>
- if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
- Error_Msg_N
- ("not subtype conformant with operation inherited#!",
- Enode);
- else
- Error_Msg_N
- ("not subtype conformant with declaration#!", Enode);
- end if;
-
- when Fully_Conformant =>
- if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
- Error_Msg_N
- ("not fully conformant with operation inherited#!",
- Enode);
- else
- Error_Msg_N
- ("not fully conformant with declaration#!", Enode);
- end if;
- end case;
-
- Error_Msg_NE (Msg, Enode, N);
- end if;
- end Conformance_Error;
-
- -- Local Variables
-
- Old_Type : constant Entity_Id := Etype (Old_Id);
- New_Type : constant Entity_Id := Etype (New_Id);
- Old_Formal : Entity_Id;
- New_Formal : Entity_Id;
- Access_Types_Match : Boolean;
- Old_Formal_Base : Entity_Id;
- New_Formal_Base : Entity_Id;
-
- -- Start of processing for Check_Conformance
-
- begin
- Conforms := True;
-
- -- We need a special case for operators, since they don't appear
- -- explicitly.
-
- if Ctype = Type_Conformant then
- if Ekind (New_Id) = E_Operator
- and then Operator_Matches_Spec (New_Id, Old_Id)
- then
- return;
- end if;
- end if;
-
- -- If both are functions/operators, check return types conform
-
- if Old_Type /= Standard_Void_Type
- and then New_Type /= Standard_Void_Type
- then
-
- -- If we are checking interface conformance we omit controlling
- -- arguments and result, because we are only checking the conformance
- -- of the remaining parameters.
-
- if Has_Controlling_Result (Old_Id)
- and then Has_Controlling_Result (New_Id)
- and then Skip_Controlling_Formals
- then
- null;
-
- elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
- Conformance_Error ("\return type does not match!", New_Id);
- return;
- end if;
-
- -- Ada 2005 (AI-231): In case of anonymous access types check the
- -- null-exclusion and access-to-constant attributes match.
-
- if Ada_Version >= Ada_05
- and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
- and then
- (Can_Never_Be_Null (Old_Type)
- /= Can_Never_Be_Null (New_Type)
- or else Is_Access_Constant (Etype (Old_Type))
- /= Is_Access_Constant (Etype (New_Type)))
- then
- Conformance_Error ("\return type does not match!", New_Id);
- return;
- end if;
-
- -- If either is a function/operator and the other isn't, error
-
- elsif Old_Type /= Standard_Void_Type
- or else New_Type /= Standard_Void_Type
- then
- Conformance_Error ("\functions can only match functions!", New_Id);
- return;
- end if;
-
- -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
- -- If this is a renaming as body, refine error message to indicate that
- -- the conflict is with the original declaration. If the entity is not
- -- frozen, the conventions don't have to match, the one of the renamed
- -- entity is inherited.
-
- if Ctype >= Subtype_Conformant then
- if Convention (Old_Id) /= Convention (New_Id) then
-
- if not Is_Frozen (New_Id) then
- null;
-
- elsif Present (Err_Loc)
- and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
- and then Present (Corresponding_Spec (Err_Loc))
- then
- Error_Msg_Name_1 := Chars (New_Id);
- Error_Msg_Name_2 :=
- Name_Ada + Convention_Id'Pos (Convention (New_Id));
-
- Conformance_Error ("\prior declaration for% has convention %!");
-
- else
- Conformance_Error ("\calling conventions do not match!");
- end if;
-
- return;
-
- elsif Is_Formal_Subprogram (Old_Id)
- or else Is_Formal_Subprogram (New_Id)
- then
- Conformance_Error ("\formal subprograms not allowed!");
- return;
- end if;
- end if;
-
- -- Deal with parameters
-
- -- Note: we use the entity information, rather than going directly
- -- to the specification in the tree. This is not only simpler, but
- -- absolutely necessary for some cases of conformance tests between
- -- operators, where the declaration tree simply does not exist!
-
- Old_Formal := First_Formal (Old_Id);
- New_Formal := First_Formal (New_Id);
-
- while Present (Old_Formal) and then Present (New_Formal) loop
- if Is_Controlling_Formal (Old_Formal)
- and then Is_Controlling_Formal (New_Formal)
- and then Skip_Controlling_Formals
- then
- goto Skip_Controlling_Formal;
- end if;
-
- if Ctype = Fully_Conformant then
-
- -- Names must match. Error message is more accurate if we do
- -- this before checking that the types of the formals match.
-
- if Chars (Old_Formal) /= Chars (New_Formal) then
- Conformance_Error ("\name & does not match!", New_Formal);
-
- -- Set error posted flag on new formal as well to stop
- -- junk cascaded messages in some cases.
-
- Set_Error_Posted (New_Formal);
- return;
- end if;
- end if;
-
- -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
- -- case occurs whenever a subprogram is being renamed and one of its
- -- parameters imposes a null exclusion. For example:
-
- -- type T is null record;
- -- type Acc_T is access T;
- -- subtype Acc_T_Sub is Acc_T;
-
- -- procedure P (Obj : not null Acc_T_Sub); -- itype
- -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
- -- renames P;
-
- Old_Formal_Base := Etype (Old_Formal);
- New_Formal_Base := Etype (New_Formal);
-
- if Get_Inst then
- Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
- New_Formal_Base := Get_Instance_Of (New_Formal_Base);
- end if;
-
- Access_Types_Match := Ada_Version >= Ada_05
-
- -- Ensure that this rule is only applied when New_Id is a
- -- renaming of Old_Id.
-
- and then Nkind (Parent (Parent (New_Id))) =
- N_Subprogram_Renaming_Declaration
- and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
- and then Present (Entity (Name (Parent (Parent (New_Id)))))
- and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
-
- -- Now handle the allowed access-type case
-
- and then Is_Access_Type (Old_Formal_Base)
- and then Is_Access_Type (New_Formal_Base)
-
- -- The type kinds must match. The only exception occurs with
- -- multiple generics of the form:
-
- -- generic generic
- -- type F is private; type A is private;
- -- type F_Ptr is access F; type A_Ptr is access A;
- -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
- -- package F_Pack is ... package A_Pack is
- -- package F_Inst is
- -- new F_Pack (A, A_Ptr, A_P);
-
- -- When checking for conformance between the parameters of A_P
- -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
- -- because the compiler has transformed A_Ptr into a subtype of
- -- F_Ptr. We catch this case in the code below.
-
- and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
- or else
- (Is_Generic_Type (Old_Formal_Base)
- and then Is_Generic_Type (New_Formal_Base)
- and then Is_Internal (New_Formal_Base)
- and then Etype (Etype (New_Formal_Base)) =
- Old_Formal_Base))
- and then Directly_Designated_Type (Old_Formal_Base) =
- Directly_Designated_Type (New_Formal_Base)
- and then ((Is_Itype (Old_Formal_Base)
- and then Can_Never_Be_Null (Old_Formal_Base))
- or else
- (Is_Itype (New_Formal_Base)
- and then Can_Never_Be_Null (New_Formal_Base)));
-
- -- Types must always match. In the visible part of an instance,
- -- usual overloading rules for dispatching operations apply, and
- -- we check base types (not the actual subtypes).
-
- if In_Instance_Visible_Part
- and then Is_Dispatching_Operation (New_Id)
- then
- if not Conforming_Types
- (T1 => Base_Type (Etype (Old_Formal)),
- T2 => Base_Type (Etype (New_Formal)),
- Ctype => Ctype,
- Get_Inst => Get_Inst)
- and then not Access_Types_Match
- then
- Conformance_Error ("\type of & does not match!", New_Formal);
- return;
- end if;
-
- elsif not Conforming_Types
- (T1 => Old_Formal_Base,
- T2 => New_Formal_Base,
- Ctype => Ctype,
- Get_Inst => Get_Inst)
- and then not Access_Types_Match
- then
- Conformance_Error ("\type of & does not match!", New_Formal);
- return;
- end if;
-
- -- For mode conformance, mode must match
-
- if Ctype >= Mode_Conformant then
- if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
- Conformance_Error ("\mode of & does not match!", New_Formal);
- return;
-
- -- Part of mode conformance for access types is having the same
- -- constant modifier.
-
- elsif Access_Types_Match
- and then Is_Access_Constant (Old_Formal_Base) /=
- Is_Access_Constant (New_Formal_Base)
- then
- Conformance_Error
- ("\constant modifier does not match!", New_Formal);
- return;
- end if;
- end if;
-
- if Ctype >= Subtype_Conformant then
-
- -- Ada 2005 (AI-231): In case of anonymous access types check
- -- the null-exclusion and access-to-constant attributes must
- -- match.
-
- if Ada_Version >= Ada_05
- and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
- and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
- and then
- (Can_Never_Be_Null (Old_Formal) /=
- Can_Never_Be_Null (New_Formal)
- or else
- Is_Access_Constant (Etype (Old_Formal)) /=
- Is_Access_Constant (Etype (New_Formal)))
- then
- -- It is allowed to omit the null-exclusion in case of stream
- -- attribute subprograms. We recognize stream subprograms
- -- through their TSS-generated suffix.
-
- declare
- TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
- begin
- if TSS_Name /= TSS_Stream_Read
- and then TSS_Name /= TSS_Stream_Write
- and then TSS_Name /= TSS_Stream_Input
- and then TSS_Name /= TSS_Stream_Output
- then
- Conformance_Error
- ("\type of & does not match!", New_Formal);
- return;
- end if;
- end;
- end if;
- end if;
-
- -- Full conformance checks
-
- if Ctype = Fully_Conformant then
-
- -- We have checked already that names match
-
- if Parameter_Mode (Old_Formal) = E_In_Parameter then
-
- -- Check default expressions for in parameters
-
- declare
- NewD : constant Boolean :=
- Present (Default_Value (New_Formal));
- OldD : constant Boolean :=
- Present (Default_Value (Old_Formal));
- begin
- if NewD or OldD then
-
- -- The old default value has been analyzed because the
- -- current full declaration will have frozen everything
- -- before. The new default value has not been analyzed,
- -- so analyze it now before we check for conformance.
-
- if NewD then
- Push_Scope (New_Id);
- Preanalyze_Spec_Expression
- (Default_Value (New_Formal), Etype (New_Formal));
- End_Scope;
- end if;
-
- if not (NewD and OldD)
- or else not Fully_Conformant_Expressions
- (Default_Value (Old_Formal),
- Default_Value (New_Formal))
- then
- Conformance_Error
- ("\default expression for & does not match!",
- New_Formal);
- return;
- end if;
- end if;
- end;
- end if;
- end if;
-
- -- A couple of special checks for Ada 83 mode. These checks are
- -- skipped if either entity is an operator in package Standard,
- -- or if either old or new instance is not from the source program.
-
- if Ada_Version = Ada_83
- and then Sloc (Old_Id) > Standard_Location
- and then Sloc (New_Id) > Standard_Location
- and then Comes_From_Source (Old_Id)
- and then Comes_From_Source (New_Id)
- then
- declare
- Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
- New_Param : constant Node_Id := Declaration_Node (New_Formal);
-
- begin
- -- Explicit IN must be present or absent in both cases. This
- -- test is required only in the full conformance case.
-
- if In_Present (Old_Param) /= In_Present (New_Param)
- and then Ctype = Fully_Conformant
- then
- Conformance_Error
- ("\(Ada 83) IN must appear in both declarations",
- New_Formal);
- return;
- end if;
-
- -- Grouping (use of comma in param lists) must be the same
- -- This is where we catch a misconformance like:
-
- -- A, B : Integer
- -- A : Integer; B : Integer
-
- -- which are represented identically in the tree except
- -- for the setting of the flags More_Ids and Prev_Ids.
-
- if More_Ids (Old_Param) /= More_Ids (New_Param)
- or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
- then
- Conformance_Error
- ("\grouping of & does not match!", New_Formal);
- return;
- end if;
- end;
- end if;
-
- -- This label is required when skipping controlling formals
-
- <<Skip_Controlling_Formal>>
-
- Next_Formal (Old_Formal);
- Next_Formal (New_Formal);
- end loop;
-
- if Present (Old_Formal) then
- Conformance_Error ("\too few parameters!");
- return;
-
- elsif Present (New_Formal) then
- Conformance_Error ("\too many parameters!", New_Formal);
- return;
- end if;
- end Check_Conformance;
-
- -----------------------
- -- Check_Conventions --
- -----------------------
-
- procedure Check_Conventions (Typ : Entity_Id) is
- Ifaces_List : Elist_Id;
-
- procedure Check_Convention (Op : Entity_Id);
- -- Verify that the convention of inherited dispatching operation Op is
- -- consistent among all subprograms it overrides. In order to minimize
- -- the search, Search_From is utilized to designate a specific point in
- -- the list rather than iterating over the whole list once more.
-
- ----------------------
- -- Check_Convention --
- ----------------------
-
- procedure Check_Convention (Op : Entity_Id) is
- Iface_Elmt : Elmt_Id;
- Iface_Prim_Elmt : Elmt_Id;
- Iface_Prim : Entity_Id;
-
- begin
- Iface_Elmt := First_Elmt (Ifaces_List);
- while Present (Iface_Elmt) loop
- Iface_Prim_Elmt :=
- First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
- while Present (Iface_Prim_Elmt) loop
- Iface_Prim := Node (Iface_Prim_Elmt);
-
- if Is_Interface_Conformant (Typ, Iface_Prim, Op)
- and then Convention (Iface_Prim) /= Convention (Op)
- then
- Error_Msg_N
- ("inconsistent conventions in primitive operations", Typ);
-
- Error_Msg_Name_1 := Chars (Op);
- Error_Msg_Name_2 := Get_Convention_Name (Convention (Op));
- Error_Msg_Sloc := Sloc (Op);
-
- if Comes_From_Source (Op) then
- if not Is_Overriding_Operation (Op) then
- Error_Msg_N ("\\primitive % defined #", Typ);
- else
- Error_Msg_N ("\\overriding operation % with " &
- "convention % defined #", Typ);
- end if;
-
- else pragma Assert (Present (Alias (Op)));
- Error_Msg_Sloc := Sloc (Alias (Op));
- Error_Msg_N ("\\inherited operation % with " &
- "convention % defined #", Typ);
- end if;
-
- Error_Msg_Name_1 := Chars (Op);
- Error_Msg_Name_2 :=
- Get_Convention_Name (Convention (Iface_Prim));
- Error_Msg_Sloc := Sloc (Iface_Prim);
- Error_Msg_N ("\\overridden operation % with " &
- "convention % defined #", Typ);
-
- -- Avoid cascading errors
-
- return;
- end if;
-
- Next_Elmt (Iface_Prim_Elmt);
- end loop;
-
- Next_Elmt (Iface_Elmt);
- end loop;
- end Check_Convention;
-
- -- Local variables
-
- Prim_Op : Entity_Id;
- Prim_Op_Elmt : Elmt_Id;
-
- -- Start of processing for Check_Conventions
-
- begin
- if not Has_Interfaces (Typ) then
- return;
- end if;
-
- Collect_Interfaces (Typ, Ifaces_List);
-
- -- The algorithm checks every overriding dispatching operation against
- -- all the corresponding overridden dispatching operations, detecting
- -- differences in conventions.
-
- Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
- while Present (Prim_Op_Elmt) loop
- Prim_Op := Node (Prim_Op_Elmt);
-
- -- A small optimization: skip the predefined dispatching operations
- -- since they always have the same convention.
-
- if not Is_Predefined_Dispatching_Operation (Prim_Op) then
- Check_Convention (Prim_Op);
- end if;
-
- Next_Elmt (Prim_Op_Elmt);
- end loop;
- end Check_Conventions;
-
- ------------------------------
- -- Check_Delayed_Subprogram --
- ------------------------------
-
- procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
- F : Entity_Id;
-
- procedure Possible_Freeze (T : Entity_Id);
- -- T is the type of either a formal parameter or of the return type.
- -- If T is not yet frozen and needs a delayed freeze, then the
- -- subprogram itself must be delayed.
-
- ---------------------
- -- Possible_Freeze --
- ---------------------
-
- procedure Possible_Freeze (T : Entity_Id) is
- begin
- if Has_Delayed_Freeze (T)
- and then not Is_Frozen (T)
- then
- Set_Has_Delayed_Freeze (Designator);
-
- elsif Is_Access_Type (T)
- and then Has_Delayed_Freeze (Designated_Type (T))
- and then not Is_Frozen (Designated_Type (T))
- then
- Set_Has_Delayed_Freeze (Designator);
- end if;
- end Possible_Freeze;
-
- -- Start of processing for Check_Delayed_Subprogram
-
- begin
- -- Never need to freeze abstract subprogram
-
- if Ekind (Designator) /= E_Subprogram_Type
- and then Is_Abstract_Subprogram (Designator)
- then
- null;
- else
- -- Need delayed freeze if return type itself needs a delayed
- -- freeze and is not yet frozen.
-
- Possible_Freeze (Etype (Designator));
- Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
-
- -- Need delayed freeze if any of the formal types themselves need
- -- a delayed freeze and are not yet frozen.
-
- F := First_Formal (Designator);
- while Present (F) loop
- Possible_Freeze (Etype (F));
- Possible_Freeze (Base_Type (Etype (F))); -- needed ???
- Next_Formal (F);
- end loop;
- end if;
-
- -- Mark functions that return by reference. Note that it cannot be
- -- done for delayed_freeze subprograms because the underlying
- -- returned type may not be known yet (for private types)
-
- if not Has_Delayed_Freeze (Designator)
- and then Expander_Active
- then
- declare
- Typ : constant Entity_Id := Etype (Designator);
- Utyp : constant Entity_Id := Underlying_Type (Typ);
-
- begin
- if Is_Inherently_Limited_Type (Typ) then
- Set_Returns_By_Ref (Designator);
-
- elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
- Set_Returns_By_Ref (Designator);
- end if;
- end;
- end if;
- end Check_Delayed_Subprogram;
-
- ------------------------------------
- -- Check_Discriminant_Conformance --
- ------------------------------------
-
- procedure Check_Discriminant_Conformance
- (N : Node_Id;
- Prev : Entity_Id;
- Prev_Loc : Node_Id)
- is
- Old_Discr : Entity_Id := First_Discriminant (Prev);
- New_Discr : Node_Id := First (Discriminant_Specifications (N));
- New_Discr_Id : Entity_Id;
- New_Discr_Type : Entity_Id;
-
- procedure Conformance_Error (Msg : String; N : Node_Id);
- -- Post error message for conformance error on given node. Two messages
- -- are output. The first points to the previous declaration with a
- -- general "no conformance" message. The second is the detailed reason,
- -- supplied as Msg. The parameter N provide information for a possible
- -- & insertion in the message.
-
- -----------------------
- -- Conformance_Error --
- -----------------------
-
- procedure Conformance_Error (Msg : String; N : Node_Id) is
- begin
- Error_Msg_Sloc := Sloc (Prev_Loc);
- Error_Msg_N ("not fully conformant with declaration#!", N);
- Error_Msg_NE (Msg, N, N);
- end Conformance_Error;
-
- -- Start of processing for Check_Discriminant_Conformance
-
- begin
- while Present (Old_Discr) and then Present (New_Discr) loop
-
- New_Discr_Id := Defining_Identifier (New_Discr);
-
- -- The subtype mark of the discriminant on the full type has not
- -- been analyzed so we do it here. For an access discriminant a new
- -- type is created.
-
- if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
- New_Discr_Type :=
- Access_Definition (N, Discriminant_Type (New_Discr));
-
- else
- Analyze (Discriminant_Type (New_Discr));
- New_Discr_Type := Etype (Discriminant_Type (New_Discr));
- end if;
-
- if not Conforming_Types
- (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
- then
- Conformance_Error ("type of & does not match!", New_Discr_Id);
- return;
- else
- -- Treat the new discriminant as an occurrence of the old one,
- -- for navigation purposes, and fill in some semantic
- -- information, for completeness.
-
- Generate_Reference (Old_Discr, New_Discr_Id, 'r');
- Set_Etype (New_Discr_Id, Etype (Old_Discr));
- Set_Scope (New_Discr_Id, Scope (Old_Discr));
- end if;
-
- -- Names must match
-
- if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
- Conformance_Error ("name & does not match!", New_Discr_Id);
- return;
- end if;
-
- -- Default expressions must match
-
- declare
- NewD : constant Boolean :=
- Present (Expression (New_Discr));
- OldD : constant Boolean :=
- Present (Expression (Parent (Old_Discr)));
-
- begin
- if NewD or OldD then
-
- -- The old default value has been analyzed and expanded,
- -- because the current full declaration will have frozen
- -- everything before. The new default values have not been
- -- expanded, so expand now to check conformance.
-
- if NewD then
- Preanalyze_Spec_Expression
- (Expression (New_Discr), New_Discr_Type);
- end if;
-
- if not (NewD and OldD)
- or else not Fully_Conformant_Expressions
- (Expression (Parent (Old_Discr)),
- Expression (New_Discr))
-
- then
- Conformance_Error
- ("default expression for & does not match!",
- New_Discr_Id);
- return;
- end if;
- end if;
- end;
-
- -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
-
- if Ada_Version = Ada_83 then
- declare
- Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
-
- begin
- -- Grouping (use of comma in param lists) must be the same
- -- This is where we catch a misconformance like:
-
- -- A,B : Integer
- -- A : Integer; B : Integer
-
- -- which are represented identically in the tree except
- -- for the setting of the flags More_Ids and Prev_Ids.
-
- if More_Ids (Old_Disc) /= More_Ids (New_Discr)
- or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
- then
- Conformance_Error
- ("grouping of & does not match!", New_Discr_Id);
- return;
- end if;
- end;
- end if;
-
- Next_Discriminant (Old_Discr);
- Next (New_Discr);
- end loop;
-
- if Present (Old_Discr) then
- Conformance_Error ("too few discriminants!", Defining_Identifier (N));
- return;
-
- elsif Present (New_Discr) then
- Conformance_Error
- ("too many discriminants!", Defining_Identifier (New_Discr));
- return;
- end if;
- end Check_Discriminant_Conformance;
-
- ----------------------------
- -- Check_Fully_Conformant --
- ----------------------------
-
- procedure Check_Fully_Conformant
- (New_Id : Entity_Id;
- Old_Id : Entity_Id;
- Err_Loc : Node_Id := Empty)
- is
- Result : Boolean;
- pragma Warnings (Off, Result);
- begin
- Check_Conformance
- (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
- end Check_Fully_Conformant;
-
- ---------------------------
- -- Check_Mode_Conformant --
- ---------------------------
-
- procedure Check_Mode_Conformant
- (New_Id : Entity_Id;
- Old_Id : Entity_Id;
- Err_Loc : Node_Id := Empty;
- Get_Inst : Boolean := False)
- is
- Result : Boolean;
- pragma Warnings (Off, Result);
- begin
- Check_Conformance
- (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
- end Check_Mode_Conformant;
-
- --------------------------------
- -- Check_Overriding_Indicator --
- --------------------------------
-
- procedure Check_Overriding_Indicator
- (Subp : Entity_Id;
- Overridden_Subp : Entity_Id;
- Is_Primitive : Boolean)
- is
- Decl : Node_Id;
- Spec : Node_Id;
-
- begin
- -- No overriding indicator for literals
-
- if Ekind (Subp) = E_Enumeration_Literal then
- return;
-
- elsif Ekind (Subp) = E_Entry then
- Decl := Parent (Subp);
-
- else
- Decl := Unit_Declaration_Node (Subp);
- end if;
-
- if Nkind_In (Decl, N_Subprogram_Body,
- N_Subprogram_Body_Stub,
- N_Subprogram_Declaration,
- N_Abstract_Subprogram_Declaration,
- N_Subprogram_Renaming_Declaration)
- then
- Spec := Specification (Decl);
-
- elsif Nkind (Decl) = N_Entry_Declaration then
- Spec := Decl;
-
- else
- return;
- end if;
-
- if Present (Overridden_Subp) then
- if Must_Not_Override (Spec) then
- Error_Msg_Sloc := Sloc (Overridden_Subp);
-
- if Ekind (Subp) = E_Entry then
- Error_Msg_NE
- ("entry & overrides inherited operation #", Spec, Subp);
- else
- Error_Msg_NE
- ("subprogram & overrides inherited operation #", Spec, Subp);
- end if;
-
- elsif Is_Subprogram (Subp) then
- Set_Is_Overriding_Operation (Subp);
- end if;
-
- if Style_Check and then not Must_Override (Spec) then
- Style.Missing_Overriding (Decl, Subp);
- end if;
-
- -- If Subp is an operator, it may override a predefined operation.
- -- In that case overridden_subp is empty because of our implicit
- -- representation for predefined operators. We have to check whether the
- -- signature of Subp matches that of a predefined operator. Note that
- -- first argument provides the name of the operator, and the second
- -- argument the signature that may match that of a standard operation.
- -- If the indicator is overriding, then the operator must match a
- -- predefined signature, because we know already that there is no
- -- explicit overridden operation.
-
- elsif Nkind (Subp) = N_Defining_Operator_Symbol then
-
- if Must_Not_Override (Spec) then
- if not Is_Primitive then
- Error_Msg_N
- ("overriding indicator only allowed "
- & "if subprogram is primitive", Subp);
-
- elsif Operator_Matches_Spec (Subp, Subp) then
- Error_Msg_NE
- ("subprogram & overrides predefined operator ", Spec, Subp);
- end if;
-
- elsif Must_Override (Spec) then
- if Is_Overriding_Operation (Subp) then
- Set_Is_Overriding_Operation (Subp);
-
- elsif not Operator_Matches_Spec (Subp, Subp) then
- Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
- end if;
-
- elsif not Error_Posted (Subp)
- and then Style_Check
- and then Operator_Matches_Spec (Subp, Subp)
- and then
- not Is_Predefined_File_Name
- (Unit_File_Name (Get_Source_Unit (Subp)))
- then
- Set_Is_Overriding_Operation (Subp);
- Style.Missing_Overriding (Decl, Subp);
- end if;
-
- elsif Must_Override (Spec) then
- if Ekind (Subp) = E_Entry then
- Error_Msg_NE ("entry & is not overriding", Spec, Subp);
- else
- Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
- end if;
-
- -- If the operation is marked "not overriding" and it's not primitive
- -- then an error is issued, unless this is an operation of a task or
- -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
- -- has been specified have already been checked above.
-
- elsif Must_Not_Override (Spec)
- and then not Is_Primitive
- and then Ekind (Subp) /= E_Entry
- and then Ekind (Scope (Subp)) /= E_Protected_Type
- then
- Error_Msg_N
- ("overriding indicator only allowed if subprogram is primitive",
- Subp);
- return;
- end if;
- end Check_Overriding_Indicator;
-
- -------------------
- -- Check_Returns --
- -------------------
-
- -- Note: this procedure needs to know far too much about how the expander
- -- messes with exceptions. The use of the flag Exception_Junk and the
- -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
- -- works, but is not very clean. It would be better if the expansion
- -- routines would leave Original_Node working nicely, and we could use
- -- Original_Node here to ignore all the peculiar expander messing ???
-
- procedure Check_Returns
- (HSS : Node_Id;
- Mode : Character;
- Err : out Boolean;
- Proc : Entity_Id := Empty)
- is
- Handler : Node_Id;
-
- procedure Check_Statement_Sequence (L : List_Id);
- -- Internal recursive procedure to check a list of statements for proper
- -- termination by a return statement (or a transfer of control or a
- -- compound statement that is itself internally properly terminated).
-
- ------------------------------
- -- Check_Statement_Sequence --
- ------------------------------
-
- procedure Check_Statement_Sequence (L : List_Id) is
- Last_Stm : Node_Id;
- Stm : Node_Id;
- Kind : Node_Kind;
-
- Raise_Exception_Call : Boolean;
- -- Set True if statement sequence terminated by Raise_Exception call
- -- or a Reraise_Occurrence call.
-
- begin
- Raise_Exception_Call := False;
-
- -- Get last real statement
-
- Last_Stm := Last (L);
-
- -- Deal with digging out exception handler statement sequences that
- -- have been transformed by the local raise to goto optimization.
- -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
- -- optimization has occurred, we are looking at something like:
-
- -- begin
- -- original stmts in block
-
- -- exception \
- -- when excep1 => |
- -- goto L1; | omitted if No_Exception_Propagation
- -- when excep2 => |
- -- goto L2; /
- -- end;
-
- -- goto L3; -- skip handler when exception not raised
-
- -- <<L1>> -- target label for local exception
- -- begin
- -- estmts1
- -- end;
-
- -- goto L3;
-
- -- <<L2>>
- -- begin
- -- estmts2
- -- end;
-
- -- <<L3>>
-
- -- and what we have to do is to dig out the estmts1 and estmts2
- -- sequences (which were the original sequences of statements in
- -- the exception handlers) and check them.
-
- if Nkind (Last_Stm) = N_Label
- and then Exception_Junk (Last_Stm)
- then
- Stm := Last_Stm;
- loop
- Prev (Stm);
- exit when No (Stm);
- exit when Nkind (Stm) /= N_Block_Statement;
- exit when not Exception_Junk (Stm);
- Prev (Stm);
- exit when No (Stm);
- exit when Nkind (Stm) /= N_Label;
- exit when not Exception_Junk (Stm);
- Check_Statement_Sequence
- (Statements (Handled_Statement_Sequence (Next (Stm))));
-
- Prev (Stm);
- Last_Stm := Stm;
- exit when No (Stm);
- exit when Nkind (Stm) /= N_Goto_Statement;
- exit when not Exception_Junk (Stm);
- end loop;
- end if;
-
- -- Don't count pragmas
-
- while Nkind (Last_Stm) = N_Pragma
-
- -- Don't count call to SS_Release (can happen after Raise_Exception)
-
- or else
- (Nkind (Last_Stm) = N_Procedure_Call_Statement
- and then
- Nkind (Name (Last_Stm)) = N_Identifier
- and then
- Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
-
- -- Don't count exception junk
-
- or else
- (Nkind_In (Last_Stm, N_Goto_Statement,
- N_Label,
- N_Object_Declaration)
- and then Exception_Junk (Last_Stm))
- or else Nkind (Last_Stm) in N_Push_xxx_Label
- or else Nkind (Last_Stm) in N_Pop_xxx_Label
- loop
- Prev (Last_Stm);
- end loop;
-
- -- Here we have the "real" last statement
-
- Kind := Nkind (Last_Stm);
-
- -- Transfer of control, OK. Note that in the No_Return procedure
- -- case, we already diagnosed any explicit return statements, so
- -- we can treat them as OK in this context.
-
- if Is_Transfer (Last_Stm) then
- return;
-
- -- Check cases of explicit non-indirect procedure calls
-
- elsif Kind = N_Procedure_Call_Statement
- and then Is_Entity_Name (Name (Last_Stm))
- then
- -- Check call to Raise_Exception procedure which is treated
- -- specially, as is a call to Reraise_Occurrence.
-
- -- We suppress the warning in these cases since it is likely that
- -- the programmer really does not expect to deal with the case
- -- of Null_Occurrence, and thus would find a warning about a
- -- missing return curious, and raising Program_Error does not
- -- seem such a bad behavior if this does occur.
-
- -- Note that in the Ada 2005 case for Raise_Exception, the actual
- -- behavior will be to raise Constraint_Error (see AI-329).
-
- if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
- or else
- Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
- then
- Raise_Exception_Call := True;
-
- -- For Raise_Exception call, test first argument, if it is
- -- an attribute reference for a 'Identity call, then we know
- -- that the call cannot possibly return.
-
- declare
- Arg : constant Node_Id :=
- Original_Node (First_Actual (Last_Stm));
- begin
- if Nkind (Arg) = N_Attribute_Reference
- and then Attribute_Name (Arg) = Name_Identity
- then
- return;
- end if;
- end;
- end if;
-
- -- If statement, need to look inside if there is an else and check
- -- each constituent statement sequence for proper termination.
-
- elsif Kind = N_If_Statement
- and then Present (Else_Statements (Last_Stm))
- then
- Check_Statement_Sequence (Then_Statements (Last_Stm));
- Check_Statement_Sequence (Else_Statements (Last_Stm));
-
- if Present (Elsif_Parts (Last_Stm)) then
- declare
- Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
-
- begin
- while Present (Elsif_Part) loop
- Check_Statement_Sequence (Then_Statements (Elsif_Part));
- Next (Elsif_Part);
- end loop;
- end;
- end if;
-
- return;
-
- -- Case statement, check each case for proper termination
-
- elsif Kind = N_Case_Statement then
- declare
- Case_Alt : Node_Id;
- begin
- Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
- while Present (Case_Alt) loop
- Check_Statement_Sequence (Statements (Case_Alt));
- Next_Non_Pragma (Case_Alt);
- end loop;
- end;
-
- return;
-
- -- Block statement, check its handled sequence of statements
-
- elsif Kind = N_Block_Statement then
- declare
- Err1 : Boolean;
-
- begin
- Check_Returns
- (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
-
- if Err1 then
- Err := True;
- end if;
-
- return;
- end;
-
- -- Loop statement. If there is an iteration scheme, we can definitely
- -- fall out of the loop. Similarly if there is an exit statement, we
- -- can fall out. In either case we need a following return.
-
- elsif Kind = N_Loop_Statement then
- if Present (Iteration_Scheme (Last_Stm))
- or else Has_Exit (Entity (Identifier (Last_Stm)))
- then
- null;
-
- -- A loop with no exit statement or iteration scheme is either
- -- an infinite loop, or it has some other exit (raise/return).
- -- In either case, no warning is required.
-
- else
- return;
- end if;
-
- -- Timed entry call, check entry call and delay alternatives
-
- -- Note: in expanded code, the timed entry call has been converted
- -- to a set of expanded statements on which the check will work
- -- correctly in any case.
-
- elsif Kind = N_Timed_Entry_Call then
- declare
- ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
- DCA : constant Node_Id := Delay_Alternative (Last_Stm);
-
- begin
- -- If statement sequence of entry call alternative is missing,
- -- then we can definitely fall through, and we post the error
- -- message on the entry call alternative itself.
-
- if No (Statements (ECA)) then
- Last_Stm := ECA;
-
- -- If statement sequence of delay alternative is missing, then
- -- we can definitely fall through, and we post the error
- -- message on the delay alternative itself.
-
- -- Note: if both ECA and DCA are missing the return, then we
- -- post only one message, should be enough to fix the bugs.
- -- If not we will get a message next time on the DCA when the
- -- ECA is fixed!
-
- elsif No (Statements (DCA)) then
- Last_Stm := DCA;
-
- -- Else check both statement sequences
-
- else
- Check_Statement_Sequence (Statements (ECA));
- Check_Statement_Sequence (Statements (DCA));
- return;
- end if;
- end;
-
- -- Conditional entry call, check entry call and else part
-
- -- Note: in expanded code, the conditional entry call has been
- -- converted to a set of expanded statements on which the check
- -- will work correctly in any case.
-
- elsif Kind = N_Conditional_Entry_Call then
- declare
- ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
-
- begin
- -- If statement sequence of entry call alternative is missing,
- -- then we can definitely fall through, and we post the error
- -- message on the entry call alternative itself.
-
- if No (Statements (ECA)) then
- Last_Stm := ECA;
-
- -- Else check statement sequence and else part
-
- else
- Check_Statement_Sequence (Statements (ECA));
- Check_Statement_Sequence (Else_Statements (Last_Stm));
- return;
- end if;
- end;
- end if;
-
- -- If we fall through, issue appropriate message
-
- if Mode = 'F' then
- if not Raise_Exception_Call then
- Error_Msg_N
- ("?RETURN statement missing following this statement!",
- Last_Stm);
- Error_Msg_N
- ("\?Program_Error may be raised at run time!",
- Last_Stm);
- end if;
-
- -- Note: we set Err even though we have not issued a warning
- -- because we still have a case of a missing return. This is
- -- an extremely marginal case, probably will never be noticed
- -- but we might as well get it right.
-
- Err := True;
-
- -- Otherwise we have the case of a procedure marked No_Return
-
- else
- if not Raise_Exception_Call then
- Error_Msg_N
- ("?implied return after this statement " &
- "will raise Program_Error",
- Last_Stm);
- Error_Msg_NE
- ("\?procedure & is marked as No_Return!",
- Last_Stm, Proc);
- end if;
-
- declare
- RE : constant Node_Id :=
- Make_Raise_Program_Error (Sloc (Last_Stm),
- Reason => PE_Implicit_Return);
- begin
- Insert_After (Last_Stm, RE);
- Analyze (RE);
- end;
- end if;
- end Check_Statement_Sequence;
-
- -- Start of processing for Check_Returns
-
- begin
- Err := False;
- Check_Statement_Sequence (Statements (HSS));
-
- if Present (Exception_Handlers (HSS)) then
- Handler := First_Non_Pragma (Exception_Handlers (HSS));
- while Present (Handler) loop
- Check_Statement_Sequence (Statements (Handler));
- Next_Non_Pragma (Handler);
- end loop;
- end if;
- end Check_Returns;
-
- ----------------------------
- -- Check_Subprogram_Order --
- ----------------------------
-
- procedure Check_Subprogram_Order (N : Node_Id) is
-
- function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
- -- This is used to check if S1 > S2 in the sense required by this
- -- test, for example nameab < namec, but name2 < name10.
-
- -----------------------------
- -- Subprogram_Name_Greater --
- -----------------------------
-
- function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
- L1, L2 : Positive;
- N1, N2 : Natural;
-
- begin
- -- Remove trailing numeric parts
-
- L1 := S1'Last;
- while S1 (L1) in '0' .. '9' loop
- L1 := L1 - 1;
- end loop;
-
- L2 := S2'Last;
- while S2 (L2) in '0' .. '9' loop
- L2 := L2 - 1;
- end loop;
-
- -- If non-numeric parts non-equal, that's decisive
-
- if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
- return False;
-
- elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
- return True;
-
- -- If non-numeric parts equal, compare suffixed numeric parts. Note
- -- that a missing suffix is treated as numeric zero in this test.
-
- else
- N1 := 0;
- while L1 < S1'Last loop
- L1 := L1 + 1;
- N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
- end loop;
-
- N2 := 0;
- while L2 < S2'Last loop
- L2 := L2 + 1;
- N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
- end loop;
-
- return N1 > N2;
- end if;
- end Subprogram_Name_Greater;
-
- -- Start of processing for Check_Subprogram_Order
-
- begin
- -- Check body in alpha order if this is option
-
- if Style_Check
- and then Style_Check_Order_Subprograms
- and then Nkind (N) = N_Subprogram_Body
- and then Comes_From_Source (N)
- and then In_Extended_Main_Source_Unit (N)
- then
- declare
- LSN : String_Ptr
- renames Scope_Stack.Table
- (Scope_Stack.Last).Last_Subprogram_Name;
-
- Body_Id : constant Entity_Id :=
- Defining_Entity (Specification (N));
-
- begin
- Get_Decoded_Name_String (Chars (Body_Id));
-
- if LSN /= null then
- if Subprogram_Name_Greater
- (LSN.all, Name_Buffer (1 .. Name_Len))
- then
- Style.Subprogram_Not_In_Alpha_Order (Body_Id);
- end if;
-
- Free (LSN);
- end if;
-
- LSN := new String'(Name_Buffer (1 .. Name_Len));
- end;
- end if;
- end Check_Subprogram_Order;
-
- ------------------------------
- -- Check_Subtype_Conformant --
- ------------------------------
-
- procedure Check_Subtype_Conformant
- (New_Id : Entity_Id;
- Old_Id : Entity_Id;
- Err_Loc : Node_Id := Empty;
- Skip_Controlling_Formals : Boolean := False)
- is
- Result : Boolean;
- pragma Warnings (Off, Result);
- begin
- Check_Conformance
- (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
- Skip_Controlling_Formals => Skip_Controlling_Formals);
- end Check_Subtype_Conformant;
-
- ---------------------------
- -- Check_Type_Conformant --
- ---------------------------
-
- procedure Check_Type_Conformant
- (New_Id : Entity_Id;
- Old_Id : Entity_Id;
- Err_Loc : Node_Id := Empty)
- is
- Result : Boolean;
- pragma Warnings (Off, Result);
- begin
- Check_Conformance
- (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
- end Check_Type_Conformant;
-
- ----------------------
- -- Conforming_Types --
- ----------------------
-
- function Conforming_Types
- (T1 : Entity_Id;
- T2 : Entity_Id;
- Ctype : Conformance_Type;
- Get_Inst : Boolean := False) return Boolean
- is
- Type_1 : Entity_Id := T1;
- Type_2 : Entity_Id := T2;
- Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
-
- function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
- -- If neither T1 nor T2 are generic actual types, or if they are in
- -- different scopes (e.g. parent and child instances), then verify that
- -- the base types are equal. Otherwise T1 and T2 must be on the same
- -- subtype chain. The whole purpose of this procedure is to prevent
- -- spurious ambiguities in an instantiation that may arise if two
- -- distinct generic types are instantiated with the same actual.
-
- function Find_Designated_Type (T : Entity_Id) return Entity_Id;
- -- An access parameter can designate an incomplete type. If the
- -- incomplete type is the limited view of a type from a limited_
- -- with_clause, check whether the non-limited view is available. If
- -- it is a (non-limited) incomplete type, get the full view.
-
- function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
- -- Returns True if and only if either T1 denotes a limited view of T2
- -- or T2 denotes a limited view of T1. This can arise when the limited
- -- with view of a type is used in a subprogram declaration and the
- -- subprogram body is in the scope of a regular with clause for the
- -- same unit. In such a case, the two type entities can be considered
- -- identical for purposes of conformance checking.
-
- ----------------------
- -- Base_Types_Match --
- ----------------------
-
- function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
- begin
- if T1 = T2 then
- return True;
-
- elsif Base_Type (T1) = Base_Type (T2) then
-
- -- The following is too permissive. A more precise test should
- -- check that the generic actual is an ancestor subtype of the
- -- other ???.
-
- return not Is_Generic_Actual_Type (T1)
- or else not Is_Generic_Actual_Type (T2)
- or else Scope (T1) /= Scope (T2);
-
- else
- return False;
- end if;
- end Base_Types_Match;
-
- --------------------------
- -- Find_Designated_Type --
- --------------------------
-
- function Find_Designated_Type (T : Entity_Id) return Entity_Id is
- Desig : Entity_Id;
-
- begin
- Desig := Directly_Designated_Type (T);
-
- if Ekind (Desig) = E_Incomplete_Type then
-
- -- If regular incomplete type, get full view if available
-
- if Present (Full_View (Desig)) then
- Desig := Full_View (Desig);
-
- -- If limited view of a type, get non-limited view if available,
- -- and check again for a regular incomplete type.
-
- elsif Present (Non_Limited_View (Desig)) then
- Desig := Get_Full_View (Non_Limited_View (Desig));
- end if;
- end if;
-
- return Desig;
- end Find_Designated_Type;
-
- -------------------------------
- -- Matches_Limited_With_View --
- -------------------------------
-
- function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
- begin
- -- In some cases a type imported through a limited_with clause, and
- -- its nonlimited view are both visible, for example in an anonymous
- -- access-to-class-wide type in a formal. Both entities designate the
- -- same type.
-
- if From_With_Type (T1)
- and then T2 = Available_View (T1)
- then
- return True;
-
- elsif From_With_Type (T2)
- and then T1 = Available_View (T2)
- then
- return True;
-
- else
- return False;
- end if;
- end Matches_Limited_With_View;
-
- -- Start of processing for Conforming_Types
-
- begin
- -- The context is an instance association for a formal
- -- access-to-subprogram type; the formal parameter types require
- -- mapping because they may denote other formal parameters of the
- -- generic unit.
-
- if Get_Inst then
- Type_1 := Get_Instance_Of (T1);
- Type_2 := Get_Instance_Of (T2);
- end if;
-
- -- If one of the types is a view of the other introduced by a limited
- -- with clause, treat these as conforming for all purposes.
-
- if Matches_Limited_With_View (T1, T2) then
- return True;
-
- elsif Base_Types_Match (Type_1, Type_2) then
- return Ctype <= Mode_Conformant
- or else Subtypes_Statically_Match (Type_1, Type_2);
-
- elsif Is_Incomplete_Or_Private_Type (Type_1)
- and then Present (Full_View (Type_1))
- and then Base_Types_Match (Full_View (Type_1), Type_2)
- then
- return Ctype <= Mode_Conformant
- or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
-
- elsif Ekind (Type_2) = E_Incomplete_Type
- and then Present (Full_View (Type_2))
- and then Base_Types_Match (Type_1, Full_View (Type_2))
- then
- return Ctype <= Mode_Conformant
- or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
-
- elsif Is_Private_Type (Type_2)
- and then In_Instance
- and then Present (Full_View (Type_2))
- and then Base_Types_Match (Type_1, Full_View (Type_2))
- then
- return Ctype <= Mode_Conformant
- or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
- end if;
-
- -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
- -- treated recursively because they carry a signature.
-
- Are_Anonymous_Access_To_Subprogram_Types :=
- Ekind (Type_1) = Ekind (Type_2)
- and then
- (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
- or else
- Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
-
- -- Test anonymous access type case. For this case, static subtype
- -- matching is required for mode conformance (RM 6.3.1(15)). We check
- -- the base types because we may have built internal subtype entities
- -- to handle null-excluding types (see Process_Formals).
-
- if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
- and then
- Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
- or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
- then
- declare
- Desig_1 : Entity_Id;
- Desig_2 : Entity_Id;
-
- begin
- -- In Ada2005, access constant indicators must match for
- -- subtype conformance.
-
- if Ada_Version >= Ada_05
- and then Ctype >= Subtype_Conformant
- and then
- Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
- then
- return False;
- end if;
-
- Desig_1 := Find_Designated_Type (Type_1);
-
- Desig_2 := Find_Designated_Type (Type_2);
-
- -- If the context is an instance association for a formal
- -- access-to-subprogram type; formal access parameter designated
- -- types require mapping because they may denote other formal
- -- parameters of the generic unit.
-
- if Get_Inst then
- Desig_1 := Get_Instance_Of (Desig_1);
- Desig_2 := Get_Instance_Of (Desig_2);
- end if;
-
- -- It is possible for a Class_Wide_Type to be introduced for an
- -- incomplete type, in which case there is a separate class_ wide
- -- type for the full view. The types conform if their Etypes
- -- conform, i.e. one may be the full view of the other. This can
- -- only happen in the context of an access parameter, other uses
- -- of an incomplete Class_Wide_Type are illegal.
-
- if Is_Class_Wide_Type (Desig_1)
- and then Is_Class_Wide_Type (Desig_2)
- then
- return
- Conforming_Types
- (Etype (Base_Type (Desig_1)),
- Etype (Base_Type (Desig_2)), Ctype);
-
- elsif Are_Anonymous_Access_To_Subprogram_Types then
- if Ada_Version < Ada_05 then
- return Ctype = Type_Conformant
- or else
- Subtypes_Statically_Match (Desig_1, Desig_2);
-
- -- We must check the conformance of the signatures themselves
-
- else
- declare
- Conformant : Boolean;
- begin
- Check_Conformance
- (Desig_1, Desig_2, Ctype, False, Conformant);
- return Conformant;
- end;
- end if;
-
- else
- return Base_Type (Desig_1) = Base_Type (Desig_2)
- and then (Ctype = Type_Conformant
- or else
- Subtypes_Statically_Match (Desig_1, Desig_2));
- end if;
- end;
-
- -- Otherwise definitely no match
-
- else
- if ((Ekind (Type_1) = E_Anonymous_Access_Type
- and then Is_Access_Type (Type_2))
- or else (Ekind (Type_2) = E_Anonymous_Access_Type
- and then Is_Access_Type (Type_1)))
- and then
- Conforming_Types
- (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
- then
- May_Hide_Profile := True;
- end if;
-
- return False;
- end if;
- end Conforming_Types;
-
- --------------------------
- -- Create_Extra_Formals --
- --------------------------
-
- procedure Create_Extra_Formals (E : Entity_Id) is
- Formal : Entity_Id;
- First_Extra : Entity_Id := Empty;
- Last_Extra : Entity_Id;
- Formal_Type : Entity_Id;
- P_Formal : Entity_Id := Empty;
-
- function Add_Extra_Formal
- (Assoc_Entity : Entity_Id;
- Typ : Entity_Id;
- Scope : Entity_Id;
- Suffix : String) return Entity_Id;
- -- Add an extra formal to the current list of formals and extra formals.
- -- The extra formal is added to the end of the list of extra formals,
- -- and also returned as the result. These formals are always of mode IN.
- -- The new formal has the type Typ, is declared in Scope, and its name
- -- is given by a concatenation of the name of Assoc_Entity and Suffix.
-
- ----------------------
- -- Add_Extra_Formal --
- ----------------------
-
- function Add_Extra_Formal
- (Assoc_Entity : Entity_Id;
- Typ : Entity_Id;
- Scope : Entity_Id;
- Suffix : String) return Entity_Id
- is
- EF : constant Entity_Id :=
- Make_Defining_Identifier (Sloc (Assoc_Entity),
- Chars => New_External_Name (Chars (Assoc_Entity),
- Suffix => Suffix));
-
- begin
- -- A little optimization. Never generate an extra formal for the
- -- _init operand of an initialization procedure, since it could
- -- never be used.
-
- if Chars (Formal) = Name_uInit then
- return Empty;
- end if;
-
- Set_Ekind (EF, E_In_Parameter);
- Set_Actual_Subtype (EF, Typ);
- Set_Etype (EF, Typ);
- Set_Scope (EF, Scope);
- Set_Mechanism (EF, Default_Mechanism);
- Set_Formal_Validity (EF);
-
- if No (First_Extra) then
- First_Extra := EF;
- Set_Extra_Formals (Scope, First_Extra);
- end if;
-
- if Present (Last_Extra) then
- Set_Extra_Formal (Last_Extra, EF);
- end if;
-
- Last_Extra := EF;
-
- return EF;
- end Add_Extra_Formal;
-
- -- Start of processing for Create_Extra_Formals
-
- begin
- -- We never generate extra formals if expansion is not active
- -- because we don't need them unless we are generating code.
-
- if not Expander_Active then
- return;
- end if;
-
- -- If this is a derived subprogram then the subtypes of the parent
- -- subprogram's formal parameters will be used to determine the need
- -- for extra formals.
-
- if Is_Overloadable (E) and then Present (Alias (E)) then
- P_Formal := First_Formal (Alias (E));
- end if;
-
- Last_Extra := Empty;
- Formal := First_Formal (E);
- while Present (Formal) loop
- Last_Extra := Formal;
- Next_Formal (Formal);
- end loop;
-
- -- If Extra_formals were already created, don't do it again. This
- -- situation may arise for subprogram types created as part of
- -- dispatching calls (see Expand_Dispatching_Call)
-
- if Present (Last_Extra) and then
- Present (Extra_Formal (Last_Extra))
- then
- return;
- end if;
-
- -- If the subprogram is a predefined dispatching subprogram then don't
- -- generate any extra constrained or accessibility level formals. In
- -- general we suppress these for internal subprograms (by not calling
- -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
- -- generated stream attributes do get passed through because extra
- -- build-in-place formals are needed in some cases (limited 'Input).
-
- if Is_Predefined_Dispatching_Operation (E) then
- goto Test_For_BIP_Extras;
- end if;
-
- Formal := First_Formal (E);
- while Present (Formal) loop
-
- -- Create extra formal for supporting the attribute 'Constrained.
- -- The case of a private type view without discriminants also
- -- requires the extra formal if the underlying type has defaulted
- -- discriminants.
-
- if Ekind (Formal) /= E_In_Parameter then
- if Present (P_Formal) then
- Formal_Type := Etype (P_Formal);
- else
- Formal_Type := Etype (Formal);
- end if;
-
- -- Do not produce extra formals for Unchecked_Union parameters.
- -- Jump directly to the end of the loop.
-
- if Is_Unchecked_Union (Base_Type (Formal_Type)) then
- goto Skip_Extra_Formal_Generation;
- end if;
-
- if not Has_Discriminants (Formal_Type)
- and then Ekind (Formal_Type) in Private_Kind
- and then Present (Underlying_Type (Formal_Type))
- then
- Formal_Type := Underlying_Type (Formal_Type);
- end if;
-
- if Has_Discriminants (Formal_Type)
- and then not Is_Constrained (Formal_Type)
- and then not Is_Indefinite_Subtype (Formal_Type)
- then
- Set_Extra_Constrained
- (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "F"));
- end if;
- end if;
-
- -- Create extra formal for supporting accessibility checking. This
- -- is done for both anonymous access formals and formals of named
- -- access types that are marked as controlling formals. The latter
- -- case can occur when Expand_Dispatching_Call creates a subprogram
- -- type and substitutes the types of access-to-class-wide actuals
- -- for the anonymous access-to-specific-type of controlling formals.
- -- Base_Type is applied because in cases where there is a null
- -- exclusion the formal may have an access subtype.
-
- -- This is suppressed if we specifically suppress accessibility
- -- checks at the package level for either the subprogram, or the
- -- package in which it resides. However, we do not suppress it
- -- simply if the scope has accessibility checks suppressed, since
- -- this could cause trouble when clients are compiled with a
- -- different suppression setting. The explicit checks at the
- -- package level are safe from this point of view.
-
- if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
- or else (Is_Controlling_Formal (Formal)
- and then Is_Access_Type (Base_Type (Etype (Formal)))))
- and then not
- (Explicit_Suppress (E, Accessibility_Check)
- or else
- Explicit_Suppress (Scope (E), Accessibility_Check))
- and then
- (No (P_Formal)
- or else Present (Extra_Accessibility (P_Formal)))
- then
- -- Temporary kludge: for now we avoid creating the extra formal
- -- for access parameters of protected operations because of
- -- problem with the case of internal protected calls. ???
-
- if Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Definition
- and then Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Body
- then
- Set_Extra_Accessibility
- (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "F"));
- end if;
- end if;
-
- -- This label is required when skipping extra formal generation for
- -- Unchecked_Union parameters.
-
- <<Skip_Extra_Formal_Generation>>
-
- if Present (P_Formal) then
- Next_Formal (P_Formal);
- end if;
-
- Next_Formal (Formal);
- end loop;
-
- <<Test_For_BIP_Extras>>
-
- -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
- -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
-
- if Ada_Version >= Ada_05 and then Is_Build_In_Place_Function (E) then
- declare
- Result_Subt : constant Entity_Id := Etype (E);
-
- Discard : Entity_Id;
- pragma Warnings (Off, Discard);
-
- begin
- -- In the case of functions with unconstrained result subtypes,
- -- add a 3-state formal indicating whether the return object is
- -- allocated by the caller (0), or should be allocated by the
- -- callee on the secondary stack (1) or in the global heap (2).
- -- For the moment we just use Natural for the type of this formal.
- -- Note that this formal isn't usually needed in the case where
- -- the result subtype is constrained, but it is needed when the
- -- function has a tagged result, because generally such functions
- -- can be called in a dispatching context and such calls must be
- -- handled like calls to a class-wide function.
-
- if not Is_Constrained (Underlying_Type (Result_Subt))
- or else Is_Tagged_Type (Underlying_Type (Result_Subt))
- then
- Discard :=
- Add_Extra_Formal
- (E, Standard_Natural,
- E, BIP_Formal_Suffix (BIP_Alloc_Form));
- end if;
-
- -- In the case of functions whose result type has controlled
- -- parts, we have an extra formal of type
- -- System.Finalization_Implementation.Finalizable_Ptr_Ptr. That
- -- is, we are passing a pointer to a finalization list (which is
- -- itself a pointer). This extra formal is then passed along to
- -- Move_Final_List in case of successful completion of a return
- -- statement. We cannot pass an 'in out' parameter, because we
- -- need to update the finalization list during an abort-deferred
- -- region, rather than using copy-back after the function
- -- returns. This is true even if we are able to get away with
- -- having 'in out' parameters, which are normally illegal for
- -- functions. This formal is also needed when the function has
- -- a tagged result.
-
- if Needs_BIP_Final_List (E) then
- Discard :=
- Add_Extra_Formal
- (E, RTE (RE_Finalizable_Ptr_Ptr),
- E, BIP_Formal_Suffix (BIP_Final_List));
- end if;
-
- -- If the result type contains tasks, we have two extra formals:
- -- the master of the tasks to be created, and the caller's
- -- activation chain.
-
- if Has_Task (Result_Subt) then
- Discard :=
- Add_Extra_Formal
- (E, RTE (RE_Master_Id),
- E, BIP_Formal_Suffix (BIP_Master));
- Discard :=
- Add_Extra_Formal
- (E, RTE (RE_Activation_Chain_Access),
- E, BIP_Formal_Suffix (BIP_Activation_Chain));
- end if;
-
- -- All build-in-place functions get an extra formal that will be
- -- passed the address of the return object within the caller.
-
- declare
- Formal_Type : constant Entity_Id :=
- Create_Itype
- (E_Anonymous_Access_Type, E,
- Scope_Id => Scope (E));
- begin
- Set_Directly_Designated_Type (Formal_Type, Result_Subt);
- Set_Etype (Formal_Type, Formal_Type);
- Set_Depends_On_Private
- (Formal_Type, Has_Private_Component (Formal_Type));
- Set_Is_Public (Formal_Type, Is_Public (Scope (Formal_Type)));
- Set_Is_Access_Constant (Formal_Type, False);
-
- -- Ada 2005 (AI-50217): Propagate the attribute that indicates
- -- the designated type comes from the limited view (for
- -- back-end purposes).
-
- Set_From_With_Type (Formal_Type, From_With_Type (Result_Subt));
-
- Layout_Type (Formal_Type);
-
- Discard :=
- Add_Extra_Formal
- (E, Formal_Type, E, BIP_Formal_Suffix (BIP_Object_Access));
- end;
- end;
- end if;
- end Create_Extra_Formals;
-
- -----------------------------
- -- Enter_Overloaded_Entity --
- -----------------------------
-
- procedure Enter_Overloaded_Entity (S : Entity_Id) is
- E : Entity_Id := Current_Entity_In_Scope (S);
- C_E : Entity_Id := Current_Entity (S);
-
- begin
- if Present (E) then
- Set_Has_Homonym (E);
- Set_Has_Homonym (S);
- end if;
-
- Set_Is_Immediately_Visible (S);
- Set_Scope (S, Current_Scope);
-
- -- Chain new entity if front of homonym in current scope, so that
- -- homonyms are contiguous.
-
- if Present (E)
- and then E /= C_E
- then
- while Homonym (C_E) /= E loop
- C_E := Homonym (C_E);
- end loop;
-
- Set_Homonym (C_E, S);
-
- else
- E := C_E;
- Set_Current_Entity (S);
- end if;
-
- Set_Homonym (S, E);
-
- Append_Entity (S, Current_Scope);
- Set_Public_Status (S);
-
- if Debug_Flag_E then
- Write_Str ("New overloaded entity chain: ");
- Write_Name (Chars (S));
-
- E := S;
- while Present (E) loop
- Write_Str (" "); Write_Int (Int (E));
- E := Homonym (E);
- end loop;
-
- Write_Eol;
- end if;
-
- -- Generate warning for hiding
-
- if Warn_On_Hiding
- and then Comes_From_Source (S)
- and then In_Extended_Main_Source_Unit (S)
- then
- E := S;
- loop
- E := Homonym (E);
- exit when No (E);
-
- -- Warn unless genuine overloading
-
- if (not Is_Overloadable (E) or else Subtype_Conformant (E, S))
- and then (Is_Immediately_Visible (E)
- or else
- Is_Potentially_Use_Visible (S))
- then
- Error_Msg_Sloc := Sloc (E);
- Error_Msg_N ("declaration of & hides one#?", S);
- end if;
- end loop;
- end if;
- end Enter_Overloaded_Entity;
-
- -----------------------------
- -- Find_Corresponding_Spec --
- -----------------------------
-
- function Find_Corresponding_Spec
- (N : Node_Id;
- Post_Error : Boolean := True) return Entity_Id
- is
- Spec : constant Node_Id := Specification (N);
- Designator : constant Entity_Id := Defining_Entity (Spec);
-
- E : Entity_Id;
-
- begin
- E := Current_Entity (Designator);
- while Present (E) loop
-
- -- We are looking for a matching spec. It must have the same scope,
- -- and the same name, and either be type conformant, or be the case
- -- of a library procedure spec and its body (which belong to one
- -- another regardless of whether they are type conformant or not).
-
- if Scope (E) = Current_Scope then
- if Current_Scope = Standard_Standard
- or else (Ekind (E) = Ekind (Designator)
- and then Type_Conformant (E, Designator))
- then
- -- Within an instantiation, we know that spec and body are
- -- subtype conformant, because they were subtype conformant
- -- in the generic. We choose the subtype-conformant entity
- -- here as well, to resolve spurious ambiguities in the
- -- instance that were not present in the generic (i.e. when
- -- two different types are given the same actual). If we are
- -- looking for a spec to match a body, full conformance is
- -- expected.
-
- if In_Instance then
- Set_Convention (Designator, Convention (E));
-
- if Nkind (N) = N_Subprogram_Body
- and then Present (Homonym (E))
- and then not Fully_Conformant (E, Designator)
- then
- goto Next_Entity;
-
- elsif not Subtype_Conformant (E, Designator) then
- goto Next_Entity;
- end if;
- end if;
-
- if not Has_Completion (E) then
- if Nkind (N) /= N_Subprogram_Body_Stub then
- Set_Corresponding_Spec (N, E);
- end if;
-
- Set_Has_Completion (E);
- return E;
-
- elsif Nkind (Parent (N)) = N_Subunit then
-
- -- If this is the proper body of a subunit, the completion
- -- flag is set when analyzing the stub.
-
- return E;
-
- -- If E is an internal function with a controlling result
- -- that was created for an operation inherited by a null
- -- extension, it may be overridden by a body without a previous
- -- spec (one more reason why these should be shunned). In that
- -- case remove the generated body, because the current one is
- -- the explicit overriding.
-
- elsif Ekind (E) = E_Function
- and then Ada_Version >= Ada_05
- and then not Comes_From_Source (E)
- and then Has_Controlling_Result (E)
- and then Is_Null_Extension (Etype (E))
- and then Comes_From_Source (Spec)
- then
- Set_Has_Completion (E, False);
-
- if Expander_Active then
- Remove
- (Unit_Declaration_Node
- (Corresponding_Body (Unit_Declaration_Node (E))));
- return E;
-
- -- If expansion is disabled, the wrapper function has not
- -- been generated, and this is the standard case of a late
- -- body overriding an inherited operation.
-
- else
- return Empty;
- end if;
-
- -- If the body already exists, then this is an error unless
- -- the previous declaration is the implicit declaration of a
- -- derived subprogram, or this is a spurious overloading in an
- -- instance.
-
- elsif No (Alias (E))
- and then not Is_Intrinsic_Subprogram (E)
- and then not In_Instance
- and then Post_Error
- then
- Error_Msg_Sloc := Sloc (E);
- if Is_Imported (E) then
- Error_Msg_NE
- ("body not allowed for imported subprogram & declared#",
- N, E);
- else
- Error_Msg_NE ("duplicate body for & declared#", N, E);
- end if;
- end if;
-
- -- Child units cannot be overloaded, so a conformance mismatch
- -- between body and a previous spec is an error.
-
- elsif Is_Child_Unit (E)
- and then
- Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
- and then
- Nkind (Parent (Unit_Declaration_Node (Designator))) =
- N_Compilation_Unit
- and then Post_Error
- then
- Error_Msg_N
- ("body of child unit does not match previous declaration", N);
- end if;
- end if;
-
- <<Next_Entity>>
- E := Homonym (E);
- end loop;
-
- -- On exit, we know that no previous declaration of subprogram exists
-
- return Empty;
- end Find_Corresponding_Spec;
-
- ----------------------
- -- Fully_Conformant --
- ----------------------
-
- function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
- Result : Boolean;
- begin
- Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
- return Result;
- end Fully_Conformant;
-
- ----------------------------------
- -- Fully_Conformant_Expressions --
- ----------------------------------
-
- function Fully_Conformant_Expressions
- (Given_E1 : Node_Id;
- Given_E2 : Node_Id) return Boolean
- is
- E1 : constant Node_Id := Original_Node (Given_E1);
- E2 : constant Node_Id := Original_Node (Given_E2);
- -- We always test conformance on original nodes, since it is possible
- -- for analysis and/or expansion to make things look as though they
- -- conform when they do not, e.g. by converting 1+2 into 3.
-
- function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
- renames Fully_Conformant_Expressions;
-
- function FCL (L1, L2 : List_Id) return Boolean;
- -- Compare elements of two lists for conformance. Elements have to
- -- be conformant, and actuals inserted as default parameters do not
- -- match explicit actuals with the same value.
-
- function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
- -- Compare an operator node with a function call
-
- ---------
- -- FCL --
- ---------
-
- function FCL (L1, L2 : List_Id) return Boolean is
- N1, N2 : Node_Id;
-
- begin
- if L1 = No_List then
- N1 := Empty;
- else
- N1 := First (L1);
- end if;
-
- if L2 = No_List then
- N2 := Empty;
- else
- N2 := First (L2);
- end if;
-
- -- Compare two lists, skipping rewrite insertions (we want to
- -- compare the original trees, not the expanded versions!)
-
- loop
- if Is_Rewrite_Insertion (N1) then
- Next (N1);
- elsif Is_Rewrite_Insertion (N2) then
- Next (N2);
- elsif No (N1) then
- return No (N2);
- elsif No (N2) then
- return False;
- elsif not FCE (N1, N2) then
- return False;
- else
- Next (N1);
- Next (N2);
- end if;
- end loop;
- end FCL;
-
- ---------
- -- FCO --
- ---------
-
- function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
- Actuals : constant List_Id := Parameter_Associations (Call_Node);
- Act : Node_Id;
-
- begin
- if No (Actuals)
- or else Entity (Op_Node) /= Entity (Name (Call_Node))
- then
- return False;
-
- else
- Act := First (Actuals);
-
- if Nkind (Op_Node) in N_Binary_Op then
-
- if not FCE (Left_Opnd (Op_Node), Act) then
- return False;
- end if;
-
- Next (Act);
- end if;
-
- return Present (Act)
- and then FCE (Right_Opnd (Op_Node), Act)
- and then No (Next (Act));
- end if;
- end FCO;
-
- -- Start of processing for Fully_Conformant_Expressions
-
- begin
- -- Non-conformant if paren count does not match. Note: if some idiot
- -- complains that we don't do this right for more than 3 levels of
- -- parentheses, they will be treated with the respect they deserve!
-
- if Paren_Count (E1) /= Paren_Count (E2) then
- return False;
-
- -- If same entities are referenced, then they are conformant even if
- -- they have different forms (RM 8.3.1(19-20)).
-
- elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
- if Present (Entity (E1)) then
- return Entity (E1) = Entity (E2)
- or else (Chars (Entity (E1)) = Chars (Entity (E2))
- and then Ekind (Entity (E1)) = E_Discriminant
- and then Ekind (Entity (E2)) = E_In_Parameter);
-
- elsif Nkind (E1) = N_Expanded_Name
- and then Nkind (E2) = N_Expanded_Name
- and then Nkind (Selector_Name (E1)) = N_Character_Literal
- and then Nkind (Selector_Name (E2)) = N_Character_Literal
- then
- return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
-
- else
- -- Identifiers in component associations don't always have
- -- entities, but their names must conform.
-
- return Nkind (E1) = N_Identifier
- and then Nkind (E2) = N_Identifier
- and then Chars (E1) = Chars (E2);
- end if;
-
- elsif Nkind (E1) = N_Character_Literal
- and then Nkind (E2) = N_Expanded_Name
- then
- return Nkind (Selector_Name (E2)) = N_Character_Literal
- and then Chars (E1) = Chars (Selector_Name (E2));
-
- elsif Nkind (E2) = N_Character_Literal
- and then Nkind (E1) = N_Expanded_Name
- then
- return Nkind (Selector_Name (E1)) = N_Character_Literal
- and then Chars (E2) = Chars (Selector_Name (E1));
-
- elsif Nkind (E1) in N_Op
- and then Nkind (E2) = N_Function_Call
- then
- return FCO (E1, E2);
-
- elsif Nkind (E2) in N_Op
- and then Nkind (E1) = N_Function_Call
- then
- return FCO (E2, E1);
-
- -- Otherwise we must have the same syntactic entity
-
- elsif Nkind (E1) /= Nkind (E2) then
- return False;
-
- -- At this point, we specialize by node type
-
- else
- case Nkind (E1) is
-
- when N_Aggregate =>
- return
- FCL (Expressions (E1), Expressions (E2))
- and then FCL (Component_Associations (E1),
- Component_Associations (E2));
-
- when N_Allocator =>
- if Nkind (Expression (E1)) = N_Qualified_Expression
- or else
- Nkind (Expression (E2)) = N_Qualified_Expression
- then
- return FCE (Expression (E1), Expression (E2));
-
- -- Check that the subtype marks and any constraints
- -- are conformant
-
- else
- declare
- Indic1 : constant Node_Id := Expression (E1);
- Indic2 : constant Node_Id := Expression (E2);
- Elt1 : Node_Id;
- Elt2 : Node_Id;
-
- begin
- if Nkind (Indic1) /= N_Subtype_Indication then
- return
- Nkind (Indic2) /= N_Subtype_Indication
- and then Entity (Indic1) = Entity (Indic2);
-
- elsif Nkind (Indic2) /= N_Subtype_Indication then
- return
- Nkind (Indic1) /= N_Subtype_Indication
- and then Entity (Indic1) = Entity (Indic2);
-
- else
- if Entity (Subtype_Mark (Indic1)) /=
- Entity (Subtype_Mark (Indic2))
- then
- return False;
- end if;
-
- Elt1 := First (Constraints (Constraint (Indic1)));
- Elt2 := First (Constraints (Constraint (Indic2)));
-
- while Present (Elt1) and then Present (Elt2) loop
- if not FCE (Elt1, Elt2) then
- return False;
- end if;
-
- Next (Elt1);
- Next (Elt2);
- end loop;
-
- return True;
- end if;
- end;
- end if;
-
- when N_Attribute_Reference =>
- return
- Attribute_Name (E1) = Attribute_Name (E2)
- and then FCL (Expressions (E1), Expressions (E2));
-
- when N_Binary_Op =>
- return
- Entity (E1) = Entity (E2)
- and then FCE (Left_Opnd (E1), Left_Opnd (E2))
- and then FCE (Right_Opnd (E1), Right_Opnd (E2));
-
- when N_And_Then | N_Or_Else | N_Membership_Test =>
- return
- FCE (Left_Opnd (E1), Left_Opnd (E2))
- and then
- FCE (Right_Opnd (E1), Right_Opnd (E2));
-
- when N_Character_Literal =>
- return
- Char_Literal_Value (E1) = Char_Literal_Value (E2);
-
- when N_Component_Association =>
- return
- FCL (Choices (E1), Choices (E2))
- and then FCE (Expression (E1), Expression (E2));
-
- when N_Conditional_Expression =>
- return
- FCL (Expressions (E1), Expressions (E2));
-
- when N_Explicit_Dereference =>
- return
- FCE (Prefix (E1), Prefix (E2));
-
- when N_Extension_Aggregate =>
- return
- FCL (Expressions (E1), Expressions (E2))
- and then Null_Record_Present (E1) =
- Null_Record_Present (E2)
- and then FCL (Component_Associations (E1),
- Component_Associations (E2));
-
- when N_Function_Call =>
- return
- FCE (Name (E1), Name (E2))
- and then FCL (Parameter_Associations (E1),
- Parameter_Associations (E2));
-
- when N_Indexed_Component =>
- return
- FCE (Prefix (E1), Prefix (E2))
- and then FCL (Expressions (E1), Expressions (E2));
-
- when N_Integer_Literal =>
- return (Intval (E1) = Intval (E2));
-
- when N_Null =>
- return True;
-
- when N_Operator_Symbol =>
- return
- Chars (E1) = Chars (E2);
-
- when N_Others_Choice =>
- return True;
-
- when N_Parameter_Association =>
- return
- Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
- and then FCE (Explicit_Actual_Parameter (E1),
- Explicit_Actual_Parameter (E2));
-
- when N_Qualified_Expression =>
- return
- FCE (Subtype_Mark (E1), Subtype_Mark (E2))
- and then FCE (Expression (E1), Expression (E2));
-
- when N_Range =>
- return
- FCE (Low_Bound (E1), Low_Bound (E2))
- and then FCE (High_Bound (E1), High_Bound (E2));
-
- when N_Real_Literal =>
- return (Realval (E1) = Realval (E2));
-
- when N_Selected_Component =>
- return
- FCE (Prefix (E1), Prefix (E2))
- and then FCE (Selector_Name (E1), Selector_Name (E2));
-
- when N_Slice =>
- return
- FCE (Prefix (E1), Prefix (E2))
- and then FCE (Discrete_Range (E1), Discrete_Range (E2));
-
- when N_String_Literal =>
- declare
- S1 : constant String_Id := Strval (E1);
- S2 : constant String_Id := Strval (E2);
- L1 : constant Nat := String_Length (S1);
- L2 : constant Nat := String_Length (S2);
-
- begin
- if L1 /= L2 then
- return False;
-
- else
- for J in 1 .. L1 loop
- if Get_String_Char (S1, J) /=
- Get_String_Char (S2, J)
- then
- return False;
- end if;
- end loop;
-
- return True;
- end if;
- end;
-
- when N_Type_Conversion =>
- return
- FCE (Subtype_Mark (E1), Subtype_Mark (E2))
- and then FCE (Expression (E1), Expression (E2));
-
- when N_Unary_Op =>
- return
- Entity (E1) = Entity (E2)
- and then FCE (Right_Opnd (E1), Right_Opnd (E2));
-
- when N_Unchecked_Type_Conversion =>
- return
- FCE (Subtype_Mark (E1), Subtype_Mark (E2))
- and then FCE (Expression (E1), Expression (E2));
-
- -- All other node types cannot appear in this context. Strictly
- -- we should raise a fatal internal error. Instead we just ignore
- -- the nodes. This means that if anyone makes a mistake in the
- -- expander and mucks an expression tree irretrievably, the
- -- result will be a failure to detect a (probably very obscure)
- -- case of non-conformance, which is better than bombing on some
- -- case where two expressions do in fact conform.
-
- when others =>
- return True;
-
- end case;
- end if;
- end Fully_Conformant_Expressions;
-
- ----------------------------------------
- -- Fully_Conformant_Discrete_Subtypes --
- ----------------------------------------
-
- function Fully_Conformant_Discrete_Subtypes
- (Given_S1 : Node_Id;
- Given_S2 : Node_Id) return Boolean
- is
- S1 : constant Node_Id := Original_Node (Given_S1);
- S2 : constant Node_Id := Original_Node (Given_S2);
-
- function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
- -- Special-case for a bound given by a discriminant, which in the body
- -- is replaced with the discriminal of the enclosing type.
-
- function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
- -- Check both bounds
-
- -----------------------
- -- Conforming_Bounds --
- -----------------------
-
- function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
- begin
- if Is_Entity_Name (B1)
- and then Is_Entity_Name (B2)
- and then Ekind (Entity (B1)) = E_Discriminant
- then
- return Chars (B1) = Chars (B2);
-
- else
- return Fully_Conformant_Expressions (B1, B2);
- end if;
- end Conforming_Bounds;
-
- -----------------------
- -- Conforming_Ranges --
- -----------------------
-
- function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
- begin
- return
- Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
- and then
- Conforming_Bounds (High_Bound (R1), High_Bound (R2));
- end Conforming_Ranges;
-
- -- Start of processing for Fully_Conformant_Discrete_Subtypes
-
- begin
- if Nkind (S1) /= Nkind (S2) then
- return False;
-
- elsif Is_Entity_Name (S1) then
- return Entity (S1) = Entity (S2);
-
- elsif Nkind (S1) = N_Range then
- return Conforming_Ranges (S1, S2);
-
- elsif Nkind (S1) = N_Subtype_Indication then
- return
- Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
- and then
- Conforming_Ranges
- (Range_Expression (Constraint (S1)),
- Range_Expression (Constraint (S2)));
- else
- return True;
- end if;
- end Fully_Conformant_Discrete_Subtypes;
-
- --------------------
- -- Install_Entity --
- --------------------
-
- procedure Install_Entity (E : Entity_Id) is
- Prev : constant Entity_Id := Current_Entity (E);
- begin
- Set_Is_Immediately_Visible (E);
- Set_Current_Entity (E);
- Set_Homonym (E, Prev);
- end Install_Entity;
-
- ---------------------
- -- Install_Formals --
- ---------------------
-
- procedure Install_Formals (Id : Entity_Id) is
- F : Entity_Id;
- begin
- F := First_Formal (Id);
- while Present (F) loop
- Install_Entity (F);
- Next_Formal (F);
- end loop;
- end Install_Formals;
-
- -----------------------------
- -- Is_Interface_Conformant --
- -----------------------------
-
- function Is_Interface_Conformant
- (Tagged_Type : Entity_Id;
- Iface_Prim : Entity_Id;
- Prim : Entity_Id) return Boolean
- is
- Iface : constant Entity_Id := Find_Dispatching_Type (Iface_Prim);
- Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
-
- begin
- pragma Assert (Is_Subprogram (Iface_Prim)
- and then Is_Subprogram (Prim)
- and then Is_Dispatching_Operation (Iface_Prim)
- and then Is_Dispatching_Operation (Prim));
-
- pragma Assert (Is_Interface (Iface)
- or else (Present (Alias (Iface_Prim))
- and then
- Is_Interface
- (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
-
- if Prim = Iface_Prim
- or else not Is_Subprogram (Prim)
- or else Ekind (Prim) /= Ekind (Iface_Prim)
- or else not Is_Dispatching_Operation (Prim)
- or else Scope (Prim) /= Scope (Tagged_Type)
- or else No (Typ)
- or else Base_Type (Typ) /= Tagged_Type
- or else not Primitive_Names_Match (Iface_Prim, Prim)
- then
- return False;
-
- -- Case of a procedure, or a function that does not have a controlling
- -- result (I or access I).
-
- elsif Ekind (Iface_Prim) = E_Procedure
- or else Etype (Prim) = Etype (Iface_Prim)
- or else not Has_Controlling_Result (Prim)
- then
- return Type_Conformant (Prim, Iface_Prim,
- Skip_Controlling_Formals => True);
-
- -- Case of a function returning an interface, or an access to one.
- -- Check that the return types correspond.
-
- elsif Implements_Interface (Typ, Iface) then
- if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
- /=
- (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
- then
- return False;
- else
- return
- Type_Conformant (Prim, Iface_Prim,
- Skip_Controlling_Formals => True);
- end if;
-
- else
- return False;
- end if;
- end Is_Interface_Conformant;
-
- ---------------------------------
- -- Is_Non_Overriding_Operation --
- ---------------------------------
-
- function Is_Non_Overriding_Operation
- (Prev_E : Entity_Id;
- New_E : Entity_Id) return Boolean
- is
- Formal : Entity_Id;
- F_Typ : Entity_Id;
- G_Typ : Entity_Id := Empty;
-
- function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
- -- If F_Type is a derived type associated with a generic actual subtype,
- -- then return its Generic_Parent_Type attribute, else return Empty.
-
- function Types_Correspond
- (P_Type : Entity_Id;
- N_Type : Entity_Id) return Boolean;
- -- Returns true if and only if the types (or designated types in the
- -- case of anonymous access types) are the same or N_Type is derived
- -- directly or indirectly from P_Type.
-
- -----------------------------
- -- Get_Generic_Parent_Type --
- -----------------------------
-
- function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
- G_Typ : Entity_Id;
- Indic : Node_Id;
-
- begin
- if Is_Derived_Type (F_Typ)
- and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
- then
- -- The tree must be traversed to determine the parent subtype in
- -- the generic unit, which unfortunately isn't always available
- -- via semantic attributes. ??? (Note: The use of Original_Node
- -- is needed for cases where a full derived type has been
- -- rewritten.)
-
- Indic := Subtype_Indication
- (Type_Definition (Original_Node (Parent (F_Typ))));
-
- if Nkind (Indic) = N_Subtype_Indication then
- G_Typ := Entity (Subtype_Mark (Indic));
- else
- G_Typ := Entity (Indic);
- end if;
-
- if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
- and then Present (Generic_Parent_Type (Parent (G_Typ)))
- then
- return Generic_Parent_Type (Parent (G_Typ));
- end if;
- end if;
-
- return Empty;
- end Get_Generic_Parent_Type;
-
- ----------------------
- -- Types_Correspond --
- ----------------------
-
- function Types_Correspond
- (P_Type : Entity_Id;
- N_Type : Entity_Id) return Boolean
- is
- Prev_Type : Entity_Id := Base_Type (P_Type);
- New_Type : Entity_Id := Base_Type (N_Type);
-
- begin
- if Ekind (Prev_Type) = E_Anonymous_Access_Type then
- Prev_Type := Designated_Type (Prev_Type);
- end if;
-
- if Ekind (New_Type) = E_Anonymous_Access_Type then
- New_Type := Designated_Type (New_Type);
- end if;
-
- if Prev_Type = New_Type then
- return True;
-
- elsif not Is_Class_Wide_Type (New_Type) then
- while Etype (New_Type) /= New_Type loop
- New_Type := Etype (New_Type);
- if New_Type = Prev_Type then
- return True;
- end if;
- end loop;
- end if;
- return False;
- end Types_Correspond;
-
- -- Start of processing for Is_Non_Overriding_Operation
-
- begin
- -- In the case where both operations are implicit derived subprograms
- -- then neither overrides the other. This can only occur in certain
- -- obscure cases (e.g., derivation from homographs created in a generic
- -- instantiation).
-
- if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
- return True;
-
- elsif Ekind (Current_Scope) = E_Package
- and then Is_Generic_Instance (Current_Scope)
- and then In_Private_Part (Current_Scope)
- and then Comes_From_Source (New_E)
- then
- -- We examine the formals and result subtype of the inherited
- -- operation, to determine whether their type is derived from (the
- -- instance of) a generic type.
-
- Formal := First_Formal (Prev_E);
-
- while Present (Formal) loop
- F_Typ := Base_Type (Etype (Formal));
-
- if Ekind (F_Typ) = E_Anonymous_Access_Type then
- F_Typ := Designated_Type (F_Typ);
- end if;
-
- G_Typ := Get_Generic_Parent_Type (F_Typ);
-
- Next_Formal (Formal);
- end loop;
-
- if No (G_Typ) and then Ekind (Prev_E) = E_Function then
- G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
- end if;
-
- if No (G_Typ) then
- return False;
- end if;
-
- -- If the generic type is a private type, then the original
- -- operation was not overriding in the generic, because there was
- -- no primitive operation to override.
-
- if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
- and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
- N_Formal_Private_Type_Definition
- then
- return True;
-
- -- The generic parent type is the ancestor of a formal derived
- -- type declaration. We need to check whether it has a primitive
- -- operation that should be overridden by New_E in the generic.
-
- else
- declare
- P_Formal : Entity_Id;
- N_Formal : Entity_Id;
- P_Typ : Entity_Id;
- N_Typ : Entity_Id;
- P_Prim : Entity_Id;
- Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
-
- begin
- while Present (Prim_Elt) loop
- P_Prim := Node (Prim_Elt);
-
- if Chars (P_Prim) = Chars (New_E)
- and then Ekind (P_Prim) = Ekind (New_E)
- then
- P_Formal := First_Formal (P_Prim);
- N_Formal := First_Formal (New_E);
- while Present (P_Formal) and then Present (N_Formal) loop
- P_Typ := Etype (P_Formal);
- N_Typ := Etype (N_Formal);
-
- if not Types_Correspond (P_Typ, N_Typ) then
- exit;
- end if;
-
- Next_Entity (P_Formal);
- Next_Entity (N_Formal);
- end loop;
-
- -- Found a matching primitive operation belonging to the
- -- formal ancestor type, so the new subprogram is
- -- overriding.
-
- if No (P_Formal)
- and then No (N_Formal)
- and then (Ekind (New_E) /= E_Function
- or else
- Types_Correspond
- (Etype (P_Prim), Etype (New_E)))
- then
- return False;
- end if;
- end if;
-
- Next_Elmt (Prim_Elt);
- end loop;
-
- -- If no match found, then the new subprogram does not
- -- override in the generic (nor in the instance).
-
- return True;
- end;
- end if;
- else
- return False;
- end if;
- end Is_Non_Overriding_Operation;
-
- ------------------------------
- -- Make_Inequality_Operator --
- ------------------------------
-
- -- S is the defining identifier of an equality operator. We build a
- -- subprogram declaration with the right signature. This operation is
- -- intrinsic, because it is always expanded as the negation of the
- -- call to the equality function.
-
- procedure Make_Inequality_Operator (S : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (S);
- Decl : Node_Id;
- Formals : List_Id;
- Op_Name : Entity_Id;
-
- FF : constant Entity_Id := First_Formal (S);
- NF : constant Entity_Id := Next_Formal (FF);
-
- begin
- -- Check that equality was properly defined, ignore call if not
-
- if No (NF) then
- return;
- end if;
-
- declare
- A : constant Entity_Id :=
- Make_Defining_Identifier (Sloc (FF),
- Chars => Chars (FF));
-
- B : constant Entity_Id :=
- Make_Defining_Identifier (Sloc (NF),
- Chars => Chars (NF));
-
- begin
- Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
-
- Formals := New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier => A,
- Parameter_Type =>
- New_Reference_To (Etype (First_Formal (S)),
- Sloc (Etype (First_Formal (S))))),
-
- Make_Parameter_Specification (Loc,
- Defining_Identifier => B,
- Parameter_Type =>
- New_Reference_To (Etype (Next_Formal (First_Formal (S))),
- Sloc (Etype (Next_Formal (First_Formal (S)))))));
-
- Decl :=
- Make_Subprogram_Declaration (Loc,
- Specification =>
- Make_Function_Specification (Loc,
- Defining_Unit_Name => Op_Name,
- Parameter_Specifications => Formals,
- Result_Definition =>
- New_Reference_To (Standard_Boolean, Loc)));
-
- -- Insert inequality right after equality if it is explicit or after
- -- the derived type when implicit. These entities are created only
- -- for visibility purposes, and eventually replaced in the course of
- -- expansion, so they do not need to be attached to the tree and seen
- -- by the back-end. Keeping them internal also avoids spurious
- -- freezing problems. The declaration is inserted in the tree for
- -- analysis, and removed afterwards. If the equality operator comes
- -- from an explicit declaration, attach the inequality immediately
- -- after. Else the equality is inherited from a derived type
- -- declaration, so insert inequality after that declaration.
-
- if No (Alias (S)) then
- Insert_After (Unit_Declaration_Node (S), Decl);
- elsif Is_List_Member (Parent (S)) then
- Insert_After (Parent (S), Decl);
- else
- Insert_After (Parent (Etype (First_Formal (S))), Decl);
- end if;
-
- Mark_Rewrite_Insertion (Decl);
- Set_Is_Intrinsic_Subprogram (Op_Name);
- Analyze (Decl);
- Remove (Decl);
- Set_Has_Completion (Op_Name);
- Set_Corresponding_Equality (Op_Name, S);
- Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
- end;
- end Make_Inequality_Operator;
-
- ----------------------
- -- May_Need_Actuals --
- ----------------------
-
- procedure May_Need_Actuals (Fun : Entity_Id) is
- F : Entity_Id;
- B : Boolean;
-
- begin
- F := First_Formal (Fun);
- B := True;
- while Present (F) loop
- if No (Default_Value (F)) then
- B := False;
- exit;
- end if;
-
- Next_Formal (F);
- end loop;
-
- Set_Needs_No_Actuals (Fun, B);
- end May_Need_Actuals;
-
- ---------------------
- -- Mode_Conformant --
- ---------------------
-
- function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
- Result : Boolean;
- begin
- Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
- return Result;
- end Mode_Conformant;
-
- ---------------------------
- -- New_Overloaded_Entity --
- ---------------------------
-
- procedure New_Overloaded_Entity
- (S : Entity_Id;
- Derived_Type : Entity_Id := Empty)
- is
- Overridden_Subp : Entity_Id := Empty;
- -- Set if the current scope has an operation that is type-conformant
- -- with S, and becomes hidden by S.
-
- Is_Primitive_Subp : Boolean;
- -- Set to True if the new subprogram is primitive
-
- E : Entity_Id;
- -- Entity that S overrides
-
- Prev_Vis : Entity_Id := Empty;
- -- Predecessor of E in Homonym chain
-
- procedure Check_For_Primitive_Subprogram
- (Is_Primitive : out Boolean;
- Is_Overriding : Boolean := False);
- -- If the subprogram being analyzed is a primitive operation of the type
- -- of a formal or result, set the Has_Primitive_Operations flag on the
- -- type, and set Is_Primitive to True (otherwise set to False). Set the
- -- corresponding flag on the entity itself for later use.
-
- procedure Check_Synchronized_Overriding
- (Def_Id : Entity_Id;
- Overridden_Subp : out Entity_Id);
- -- First determine if Def_Id is an entry or a subprogram either defined
- -- in the scope of a task or protected type, or is a primitive of such
- -- a type. Check whether Def_Id overrides a subprogram of an interface
- -- implemented by the synchronized type, return the overridden entity
- -- or Empty.
-
- function Is_Private_Declaration (E : Entity_Id) return Boolean;
- -- Check that E is declared in the private part of the current package,
- -- or in the package body, where it may hide a previous declaration.
- -- We can't use In_Private_Part by itself because this flag is also
- -- set when freezing entities, so we must examine the place of the
- -- declaration in the tree, and recognize wrapper packages as well.
-
- ------------------------------------
- -- Check_For_Primitive_Subprogram --
- ------------------------------------
-
- procedure Check_For_Primitive_Subprogram
- (Is_Primitive : out Boolean;
- Is_Overriding : Boolean := False)
- is
- Formal : Entity_Id;
- F_Typ : Entity_Id;
- B_Typ : Entity_Id;
-
- function Visible_Part_Type (T : Entity_Id) return Boolean;
- -- Returns true if T is declared in the visible part of
- -- the current package scope; otherwise returns false.
- -- Assumes that T is declared in a package.
-
- procedure Check_Private_Overriding (T : Entity_Id);
- -- Checks that if a primitive abstract subprogram of a visible
- -- abstract type is declared in a private part, then it must
- -- override an abstract subprogram declared in the visible part.
- -- Also checks that if a primitive function with a controlling
- -- result is declared in a private part, then it must override
- -- a function declared in the visible part.
-
- ------------------------------
- -- Check_Private_Overriding --
- ------------------------------
-
- procedure Check_Private_Overriding (T : Entity_Id) is
- begin
- if Is_Package_Or_Generic_Package (Current_Scope)
- and then In_Private_Part (Current_Scope)
- and then Visible_Part_Type (T)
- and then not In_Instance
- then
- if Is_Abstract_Type (T)
- and then Is_Abstract_Subprogram (S)
- and then (not Is_Overriding
- or else not Is_Abstract_Subprogram (E))
- then
- Error_Msg_N ("abstract subprograms must be visible "
- & "(RM 3.9.3(10))!", S);
-
- elsif Ekind (S) = E_Function
- and then Is_Tagged_Type (T)
- and then T = Base_Type (Etype (S))
- and then not Is_Overriding
- then
- Error_Msg_N
- ("private function with tagged result must"
- & " override visible-part function", S);
- Error_Msg_N
- ("\move subprogram to the visible part"
- & " (RM 3.9.3(10))", S);
- end if;
- end if;
- end Check_Private_Overriding;
-
- -----------------------
- -- Visible_Part_Type --
- -----------------------
-
- function Visible_Part_Type (T : Entity_Id) return Boolean is
- P : constant Node_Id := Unit_Declaration_Node (Scope (T));
- N : Node_Id;
-
- begin
- -- If the entity is a private type, then it must be
- -- declared in a visible part.
-
- if Ekind (T) in Private_Kind then
- return True;
- end if;
-
- -- Otherwise, we traverse the visible part looking for its
- -- corresponding declaration. We cannot use the declaration
- -- node directly because in the private part the entity of a
- -- private type is the one in the full view, which does not
- -- indicate that it is the completion of something visible.
-
- N := First (Visible_Declarations (Specification (P)));
- while Present (N) loop
- if Nkind (N) = N_Full_Type_Declaration
- and then Present (Defining_Identifier (N))
- and then T = Defining_Identifier (N)
- then
- return True;
-
- elsif Nkind_In (N, N_Private_Type_Declaration,
- N_Private_Extension_Declaration)
- and then Present (Defining_Identifier (N))
- and then T = Full_View (Defining_Identifier (N))
- then
- return True;
- end if;
-
- Next (N);
- end loop;
-
- return False;
- end Visible_Part_Type;
-
- -- Start of processing for Check_For_Primitive_Subprogram
-
- begin
- Is_Primitive := False;
-
- if not Comes_From_Source (S) then
- null;
-
- -- If subprogram is at library level, it is not primitive operation
-
- elsif Current_Scope = Standard_Standard then
- null;
-
- elsif (Is_Package_Or_Generic_Package (Current_Scope)
- and then not In_Package_Body (Current_Scope))
- or else Is_Overriding
- then
- -- For function, check return type
-
- if Ekind (S) = E_Function then
- if Ekind (Etype (S)) = E_Anonymous_Access_Type then
- F_Typ := Designated_Type (Etype (S));
- else
- F_Typ := Etype (S);
- end if;
-
- B_Typ := Base_Type (F_Typ);
-
- if Scope (B_Typ) = Current_Scope
- and then not Is_Class_Wide_Type (B_Typ)
- and then not Is_Generic_Type (B_Typ)
- then
- Is_Primitive := True;
- Set_Has_Primitive_Operations (B_Typ);
- Set_Is_Primitive (S);
- Check_Private_Overriding (B_Typ);
- end if;
- end if;
-
- -- For all subprograms, check formals
-
- Formal := First_Formal (S);
- while Present (Formal) loop
- if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
- F_Typ := Designated_Type (Etype (Formal));
- else
- F_Typ := Etype (Formal);
- end if;
-
- B_Typ := Base_Type (F_Typ);
-
- if Ekind (B_Typ) = E_Access_Subtype then
- B_Typ := Base_Type (B_Typ);
- end if;
-
- if Scope (B_Typ) = Current_Scope
- and then not Is_Class_Wide_Type (B_Typ)
- and then not Is_Generic_Type (B_Typ)
- then
- Is_Primitive := True;
- Set_Is_Primitive (S);
- Set_Has_Primitive_Operations (B_Typ);
- Check_Private_Overriding (B_Typ);
- end if;
-
- Next_Formal (Formal);
- end loop;
- end if;
- end Check_For_Primitive_Subprogram;
-
- -----------------------------------
- -- Check_Synchronized_Overriding --
- -----------------------------------
-
- procedure Check_Synchronized_Overriding
- (Def_Id : Entity_Id;
- Overridden_Subp : out Entity_Id)
- is
- Ifaces_List : Elist_Id;
- In_Scope : Boolean;
- Typ : Entity_Id;
-
- function Matches_Prefixed_View_Profile
- (Prim_Params : List_Id;
- Iface_Params : List_Id) return Boolean;
- -- Determine whether a subprogram's parameter profile Prim_Params
- -- matches that of a potentially overridden interface subprogram
- -- Iface_Params. Also determine if the type of first parameter of
- -- Iface_Params is an implemented interface.
-
- -----------------------------------
- -- Matches_Prefixed_View_Profile --
- -----------------------------------
-
- function Matches_Prefixed_View_Profile
- (Prim_Params : List_Id;
- Iface_Params : List_Id) return Boolean
- is
- Iface_Id : Entity_Id;
- Iface_Param : Node_Id;
- Iface_Typ : Entity_Id;
- Prim_Id : Entity_Id;
- Prim_Param : Node_Id;
- Prim_Typ : Entity_Id;
-
- function Is_Implemented
- (Ifaces_List : Elist_Id;
- Iface : Entity_Id) return Boolean;
- -- Determine if Iface is implemented by the current task or
- -- protected type.
-
- --------------------
- -- Is_Implemented --
- --------------------
-
- function Is_Implemented
- (Ifaces_List : Elist_Id;
- Iface : Entity_Id) return Boolean
- is
- Iface_Elmt : Elmt_Id;
-
- begin
- Iface_Elmt := First_Elmt (Ifaces_List);
- while Present (Iface_Elmt) loop
- if Node (Iface_Elmt) = Iface then
- return True;
- end if;
-
- Next_Elmt (Iface_Elmt);
- end loop;
-
- return False;
- end Is_Implemented;
-
- -- Start of processing for Matches_Prefixed_View_Profile
-
- begin
- Iface_Param := First (Iface_Params);
- Iface_Typ := Etype (Defining_Identifier (Iface_Param));
-
- if Is_Access_Type (Iface_Typ) then
- Iface_Typ := Designated_Type (Iface_Typ);
- end if;
-
- Prim_Param := First (Prim_Params);
-
- -- The first parameter of the potentially overridden subprogram
- -- must be an interface implemented by Prim.
-
- if not Is_Interface (Iface_Typ)
- or else not Is_Implemented (Ifaces_List, Iface_Typ)
- then
- return False;
- end if;
-
- -- The checks on the object parameters are done, move onto the
- -- rest of the parameters.
-
- if not In_Scope then
- Prim_Param := Next (Prim_Param);
- end if;
-
- Iface_Param := Next (Iface_Param);
- while Present (Iface_Param) and then Present (Prim_Param) loop
- Iface_Id := Defining_Identifier (Iface_Param);
- Iface_Typ := Find_Parameter_Type (Iface_Param);
-
- Prim_Id := Defining_Identifier (Prim_Param);
- Prim_Typ := Find_Parameter_Type (Prim_Param);
-
- if Ekind (Iface_Typ) = E_Anonymous_Access_Type
- and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
- and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
- then
- Iface_Typ := Designated_Type (Iface_Typ);
- Prim_Typ := Designated_Type (Prim_Typ);
- end if;
-
- -- Case of multiple interface types inside a parameter profile
-
- -- (Obj_Param : in out Iface; ...; Param : Iface)
-
- -- If the interface type is implemented, then the matching type
- -- in the primitive should be the implementing record type.
-
- if Ekind (Iface_Typ) = E_Record_Type
- and then Is_Interface (Iface_Typ)
- and then Is_Implemented (Ifaces_List, Iface_Typ)
- then
- if Prim_Typ /= Typ then
- return False;
- end if;
-
- -- The two parameters must be both mode and subtype conformant
-
- elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
- or else not
- Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
- then
- return False;
- end if;
-
- Next (Iface_Param);
- Next (Prim_Param);
- end loop;
-
- -- One of the two lists contains more parameters than the other
-
- if Present (Iface_Param) or else Present (Prim_Param) then
- return False;
- end if;
-
- return True;
- end Matches_Prefixed_View_Profile;
-
- -- Start of processing for Check_Synchronized_Overriding
-
- begin
- Overridden_Subp := Empty;
-
- -- Def_Id must be an entry or a subprogram. We should skip predefined
- -- primitives internally generated by the frontend; however at this
- -- stage predefined primitives are still not fully decorated. As a
- -- minor optimization we skip here internally generated subprograms.
-
- if (Ekind (Def_Id) /= E_Entry
- and then Ekind (Def_Id) /= E_Function
- and then Ekind (Def_Id) /= E_Procedure)
- or else not Comes_From_Source (Def_Id)
- then
- return;
- end if;
-
- -- Search for the concurrent declaration since it contains the list
- -- of all implemented interfaces. In this case, the subprogram is
- -- declared within the scope of a protected or a task type.
-
- if Present (Scope (Def_Id))
- and then Is_Concurrent_Type (Scope (Def_Id))
- and then not Is_Generic_Actual_Type (Scope (Def_Id))
- then
- Typ := Scope (Def_Id);
- In_Scope := True;
-
- -- The enclosing scope is not a synchronized type and the subprogram
- -- has no formals
-
- elsif No (First_Formal (Def_Id)) then
- return;
-
- -- The subprogram has formals and hence it may be a primitive of a
- -- concurrent type
-
- else
- Typ := Etype (First_Formal (Def_Id));
-
- if Is_Access_Type (Typ) then
- Typ := Directly_Designated_Type (Typ);
- end if;
-
- if Is_Concurrent_Type (Typ)
- and then not Is_Generic_Actual_Type (Typ)
- then
- In_Scope := False;
-
- -- This case occurs when the concurrent type is declared within
- -- a generic unit. As a result the corresponding record has been
- -- built and used as the type of the first formal, we just have
- -- to retrieve the corresponding concurrent type.
-
- elsif Is_Concurrent_Record_Type (Typ)
- and then Present (Corresponding_Concurrent_Type (Typ))
- then
- Typ := Corresponding_Concurrent_Type (Typ);
- In_Scope := False;
-
- else
- return;
- end if;
- end if;
-
- -- There is no overriding to check if is an inherited operation in a
- -- type derivation on for a generic actual.
-
- Collect_Interfaces (Typ, Ifaces_List);
-
- if Is_Empty_Elmt_List (Ifaces_List) then
- return;
- end if;
-
- -- Determine whether entry or subprogram Def_Id overrides a primitive
- -- operation that belongs to one of the interfaces in Ifaces_List.
-
- declare
- Candidate : Entity_Id := Empty;
- Hom : Entity_Id := Empty;
- Iface_Typ : Entity_Id;
- Subp : Entity_Id := Empty;
-
- begin
- -- Traverse the homonym chain, looking at a potentially
- -- overridden subprogram that belongs to an implemented
- -- interface.
-
- Hom := Current_Entity_In_Scope (Def_Id);
- while Present (Hom) loop
- Subp := Hom;
-
- if Subp = Def_Id
- or else not Is_Overloadable (Subp)
- or else not Is_Primitive (Subp)
- or else not Is_Dispatching_Operation (Subp)
- or else not Is_Interface (Find_Dispatching_Type (Subp))
- then
- null;
-
- -- Entries and procedures can override abstract or null
- -- interface procedures
-
- elsif (Ekind (Def_Id) = E_Procedure
- or else Ekind (Def_Id) = E_Entry)
- and then Ekind (Subp) = E_Procedure
- and then Matches_Prefixed_View_Profile
- (Parameter_Specifications (Parent (Def_Id)),
- Parameter_Specifications (Parent (Subp)))
- then
- Candidate := Subp;
-
- -- For an overridden subprogram Subp, check whether the mode
- -- of its first parameter is correct depending on the kind
- -- of synchronized type.
-
- declare
- Formal : constant Node_Id := First_Formal (Candidate);
-
- begin
- -- In order for an entry or a protected procedure to
- -- override, the first parameter of the overridden
- -- routine must be of mode "out", "in out" or
- -- access-to-variable.
-
- if (Ekind (Candidate) = E_Entry
- or else Ekind (Candidate) = E_Procedure)
- and then Is_Protected_Type (Typ)
- and then Ekind (Formal) /= E_In_Out_Parameter
- and then Ekind (Formal) /= E_Out_Parameter
- and then Nkind (Parameter_Type (Parent (Formal)))
- /= N_Access_Definition
- then
- null;
-
- -- All other cases are OK since a task entry or routine
- -- does not have a restriction on the mode of the first
- -- parameter of the overridden interface routine.
-
- else
- Overridden_Subp := Candidate;
- return;
- end if;
- end;
-
- -- Functions can override abstract interface functions
-
- elsif Ekind (Def_Id) = E_Function
- and then Ekind (Subp) = E_Function
- and then Matches_Prefixed_View_Profile
- (Parameter_Specifications (Parent (Def_Id)),
- Parameter_Specifications (Parent (Subp)))
- and then Etype (Result_Definition (Parent (Def_Id))) =
- Etype (Result_Definition (Parent (Subp)))
- then
- Overridden_Subp := Subp;
- return;
- end if;
-
- Hom := Homonym (Hom);
- end loop;
-
- -- After examining all candidates for overriding, we are
- -- left with the best match which is a mode incompatible
- -- interface routine. Do not emit an error if the Expander
- -- is active since this error will be detected later on
- -- after all concurrent types are expanded and all wrappers
- -- are built. This check is meant for spec-only
- -- compilations.
-
- if Present (Candidate)
- and then not Expander_Active
- then
- Iface_Typ :=
- Find_Parameter_Type (Parent (First_Formal (Candidate)));
-
- -- Def_Id is primitive of a protected type, declared
- -- inside the type, and the candidate is primitive of a
- -- limited or synchronized interface.
-
- if In_Scope
- and then Is_Protected_Type (Typ)
- and then
- (Is_Limited_Interface (Iface_Typ)
- or else Is_Protected_Interface (Iface_Typ)
- or else Is_Synchronized_Interface (Iface_Typ)
- or else Is_Task_Interface (Iface_Typ))
- then
- -- Must reword this message, comma before to in -gnatj
- -- mode ???
-
- Error_Msg_NE
- ("first formal of & must be of mode `OUT`, `IN OUT`"
- & " or access-to-variable", Typ, Candidate);
- Error_Msg_N
- ("\to be overridden by protected procedure or entry "
- & "(RM 9.4(11.9/2))", Typ);
- end if;
- end if;
-
- Overridden_Subp := Candidate;
- return;
- end;
- end Check_Synchronized_Overriding;
-
- ----------------------------
- -- Is_Private_Declaration --
- ----------------------------
-
- function Is_Private_Declaration (E : Entity_Id) return Boolean is
- Priv_Decls : List_Id;
- Decl : constant Node_Id := Unit_Declaration_Node (E);
-
- begin
- if Is_Package_Or_Generic_Package (Current_Scope)
- and then In_Private_Part (Current_Scope)
- then
- Priv_Decls :=
- Private_Declarations (
- Specification (Unit_Declaration_Node (Current_Scope)));
-
- return In_Package_Body (Current_Scope)
- or else
- (Is_List_Member (Decl)
- and then List_Containing (Decl) = Priv_Decls)
- or else (Nkind (Parent (Decl)) = N_Package_Specification
- and then not Is_Compilation_Unit (
- Defining_Entity (Parent (Decl)))
- and then List_Containing (Parent (Parent (Decl)))
- = Priv_Decls);
- else
- return False;
- end if;
- end Is_Private_Declaration;
-
- -- Start of processing for New_Overloaded_Entity
-
- begin
- -- We need to look for an entity that S may override. This must be a
- -- homonym in the current scope, so we look for the first homonym of
- -- S in the current scope as the starting point for the search.
-
- E := Current_Entity_In_Scope (S);
-
- -- If there is no homonym then this is definitely not overriding
-
- if No (E) then
- Enter_Overloaded_Entity (S);
- Check_Dispatching_Operation (S, Empty);
- Check_For_Primitive_Subprogram (Is_Primitive_Subp);
-
- -- If subprogram has an explicit declaration, check whether it
- -- has an overriding indicator.
-
- if Comes_From_Source (S) then
- Check_Synchronized_Overriding (S, Overridden_Subp);
- Check_Overriding_Indicator
- (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
- end if;
-
- -- If there is a homonym that is not overloadable, then we have an
- -- error, except for the special cases checked explicitly below.
-
- elsif not Is_Overloadable (E) then
-
- -- Check for spurious conflict produced by a subprogram that has the
- -- same name as that of the enclosing generic package. The conflict
- -- occurs within an instance, between the subprogram and the renaming
- -- declaration for the package. After the subprogram, the package
- -- renaming declaration becomes hidden.
-
- if Ekind (E) = E_Package
- and then Present (Renamed_Object (E))
- and then Renamed_Object (E) = Current_Scope
- and then Nkind (Parent (Renamed_Object (E))) =
- N_Package_Specification
- and then Present (Generic_Parent (Parent (Renamed_Object (E))))
- then
- Set_Is_Hidden (E);
- Set_Is_Immediately_Visible (E, False);
- Enter_Overloaded_Entity (S);
- Set_Homonym (S, Homonym (E));
- Check_Dispatching_Operation (S, Empty);
- Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
-
- -- If the subprogram is implicit it is hidden by the previous
- -- declaration. However if it is dispatching, it must appear in the
- -- dispatch table anyway, because it can be dispatched to even if it
- -- cannot be called directly.
-
- elsif Present (Alias (S))
- and then not Comes_From_Source (S)
- then
- Set_Scope (S, Current_Scope);
-
- if Is_Dispatching_Operation (Alias (S)) then
- Check_Dispatching_Operation (S, Empty);
- end if;
-
- return;
-
- else
- Error_Msg_Sloc := Sloc (E);
-
- -- Generate message, with useful additional warning if in generic
-
- if Is_Generic_Unit (E) then
- Error_Msg_N ("previous generic unit cannot be overloaded", S);
- Error_Msg_N ("\& conflicts with declaration#", S);
- else
- Error_Msg_N ("& conflicts with declaration#", S);
- end if;
-
- return;
- end if;
-
- -- E exists and is overloadable
-
- else
- -- Ada 2005 (AI-251): Derivation of abstract interface primitives
- -- need no check against the homonym chain. They are directly added
- -- to the list of primitive operations of Derived_Type.
-
- if Ada_Version >= Ada_05
- and then Present (Derived_Type)
- and then Is_Dispatching_Operation (Alias (S))
- and then Present (Find_Dispatching_Type (Alias (S)))
- and then Is_Interface (Find_Dispatching_Type (Alias (S)))
- then
- goto Add_New_Entity;
- end if;
-
- Check_Synchronized_Overriding (S, Overridden_Subp);
-
- -- Loop through E and its homonyms to determine if any of them is
- -- the candidate for overriding by S.
-
- while Present (E) loop
-
- -- Definitely not interesting if not in the current scope
-
- if Scope (E) /= Current_Scope then
- null;
-
- -- Check if we have type conformance
-
- elsif Type_Conformant (E, S) then
-
- -- If the old and new entities have the same profile and one
- -- is not the body of the other, then this is an error, unless
- -- one of them is implicitly declared.
-
- -- There are some cases when both can be implicit, for example
- -- when both a literal and a function that overrides it are
- -- inherited in a derivation, or when an inherited operation
- -- of a tagged full type overrides the inherited operation of
- -- a private extension. Ada 83 had a special rule for the
- -- literal case. In Ada95, the later implicit operation hides
- -- the former, and the literal is always the former. In the
- -- odd case where both are derived operations declared at the
- -- same point, both operations should be declared, and in that
- -- case we bypass the following test and proceed to the next
- -- part (this can only occur for certain obscure cases
- -- involving homographs in instances and can't occur for
- -- dispatching operations ???). Note that the following
- -- condition is less than clear. For example, it's not at all
- -- clear why there's a test for E_Entry here. ???
-
- if Present (Alias (S))
- and then (No (Alias (E))
- or else Comes_From_Source (E)
- or else Is_Dispatching_Operation (E))
- and then
- (Ekind (E) = E_Entry
- or else Ekind (E) /= E_Enumeration_Literal)
- then
- -- When an derived operation is overloaded it may be due to
- -- the fact that the full view of a private extension
- -- re-inherits. It has to be dealt with.
-
- if Is_Package_Or_Generic_Package (Current_Scope)
- and then In_Private_Part (Current_Scope)
- then
- Check_Operation_From_Private_View (S, E);
- end if;
-
- -- In any case the implicit operation remains hidden by
- -- the existing declaration, which is overriding.
-
- Set_Is_Overriding_Operation (E);
-
- if Comes_From_Source (E) then
- Check_Overriding_Indicator (E, S, Is_Primitive => False);
-
- -- Indicate that E overrides the operation from which
- -- S is inherited.
-
- if Present (Alias (S)) then
- Set_Overridden_Operation (E, Alias (S));
- else
- Set_Overridden_Operation (E, S);
- end if;
- end if;
-
- return;
-
- -- Within an instance, the renaming declarations for
- -- actual subprograms may become ambiguous, but they do
- -- not hide each other.
-
- elsif Ekind (E) /= E_Entry
- and then not Comes_From_Source (E)
- and then not Is_Generic_Instance (E)
- and then (Present (Alias (E))
- or else Is_Intrinsic_Subprogram (E))
- and then (not In_Instance
- or else No (Parent (E))
- or else Nkind (Unit_Declaration_Node (E)) /=
- N_Subprogram_Renaming_Declaration)
- then
- -- A subprogram child unit is not allowed to override
- -- an inherited subprogram (10.1.1(20)).
-
- if Is_Child_Unit (S) then
- Error_Msg_N
- ("child unit overrides inherited subprogram in parent",
- S);
- return;
- end if;
-
- if Is_Non_Overriding_Operation (E, S) then
- Enter_Overloaded_Entity (S);
- if No (Derived_Type)
- or else Is_Tagged_Type (Derived_Type)
- then
- Check_Dispatching_Operation (S, Empty);
- end if;
-
- return;
- end if;
-
- -- E is a derived operation or an internal operator which
- -- is being overridden. Remove E from further visibility.
- -- Furthermore, if E is a dispatching operation, it must be
- -- replaced in the list of primitive operations of its type
- -- (see Override_Dispatching_Operation).
-
- Overridden_Subp := E;
-
- declare
- Prev : Entity_Id;
-
- begin
- Prev := First_Entity (Current_Scope);
-
- while Present (Prev)
- and then Next_Entity (Prev) /= E
- loop
- Next_Entity (Prev);
- end loop;
-
- -- It is possible for E to be in the current scope and
- -- yet not in the entity chain. This can only occur in a
- -- generic context where E is an implicit concatenation
- -- in the formal part, because in a generic body the
- -- entity chain starts with the formals.
-
- pragma Assert
- (Present (Prev) or else Chars (E) = Name_Op_Concat);
-
- -- E must be removed both from the entity_list of the
- -- current scope, and from the visibility chain
-
- if Debug_Flag_E then
- Write_Str ("Override implicit operation ");
- Write_Int (Int (E));
- Write_Eol;
- end if;
-
- -- If E is a predefined concatenation, it stands for four
- -- different operations. As a result, a single explicit
- -- declaration does not hide it. In a possible ambiguous
- -- situation, Disambiguate chooses the user-defined op,
- -- so it is correct to retain the previous internal one.
-
- if Chars (E) /= Name_Op_Concat
- or else Ekind (E) /= E_Operator
- then
- -- For nondispatching derived operations that are
- -- overridden by a subprogram declared in the private
- -- part of a package, we retain the derived
- -- subprogram but mark it as not immediately visible.
- -- If the derived operation was declared in the
- -- visible part then this ensures that it will still
- -- be visible outside the package with the proper
- -- signature (calls from outside must also be
- -- directed to this version rather than the
- -- overriding one, unlike the dispatching case).
- -- Calls from inside the package will still resolve
- -- to the overriding subprogram since the derived one
- -- is marked as not visible within the package.
-
- -- If the private operation is dispatching, we achieve
- -- the overriding by keeping the implicit operation
- -- but setting its alias to be the overriding one. In
- -- this fashion the proper body is executed in all
- -- cases, but the original signature is used outside
- -- of the package.
-
- -- If the overriding is not in the private part, we
- -- remove the implicit operation altogether.
-
- if Is_Private_Declaration (S) then
-
- if not Is_Dispatching_Operation (E) then
- Set_Is_Immediately_Visible (E, False);
- else
- -- Work done in Override_Dispatching_Operation,
- -- so nothing else need to be done here.
-
- null;
- end if;
-
- else
- -- Find predecessor of E in Homonym chain
-
- if E = Current_Entity (E) then
- Prev_Vis := Empty;
- else
- Prev_Vis := Current_Entity (E);
- while Homonym (Prev_Vis) /= E loop
- Prev_Vis := Homonym (Prev_Vis);
- end loop;
- end if;
-
- if Prev_Vis /= Empty then
-
- -- Skip E in the visibility chain
-
- Set_Homonym (Prev_Vis, Homonym (E));
-
- else
- Set_Name_Entity_Id (Chars (E), Homonym (E));
- end if;
-
- Set_Next_Entity (Prev, Next_Entity (E));
-
- if No (Next_Entity (Prev)) then
- Set_Last_Entity (Current_Scope, Prev);
- end if;
-
- end if;
- end if;
-
- Enter_Overloaded_Entity (S);
- Set_Is_Overriding_Operation (S);
- Check_Overriding_Indicator (S, E, Is_Primitive => True);
-
- -- Indicate that S overrides the operation from which
- -- E is inherited.
-
- if Comes_From_Source (S) then
- if Present (Alias (E)) then
- Set_Overridden_Operation (S, Alias (E));
- else
- Set_Overridden_Operation (S, E);
- end if;
- end if;
-
- if Is_Dispatching_Operation (E) then
-
- -- An overriding dispatching subprogram inherits the
- -- convention of the overridden subprogram (by
- -- AI-117).
-
- Set_Convention (S, Convention (E));
- Check_Dispatching_Operation (S, E);
-
- else
- Check_Dispatching_Operation (S, Empty);
- end if;
-
- Check_For_Primitive_Subprogram
- (Is_Primitive_Subp, Is_Overriding => True);
- goto Check_Inequality;
- end;
-
- -- Apparent redeclarations in instances can occur when two
- -- formal types get the same actual type. The subprograms in
- -- in the instance are legal, even if not callable from the
- -- outside. Calls from within are disambiguated elsewhere.
- -- For dispatching operations in the visible part, the usual
- -- rules apply, and operations with the same profile are not
- -- legal (B830001).
-
- elsif (In_Instance_Visible_Part
- and then not Is_Dispatching_Operation (E))
- or else In_Instance_Not_Visible
- then
- null;
-
- -- Here we have a real error (identical profile)
-
- else
- Error_Msg_Sloc := Sloc (E);
-
- -- Avoid cascaded errors if the entity appears in
- -- subsequent calls.
-
- Set_Scope (S, Current_Scope);
-
- -- Generate error, with extra useful warning for the case
- -- of a generic instance with no completion.
-
- if Is_Generic_Instance (S)
- and then not Has_Completion (E)
- then
- Error_Msg_N
- ("instantiation cannot provide body for&", S);
- Error_Msg_N ("\& conflicts with declaration#", S);
- else
- Error_Msg_N ("& conflicts with declaration#", S);
- end if;
-
- return;
- end if;
-
- else
- -- If one subprogram has an access parameter and the other
- -- a parameter of an access type, calls to either might be
- -- ambiguous. Verify that parameters match except for the
- -- access parameter.
-
- if May_Hide_Profile then
- declare
- F1 : Entity_Id;
- F2 : Entity_Id;
- begin
- F1 := First_Formal (S);
- F2 := First_Formal (E);
- while Present (F1) and then Present (F2) loop
- if Is_Access_Type (Etype (F1)) then
- if not Is_Access_Type (Etype (F2))
- or else not Conforming_Types
- (Designated_Type (Etype (F1)),
- Designated_Type (Etype (F2)),
- Type_Conformant)
- then
- May_Hide_Profile := False;
- end if;
-
- elsif
- not Conforming_Types
- (Etype (F1), Etype (F2), Type_Conformant)
- then
- May_Hide_Profile := False;
- end if;
-
- Next_Formal (F1);
- Next_Formal (F2);
- end loop;
-
- if May_Hide_Profile
- and then No (F1)
- and then No (F2)
- then
- Error_Msg_NE ("calls to& may be ambiguous?", S, S);
- end if;
- end;
- end if;
- end if;
-
- E := Homonym (E);
- end loop;
-
- <<Add_New_Entity>>
-
- -- On exit, we know that S is a new entity
-
- Enter_Overloaded_Entity (S);
- Check_For_Primitive_Subprogram (Is_Primitive_Subp);
- Check_Overriding_Indicator
- (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
-
- -- If S is a derived operation for an untagged type then by
- -- definition it's not a dispatching operation (even if the parent
- -- operation was dispatching), so we don't call
- -- Check_Dispatching_Operation in that case.
-
- if No (Derived_Type)
- or else Is_Tagged_Type (Derived_Type)
- then
- Check_Dispatching_Operation (S, Empty);
- end if;
- end if;
-
- -- If this is a user-defined equality operator that is not a derived
- -- subprogram, create the corresponding inequality. If the operation is
- -- dispatching, the expansion is done elsewhere, and we do not create
- -- an explicit inequality operation.
-
- <<Check_Inequality>>
- if Chars (S) = Name_Op_Eq
- and then Etype (S) = Standard_Boolean
- and then Present (Parent (S))
- and then not Is_Dispatching_Operation (S)
- then
- Make_Inequality_Operator (S);
- end if;
- end New_Overloaded_Entity;
-
- ---------------------
- -- Process_Formals --
- ---------------------
-
- procedure Process_Formals
- (T : List_Id;
- Related_Nod : Node_Id)
- is
- Param_Spec : Node_Id;
- Formal : Entity_Id;
- Formal_Type : Entity_Id;
- Default : Node_Id;
- Ptype : Entity_Id;
-
- Num_Out_Params : Nat := 0;
- First_Out_Param : Entity_Id := Empty;
- -- Used for setting Is_Only_Out_Parameter
-
- function Is_Class_Wide_Default (D : Node_Id) return Boolean;
- -- Check whether the default has a class-wide type. After analysis the
- -- default has the type of the formal, so we must also check explicitly
- -- for an access attribute.
-
- ---------------------------
- -- Is_Class_Wide_Default --
- ---------------------------
-
- function Is_Class_Wide_Default (D : Node_Id) return Boolean is
- begin
- return Is_Class_Wide_Type (Designated_Type (Etype (D)))
- or else (Nkind (D) = N_Attribute_Reference
- and then Attribute_Name (D) = Name_Access
- and then Is_Class_Wide_Type (Etype (Prefix (D))));
- end Is_Class_Wide_Default;
-
- -- Start of processing for Process_Formals
-
- begin
- -- In order to prevent premature use of the formals in the same formal
- -- part, the Ekind is left undefined until all default expressions are
- -- analyzed. The Ekind is established in a separate loop at the end.
-
- Param_Spec := First (T);
- while Present (Param_Spec) loop
- Formal := Defining_Identifier (Param_Spec);
- Set_Never_Set_In_Source (Formal, True);
- Enter_Name (Formal);
-
- -- Case of ordinary parameters
-
- if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
- Find_Type (Parameter_Type (Param_Spec));
- Ptype := Parameter_Type (Param_Spec);
-
- if Ptype = Error then
- goto Continue;
- end if;
-
- Formal_Type := Entity (Ptype);
-
- if Is_Incomplete_Type (Formal_Type)
- or else
- (Is_Class_Wide_Type (Formal_Type)
- and then Is_Incomplete_Type (Root_Type (Formal_Type)))
- then
- -- Ada 2005 (AI-326): Tagged incomplete types allowed
-
- if Is_Tagged_Type (Formal_Type) then
- null;
-
- -- Special handling of Value_Type for CIL case
-
- elsif Is_Value_Type (Formal_Type) then
- null;
-
- elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
- N_Access_Procedure_Definition)
- then
- Error_Msg_N ("invalid use of incomplete type", Param_Spec);
-
- -- An incomplete type that is not tagged is allowed in an
- -- access-to-subprogram type only if it is a local declaration
- -- with a forthcoming completion (3.10.1 (9.2/2)).
-
- elsif Scope (Formal_Type) /= Scope (Current_Scope) then
- Error_Msg_N
- ("invalid use of limited view of type", Param_Spec);
- end if;
-
- elsif Ekind (Formal_Type) = E_Void then
- Error_Msg_NE ("premature use of&",
- Parameter_Type (Param_Spec), Formal_Type);
- end if;
-
- -- Ada 2005 (AI-231): Create and decorate an internal subtype
- -- declaration corresponding to the null-excluding type of the
- -- formal in the enclosing scope. Finally, replace the parameter
- -- type of the formal with the internal subtype.
-
- if Ada_Version >= Ada_05
- and then Null_Exclusion_Present (Param_Spec)
- then
- if not Is_Access_Type (Formal_Type) then
- Error_Msg_N
- ("`NOT NULL` allowed only for an access type", Param_Spec);
-
- else
- if Can_Never_Be_Null (Formal_Type)
- and then Comes_From_Source (Related_Nod)
- then
- Error_Msg_NE
- ("`NOT NULL` not allowed (& already excludes null)",
- Param_Spec,
- Formal_Type);
- end if;
-
- Formal_Type :=
- Create_Null_Excluding_Itype
- (T => Formal_Type,
- Related_Nod => Related_Nod,
- Scope_Id => Scope (Current_Scope));
-
- -- If the designated type of the itype is an itype we
- -- decorate it with the Has_Delayed_Freeze attribute to
- -- avoid problems with the backend.
-
- -- Example:
- -- type T is access procedure;
- -- procedure Op (O : not null T);
-
- if Is_Itype (Directly_Designated_Type (Formal_Type)) then
- Set_Has_Delayed_Freeze (Formal_Type);
- end if;
- end if;
- end if;
-
- -- An access formal type
-
- else
- Formal_Type :=
- Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
-
- -- No need to continue if we already notified errors
-
- if not Present (Formal_Type) then
- return;
- end if;
-
- -- Ada 2005 (AI-254)
-
- declare
- AD : constant Node_Id :=
- Access_To_Subprogram_Definition
- (Parameter_Type (Param_Spec));
- begin
- if Present (AD) and then Protected_Present (AD) then
- Formal_Type :=
- Replace_Anonymous_Access_To_Protected_Subprogram
- (Param_Spec);
- end if;
- end;
- end if;
-
- Set_Etype (Formal, Formal_Type);
- Default := Expression (Param_Spec);
-
- if Present (Default) then
- if Out_Present (Param_Spec) then
- Error_Msg_N
- ("default initialization only allowed for IN parameters",
- Param_Spec);
- end if;
-
- -- Do the special preanalysis of the expression (see section on
- -- "Handling of Default Expressions" in the spec of package Sem).
-
- Preanalyze_Spec_Expression (Default, Formal_Type);
-
- -- An access to constant cannot be the default for
- -- an access parameter that is an access to variable.
-
- if Ekind (Formal_Type) = E_Anonymous_Access_Type
- and then not Is_Access_Constant (Formal_Type)
- and then Is_Access_Type (Etype (Default))
- and then Is_Access_Constant (Etype (Default))
- then
- Error_Msg_N
- ("formal that is access to variable cannot be initialized " &
- "with an access-to-constant expression", Default);
- end if;
-
- -- Check that the designated type of an access parameter's default
- -- is not a class-wide type unless the parameter's designated type
- -- is also class-wide.
-
- if Ekind (Formal_Type) = E_Anonymous_Access_Type
- and then not From_With_Type (Formal_Type)
- and then Is_Class_Wide_Default (Default)
- and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
- then
- Error_Msg_N
- ("access to class-wide expression not allowed here", Default);
- end if;
- end if;
-
- -- Ada 2005 (AI-231): Static checks
-
- if Ada_Version >= Ada_05
- and then Is_Access_Type (Etype (Formal))
- and then Can_Never_Be_Null (Etype (Formal))
- then
- Null_Exclusion_Static_Checks (Param_Spec);
- end if;
-
- <<Continue>>
- Next (Param_Spec);
- end loop;
-
- -- If this is the formal part of a function specification, analyze the
- -- subtype mark in the context where the formals are visible but not
- -- yet usable, and may hide outer homographs.
-
- if Nkind (Related_Nod) = N_Function_Specification then
- Analyze_Return_Type (Related_Nod);
- end if;
-
- -- Now set the kind (mode) of each formal
-
- Param_Spec := First (T);
-
- while Present (Param_Spec) loop
- Formal := Defining_Identifier (Param_Spec);
- Set_Formal_Mode (Formal);
-
- if Ekind (Formal) = E_In_Parameter then
- Set_Default_Value (Formal, Expression (Param_Spec));
-
- if Present (Expression (Param_Spec)) then
- Default := Expression (Param_Spec);
-
- if Is_Scalar_Type (Etype (Default)) then
- if Nkind
- (Parameter_Type (Param_Spec)) /= N_Access_Definition
- then
- Formal_Type := Entity (Parameter_Type (Param_Spec));
-
- else
- Formal_Type := Access_Definition
- (Related_Nod, Parameter_Type (Param_Spec));
- end if;
-
- Apply_Scalar_Range_Check (Default, Formal_Type);
- end if;
- end if;
-
- elsif Ekind (Formal) = E_Out_Parameter then
- Num_Out_Params := Num_Out_Params + 1;
-
- if Num_Out_Params = 1 then
- First_Out_Param := Formal;
- end if;
-
- elsif Ekind (Formal) = E_In_Out_Parameter then
- Num_Out_Params := Num_Out_Params + 1;
- end if;
-
- Next (Param_Spec);
- end loop;
-
- if Present (First_Out_Param) and then Num_Out_Params = 1 then
- Set_Is_Only_Out_Parameter (First_Out_Param);
- end if;
- end Process_Formals;
-
- ------------------
- -- Process_PPCs --
- ------------------
-
- procedure Process_PPCs
- (N : Node_Id;
- Spec_Id : Entity_Id;
- Body_Id : Entity_Id)
- is
- Loc : constant Source_Ptr := Sloc (N);
- Prag : Node_Id;
- Plist : List_Id := No_List;
- Subp : Entity_Id;
- Parms : List_Id;
-
- function Grab_PPC (Nam : Name_Id) return Node_Id;
- -- Prag contains an analyzed precondition or postcondition pragma.
- -- This function copies the pragma, changes it to the corresponding
- -- Check pragma and returns the Check pragma as the result. The
- -- argument Nam is either Name_Precondition or Name_Postcondition.
-
- --------------
- -- Grab_PPC --
- --------------
-
- function Grab_PPC (Nam : Name_Id) return Node_Id is
- CP : constant Node_Id := New_Copy_Tree (Prag);
-
- begin
- -- Set Analyzed to false, since we want to reanalyze the check
- -- procedure. Note that it is only at the outer level that we
- -- do this fiddling, for the spec cases, the already preanalyzed
- -- parameters are not affected.
-
- -- For a postcondition pragma within a generic, preserve the pragma
- -- for later expansion.
-
- Set_Analyzed (CP, False);
-
- if Nam = Name_Postcondition
- and then not Expander_Active
- then
- return CP;
- end if;
-
- -- Change pragma into corresponding pragma Check
-
- Prepend_To (Pragma_Argument_Associations (CP),
- Make_Pragma_Argument_Association (Sloc (Prag),
- Expression =>
- Make_Identifier (Loc,
- Chars => Nam)));
- Set_Pragma_Identifier (CP,
- Make_Identifier (Sloc (Prag),
- Chars => Name_Check));
-
- return CP;
- end Grab_PPC;
-
- -- Start of processing for Process_PPCs
-
- begin
- -- Nothing to do if we are not generating code
-
- if Operating_Mode /= Generate_Code then
- return;
- end if;
-
- -- Grab preconditions from spec
-
- if Present (Spec_Id) then
-
- -- Loop through PPC pragmas from spec. Note that preconditions from
- -- the body will be analyzed and converted when we scan the body
- -- declarations below.
-
- Prag := Spec_PPC_List (Spec_Id);
- while Present (Prag) loop
- if Pragma_Name (Prag) = Name_Precondition
- and then PPC_Enabled (Prag)
- then
- -- Add pragma Check at the start of the declarations of N.
- -- Note that this processing reverses the order of the list,
- -- which is what we want since new entries were chained to
- -- the head of the list.
-
- Prepend (Grab_PPC (Name_Precondition), Declarations (N));
- end if;
-
- Prag := Next_Pragma (Prag);
- end loop;
- end if;
-
- -- Build postconditions procedure if needed and prepend the following
- -- declaration to the start of the declarations for the subprogram.
-
- -- procedure _postconditions [(_Result : resulttype)] is
- -- begin
- -- pragma Check (Postcondition, condition [,message]);
- -- pragma Check (Postcondition, condition [,message]);
- -- ...
- -- end;
-
- -- First we deal with the postconditions in the body
-
- if Is_Non_Empty_List (Declarations (N)) then
-
- -- Loop through declarations
-
- Prag := First (Declarations (N));
- while Present (Prag) loop
- if Nkind (Prag) = N_Pragma then
-
- -- If pragma, capture if enabled postcondition, else ignore
-
- if Pragma_Name (Prag) = Name_Postcondition
- and then Check_Enabled (Name_Postcondition)
- then
- if Plist = No_List then
- Plist := Empty_List;
- end if;
-
- Analyze (Prag);
-
- -- If expansion is disabled, as in a generic unit,
- -- save pragma for later expansion.
-
- if not Expander_Active then
- Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
- else
- Append (Grab_PPC (Name_Postcondition), Plist);
- end if;
- end if;
-
- Next (Prag);
-
- -- Not a pragma, if comes from source, then end scan
-
- elsif Comes_From_Source (Prag) then
- exit;
-
- -- Skip stuff not coming from source
-
- else
- Next (Prag);
- end if;
- end loop;
- end if;
-
- -- Now deal with any postconditions from the spec
-
- if Present (Spec_Id) then
-
- -- Loop through PPC pragmas from spec
-
- Prag := Spec_PPC_List (Spec_Id);
- while Present (Prag) loop
- if Pragma_Name (Prag) = Name_Postcondition
- and then PPC_Enabled (Prag)
- then
- if Plist = No_List then
- Plist := Empty_List;
- end if;
-
- if not Expander_Active then
- Prepend (Grab_PPC (Name_Postcondition), Declarations (N));
- else
- Append (Grab_PPC (Name_Postcondition), Plist);
- end if;
- end if;
-
- Prag := Next_Pragma (Prag);
- end loop;
- end if;
-
- -- If we had any postconditions and expansion is enabled, build
- -- the Postconditions procedure.
-
- if Present (Plist)
- and then Expander_Active
- then
- Subp := Defining_Entity (N);
-
- if Etype (Subp) /= Standard_Void_Type then
- Parms := New_List (
- Make_Parameter_Specification (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc,
- Chars => Name_uResult),
- Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc)));
- else
- Parms := No_List;
- end if;
-
- Prepend_To (Declarations (N),
- Make_Subprogram_Body (Loc,
- Specification =>
- Make_Procedure_Specification (Loc,
- Defining_Unit_Name =>
- Make_Defining_Identifier (Loc,
- Chars => Name_uPostconditions),
- Parameter_Specifications => Parms),
-
- Declarations => Empty_List,
-
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => Plist)));
-
- if Present (Spec_Id) then
- Set_Has_Postconditions (Spec_Id);
- else
- Set_Has_Postconditions (Body_Id);
- end if;
- end if;
- end Process_PPCs;
-
- ----------------------------
- -- Reference_Body_Formals --
- ----------------------------
-
- procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
- Fs : Entity_Id;
- Fb : Entity_Id;
-
- begin
- if Error_Posted (Spec) then
- return;
- end if;
-
- -- Iterate over both lists. They may be of different lengths if the two
- -- specs are not conformant.
-
- Fs := First_Formal (Spec);
- Fb := First_Formal (Bod);
- while Present (Fs) and then Present (Fb) loop
- Generate_Reference (Fs, Fb, 'b');
-
- if Style_Check then
- Style.Check_Identifier (Fb, Fs);
- end if;
-
- Set_Spec_Entity (Fb, Fs);
- Set_Referenced (Fs, False);
- Next_Formal (Fs);
- Next_Formal (Fb);
- end loop;
- end Reference_Body_Formals;
-
- -------------------------
- -- Set_Actual_Subtypes --
- -------------------------
-
- procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Decl : Node_Id;
- Formal : Entity_Id;
- T : Entity_Id;
- First_Stmt : Node_Id := Empty;
- AS_Needed : Boolean;
-
- begin
- -- If this is an empty initialization procedure, no need to create
- -- actual subtypes (small optimization).
-
- if Ekind (Subp) = E_Procedure
- and then Is_Null_Init_Proc (Subp)
- then
- return;
- end if;
-
- Formal := First_Formal (Subp);
- while Present (Formal) loop
- T := Etype (Formal);
-
- -- We never need an actual subtype for a constrained formal
-
- if Is_Constrained (T) then
- AS_Needed := False;
-
- -- If we have unknown discriminants, then we do not need an actual
- -- subtype, or more accurately we cannot figure it out! Note that
- -- all class-wide types have unknown discriminants.
-
- elsif Has_Unknown_Discriminants (T) then
- AS_Needed := False;
-
- -- At this stage we have an unconstrained type that may need an
- -- actual subtype. For sure the actual subtype is needed if we have
- -- an unconstrained array type.
-
- elsif Is_Array_Type (T) then
- AS_Needed := True;
-
- -- The only other case needing an actual subtype is an unconstrained
- -- record type which is an IN parameter (we cannot generate actual
- -- subtypes for the OUT or IN OUT case, since an assignment can
- -- change the discriminant values. However we exclude the case of
- -- initialization procedures, since discriminants are handled very
- -- specially in this context, see the section entitled "Handling of
- -- Discriminants" in Einfo.
-
- -- We also exclude the case of Discrim_SO_Functions (functions used
- -- in front end layout mode for size/offset values), since in such
- -- functions only discriminants are referenced, and not only are such
- -- subtypes not needed, but they cannot always be generated, because
- -- of order of elaboration issues.
-
- elsif Is_Record_Type (T)
- and then Ekind (Formal) = E_In_Parameter
- and then Chars (Formal) /= Name_uInit
- and then not Is_Unchecked_Union (T)
- and then not Is_Discrim_SO_Function (Subp)
- then
- AS_Needed := True;
-
- -- All other cases do not need an actual subtype
-
- else
- AS_Needed := False;
- end if;
-
- -- Generate actual subtypes for unconstrained arrays and
- -- unconstrained discriminated records.
-
- if AS_Needed then
- if Nkind (N) = N_Accept_Statement then
-
- -- If expansion is active, The formal is replaced by a local
- -- variable that renames the corresponding entry of the
- -- parameter block, and it is this local variable that may
- -- require an actual subtype.
-
- if Expander_Active then
- Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
- else
- Decl := Build_Actual_Subtype (T, Formal);
- end if;
-
- if Present (Handled_Statement_Sequence (N)) then
- First_Stmt :=
- First (Statements (Handled_Statement_Sequence (N)));
- Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
- Mark_Rewrite_Insertion (Decl);
- else
- -- If the accept statement has no body, there will be no
- -- reference to the actuals, so no need to compute actual
- -- subtypes.
-
- return;
- end if;
-
- else
- Decl := Build_Actual_Subtype (T, Formal);
- Prepend (Decl, Declarations (N));
- Mark_Rewrite_Insertion (Decl);
- end if;
-
- -- The declaration uses the bounds of an existing object, and
- -- therefore needs no constraint checks.
-
- Analyze (Decl, Suppress => All_Checks);
-
- -- We need to freeze manually the generated type when it is
- -- inserted anywhere else than in a declarative part.
-
- if Present (First_Stmt) then
- Insert_List_Before_And_Analyze (First_Stmt,
- Freeze_Entity (Defining_Identifier (Decl), Loc));
- end if;
-
- if Nkind (N) = N_Accept_Statement
- and then Expander_Active
- then
- Set_Actual_Subtype (Renamed_Object (Formal),
- Defining_Identifier (Decl));
- else
- Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
- end if;
- end if;
-
- Next_Formal (Formal);
- end loop;
- end Set_Actual_Subtypes;
-
- ---------------------
- -- Set_Formal_Mode --
- ---------------------
-
- procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
- Spec : constant Node_Id := Parent (Formal_Id);
-
- begin
- -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
- -- since we ensure that corresponding actuals are always valid at the
- -- point of the call.
-
- if Out_Present (Spec) then
- if Ekind (Scope (Formal_Id)) = E_Function
- or else Ekind (Scope (Formal_Id)) = E_Generic_Function
- then
- Error_Msg_N ("functions can only have IN parameters", Spec);
- Set_Ekind (Formal_Id, E_In_Parameter);
-
- elsif In_Present (Spec) then
- Set_Ekind (Formal_Id, E_In_Out_Parameter);
-
- else
- Set_Ekind (Formal_Id, E_Out_Parameter);
- Set_Never_Set_In_Source (Formal_Id, True);
- Set_Is_True_Constant (Formal_Id, False);
- Set_Current_Value (Formal_Id, Empty);
- end if;
-
- else
- Set_Ekind (Formal_Id, E_In_Parameter);
- end if;
-
- -- Set Is_Known_Non_Null for access parameters since the language
- -- guarantees that access parameters are always non-null. We also set
- -- Can_Never_Be_Null, since there is no way to change the value.
-
- if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
-
- -- Ada 2005 (AI-231): In Ada95, access parameters are always non-
- -- null; In Ada 2005, only if then null_exclusion is explicit.
-
- if Ada_Version < Ada_05
- or else Can_Never_Be_Null (Etype (Formal_Id))
- then
- Set_Is_Known_Non_Null (Formal_Id);
- Set_Can_Never_Be_Null (Formal_Id);
- end if;
-
- -- Ada 2005 (AI-231): Null-exclusion access subtype
-
- elsif Is_Access_Type (Etype (Formal_Id))
- and then Can_Never_Be_Null (Etype (Formal_Id))
- then
- Set_Is_Known_Non_Null (Formal_Id);
- end if;
-
- Set_Mechanism (Formal_Id, Default_Mechanism);
- Set_Formal_Validity (Formal_Id);
- end Set_Formal_Mode;
-
- -------------------------
- -- Set_Formal_Validity --
- -------------------------
-
- procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
- begin
- -- If no validity checking, then we cannot assume anything about the
- -- validity of parameters, since we do not know there is any checking
- -- of the validity on the call side.
-
- if not Validity_Checks_On then
- return;
-
- -- If validity checking for parameters is enabled, this means we are
- -- not supposed to make any assumptions about argument values.
-
- elsif Validity_Check_Parameters then
- return;
-
- -- If we are checking in parameters, we will assume that the caller is
- -- also checking parameters, so we can assume the parameter is valid.
-
- elsif Ekind (Formal_Id) = E_In_Parameter
- and then Validity_Check_In_Params
- then
- Set_Is_Known_Valid (Formal_Id, True);
-
- -- Similar treatment for IN OUT parameters
-
- elsif Ekind (Formal_Id) = E_In_Out_Parameter
- and then Validity_Check_In_Out_Params
- then
- Set_Is_Known_Valid (Formal_Id, True);
- end if;
- end Set_Formal_Validity;
-
- ------------------------
- -- Subtype_Conformant --
- ------------------------
-
- function Subtype_Conformant
- (New_Id : Entity_Id;
- Old_Id : Entity_Id;
- Skip_Controlling_Formals : Boolean := False) return Boolean
- is
- Result : Boolean;
- begin
- Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
- Skip_Controlling_Formals => Skip_Controlling_Formals);
- return Result;
- end Subtype_Conformant;
-
- ---------------------
- -- Type_Conformant --
- ---------------------
-
- function Type_Conformant
- (New_Id : Entity_Id;
- Old_Id : Entity_Id;
- Skip_Controlling_Formals : Boolean := False) return Boolean
- is
- Result : Boolean;
- begin
- May_Hide_Profile := False;
-
- Check_Conformance
- (New_Id, Old_Id, Type_Conformant, False, Result,
- Skip_Controlling_Formals => Skip_Controlling_Formals);
- return Result;
- end Type_Conformant;
-
- -------------------------------
- -- Valid_Operator_Definition --
- -------------------------------
-
- procedure Valid_Operator_Definition (Designator : Entity_Id) is
- N : Integer := 0;
- F : Entity_Id;
- Id : constant Name_Id := Chars (Designator);
- N_OK : Boolean;
-
- begin
- F := First_Formal (Designator);
- while Present (F) loop
- N := N + 1;
-
- if Present (Default_Value (F)) then
- Error_Msg_N
- ("default values not allowed for operator parameters",
- Parent (F));
- end if;
-
- Next_Formal (F);
- end loop;
-
- -- Verify that user-defined operators have proper number of arguments
- -- First case of operators which can only be unary
-
- if Id = Name_Op_Not
- or else Id = Name_Op_Abs
- then
- N_OK := (N = 1);
-
- -- Case of operators which can be unary or binary
-
- elsif Id = Name_Op_Add
- or Id = Name_Op_Subtract
- then
- N_OK := (N in 1 .. 2);
-
- -- All other operators can only be binary
-
- else
- N_OK := (N = 2);
- end if;
-
- if not N_OK then
- Error_Msg_N
- ("incorrect number of arguments for operator", Designator);
- end if;
-
- if Id = Name_Op_Ne
- and then Base_Type (Etype (Designator)) = Standard_Boolean
- and then not Is_Intrinsic_Subprogram (Designator)
- then
- Error_Msg_N
- ("explicit definition of inequality not allowed", Designator);
- end if;
- end Valid_Operator_Definition;
-
-end Sem_Ch6;