aboutsummaryrefslogtreecommitdiffstats
path: root/gcc-4.4.3/gcc/ada/sem_ch12.adb
diff options
context:
space:
mode:
Diffstat (limited to 'gcc-4.4.3/gcc/ada/sem_ch12.adb')
-rw-r--r--gcc-4.4.3/gcc/ada/sem_ch12.adb12187
1 files changed, 0 insertions, 12187 deletions
diff --git a/gcc-4.4.3/gcc/ada/sem_ch12.adb b/gcc-4.4.3/gcc/ada/sem_ch12.adb
deleted file mode 100644
index 549d5b4ee..000000000
--- a/gcc-4.4.3/gcc/ada/sem_ch12.adb
+++ /dev/null
@@ -1,12187 +0,0 @@
-------------------------------------------------------------------------------
--- --
--- GNAT COMPILER COMPONENTS --
--- --
--- S E M _ C H 1 2 --
--- --
--- B o d y --
--- --
--- Copyright (C) 1992-2008, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
--- for more details. You should have received a copy of the GNU General --
--- Public License distributed with GNAT; see file COPYING3. If not, go to --
--- http://www.gnu.org/licenses for a complete copy of the license. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with Atree; use Atree;
-with Einfo; use Einfo;
-with Elists; use Elists;
-with Errout; use Errout;
-with Expander; use Expander;
-with Fname; use Fname;
-with Fname.UF; use Fname.UF;
-with Freeze; use Freeze;
-with Hostparm;
-with Lib; use Lib;
-with Lib.Load; use Lib.Load;
-with Lib.Xref; use Lib.Xref;
-with Nlists; use Nlists;
-with Namet; use Namet;
-with Nmake; use Nmake;
-with Opt; use Opt;
-with Rident; use Rident;
-with Restrict; use Restrict;
-with Rtsfind; use Rtsfind;
-with Sem; use Sem;
-with Sem_Cat; use Sem_Cat;
-with Sem_Ch3; use Sem_Ch3;
-with Sem_Ch6; use Sem_Ch6;
-with Sem_Ch7; use Sem_Ch7;
-with Sem_Ch8; use Sem_Ch8;
-with Sem_Ch10; use Sem_Ch10;
-with Sem_Ch13; use Sem_Ch13;
-with Sem_Disp; use Sem_Disp;
-with Sem_Elab; use Sem_Elab;
-with Sem_Elim; use Sem_Elim;
-with Sem_Eval; use Sem_Eval;
-with Sem_Res; use Sem_Res;
-with Sem_Type; use Sem_Type;
-with Sem_Util; use Sem_Util;
-with Sem_Warn; use Sem_Warn;
-with Stand; use Stand;
-with Sinfo; use Sinfo;
-with Sinfo.CN; use Sinfo.CN;
-with Sinput; use Sinput;
-with Sinput.L; use Sinput.L;
-with Snames; use Snames;
-with Stringt; use Stringt;
-with Uname; use Uname;
-with Table;
-with Tbuild; use Tbuild;
-with Uintp; use Uintp;
-with Urealp; use Urealp;
-
-with GNAT.HTable;
-
-package body Sem_Ch12 is
-
- ----------------------------------------------------------
- -- Implementation of Generic Analysis and Instantiation --
- ----------------------------------------------------------
-
- -- GNAT implements generics by macro expansion. No attempt is made to share
- -- generic instantiations (for now). Analysis of a generic definition does
- -- not perform any expansion action, but the expander must be called on the
- -- tree for each instantiation, because the expansion may of course depend
- -- on the generic actuals. All of this is best achieved as follows:
- --
- -- a) Semantic analysis of a generic unit is performed on a copy of the
- -- tree for the generic unit. All tree modifications that follow analysis
- -- do not affect the original tree. Links are kept between the original
- -- tree and the copy, in order to recognize non-local references within
- -- the generic, and propagate them to each instance (recall that name
- -- resolution is done on the generic declaration: generics are not really
- -- macros!). This is summarized in the following diagram:
-
- -- .-----------. .----------.
- -- | semantic |<--------------| generic |
- -- | copy | | unit |
- -- | |==============>| |
- -- |___________| global |__________|
- -- references | | |
- -- | | |
- -- .-----|--|.
- -- | .-----|---.
- -- | | .----------.
- -- | | | generic |
- -- |__| | |
- -- |__| instance |
- -- |__________|
-
- -- b) Each instantiation copies the original tree, and inserts into it a
- -- series of declarations that describe the mapping between generic formals
- -- and actuals. For example, a generic In OUT parameter is an object
- -- renaming of the corresponding actual, etc. Generic IN parameters are
- -- constant declarations.
-
- -- c) In order to give the right visibility for these renamings, we use
- -- a different scheme for package and subprogram instantiations. For
- -- packages, the list of renamings is inserted into the package
- -- specification, before the visible declarations of the package. The
- -- renamings are analyzed before any of the text of the instance, and are
- -- thus visible at the right place. Furthermore, outside of the instance,
- -- the generic parameters are visible and denote their corresponding
- -- actuals.
-
- -- For subprograms, we create a container package to hold the renamings
- -- and the subprogram instance itself. Analysis of the package makes the
- -- renaming declarations visible to the subprogram. After analyzing the
- -- package, the defining entity for the subprogram is touched-up so that
- -- it appears declared in the current scope, and not inside the container
- -- package.
-
- -- If the instantiation is a compilation unit, the container package is
- -- given the same name as the subprogram instance. This ensures that
- -- the elaboration procedure called by the binder, using the compilation
- -- unit name, calls in fact the elaboration procedure for the package.
-
- -- Not surprisingly, private types complicate this approach. By saving in
- -- the original generic object the non-local references, we guarantee that
- -- the proper entities are referenced at the point of instantiation.
- -- However, for private types, this by itself does not insure that the
- -- proper VIEW of the entity is used (the full type may be visible at the
- -- point of generic definition, but not at instantiation, or vice-versa).
- -- In order to reference the proper view, we special-case any reference
- -- to private types in the generic object, by saving both views, one in
- -- the generic and one in the semantic copy. At time of instantiation, we
- -- check whether the two views are consistent, and exchange declarations if
- -- necessary, in order to restore the correct visibility. Similarly, if
- -- the instance view is private when the generic view was not, we perform
- -- the exchange. After completing the instantiation, we restore the
- -- current visibility. The flag Has_Private_View marks identifiers in the
- -- the generic unit that require checking.
-
- -- Visibility within nested generic units requires special handling.
- -- Consider the following scheme:
-
- -- type Global is ... -- outside of generic unit.
- -- generic ...
- -- package Outer is
- -- ...
- -- type Semi_Global is ... -- global to inner.
-
- -- generic ... -- 1
- -- procedure inner (X1 : Global; X2 : Semi_Global);
-
- -- procedure in2 is new inner (...); -- 4
- -- end Outer;
-
- -- package New_Outer is new Outer (...); -- 2
- -- procedure New_Inner is new New_Outer.Inner (...); -- 3
-
- -- The semantic analysis of Outer captures all occurrences of Global.
- -- The semantic analysis of Inner (at 1) captures both occurrences of
- -- Global and Semi_Global.
-
- -- At point 2 (instantiation of Outer), we also produce a generic copy
- -- of Inner, even though Inner is, at that point, not being instantiated.
- -- (This is just part of the semantic analysis of New_Outer).
-
- -- Critically, references to Global within Inner must be preserved, while
- -- references to Semi_Global should not preserved, because they must now
- -- resolve to an entity within New_Outer. To distinguish between these, we
- -- use a global variable, Current_Instantiated_Parent, which is set when
- -- performing a generic copy during instantiation (at 2). This variable is
- -- used when performing a generic copy that is not an instantiation, but
- -- that is nested within one, as the occurrence of 1 within 2. The analysis
- -- of a nested generic only preserves references that are global to the
- -- enclosing Current_Instantiated_Parent. We use the Scope_Depth value to
- -- determine whether a reference is external to the given parent.
-
- -- The instantiation at point 3 requires no special treatment. The method
- -- works as well for further nestings of generic units, but of course the
- -- variable Current_Instantiated_Parent must be stacked because nested
- -- instantiations can occur, e.g. the occurrence of 4 within 2.
-
- -- The instantiation of package and subprogram bodies is handled in a
- -- similar manner, except that it is delayed until after semantic
- -- analysis is complete. In this fashion complex cross-dependencies
- -- between several package declarations and bodies containing generics
- -- can be compiled which otherwise would diagnose spurious circularities.
-
- -- For example, it is possible to compile two packages A and B that
- -- have the following structure:
-
- -- package A is package B is
- -- generic ... generic ...
- -- package G_A is package G_B is
-
- -- with B; with A;
- -- package body A is package body B is
- -- package N_B is new G_B (..) package N_A is new G_A (..)
-
- -- The table Pending_Instantiations in package Inline is used to keep
- -- track of body instantiations that are delayed in this manner. Inline
- -- handles the actual calls to do the body instantiations. This activity
- -- is part of Inline, since the processing occurs at the same point, and
- -- for essentially the same reason, as the handling of inlined routines.
-
- ----------------------------------------------
- -- Detection of Instantiation Circularities --
- ----------------------------------------------
-
- -- If we have a chain of instantiations that is circular, this is static
- -- error which must be detected at compile time. The detection of these
- -- circularities is carried out at the point that we insert a generic
- -- instance spec or body. If there is a circularity, then the analysis of
- -- the offending spec or body will eventually result in trying to load the
- -- same unit again, and we detect this problem as we analyze the package
- -- instantiation for the second time.
-
- -- At least in some cases after we have detected the circularity, we get
- -- into trouble if we try to keep going. The following flag is set if a
- -- circularity is detected, and used to abandon compilation after the
- -- messages have been posted.
-
- Circularity_Detected : Boolean := False;
- -- This should really be reset on encountering a new main unit, but in
- -- practice we are not using multiple main units so it is not critical.
-
- -------------------------------------------------
- -- Formal packages and partial parametrization --
- -------------------------------------------------
-
- -- When compiling a generic, a formal package is a local instantiation. If
- -- declared with a box, its generic formals are visible in the enclosing
- -- generic. If declared with a partial list of actuals, those actuals that
- -- are defaulted (covered by an Others clause, or given an explicit box
- -- initialization) are also visible in the enclosing generic, while those
- -- that have a corresponding actual are not.
-
- -- In our source model of instantiation, the same visibility must be
- -- present in the spec and body of an instance: the names of the formals
- -- that are defaulted must be made visible within the instance, and made
- -- invisible (hidden) after the instantiation is complete, so that they
- -- are not accessible outside of the instance.
-
- -- In a generic, a formal package is treated like a special instantiation.
- -- Our Ada95 compiler handled formals with and without box in different
- -- ways. With partial parametrization, we use a single model for both.
- -- We create a package declaration that consists of the specification of
- -- the generic package, and a set of declarations that map the actuals
- -- into local renamings, just as we do for bona fide instantiations. For
- -- defaulted parameters and formals with a box, we copy directly the
- -- declarations of the formal into this local package. The result is a
- -- a package whose visible declarations may include generic formals. This
- -- package is only used for type checking and visibility analysis, and
- -- never reaches the back-end, so it can freely violate the placement
- -- rules for generic formal declarations.
-
- -- The list of declarations (renamings and copies of formals) is built
- -- by Analyze_Associations, just as for regular instantiations.
-
- -- At the point of instantiation, conformance checking must be applied only
- -- to those parameters that were specified in the formal. We perform this
- -- checking by creating another internal instantiation, this one including
- -- only the renamings and the formals (the rest of the package spec is not
- -- relevant to conformance checking). We can then traverse two lists: the
- -- list of actuals in the instance that corresponds to the formal package,
- -- and the list of actuals produced for this bogus instantiation. We apply
- -- the conformance rules to those actuals that are not defaulted (i.e.
- -- which still appear as generic formals.
-
- -- When we compile an instance body we must make the right parameters
- -- visible again. The predicate Is_Generic_Formal indicates which of the
- -- formals should have its Is_Hidden flag reset.
-
- -----------------------
- -- Local subprograms --
- -----------------------
-
- procedure Abandon_Instantiation (N : Node_Id);
- pragma No_Return (Abandon_Instantiation);
- -- Posts an error message "instantiation abandoned" at the indicated node
- -- and then raises the exception Instantiation_Error to do it.
-
- procedure Analyze_Formal_Array_Type
- (T : in out Entity_Id;
- Def : Node_Id);
- -- A formal array type is treated like an array type declaration, and
- -- invokes Array_Type_Declaration (sem_ch3) whose first parameter is
- -- in-out, because in the case of an anonymous type the entity is
- -- actually created in the procedure.
-
- -- The following procedures treat other kinds of formal parameters
-
- procedure Analyze_Formal_Derived_Interface_Type
- (N : Node_Id;
- T : Entity_Id;
- Def : Node_Id);
-
- procedure Analyze_Formal_Derived_Type
- (N : Node_Id;
- T : Entity_Id;
- Def : Node_Id);
-
- procedure Analyze_Formal_Interface_Type
- (N : Node_Id;
- T : Entity_Id;
- Def : Node_Id);
-
- -- The following subprograms create abbreviated declarations for formal
- -- scalar types. We introduce an anonymous base of the proper class for
- -- each of them, and define the formals as constrained first subtypes of
- -- their bases. The bounds are expressions that are non-static in the
- -- generic.
-
- procedure Analyze_Formal_Decimal_Fixed_Point_Type
- (T : Entity_Id; Def : Node_Id);
- procedure Analyze_Formal_Discrete_Type (T : Entity_Id; Def : Node_Id);
- procedure Analyze_Formal_Floating_Type (T : Entity_Id; Def : Node_Id);
- procedure Analyze_Formal_Signed_Integer_Type (T : Entity_Id; Def : Node_Id);
- procedure Analyze_Formal_Modular_Type (T : Entity_Id; Def : Node_Id);
- procedure Analyze_Formal_Ordinary_Fixed_Point_Type
- (T : Entity_Id; Def : Node_Id);
-
- procedure Analyze_Formal_Private_Type
- (N : Node_Id;
- T : Entity_Id;
- Def : Node_Id);
- -- Creates a new private type, which does not require completion
-
- procedure Analyze_Generic_Formal_Part (N : Node_Id);
-
- procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id);
- -- Create a new access type with the given designated type
-
- function Analyze_Associations
- (I_Node : Node_Id;
- Formals : List_Id;
- F_Copy : List_Id) return List_Id;
- -- At instantiation time, build the list of associations between formals
- -- and actuals. Each association becomes a renaming declaration for the
- -- formal entity. F_Copy is the analyzed list of formals in the generic
- -- copy. It is used to apply legality checks to the actuals. I_Node is the
- -- instantiation node itself.
-
- procedure Analyze_Subprogram_Instantiation
- (N : Node_Id;
- K : Entity_Kind);
-
- procedure Build_Instance_Compilation_Unit_Nodes
- (N : Node_Id;
- Act_Body : Node_Id;
- Act_Decl : Node_Id);
- -- This procedure is used in the case where the generic instance of a
- -- subprogram body or package body is a library unit. In this case, the
- -- original library unit node for the generic instantiation must be
- -- replaced by the resulting generic body, and a link made to a new
- -- compilation unit node for the generic declaration. The argument N is
- -- the original generic instantiation. Act_Body and Act_Decl are the body
- -- and declaration of the instance (either package body and declaration
- -- nodes or subprogram body and declaration nodes depending on the case).
- -- On return, the node N has been rewritten with the actual body.
-
- procedure Check_Access_Definition (N : Node_Id);
- -- Subsidiary routine to null exclusion processing. Perform an assertion
- -- check on Ada version and the presence of an access definition in N.
-
- procedure Check_Formal_Packages (P_Id : Entity_Id);
- -- Apply the following to all formal packages in generic associations
-
- procedure Check_Formal_Package_Instance
- (Formal_Pack : Entity_Id;
- Actual_Pack : Entity_Id);
- -- Verify that the actuals of the actual instance match the actuals of
- -- the template for a formal package that is not declared with a box.
-
- procedure Check_Forward_Instantiation (Decl : Node_Id);
- -- If the generic is a local entity and the corresponding body has not
- -- been seen yet, flag enclosing packages to indicate that it will be
- -- elaborated after the generic body. Subprograms declared in the same
- -- package cannot be inlined by the front-end because front-end inlining
- -- requires a strict linear order of elaboration.
-
- procedure Check_Hidden_Child_Unit
- (N : Node_Id;
- Gen_Unit : Entity_Id;
- Act_Decl_Id : Entity_Id);
- -- If the generic unit is an implicit child instance within a parent
- -- instance, we need to make an explicit test that it is not hidden by
- -- a child instance of the same name and parent.
-
- procedure Check_Generic_Actuals
- (Instance : Entity_Id;
- Is_Formal_Box : Boolean);
- -- Similar to previous one. Check the actuals in the instantiation,
- -- whose views can change between the point of instantiation and the point
- -- of instantiation of the body. In addition, mark the generic renamings
- -- as generic actuals, so that they are not compatible with other actuals.
- -- Recurse on an actual that is a formal package whose declaration has
- -- a box.
-
- function Contains_Instance_Of
- (Inner : Entity_Id;
- Outer : Entity_Id;
- N : Node_Id) return Boolean;
- -- Inner is instantiated within the generic Outer. Check whether Inner
- -- directly or indirectly contains an instance of Outer or of one of its
- -- parents, in the case of a subunit. Each generic unit holds a list of
- -- the entities instantiated within (at any depth). This procedure
- -- determines whether the set of such lists contains a cycle, i.e. an
- -- illegal circular instantiation.
-
- function Denotes_Formal_Package
- (Pack : Entity_Id;
- On_Exit : Boolean := False) return Boolean;
- -- Returns True if E is a formal package of an enclosing generic, or
- -- the actual for such a formal in an enclosing instantiation. If such
- -- a package is used as a formal in an nested generic, or as an actual
- -- in a nested instantiation, the visibility of ITS formals should not
- -- be modified. When called from within Restore_Private_Views, the flag
- -- On_Exit is true, to indicate that the search for a possible enclosing
- -- instance should ignore the current one.
-
- function Find_Actual_Type
- (Typ : Entity_Id;
- Gen_Type : Entity_Id) return Entity_Id;
- -- When validating the actual types of a child instance, check whether
- -- the formal is a formal type of the parent unit, and retrieve the current
- -- actual for it. Typ is the entity in the analyzed formal type declaration
- -- (component or index type of an array type, or designated type of an
- -- access formal) and Gen_Type is the enclosing analyzed formal array
- -- or access type. The desired actual may be a formal of a parent, or may
- -- be declared in a formal package of a parent. In both cases it is a
- -- generic actual type because it appears within a visible instance.
- -- Finally, it may be declared in a parent unit without being a formal
- -- of that unit, in which case it must be retrieved by visibility.
- -- Ambiguities may still arise if two homonyms are declared in two formal
- -- packages, and the prefix of the formal type may be needed to resolve
- -- the ambiguity in the instance ???
-
- function In_Same_Declarative_Part
- (F_Node : Node_Id;
- Inst : Node_Id) return Boolean;
- -- True if the instantiation Inst and the given freeze_node F_Node appear
- -- within the same declarative part, ignoring subunits, but with no inter-
- -- vening subprograms or concurrent units. If true, the freeze node
- -- of the instance can be placed after the freeze node of the parent,
- -- which it itself an instance.
-
- function In_Main_Context (E : Entity_Id) return Boolean;
- -- Check whether an instantiation is in the context of the main unit.
- -- Used to determine whether its body should be elaborated to allow
- -- front-end inlining.
-
- function Is_Generic_Formal (E : Entity_Id) return Boolean;
- -- Utility to determine whether a given entity is declared by means of
- -- of a formal parameter declaration. Used to set properly the visibility
- -- of generic formals of a generic package declared with a box or with
- -- partial parametrization.
-
- procedure Set_Instance_Env
- (Gen_Unit : Entity_Id;
- Act_Unit : Entity_Id);
- -- Save current instance on saved environment, to be used to determine
- -- the global status of entities in nested instances. Part of Save_Env.
- -- called after verifying that the generic unit is legal for the instance,
- -- The procedure also examines whether the generic unit is a predefined
- -- unit, in order to set configuration switches accordingly. As a result
- -- the procedure must be called after analyzing and freezing the actuals.
-
- procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id);
- -- Associate analyzed generic parameter with corresponding
- -- instance. Used for semantic checks at instantiation time.
-
- function Has_Been_Exchanged (E : Entity_Id) return Boolean;
- -- Traverse the Exchanged_Views list to see if a type was private
- -- and has already been flipped during this phase of instantiation.
-
- procedure Hide_Current_Scope;
- -- When instantiating a generic child unit, the parent context must be
- -- present, but the instance and all entities that may be generated
- -- must be inserted in the current scope. We leave the current scope
- -- on the stack, but make its entities invisible to avoid visibility
- -- problems. This is reversed at the end of the instantiation. This is
- -- not done for the instantiation of the bodies, which only require the
- -- instances of the generic parents to be in scope.
-
- procedure Install_Body
- (Act_Body : Node_Id;
- N : Node_Id;
- Gen_Body : Node_Id;
- Gen_Decl : Node_Id);
- -- If the instantiation happens textually before the body of the generic,
- -- the instantiation of the body must be analyzed after the generic body,
- -- and not at the point of instantiation. Such early instantiations can
- -- happen if the generic and the instance appear in a package declaration
- -- because the generic body can only appear in the corresponding package
- -- body. Early instantiations can also appear if generic, instance and
- -- body are all in the declarative part of a subprogram or entry. Entities
- -- of packages that are early instantiations are delayed, and their freeze
- -- node appears after the generic body.
-
- procedure Insert_After_Last_Decl (N : Node_Id; F_Node : Node_Id);
- -- Insert freeze node at the end of the declarative part that includes the
- -- instance node N. If N is in the visible part of an enclosing package
- -- declaration, the freeze node has to be inserted at the end of the
- -- private declarations, if any.
-
- procedure Freeze_Subprogram_Body
- (Inst_Node : Node_Id;
- Gen_Body : Node_Id;
- Pack_Id : Entity_Id);
- -- The generic body may appear textually after the instance, including
- -- in the proper body of a stub, or within a different package instance.
- -- Given that the instance can only be elaborated after the generic, we
- -- place freeze_nodes for the instance and/or for packages that may enclose
- -- the instance and the generic, so that the back-end can establish the
- -- proper order of elaboration.
-
- procedure Init_Env;
- -- Establish environment for subsequent instantiation. Separated from
- -- Save_Env because data-structures for visibility handling must be
- -- initialized before call to Check_Generic_Child_Unit.
-
- procedure Install_Formal_Packages (Par : Entity_Id);
- -- If any of the formals of the parent are formal packages with box,
- -- their formal parts are visible in the parent and thus in the child
- -- unit as well. Analogous to what is done in Check_Generic_Actuals
- -- for the unit itself. This procedure is also used in an instance, to
- -- make visible the proper entities of the actual for a formal package
- -- declared with a box.
-
- procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False);
- -- When compiling an instance of a child unit the parent (which is
- -- itself an instance) is an enclosing scope that must be made
- -- immediately visible. This procedure is also used to install the non-
- -- generic parent of a generic child unit when compiling its body, so
- -- that full views of types in the parent are made visible.
-
- procedure Remove_Parent (In_Body : Boolean := False);
- -- Reverse effect after instantiation of child is complete
-
- procedure Inline_Instance_Body
- (N : Node_Id;
- Gen_Unit : Entity_Id;
- Act_Decl : Node_Id);
- -- If front-end inlining is requested, instantiate the package body,
- -- and preserve the visibility of its compilation unit, to insure
- -- that successive instantiations succeed.
-
- -- The functions Instantiate_XXX perform various legality checks and build
- -- the declarations for instantiated generic parameters. In all of these
- -- Formal is the entity in the generic unit, Actual is the entity of
- -- expression in the generic associations, and Analyzed_Formal is the
- -- formal in the generic copy, which contains the semantic information to
- -- be used to validate the actual.
-
- function Instantiate_Object
- (Formal : Node_Id;
- Actual : Node_Id;
- Analyzed_Formal : Node_Id) return List_Id;
-
- function Instantiate_Type
- (Formal : Node_Id;
- Actual : Node_Id;
- Analyzed_Formal : Node_Id;
- Actual_Decls : List_Id) return List_Id;
-
- function Instantiate_Formal_Subprogram
- (Formal : Node_Id;
- Actual : Node_Id;
- Analyzed_Formal : Node_Id) return Node_Id;
-
- function Instantiate_Formal_Package
- (Formal : Node_Id;
- Actual : Node_Id;
- Analyzed_Formal : Node_Id) return List_Id;
- -- If the formal package is declared with a box, special visibility rules
- -- apply to its formals: they are in the visible part of the package. This
- -- is true in the declarative region of the formal package, that is to say
- -- in the enclosing generic or instantiation. For an instantiation, the
- -- parameters of the formal package are made visible in an explicit step.
- -- Furthermore, if the actual has a visible USE clause, these formals must
- -- be made potentially use-visible as well. On exit from the enclosing
- -- instantiation, the reverse must be done.
-
- -- For a formal package declared without a box, there are conformance rules
- -- that apply to the actuals in the generic declaration and the actuals of
- -- the actual package in the enclosing instantiation. The simplest way to
- -- apply these rules is to repeat the instantiation of the formal package
- -- in the context of the enclosing instance, and compare the generic
- -- associations of this instantiation with those of the actual package.
- -- This internal instantiation only needs to contain the renamings of the
- -- formals: the visible and private declarations themselves need not be
- -- created.
-
- -- In Ada 2005, the formal package may be only partially parametrized. In
- -- that case the visibility step must make visible those actuals whose
- -- corresponding formals were given with a box. A final complication
- -- involves inherited operations from formal derived types, which must be
- -- visible if the type is.
-
- function Is_In_Main_Unit (N : Node_Id) return Boolean;
- -- Test if given node is in the main unit
-
- procedure Load_Parent_Of_Generic
- (N : Node_Id;
- Spec : Node_Id;
- Body_Optional : Boolean := False);
- -- If the generic appears in a separate non-generic library unit, load the
- -- corresponding body to retrieve the body of the generic. N is the node
- -- for the generic instantiation, Spec is the generic package declaration.
- --
- -- Body_Optional is a flag that indicates that the body is being loaded to
- -- ensure that temporaries are generated consistently when there are other
- -- instances in the current declarative part that precede the one being
- -- loaded. In that case a missing body is acceptable.
-
- procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id);
- -- Add the context clause of the unit containing a generic unit to an
- -- instantiation that is a compilation unit.
-
- function Get_Associated_Node (N : Node_Id) return Node_Id;
- -- In order to propagate semantic information back from the analyzed copy
- -- to the original generic, we maintain links between selected nodes in the
- -- generic and their corresponding copies. At the end of generic analysis,
- -- the routine Save_Global_References traverses the generic tree, examines
- -- the semantic information, and preserves the links to those nodes that
- -- contain global information. At instantiation, the information from the
- -- associated node is placed on the new copy, so that name resolution is
- -- not repeated.
- --
- -- Three kinds of source nodes have associated nodes:
- --
- -- a) those that can reference (denote) entities, that is identifiers,
- -- character literals, expanded_names, operator symbols, operators,
- -- and attribute reference nodes. These nodes have an Entity field
- -- and are the set of nodes that are in N_Has_Entity.
- --
- -- b) aggregates (N_Aggregate and N_Extension_Aggregate)
- --
- -- c) selected components (N_Selected_Component)
- --
- -- For the first class, the associated node preserves the entity if it is
- -- global. If the generic contains nested instantiations, the associated
- -- node itself has been recopied, and a chain of them must be followed.
- --
- -- For aggregates, the associated node allows retrieval of the type, which
- -- may otherwise not appear in the generic. The view of this type may be
- -- different between generic and instantiation, and the full view can be
- -- installed before the instantiation is analyzed. For aggregates of type
- -- extensions, the same view exchange may have to be performed for some of
- -- the ancestor types, if their view is private at the point of
- -- instantiation.
- --
- -- Nodes that are selected components in the parse tree may be rewritten
- -- as expanded names after resolution, and must be treated as potential
- -- entity holders, which is why they also have an Associated_Node.
- --
- -- Nodes that do not come from source, such as freeze nodes, do not appear
- -- in the generic tree, and need not have an associated node.
- --
- -- The associated node is stored in the Associated_Node field. Note that
- -- this field overlaps Entity, which is fine, because the whole point is
- -- that we don't need or want the normal Entity field in this situation.
-
- procedure Move_Freeze_Nodes
- (Out_Of : Entity_Id;
- After : Node_Id;
- L : List_Id);
- -- Freeze nodes can be generated in the analysis of a generic unit, but
- -- will not be seen by the back-end. It is necessary to move those nodes
- -- to the enclosing scope if they freeze an outer entity. We place them
- -- at the end of the enclosing generic package, which is semantically
- -- neutral.
-
- procedure Preanalyze_Actuals (N : Node_Id);
- -- Analyze actuals to perform name resolution. Full resolution is done
- -- later, when the expected types are known, but names have to be captured
- -- before installing parents of generics, that are not visible for the
- -- actuals themselves.
-
- procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id);
- -- Verify that an attribute that appears as the default for a formal
- -- subprogram is a function or procedure with the correct profile.
-
- -------------------------------------------
- -- Data Structures for Generic Renamings --
- -------------------------------------------
-
- -- The map Generic_Renamings associates generic entities with their
- -- corresponding actuals. Currently used to validate type instances. It
- -- will eventually be used for all generic parameters to eliminate the
- -- need for overload resolution in the instance.
-
- type Assoc_Ptr is new Int;
-
- Assoc_Null : constant Assoc_Ptr := -1;
-
- type Assoc is record
- Gen_Id : Entity_Id;
- Act_Id : Entity_Id;
- Next_In_HTable : Assoc_Ptr;
- end record;
-
- package Generic_Renamings is new Table.Table
- (Table_Component_Type => Assoc,
- Table_Index_Type => Assoc_Ptr,
- Table_Low_Bound => 0,
- Table_Initial => 10,
- Table_Increment => 100,
- Table_Name => "Generic_Renamings");
-
- -- Variable to hold enclosing instantiation. When the environment is
- -- saved for a subprogram inlining, the corresponding Act_Id is empty.
-
- Current_Instantiated_Parent : Assoc := (Empty, Empty, Assoc_Null);
-
- -- Hash table for associations
-
- HTable_Size : constant := 37;
- type HTable_Range is range 0 .. HTable_Size - 1;
-
- procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr);
- function Next_Assoc (E : Assoc_Ptr) return Assoc_Ptr;
- function Get_Gen_Id (E : Assoc_Ptr) return Entity_Id;
- function Hash (F : Entity_Id) return HTable_Range;
-
- package Generic_Renamings_HTable is new GNAT.HTable.Static_HTable (
- Header_Num => HTable_Range,
- Element => Assoc,
- Elmt_Ptr => Assoc_Ptr,
- Null_Ptr => Assoc_Null,
- Set_Next => Set_Next_Assoc,
- Next => Next_Assoc,
- Key => Entity_Id,
- Get_Key => Get_Gen_Id,
- Hash => Hash,
- Equal => "=");
-
- Exchanged_Views : Elist_Id;
- -- This list holds the private views that have been exchanged during
- -- instantiation to restore the visibility of the generic declaration.
- -- (see comments above). After instantiation, the current visibility is
- -- reestablished by means of a traversal of this list.
-
- Hidden_Entities : Elist_Id;
- -- This list holds the entities of the current scope that are removed
- -- from immediate visibility when instantiating a child unit. Their
- -- visibility is restored in Remove_Parent.
-
- -- Because instantiations can be recursive, the following must be saved
- -- on entry and restored on exit from an instantiation (spec or body).
- -- This is done by the two procedures Save_Env and Restore_Env. For
- -- package and subprogram instantiations (but not for the body instances)
- -- the action of Save_Env is done in two steps: Init_Env is called before
- -- Check_Generic_Child_Unit, because setting the parent instances requires
- -- that the visibility data structures be properly initialized. Once the
- -- generic is unit is validated, Set_Instance_Env completes Save_Env.
-
- Parent_Unit_Visible : Boolean := False;
- -- Parent_Unit_Visible is used when the generic is a child unit, and
- -- indicates whether the ultimate parent of the generic is visible in the
- -- instantiation environment. It is used to reset the visibility of the
- -- parent at the end of the instantiation (see Remove_Parent).
-
- Instance_Parent_Unit : Entity_Id := Empty;
- -- This records the ultimate parent unit of an instance of a generic
- -- child unit and is used in conjunction with Parent_Unit_Visible to
- -- indicate the unit to which the Parent_Unit_Visible flag corresponds.
-
- type Instance_Env is record
- Instantiated_Parent : Assoc;
- Exchanged_Views : Elist_Id;
- Hidden_Entities : Elist_Id;
- Current_Sem_Unit : Unit_Number_Type;
- Parent_Unit_Visible : Boolean := False;
- Instance_Parent_Unit : Entity_Id := Empty;
- Switches : Config_Switches_Type;
- end record;
-
- package Instance_Envs is new Table.Table (
- Table_Component_Type => Instance_Env,
- Table_Index_Type => Int,
- Table_Low_Bound => 0,
- Table_Initial => 32,
- Table_Increment => 100,
- Table_Name => "Instance_Envs");
-
- procedure Restore_Private_Views
- (Pack_Id : Entity_Id;
- Is_Package : Boolean := True);
- -- Restore the private views of external types, and unmark the generic
- -- renamings of actuals, so that they become compatible subtypes again.
- -- For subprograms, Pack_Id is the package constructed to hold the
- -- renamings.
-
- procedure Switch_View (T : Entity_Id);
- -- Switch the partial and full views of a type and its private
- -- dependents (i.e. its subtypes and derived types).
-
- ------------------------------------
- -- Structures for Error Reporting --
- ------------------------------------
-
- Instantiation_Node : Node_Id;
- -- Used by subprograms that validate instantiation of formal parameters
- -- where there might be no actual on which to place the error message.
- -- Also used to locate the instantiation node for generic subunits.
-
- Instantiation_Error : exception;
- -- When there is a semantic error in the generic parameter matching,
- -- there is no point in continuing the instantiation, because the
- -- number of cascaded errors is unpredictable. This exception aborts
- -- the instantiation process altogether.
-
- S_Adjustment : Sloc_Adjustment;
- -- Offset created for each node in an instantiation, in order to keep
- -- track of the source position of the instantiation in each of its nodes.
- -- A subsequent semantic error or warning on a construct of the instance
- -- points to both places: the original generic node, and the point of
- -- instantiation. See Sinput and Sinput.L for additional details.
-
- ------------------------------------------------------------
- -- Data structure for keeping track when inside a Generic --
- ------------------------------------------------------------
-
- -- The following table is used to save values of the Inside_A_Generic
- -- flag (see spec of Sem) when they are saved by Start_Generic.
-
- package Generic_Flags is new Table.Table (
- Table_Component_Type => Boolean,
- Table_Index_Type => Int,
- Table_Low_Bound => 0,
- Table_Initial => 32,
- Table_Increment => 200,
- Table_Name => "Generic_Flags");
-
- ---------------------------
- -- Abandon_Instantiation --
- ---------------------------
-
- procedure Abandon_Instantiation (N : Node_Id) is
- begin
- Error_Msg_N ("\instantiation abandoned!", N);
- raise Instantiation_Error;
- end Abandon_Instantiation;
-
- --------------------------
- -- Analyze_Associations --
- --------------------------
-
- function Analyze_Associations
- (I_Node : Node_Id;
- Formals : List_Id;
- F_Copy : List_Id) return List_Id
- is
- Actual_Types : constant Elist_Id := New_Elmt_List;
- Assoc : constant List_Id := New_List;
- Default_Actuals : constant Elist_Id := New_Elmt_List;
- Gen_Unit : constant Entity_Id := Defining_Entity (Parent (F_Copy));
- Actuals : List_Id;
- Actual : Node_Id;
- Formal : Node_Id;
- Next_Formal : Node_Id;
- Temp_Formal : Node_Id;
- Analyzed_Formal : Node_Id;
- Match : Node_Id;
- Named : Node_Id;
- First_Named : Node_Id := Empty;
-
- Default_Formals : constant List_Id := New_List;
- -- If an Other_Choice is present, some of the formals may be defaulted.
- -- To simplify the treatment of visibility in an instance, we introduce
- -- individual defaults for each such formal. These defaults are
- -- appended to the list of associations and replace the Others_Choice.
-
- Found_Assoc : Node_Id;
- -- Association for the current formal being match. Empty if there are
- -- no remaining actuals, or if there is no named association with the
- -- name of the formal.
-
- Is_Named_Assoc : Boolean;
- Num_Matched : Int := 0;
- Num_Actuals : Int := 0;
-
- Others_Present : Boolean := False;
- -- In Ada 2005, indicates partial parametrization of a formal
- -- package. As usual an other association must be last in the list.
-
- function Matching_Actual
- (F : Entity_Id;
- A_F : Entity_Id) return Node_Id;
- -- Find actual that corresponds to a given a formal parameter. If the
- -- actuals are positional, return the next one, if any. If the actuals
- -- are named, scan the parameter associations to find the right one.
- -- A_F is the corresponding entity in the analyzed generic,which is
- -- placed on the selector name for ASIS use.
-
- -- In Ada 2005, a named association may be given with a box, in which
- -- case Matching_Actual sets Found_Assoc to the generic association,
- -- but return Empty for the actual itself. In this case the code below
- -- creates a corresponding declaration for the formal.
-
- function Partial_Parametrization return Boolean;
- -- Ada 2005: if no match is found for a given formal, check if the
- -- association for it includes a box, or whether the associations
- -- include an Others clause.
-
- procedure Process_Default (F : Entity_Id);
- -- Add a copy of the declaration of generic formal F to the list of
- -- associations, and add an explicit box association for F if there
- -- is none yet, and the default comes from an Others_Choice.
-
- procedure Set_Analyzed_Formal;
- -- Find the node in the generic copy that corresponds to a given formal.
- -- The semantic information on this node is used to perform legality
- -- checks on the actuals. Because semantic analysis can introduce some
- -- anonymous entities or modify the declaration node itself, the
- -- correspondence between the two lists is not one-one. In addition to
- -- anonymous types, the presence a formal equality will introduce an
- -- implicit declaration for the corresponding inequality.
-
- ---------------------
- -- Matching_Actual --
- ---------------------
-
- function Matching_Actual
- (F : Entity_Id;
- A_F : Entity_Id) return Node_Id
- is
- Prev : Node_Id;
- Act : Node_Id;
-
- begin
- Is_Named_Assoc := False;
-
- -- End of list of purely positional parameters
-
- if No (Actual)
- or else Nkind (Actual) = N_Others_Choice
- then
- Found_Assoc := Empty;
- Act := Empty;
-
- -- Case of positional parameter corresponding to current formal
-
- elsif No (Selector_Name (Actual)) then
- Found_Assoc := Actual;
- Act := Explicit_Generic_Actual_Parameter (Actual);
- Num_Matched := Num_Matched + 1;
- Next (Actual);
-
- -- Otherwise scan list of named actuals to find the one with the
- -- desired name. All remaining actuals have explicit names.
-
- else
- Is_Named_Assoc := True;
- Found_Assoc := Empty;
- Act := Empty;
- Prev := Empty;
-
- while Present (Actual) loop
- if Chars (Selector_Name (Actual)) = Chars (F) then
- Set_Entity (Selector_Name (Actual), A_F);
- Set_Etype (Selector_Name (Actual), Etype (A_F));
- Generate_Reference (A_F, Selector_Name (Actual));
- Found_Assoc := Actual;
- Act := Explicit_Generic_Actual_Parameter (Actual);
- Num_Matched := Num_Matched + 1;
- exit;
- end if;
-
- Prev := Actual;
- Next (Actual);
- end loop;
-
- -- Reset for subsequent searches. In most cases the named
- -- associations are in order. If they are not, we reorder them
- -- to avoid scanning twice the same actual. This is not just a
- -- question of efficiency: there may be multiple defaults with
- -- boxes that have the same name. In a nested instantiation we
- -- insert actuals for those defaults, and cannot rely on their
- -- names to disambiguate them.
-
- if Actual = First_Named then
- Next (First_Named);
-
- elsif Present (Actual) then
- Insert_Before (First_Named, Remove_Next (Prev));
- end if;
-
- Actual := First_Named;
- end if;
-
- if Is_Entity_Name (Act) and then Present (Entity (Act)) then
- Set_Used_As_Generic_Actual (Entity (Act));
- end if;
-
- return Act;
- end Matching_Actual;
-
- -----------------------------
- -- Partial_Parametrization --
- -----------------------------
-
- function Partial_Parametrization return Boolean is
- begin
- return Others_Present
- or else (Present (Found_Assoc) and then Box_Present (Found_Assoc));
- end Partial_Parametrization;
-
- ---------------------
- -- Process_Default --
- ---------------------
-
- procedure Process_Default (F : Entity_Id) is
- Loc : constant Source_Ptr := Sloc (I_Node);
- F_Id : constant Entity_Id := Defining_Entity (F);
-
- Decl : Node_Id;
- Default : Node_Id;
- Id : Entity_Id;
-
- begin
- -- Append copy of formal declaration to associations, and create
- -- new defining identifier for it.
-
- Decl := New_Copy_Tree (F);
- Id := Make_Defining_Identifier (Sloc (F_Id), Chars => Chars (F_Id));
-
- if Nkind (F) in N_Formal_Subprogram_Declaration then
- Set_Defining_Unit_Name (Specification (Decl), Id);
-
- else
- Set_Defining_Identifier (Decl, Id);
- end if;
-
- Append (Decl, Assoc);
-
- if No (Found_Assoc) then
- Default :=
- Make_Generic_Association (Loc,
- Selector_Name => New_Occurrence_Of (Id, Loc),
- Explicit_Generic_Actual_Parameter => Empty);
- Set_Box_Present (Default);
- Append (Default, Default_Formals);
- end if;
- end Process_Default;
-
- -------------------------
- -- Set_Analyzed_Formal --
- -------------------------
-
- procedure Set_Analyzed_Formal is
- Kind : Node_Kind;
-
- begin
- while Present (Analyzed_Formal) loop
- Kind := Nkind (Analyzed_Formal);
-
- case Nkind (Formal) is
-
- when N_Formal_Subprogram_Declaration =>
- exit when Kind in N_Formal_Subprogram_Declaration
- and then
- Chars
- (Defining_Unit_Name (Specification (Formal))) =
- Chars
- (Defining_Unit_Name (Specification (Analyzed_Formal)));
-
- when N_Formal_Package_Declaration =>
- exit when Nkind_In (Kind, N_Formal_Package_Declaration,
- N_Generic_Package_Declaration,
- N_Package_Declaration);
-
- when N_Use_Package_Clause | N_Use_Type_Clause => exit;
-
- when others =>
-
- -- Skip freeze nodes, and nodes inserted to replace
- -- unrecognized pragmas.
-
- exit when
- Kind not in N_Formal_Subprogram_Declaration
- and then not Nkind_In (Kind, N_Subprogram_Declaration,
- N_Freeze_Entity,
- N_Null_Statement,
- N_Itype_Reference)
- and then Chars (Defining_Identifier (Formal)) =
- Chars (Defining_Identifier (Analyzed_Formal));
- end case;
-
- Next (Analyzed_Formal);
- end loop;
- end Set_Analyzed_Formal;
-
- -- Start of processing for Analyze_Associations
-
- begin
- Actuals := Generic_Associations (I_Node);
-
- if Present (Actuals) then
-
- -- check for an Others choice, indicating a partial parametrization
- -- for a formal package.
-
- Actual := First (Actuals);
- while Present (Actual) loop
- if Nkind (Actual) = N_Others_Choice then
- Others_Present := True;
-
- if Present (Next (Actual)) then
- Error_Msg_N ("others must be last association", Actual);
- end if;
-
- -- This subprogram is used both for formal packages and for
- -- instantiations. For the latter, associations must all be
- -- explicit.
-
- if Nkind (I_Node) /= N_Formal_Package_Declaration
- and then Comes_From_Source (I_Node)
- then
- Error_Msg_N
- ("others association not allowed in an instance",
- Actual);
- end if;
-
- -- In any case, nothing to do after the others association
-
- exit;
-
- elsif Box_Present (Actual)
- and then Comes_From_Source (I_Node)
- and then Nkind (I_Node) /= N_Formal_Package_Declaration
- then
- Error_Msg_N
- ("box association not allowed in an instance", Actual);
- end if;
-
- Next (Actual);
- end loop;
-
- -- If named associations are present, save first named association
- -- (it may of course be Empty) to facilitate subsequent name search.
-
- First_Named := First (Actuals);
- while Present (First_Named)
- and then Nkind (First_Named) /= N_Others_Choice
- and then No (Selector_Name (First_Named))
- loop
- Num_Actuals := Num_Actuals + 1;
- Next (First_Named);
- end loop;
- end if;
-
- Named := First_Named;
- while Present (Named) loop
- if Nkind (Named) /= N_Others_Choice
- and then No (Selector_Name (Named))
- then
- Error_Msg_N ("invalid positional actual after named one", Named);
- Abandon_Instantiation (Named);
- end if;
-
- -- A named association may lack an actual parameter, if it was
- -- introduced for a default subprogram that turns out to be local
- -- to the outer instantiation.
-
- if Nkind (Named) /= N_Others_Choice
- and then Present (Explicit_Generic_Actual_Parameter (Named))
- then
- Num_Actuals := Num_Actuals + 1;
- end if;
-
- Next (Named);
- end loop;
-
- if Present (Formals) then
- Formal := First_Non_Pragma (Formals);
- Analyzed_Formal := First_Non_Pragma (F_Copy);
-
- if Present (Actuals) then
- Actual := First (Actuals);
-
- -- All formals should have default values
-
- else
- Actual := Empty;
- end if;
-
- while Present (Formal) loop
- Set_Analyzed_Formal;
- Next_Formal := Next_Non_Pragma (Formal);
-
- case Nkind (Formal) is
- when N_Formal_Object_Declaration =>
- Match :=
- Matching_Actual (
- Defining_Identifier (Formal),
- Defining_Identifier (Analyzed_Formal));
-
- if No (Match) and then Partial_Parametrization then
- Process_Default (Formal);
- else
- Append_List
- (Instantiate_Object (Formal, Match, Analyzed_Formal),
- Assoc);
- end if;
-
- when N_Formal_Type_Declaration =>
- Match :=
- Matching_Actual (
- Defining_Identifier (Formal),
- Defining_Identifier (Analyzed_Formal));
-
- if No (Match) then
- if Partial_Parametrization then
- Process_Default (Formal);
-
- else
- Error_Msg_Sloc := Sloc (Gen_Unit);
- Error_Msg_NE
- ("missing actual&",
- Instantiation_Node,
- Defining_Identifier (Formal));
- Error_Msg_NE ("\in instantiation of & declared#",
- Instantiation_Node, Gen_Unit);
- Abandon_Instantiation (Instantiation_Node);
- end if;
-
- else
- Analyze (Match);
- Append_List
- (Instantiate_Type
- (Formal, Match, Analyzed_Formal, Assoc),
- Assoc);
-
- -- An instantiation is a freeze point for the actuals,
- -- unless this is a rewritten formal package.
-
- if Nkind (I_Node) /= N_Formal_Package_Declaration then
- Append_Elmt (Entity (Match), Actual_Types);
- end if;
- end if;
-
- -- A remote access-to-class-wide type must not be an
- -- actual parameter for a generic formal of an access
- -- type (E.2.2 (17)).
-
- if Nkind (Analyzed_Formal) = N_Formal_Type_Declaration
- and then
- Nkind (Formal_Type_Definition (Analyzed_Formal)) =
- N_Access_To_Object_Definition
- then
- Validate_Remote_Access_To_Class_Wide_Type (Match);
- end if;
-
- when N_Formal_Subprogram_Declaration =>
- Match :=
- Matching_Actual (
- Defining_Unit_Name (Specification (Formal)),
- Defining_Unit_Name (Specification (Analyzed_Formal)));
-
- -- If the formal subprogram has the same name as
- -- another formal subprogram of the generic, then
- -- a named association is illegal (12.3(9)). Exclude
- -- named associations that are generated for a nested
- -- instance.
-
- if Present (Match)
- and then Is_Named_Assoc
- and then Comes_From_Source (Found_Assoc)
- then
- Temp_Formal := First (Formals);
- while Present (Temp_Formal) loop
- if Nkind (Temp_Formal) in
- N_Formal_Subprogram_Declaration
- and then Temp_Formal /= Formal
- and then
- Chars (Selector_Name (Found_Assoc)) =
- Chars (Defining_Unit_Name
- (Specification (Temp_Formal)))
- then
- Error_Msg_N
- ("name not allowed for overloaded formal",
- Found_Assoc);
- Abandon_Instantiation (Instantiation_Node);
- end if;
-
- Next (Temp_Formal);
- end loop;
- end if;
-
- -- If there is no corresponding actual, this may be case of
- -- partial parametrization, or else the formal has a default
- -- or a box.
-
- if No (Match)
- and then Partial_Parametrization
- then
- Process_Default (Formal);
- else
- Append_To (Assoc,
- Instantiate_Formal_Subprogram
- (Formal, Match, Analyzed_Formal));
- end if;
-
- -- If this is a nested generic, preserve default for later
- -- instantiations.
-
- if No (Match)
- and then Box_Present (Formal)
- then
- Append_Elmt
- (Defining_Unit_Name (Specification (Last (Assoc))),
- Default_Actuals);
- end if;
-
- when N_Formal_Package_Declaration =>
- Match :=
- Matching_Actual (
- Defining_Identifier (Formal),
- Defining_Identifier (Original_Node (Analyzed_Formal)));
-
- if No (Match) then
- if Partial_Parametrization then
- Process_Default (Formal);
-
- else
- Error_Msg_Sloc := Sloc (Gen_Unit);
- Error_Msg_NE
- ("missing actual&",
- Instantiation_Node, Defining_Identifier (Formal));
- Error_Msg_NE ("\in instantiation of & declared#",
- Instantiation_Node, Gen_Unit);
-
- Abandon_Instantiation (Instantiation_Node);
- end if;
-
- else
- Analyze (Match);
- Append_List
- (Instantiate_Formal_Package
- (Formal, Match, Analyzed_Formal),
- Assoc);
- end if;
-
- -- For use type and use package appearing in the generic part,
- -- we have already copied them, so we can just move them where
- -- they belong (we mustn't recopy them since this would mess up
- -- the Sloc values).
-
- when N_Use_Package_Clause |
- N_Use_Type_Clause =>
- if Nkind (Original_Node (I_Node)) =
- N_Formal_Package_Declaration
- then
- Append (New_Copy_Tree (Formal), Assoc);
- else
- Remove (Formal);
- Append (Formal, Assoc);
- end if;
-
- when others =>
- raise Program_Error;
-
- end case;
-
- Formal := Next_Formal;
- Next_Non_Pragma (Analyzed_Formal);
- end loop;
-
- if Num_Actuals > Num_Matched then
- Error_Msg_Sloc := Sloc (Gen_Unit);
-
- if Present (Selector_Name (Actual)) then
- Error_Msg_NE
- ("unmatched actual&",
- Actual, Selector_Name (Actual));
- Error_Msg_NE ("\in instantiation of& declared#",
- Actual, Gen_Unit);
- else
- Error_Msg_NE
- ("unmatched actual in instantiation of& declared#",
- Actual, Gen_Unit);
- end if;
- end if;
-
- elsif Present (Actuals) then
- Error_Msg_N
- ("too many actuals in generic instantiation", Instantiation_Node);
- end if;
-
- declare
- Elmt : Elmt_Id := First_Elmt (Actual_Types);
-
- begin
- while Present (Elmt) loop
- Freeze_Before (I_Node, Node (Elmt));
- Next_Elmt (Elmt);
- end loop;
- end;
-
- -- If there are default subprograms, normalize the tree by adding
- -- explicit associations for them. This is required if the instance
- -- appears within a generic.
-
- declare
- Elmt : Elmt_Id;
- Subp : Entity_Id;
- New_D : Node_Id;
-
- begin
- Elmt := First_Elmt (Default_Actuals);
- while Present (Elmt) loop
- if No (Actuals) then
- Actuals := New_List;
- Set_Generic_Associations (I_Node, Actuals);
- end if;
-
- Subp := Node (Elmt);
- New_D :=
- Make_Generic_Association (Sloc (Subp),
- Selector_Name => New_Occurrence_Of (Subp, Sloc (Subp)),
- Explicit_Generic_Actual_Parameter =>
- New_Occurrence_Of (Subp, Sloc (Subp)));
- Mark_Rewrite_Insertion (New_D);
- Append_To (Actuals, New_D);
- Next_Elmt (Elmt);
- end loop;
- end;
-
- -- If this is a formal package, normalize the parameter list by adding
- -- explicit box associations for the formals that are covered by an
- -- Others_Choice.
-
- if not Is_Empty_List (Default_Formals) then
- Append_List (Default_Formals, Formals);
- end if;
-
- return Assoc;
- end Analyze_Associations;
-
- -------------------------------
- -- Analyze_Formal_Array_Type --
- -------------------------------
-
- procedure Analyze_Formal_Array_Type
- (T : in out Entity_Id;
- Def : Node_Id)
- is
- DSS : Node_Id;
-
- begin
- -- Treated like a non-generic array declaration, with additional
- -- semantic checks.
-
- Enter_Name (T);
-
- if Nkind (Def) = N_Constrained_Array_Definition then
- DSS := First (Discrete_Subtype_Definitions (Def));
- while Present (DSS) loop
- if Nkind_In (DSS, N_Subtype_Indication,
- N_Range,
- N_Attribute_Reference)
- then
- Error_Msg_N ("only a subtype mark is allowed in a formal", DSS);
- end if;
-
- Next (DSS);
- end loop;
- end if;
-
- Array_Type_Declaration (T, Def);
- Set_Is_Generic_Type (Base_Type (T));
-
- if Ekind (Component_Type (T)) = E_Incomplete_Type
- and then No (Full_View (Component_Type (T)))
- then
- Error_Msg_N ("premature usage of incomplete type", Def);
-
- -- Check that range constraint is not allowed on the component type
- -- of a generic formal array type (AARM 12.5.3(3))
-
- elsif Is_Internal (Component_Type (T))
- and then Present (Subtype_Indication (Component_Definition (Def)))
- and then Nkind (Original_Node
- (Subtype_Indication (Component_Definition (Def)))) =
- N_Subtype_Indication
- then
- Error_Msg_N
- ("in a formal, a subtype indication can only be "
- & "a subtype mark (RM 12.5.3(3))",
- Subtype_Indication (Component_Definition (Def)));
- end if;
-
- end Analyze_Formal_Array_Type;
-
- ---------------------------------------------
- -- Analyze_Formal_Decimal_Fixed_Point_Type --
- ---------------------------------------------
-
- -- As for other generic types, we create a valid type representation with
- -- legal but arbitrary attributes, whose values are never considered
- -- static. For all scalar types we introduce an anonymous base type, with
- -- the same attributes. We choose the corresponding integer type to be
- -- Standard_Integer.
-
- procedure Analyze_Formal_Decimal_Fixed_Point_Type
- (T : Entity_Id;
- Def : Node_Id)
- is
- Loc : constant Source_Ptr := Sloc (Def);
- Base : constant Entity_Id :=
- New_Internal_Entity
- (E_Decimal_Fixed_Point_Type,
- Current_Scope, Sloc (Def), 'G');
- Int_Base : constant Entity_Id := Standard_Integer;
- Delta_Val : constant Ureal := Ureal_1;
- Digs_Val : constant Uint := Uint_6;
-
- begin
- Enter_Name (T);
-
- Set_Etype (Base, Base);
- Set_Size_Info (Base, Int_Base);
- Set_RM_Size (Base, RM_Size (Int_Base));
- Set_First_Rep_Item (Base, First_Rep_Item (Int_Base));
- Set_Digits_Value (Base, Digs_Val);
- Set_Delta_Value (Base, Delta_Val);
- Set_Small_Value (Base, Delta_Val);
- Set_Scalar_Range (Base,
- Make_Range (Loc,
- Low_Bound => Make_Real_Literal (Loc, Ureal_1),
- High_Bound => Make_Real_Literal (Loc, Ureal_1)));
-
- Set_Is_Generic_Type (Base);
- Set_Parent (Base, Parent (Def));
-
- Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
- Set_Etype (T, Base);
- Set_Size_Info (T, Int_Base);
- Set_RM_Size (T, RM_Size (Int_Base));
- Set_First_Rep_Item (T, First_Rep_Item (Int_Base));
- Set_Digits_Value (T, Digs_Val);
- Set_Delta_Value (T, Delta_Val);
- Set_Small_Value (T, Delta_Val);
- Set_Scalar_Range (T, Scalar_Range (Base));
- Set_Is_Constrained (T);
-
- Check_Restriction (No_Fixed_Point, Def);
- end Analyze_Formal_Decimal_Fixed_Point_Type;
-
- -------------------------------------------
- -- Analyze_Formal_Derived_Interface_Type --
- -------------------------------------------
-
- procedure Analyze_Formal_Derived_Interface_Type
- (N : Node_Id;
- T : Entity_Id;
- Def : Node_Id)
- is
- Loc : constant Source_Ptr := Sloc (Def);
-
- begin
- -- Rewrite as a type declaration of a derived type. This ensures that
- -- the interface list and primitive operations are properly captured.
-
- Rewrite (N,
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => T,
- Type_Definition => Def));
- Analyze (N);
- Set_Is_Generic_Type (T);
- end Analyze_Formal_Derived_Interface_Type;
-
- ---------------------------------
- -- Analyze_Formal_Derived_Type --
- ---------------------------------
-
- procedure Analyze_Formal_Derived_Type
- (N : Node_Id;
- T : Entity_Id;
- Def : Node_Id)
- is
- Loc : constant Source_Ptr := Sloc (Def);
- Unk_Disc : constant Boolean := Unknown_Discriminants_Present (N);
- New_N : Node_Id;
-
- begin
- Set_Is_Generic_Type (T);
-
- if Private_Present (Def) then
- New_N :=
- Make_Private_Extension_Declaration (Loc,
- Defining_Identifier => T,
- Discriminant_Specifications => Discriminant_Specifications (N),
- Unknown_Discriminants_Present => Unk_Disc,
- Subtype_Indication => Subtype_Mark (Def),
- Interface_List => Interface_List (Def));
-
- Set_Abstract_Present (New_N, Abstract_Present (Def));
- Set_Limited_Present (New_N, Limited_Present (Def));
- Set_Synchronized_Present (New_N, Synchronized_Present (Def));
-
- else
- New_N :=
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => T,
- Discriminant_Specifications =>
- Discriminant_Specifications (Parent (T)),
- Type_Definition =>
- Make_Derived_Type_Definition (Loc,
- Subtype_Indication => Subtype_Mark (Def)));
-
- Set_Abstract_Present
- (Type_Definition (New_N), Abstract_Present (Def));
- Set_Limited_Present
- (Type_Definition (New_N), Limited_Present (Def));
- end if;
-
- Rewrite (N, New_N);
- Analyze (N);
-
- if Unk_Disc then
- if not Is_Composite_Type (T) then
- Error_Msg_N
- ("unknown discriminants not allowed for elementary types", N);
- else
- Set_Has_Unknown_Discriminants (T);
- Set_Is_Constrained (T, False);
- end if;
- end if;
-
- -- If the parent type has a known size, so does the formal, which makes
- -- legal representation clauses that involve the formal.
-
- Set_Size_Known_At_Compile_Time
- (T, Size_Known_At_Compile_Time (Entity (Subtype_Mark (Def))));
- end Analyze_Formal_Derived_Type;
-
- ----------------------------------
- -- Analyze_Formal_Discrete_Type --
- ----------------------------------
-
- -- The operations defined for a discrete types are those of an enumeration
- -- type. The size is set to an arbitrary value, for use in analyzing the
- -- generic unit.
-
- procedure Analyze_Formal_Discrete_Type (T : Entity_Id; Def : Node_Id) is
- Loc : constant Source_Ptr := Sloc (Def);
- Lo : Node_Id;
- Hi : Node_Id;
-
- Base : constant Entity_Id :=
- New_Internal_Entity
- (E_Floating_Point_Type, Current_Scope, Sloc (Def), 'G');
- begin
- Enter_Name (T);
- Set_Ekind (T, E_Enumeration_Subtype);
- Set_Etype (T, Base);
- Init_Size (T, 8);
- Init_Alignment (T);
- Set_Is_Generic_Type (T);
- Set_Is_Constrained (T);
-
- -- For semantic analysis, the bounds of the type must be set to some
- -- non-static value. The simplest is to create attribute nodes for those
- -- bounds, that refer to the type itself. These bounds are never
- -- analyzed but serve as place-holders.
-
- Lo :=
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_First,
- Prefix => New_Reference_To (T, Loc));
- Set_Etype (Lo, T);
-
- Hi :=
- Make_Attribute_Reference (Loc,
- Attribute_Name => Name_Last,
- Prefix => New_Reference_To (T, Loc));
- Set_Etype (Hi, T);
-
- Set_Scalar_Range (T,
- Make_Range (Loc,
- Low_Bound => Lo,
- High_Bound => Hi));
-
- Set_Ekind (Base, E_Enumeration_Type);
- Set_Etype (Base, Base);
- Init_Size (Base, 8);
- Init_Alignment (Base);
- Set_Is_Generic_Type (Base);
- Set_Scalar_Range (Base, Scalar_Range (T));
- Set_Parent (Base, Parent (Def));
- end Analyze_Formal_Discrete_Type;
-
- ----------------------------------
- -- Analyze_Formal_Floating_Type --
- ---------------------------------
-
- procedure Analyze_Formal_Floating_Type (T : Entity_Id; Def : Node_Id) is
- Base : constant Entity_Id :=
- New_Internal_Entity
- (E_Floating_Point_Type, Current_Scope, Sloc (Def), 'G');
-
- begin
- -- The various semantic attributes are taken from the predefined type
- -- Float, just so that all of them are initialized. Their values are
- -- never used because no constant folding or expansion takes place in
- -- the generic itself.
-
- Enter_Name (T);
- Set_Ekind (T, E_Floating_Point_Subtype);
- Set_Etype (T, Base);
- Set_Size_Info (T, (Standard_Float));
- Set_RM_Size (T, RM_Size (Standard_Float));
- Set_Digits_Value (T, Digits_Value (Standard_Float));
- Set_Scalar_Range (T, Scalar_Range (Standard_Float));
- Set_Is_Constrained (T);
-
- Set_Is_Generic_Type (Base);
- Set_Etype (Base, Base);
- Set_Size_Info (Base, (Standard_Float));
- Set_RM_Size (Base, RM_Size (Standard_Float));
- Set_Digits_Value (Base, Digits_Value (Standard_Float));
- Set_Scalar_Range (Base, Scalar_Range (Standard_Float));
- Set_Parent (Base, Parent (Def));
-
- Check_Restriction (No_Floating_Point, Def);
- end Analyze_Formal_Floating_Type;
-
- -----------------------------------
- -- Analyze_Formal_Interface_Type;--
- -----------------------------------
-
- procedure Analyze_Formal_Interface_Type
- (N : Node_Id;
- T : Entity_Id;
- Def : Node_Id)
- is
- Loc : constant Source_Ptr := Sloc (N);
- New_N : Node_Id;
-
- begin
- New_N :=
- Make_Full_Type_Declaration (Loc,
- Defining_Identifier => T,
- Type_Definition => Def);
-
- Rewrite (N, New_N);
- Analyze (N);
- Set_Is_Generic_Type (T);
- end Analyze_Formal_Interface_Type;
-
- ---------------------------------
- -- Analyze_Formal_Modular_Type --
- ---------------------------------
-
- procedure Analyze_Formal_Modular_Type (T : Entity_Id; Def : Node_Id) is
- begin
- -- Apart from their entity kind, generic modular types are treated like
- -- signed integer types, and have the same attributes.
-
- Analyze_Formal_Signed_Integer_Type (T, Def);
- Set_Ekind (T, E_Modular_Integer_Subtype);
- Set_Ekind (Etype (T), E_Modular_Integer_Type);
-
- end Analyze_Formal_Modular_Type;
-
- ---------------------------------------
- -- Analyze_Formal_Object_Declaration --
- ---------------------------------------
-
- procedure Analyze_Formal_Object_Declaration (N : Node_Id) is
- E : constant Node_Id := Default_Expression (N);
- Id : constant Node_Id := Defining_Identifier (N);
- K : Entity_Kind;
- T : Node_Id;
-
- begin
- Enter_Name (Id);
-
- -- Determine the mode of the formal object
-
- if Out_Present (N) then
- K := E_Generic_In_Out_Parameter;
-
- if not In_Present (N) then
- Error_Msg_N ("formal generic objects cannot have mode OUT", N);
- end if;
-
- else
- K := E_Generic_In_Parameter;
- end if;
-
- if Present (Subtype_Mark (N)) then
- Find_Type (Subtype_Mark (N));
- T := Entity (Subtype_Mark (N));
-
- -- Verify that there is no redundant null exclusion.
-
- if Null_Exclusion_Present (N) then
- if not Is_Access_Type (T) then
- Error_Msg_N
- ("null exclusion can only apply to an access type", N);
-
- elsif Can_Never_Be_Null (T) then
- Error_Msg_NE
- ("`NOT NULL` not allowed (& already excludes null)",
- N, T);
- end if;
- end if;
-
- -- Ada 2005 (AI-423): Formal object with an access definition
-
- else
- Check_Access_Definition (N);
- T := Access_Definition
- (Related_Nod => N,
- N => Access_Definition (N));
- end if;
-
- if Ekind (T) = E_Incomplete_Type then
- declare
- Error_Node : Node_Id;
-
- begin
- if Present (Subtype_Mark (N)) then
- Error_Node := Subtype_Mark (N);
- else
- Check_Access_Definition (N);
- Error_Node := Access_Definition (N);
- end if;
-
- Error_Msg_N ("premature usage of incomplete type", Error_Node);
- end;
- end if;
-
- if K = E_Generic_In_Parameter then
-
- -- Ada 2005 (AI-287): Limited aggregates allowed in generic formals
-
- if Ada_Version < Ada_05 and then Is_Limited_Type (T) then
- Error_Msg_N
- ("generic formal of mode IN must not be of limited type", N);
- Explain_Limited_Type (T, N);
- end if;
-
- if Is_Abstract_Type (T) then
- Error_Msg_N
- ("generic formal of mode IN must not be of abstract type", N);
- end if;
-
- if Present (E) then
- Preanalyze_Spec_Expression (E, T);
-
- if Is_Limited_Type (T) and then not OK_For_Limited_Init (E) then
- Error_Msg_N
- ("initialization not allowed for limited types", E);
- Explain_Limited_Type (T, E);
- end if;
- end if;
-
- Set_Ekind (Id, K);
- Set_Etype (Id, T);
-
- -- Case of generic IN OUT parameter
-
- else
- -- If the formal has an unconstrained type, construct its actual
- -- subtype, as is done for subprogram formals. In this fashion, all
- -- its uses can refer to specific bounds.
-
- Set_Ekind (Id, K);
- Set_Etype (Id, T);
-
- if (Is_Array_Type (T)
- and then not Is_Constrained (T))
- or else
- (Ekind (T) = E_Record_Type
- and then Has_Discriminants (T))
- then
- declare
- Non_Freezing_Ref : constant Node_Id :=
- New_Reference_To (Id, Sloc (Id));
- Decl : Node_Id;
-
- begin
- -- Make sure the actual subtype doesn't generate bogus freezing
-
- Set_Must_Not_Freeze (Non_Freezing_Ref);
- Decl := Build_Actual_Subtype (T, Non_Freezing_Ref);
- Insert_Before_And_Analyze (N, Decl);
- Set_Actual_Subtype (Id, Defining_Identifier (Decl));
- end;
- else
- Set_Actual_Subtype (Id, T);
- end if;
-
- if Present (E) then
- Error_Msg_N
- ("initialization not allowed for `IN OUT` formals", N);
- end if;
- end if;
-
- end Analyze_Formal_Object_Declaration;
-
- ----------------------------------------------
- -- Analyze_Formal_Ordinary_Fixed_Point_Type --
- ----------------------------------------------
-
- procedure Analyze_Formal_Ordinary_Fixed_Point_Type
- (T : Entity_Id;
- Def : Node_Id)
- is
- Loc : constant Source_Ptr := Sloc (Def);
- Base : constant Entity_Id :=
- New_Internal_Entity
- (E_Ordinary_Fixed_Point_Type, Current_Scope, Sloc (Def), 'G');
- begin
- -- The semantic attributes are set for completeness only, their values
- -- will never be used, since all properties of the type are non-static.
-
- Enter_Name (T);
- Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
- Set_Etype (T, Base);
- Set_Size_Info (T, Standard_Integer);
- Set_RM_Size (T, RM_Size (Standard_Integer));
- Set_Small_Value (T, Ureal_1);
- Set_Delta_Value (T, Ureal_1);
- Set_Scalar_Range (T,
- Make_Range (Loc,
- Low_Bound => Make_Real_Literal (Loc, Ureal_1),
- High_Bound => Make_Real_Literal (Loc, Ureal_1)));
- Set_Is_Constrained (T);
-
- Set_Is_Generic_Type (Base);
- Set_Etype (Base, Base);
- Set_Size_Info (Base, Standard_Integer);
- Set_RM_Size (Base, RM_Size (Standard_Integer));
- Set_Small_Value (Base, Ureal_1);
- Set_Delta_Value (Base, Ureal_1);
- Set_Scalar_Range (Base, Scalar_Range (T));
- Set_Parent (Base, Parent (Def));
-
- Check_Restriction (No_Fixed_Point, Def);
- end Analyze_Formal_Ordinary_Fixed_Point_Type;
-
- ----------------------------
- -- Analyze_Formal_Package --
- ----------------------------
-
- procedure Analyze_Formal_Package (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Pack_Id : constant Entity_Id := Defining_Identifier (N);
- Formal : Entity_Id;
- Gen_Id : constant Node_Id := Name (N);
- Gen_Decl : Node_Id;
- Gen_Unit : Entity_Id;
- New_N : Node_Id;
- Parent_Installed : Boolean := False;
- Renaming : Node_Id;
- Parent_Instance : Entity_Id;
- Renaming_In_Par : Entity_Id;
- No_Associations : Boolean := False;
-
- function Build_Local_Package return Node_Id;
- -- The formal package is rewritten so that its parameters are replaced
- -- with corresponding declarations. For parameters with bona fide
- -- associations these declarations are created by Analyze_Associations
- -- as for a regular instantiation. For boxed parameters, we preserve
- -- the formal declarations and analyze them, in order to introduce
- -- entities of the right kind in the environment of the formal.
-
- -------------------------
- -- Build_Local_Package --
- -------------------------
-
- function Build_Local_Package return Node_Id is
- Decls : List_Id;
- Pack_Decl : Node_Id;
-
- begin
- -- Within the formal, the name of the generic package is a renaming
- -- of the formal (as for a regular instantiation).
-
- Pack_Decl :=
- Make_Package_Declaration (Loc,
- Specification =>
- Copy_Generic_Node
- (Specification (Original_Node (Gen_Decl)),
- Empty, Instantiating => True));
-
- Renaming := Make_Package_Renaming_Declaration (Loc,
- Defining_Unit_Name =>
- Make_Defining_Identifier (Loc, Chars (Gen_Unit)),
- Name => New_Occurrence_Of (Formal, Loc));
-
- if Nkind (Gen_Id) = N_Identifier
- and then Chars (Gen_Id) = Chars (Pack_Id)
- then
- Error_Msg_NE
- ("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
- end if;
-
- -- If the formal is declared with a box, or with an others choice,
- -- create corresponding declarations for all entities in the formal
- -- part, so that names with the proper types are available in the
- -- specification of the formal package.
- -- On the other hand, if there are no associations, then all the
- -- formals must have defaults, and this will be checked by the
- -- call to Analyze_Associations.
-
- if Box_Present (N)
- or else Nkind (First (Generic_Associations (N))) = N_Others_Choice
- then
- declare
- Formal_Decl : Node_Id;
-
- begin
- -- TBA : for a formal package, need to recurse ???
-
- Decls := New_List;
- Formal_Decl :=
- First
- (Generic_Formal_Declarations (Original_Node (Gen_Decl)));
- while Present (Formal_Decl) loop
- Append_To
- (Decls, Copy_Generic_Node (Formal_Decl, Empty, True));
- Next (Formal_Decl);
- end loop;
- end;
-
- -- If generic associations are present, use Analyze_Associations to
- -- create the proper renaming declarations.
-
- else
- declare
- Act_Tree : constant Node_Id :=
- Copy_Generic_Node
- (Original_Node (Gen_Decl), Empty,
- Instantiating => True);
-
- begin
- Generic_Renamings.Set_Last (0);
- Generic_Renamings_HTable.Reset;
- Instantiation_Node := N;
-
- Decls :=
- Analyze_Associations
- (Original_Node (N),
- Generic_Formal_Declarations (Act_Tree),
- Generic_Formal_Declarations (Gen_Decl));
- end;
- end if;
-
- Append (Renaming, To => Decls);
-
- -- Add generated declarations ahead of local declarations in
- -- the package.
-
- if No (Visible_Declarations (Specification (Pack_Decl))) then
- Set_Visible_Declarations (Specification (Pack_Decl), Decls);
- else
- Insert_List_Before
- (First (Visible_Declarations (Specification (Pack_Decl))),
- Decls);
- end if;
-
- return Pack_Decl;
- end Build_Local_Package;
-
- -- Start of processing for Analyze_Formal_Package
-
- begin
- Text_IO_Kludge (Gen_Id);
-
- Init_Env;
- Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
- Gen_Unit := Entity (Gen_Id);
-
- -- Check for a formal package that is a package renaming
-
- if Present (Renamed_Object (Gen_Unit)) then
- Gen_Unit := Renamed_Object (Gen_Unit);
- end if;
-
- if Ekind (Gen_Unit) /= E_Generic_Package then
- Error_Msg_N ("expect generic package name", Gen_Id);
- Restore_Env;
- return;
-
- elsif Gen_Unit = Current_Scope then
- Error_Msg_N
- ("generic package cannot be used as a formal package of itself",
- Gen_Id);
- Restore_Env;
- return;
-
- elsif In_Open_Scopes (Gen_Unit) then
- if Is_Compilation_Unit (Gen_Unit)
- and then Is_Child_Unit (Current_Scope)
- then
- -- Special-case the error when the formal is a parent, and
- -- continue analysis to minimize cascaded errors.
-
- Error_Msg_N
- ("generic parent cannot be used as formal package "
- & "of a child unit",
- Gen_Id);
-
- else
- Error_Msg_N
- ("generic package cannot be used as a formal package "
- & "within itself",
- Gen_Id);
- Restore_Env;
- return;
- end if;
- end if;
-
- if Box_Present (N)
- or else No (Generic_Associations (N))
- or else Nkind (First (Generic_Associations (N))) = N_Others_Choice
- then
- No_Associations := True;
- end if;
-
- -- If there are no generic associations, the generic parameters appear
- -- as local entities and are instantiated like them. We copy the generic
- -- package declaration as if it were an instantiation, and analyze it
- -- like a regular package, except that we treat the formals as
- -- additional visible components.
-
- Gen_Decl := Unit_Declaration_Node (Gen_Unit);
-
- if In_Extended_Main_Source_Unit (N) then
- Set_Is_Instantiated (Gen_Unit);
- Generate_Reference (Gen_Unit, N);
- end if;
-
- Formal := New_Copy (Pack_Id);
- Create_Instantiation_Source (N, Gen_Unit, False, S_Adjustment);
-
- begin
- -- Make local generic without formals. The formals will be replaced
- -- with internal declarations.
-
- New_N := Build_Local_Package;
-
- -- If there are errors in the parameter list, Analyze_Associations
- -- raises Instantiation_Error. Patch the declaration to prevent
- -- further exception propagation.
-
- exception
- when Instantiation_Error =>
-
- Enter_Name (Formal);
- Set_Ekind (Formal, E_Variable);
- Set_Etype (Formal, Any_Type);
-
- if Parent_Installed then
- Remove_Parent;
- end if;
-
- return;
- end;
-
- Rewrite (N, New_N);
- Set_Defining_Unit_Name (Specification (New_N), Formal);
- Set_Generic_Parent (Specification (N), Gen_Unit);
- Set_Instance_Env (Gen_Unit, Formal);
- Set_Is_Generic_Instance (Formal);
-
- Enter_Name (Formal);
- Set_Ekind (Formal, E_Package);
- Set_Etype (Formal, Standard_Void_Type);
- Set_Inner_Instances (Formal, New_Elmt_List);
- Push_Scope (Formal);
-
- if Is_Child_Unit (Gen_Unit)
- and then Parent_Installed
- then
- -- Similarly, we have to make the name of the formal visible in the
- -- parent instance, to resolve properly fully qualified names that
- -- may appear in the generic unit. The parent instance has been
- -- placed on the scope stack ahead of the current scope.
-
- Parent_Instance := Scope_Stack.Table (Scope_Stack.Last - 1).Entity;
-
- Renaming_In_Par :=
- Make_Defining_Identifier (Loc, Chars (Gen_Unit));
- Set_Ekind (Renaming_In_Par, E_Package);
- Set_Etype (Renaming_In_Par, Standard_Void_Type);
- Set_Scope (Renaming_In_Par, Parent_Instance);
- Set_Parent (Renaming_In_Par, Parent (Formal));
- Set_Renamed_Object (Renaming_In_Par, Formal);
- Append_Entity (Renaming_In_Par, Parent_Instance);
- end if;
-
- Analyze (Specification (N));
-
- -- The formals for which associations are provided are not visible
- -- outside of the formal package. The others are still declared by a
- -- formal parameter declaration.
-
- if not No_Associations then
- declare
- E : Entity_Id;
-
- begin
- E := First_Entity (Formal);
- while Present (E) loop
- exit when Ekind (E) = E_Package
- and then Renamed_Entity (E) = Formal;
-
- if not Is_Generic_Formal (E) then
- Set_Is_Hidden (E);
- end if;
-
- Next_Entity (E);
- end loop;
- end;
- end if;
-
- End_Package_Scope (Formal);
-
- if Parent_Installed then
- Remove_Parent;
- end if;
-
- Restore_Env;
-
- -- Inside the generic unit, the formal package is a regular package, but
- -- no body is needed for it. Note that after instantiation, the defining
- -- unit name we need is in the new tree and not in the original (see
- -- Package_Instantiation). A generic formal package is an instance, and
- -- can be used as an actual for an inner instance.
-
- Set_Has_Completion (Formal, True);
-
- -- Add semantic information to the original defining identifier.
- -- for ASIS use.
-
- Set_Ekind (Pack_Id, E_Package);
- Set_Etype (Pack_Id, Standard_Void_Type);
- Set_Scope (Pack_Id, Scope (Formal));
- Set_Has_Completion (Pack_Id, True);
- end Analyze_Formal_Package;
-
- ---------------------------------
- -- Analyze_Formal_Private_Type --
- ---------------------------------
-
- procedure Analyze_Formal_Private_Type
- (N : Node_Id;
- T : Entity_Id;
- Def : Node_Id)
- is
- begin
- New_Private_Type (N, T, Def);
-
- -- Set the size to an arbitrary but legal value
-
- Set_Size_Info (T, Standard_Integer);
- Set_RM_Size (T, RM_Size (Standard_Integer));
- end Analyze_Formal_Private_Type;
-
- ----------------------------------------
- -- Analyze_Formal_Signed_Integer_Type --
- ----------------------------------------
-
- procedure Analyze_Formal_Signed_Integer_Type
- (T : Entity_Id;
- Def : Node_Id)
- is
- Base : constant Entity_Id :=
- New_Internal_Entity
- (E_Signed_Integer_Type, Current_Scope, Sloc (Def), 'G');
-
- begin
- Enter_Name (T);
-
- Set_Ekind (T, E_Signed_Integer_Subtype);
- Set_Etype (T, Base);
- Set_Size_Info (T, Standard_Integer);
- Set_RM_Size (T, RM_Size (Standard_Integer));
- Set_Scalar_Range (T, Scalar_Range (Standard_Integer));
- Set_Is_Constrained (T);
-
- Set_Is_Generic_Type (Base);
- Set_Size_Info (Base, Standard_Integer);
- Set_RM_Size (Base, RM_Size (Standard_Integer));
- Set_Etype (Base, Base);
- Set_Scalar_Range (Base, Scalar_Range (Standard_Integer));
- Set_Parent (Base, Parent (Def));
- end Analyze_Formal_Signed_Integer_Type;
-
- -------------------------------
- -- Analyze_Formal_Subprogram --
- -------------------------------
-
- procedure Analyze_Formal_Subprogram (N : Node_Id) is
- Spec : constant Node_Id := Specification (N);
- Def : constant Node_Id := Default_Name (N);
- Nam : constant Entity_Id := Defining_Unit_Name (Spec);
- Subp : Entity_Id;
-
- begin
- if Nam = Error then
- return;
- end if;
-
- if Nkind (Nam) = N_Defining_Program_Unit_Name then
- Error_Msg_N ("name of formal subprogram must be a direct name", Nam);
- return;
- end if;
-
- Analyze_Subprogram_Declaration (N);
- Set_Is_Formal_Subprogram (Nam);
- Set_Has_Completion (Nam);
-
- if Nkind (N) = N_Formal_Abstract_Subprogram_Declaration then
- Set_Is_Abstract_Subprogram (Nam);
- Set_Is_Dispatching_Operation (Nam);
-
- declare
- Ctrl_Type : constant Entity_Id := Find_Dispatching_Type (Nam);
- begin
- if No (Ctrl_Type) then
- Error_Msg_N
- ("abstract formal subprogram must have a controlling type",
- N);
- else
- Check_Controlling_Formals (Ctrl_Type, Nam);
- end if;
- end;
- end if;
-
- -- Default name is resolved at the point of instantiation
-
- if Box_Present (N) then
- null;
-
- -- Else default is bound at the point of generic declaration
-
- elsif Present (Def) then
- if Nkind (Def) = N_Operator_Symbol then
- Find_Direct_Name (Def);
-
- elsif Nkind (Def) /= N_Attribute_Reference then
- Analyze (Def);
-
- else
- -- For an attribute reference, analyze the prefix and verify
- -- that it has the proper profile for the subprogram.
-
- Analyze (Prefix (Def));
- Valid_Default_Attribute (Nam, Def);
- return;
- end if;
-
- -- Default name may be overloaded, in which case the interpretation
- -- with the correct profile must be selected, as for a renaming.
- -- If the definition is an indexed component, it must denote a
- -- member of an entry family. If it is a selected component, it
- -- can be a protected operation.
-
- if Etype (Def) = Any_Type then
- return;
-
- elsif Nkind (Def) = N_Selected_Component then
- if not Is_Overloadable (Entity (Selector_Name (Def))) then
- Error_Msg_N ("expect valid subprogram name as default", Def);
- end if;
-
- elsif Nkind (Def) = N_Indexed_Component then
- if Is_Entity_Name (Prefix (Def)) then
- if Ekind (Entity (Prefix (Def))) /= E_Entry_Family then
- Error_Msg_N ("expect valid subprogram name as default", Def);
- end if;
-
- elsif Nkind (Prefix (Def)) = N_Selected_Component then
- if Ekind (Entity (Selector_Name (Prefix (Def))))
- /= E_Entry_Family
- then
- Error_Msg_N ("expect valid subprogram name as default", Def);
- end if;
-
- else
- Error_Msg_N ("expect valid subprogram name as default", Def);
- return;
- end if;
-
- elsif Nkind (Def) = N_Character_Literal then
-
- -- Needs some type checks: subprogram should be parameterless???
-
- Resolve (Def, (Etype (Nam)));
-
- elsif not Is_Entity_Name (Def)
- or else not Is_Overloadable (Entity (Def))
- then
- Error_Msg_N ("expect valid subprogram name as default", Def);
- return;
-
- elsif not Is_Overloaded (Def) then
- Subp := Entity (Def);
-
- if Subp = Nam then
- Error_Msg_N ("premature usage of formal subprogram", Def);
-
- elsif not Entity_Matches_Spec (Subp, Nam) then
- Error_Msg_N ("no visible entity matches specification", Def);
- end if;
-
- -- More than one interpretation, so disambiguate as for a renaming
-
- else
- declare
- I : Interp_Index;
- I1 : Interp_Index := 0;
- It : Interp;
- It1 : Interp;
-
- begin
- Subp := Any_Id;
- Get_First_Interp (Def, I, It);
- while Present (It.Nam) loop
- if Entity_Matches_Spec (It.Nam, Nam) then
- if Subp /= Any_Id then
- It1 := Disambiguate (Def, I1, I, Etype (Subp));
-
- if It1 = No_Interp then
- Error_Msg_N ("ambiguous default subprogram", Def);
- else
- Subp := It1.Nam;
- end if;
-
- exit;
-
- else
- I1 := I;
- Subp := It.Nam;
- end if;
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
- end;
-
- if Subp /= Any_Id then
- Set_Entity (Def, Subp);
-
- if Subp = Nam then
- Error_Msg_N ("premature usage of formal subprogram", Def);
-
- elsif Ekind (Subp) /= E_Operator then
- Check_Mode_Conformant (Subp, Nam);
- end if;
-
- else
- Error_Msg_N ("no visible subprogram matches specification", N);
- end if;
- end if;
- end if;
- end Analyze_Formal_Subprogram;
-
- -------------------------------------
- -- Analyze_Formal_Type_Declaration --
- -------------------------------------
-
- procedure Analyze_Formal_Type_Declaration (N : Node_Id) is
- Def : constant Node_Id := Formal_Type_Definition (N);
- T : Entity_Id;
-
- begin
- T := Defining_Identifier (N);
-
- if Present (Discriminant_Specifications (N))
- and then Nkind (Def) /= N_Formal_Private_Type_Definition
- then
- Error_Msg_N
- ("discriminants not allowed for this formal type", T);
- end if;
-
- -- Enter the new name, and branch to specific routine
-
- case Nkind (Def) is
- when N_Formal_Private_Type_Definition =>
- Analyze_Formal_Private_Type (N, T, Def);
-
- when N_Formal_Derived_Type_Definition =>
- Analyze_Formal_Derived_Type (N, T, Def);
-
- when N_Formal_Discrete_Type_Definition =>
- Analyze_Formal_Discrete_Type (T, Def);
-
- when N_Formal_Signed_Integer_Type_Definition =>
- Analyze_Formal_Signed_Integer_Type (T, Def);
-
- when N_Formal_Modular_Type_Definition =>
- Analyze_Formal_Modular_Type (T, Def);
-
- when N_Formal_Floating_Point_Definition =>
- Analyze_Formal_Floating_Type (T, Def);
-
- when N_Formal_Ordinary_Fixed_Point_Definition =>
- Analyze_Formal_Ordinary_Fixed_Point_Type (T, Def);
-
- when N_Formal_Decimal_Fixed_Point_Definition =>
- Analyze_Formal_Decimal_Fixed_Point_Type (T, Def);
-
- when N_Array_Type_Definition =>
- Analyze_Formal_Array_Type (T, Def);
-
- when N_Access_To_Object_Definition |
- N_Access_Function_Definition |
- N_Access_Procedure_Definition =>
- Analyze_Generic_Access_Type (T, Def);
-
- -- Ada 2005: a interface declaration is encoded as an abstract
- -- record declaration or a abstract type derivation.
-
- when N_Record_Definition =>
- Analyze_Formal_Interface_Type (N, T, Def);
-
- when N_Derived_Type_Definition =>
- Analyze_Formal_Derived_Interface_Type (N, T, Def);
-
- when N_Error =>
- null;
-
- when others =>
- raise Program_Error;
-
- end case;
-
- Set_Is_Generic_Type (T);
- end Analyze_Formal_Type_Declaration;
-
- ------------------------------------
- -- Analyze_Function_Instantiation --
- ------------------------------------
-
- procedure Analyze_Function_Instantiation (N : Node_Id) is
- begin
- Analyze_Subprogram_Instantiation (N, E_Function);
- end Analyze_Function_Instantiation;
-
- ---------------------------------
- -- Analyze_Generic_Access_Type --
- ---------------------------------
-
- procedure Analyze_Generic_Access_Type (T : Entity_Id; Def : Node_Id) is
- begin
- Enter_Name (T);
-
- if Nkind (Def) = N_Access_To_Object_Definition then
- Access_Type_Declaration (T, Def);
-
- if Is_Incomplete_Or_Private_Type (Designated_Type (T))
- and then No (Full_View (Designated_Type (T)))
- and then not Is_Generic_Type (Designated_Type (T))
- then
- Error_Msg_N ("premature usage of incomplete type", Def);
-
- elsif Is_Internal (Designated_Type (T)) then
- Error_Msg_N
- ("only a subtype mark is allowed in a formal", Def);
- end if;
-
- else
- Access_Subprogram_Declaration (T, Def);
- end if;
- end Analyze_Generic_Access_Type;
-
- ---------------------------------
- -- Analyze_Generic_Formal_Part --
- ---------------------------------
-
- procedure Analyze_Generic_Formal_Part (N : Node_Id) is
- Gen_Parm_Decl : Node_Id;
-
- begin
- -- The generic formals are processed in the scope of the generic unit,
- -- where they are immediately visible. The scope is installed by the
- -- caller.
-
- Gen_Parm_Decl := First (Generic_Formal_Declarations (N));
-
- while Present (Gen_Parm_Decl) loop
- Analyze (Gen_Parm_Decl);
- Next (Gen_Parm_Decl);
- end loop;
-
- Generate_Reference_To_Generic_Formals (Current_Scope);
- end Analyze_Generic_Formal_Part;
-
- ------------------------------------------
- -- Analyze_Generic_Package_Declaration --
- ------------------------------------------
-
- procedure Analyze_Generic_Package_Declaration (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Id : Entity_Id;
- New_N : Node_Id;
- Save_Parent : Node_Id;
- Renaming : Node_Id;
- Decls : constant List_Id :=
- Visible_Declarations (Specification (N));
- Decl : Node_Id;
-
- begin
- -- We introduce a renaming of the enclosing package, to have a usable
- -- entity as the prefix of an expanded name for a local entity of the
- -- form Par.P.Q, where P is the generic package. This is because a local
- -- entity named P may hide it, so that the usual visibility rules in
- -- the instance will not resolve properly.
-
- Renaming :=
- Make_Package_Renaming_Declaration (Loc,
- Defining_Unit_Name =>
- Make_Defining_Identifier (Loc,
- Chars => New_External_Name (Chars (Defining_Entity (N)), "GH")),
- Name => Make_Identifier (Loc, Chars (Defining_Entity (N))));
-
- if Present (Decls) then
- Decl := First (Decls);
- while Present (Decl)
- and then Nkind (Decl) = N_Pragma
- loop
- Next (Decl);
- end loop;
-
- if Present (Decl) then
- Insert_Before (Decl, Renaming);
- else
- Append (Renaming, Visible_Declarations (Specification (N)));
- end if;
-
- else
- Set_Visible_Declarations (Specification (N), New_List (Renaming));
- end if;
-
- -- Create copy of generic unit, and save for instantiation. If the unit
- -- is a child unit, do not copy the specifications for the parent, which
- -- are not part of the generic tree.
-
- Save_Parent := Parent_Spec (N);
- Set_Parent_Spec (N, Empty);
-
- New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
- Set_Parent_Spec (New_N, Save_Parent);
- Rewrite (N, New_N);
- Id := Defining_Entity (N);
- Generate_Definition (Id);
-
- -- Expansion is not applied to generic units
-
- Start_Generic;
-
- Enter_Name (Id);
- Set_Ekind (Id, E_Generic_Package);
- Set_Etype (Id, Standard_Void_Type);
- Push_Scope (Id);
- Enter_Generic_Scope (Id);
- Set_Inner_Instances (Id, New_Elmt_List);
-
- Set_Categorization_From_Pragmas (N);
- Set_Is_Pure (Id, Is_Pure (Current_Scope));
-
- -- Link the declaration of the generic homonym in the generic copy to
- -- the package it renames, so that it is always resolved properly.
-
- Set_Generic_Homonym (Id, Defining_Unit_Name (Renaming));
- Set_Entity (Associated_Node (Name (Renaming)), Id);
-
- -- For a library unit, we have reconstructed the entity for the unit,
- -- and must reset it in the library tables.
-
- if Nkind (Parent (N)) = N_Compilation_Unit then
- Set_Cunit_Entity (Current_Sem_Unit, Id);
- end if;
-
- Analyze_Generic_Formal_Part (N);
-
- -- After processing the generic formals, analysis proceeds as for a
- -- non-generic package.
-
- Analyze (Specification (N));
-
- Validate_Categorization_Dependency (N, Id);
-
- End_Generic;
-
- End_Package_Scope (Id);
- Exit_Generic_Scope (Id);
-
- if Nkind (Parent (N)) /= N_Compilation_Unit then
- Move_Freeze_Nodes (Id, N, Visible_Declarations (Specification (N)));
- Move_Freeze_Nodes (Id, N, Private_Declarations (Specification (N)));
- Move_Freeze_Nodes (Id, N, Generic_Formal_Declarations (N));
-
- else
- Set_Body_Required (Parent (N), Unit_Requires_Body (Id));
- Validate_RT_RAT_Component (N);
-
- -- If this is a spec without a body, check that generic parameters
- -- are referenced.
-
- if not Body_Required (Parent (N)) then
- Check_References (Id);
- end if;
- end if;
- end Analyze_Generic_Package_Declaration;
-
- --------------------------------------------
- -- Analyze_Generic_Subprogram_Declaration --
- --------------------------------------------
-
- procedure Analyze_Generic_Subprogram_Declaration (N : Node_Id) is
- Spec : Node_Id;
- Id : Entity_Id;
- Formals : List_Id;
- New_N : Node_Id;
- Result_Type : Entity_Id;
- Save_Parent : Node_Id;
-
- begin
- -- Create copy of generic unit, and save for instantiation. If the unit
- -- is a child unit, do not copy the specifications for the parent, which
- -- are not part of the generic tree.
-
- Save_Parent := Parent_Spec (N);
- Set_Parent_Spec (N, Empty);
-
- New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
- Set_Parent_Spec (New_N, Save_Parent);
- Rewrite (N, New_N);
-
- Spec := Specification (N);
- Id := Defining_Entity (Spec);
- Generate_Definition (Id);
-
- if Nkind (Id) = N_Defining_Operator_Symbol then
- Error_Msg_N
- ("operator symbol not allowed for generic subprogram", Id);
- end if;
-
- Start_Generic;
-
- Enter_Name (Id);
-
- Set_Scope_Depth_Value (Id, Scope_Depth (Current_Scope) + 1);
- Push_Scope (Id);
- Enter_Generic_Scope (Id);
- Set_Inner_Instances (Id, New_Elmt_List);
- Set_Is_Pure (Id, Is_Pure (Current_Scope));
-
- Analyze_Generic_Formal_Part (N);
-
- Formals := Parameter_Specifications (Spec);
-
- if Present (Formals) then
- Process_Formals (Formals, Spec);
- end if;
-
- if Nkind (Spec) = N_Function_Specification then
- Set_Ekind (Id, E_Generic_Function);
-
- if Nkind (Result_Definition (Spec)) = N_Access_Definition then
- Result_Type := Access_Definition (Spec, Result_Definition (Spec));
- Set_Etype (Id, Result_Type);
- else
- Find_Type (Result_Definition (Spec));
- Set_Etype (Id, Entity (Result_Definition (Spec)));
- end if;
-
- else
- Set_Ekind (Id, E_Generic_Procedure);
- Set_Etype (Id, Standard_Void_Type);
- end if;
-
- -- For a library unit, we have reconstructed the entity for the unit,
- -- and must reset it in the library tables. We also make sure that
- -- Body_Required is set properly in the original compilation unit node.
-
- if Nkind (Parent (N)) = N_Compilation_Unit then
- Set_Cunit_Entity (Current_Sem_Unit, Id);
- Set_Body_Required (Parent (N), Unit_Requires_Body (Id));
- end if;
-
- Set_Categorization_From_Pragmas (N);
- Validate_Categorization_Dependency (N, Id);
-
- Save_Global_References (Original_Node (N));
-
- End_Generic;
- End_Scope;
- Exit_Generic_Scope (Id);
- Generate_Reference_To_Formals (Id);
- end Analyze_Generic_Subprogram_Declaration;
-
- -----------------------------------
- -- Analyze_Package_Instantiation --
- -----------------------------------
-
- procedure Analyze_Package_Instantiation (N : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N);
- Gen_Id : constant Node_Id := Name (N);
-
- Act_Decl : Node_Id;
- Act_Decl_Name : Node_Id;
- Act_Decl_Id : Entity_Id;
- Act_Spec : Node_Id;
- Act_Tree : Node_Id;
-
- Gen_Decl : Node_Id;
- Gen_Unit : Entity_Id;
-
- Is_Actual_Pack : constant Boolean :=
- Is_Internal (Defining_Entity (N));
-
- Env_Installed : Boolean := False;
- Parent_Installed : Boolean := False;
- Renaming_List : List_Id;
- Unit_Renaming : Node_Id;
- Needs_Body : Boolean;
- Inline_Now : Boolean := False;
-
- procedure Delay_Descriptors (E : Entity_Id);
- -- Delay generation of subprogram descriptors for given entity
-
- function Might_Inline_Subp return Boolean;
- -- If inlining is active and the generic contains inlined subprograms,
- -- we instantiate the body. This may cause superfluous instantiations,
- -- but it is simpler than detecting the need for the body at the point
- -- of inlining, when the context of the instance is not available.
-
- -----------------------
- -- Delay_Descriptors --
- -----------------------
-
- procedure Delay_Descriptors (E : Entity_Id) is
- begin
- if not Delay_Subprogram_Descriptors (E) then
- Set_Delay_Subprogram_Descriptors (E);
- Pending_Descriptor.Append (E);
- end if;
- end Delay_Descriptors;
-
- -----------------------
- -- Might_Inline_Subp --
- -----------------------
-
- function Might_Inline_Subp return Boolean is
- E : Entity_Id;
-
- begin
- if not Inline_Processing_Required then
- return False;
-
- else
- E := First_Entity (Gen_Unit);
- while Present (E) loop
- if Is_Subprogram (E)
- and then Is_Inlined (E)
- then
- return True;
- end if;
-
- Next_Entity (E);
- end loop;
- end if;
-
- return False;
- end Might_Inline_Subp;
-
- -- Start of processing for Analyze_Package_Instantiation
-
- begin
- -- Very first thing: apply the special kludge for Text_IO processing
- -- in case we are instantiating one of the children of [Wide_]Text_IO.
-
- Text_IO_Kludge (Name (N));
-
- -- Make node global for error reporting
-
- Instantiation_Node := N;
-
- -- Case of instantiation of a generic package
-
- if Nkind (N) = N_Package_Instantiation then
- Act_Decl_Id := New_Copy (Defining_Entity (N));
- Set_Comes_From_Source (Act_Decl_Id, True);
-
- if Nkind (Defining_Unit_Name (N)) = N_Defining_Program_Unit_Name then
- Act_Decl_Name :=
- Make_Defining_Program_Unit_Name (Loc,
- Name => New_Copy_Tree (Name (Defining_Unit_Name (N))),
- Defining_Identifier => Act_Decl_Id);
- else
- Act_Decl_Name := Act_Decl_Id;
- end if;
-
- -- Case of instantiation of a formal package
-
- else
- Act_Decl_Id := Defining_Identifier (N);
- Act_Decl_Name := Act_Decl_Id;
- end if;
-
- Generate_Definition (Act_Decl_Id);
- Preanalyze_Actuals (N);
-
- Init_Env;
- Env_Installed := True;
- Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
- Gen_Unit := Entity (Gen_Id);
-
- -- Verify that it is the name of a generic package
-
- if Etype (Gen_Unit) = Any_Type then
- Restore_Env;
- return;
-
- elsif Ekind (Gen_Unit) /= E_Generic_Package then
-
- -- Ada 2005 (AI-50217): Cannot use instance in limited with_clause
-
- if From_With_Type (Gen_Unit) then
- Error_Msg_N
- ("cannot instantiate a limited withed package", Gen_Id);
- else
- Error_Msg_N
- ("expect name of generic package in instantiation", Gen_Id);
- end if;
-
- Restore_Env;
- return;
- end if;
-
- if In_Extended_Main_Source_Unit (N) then
- Set_Is_Instantiated (Gen_Unit);
- Generate_Reference (Gen_Unit, N);
-
- if Present (Renamed_Object (Gen_Unit)) then
- Set_Is_Instantiated (Renamed_Object (Gen_Unit));
- Generate_Reference (Renamed_Object (Gen_Unit), N);
- end if;
- end if;
-
- if Nkind (Gen_Id) = N_Identifier
- and then Chars (Gen_Unit) = Chars (Defining_Entity (N))
- then
- Error_Msg_NE
- ("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
-
- elsif Nkind (Gen_Id) = N_Expanded_Name
- and then Is_Child_Unit (Gen_Unit)
- and then Nkind (Prefix (Gen_Id)) = N_Identifier
- and then Chars (Act_Decl_Id) = Chars (Prefix (Gen_Id))
- then
- Error_Msg_N
- ("& is hidden within declaration of instance ", Prefix (Gen_Id));
- end if;
-
- Set_Entity (Gen_Id, Gen_Unit);
-
- -- If generic is a renaming, get original generic unit
-
- if Present (Renamed_Object (Gen_Unit))
- and then Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Package
- then
- Gen_Unit := Renamed_Object (Gen_Unit);
- end if;
-
- -- Verify that there are no circular instantiations
-
- if In_Open_Scopes (Gen_Unit) then
- Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit);
- Restore_Env;
- return;
-
- elsif Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then
- Error_Msg_Node_2 := Current_Scope;
- Error_Msg_NE
- ("circular Instantiation: & instantiated in &!", N, Gen_Unit);
- Circularity_Detected := True;
- Restore_Env;
- return;
-
- else
- Gen_Decl := Unit_Declaration_Node (Gen_Unit);
-
- -- Initialize renamings map, for error checking, and the list that
- -- holds private entities whose views have changed between generic
- -- definition and instantiation. If this is the instance created to
- -- validate an actual package, the instantiation environment is that
- -- of the enclosing instance.
-
- Generic_Renamings.Set_Last (0);
- Generic_Renamings_HTable.Reset;
-
- Create_Instantiation_Source (N, Gen_Unit, False, S_Adjustment);
-
- -- Copy original generic tree, to produce text for instantiation
-
- Act_Tree :=
- Copy_Generic_Node
- (Original_Node (Gen_Decl), Empty, Instantiating => True);
-
- Act_Spec := Specification (Act_Tree);
-
- -- If this is the instance created to validate an actual package,
- -- only the formals matter, do not examine the package spec itself.
-
- if Is_Actual_Pack then
- Set_Visible_Declarations (Act_Spec, New_List);
- Set_Private_Declarations (Act_Spec, New_List);
- end if;
-
- Renaming_List :=
- Analyze_Associations
- (N,
- Generic_Formal_Declarations (Act_Tree),
- Generic_Formal_Declarations (Gen_Decl));
-
- Set_Instance_Env (Gen_Unit, Act_Decl_Id);
- Set_Defining_Unit_Name (Act_Spec, Act_Decl_Name);
- Set_Is_Generic_Instance (Act_Decl_Id);
-
- Set_Generic_Parent (Act_Spec, Gen_Unit);
-
- -- References to the generic in its own declaration or its body are
- -- references to the instance. Add a renaming declaration for the
- -- generic unit itself. This declaration, as well as the renaming
- -- declarations for the generic formals, must remain private to the
- -- unit: the formals, because this is the language semantics, and
- -- the unit because its use is an artifact of the implementation.
-
- Unit_Renaming :=
- Make_Package_Renaming_Declaration (Loc,
- Defining_Unit_Name =>
- Make_Defining_Identifier (Loc, Chars (Gen_Unit)),
- Name => New_Reference_To (Act_Decl_Id, Loc));
-
- Append (Unit_Renaming, Renaming_List);
-
- -- The renaming declarations are the first local declarations of
- -- the new unit.
-
- if Is_Non_Empty_List (Visible_Declarations (Act_Spec)) then
- Insert_List_Before
- (First (Visible_Declarations (Act_Spec)), Renaming_List);
- else
- Set_Visible_Declarations (Act_Spec, Renaming_List);
- end if;
-
- Act_Decl :=
- Make_Package_Declaration (Loc,
- Specification => Act_Spec);
-
- -- Save the instantiation node, for subsequent instantiation of the
- -- body, if there is one and we are generating code for the current
- -- unit. Mark the unit as having a body, to avoid a premature error
- -- message.
-
- -- We instantiate the body if we are generating code, if we are
- -- generating cross-reference information, or if we are building
- -- trees for ASIS use.
-
- declare
- Enclosing_Body_Present : Boolean := False;
- -- If the generic unit is not a compilation unit, then a body may
- -- be present in its parent even if none is required. We create a
- -- tentative pending instantiation for the body, which will be
- -- discarded if none is actually present.
-
- Scop : Entity_Id;
-
- begin
- if Scope (Gen_Unit) /= Standard_Standard
- and then not Is_Child_Unit (Gen_Unit)
- then
- Scop := Scope (Gen_Unit);
-
- while Present (Scop)
- and then Scop /= Standard_Standard
- loop
- if Unit_Requires_Body (Scop) then
- Enclosing_Body_Present := True;
- exit;
-
- elsif In_Open_Scopes (Scop)
- and then In_Package_Body (Scop)
- then
- Enclosing_Body_Present := True;
- exit;
- end if;
-
- exit when Is_Compilation_Unit (Scop);
- Scop := Scope (Scop);
- end loop;
- end if;
-
- -- If front-end inlining is enabled, and this is a unit for which
- -- code will be generated, we instantiate the body at once.
-
- -- This is done if the instance is not the main unit, and if the
- -- generic is not a child unit of another generic, to avoid scope
- -- problems and the reinstallation of parent instances.
-
- if Expander_Active
- and then (not Is_Child_Unit (Gen_Unit)
- or else not Is_Generic_Unit (Scope (Gen_Unit)))
- and then Might_Inline_Subp
- and then not Is_Actual_Pack
- then
- if Front_End_Inlining
- and then (Is_In_Main_Unit (N)
- or else In_Main_Context (Current_Scope))
- and then Nkind (Parent (N)) /= N_Compilation_Unit
- then
- Inline_Now := True;
-
- -- In configurable_run_time mode we force the inlining of
- -- predefined subprograms marked Inline_Always, to minimize
- -- the use of the run-time library.
-
- elsif Is_Predefined_File_Name
- (Unit_File_Name (Get_Source_Unit (Gen_Decl)))
- and then Configurable_Run_Time_Mode
- and then Nkind (Parent (N)) /= N_Compilation_Unit
- then
- Inline_Now := True;
- end if;
-
- -- If the current scope is itself an instance within a child
- -- unit, there will be duplications in the scope stack, and the
- -- unstacking mechanism in Inline_Instance_Body will fail.
- -- This loses some rare cases of optimization, and might be
- -- improved some day, if we can find a proper abstraction for
- -- "the complete compilation context" that can be saved and
- -- restored. ???
-
- if Is_Generic_Instance (Current_Scope) then
- declare
- Curr_Unit : constant Entity_Id :=
- Cunit_Entity (Current_Sem_Unit);
- begin
- if Curr_Unit /= Current_Scope
- and then Is_Child_Unit (Curr_Unit)
- then
- Inline_Now := False;
- end if;
- end;
- end if;
- end if;
-
- Needs_Body :=
- (Unit_Requires_Body (Gen_Unit)
- or else Enclosing_Body_Present
- or else Present (Corresponding_Body (Gen_Decl)))
- and then (Is_In_Main_Unit (N)
- or else Might_Inline_Subp)
- and then not Is_Actual_Pack
- and then not Inline_Now
- and then (Operating_Mode = Generate_Code
- or else (Operating_Mode = Check_Semantics
- and then ASIS_Mode));
-
- -- If front_end_inlining is enabled, do not instantiate body if
- -- within a generic context.
-
- if (Front_End_Inlining
- and then not Expander_Active)
- or else Is_Generic_Unit (Cunit_Entity (Main_Unit))
- then
- Needs_Body := False;
- end if;
-
- -- If the current context is generic, and the package being
- -- instantiated is declared within a formal package, there is no
- -- body to instantiate until the enclosing generic is instantiated
- -- and there is an actual for the formal package. If the formal
- -- package has parameters, we build a regular package instance for
- -- it, that precedes the original formal package declaration.
-
- if In_Open_Scopes (Scope (Scope (Gen_Unit))) then
- declare
- Decl : constant Node_Id :=
- Original_Node
- (Unit_Declaration_Node (Scope (Gen_Unit)));
- begin
- if Nkind (Decl) = N_Formal_Package_Declaration
- or else (Nkind (Decl) = N_Package_Declaration
- and then Is_List_Member (Decl)
- and then Present (Next (Decl))
- and then
- Nkind (Next (Decl)) =
- N_Formal_Package_Declaration)
- then
- Needs_Body := False;
- end if;
- end;
- end if;
- end;
-
- -- If we are generating the calling stubs from the instantiation of
- -- a generic RCI package, we will not use the body of the generic
- -- package.
-
- if Distribution_Stub_Mode = Generate_Caller_Stub_Body
- and then Is_Compilation_Unit (Defining_Entity (N))
- then
- Needs_Body := False;
- end if;
-
- if Needs_Body then
-
- -- Here is a defence against a ludicrous number of instantiations
- -- caused by a circular set of instantiation attempts.
-
- if Pending_Instantiations.Last >
- Hostparm.Max_Instantiations
- then
- Error_Msg_N ("too many instantiations", N);
- raise Unrecoverable_Error;
- end if;
-
- -- Indicate that the enclosing scopes contain an instantiation,
- -- and that cleanup actions should be delayed until after the
- -- instance body is expanded.
-
- Check_Forward_Instantiation (Gen_Decl);
- if Nkind (N) = N_Package_Instantiation then
- declare
- Enclosing_Master : Entity_Id;
-
- begin
- -- Loop to search enclosing masters
-
- Enclosing_Master := Current_Scope;
- Scope_Loop : while Enclosing_Master /= Standard_Standard loop
- if Ekind (Enclosing_Master) = E_Package then
- if Is_Compilation_Unit (Enclosing_Master) then
- if In_Package_Body (Enclosing_Master) then
- Delay_Descriptors
- (Body_Entity (Enclosing_Master));
- else
- Delay_Descriptors
- (Enclosing_Master);
- end if;
-
- exit Scope_Loop;
-
- else
- Enclosing_Master := Scope (Enclosing_Master);
- end if;
-
- elsif Ekind (Enclosing_Master) = E_Generic_Package then
- Enclosing_Master := Scope (Enclosing_Master);
-
- elsif Is_Generic_Subprogram (Enclosing_Master)
- or else Ekind (Enclosing_Master) = E_Void
- then
- -- Cleanup actions will eventually be performed on the
- -- enclosing instance, if any. Enclosing scope is void
- -- in the formal part of a generic subprogram.
-
- exit Scope_Loop;
-
- else
- if Ekind (Enclosing_Master) = E_Entry
- and then
- Ekind (Scope (Enclosing_Master)) = E_Protected_Type
- then
- if not Expander_Active then
- exit Scope_Loop;
- else
- Enclosing_Master :=
- Protected_Body_Subprogram (Enclosing_Master);
- end if;
- end if;
-
- Set_Delay_Cleanups (Enclosing_Master);
-
- while Ekind (Enclosing_Master) = E_Block loop
- Enclosing_Master := Scope (Enclosing_Master);
- end loop;
-
- if Is_Subprogram (Enclosing_Master) then
- Delay_Descriptors (Enclosing_Master);
-
- elsif Is_Task_Type (Enclosing_Master) then
- declare
- TBP : constant Node_Id :=
- Get_Task_Body_Procedure
- (Enclosing_Master);
- begin
- if Present (TBP) then
- Delay_Descriptors (TBP);
- Set_Delay_Cleanups (TBP);
- end if;
- end;
- end if;
-
- exit Scope_Loop;
- end if;
- end loop Scope_Loop;
- end;
-
- -- Make entry in table
-
- Pending_Instantiations.Append
- ((Inst_Node => N,
- Act_Decl => Act_Decl,
- Expander_Status => Expander_Active,
- Current_Sem_Unit => Current_Sem_Unit,
- Scope_Suppress => Scope_Suppress,
- Local_Suppress_Stack_Top => Local_Suppress_Stack_Top));
- end if;
- end if;
-
- Set_Categorization_From_Pragmas (Act_Decl);
-
- if Parent_Installed then
- Hide_Current_Scope;
- end if;
-
- Set_Instance_Spec (N, Act_Decl);
-
- -- If not a compilation unit, insert the package declaration before
- -- the original instantiation node.
-
- if Nkind (Parent (N)) /= N_Compilation_Unit then
- Mark_Rewrite_Insertion (Act_Decl);
- Insert_Before (N, Act_Decl);
- Analyze (Act_Decl);
-
- -- For an instantiation that is a compilation unit, place declaration
- -- on current node so context is complete for analysis (including
- -- nested instantiations). If this is the main unit, the declaration
- -- eventually replaces the instantiation node. If the instance body
- -- is created later, it replaces the instance node, and the
- -- declaration is attached to it (see
- -- Build_Instance_Compilation_Unit_Nodes).
-
- else
- if Cunit_Entity (Current_Sem_Unit) = Defining_Entity (N) then
-
- -- The entity for the current unit is the newly created one,
- -- and all semantic information is attached to it.
-
- Set_Cunit_Entity (Current_Sem_Unit, Act_Decl_Id);
-
- -- If this is the main unit, replace the main entity as well
-
- if Current_Sem_Unit = Main_Unit then
- Main_Unit_Entity := Act_Decl_Id;
- end if;
- end if;
-
- Set_Unit (Parent (N), Act_Decl);
- Set_Parent_Spec (Act_Decl, Parent_Spec (N));
- Set_Package_Instantiation (Act_Decl_Id, N);
- Analyze (Act_Decl);
- Set_Unit (Parent (N), N);
- Set_Body_Required (Parent (N), False);
-
- -- We never need elaboration checks on instantiations, since by
- -- definition, the body instantiation is elaborated at the same
- -- time as the spec instantiation.
-
- Set_Suppress_Elaboration_Warnings (Act_Decl_Id);
- Set_Kill_Elaboration_Checks (Act_Decl_Id);
- end if;
-
- Check_Elab_Instantiation (N);
-
- if ABE_Is_Certain (N) and then Needs_Body then
- Pending_Instantiations.Decrement_Last;
- end if;
-
- Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id);
-
- Set_First_Private_Entity (Defining_Unit_Name (Unit_Renaming),
- First_Private_Entity (Act_Decl_Id));
-
- -- If the instantiation will receive a body, the unit will be
- -- transformed into a package body, and receive its own elaboration
- -- entity. Otherwise, the nature of the unit is now a package
- -- declaration.
-
- if Nkind (Parent (N)) = N_Compilation_Unit
- and then not Needs_Body
- then
- Rewrite (N, Act_Decl);
- end if;
-
- if Present (Corresponding_Body (Gen_Decl))
- or else Unit_Requires_Body (Gen_Unit)
- then
- Set_Has_Completion (Act_Decl_Id);
- end if;
-
- Check_Formal_Packages (Act_Decl_Id);
-
- Restore_Private_Views (Act_Decl_Id);
-
- Inherit_Context (Gen_Decl, N);
-
- if Parent_Installed then
- Remove_Parent;
- end if;
-
- Restore_Env;
- Env_Installed := False;
- end if;
-
- Validate_Categorization_Dependency (N, Act_Decl_Id);
-
- -- Check restriction, but skip this if something went wrong in the above
- -- analysis, indicated by Act_Decl_Id being void.
-
- if Ekind (Act_Decl_Id) /= E_Void
- and then not Is_Library_Level_Entity (Act_Decl_Id)
- then
- Check_Restriction (No_Local_Allocators, N);
- end if;
-
- if Inline_Now then
- Inline_Instance_Body (N, Gen_Unit, Act_Decl);
- end if;
-
- -- The following is a tree patch for ASIS: ASIS needs separate nodes to
- -- be used as defining identifiers for a formal package and for the
- -- corresponding expanded package.
-
- if Nkind (N) = N_Formal_Package_Declaration then
- Act_Decl_Id := New_Copy (Defining_Entity (N));
- Set_Comes_From_Source (Act_Decl_Id, True);
- Set_Is_Generic_Instance (Act_Decl_Id, False);
- Set_Defining_Identifier (N, Act_Decl_Id);
- end if;
-
- exception
- when Instantiation_Error =>
- if Parent_Installed then
- Remove_Parent;
- end if;
-
- if Env_Installed then
- Restore_Env;
- end if;
- end Analyze_Package_Instantiation;
-
- --------------------------
- -- Inline_Instance_Body --
- --------------------------
-
- procedure Inline_Instance_Body
- (N : Node_Id;
- Gen_Unit : Entity_Id;
- Act_Decl : Node_Id)
- is
- Vis : Boolean;
- Gen_Comp : constant Entity_Id :=
- Cunit_Entity (Get_Source_Unit (Gen_Unit));
- Curr_Comp : constant Node_Id := Cunit (Current_Sem_Unit);
- Curr_Scope : Entity_Id := Empty;
- Curr_Unit : constant Entity_Id :=
- Cunit_Entity (Current_Sem_Unit);
- Removed : Boolean := False;
- Num_Scopes : Int := 0;
-
- Scope_Stack_Depth : constant Int :=
- Scope_Stack.Last - Scope_Stack.First + 1;
-
- Use_Clauses : array (1 .. Scope_Stack_Depth) of Node_Id;
- Instances : array (1 .. Scope_Stack_Depth) of Entity_Id;
- Inner_Scopes : array (1 .. Scope_Stack_Depth) of Entity_Id;
- Num_Inner : Int := 0;
- N_Instances : Int := 0;
- S : Entity_Id;
-
- begin
- -- Case of generic unit defined in another unit. We must remove the
- -- complete context of the current unit to install that of the generic.
-
- if Gen_Comp /= Cunit_Entity (Current_Sem_Unit) then
-
- -- Add some comments for the following two loops ???
-
- S := Current_Scope;
- while Present (S) and then S /= Standard_Standard loop
- loop
- Num_Scopes := Num_Scopes + 1;
-
- Use_Clauses (Num_Scopes) :=
- (Scope_Stack.Table
- (Scope_Stack.Last - Num_Scopes + 1).
- First_Use_Clause);
- End_Use_Clauses (Use_Clauses (Num_Scopes));
-
- exit when Scope_Stack.Last - Num_Scopes + 1 = Scope_Stack.First
- or else Scope_Stack.Table
- (Scope_Stack.Last - Num_Scopes).Entity
- = Scope (S);
- end loop;
-
- exit when Is_Generic_Instance (S)
- and then (In_Package_Body (S)
- or else Ekind (S) = E_Procedure
- or else Ekind (S) = E_Function);
- S := Scope (S);
- end loop;
-
- Vis := Is_Immediately_Visible (Gen_Comp);
-
- -- Find and save all enclosing instances
-
- S := Current_Scope;
-
- while Present (S)
- and then S /= Standard_Standard
- loop
- if Is_Generic_Instance (S) then
- N_Instances := N_Instances + 1;
- Instances (N_Instances) := S;
-
- exit when In_Package_Body (S);
- end if;
-
- S := Scope (S);
- end loop;
-
- -- Remove context of current compilation unit, unless we are within a
- -- nested package instantiation, in which case the context has been
- -- removed previously.
-
- -- If current scope is the body of a child unit, remove context of
- -- spec as well. If an enclosing scope is an instance body, the
- -- context has already been removed, but the entities in the body
- -- must be made invisible as well.
-
- S := Current_Scope;
-
- while Present (S)
- and then S /= Standard_Standard
- loop
- if Is_Generic_Instance (S)
- and then (In_Package_Body (S)
- or else Ekind (S) = E_Procedure
- or else Ekind (S) = E_Function)
- then
- -- We still have to remove the entities of the enclosing
- -- instance from direct visibility.
-
- declare
- E : Entity_Id;
- begin
- E := First_Entity (S);
- while Present (E) loop
- Set_Is_Immediately_Visible (E, False);
- Next_Entity (E);
- end loop;
- end;
-
- exit;
- end if;
-
- if S = Curr_Unit
- or else (Ekind (Curr_Unit) = E_Package_Body
- and then S = Spec_Entity (Curr_Unit))
- or else (Ekind (Curr_Unit) = E_Subprogram_Body
- and then S =
- Corresponding_Spec
- (Unit_Declaration_Node (Curr_Unit)))
- then
- Removed := True;
-
- -- Remove entities in current scopes from visibility, so that
- -- instance body is compiled in a clean environment.
-
- Save_Scope_Stack (Handle_Use => False);
-
- if Is_Child_Unit (S) then
-
- -- Remove child unit from stack, as well as inner scopes.
- -- Removing the context of a child unit removes parent units
- -- as well.
-
- while Current_Scope /= S loop
- Num_Inner := Num_Inner + 1;
- Inner_Scopes (Num_Inner) := Current_Scope;
- Pop_Scope;
- end loop;
-
- Pop_Scope;
- Remove_Context (Curr_Comp);
- Curr_Scope := S;
-
- else
- Remove_Context (Curr_Comp);
- end if;
-
- if Ekind (Curr_Unit) = E_Package_Body then
- Remove_Context (Library_Unit (Curr_Comp));
- end if;
- end if;
-
- S := Scope (S);
- end loop;
- pragma Assert (Num_Inner < Num_Scopes);
-
- Push_Scope (Standard_Standard);
- Scope_Stack.Table (Scope_Stack.Last).Is_Active_Stack_Base := True;
- Instantiate_Package_Body
- (Body_Info =>
- ((Inst_Node => N,
- Act_Decl => Act_Decl,
- Expander_Status => Expander_Active,
- Current_Sem_Unit => Current_Sem_Unit,
- Scope_Suppress => Scope_Suppress,
- Local_Suppress_Stack_Top => Local_Suppress_Stack_Top)),
- Inlined_Body => True);
-
- Pop_Scope;
-
- -- Restore context
-
- Set_Is_Immediately_Visible (Gen_Comp, Vis);
-
- -- Reset Generic_Instance flag so that use clauses can be installed
- -- in the proper order. (See Use_One_Package for effect of enclosing
- -- instances on processing of use clauses).
-
- for J in 1 .. N_Instances loop
- Set_Is_Generic_Instance (Instances (J), False);
- end loop;
-
- if Removed then
- Install_Context (Curr_Comp);
-
- if Present (Curr_Scope)
- and then Is_Child_Unit (Curr_Scope)
- then
- Push_Scope (Curr_Scope);
- Set_Is_Immediately_Visible (Curr_Scope);
-
- -- Finally, restore inner scopes as well
-
- for J in reverse 1 .. Num_Inner loop
- Push_Scope (Inner_Scopes (J));
- end loop;
- end if;
-
- Restore_Scope_Stack (Handle_Use => False);
-
- if Present (Curr_Scope)
- and then
- (In_Private_Part (Curr_Scope)
- or else In_Package_Body (Curr_Scope))
- then
- -- Install private declaration of ancestor units, which are
- -- currently available. Restore_Scope_Stack and Install_Context
- -- only install the visible part of parents.
-
- declare
- Par : Entity_Id;
- begin
- Par := Scope (Curr_Scope);
- while (Present (Par))
- and then Par /= Standard_Standard
- loop
- Install_Private_Declarations (Par);
- Par := Scope (Par);
- end loop;
- end;
- end if;
- end if;
-
- -- Restore use clauses. For a child unit, use clauses in the parents
- -- are restored when installing the context, so only those in inner
- -- scopes (and those local to the child unit itself) need to be
- -- installed explicitly.
-
- if Is_Child_Unit (Curr_Unit)
- and then Removed
- then
- for J in reverse 1 .. Num_Inner + 1 loop
- Scope_Stack.Table (Scope_Stack.Last - J + 1).First_Use_Clause :=
- Use_Clauses (J);
- Install_Use_Clauses (Use_Clauses (J));
- end loop;
-
- else
- for J in reverse 1 .. Num_Scopes loop
- Scope_Stack.Table (Scope_Stack.Last - J + 1).First_Use_Clause :=
- Use_Clauses (J);
- Install_Use_Clauses (Use_Clauses (J));
- end loop;
- end if;
-
- -- Restore status of instances. If one of them is a body, make
- -- its local entities visible again.
-
- declare
- E : Entity_Id;
- Inst : Entity_Id;
-
- begin
- for J in 1 .. N_Instances loop
- Inst := Instances (J);
- Set_Is_Generic_Instance (Inst, True);
-
- if In_Package_Body (Inst)
- or else Ekind (S) = E_Procedure
- or else Ekind (S) = E_Function
- then
- E := First_Entity (Instances (J));
- while Present (E) loop
- Set_Is_Immediately_Visible (E);
- Next_Entity (E);
- end loop;
- end if;
- end loop;
- end;
-
- -- If generic unit is in current unit, current context is correct
-
- else
- Instantiate_Package_Body
- (Body_Info =>
- ((Inst_Node => N,
- Act_Decl => Act_Decl,
- Expander_Status => Expander_Active,
- Current_Sem_Unit => Current_Sem_Unit,
- Scope_Suppress => Scope_Suppress,
- Local_Suppress_Stack_Top => Local_Suppress_Stack_Top)),
- Inlined_Body => True);
- end if;
- end Inline_Instance_Body;
-
- -------------------------------------
- -- Analyze_Procedure_Instantiation --
- -------------------------------------
-
- procedure Analyze_Procedure_Instantiation (N : Node_Id) is
- begin
- Analyze_Subprogram_Instantiation (N, E_Procedure);
- end Analyze_Procedure_Instantiation;
-
- -----------------------------------
- -- Need_Subprogram_Instance_Body --
- -----------------------------------
-
- function Need_Subprogram_Instance_Body
- (N : Node_Id;
- Subp : Entity_Id) return Boolean
- is
- begin
- if (Is_In_Main_Unit (N)
- or else Is_Inlined (Subp)
- or else Is_Inlined (Alias (Subp)))
- and then (Operating_Mode = Generate_Code
- or else (Operating_Mode = Check_Semantics
- and then ASIS_Mode))
- and then (Expander_Active or else ASIS_Mode)
- and then not ABE_Is_Certain (N)
- and then not Is_Eliminated (Subp)
- then
- Pending_Instantiations.Append
- ((Inst_Node => N,
- Act_Decl => Unit_Declaration_Node (Subp),
- Expander_Status => Expander_Active,
- Current_Sem_Unit => Current_Sem_Unit,
- Scope_Suppress => Scope_Suppress,
- Local_Suppress_Stack_Top => Local_Suppress_Stack_Top));
- return True;
- else
- return False;
- end if;
- end Need_Subprogram_Instance_Body;
-
- --------------------------------------
- -- Analyze_Subprogram_Instantiation --
- --------------------------------------
-
- procedure Analyze_Subprogram_Instantiation
- (N : Node_Id;
- K : Entity_Kind)
- is
- Loc : constant Source_Ptr := Sloc (N);
- Gen_Id : constant Node_Id := Name (N);
-
- Anon_Id : constant Entity_Id :=
- Make_Defining_Identifier (Sloc (Defining_Entity (N)),
- Chars => New_External_Name
- (Chars (Defining_Entity (N)), 'R'));
-
- Act_Decl_Id : Entity_Id;
- Act_Decl : Node_Id;
- Act_Spec : Node_Id;
- Act_Tree : Node_Id;
-
- Env_Installed : Boolean := False;
- Gen_Unit : Entity_Id;
- Gen_Decl : Node_Id;
- Pack_Id : Entity_Id;
- Parent_Installed : Boolean := False;
- Renaming_List : List_Id;
-
- procedure Analyze_Instance_And_Renamings;
- -- The instance must be analyzed in a context that includes the mappings
- -- of generic parameters into actuals. We create a package declaration
- -- for this purpose, and a subprogram with an internal name within the
- -- package. The subprogram instance is simply an alias for the internal
- -- subprogram, declared in the current scope.
-
- ------------------------------------
- -- Analyze_Instance_And_Renamings --
- ------------------------------------
-
- procedure Analyze_Instance_And_Renamings is
- Def_Ent : constant Entity_Id := Defining_Entity (N);
- Pack_Decl : Node_Id;
-
- begin
- if Nkind (Parent (N)) = N_Compilation_Unit then
-
- -- For the case of a compilation unit, the container package has
- -- the same name as the instantiation, to insure that the binder
- -- calls the elaboration procedure with the right name. Copy the
- -- entity of the instance, which may have compilation level flags
- -- (e.g. Is_Child_Unit) set.
-
- Pack_Id := New_Copy (Def_Ent);
-
- else
- -- Otherwise we use the name of the instantiation concatenated
- -- with its source position to ensure uniqueness if there are
- -- several instantiations with the same name.
-
- Pack_Id :=
- Make_Defining_Identifier (Loc,
- Chars => New_External_Name
- (Related_Id => Chars (Def_Ent),
- Suffix => "GP",
- Suffix_Index => Source_Offset (Sloc (Def_Ent))));
- end if;
-
- Pack_Decl := Make_Package_Declaration (Loc,
- Specification => Make_Package_Specification (Loc,
- Defining_Unit_Name => Pack_Id,
- Visible_Declarations => Renaming_List,
- End_Label => Empty));
-
- Set_Instance_Spec (N, Pack_Decl);
- Set_Is_Generic_Instance (Pack_Id);
- Set_Debug_Info_Needed (Pack_Id);
-
- -- Case of not a compilation unit
-
- if Nkind (Parent (N)) /= N_Compilation_Unit then
- Mark_Rewrite_Insertion (Pack_Decl);
- Insert_Before (N, Pack_Decl);
- Set_Has_Completion (Pack_Id);
-
- -- Case of an instantiation that is a compilation unit
-
- -- Place declaration on current node so context is complete for
- -- analysis (including nested instantiations), and for use in a
- -- context_clause (see Analyze_With_Clause).
-
- else
- Set_Unit (Parent (N), Pack_Decl);
- Set_Parent_Spec (Pack_Decl, Parent_Spec (N));
- end if;
-
- Analyze (Pack_Decl);
- Check_Formal_Packages (Pack_Id);
- Set_Is_Generic_Instance (Pack_Id, False);
-
- -- Body of the enclosing package is supplied when instantiating the
- -- subprogram body, after semantic analysis is completed.
-
- if Nkind (Parent (N)) = N_Compilation_Unit then
-
- -- Remove package itself from visibility, so it does not
- -- conflict with subprogram.
-
- Set_Name_Entity_Id (Chars (Pack_Id), Homonym (Pack_Id));
-
- -- Set name and scope of internal subprogram so that the proper
- -- external name will be generated. The proper scope is the scope
- -- of the wrapper package. We need to generate debugging info for
- -- the internal subprogram, so set flag accordingly.
-
- Set_Chars (Anon_Id, Chars (Defining_Entity (N)));
- Set_Scope (Anon_Id, Scope (Pack_Id));
-
- -- Mark wrapper package as referenced, to avoid spurious warnings
- -- if the instantiation appears in various with_ clauses of
- -- subunits of the main unit.
-
- Set_Referenced (Pack_Id);
- end if;
-
- Set_Is_Generic_Instance (Anon_Id);
- Set_Debug_Info_Needed (Anon_Id);
- Act_Decl_Id := New_Copy (Anon_Id);
-
- Set_Parent (Act_Decl_Id, Parent (Anon_Id));
- Set_Chars (Act_Decl_Id, Chars (Defining_Entity (N)));
- Set_Sloc (Act_Decl_Id, Sloc (Defining_Entity (N)));
- Set_Comes_From_Source (Act_Decl_Id, True);
-
- -- The signature may involve types that are not frozen yet, but the
- -- subprogram will be frozen at the point the wrapper package is
- -- frozen, so it does not need its own freeze node. In fact, if one
- -- is created, it might conflict with the freezing actions from the
- -- wrapper package.
-
- Set_Has_Delayed_Freeze (Anon_Id, False);
-
- -- If the instance is a child unit, mark the Id accordingly. Mark
- -- the anonymous entity as well, which is the real subprogram and
- -- which is used when the instance appears in a context clause.
-
- Set_Is_Child_Unit (Act_Decl_Id, Is_Child_Unit (Defining_Entity (N)));
- Set_Is_Child_Unit (Anon_Id, Is_Child_Unit (Defining_Entity (N)));
- New_Overloaded_Entity (Act_Decl_Id);
- Check_Eliminated (Act_Decl_Id);
-
- -- In compilation unit case, kill elaboration checks on the
- -- instantiation, since they are never needed -- the body is
- -- instantiated at the same point as the spec.
-
- if Nkind (Parent (N)) = N_Compilation_Unit then
- Set_Suppress_Elaboration_Warnings (Act_Decl_Id);
- Set_Kill_Elaboration_Checks (Act_Decl_Id);
- Set_Is_Compilation_Unit (Anon_Id);
-
- Set_Cunit_Entity (Current_Sem_Unit, Pack_Id);
- end if;
-
- -- The instance is not a freezing point for the new subprogram
-
- Set_Is_Frozen (Act_Decl_Id, False);
-
- if Nkind (Defining_Entity (N)) = N_Defining_Operator_Symbol then
- Valid_Operator_Definition (Act_Decl_Id);
- end if;
-
- Set_Alias (Act_Decl_Id, Anon_Id);
- Set_Parent (Act_Decl_Id, Parent (Anon_Id));
- Set_Has_Completion (Act_Decl_Id);
- Set_Related_Instance (Pack_Id, Act_Decl_Id);
-
- if Nkind (Parent (N)) = N_Compilation_Unit then
- Set_Body_Required (Parent (N), False);
- end if;
- end Analyze_Instance_And_Renamings;
-
- -- Start of processing for Analyze_Subprogram_Instantiation
-
- begin
- -- Very first thing: apply the special kludge for Text_IO processing
- -- in case we are instantiating one of the children of [Wide_]Text_IO.
- -- Of course such an instantiation is bogus (these are packages, not
- -- subprograms), but we get a better error message if we do this.
-
- Text_IO_Kludge (Gen_Id);
-
- -- Make node global for error reporting
-
- Instantiation_Node := N;
- Preanalyze_Actuals (N);
-
- Init_Env;
- Env_Installed := True;
- Check_Generic_Child_Unit (Gen_Id, Parent_Installed);
- Gen_Unit := Entity (Gen_Id);
-
- Generate_Reference (Gen_Unit, Gen_Id);
-
- if Nkind (Gen_Id) = N_Identifier
- and then Chars (Gen_Unit) = Chars (Defining_Entity (N))
- then
- Error_Msg_NE
- ("& is hidden within declaration of instance", Gen_Id, Gen_Unit);
- end if;
-
- if Etype (Gen_Unit) = Any_Type then
- Restore_Env;
- return;
- end if;
-
- -- Verify that it is a generic subprogram of the right kind, and that
- -- it does not lead to a circular instantiation.
-
- if Ekind (Gen_Unit) /= E_Generic_Procedure
- and then Ekind (Gen_Unit) /= E_Generic_Function
- then
- Error_Msg_N ("expect generic subprogram in instantiation", Gen_Id);
-
- elsif In_Open_Scopes (Gen_Unit) then
- Error_Msg_NE ("instantiation of & within itself", N, Gen_Unit);
-
- elsif K = E_Procedure
- and then Ekind (Gen_Unit) /= E_Generic_Procedure
- then
- if Ekind (Gen_Unit) = E_Generic_Function then
- Error_Msg_N
- ("cannot instantiate generic function as procedure", Gen_Id);
- else
- Error_Msg_N
- ("expect name of generic procedure in instantiation", Gen_Id);
- end if;
-
- elsif K = E_Function
- and then Ekind (Gen_Unit) /= E_Generic_Function
- then
- if Ekind (Gen_Unit) = E_Generic_Procedure then
- Error_Msg_N
- ("cannot instantiate generic procedure as function", Gen_Id);
- else
- Error_Msg_N
- ("expect name of generic function in instantiation", Gen_Id);
- end if;
-
- else
- Set_Entity (Gen_Id, Gen_Unit);
- Set_Is_Instantiated (Gen_Unit);
-
- if In_Extended_Main_Source_Unit (N) then
- Generate_Reference (Gen_Unit, N);
- end if;
-
- -- If renaming, get original unit
-
- if Present (Renamed_Object (Gen_Unit))
- and then (Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Procedure
- or else
- Ekind (Renamed_Object (Gen_Unit)) = E_Generic_Function)
- then
- Gen_Unit := Renamed_Object (Gen_Unit);
- Set_Is_Instantiated (Gen_Unit);
- Generate_Reference (Gen_Unit, N);
- end if;
-
- if Contains_Instance_Of (Gen_Unit, Current_Scope, Gen_Id) then
- Error_Msg_Node_2 := Current_Scope;
- Error_Msg_NE
- ("circular Instantiation: & instantiated in &!", N, Gen_Unit);
- Circularity_Detected := True;
- return;
- end if;
-
- Gen_Decl := Unit_Declaration_Node (Gen_Unit);
-
- -- Initialize renamings map, for error checking
-
- Generic_Renamings.Set_Last (0);
- Generic_Renamings_HTable.Reset;
-
- Create_Instantiation_Source (N, Gen_Unit, False, S_Adjustment);
-
- -- Copy original generic tree, to produce text for instantiation
-
- Act_Tree :=
- Copy_Generic_Node
- (Original_Node (Gen_Decl), Empty, Instantiating => True);
-
- -- Inherit overriding indicator from instance node
-
- Act_Spec := Specification (Act_Tree);
- Set_Must_Override (Act_Spec, Must_Override (N));
- Set_Must_Not_Override (Act_Spec, Must_Not_Override (N));
-
- Renaming_List :=
- Analyze_Associations
- (N,
- Generic_Formal_Declarations (Act_Tree),
- Generic_Formal_Declarations (Gen_Decl));
-
- -- The subprogram itself cannot contain a nested instance, so the
- -- current parent is left empty.
-
- Set_Instance_Env (Gen_Unit, Empty);
-
- -- Build the subprogram declaration, which does not appear in the
- -- generic template, and give it a sloc consistent with that of the
- -- template.
-
- Set_Defining_Unit_Name (Act_Spec, Anon_Id);
- Set_Generic_Parent (Act_Spec, Gen_Unit);
- Act_Decl :=
- Make_Subprogram_Declaration (Sloc (Act_Spec),
- Specification => Act_Spec);
-
- Set_Categorization_From_Pragmas (Act_Decl);
-
- if Parent_Installed then
- Hide_Current_Scope;
- end if;
-
- Append (Act_Decl, Renaming_List);
- Analyze_Instance_And_Renamings;
-
- -- If the generic is marked Import (Intrinsic), then so is the
- -- instance. This indicates that there is no body to instantiate. If
- -- generic is marked inline, so it the instance, and the anonymous
- -- subprogram it renames. If inlined, or else if inlining is enabled
- -- for the compilation, we generate the instance body even if it is
- -- not within the main unit.
-
- -- Any other pragmas might also be inherited ???
-
- if Is_Intrinsic_Subprogram (Gen_Unit) then
- Set_Is_Intrinsic_Subprogram (Anon_Id);
- Set_Is_Intrinsic_Subprogram (Act_Decl_Id);
-
- if Chars (Gen_Unit) = Name_Unchecked_Conversion then
- Validate_Unchecked_Conversion (N, Act_Decl_Id);
- end if;
- end if;
-
- Generate_Definition (Act_Decl_Id);
-
- Set_Is_Inlined (Act_Decl_Id, Is_Inlined (Gen_Unit));
- Set_Is_Inlined (Anon_Id, Is_Inlined (Gen_Unit));
-
- if not Is_Intrinsic_Subprogram (Gen_Unit) then
- Check_Elab_Instantiation (N);
- end if;
-
- if Is_Dispatching_Operation (Act_Decl_Id)
- and then Ada_Version >= Ada_05
- then
- declare
- Formal : Entity_Id;
-
- begin
- Formal := First_Formal (Act_Decl_Id);
- while Present (Formal) loop
- if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
- and then Is_Controlling_Formal (Formal)
- and then not Can_Never_Be_Null (Formal)
- then
- Error_Msg_NE ("access parameter& is controlling,",
- N, Formal);
- Error_Msg_NE ("\corresponding parameter of & must be"
- & " explicitly null-excluding", N, Gen_Id);
- end if;
-
- Next_Formal (Formal);
- end loop;
- end;
- end if;
-
- Check_Hidden_Child_Unit (N, Gen_Unit, Act_Decl_Id);
-
- -- Subject to change, pending on if other pragmas are inherited ???
-
- Validate_Categorization_Dependency (N, Act_Decl_Id);
-
- if not Is_Intrinsic_Subprogram (Act_Decl_Id) then
- Inherit_Context (Gen_Decl, N);
-
- Restore_Private_Views (Pack_Id, False);
-
- -- If the context requires a full instantiation, mark node for
- -- subsequent construction of the body.
-
- if Need_Subprogram_Instance_Body (N, Act_Decl_Id) then
-
- Check_Forward_Instantiation (Gen_Decl);
-
- -- The wrapper package is always delayed, because it does not
- -- constitute a freeze point, but to insure that the freeze
- -- node is placed properly, it is created directly when
- -- instantiating the body (otherwise the freeze node might
- -- appear to early for nested instantiations).
-
- elsif Nkind (Parent (N)) = N_Compilation_Unit then
-
- -- For ASIS purposes, indicate that the wrapper package has
- -- replaced the instantiation node.
-
- Rewrite (N, Unit (Parent (N)));
- Set_Unit (Parent (N), N);
- end if;
-
- elsif Nkind (Parent (N)) = N_Compilation_Unit then
-
- -- Replace instance node for library-level instantiations of
- -- intrinsic subprograms, for ASIS use.
-
- Rewrite (N, Unit (Parent (N)));
- Set_Unit (Parent (N), N);
- end if;
-
- if Parent_Installed then
- Remove_Parent;
- end if;
-
- Restore_Env;
- Env_Installed := False;
- Generic_Renamings.Set_Last (0);
- Generic_Renamings_HTable.Reset;
- end if;
-
- exception
- when Instantiation_Error =>
- if Parent_Installed then
- Remove_Parent;
- end if;
-
- if Env_Installed then
- Restore_Env;
- end if;
- end Analyze_Subprogram_Instantiation;
-
- -------------------------
- -- Get_Associated_Node --
- -------------------------
-
- function Get_Associated_Node (N : Node_Id) return Node_Id is
- Assoc : Node_Id;
-
- begin
- Assoc := Associated_Node (N);
-
- if Nkind (Assoc) /= Nkind (N) then
- return Assoc;
-
- elsif Nkind_In (Assoc, N_Aggregate, N_Extension_Aggregate) then
- return Assoc;
-
- else
- -- If the node is part of an inner generic, it may itself have been
- -- remapped into a further generic copy. Associated_Node is otherwise
- -- used for the entity of the node, and will be of a different node
- -- kind, or else N has been rewritten as a literal or function call.
-
- while Present (Associated_Node (Assoc))
- and then Nkind (Associated_Node (Assoc)) = Nkind (Assoc)
- loop
- Assoc := Associated_Node (Assoc);
- end loop;
-
- -- Follow and additional link in case the final node was rewritten.
- -- This can only happen with nested generic units.
-
- if (Nkind (Assoc) = N_Identifier or else Nkind (Assoc) in N_Op)
- and then Present (Associated_Node (Assoc))
- and then (Nkind_In (Associated_Node (Assoc), N_Function_Call,
- N_Explicit_Dereference,
- N_Integer_Literal,
- N_Real_Literal,
- N_String_Literal))
- then
- Assoc := Associated_Node (Assoc);
- end if;
-
- return Assoc;
- end if;
- end Get_Associated_Node;
-
- -------------------------------------------
- -- Build_Instance_Compilation_Unit_Nodes --
- -------------------------------------------
-
- procedure Build_Instance_Compilation_Unit_Nodes
- (N : Node_Id;
- Act_Body : Node_Id;
- Act_Decl : Node_Id)
- is
- Decl_Cunit : Node_Id;
- Body_Cunit : Node_Id;
- Citem : Node_Id;
- New_Main : constant Entity_Id := Defining_Entity (Act_Decl);
- Old_Main : constant Entity_Id := Cunit_Entity (Main_Unit);
-
- begin
- -- A new compilation unit node is built for the instance declaration
-
- Decl_Cunit :=
- Make_Compilation_Unit (Sloc (N),
- Context_Items => Empty_List,
- Unit => Act_Decl,
- Aux_Decls_Node =>
- Make_Compilation_Unit_Aux (Sloc (N)));
-
- Set_Parent_Spec (Act_Decl, Parent_Spec (N));
- Set_Body_Required (Decl_Cunit, True);
-
- -- We use the original instantiation compilation unit as the resulting
- -- compilation unit of the instance, since this is the main unit.
-
- Rewrite (N, Act_Body);
- Body_Cunit := Parent (N);
-
- -- The two compilation unit nodes are linked by the Library_Unit field
-
- Set_Library_Unit (Decl_Cunit, Body_Cunit);
- Set_Library_Unit (Body_Cunit, Decl_Cunit);
-
- -- Preserve the private nature of the package if needed
-
- Set_Private_Present (Decl_Cunit, Private_Present (Body_Cunit));
-
- -- If the instance is not the main unit, its context, categorization,
- -- and elaboration entity are not relevant to the compilation.
-
- if Parent (N) /= Cunit (Main_Unit) then
- return;
- end if;
-
- -- The context clause items on the instantiation, which are now attached
- -- to the body compilation unit (since the body overwrote the original
- -- instantiation node), semantically belong on the spec, so copy them
- -- there. It's harmless to leave them on the body as well. In fact one
- -- could argue that they belong in both places.
-
- Citem := First (Context_Items (Body_Cunit));
- while Present (Citem) loop
- Append (New_Copy (Citem), Context_Items (Decl_Cunit));
- Next (Citem);
- end loop;
-
- -- Propagate categorization flags on packages, so that they appear in
- -- the ali file for the spec of the unit.
-
- if Ekind (New_Main) = E_Package then
- Set_Is_Pure (Old_Main, Is_Pure (New_Main));
- Set_Is_Preelaborated (Old_Main, Is_Preelaborated (New_Main));
- Set_Is_Remote_Types (Old_Main, Is_Remote_Types (New_Main));
- Set_Is_Shared_Passive (Old_Main, Is_Shared_Passive (New_Main));
- Set_Is_Remote_Call_Interface
- (Old_Main, Is_Remote_Call_Interface (New_Main));
- end if;
-
- -- Make entry in Units table, so that binder can generate call to
- -- elaboration procedure for body, if any.
-
- Make_Instance_Unit (Body_Cunit);
- Main_Unit_Entity := New_Main;
- Set_Cunit_Entity (Main_Unit, Main_Unit_Entity);
-
- -- Build elaboration entity, since the instance may certainly generate
- -- elaboration code requiring a flag for protection.
-
- Build_Elaboration_Entity (Decl_Cunit, New_Main);
- end Build_Instance_Compilation_Unit_Nodes;
-
- -----------------------------
- -- Check_Access_Definition --
- -----------------------------
-
- procedure Check_Access_Definition (N : Node_Id) is
- begin
- pragma Assert
- (Ada_Version >= Ada_05
- and then Present (Access_Definition (N)));
- null;
- end Check_Access_Definition;
-
- -----------------------------------
- -- Check_Formal_Package_Instance --
- -----------------------------------
-
- -- If the formal has specific parameters, they must match those of the
- -- actual. Both of them are instances, and the renaming declarations for
- -- their formal parameters appear in the same order in both. The analyzed
- -- formal has been analyzed in the context of the current instance.
-
- procedure Check_Formal_Package_Instance
- (Formal_Pack : Entity_Id;
- Actual_Pack : Entity_Id)
- is
- E1 : Entity_Id := First_Entity (Actual_Pack);
- E2 : Entity_Id := First_Entity (Formal_Pack);
-
- Expr1 : Node_Id;
- Expr2 : Node_Id;
-
- procedure Check_Mismatch (B : Boolean);
- -- Common error routine for mismatch between the parameters of the
- -- actual instance and those of the formal package.
-
- function Same_Instantiated_Constant (E1, E2 : Entity_Id) return Boolean;
- -- The formal may come from a nested formal package, and the actual may
- -- have been constant-folded. To determine whether the two denote the
- -- same entity we may have to traverse several definitions to recover
- -- the ultimate entity that they refer to.
-
- function Same_Instantiated_Variable (E1, E2 : Entity_Id) return Boolean;
- -- Similarly, if the formal comes from a nested formal package, the
- -- actual may designate the formal through multiple renamings, which
- -- have to be followed to determine the original variable in question.
-
- --------------------
- -- Check_Mismatch --
- --------------------
-
- procedure Check_Mismatch (B : Boolean) is
- Kind : constant Node_Kind := Nkind (Parent (E2));
-
- begin
- if Kind = N_Formal_Type_Declaration then
- return;
-
- elsif Nkind_In (Kind, N_Formal_Object_Declaration,
- N_Formal_Package_Declaration)
- or else Kind in N_Formal_Subprogram_Declaration
- then
- null;
-
- elsif B then
- Error_Msg_NE
- ("actual for & in actual instance does not match formal",
- Parent (Actual_Pack), E1);
- end if;
- end Check_Mismatch;
-
- --------------------------------
- -- Same_Instantiated_Constant --
- --------------------------------
-
- function Same_Instantiated_Constant
- (E1, E2 : Entity_Id) return Boolean
- is
- Ent : Entity_Id;
-
- begin
- Ent := E2;
- while Present (Ent) loop
- if E1 = Ent then
- return True;
-
- elsif Ekind (Ent) /= E_Constant then
- return False;
-
- elsif Is_Entity_Name (Constant_Value (Ent)) then
- if Entity (Constant_Value (Ent)) = E1 then
- return True;
- else
- Ent := Entity (Constant_Value (Ent));
- end if;
-
- -- The actual may be a constant that has been folded. Recover
- -- original name.
-
- elsif Is_Entity_Name (Original_Node (Constant_Value (Ent))) then
- Ent := Entity (Original_Node (Constant_Value (Ent)));
- else
- return False;
- end if;
- end loop;
-
- return False;
- end Same_Instantiated_Constant;
-
- --------------------------------
- -- Same_Instantiated_Variable --
- --------------------------------
-
- function Same_Instantiated_Variable
- (E1, E2 : Entity_Id) return Boolean
- is
- function Original_Entity (E : Entity_Id) return Entity_Id;
- -- Follow chain of renamings to the ultimate ancestor
-
- ---------------------
- -- Original_Entity --
- ---------------------
-
- function Original_Entity (E : Entity_Id) return Entity_Id is
- Orig : Entity_Id;
-
- begin
- Orig := E;
- while Nkind (Parent (Orig)) = N_Object_Renaming_Declaration
- and then Present (Renamed_Object (Orig))
- and then Is_Entity_Name (Renamed_Object (Orig))
- loop
- Orig := Entity (Renamed_Object (Orig));
- end loop;
-
- return Orig;
- end Original_Entity;
-
- -- Start of processing for Same_Instantiated_Variable
-
- begin
- return Ekind (E1) = Ekind (E2)
- and then Original_Entity (E1) = Original_Entity (E2);
- end Same_Instantiated_Variable;
-
- -- Start of processing for Check_Formal_Package_Instance
-
- begin
- while Present (E1)
- and then Present (E2)
- loop
- exit when Ekind (E1) = E_Package
- and then Renamed_Entity (E1) = Renamed_Entity (Actual_Pack);
-
- -- If the formal is the renaming of the formal package, this
- -- is the end of its formal part, which may occur before the
- -- end of the formal part in the actual in the presence of
- -- defaulted parameters in the formal package.
-
- exit when Nkind (Parent (E2)) = N_Package_Renaming_Declaration
- and then Renamed_Entity (E2) = Scope (E2);
-
- -- The analysis of the actual may generate additional internal
- -- entities. If the formal is defaulted, there is no corresponding
- -- analysis and the internal entities must be skipped, until we
- -- find corresponding entities again.
-
- if Comes_From_Source (E2)
- and then not Comes_From_Source (E1)
- and then Chars (E1) /= Chars (E2)
- then
- while Present (E1)
- and then Chars (E1) /= Chars (E2)
- loop
- Next_Entity (E1);
- end loop;
- end if;
-
- if No (E1) then
- return;
-
- -- If the formal entity comes from a formal declaration, it was
- -- defaulted in the formal package, and no check is needed on it.
-
- elsif Nkind (Parent (E2)) = N_Formal_Object_Declaration then
- goto Next_E;
-
- elsif Is_Type (E1) then
-
- -- Subtypes must statically match. E1, E2 are the local entities
- -- that are subtypes of the actuals. Itypes generated for other
- -- parameters need not be checked, the check will be performed
- -- on the parameters themselves.
-
- -- If E2 is a formal type declaration, it is a defaulted parameter
- -- and needs no checking.
-
- if not Is_Itype (E1)
- and then not Is_Itype (E2)
- then
- Check_Mismatch
- (not Is_Type (E2)
- or else Etype (E1) /= Etype (E2)
- or else not Subtypes_Statically_Match (E1, E2));
- end if;
-
- elsif Ekind (E1) = E_Constant then
-
- -- IN parameters must denote the same static value, or the same
- -- constant, or the literal null.
-
- Expr1 := Expression (Parent (E1));
-
- if Ekind (E2) /= E_Constant then
- Check_Mismatch (True);
- goto Next_E;
- else
- Expr2 := Expression (Parent (E2));
- end if;
-
- if Is_Static_Expression (Expr1) then
-
- if not Is_Static_Expression (Expr2) then
- Check_Mismatch (True);
-
- elsif Is_Discrete_Type (Etype (E1)) then
- declare
- V1 : constant Uint := Expr_Value (Expr1);
- V2 : constant Uint := Expr_Value (Expr2);
- begin
- Check_Mismatch (V1 /= V2);
- end;
-
- elsif Is_Real_Type (Etype (E1)) then
- declare
- V1 : constant Ureal := Expr_Value_R (Expr1);
- V2 : constant Ureal := Expr_Value_R (Expr2);
- begin
- Check_Mismatch (V1 /= V2);
- end;
-
- elsif Is_String_Type (Etype (E1))
- and then Nkind (Expr1) = N_String_Literal
- then
- if Nkind (Expr2) /= N_String_Literal then
- Check_Mismatch (True);
- else
- Check_Mismatch
- (not String_Equal (Strval (Expr1), Strval (Expr2)));
- end if;
- end if;
-
- elsif Is_Entity_Name (Expr1) then
- if Is_Entity_Name (Expr2) then
- if Entity (Expr1) = Entity (Expr2) then
- null;
- else
- Check_Mismatch
- (not Same_Instantiated_Constant
- (Entity (Expr1), Entity (Expr2)));
- end if;
- else
- Check_Mismatch (True);
- end if;
-
- elsif Is_Entity_Name (Original_Node (Expr1))
- and then Is_Entity_Name (Expr2)
- and then
- Same_Instantiated_Constant
- (Entity (Original_Node (Expr1)), Entity (Expr2))
- then
- null;
-
- elsif Nkind (Expr1) = N_Null then
- Check_Mismatch (Nkind (Expr1) /= N_Null);
-
- else
- Check_Mismatch (True);
- end if;
-
- elsif Ekind (E1) = E_Variable then
- Check_Mismatch (not Same_Instantiated_Variable (E1, E2));
-
- elsif Ekind (E1) = E_Package then
- Check_Mismatch
- (Ekind (E1) /= Ekind (E2)
- or else Renamed_Object (E1) /= Renamed_Object (E2));
-
- elsif Is_Overloadable (E1) then
-
- -- Verify that the actual subprograms match. Note that actuals
- -- that are attributes are rewritten as subprograms. If the
- -- subprogram in the formal package is defaulted, no check is
- -- needed. Note that this can only happen in Ada 2005 when the
- -- formal package can be partially parametrized.
-
- if Nkind (Unit_Declaration_Node (E1)) =
- N_Subprogram_Renaming_Declaration
- and then From_Default (Unit_Declaration_Node (E1))
- then
- null;
-
- else
- Check_Mismatch
- (Ekind (E2) /= Ekind (E1) or else (Alias (E1)) /= Alias (E2));
- end if;
-
- else
- raise Program_Error;
- end if;
-
- <<Next_E>>
- Next_Entity (E1);
- Next_Entity (E2);
- end loop;
- end Check_Formal_Package_Instance;
-
- ---------------------------
- -- Check_Formal_Packages --
- ---------------------------
-
- procedure Check_Formal_Packages (P_Id : Entity_Id) is
- E : Entity_Id;
- Formal_P : Entity_Id;
-
- begin
- -- Iterate through the declarations in the instance, looking for package
- -- renaming declarations that denote instances of formal packages. Stop
- -- when we find the renaming of the current package itself. The
- -- declaration for a formal package without a box is followed by an
- -- internal entity that repeats the instantiation.
-
- E := First_Entity (P_Id);
- while Present (E) loop
- if Ekind (E) = E_Package then
- if Renamed_Object (E) = P_Id then
- exit;
-
- elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
- null;
-
- elsif not Box_Present (Parent (Associated_Formal_Package (E))) then
- Formal_P := Next_Entity (E);
- Check_Formal_Package_Instance (Formal_P, E);
-
- -- After checking, remove the internal validating package. It
- -- is only needed for semantic checks, and as it may contain
- -- generic formal declarations it should not reach gigi.
-
- Remove (Unit_Declaration_Node (Formal_P));
- end if;
- end if;
-
- Next_Entity (E);
- end loop;
- end Check_Formal_Packages;
-
- ---------------------------------
- -- Check_Forward_Instantiation --
- ---------------------------------
-
- procedure Check_Forward_Instantiation (Decl : Node_Id) is
- S : Entity_Id;
- Gen_Comp : Entity_Id := Cunit_Entity (Get_Source_Unit (Decl));
-
- begin
- -- The instantiation appears before the generic body if we are in the
- -- scope of the unit containing the generic, either in its spec or in
- -- the package body, and before the generic body.
-
- if Ekind (Gen_Comp) = E_Package_Body then
- Gen_Comp := Spec_Entity (Gen_Comp);
- end if;
-
- if In_Open_Scopes (Gen_Comp)
- and then No (Corresponding_Body (Decl))
- then
- S := Current_Scope;
-
- while Present (S)
- and then not Is_Compilation_Unit (S)
- and then not Is_Child_Unit (S)
- loop
- if Ekind (S) = E_Package then
- Set_Has_Forward_Instantiation (S);
- end if;
-
- S := Scope (S);
- end loop;
- end if;
- end Check_Forward_Instantiation;
-
- ---------------------------
- -- Check_Generic_Actuals --
- ---------------------------
-
- -- The visibility of the actuals may be different between the point of
- -- generic instantiation and the instantiation of the body.
-
- procedure Check_Generic_Actuals
- (Instance : Entity_Id;
- Is_Formal_Box : Boolean)
- is
- E : Entity_Id;
- Astype : Entity_Id;
-
- function Denotes_Previous_Actual (Typ : Entity_Id) return Boolean;
- -- For a formal that is an array type, the component type is often a
- -- previous formal in the same unit. The privacy status of the component
- -- type will have been examined earlier in the traversal of the
- -- corresponding actuals, and this status should not be modified for the
- -- array type itself.
- --
- -- To detect this case we have to rescan the list of formals, which
- -- is usually short enough to ignore the resulting inefficiency.
-
- function Denotes_Previous_Actual (Typ : Entity_Id) return Boolean is
- Prev : Entity_Id;
- begin
- Prev := First_Entity (Instance);
- while Present (Prev) loop
- if Is_Type (Prev)
- and then Nkind (Parent (Prev)) = N_Subtype_Declaration
- and then Is_Entity_Name (Subtype_Indication (Parent (Prev)))
- and then Entity (Subtype_Indication (Parent (Prev))) = Typ
- then
- return True;
- elsif Prev = E then
- return False;
- else
- Next_Entity (Prev);
- end if;
- end loop;
- return False;
- end Denotes_Previous_Actual;
-
- -- Start of processing for Check_Generic_Actuals
-
- begin
- E := First_Entity (Instance);
- while Present (E) loop
- if Is_Type (E)
- and then Nkind (Parent (E)) = N_Subtype_Declaration
- and then Scope (Etype (E)) /= Instance
- and then Is_Entity_Name (Subtype_Indication (Parent (E)))
- then
- if Is_Array_Type (E)
- and then Denotes_Previous_Actual (Component_Type (E))
- then
- null;
- else
- Check_Private_View (Subtype_Indication (Parent (E)));
- end if;
- Set_Is_Generic_Actual_Type (E, True);
- Set_Is_Hidden (E, False);
- Set_Is_Potentially_Use_Visible (E,
- In_Use (Instance));
-
- -- We constructed the generic actual type as a subtype of the
- -- supplied type. This means that it normally would not inherit
- -- subtype specific attributes of the actual, which is wrong for
- -- the generic case.
-
- Astype := Ancestor_Subtype (E);
-
- if No (Astype) then
-
- -- This can happen when E is an itype that is the full view of
- -- a private type completed, e.g. with a constrained array. In
- -- that case, use the first subtype, which will carry size
- -- information. The base type itself is unconstrained and will
- -- not carry it.
-
- Astype := First_Subtype (E);
- end if;
-
- Set_Size_Info (E, (Astype));
- Set_RM_Size (E, RM_Size (Astype));
- Set_First_Rep_Item (E, First_Rep_Item (Astype));
-
- if Is_Discrete_Or_Fixed_Point_Type (E) then
- Set_RM_Size (E, RM_Size (Astype));
-
- -- In nested instances, the base type of an access actual
- -- may itself be private, and need to be exchanged.
-
- elsif Is_Access_Type (E)
- and then Is_Private_Type (Etype (E))
- then
- Check_Private_View
- (New_Occurrence_Of (Etype (E), Sloc (Instance)));
- end if;
-
- elsif Ekind (E) = E_Package then
-
- -- If this is the renaming for the current instance, we're done.
- -- Otherwise it is a formal package. If the corresponding formal
- -- was declared with a box, the (instantiations of the) generic
- -- formal part are also visible. Otherwise, ignore the entity
- -- created to validate the actuals.
-
- if Renamed_Object (E) = Instance then
- exit;
-
- elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
- null;
-
- -- The visibility of a formal of an enclosing generic is already
- -- correct.
-
- elsif Denotes_Formal_Package (E) then
- null;
-
- elsif Present (Associated_Formal_Package (E))
- and then not Is_Generic_Formal (E)
- then
- if Box_Present (Parent (Associated_Formal_Package (E))) then
- Check_Generic_Actuals (Renamed_Object (E), True);
-
- else
- Check_Generic_Actuals (Renamed_Object (E), False);
- end if;
-
- Set_Is_Hidden (E, False);
- end if;
-
- -- If this is a subprogram instance (in a wrapper package) the
- -- actual is fully visible.
-
- elsif Is_Wrapper_Package (Instance) then
- Set_Is_Hidden (E, False);
-
- -- If the formal package is declared with a box, or if the formal
- -- parameter is defaulted, it is visible in the body.
-
- elsif Is_Formal_Box
- or else Is_Visible_Formal (E)
- then
- Set_Is_Hidden (E, False);
- end if;
-
- Next_Entity (E);
- end loop;
- end Check_Generic_Actuals;
-
- ------------------------------
- -- Check_Generic_Child_Unit --
- ------------------------------
-
- procedure Check_Generic_Child_Unit
- (Gen_Id : Node_Id;
- Parent_Installed : in out Boolean)
- is
- Loc : constant Source_Ptr := Sloc (Gen_Id);
- Gen_Par : Entity_Id := Empty;
- E : Entity_Id;
- Inst_Par : Entity_Id;
- S : Node_Id;
-
- function Find_Generic_Child
- (Scop : Entity_Id;
- Id : Node_Id) return Entity_Id;
- -- Search generic parent for possible child unit with the given name
-
- function In_Enclosing_Instance return Boolean;
- -- Within an instance of the parent, the child unit may be denoted
- -- by a simple name, or an abbreviated expanded name. Examine enclosing
- -- scopes to locate a possible parent instantiation.
-
- ------------------------
- -- Find_Generic_Child --
- ------------------------
-
- function Find_Generic_Child
- (Scop : Entity_Id;
- Id : Node_Id) return Entity_Id
- is
- E : Entity_Id;
-
- begin
- -- If entity of name is already set, instance has already been
- -- resolved, e.g. in an enclosing instantiation.
-
- if Present (Entity (Id)) then
- if Scope (Entity (Id)) = Scop then
- return Entity (Id);
- else
- return Empty;
- end if;
-
- else
- E := First_Entity (Scop);
- while Present (E) loop
- if Chars (E) = Chars (Id)
- and then Is_Child_Unit (E)
- then
- if Is_Child_Unit (E)
- and then not Is_Visible_Child_Unit (E)
- then
- Error_Msg_NE
- ("generic child unit& is not visible", Gen_Id, E);
- end if;
-
- Set_Entity (Id, E);
- return E;
- end if;
-
- Next_Entity (E);
- end loop;
-
- return Empty;
- end if;
- end Find_Generic_Child;
-
- ---------------------------
- -- In_Enclosing_Instance --
- ---------------------------
-
- function In_Enclosing_Instance return Boolean is
- Enclosing_Instance : Node_Id;
- Instance_Decl : Node_Id;
-
- begin
- -- We do not inline any call that contains instantiations, except
- -- for instantiations of Unchecked_Conversion, so if we are within
- -- an inlined body the current instance does not require parents.
-
- if In_Inlined_Body then
- pragma Assert (Chars (Gen_Id) = Name_Unchecked_Conversion);
- return False;
- end if;
-
- -- Loop to check enclosing scopes
-
- Enclosing_Instance := Current_Scope;
- while Present (Enclosing_Instance) loop
- Instance_Decl := Unit_Declaration_Node (Enclosing_Instance);
-
- if Ekind (Enclosing_Instance) = E_Package
- and then Is_Generic_Instance (Enclosing_Instance)
- and then Present
- (Generic_Parent (Specification (Instance_Decl)))
- then
- -- Check whether the generic we are looking for is a child of
- -- this instance.
-
- E := Find_Generic_Child
- (Generic_Parent (Specification (Instance_Decl)), Gen_Id);
- exit when Present (E);
-
- else
- E := Empty;
- end if;
-
- Enclosing_Instance := Scope (Enclosing_Instance);
- end loop;
-
- if No (E) then
-
- -- Not a child unit
-
- Analyze (Gen_Id);
- return False;
-
- else
- Rewrite (Gen_Id,
- Make_Expanded_Name (Loc,
- Chars => Chars (E),
- Prefix => New_Occurrence_Of (Enclosing_Instance, Loc),
- Selector_Name => New_Occurrence_Of (E, Loc)));
-
- Set_Entity (Gen_Id, E);
- Set_Etype (Gen_Id, Etype (E));
- Parent_Installed := False; -- Already in scope.
- return True;
- end if;
- end In_Enclosing_Instance;
-
- -- Start of processing for Check_Generic_Child_Unit
-
- begin
- -- If the name of the generic is given by a selected component, it may
- -- be the name of a generic child unit, and the prefix is the name of an
- -- instance of the parent, in which case the child unit must be visible.
- -- If this instance is not in scope, it must be placed there and removed
- -- after instantiation, because what is being instantiated is not the
- -- original child, but the corresponding child present in the instance
- -- of the parent.
-
- -- If the child is instantiated within the parent, it can be given by
- -- a simple name. In this case the instance is already in scope, but
- -- the child generic must be recovered from the generic parent as well.
-
- if Nkind (Gen_Id) = N_Selected_Component then
- S := Selector_Name (Gen_Id);
- Analyze (Prefix (Gen_Id));
- Inst_Par := Entity (Prefix (Gen_Id));
-
- if Ekind (Inst_Par) = E_Package
- and then Present (Renamed_Object (Inst_Par))
- then
- Inst_Par := Renamed_Object (Inst_Par);
- end if;
-
- if Ekind (Inst_Par) = E_Package then
- if Nkind (Parent (Inst_Par)) = N_Package_Specification then
- Gen_Par := Generic_Parent (Parent (Inst_Par));
-
- elsif Nkind (Parent (Inst_Par)) = N_Defining_Program_Unit_Name
- and then
- Nkind (Parent (Parent (Inst_Par))) = N_Package_Specification
- then
- Gen_Par := Generic_Parent (Parent (Parent (Inst_Par)));
- end if;
-
- elsif Ekind (Inst_Par) = E_Generic_Package
- and then Nkind (Parent (Gen_Id)) = N_Formal_Package_Declaration
- then
- -- A formal package may be a real child package, and not the
- -- implicit instance within a parent. In this case the child is
- -- not visible and has to be retrieved explicitly as well.
-
- Gen_Par := Inst_Par;
- end if;
-
- if Present (Gen_Par) then
-
- -- The prefix denotes an instantiation. The entity itself may be a
- -- nested generic, or a child unit.
-
- E := Find_Generic_Child (Gen_Par, S);
-
- if Present (E) then
- Change_Selected_Component_To_Expanded_Name (Gen_Id);
- Set_Entity (Gen_Id, E);
- Set_Etype (Gen_Id, Etype (E));
- Set_Entity (S, E);
- Set_Etype (S, Etype (E));
-
- -- Indicate that this is a reference to the parent
-
- if In_Extended_Main_Source_Unit (Gen_Id) then
- Set_Is_Instantiated (Inst_Par);
- end if;
-
- -- A common mistake is to replicate the naming scheme of a
- -- hierarchy by instantiating a generic child directly, rather
- -- than the implicit child in a parent instance:
-
- -- generic .. package Gpar is ..
- -- generic .. package Gpar.Child is ..
- -- package Par is new Gpar ();
-
- -- with Gpar.Child;
- -- package Par.Child is new Gpar.Child ();
- -- rather than Par.Child
-
- -- In this case the instantiation is within Par, which is an
- -- instance, but Gpar does not denote Par because we are not IN
- -- the instance of Gpar, so this is illegal. The test below
- -- recognizes this particular case.
-
- if Is_Child_Unit (E)
- and then not Comes_From_Source (Entity (Prefix (Gen_Id)))
- and then (not In_Instance
- or else Nkind (Parent (Parent (Gen_Id))) =
- N_Compilation_Unit)
- then
- Error_Msg_N
- ("prefix of generic child unit must be instance of parent",
- Gen_Id);
- end if;
-
- if not In_Open_Scopes (Inst_Par)
- and then Nkind (Parent (Gen_Id)) not in
- N_Generic_Renaming_Declaration
- then
- Install_Parent (Inst_Par);
- Parent_Installed := True;
-
- elsif In_Open_Scopes (Inst_Par) then
-
- -- If the parent is already installed verify that the
- -- actuals for its formal packages declared with a box
- -- are already installed. This is necessary when the
- -- child instance is a child of the parent instance.
- -- In this case the parent is placed on the scope stack
- -- but the formal packages are not made visible.
-
- Install_Formal_Packages (Inst_Par);
- end if;
-
- else
- -- If the generic parent does not contain an entity that
- -- corresponds to the selector, the instance doesn't either.
- -- Analyzing the node will yield the appropriate error message.
- -- If the entity is not a child unit, then it is an inner
- -- generic in the parent.
-
- Analyze (Gen_Id);
- end if;
-
- else
- Analyze (Gen_Id);
-
- if Is_Child_Unit (Entity (Gen_Id))
- and then
- Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration
- and then not In_Open_Scopes (Inst_Par)
- then
- Install_Parent (Inst_Par);
- Parent_Installed := True;
- end if;
- end if;
-
- elsif Nkind (Gen_Id) = N_Expanded_Name then
-
- -- Entity already present, analyze prefix, whose meaning may be
- -- an instance in the current context. If it is an instance of
- -- a relative within another, the proper parent may still have
- -- to be installed, if they are not of the same generation.
-
- Analyze (Prefix (Gen_Id));
-
- -- In the unlikely case that a local declaration hides the name
- -- of the parent package, locate it on the homonym chain. If the
- -- context is an instance of the parent, the renaming entity is
- -- flagged as such.
-
- Inst_Par := Entity (Prefix (Gen_Id));
- while Present (Inst_Par)
- and then not Is_Package_Or_Generic_Package (Inst_Par)
- loop
- Inst_Par := Homonym (Inst_Par);
- end loop;
-
- pragma Assert (Present (Inst_Par));
- Set_Entity (Prefix (Gen_Id), Inst_Par);
-
- if In_Enclosing_Instance then
- null;
-
- elsif Present (Entity (Gen_Id))
- and then Is_Child_Unit (Entity (Gen_Id))
- and then not In_Open_Scopes (Inst_Par)
- then
- Install_Parent (Inst_Par);
- Parent_Installed := True;
- end if;
-
- elsif In_Enclosing_Instance then
-
- -- The child unit is found in some enclosing scope
-
- null;
-
- else
- Analyze (Gen_Id);
-
- -- If this is the renaming of the implicit child in a parent
- -- instance, recover the parent name and install it.
-
- if Is_Entity_Name (Gen_Id) then
- E := Entity (Gen_Id);
-
- if Is_Generic_Unit (E)
- and then Nkind (Parent (E)) in N_Generic_Renaming_Declaration
- and then Is_Child_Unit (Renamed_Object (E))
- and then Is_Generic_Unit (Scope (Renamed_Object (E)))
- and then Nkind (Name (Parent (E))) = N_Expanded_Name
- then
- Rewrite (Gen_Id,
- New_Copy_Tree (Name (Parent (E))));
- Inst_Par := Entity (Prefix (Gen_Id));
-
- if not In_Open_Scopes (Inst_Par) then
- Install_Parent (Inst_Par);
- Parent_Installed := True;
- end if;
-
- -- If it is a child unit of a non-generic parent, it may be
- -- use-visible and given by a direct name. Install parent as
- -- for other cases.
-
- elsif Is_Generic_Unit (E)
- and then Is_Child_Unit (E)
- and then
- Nkind (Parent (Gen_Id)) not in N_Generic_Renaming_Declaration
- and then not Is_Generic_Unit (Scope (E))
- then
- if not In_Open_Scopes (Scope (E)) then
- Install_Parent (Scope (E));
- Parent_Installed := True;
- end if;
- end if;
- end if;
- end if;
- end Check_Generic_Child_Unit;
-
- -----------------------------
- -- Check_Hidden_Child_Unit --
- -----------------------------
-
- procedure Check_Hidden_Child_Unit
- (N : Node_Id;
- Gen_Unit : Entity_Id;
- Act_Decl_Id : Entity_Id)
- is
- Gen_Id : constant Node_Id := Name (N);
-
- begin
- if Is_Child_Unit (Gen_Unit)
- and then Is_Child_Unit (Act_Decl_Id)
- and then Nkind (Gen_Id) = N_Expanded_Name
- and then Entity (Prefix (Gen_Id)) = Scope (Act_Decl_Id)
- and then Chars (Gen_Unit) = Chars (Act_Decl_Id)
- then
- Error_Msg_Node_2 := Scope (Act_Decl_Id);
- Error_Msg_NE
- ("generic unit & is implicitly declared in &",
- Defining_Unit_Name (N), Gen_Unit);
- Error_Msg_N ("\instance must have different name",
- Defining_Unit_Name (N));
- end if;
- end Check_Hidden_Child_Unit;
-
- ------------------------
- -- Check_Private_View --
- ------------------------
-
- procedure Check_Private_View (N : Node_Id) is
- T : constant Entity_Id := Etype (N);
- BT : Entity_Id;
-
- begin
- -- Exchange views if the type was not private in the generic but is
- -- private at the point of instantiation. Do not exchange views if
- -- the scope of the type is in scope. This can happen if both generic
- -- and instance are sibling units, or if type is defined in a parent.
- -- In this case the visibility of the type will be correct for all
- -- semantic checks.
-
- if Present (T) then
- BT := Base_Type (T);
-
- if Is_Private_Type (T)
- and then not Has_Private_View (N)
- and then Present (Full_View (T))
- and then not In_Open_Scopes (Scope (T))
- then
- -- In the generic, the full type was visible. Save the private
- -- entity, for subsequent exchange.
-
- Switch_View (T);
-
- elsif Has_Private_View (N)
- and then not Is_Private_Type (T)
- and then not Has_Been_Exchanged (T)
- and then Etype (Get_Associated_Node (N)) /= T
- then
- -- Only the private declaration was visible in the generic. If
- -- the type appears in a subtype declaration, the subtype in the
- -- instance must have a view compatible with that of its parent,
- -- which must be exchanged (see corresponding code in Restore_
- -- Private_Views). Otherwise, if the type is defined in a parent
- -- unit, leave full visibility within instance, which is safe.
-
- if In_Open_Scopes (Scope (Base_Type (T)))
- and then not Is_Private_Type (Base_Type (T))
- and then Comes_From_Source (Base_Type (T))
- then
- null;
-
- elsif Nkind (Parent (N)) = N_Subtype_Declaration
- or else not In_Private_Part (Scope (Base_Type (T)))
- then
- Prepend_Elmt (T, Exchanged_Views);
- Exchange_Declarations (Etype (Get_Associated_Node (N)));
- end if;
-
- -- For composite types with inconsistent representation exchange
- -- component types accordingly.
-
- elsif Is_Access_Type (T)
- and then Is_Private_Type (Designated_Type (T))
- and then not Has_Private_View (N)
- and then Present (Full_View (Designated_Type (T)))
- then
- Switch_View (Designated_Type (T));
-
- elsif Is_Array_Type (T) then
- if Is_Private_Type (Component_Type (T))
- and then not Has_Private_View (N)
- and then Present (Full_View (Component_Type (T)))
- then
- Switch_View (Component_Type (T));
- end if;
-
- -- The normal exchange mechanism relies on the setting of a
- -- flag on the reference in the generic. However, an additional
- -- mechanism is needed for types that are not explicitly mentioned
- -- in the generic, but may be needed in expanded code in the
- -- instance. This includes component types of arrays and
- -- designated types of access types. This processing must also
- -- include the index types of arrays which we take care of here.
-
- declare
- Indx : Node_Id;
- Typ : Entity_Id;
-
- begin
- Indx := First_Index (T);
- Typ := Base_Type (Etype (Indx));
- while Present (Indx) loop
- if Is_Private_Type (Typ)
- and then Present (Full_View (Typ))
- then
- Switch_View (Typ);
- end if;
-
- Next_Index (Indx);
- end loop;
- end;
-
- elsif Is_Private_Type (T)
- and then Present (Full_View (T))
- and then Is_Array_Type (Full_View (T))
- and then Is_Private_Type (Component_Type (Full_View (T)))
- then
- Switch_View (T);
-
- -- Finally, a non-private subtype may have a private base type, which
- -- must be exchanged for consistency. This can happen when a package
- -- body is instantiated, when the scope stack is empty but in fact
- -- the subtype and the base type are declared in an enclosing scope.
-
- -- Note that in this case we introduce an inconsistency in the view
- -- set, because we switch the base type BT, but there could be some
- -- private dependent subtypes of BT which remain unswitched. Such
- -- subtypes might need to be switched at a later point (see specific
- -- provision for that case in Switch_View).
-
- elsif not Is_Private_Type (T)
- and then not Has_Private_View (N)
- and then Is_Private_Type (BT)
- and then Present (Full_View (BT))
- and then not Is_Generic_Type (BT)
- and then not In_Open_Scopes (BT)
- then
- Prepend_Elmt (Full_View (BT), Exchanged_Views);
- Exchange_Declarations (BT);
- end if;
- end if;
- end Check_Private_View;
-
- --------------------------
- -- Contains_Instance_Of --
- --------------------------
-
- function Contains_Instance_Of
- (Inner : Entity_Id;
- Outer : Entity_Id;
- N : Node_Id) return Boolean
- is
- Elmt : Elmt_Id;
- Scop : Entity_Id;
-
- begin
- Scop := Outer;
-
- -- Verify that there are no circular instantiations. We check whether
- -- the unit contains an instance of the current scope or some enclosing
- -- scope (in case one of the instances appears in a subunit). Longer
- -- circularities involving subunits might seem too pathological to
- -- consider, but they were not too pathological for the authors of
- -- DEC bc30vsq, so we loop over all enclosing scopes, and mark all
- -- enclosing generic scopes as containing an instance.
-
- loop
- -- Within a generic subprogram body, the scope is not generic, to
- -- allow for recursive subprograms. Use the declaration to determine
- -- whether this is a generic unit.
-
- if Ekind (Scop) = E_Generic_Package
- or else (Is_Subprogram (Scop)
- and then Nkind (Unit_Declaration_Node (Scop)) =
- N_Generic_Subprogram_Declaration)
- then
- Elmt := First_Elmt (Inner_Instances (Inner));
-
- while Present (Elmt) loop
- if Node (Elmt) = Scop then
- Error_Msg_Node_2 := Inner;
- Error_Msg_NE
- ("circular Instantiation: & instantiated within &!",
- N, Scop);
- return True;
-
- elsif Node (Elmt) = Inner then
- return True;
-
- elsif Contains_Instance_Of (Node (Elmt), Scop, N) then
- Error_Msg_Node_2 := Inner;
- Error_Msg_NE
- ("circular Instantiation: & instantiated within &!",
- N, Node (Elmt));
- return True;
- end if;
-
- Next_Elmt (Elmt);
- end loop;
-
- -- Indicate that Inner is being instantiated within Scop
-
- Append_Elmt (Inner, Inner_Instances (Scop));
- end if;
-
- if Scop = Standard_Standard then
- exit;
- else
- Scop := Scope (Scop);
- end if;
- end loop;
-
- return False;
- end Contains_Instance_Of;
-
- -----------------------
- -- Copy_Generic_Node --
- -----------------------
-
- function Copy_Generic_Node
- (N : Node_Id;
- Parent_Id : Node_Id;
- Instantiating : Boolean) return Node_Id
- is
- Ent : Entity_Id;
- New_N : Node_Id;
-
- function Copy_Generic_Descendant (D : Union_Id) return Union_Id;
- -- Check the given value of one of the Fields referenced by the
- -- current node to determine whether to copy it recursively. The
- -- field may hold a Node_Id, a List_Id, or an Elist_Id, or a plain
- -- value (Sloc, Uint, Char) in which case it need not be copied.
-
- procedure Copy_Descendants;
- -- Common utility for various nodes
-
- function Copy_Generic_Elist (E : Elist_Id) return Elist_Id;
- -- Make copy of element list
-
- function Copy_Generic_List
- (L : List_Id;
- Parent_Id : Node_Id) return List_Id;
- -- Apply Copy_Node recursively to the members of a node list
-
- function In_Defining_Unit_Name (Nam : Node_Id) return Boolean;
- -- True if an identifier is part of the defining program unit name
- -- of a child unit. The entity of such an identifier must be kept
- -- (for ASIS use) even though as the name of an enclosing generic
- -- it would otherwise not be preserved in the generic tree.
-
- ----------------------
- -- Copy_Descendants --
- ----------------------
-
- procedure Copy_Descendants is
-
- use Atree.Unchecked_Access;
- -- This code section is part of the implementation of an untyped
- -- tree traversal, so it needs direct access to node fields.
-
- begin
- Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N)));
- Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N)));
- Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N)));
- Set_Field4 (New_N, Copy_Generic_Descendant (Field4 (N)));
- Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N)));
- end Copy_Descendants;
-
- -----------------------------
- -- Copy_Generic_Descendant --
- -----------------------------
-
- function Copy_Generic_Descendant (D : Union_Id) return Union_Id is
- begin
- if D = Union_Id (Empty) then
- return D;
-
- elsif D in Node_Range then
- return Union_Id
- (Copy_Generic_Node (Node_Id (D), New_N, Instantiating));
-
- elsif D in List_Range then
- return Union_Id (Copy_Generic_List (List_Id (D), New_N));
-
- elsif D in Elist_Range then
- return Union_Id (Copy_Generic_Elist (Elist_Id (D)));
-
- -- Nothing else is copyable (e.g. Uint values), return as is
-
- else
- return D;
- end if;
- end Copy_Generic_Descendant;
-
- ------------------------
- -- Copy_Generic_Elist --
- ------------------------
-
- function Copy_Generic_Elist (E : Elist_Id) return Elist_Id is
- M : Elmt_Id;
- L : Elist_Id;
-
- begin
- if Present (E) then
- L := New_Elmt_List;
- M := First_Elmt (E);
- while Present (M) loop
- Append_Elmt
- (Copy_Generic_Node (Node (M), Empty, Instantiating), L);
- Next_Elmt (M);
- end loop;
-
- return L;
-
- else
- return No_Elist;
- end if;
- end Copy_Generic_Elist;
-
- -----------------------
- -- Copy_Generic_List --
- -----------------------
-
- function Copy_Generic_List
- (L : List_Id;
- Parent_Id : Node_Id) return List_Id
- is
- N : Node_Id;
- New_L : List_Id;
-
- begin
- if Present (L) then
- New_L := New_List;
- Set_Parent (New_L, Parent_Id);
-
- N := First (L);
- while Present (N) loop
- Append (Copy_Generic_Node (N, Empty, Instantiating), New_L);
- Next (N);
- end loop;
-
- return New_L;
-
- else
- return No_List;
- end if;
- end Copy_Generic_List;
-
- ---------------------------
- -- In_Defining_Unit_Name --
- ---------------------------
-
- function In_Defining_Unit_Name (Nam : Node_Id) return Boolean is
- begin
- return Present (Parent (Nam))
- and then (Nkind (Parent (Nam)) = N_Defining_Program_Unit_Name
- or else
- (Nkind (Parent (Nam)) = N_Expanded_Name
- and then In_Defining_Unit_Name (Parent (Nam))));
- end In_Defining_Unit_Name;
-
- -- Start of processing for Copy_Generic_Node
-
- begin
- if N = Empty then
- return N;
- end if;
-
- New_N := New_Copy (N);
-
- if Instantiating then
- Adjust_Instantiation_Sloc (New_N, S_Adjustment);
- end if;
-
- if not Is_List_Member (N) then
- Set_Parent (New_N, Parent_Id);
- end if;
-
- -- If defining identifier, then all fields have been copied already
-
- if Nkind (New_N) in N_Entity then
- null;
-
- -- Special casing for identifiers and other entity names and operators
-
- elsif Nkind_In (New_N, N_Identifier,
- N_Character_Literal,
- N_Expanded_Name,
- N_Operator_Symbol)
- or else Nkind (New_N) in N_Op
- then
- if not Instantiating then
-
- -- Link both nodes in order to assign subsequently the
- -- entity of the copy to the original node, in case this
- -- is a global reference.
-
- Set_Associated_Node (N, New_N);
-
- -- If we are within an instantiation, this is a nested generic
- -- that has already been analyzed at the point of definition. We
- -- must preserve references that were global to the enclosing
- -- parent at that point. Other occurrences, whether global or
- -- local to the current generic, must be resolved anew, so we
- -- reset the entity in the generic copy. A global reference has a
- -- smaller depth than the parent, or else the same depth in case
- -- both are distinct compilation units.
- -- A child unit is implicitly declared within the enclosing parent
- -- but is in fact global to it, and must be preserved.
-
- -- It is also possible for Current_Instantiated_Parent to be
- -- defined, and for this not to be a nested generic, namely if the
- -- unit is loaded through Rtsfind. In that case, the entity of
- -- New_N is only a link to the associated node, and not a defining
- -- occurrence.
-
- -- The entities for parent units in the defining_program_unit of a
- -- generic child unit are established when the context of the unit
- -- is first analyzed, before the generic copy is made. They are
- -- preserved in the copy for use in ASIS queries.
-
- Ent := Entity (New_N);
-
- if No (Current_Instantiated_Parent.Gen_Id) then
- if No (Ent)
- or else Nkind (Ent) /= N_Defining_Identifier
- or else not In_Defining_Unit_Name (N)
- then
- Set_Associated_Node (New_N, Empty);
- end if;
-
- elsif No (Ent)
- or else
- not Nkind_In (Ent, N_Defining_Identifier,
- N_Defining_Character_Literal,
- N_Defining_Operator_Symbol)
- or else No (Scope (Ent))
- or else
- (Scope (Ent) = Current_Instantiated_Parent.Gen_Id
- and then not Is_Child_Unit (Ent))
- or else
- (Scope_Depth (Scope (Ent)) >
- Scope_Depth (Current_Instantiated_Parent.Gen_Id)
- and then
- Get_Source_Unit (Ent) =
- Get_Source_Unit (Current_Instantiated_Parent.Gen_Id))
- then
- Set_Associated_Node (New_N, Empty);
- end if;
-
- -- Case of instantiating identifier or some other name or operator
-
- else
- -- If the associated node is still defined, the entity in it is
- -- global, and must be copied to the instance. If this copy is
- -- being made for a body to inline, it is applied to an
- -- instantiated tree, and the entity is already present and must
- -- be also preserved.
-
- declare
- Assoc : constant Node_Id := Get_Associated_Node (N);
-
- begin
- if Present (Assoc) then
- if Nkind (Assoc) = Nkind (N) then
- Set_Entity (New_N, Entity (Assoc));
- Check_Private_View (N);
-
- elsif Nkind (Assoc) = N_Function_Call then
- Set_Entity (New_N, Entity (Name (Assoc)));
-
- elsif Nkind_In (Assoc, N_Defining_Identifier,
- N_Defining_Character_Literal,
- N_Defining_Operator_Symbol)
- and then Expander_Active
- then
- -- Inlining case: we are copying a tree that contains
- -- global entities, which are preserved in the copy to be
- -- used for subsequent inlining.
-
- null;
-
- else
- Set_Entity (New_N, Empty);
- end if;
- end if;
- end;
- end if;
-
- -- For expanded name, we must copy the Prefix and Selector_Name
-
- if Nkind (N) = N_Expanded_Name then
- Set_Prefix
- (New_N, Copy_Generic_Node (Prefix (N), New_N, Instantiating));
-
- Set_Selector_Name (New_N,
- Copy_Generic_Node (Selector_Name (N), New_N, Instantiating));
-
- -- For operators, we must copy the right operand
-
- elsif Nkind (N) in N_Op then
- Set_Right_Opnd (New_N,
- Copy_Generic_Node (Right_Opnd (N), New_N, Instantiating));
-
- -- And for binary operators, the left operand as well
-
- if Nkind (N) in N_Binary_Op then
- Set_Left_Opnd (New_N,
- Copy_Generic_Node (Left_Opnd (N), New_N, Instantiating));
- end if;
- end if;
-
- -- Special casing for stubs
-
- elsif Nkind (N) in N_Body_Stub then
-
- -- In any case, we must copy the specification or defining
- -- identifier as appropriate.
-
- if Nkind (N) = N_Subprogram_Body_Stub then
- Set_Specification (New_N,
- Copy_Generic_Node (Specification (N), New_N, Instantiating));
-
- else
- Set_Defining_Identifier (New_N,
- Copy_Generic_Node
- (Defining_Identifier (N), New_N, Instantiating));
- end if;
-
- -- If we are not instantiating, then this is where we load and
- -- analyze subunits, i.e. at the point where the stub occurs. A
- -- more permissible system might defer this analysis to the point
- -- of instantiation, but this seems to complicated for now.
-
- if not Instantiating then
- declare
- Subunit_Name : constant Unit_Name_Type := Get_Unit_Name (N);
- Subunit : Node_Id;
- Unum : Unit_Number_Type;
- New_Body : Node_Id;
-
- begin
- Unum :=
- Load_Unit
- (Load_Name => Subunit_Name,
- Required => False,
- Subunit => True,
- Error_Node => N);
-
- -- If the proper body is not found, a warning message will be
- -- emitted when analyzing the stub, or later at the point
- -- of instantiation. Here we just leave the stub as is.
-
- if Unum = No_Unit then
- Subunits_Missing := True;
- goto Subunit_Not_Found;
- end if;
-
- Subunit := Cunit (Unum);
-
- if Nkind (Unit (Subunit)) /= N_Subunit then
- Error_Msg_N
- ("found child unit instead of expected SEPARATE subunit",
- Subunit);
- Error_Msg_Sloc := Sloc (N);
- Error_Msg_N ("\to complete stub #", Subunit);
- goto Subunit_Not_Found;
- end if;
-
- -- We must create a generic copy of the subunit, in order to
- -- perform semantic analysis on it, and we must replace the
- -- stub in the original generic unit with the subunit, in order
- -- to preserve non-local references within.
-
- -- Only the proper body needs to be copied. Library_Unit and
- -- context clause are simply inherited by the generic copy.
- -- Note that the copy (which may be recursive if there are
- -- nested subunits) must be done first, before attaching it to
- -- the enclosing generic.
-
- New_Body :=
- Copy_Generic_Node
- (Proper_Body (Unit (Subunit)),
- Empty, Instantiating => False);
-
- -- Now place the original proper body in the original generic
- -- unit. This is a body, not a compilation unit.
-
- Rewrite (N, Proper_Body (Unit (Subunit)));
- Set_Is_Compilation_Unit (Defining_Entity (N), False);
- Set_Was_Originally_Stub (N);
-
- -- Finally replace the body of the subunit with its copy, and
- -- make this new subunit into the library unit of the generic
- -- copy, which does not have stubs any longer.
-
- Set_Proper_Body (Unit (Subunit), New_Body);
- Set_Library_Unit (New_N, Subunit);
- Inherit_Context (Unit (Subunit), N);
- end;
-
- -- If we are instantiating, this must be an error case, since
- -- otherwise we would have replaced the stub node by the proper body
- -- that corresponds. So just ignore it in the copy (i.e. we have
- -- copied it, and that is good enough).
-
- else
- null;
- end if;
-
- <<Subunit_Not_Found>> null;
-
- -- If the node is a compilation unit, it is the subunit of a stub, which
- -- has been loaded already (see code below). In this case, the library
- -- unit field of N points to the parent unit (which is a compilation
- -- unit) and need not (and cannot!) be copied.
-
- -- When the proper body of the stub is analyzed, the library_unit link
- -- is used to establish the proper context (see sem_ch10).
-
- -- The other fields of a compilation unit are copied as usual
-
- elsif Nkind (N) = N_Compilation_Unit then
-
- -- This code can only be executed when not instantiating, because in
- -- the copy made for an instantiation, the compilation unit node has
- -- disappeared at the point that a stub is replaced by its proper
- -- body.
-
- pragma Assert (not Instantiating);
-
- Set_Context_Items (New_N,
- Copy_Generic_List (Context_Items (N), New_N));
-
- Set_Unit (New_N,
- Copy_Generic_Node (Unit (N), New_N, False));
-
- Set_First_Inlined_Subprogram (New_N,
- Copy_Generic_Node
- (First_Inlined_Subprogram (N), New_N, False));
-
- Set_Aux_Decls_Node (New_N,
- Copy_Generic_Node (Aux_Decls_Node (N), New_N, False));
-
- -- For an assignment node, the assignment is known to be semantically
- -- legal if we are instantiating the template. This avoids incorrect
- -- diagnostics in generated code.
-
- elsif Nkind (N) = N_Assignment_Statement then
-
- -- Copy name and expression fields in usual manner
-
- Set_Name (New_N,
- Copy_Generic_Node (Name (N), New_N, Instantiating));
-
- Set_Expression (New_N,
- Copy_Generic_Node (Expression (N), New_N, Instantiating));
-
- if Instantiating then
- Set_Assignment_OK (Name (New_N), True);
- end if;
-
- elsif Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
- if not Instantiating then
- Set_Associated_Node (N, New_N);
-
- else
- if Present (Get_Associated_Node (N))
- and then Nkind (Get_Associated_Node (N)) = Nkind (N)
- then
- -- In the generic the aggregate has some composite type. If at
- -- the point of instantiation the type has a private view,
- -- install the full view (and that of its ancestors, if any).
-
- declare
- T : Entity_Id := (Etype (Get_Associated_Node (New_N)));
- Rt : Entity_Id;
-
- begin
- if Present (T)
- and then Is_Private_Type (T)
- then
- Switch_View (T);
- end if;
-
- if Present (T)
- and then Is_Tagged_Type (T)
- and then Is_Derived_Type (T)
- then
- Rt := Root_Type (T);
-
- loop
- T := Etype (T);
-
- if Is_Private_Type (T) then
- Switch_View (T);
- end if;
-
- exit when T = Rt;
- end loop;
- end if;
- end;
- end if;
- end if;
-
- -- Do not copy the associated node, which points to
- -- the generic copy of the aggregate.
-
- declare
- use Atree.Unchecked_Access;
- -- This code section is part of the implementation of an untyped
- -- tree traversal, so it needs direct access to node fields.
-
- begin
- Set_Field1 (New_N, Copy_Generic_Descendant (Field1 (N)));
- Set_Field2 (New_N, Copy_Generic_Descendant (Field2 (N)));
- Set_Field3 (New_N, Copy_Generic_Descendant (Field3 (N)));
- Set_Field5 (New_N, Copy_Generic_Descendant (Field5 (N)));
- end;
-
- -- Allocators do not have an identifier denoting the access type,
- -- so we must locate it through the expression to check whether
- -- the views are consistent.
-
- elsif Nkind (N) = N_Allocator
- and then Nkind (Expression (N)) = N_Qualified_Expression
- and then Is_Entity_Name (Subtype_Mark (Expression (N)))
- and then Instantiating
- then
- declare
- T : constant Node_Id :=
- Get_Associated_Node (Subtype_Mark (Expression (N)));
- Acc_T : Entity_Id;
-
- begin
- if Present (T) then
-
- -- Retrieve the allocator node in the generic copy
-
- Acc_T := Etype (Parent (Parent (T)));
- if Present (Acc_T)
- and then Is_Private_Type (Acc_T)
- then
- Switch_View (Acc_T);
- end if;
- end if;
-
- Copy_Descendants;
- end;
-
- -- For a proper body, we must catch the case of a proper body that
- -- replaces a stub. This represents the point at which a separate
- -- compilation unit, and hence template file, may be referenced, so we
- -- must make a new source instantiation entry for the template of the
- -- subunit, and ensure that all nodes in the subunit are adjusted using
- -- this new source instantiation entry.
-
- elsif Nkind (N) in N_Proper_Body then
- declare
- Save_Adjustment : constant Sloc_Adjustment := S_Adjustment;
-
- begin
- if Instantiating and then Was_Originally_Stub (N) then
- Create_Instantiation_Source
- (Instantiation_Node,
- Defining_Entity (N),
- False,
- S_Adjustment);
- end if;
-
- -- Now copy the fields of the proper body, using the new
- -- adjustment factor if one was needed as per test above.
-
- Copy_Descendants;
-
- -- Restore the original adjustment factor in case changed
-
- S_Adjustment := Save_Adjustment;
- end;
-
- -- Don't copy Ident or Comment pragmas, since the comment belongs to the
- -- generic unit, not to the instantiating unit.
-
- elsif Nkind (N) = N_Pragma
- and then Instantiating
- then
- declare
- Prag_Id : constant Pragma_Id := Get_Pragma_Id (N);
- begin
- if Prag_Id = Pragma_Ident
- or else Prag_Id = Pragma_Comment
- then
- New_N := Make_Null_Statement (Sloc (N));
- else
- Copy_Descendants;
- end if;
- end;
-
- elsif Nkind_In (N, N_Integer_Literal,
- N_Real_Literal,
- N_String_Literal)
- then
- -- No descendant fields need traversing
-
- null;
-
- -- For the remaining nodes, copy recursively their descendants
-
- else
- Copy_Descendants;
-
- if Instantiating
- and then Nkind (N) = N_Subprogram_Body
- then
- Set_Generic_Parent (Specification (New_N), N);
- end if;
- end if;
-
- return New_N;
- end Copy_Generic_Node;
-
- ----------------------------
- -- Denotes_Formal_Package --
- ----------------------------
-
- function Denotes_Formal_Package
- (Pack : Entity_Id;
- On_Exit : Boolean := False) return Boolean
- is
- Par : Entity_Id;
- Scop : constant Entity_Id := Scope (Pack);
- E : Entity_Id;
-
- begin
- if On_Exit then
- Par :=
- Instance_Envs.Table
- (Instance_Envs.Last).Instantiated_Parent.Act_Id;
- else
- Par := Current_Instantiated_Parent.Act_Id;
- end if;
-
- if Ekind (Scop) = E_Generic_Package
- or else Nkind (Unit_Declaration_Node (Scop)) =
- N_Generic_Subprogram_Declaration
- then
- return True;
-
- elsif Nkind (Original_Node (Unit_Declaration_Node (Pack))) =
- N_Formal_Package_Declaration
- then
- return True;
-
- elsif No (Par) then
- return False;
-
- else
- -- Check whether this package is associated with a formal package of
- -- the enclosing instantiation. Iterate over the list of renamings.
-
- E := First_Entity (Par);
- while Present (E) loop
- if Ekind (E) /= E_Package
- or else Nkind (Parent (E)) /= N_Package_Renaming_Declaration
- then
- null;
-
- elsif Renamed_Object (E) = Par then
- return False;
-
- elsif Renamed_Object (E) = Pack then
- return True;
- end if;
-
- Next_Entity (E);
- end loop;
-
- return False;
- end if;
- end Denotes_Formal_Package;
-
- -----------------
- -- End_Generic --
- -----------------
-
- procedure End_Generic is
- begin
- -- ??? More things could be factored out in this routine. Should
- -- probably be done at a later stage.
-
- Inside_A_Generic := Generic_Flags.Table (Generic_Flags.Last);
- Generic_Flags.Decrement_Last;
-
- Expander_Mode_Restore;
- end End_Generic;
-
- ----------------------
- -- Find_Actual_Type --
- ----------------------
-
- function Find_Actual_Type
- (Typ : Entity_Id;
- Gen_Type : Entity_Id) return Entity_Id
- is
- Gen_Scope : constant Entity_Id := Scope (Gen_Type);
- T : Entity_Id;
-
- begin
- -- Special processing only applies to child units
-
- if not Is_Child_Unit (Gen_Scope) then
- return Get_Instance_Of (Typ);
-
- -- If designated or component type is itself a formal of the child unit,
- -- its instance is available.
-
- elsif Scope (Typ) = Gen_Scope then
- return Get_Instance_Of (Typ);
-
- -- If the array or access type is not declared in the parent unit,
- -- no special processing needed.
-
- elsif not Is_Generic_Type (Typ)
- and then Scope (Gen_Scope) /= Scope (Typ)
- then
- return Get_Instance_Of (Typ);
-
- -- Otherwise, retrieve designated or component type by visibility
-
- else
- T := Current_Entity (Typ);
- while Present (T) loop
- if In_Open_Scopes (Scope (T)) then
- return T;
-
- elsif Is_Generic_Actual_Type (T) then
- return T;
- end if;
-
- T := Homonym (T);
- end loop;
-
- return Typ;
- end if;
- end Find_Actual_Type;
-
- ----------------------------
- -- Freeze_Subprogram_Body --
- ----------------------------
-
- procedure Freeze_Subprogram_Body
- (Inst_Node : Node_Id;
- Gen_Body : Node_Id;
- Pack_Id : Entity_Id)
- is
- F_Node : Node_Id;
- Gen_Unit : constant Entity_Id := Get_Generic_Entity (Inst_Node);
- Par : constant Entity_Id := Scope (Gen_Unit);
- Enc_G : Entity_Id;
- Enc_I : Node_Id;
- E_G_Id : Entity_Id;
-
- function Earlier (N1, N2 : Node_Id) return Boolean;
- -- Yields True if N1 and N2 appear in the same compilation unit,
- -- ignoring subunits, and if N1 is to the left of N2 in a left-to-right
- -- traversal of the tree for the unit.
-
- function Enclosing_Body (N : Node_Id) return Node_Id;
- -- Find innermost package body that encloses the given node, and which
- -- is not a compilation unit. Freeze nodes for the instance, or for its
- -- enclosing body, may be inserted after the enclosing_body of the
- -- generic unit.
-
- function Package_Freeze_Node (B : Node_Id) return Node_Id;
- -- Find entity for given package body, and locate or create a freeze
- -- node for it.
-
- function True_Parent (N : Node_Id) return Node_Id;
- -- For a subunit, return parent of corresponding stub
-
- -------------
- -- Earlier --
- -------------
-
- function Earlier (N1, N2 : Node_Id) return Boolean is
- D1 : Integer := 0;
- D2 : Integer := 0;
- P1 : Node_Id := N1;
- P2 : Node_Id := N2;
-
- procedure Find_Depth (P : in out Node_Id; D : in out Integer);
- -- Find distance from given node to enclosing compilation unit
-
- ----------------
- -- Find_Depth --
- ----------------
-
- procedure Find_Depth (P : in out Node_Id; D : in out Integer) is
- begin
- while Present (P)
- and then Nkind (P) /= N_Compilation_Unit
- loop
- P := True_Parent (P);
- D := D + 1;
- end loop;
- end Find_Depth;
-
- -- Start of processing for Earlier
-
- begin
- Find_Depth (P1, D1);
- Find_Depth (P2, D2);
-
- if P1 /= P2 then
- return False;
- else
- P1 := N1;
- P2 := N2;
- end if;
-
- while D1 > D2 loop
- P1 := True_Parent (P1);
- D1 := D1 - 1;
- end loop;
-
- while D2 > D1 loop
- P2 := True_Parent (P2);
- D2 := D2 - 1;
- end loop;
-
- -- At this point P1 and P2 are at the same distance from the root.
- -- We examine their parents until we find a common declarative
- -- list, at which point we can establish their relative placement
- -- by comparing their ultimate slocs. If we reach the root,
- -- N1 and N2 do not descend from the same declarative list (e.g.
- -- one is nested in the declarative part and the other is in a block
- -- in the statement part) and the earlier one is already frozen.
-
- while not Is_List_Member (P1)
- or else not Is_List_Member (P2)
- or else List_Containing (P1) /= List_Containing (P2)
- loop
- P1 := True_Parent (P1);
- P2 := True_Parent (P2);
-
- if Nkind (Parent (P1)) = N_Subunit then
- P1 := Corresponding_Stub (Parent (P1));
- end if;
-
- if Nkind (Parent (P2)) = N_Subunit then
- P2 := Corresponding_Stub (Parent (P2));
- end if;
-
- if P1 = P2 then
- return False;
- end if;
- end loop;
-
- return
- Top_Level_Location (Sloc (P1)) < Top_Level_Location (Sloc (P2));
- end Earlier;
-
- --------------------
- -- Enclosing_Body --
- --------------------
-
- function Enclosing_Body (N : Node_Id) return Node_Id is
- P : Node_Id := Parent (N);
-
- begin
- while Present (P)
- and then Nkind (Parent (P)) /= N_Compilation_Unit
- loop
- if Nkind (P) = N_Package_Body then
-
- if Nkind (Parent (P)) = N_Subunit then
- return Corresponding_Stub (Parent (P));
- else
- return P;
- end if;
- end if;
-
- P := True_Parent (P);
- end loop;
-
- return Empty;
- end Enclosing_Body;
-
- -------------------------
- -- Package_Freeze_Node --
- -------------------------
-
- function Package_Freeze_Node (B : Node_Id) return Node_Id is
- Id : Entity_Id;
-
- begin
- if Nkind (B) = N_Package_Body then
- Id := Corresponding_Spec (B);
-
- else pragma Assert (Nkind (B) = N_Package_Body_Stub);
- Id := Corresponding_Spec (Proper_Body (Unit (Library_Unit (B))));
- end if;
-
- Ensure_Freeze_Node (Id);
- return Freeze_Node (Id);
- end Package_Freeze_Node;
-
- -----------------
- -- True_Parent --
- -----------------
-
- function True_Parent (N : Node_Id) return Node_Id is
- begin
- if Nkind (Parent (N)) = N_Subunit then
- return Parent (Corresponding_Stub (Parent (N)));
- else
- return Parent (N);
- end if;
- end True_Parent;
-
- -- Start of processing of Freeze_Subprogram_Body
-
- begin
- -- If the instance and the generic body appear within the same unit, and
- -- the instance precedes the generic, the freeze node for the instance
- -- must appear after that of the generic. If the generic is nested
- -- within another instance I2, then current instance must be frozen
- -- after I2. In both cases, the freeze nodes are those of enclosing
- -- packages. Otherwise, the freeze node is placed at the end of the
- -- current declarative part.
-
- Enc_G := Enclosing_Body (Gen_Body);
- Enc_I := Enclosing_Body (Inst_Node);
- Ensure_Freeze_Node (Pack_Id);
- F_Node := Freeze_Node (Pack_Id);
-
- if Is_Generic_Instance (Par)
- and then Present (Freeze_Node (Par))
- and then
- In_Same_Declarative_Part (Freeze_Node (Par), Inst_Node)
- then
- if ABE_Is_Certain (Get_Package_Instantiation_Node (Par)) then
-
- -- The parent was a premature instantiation. Insert freeze node at
- -- the end the current declarative part.
-
- Insert_After_Last_Decl (Inst_Node, F_Node);
-
- else
- Insert_After (Freeze_Node (Par), F_Node);
- end if;
-
- -- The body enclosing the instance should be frozen after the body that
- -- includes the generic, because the body of the instance may make
- -- references to entities therein. If the two are not in the same
- -- declarative part, or if the one enclosing the instance is frozen
- -- already, freeze the instance at the end of the current declarative
- -- part.
-
- elsif Is_Generic_Instance (Par)
- and then Present (Freeze_Node (Par))
- and then Present (Enc_I)
- then
- if In_Same_Declarative_Part (Freeze_Node (Par), Enc_I)
- or else
- (Nkind (Enc_I) = N_Package_Body
- and then
- In_Same_Declarative_Part (Freeze_Node (Par), Parent (Enc_I)))
- then
- -- The enclosing package may contain several instances. Rather
- -- than computing the earliest point at which to insert its
- -- freeze node, we place it at the end of the declarative part
- -- of the parent of the generic.
-
- Insert_After_Last_Decl
- (Freeze_Node (Par), Package_Freeze_Node (Enc_I));
- end if;
-
- Insert_After_Last_Decl (Inst_Node, F_Node);
-
- elsif Present (Enc_G)
- and then Present (Enc_I)
- and then Enc_G /= Enc_I
- and then Earlier (Inst_Node, Gen_Body)
- then
- if Nkind (Enc_G) = N_Package_Body then
- E_G_Id := Corresponding_Spec (Enc_G);
- else pragma Assert (Nkind (Enc_G) = N_Package_Body_Stub);
- E_G_Id :=
- Corresponding_Spec (Proper_Body (Unit (Library_Unit (Enc_G))));
- end if;
-
- -- Freeze package that encloses instance, and place node after
- -- package that encloses generic. If enclosing package is already
- -- frozen we have to assume it is at the proper place. This may be
- -- a potential ABE that requires dynamic checking. Do not add a
- -- freeze node if the package that encloses the generic is inside
- -- the body that encloses the instance, because the freeze node
- -- would be in the wrong scope. Additional contortions needed if
- -- the bodies are within a subunit.
-
- declare
- Enclosing_Body : Node_Id;
-
- begin
- if Nkind (Enc_I) = N_Package_Body_Stub then
- Enclosing_Body := Proper_Body (Unit (Library_Unit (Enc_I)));
- else
- Enclosing_Body := Enc_I;
- end if;
-
- if Parent (List_Containing (Enc_G)) /= Enclosing_Body then
- Insert_After_Last_Decl (Enc_G, Package_Freeze_Node (Enc_I));
- end if;
- end;
-
- -- Freeze enclosing subunit before instance
-
- Ensure_Freeze_Node (E_G_Id);
-
- if not Is_List_Member (Freeze_Node (E_G_Id)) then
- Insert_After (Enc_G, Freeze_Node (E_G_Id));
- end if;
-
- Insert_After_Last_Decl (Inst_Node, F_Node);
-
- else
- -- If none of the above, insert freeze node at the end of the current
- -- declarative part.
-
- Insert_After_Last_Decl (Inst_Node, F_Node);
- end if;
- end Freeze_Subprogram_Body;
-
- ----------------
- -- Get_Gen_Id --
- ----------------
-
- function Get_Gen_Id (E : Assoc_Ptr) return Entity_Id is
- begin
- return Generic_Renamings.Table (E).Gen_Id;
- end Get_Gen_Id;
-
- ---------------------
- -- Get_Instance_Of --
- ---------------------
-
- function Get_Instance_Of (A : Entity_Id) return Entity_Id is
- Res : constant Assoc_Ptr := Generic_Renamings_HTable.Get (A);
-
- begin
- if Res /= Assoc_Null then
- return Generic_Renamings.Table (Res).Act_Id;
- else
- -- On exit, entity is not instantiated: not a generic parameter, or
- -- else parameter of an inner generic unit.
-
- return A;
- end if;
- end Get_Instance_Of;
-
- ------------------------------------
- -- Get_Package_Instantiation_Node --
- ------------------------------------
-
- function Get_Package_Instantiation_Node (A : Entity_Id) return Node_Id is
- Decl : Node_Id := Unit_Declaration_Node (A);
- Inst : Node_Id;
-
- begin
- -- If the Package_Instantiation attribute has been set on the package
- -- entity, then use it directly when it (or its Original_Node) refers
- -- to an N_Package_Instantiation node. In principle it should be
- -- possible to have this field set in all cases, which should be
- -- investigated, and would allow this function to be significantly
- -- simplified. ???
-
- if Present (Package_Instantiation (A)) then
- if Nkind (Package_Instantiation (A)) = N_Package_Instantiation then
- return Package_Instantiation (A);
-
- elsif Nkind (Original_Node (Package_Instantiation (A))) =
- N_Package_Instantiation
- then
- return Original_Node (Package_Instantiation (A));
- end if;
- end if;
-
- -- If the instantiation is a compilation unit that does not need body
- -- then the instantiation node has been rewritten as a package
- -- declaration for the instance, and we return the original node.
-
- -- If it is a compilation unit and the instance node has not been
- -- rewritten, then it is still the unit of the compilation. Finally, if
- -- a body is present, this is a parent of the main unit whose body has
- -- been compiled for inlining purposes, and the instantiation node has
- -- been rewritten with the instance body.
-
- -- Otherwise the instantiation node appears after the declaration. If
- -- the entity is a formal package, the declaration may have been
- -- rewritten as a generic declaration (in the case of a formal with box)
- -- or left as a formal package declaration if it has actuals, and is
- -- found with a forward search.
-
- if Nkind (Parent (Decl)) = N_Compilation_Unit then
- if Nkind (Decl) = N_Package_Declaration
- and then Present (Corresponding_Body (Decl))
- then
- Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
- end if;
-
- if Nkind (Original_Node (Decl)) = N_Package_Instantiation then
- return Original_Node (Decl);
- else
- return Unit (Parent (Decl));
- end if;
-
- elsif Nkind (Decl) = N_Package_Declaration
- and then Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration
- then
- return Original_Node (Decl);
-
- else
- Inst := Next (Decl);
- while not Nkind_In (Inst, N_Package_Instantiation,
- N_Formal_Package_Declaration)
- loop
- Next (Inst);
- end loop;
-
- return Inst;
- end if;
- end Get_Package_Instantiation_Node;
-
- ------------------------
- -- Has_Been_Exchanged --
- ------------------------
-
- function Has_Been_Exchanged (E : Entity_Id) return Boolean is
- Next : Elmt_Id;
-
- begin
- Next := First_Elmt (Exchanged_Views);
- while Present (Next) loop
- if Full_View (Node (Next)) = E then
- return True;
- end if;
-
- Next_Elmt (Next);
- end loop;
-
- return False;
- end Has_Been_Exchanged;
-
- ----------
- -- Hash --
- ----------
-
- function Hash (F : Entity_Id) return HTable_Range is
- begin
- return HTable_Range (F mod HTable_Size);
- end Hash;
-
- ------------------------
- -- Hide_Current_Scope --
- ------------------------
-
- procedure Hide_Current_Scope is
- C : constant Entity_Id := Current_Scope;
- E : Entity_Id;
-
- begin
- Set_Is_Hidden_Open_Scope (C);
-
- E := First_Entity (C);
- while Present (E) loop
- if Is_Immediately_Visible (E) then
- Set_Is_Immediately_Visible (E, False);
- Append_Elmt (E, Hidden_Entities);
- end if;
-
- Next_Entity (E);
- end loop;
-
- -- Make the scope name invisible as well. This is necessary, but might
- -- conflict with calls to Rtsfind later on, in case the scope is a
- -- predefined one. There is no clean solution to this problem, so for
- -- now we depend on the user not redefining Standard itself in one of
- -- the parent units.
-
- if Is_Immediately_Visible (C)
- and then C /= Standard_Standard
- then
- Set_Is_Immediately_Visible (C, False);
- Append_Elmt (C, Hidden_Entities);
- end if;
-
- end Hide_Current_Scope;
-
- --------------
- -- Init_Env --
- --------------
-
- procedure Init_Env is
- Saved : Instance_Env;
-
- begin
- Saved.Instantiated_Parent := Current_Instantiated_Parent;
- Saved.Exchanged_Views := Exchanged_Views;
- Saved.Hidden_Entities := Hidden_Entities;
- Saved.Current_Sem_Unit := Current_Sem_Unit;
- Saved.Parent_Unit_Visible := Parent_Unit_Visible;
- Saved.Instance_Parent_Unit := Instance_Parent_Unit;
-
- -- Save configuration switches. These may be reset if the unit is a
- -- predefined unit, and the current mode is not Ada 2005.
-
- Save_Opt_Config_Switches (Saved.Switches);
-
- Instance_Envs.Append (Saved);
-
- Exchanged_Views := New_Elmt_List;
- Hidden_Entities := New_Elmt_List;
-
- -- Make dummy entry for Instantiated parent. If generic unit is legal,
- -- this is set properly in Set_Instance_Env.
-
- Current_Instantiated_Parent :=
- (Current_Scope, Current_Scope, Assoc_Null);
- end Init_Env;
-
- ------------------------------
- -- In_Same_Declarative_Part --
- ------------------------------
-
- function In_Same_Declarative_Part
- (F_Node : Node_Id;
- Inst : Node_Id) return Boolean
- is
- Decls : constant Node_Id := Parent (F_Node);
- Nod : Node_Id := Parent (Inst);
-
- begin
- while Present (Nod) loop
- if Nod = Decls then
- return True;
-
- elsif Nkind_In (Nod, N_Subprogram_Body,
- N_Package_Body,
- N_Task_Body,
- N_Protected_Body,
- N_Block_Statement)
- then
- return False;
-
- elsif Nkind (Nod) = N_Subunit then
- Nod := Corresponding_Stub (Nod);
-
- elsif Nkind (Nod) = N_Compilation_Unit then
- return False;
-
- else
- Nod := Parent (Nod);
- end if;
- end loop;
-
- return False;
- end In_Same_Declarative_Part;
-
- ---------------------
- -- In_Main_Context --
- ---------------------
-
- function In_Main_Context (E : Entity_Id) return Boolean is
- Context : List_Id;
- Clause : Node_Id;
- Nam : Node_Id;
-
- begin
- if not Is_Compilation_Unit (E)
- or else Ekind (E) /= E_Package
- or else In_Private_Part (E)
- then
- return False;
- end if;
-
- Context := Context_Items (Cunit (Main_Unit));
-
- Clause := First (Context);
- while Present (Clause) loop
- if Nkind (Clause) = N_With_Clause then
- Nam := Name (Clause);
-
- -- If the current scope is part of the context of the main unit,
- -- analysis of the corresponding with_clause is not complete, and
- -- the entity is not set. We use the Chars field directly, which
- -- might produce false positives in rare cases, but guarantees
- -- that we produce all the instance bodies we will need.
-
- if (Is_Entity_Name (Nam)
- and then Chars (Nam) = Chars (E))
- or else (Nkind (Nam) = N_Selected_Component
- and then Chars (Selector_Name (Nam)) = Chars (E))
- then
- return True;
- end if;
- end if;
-
- Next (Clause);
- end loop;
-
- return False;
- end In_Main_Context;
-
- ---------------------
- -- Inherit_Context --
- ---------------------
-
- procedure Inherit_Context (Gen_Decl : Node_Id; Inst : Node_Id) is
- Current_Context : List_Id;
- Current_Unit : Node_Id;
- Item : Node_Id;
- New_I : Node_Id;
-
- begin
- if Nkind (Parent (Gen_Decl)) = N_Compilation_Unit then
-
- -- The inherited context is attached to the enclosing compilation
- -- unit. This is either the main unit, or the declaration for the
- -- main unit (in case the instantiation appears within the package
- -- declaration and the main unit is its body).
-
- Current_Unit := Parent (Inst);
- while Present (Current_Unit)
- and then Nkind (Current_Unit) /= N_Compilation_Unit
- loop
- Current_Unit := Parent (Current_Unit);
- end loop;
-
- Current_Context := Context_Items (Current_Unit);
-
- Item := First (Context_Items (Parent (Gen_Decl)));
- while Present (Item) loop
- if Nkind (Item) = N_With_Clause then
- New_I := New_Copy (Item);
- Set_Implicit_With (New_I, True);
- Append (New_I, Current_Context);
- end if;
-
- Next (Item);
- end loop;
- end if;
- end Inherit_Context;
-
- ----------------
- -- Initialize --
- ----------------
-
- procedure Initialize is
- begin
- Generic_Renamings.Init;
- Instance_Envs.Init;
- Generic_Flags.Init;
- Generic_Renamings_HTable.Reset;
- Circularity_Detected := False;
- Exchanged_Views := No_Elist;
- Hidden_Entities := No_Elist;
- end Initialize;
-
- ----------------------------
- -- Insert_After_Last_Decl --
- ----------------------------
-
- procedure Insert_After_Last_Decl (N : Node_Id; F_Node : Node_Id) is
- L : List_Id := List_Containing (N);
- P : constant Node_Id := Parent (L);
-
- begin
- if not Is_List_Member (F_Node) then
- if Nkind (P) = N_Package_Specification
- and then L = Visible_Declarations (P)
- and then Present (Private_Declarations (P))
- and then not Is_Empty_List (Private_Declarations (P))
- then
- L := Private_Declarations (P);
- end if;
-
- Insert_After (Last (L), F_Node);
- end if;
- end Insert_After_Last_Decl;
-
- ------------------
- -- Install_Body --
- ------------------
-
- procedure Install_Body
- (Act_Body : Node_Id;
- N : Node_Id;
- Gen_Body : Node_Id;
- Gen_Decl : Node_Id)
- is
- Act_Id : constant Entity_Id := Corresponding_Spec (Act_Body);
- Act_Unit : constant Node_Id := Unit (Cunit (Get_Source_Unit (N)));
- Gen_Id : constant Entity_Id := Corresponding_Spec (Gen_Body);
- Par : constant Entity_Id := Scope (Gen_Id);
- Gen_Unit : constant Node_Id :=
- Unit (Cunit (Get_Source_Unit (Gen_Decl)));
- Orig_Body : Node_Id := Gen_Body;
- F_Node : Node_Id;
- Body_Unit : Node_Id;
-
- Must_Delay : Boolean;
-
- function Enclosing_Subp (Id : Entity_Id) return Entity_Id;
- -- Find subprogram (if any) that encloses instance and/or generic body
-
- function True_Sloc (N : Node_Id) return Source_Ptr;
- -- If the instance is nested inside a generic unit, the Sloc of the
- -- instance indicates the place of the original definition, not the
- -- point of the current enclosing instance. Pending a better usage of
- -- Slocs to indicate instantiation places, we determine the place of
- -- origin of a node by finding the maximum sloc of any ancestor node.
- -- Why is this not equivalent to Top_Level_Location ???
-
- --------------------
- -- Enclosing_Subp --
- --------------------
-
- function Enclosing_Subp (Id : Entity_Id) return Entity_Id is
- Scop : Entity_Id := Scope (Id);
-
- begin
- while Scop /= Standard_Standard
- and then not Is_Overloadable (Scop)
- loop
- Scop := Scope (Scop);
- end loop;
-
- return Scop;
- end Enclosing_Subp;
-
- ---------------
- -- True_Sloc --
- ---------------
-
- function True_Sloc (N : Node_Id) return Source_Ptr is
- Res : Source_Ptr;
- N1 : Node_Id;
-
- begin
- Res := Sloc (N);
- N1 := N;
- while Present (N1) and then N1 /= Act_Unit loop
- if Sloc (N1) > Res then
- Res := Sloc (N1);
- end if;
-
- N1 := Parent (N1);
- end loop;
-
- return Res;
- end True_Sloc;
-
- -- Start of processing for Install_Body
-
- begin
-
- -- If the body is a subunit, the freeze point is the corresponding
- -- stub in the current compilation, not the subunit itself.
-
- if Nkind (Parent (Gen_Body)) = N_Subunit then
- Orig_Body := Corresponding_Stub (Parent (Gen_Body));
- else
- Orig_Body := Gen_Body;
- end if;
-
- Body_Unit := Unit (Cunit (Get_Source_Unit (Orig_Body)));
-
- -- If the instantiation and the generic definition appear in the same
- -- package declaration, this is an early instantiation. If they appear
- -- in the same declarative part, it is an early instantiation only if
- -- the generic body appears textually later, and the generic body is
- -- also in the main unit.
-
- -- If instance is nested within a subprogram, and the generic body is
- -- not, the instance is delayed because the enclosing body is. If
- -- instance and body are within the same scope, or the same sub-
- -- program body, indicate explicitly that the instance is delayed.
-
- Must_Delay :=
- (Gen_Unit = Act_Unit
- and then (Nkind_In (Gen_Unit, N_Package_Declaration,
- N_Generic_Package_Declaration)
- or else (Gen_Unit = Body_Unit
- and then True_Sloc (N) < Sloc (Orig_Body)))
- and then Is_In_Main_Unit (Gen_Unit)
- and then (Scope (Act_Id) = Scope (Gen_Id)
- or else
- Enclosing_Subp (Act_Id) = Enclosing_Subp (Gen_Id)));
-
- -- If this is an early instantiation, the freeze node is placed after
- -- the generic body. Otherwise, if the generic appears in an instance,
- -- we cannot freeze the current instance until the outer one is frozen.
- -- This is only relevant if the current instance is nested within some
- -- inner scope not itself within the outer instance. If this scope is
- -- a package body in the same declarative part as the outer instance,
- -- then that body needs to be frozen after the outer instance. Finally,
- -- if no delay is needed, we place the freeze node at the end of the
- -- current declarative part.
-
- if Expander_Active then
- Ensure_Freeze_Node (Act_Id);
- F_Node := Freeze_Node (Act_Id);
-
- if Must_Delay then
- Insert_After (Orig_Body, F_Node);
-
- elsif Is_Generic_Instance (Par)
- and then Present (Freeze_Node (Par))
- and then Scope (Act_Id) /= Par
- then
- -- Freeze instance of inner generic after instance of enclosing
- -- generic.
-
- if In_Same_Declarative_Part (Freeze_Node (Par), N) then
- Insert_After (Freeze_Node (Par), F_Node);
-
- -- Freeze package enclosing instance of inner generic after
- -- instance of enclosing generic.
-
- elsif Nkind (Parent (N)) = N_Package_Body
- and then In_Same_Declarative_Part (Freeze_Node (Par), Parent (N))
- then
-
- declare
- Enclosing : constant Entity_Id :=
- Corresponding_Spec (Parent (N));
-
- begin
- Insert_After_Last_Decl (N, F_Node);
- Ensure_Freeze_Node (Enclosing);
-
- if not Is_List_Member (Freeze_Node (Enclosing)) then
- Insert_After (Freeze_Node (Par), Freeze_Node (Enclosing));
- end if;
- end;
-
- else
- Insert_After_Last_Decl (N, F_Node);
- end if;
-
- else
- Insert_After_Last_Decl (N, F_Node);
- end if;
- end if;
-
- Set_Is_Frozen (Act_Id);
- Insert_Before (N, Act_Body);
- Mark_Rewrite_Insertion (Act_Body);
- end Install_Body;
-
- -----------------------------
- -- Install_Formal_Packages --
- -----------------------------
-
- procedure Install_Formal_Packages (Par : Entity_Id) is
- E : Entity_Id;
-
- begin
- E := First_Entity (Par);
- while Present (E) loop
- if Ekind (E) = E_Package
- and then Nkind (Parent (E)) = N_Package_Renaming_Declaration
- then
- -- If this is the renaming for the parent instance, done
-
- if Renamed_Object (E) = Par then
- exit;
-
- -- The visibility of a formal of an enclosing generic is
- -- already correct.
-
- elsif Denotes_Formal_Package (E) then
- null;
-
- elsif Present (Associated_Formal_Package (E))
- and then Box_Present (Parent (Associated_Formal_Package (E)))
- then
- Check_Generic_Actuals (Renamed_Object (E), True);
- Set_Is_Hidden (E, False);
- end if;
- end if;
-
- Next_Entity (E);
- end loop;
- end Install_Formal_Packages;
-
- --------------------
- -- Install_Parent --
- --------------------
-
- procedure Install_Parent (P : Entity_Id; In_Body : Boolean := False) is
- Ancestors : constant Elist_Id := New_Elmt_List;
- S : constant Entity_Id := Current_Scope;
- Inst_Par : Entity_Id;
- First_Par : Entity_Id;
- Inst_Node : Node_Id;
- Gen_Par : Entity_Id;
- First_Gen : Entity_Id;
- Elmt : Elmt_Id;
-
- procedure Install_Noninstance_Specs (Par : Entity_Id);
- -- Install the scopes of noninstance parent units ending with Par
-
- procedure Install_Spec (Par : Entity_Id);
- -- The child unit is within the declarative part of the parent, so
- -- the declarations within the parent are immediately visible.
-
- -------------------------------
- -- Install_Noninstance_Specs --
- -------------------------------
-
- procedure Install_Noninstance_Specs (Par : Entity_Id) is
- begin
- if Present (Par)
- and then Par /= Standard_Standard
- and then not In_Open_Scopes (Par)
- then
- Install_Noninstance_Specs (Scope (Par));
- Install_Spec (Par);
- end if;
- end Install_Noninstance_Specs;
-
- ------------------
- -- Install_Spec --
- ------------------
-
- procedure Install_Spec (Par : Entity_Id) is
- Spec : constant Node_Id :=
- Specification (Unit_Declaration_Node (Par));
-
- begin
- -- If this parent of the child instance is a top-level unit,
- -- then record the unit and its visibility for later resetting
- -- in Remove_Parent. We exclude units that are generic instances,
- -- as we only want to record this information for the ultimate
- -- top-level noninstance parent (is that always correct???).
-
- if Scope (Par) = Standard_Standard
- and then not Is_Generic_Instance (Par)
- then
- Parent_Unit_Visible := Is_Immediately_Visible (Par);
- Instance_Parent_Unit := Par;
- end if;
-
- -- Open the parent scope and make it and its declarations visible.
- -- If this point is not within a body, then only the visible
- -- declarations should be made visible, and installation of the
- -- private declarations is deferred until the appropriate point
- -- within analysis of the spec being instantiated (see the handling
- -- of parent visibility in Analyze_Package_Specification). This is
- -- relaxed in the case where the parent unit is Ada.Tags, to avoid
- -- private view problems that occur when compiling instantiations of
- -- a generic child of that package (Generic_Dispatching_Constructor).
- -- If the instance freezes a tagged type, inlinings of operations
- -- from Ada.Tags may need the full view of type Tag. If inlining took
- -- proper account of establishing visibility of inlined subprograms'
- -- parents then it should be possible to remove this
- -- special check. ???
-
- Push_Scope (Par);
- Set_Is_Immediately_Visible (Par);
- Install_Visible_Declarations (Par);
- Set_Use (Visible_Declarations (Spec));
-
- if In_Body or else Is_RTU (Par, Ada_Tags) then
- Install_Private_Declarations (Par);
- Set_Use (Private_Declarations (Spec));
- end if;
- end Install_Spec;
-
- -- Start of processing for Install_Parent
-
- begin
- -- We need to install the parent instance to compile the instantiation
- -- of the child, but the child instance must appear in the current
- -- scope. Given that we cannot place the parent above the current scope
- -- in the scope stack, we duplicate the current scope and unstack both
- -- after the instantiation is complete.
-
- -- If the parent is itself the instantiation of a child unit, we must
- -- also stack the instantiation of its parent, and so on. Each such
- -- ancestor is the prefix of the name in a prior instantiation.
-
- -- If this is a nested instance, the parent unit itself resolves to
- -- a renaming of the parent instance, whose declaration we need.
-
- -- Finally, the parent may be a generic (not an instance) when the
- -- child unit appears as a formal package.
-
- Inst_Par := P;
-
- if Present (Renamed_Entity (Inst_Par)) then
- Inst_Par := Renamed_Entity (Inst_Par);
- end if;
-
- First_Par := Inst_Par;
-
- Gen_Par :=
- Generic_Parent (Specification (Unit_Declaration_Node (Inst_Par)));
-
- First_Gen := Gen_Par;
-
- while Present (Gen_Par)
- and then Is_Child_Unit (Gen_Par)
- loop
- -- Load grandparent instance as well
-
- Inst_Node := Get_Package_Instantiation_Node (Inst_Par);
-
- if Nkind (Name (Inst_Node)) = N_Expanded_Name then
- Inst_Par := Entity (Prefix (Name (Inst_Node)));
-
- if Present (Renamed_Entity (Inst_Par)) then
- Inst_Par := Renamed_Entity (Inst_Par);
- end if;
-
- Gen_Par :=
- Generic_Parent
- (Specification (Unit_Declaration_Node (Inst_Par)));
-
- if Present (Gen_Par) then
- Prepend_Elmt (Inst_Par, Ancestors);
-
- else
- -- Parent is not the name of an instantiation
-
- Install_Noninstance_Specs (Inst_Par);
-
- exit;
- end if;
-
- else
- -- Previous error
-
- exit;
- end if;
- end loop;
-
- if Present (First_Gen) then
- Append_Elmt (First_Par, Ancestors);
-
- else
- Install_Noninstance_Specs (First_Par);
- end if;
-
- if not Is_Empty_Elmt_List (Ancestors) then
- Elmt := First_Elmt (Ancestors);
-
- while Present (Elmt) loop
- Install_Spec (Node (Elmt));
- Install_Formal_Packages (Node (Elmt));
-
- Next_Elmt (Elmt);
- end loop;
- end if;
-
- if not In_Body then
- Push_Scope (S);
- end if;
- end Install_Parent;
-
- --------------------------------
- -- Instantiate_Formal_Package --
- --------------------------------
-
- function Instantiate_Formal_Package
- (Formal : Node_Id;
- Actual : Node_Id;
- Analyzed_Formal : Node_Id) return List_Id
- is
- Loc : constant Source_Ptr := Sloc (Actual);
- Actual_Pack : Entity_Id;
- Formal_Pack : Entity_Id;
- Gen_Parent : Entity_Id;
- Decls : List_Id;
- Nod : Node_Id;
- Parent_Spec : Node_Id;
-
- procedure Find_Matching_Actual
- (F : Node_Id;
- Act : in out Entity_Id);
- -- We need to associate each formal entity in the formal package
- -- with the corresponding entity in the actual package. The actual
- -- package has been analyzed and possibly expanded, and as a result
- -- there is no one-to-one correspondence between the two lists (for
- -- example, the actual may include subtypes, itypes, and inherited
- -- primitive operations, interspersed among the renaming declarations
- -- for the actuals) . We retrieve the corresponding actual by name
- -- because each actual has the same name as the formal, and they do
- -- appear in the same order.
-
- function Get_Formal_Entity (N : Node_Id) return Entity_Id;
- -- Retrieve entity of defining entity of generic formal parameter.
- -- Only the declarations of formals need to be considered when
- -- linking them to actuals, but the declarative list may include
- -- internal entities generated during analysis, and those are ignored.
-
- procedure Match_Formal_Entity
- (Formal_Node : Node_Id;
- Formal_Ent : Entity_Id;
- Actual_Ent : Entity_Id);
- -- Associates the formal entity with the actual. In the case
- -- where Formal_Ent is a formal package, this procedure iterates
- -- through all of its formals and enters associations between the
- -- actuals occurring in the formal package's corresponding actual
- -- package (given by Actual_Ent) and the formal package's formal
- -- parameters. This procedure recurses if any of the parameters is
- -- itself a package.
-
- function Is_Instance_Of
- (Act_Spec : Entity_Id;
- Gen_Anc : Entity_Id) return Boolean;
- -- The actual can be an instantiation of a generic within another
- -- instance, in which case there is no direct link from it to the
- -- original generic ancestor. In that case, we recognize that the
- -- ultimate ancestor is the same by examining names and scopes.
-
- procedure Map_Entities (Form : Entity_Id; Act : Entity_Id);
- -- Within the generic part, entities in the formal package are
- -- visible. To validate subsequent type declarations, indicate
- -- the correspondence between the entities in the analyzed formal,
- -- and the entities in the actual package. There are three packages
- -- involved in the instantiation of a formal package: the parent
- -- generic P1 which appears in the generic declaration, the fake
- -- instantiation P2 which appears in the analyzed generic, and whose
- -- visible entities may be used in subsequent formals, and the actual
- -- P3 in the instance. To validate subsequent formals, me indicate
- -- that the entities in P2 are mapped into those of P3. The mapping of
- -- entities has to be done recursively for nested packages.
-
- procedure Process_Nested_Formal (Formal : Entity_Id);
- -- If the current formal is declared with a box, its own formals are
- -- visible in the instance, as they were in the generic, and their
- -- Hidden flag must be reset. If some of these formals are themselves
- -- packages declared with a box, the processing must be recursive.
-
- --------------------------
- -- Find_Matching_Actual --
- --------------------------
-
- procedure Find_Matching_Actual
- (F : Node_Id;
- Act : in out Entity_Id)
- is
- Formal_Ent : Entity_Id;
-
- begin
- case Nkind (Original_Node (F)) is
- when N_Formal_Object_Declaration |
- N_Formal_Type_Declaration =>
- Formal_Ent := Defining_Identifier (F);
-
- while Chars (Act) /= Chars (Formal_Ent) loop
- Next_Entity (Act);
- end loop;
-
- when N_Formal_Subprogram_Declaration |
- N_Formal_Package_Declaration |
- N_Package_Declaration |
- N_Generic_Package_Declaration =>
- Formal_Ent := Defining_Entity (F);
-
- while Chars (Act) /= Chars (Formal_Ent) loop
- Next_Entity (Act);
- end loop;
-
- when others =>
- raise Program_Error;
- end case;
- end Find_Matching_Actual;
-
- -------------------------
- -- Match_Formal_Entity --
- -------------------------
-
- procedure Match_Formal_Entity
- (Formal_Node : Node_Id;
- Formal_Ent : Entity_Id;
- Actual_Ent : Entity_Id)
- is
- Act_Pkg : Entity_Id;
-
- begin
- Set_Instance_Of (Formal_Ent, Actual_Ent);
-
- if Ekind (Actual_Ent) = E_Package then
-
- -- Record associations for each parameter
-
- Act_Pkg := Actual_Ent;
-
- declare
- A_Ent : Entity_Id := First_Entity (Act_Pkg);
- F_Ent : Entity_Id;
- F_Node : Node_Id;
-
- Gen_Decl : Node_Id;
- Formals : List_Id;
- Actual : Entity_Id;
-
- begin
- -- Retrieve the actual given in the formal package declaration
-
- Actual := Entity (Name (Original_Node (Formal_Node)));
-
- -- The actual in the formal package declaration may be a
- -- renamed generic package, in which case we want to retrieve
- -- the original generic in order to traverse its formal part.
-
- if Present (Renamed_Entity (Actual)) then
- Gen_Decl := Unit_Declaration_Node (Renamed_Entity (Actual));
- else
- Gen_Decl := Unit_Declaration_Node (Actual);
- end if;
-
- Formals := Generic_Formal_Declarations (Gen_Decl);
-
- if Present (Formals) then
- F_Node := First_Non_Pragma (Formals);
- else
- F_Node := Empty;
- end if;
-
- while Present (A_Ent)
- and then Present (F_Node)
- and then A_Ent /= First_Private_Entity (Act_Pkg)
- loop
- F_Ent := Get_Formal_Entity (F_Node);
-
- if Present (F_Ent) then
-
- -- This is a formal of the original package. Record
- -- association and recurse.
-
- Find_Matching_Actual (F_Node, A_Ent);
- Match_Formal_Entity (F_Node, F_Ent, A_Ent);
- Next_Entity (A_Ent);
- end if;
-
- Next_Non_Pragma (F_Node);
- end loop;
- end;
- end if;
- end Match_Formal_Entity;
-
- -----------------------
- -- Get_Formal_Entity --
- -----------------------
-
- function Get_Formal_Entity (N : Node_Id) return Entity_Id is
- Kind : constant Node_Kind := Nkind (Original_Node (N));
- begin
- case Kind is
- when N_Formal_Object_Declaration =>
- return Defining_Identifier (N);
-
- when N_Formal_Type_Declaration =>
- return Defining_Identifier (N);
-
- when N_Formal_Subprogram_Declaration =>
- return Defining_Unit_Name (Specification (N));
-
- when N_Formal_Package_Declaration =>
- return Defining_Identifier (Original_Node (N));
-
- when N_Generic_Package_Declaration =>
- return Defining_Identifier (Original_Node (N));
-
- -- All other declarations are introduced by semantic analysis and
- -- have no match in the actual.
-
- when others =>
- return Empty;
- end case;
- end Get_Formal_Entity;
-
- --------------------
- -- Is_Instance_Of --
- --------------------
-
- function Is_Instance_Of
- (Act_Spec : Entity_Id;
- Gen_Anc : Entity_Id) return Boolean
- is
- Gen_Par : constant Entity_Id := Generic_Parent (Act_Spec);
-
- begin
- if No (Gen_Par) then
- return False;
-
- -- Simplest case: the generic parent of the actual is the formal
-
- elsif Gen_Par = Gen_Anc then
- return True;
-
- elsif Chars (Gen_Par) /= Chars (Gen_Anc) then
- return False;
-
- -- The actual may be obtained through several instantiations. Its
- -- scope must itself be an instance of a generic declared in the
- -- same scope as the formal. Any other case is detected above.
-
- elsif not Is_Generic_Instance (Scope (Gen_Par)) then
- return False;
-
- else
- return Generic_Parent (Parent (Scope (Gen_Par))) = Scope (Gen_Anc);
- end if;
- end Is_Instance_Of;
-
- ------------------
- -- Map_Entities --
- ------------------
-
- procedure Map_Entities (Form : Entity_Id; Act : Entity_Id) is
- E1 : Entity_Id;
- E2 : Entity_Id;
-
- begin
- Set_Instance_Of (Form, Act);
-
- -- Traverse formal and actual package to map the corresponding
- -- entities. We skip over internal entities that may be generated
- -- during semantic analysis, and find the matching entities by
- -- name, given that they must appear in the same order.
-
- E1 := First_Entity (Form);
- E2 := First_Entity (Act);
- while Present (E1)
- and then E1 /= First_Private_Entity (Form)
- loop
- -- Could this test be a single condition???
- -- Seems like it could, and isn't FPE (Form) a constant anyway???
-
- if not Is_Internal (E1)
- and then Present (Parent (E1))
- and then not Is_Class_Wide_Type (E1)
- and then not Is_Internal_Name (Chars (E1))
- then
- while Present (E2)
- and then Chars (E2) /= Chars (E1)
- loop
- Next_Entity (E2);
- end loop;
-
- if No (E2) then
- exit;
- else
- Set_Instance_Of (E1, E2);
-
- if Is_Type (E1)
- and then Is_Tagged_Type (E2)
- then
- Set_Instance_Of
- (Class_Wide_Type (E1), Class_Wide_Type (E2));
- end if;
-
- if Ekind (E1) = E_Package
- and then No (Renamed_Object (E1))
- then
- Map_Entities (E1, E2);
- end if;
- end if;
- end if;
-
- Next_Entity (E1);
- end loop;
- end Map_Entities;
-
- ---------------------------
- -- Process_Nested_Formal --
- ---------------------------
-
- procedure Process_Nested_Formal (Formal : Entity_Id) is
- Ent : Entity_Id;
-
- begin
- if Present (Associated_Formal_Package (Formal))
- and then Box_Present (Parent (Associated_Formal_Package (Formal)))
- then
- Ent := First_Entity (Formal);
- while Present (Ent) loop
- Set_Is_Hidden (Ent, False);
- Set_Is_Visible_Formal (Ent);
- Set_Is_Potentially_Use_Visible
- (Ent, Is_Potentially_Use_Visible (Formal));
-
- if Ekind (Ent) = E_Package then
- exit when Renamed_Entity (Ent) = Renamed_Entity (Formal);
- Process_Nested_Formal (Ent);
- end if;
-
- Next_Entity (Ent);
- end loop;
- end if;
- end Process_Nested_Formal;
-
- -- Start of processing for Instantiate_Formal_Package
-
- begin
- Analyze (Actual);
-
- if not Is_Entity_Name (Actual)
- or else Ekind (Entity (Actual)) /= E_Package
- then
- Error_Msg_N
- ("expect package instance to instantiate formal", Actual);
- Abandon_Instantiation (Actual);
- raise Program_Error;
-
- else
- Actual_Pack := Entity (Actual);
- Set_Is_Instantiated (Actual_Pack);
-
- -- The actual may be a renamed package, or an outer generic formal
- -- package whose instantiation is converted into a renaming.
-
- if Present (Renamed_Object (Actual_Pack)) then
- Actual_Pack := Renamed_Object (Actual_Pack);
- end if;
-
- if Nkind (Analyzed_Formal) = N_Formal_Package_Declaration then
- Gen_Parent := Get_Instance_Of (Entity (Name (Analyzed_Formal)));
- Formal_Pack := Defining_Identifier (Analyzed_Formal);
- else
- Gen_Parent :=
- Generic_Parent (Specification (Analyzed_Formal));
- Formal_Pack :=
- Defining_Unit_Name (Specification (Analyzed_Formal));
- end if;
-
- if Nkind (Parent (Actual_Pack)) = N_Defining_Program_Unit_Name then
- Parent_Spec := Specification (Unit_Declaration_Node (Actual_Pack));
- else
- Parent_Spec := Parent (Actual_Pack);
- end if;
-
- if Gen_Parent = Any_Id then
- Error_Msg_N
- ("previous error in declaration of formal package", Actual);
- Abandon_Instantiation (Actual);
-
- elsif
- Is_Instance_Of (Parent_Spec, Get_Instance_Of (Gen_Parent))
- then
- null;
-
- else
- Error_Msg_NE
- ("actual parameter must be instance of&", Actual, Gen_Parent);
- Abandon_Instantiation (Actual);
- end if;
-
- Set_Instance_Of (Defining_Identifier (Formal), Actual_Pack);
- Map_Entities (Formal_Pack, Actual_Pack);
-
- Nod :=
- Make_Package_Renaming_Declaration (Loc,
- Defining_Unit_Name => New_Copy (Defining_Identifier (Formal)),
- Name => New_Reference_To (Actual_Pack, Loc));
-
- Set_Associated_Formal_Package (Defining_Unit_Name (Nod),
- Defining_Identifier (Formal));
- Decls := New_List (Nod);
-
- -- If the formal F has a box, then the generic declarations are
- -- visible in the generic G. In an instance of G, the corresponding
- -- entities in the actual for F (which are the actuals for the
- -- instantiation of the generic that F denotes) must also be made
- -- visible for analysis of the current instance. On exit from the
- -- current instance, those entities are made private again. If the
- -- actual is currently in use, these entities are also use-visible.
-
- -- The loop through the actual entities also steps through the formal
- -- entities and enters associations from formals to actuals into the
- -- renaming map. This is necessary to properly handle checking of
- -- actual parameter associations for later formals that depend on
- -- actuals declared in the formal package.
-
- -- In Ada 2005, partial parametrization requires that we make visible
- -- the actuals corresponding to formals that were defaulted in the
- -- formal package. There formals are identified because they remain
- -- formal generics within the formal package, rather than being
- -- renamings of the actuals supplied.
-
- declare
- Gen_Decl : constant Node_Id :=
- Unit_Declaration_Node (Gen_Parent);
- Formals : constant List_Id :=
- Generic_Formal_Declarations (Gen_Decl);
-
- Actual_Ent : Entity_Id;
- Actual_Of_Formal : Node_Id;
- Formal_Node : Node_Id;
- Formal_Ent : Entity_Id;
-
- begin
- if Present (Formals) then
- Formal_Node := First_Non_Pragma (Formals);
- else
- Formal_Node := Empty;
- end if;
-
- Actual_Ent := First_Entity (Actual_Pack);
- Actual_Of_Formal :=
- First (Visible_Declarations (Specification (Analyzed_Formal)));
- while Present (Actual_Ent)
- and then Actual_Ent /= First_Private_Entity (Actual_Pack)
- loop
- if Present (Formal_Node) then
- Formal_Ent := Get_Formal_Entity (Formal_Node);
-
- if Present (Formal_Ent) then
- Find_Matching_Actual (Formal_Node, Actual_Ent);
- Match_Formal_Entity
- (Formal_Node, Formal_Ent, Actual_Ent);
-
- -- We iterate at the same time over the actuals of the
- -- local package created for the formal, to determine
- -- which one of the formals of the original generic were
- -- defaulted in the formal. The corresponding actual
- -- entities are visible in the enclosing instance.
-
- if Box_Present (Formal)
- or else
- (Present (Actual_Of_Formal)
- and then
- Is_Generic_Formal
- (Get_Formal_Entity (Actual_Of_Formal)))
- then
- Set_Is_Hidden (Actual_Ent, False);
- Set_Is_Visible_Formal (Actual_Ent);
- Set_Is_Potentially_Use_Visible
- (Actual_Ent, In_Use (Actual_Pack));
-
- if Ekind (Actual_Ent) = E_Package then
- Process_Nested_Formal (Actual_Ent);
- end if;
-
- else
- Set_Is_Hidden (Actual_Ent);
- Set_Is_Potentially_Use_Visible (Actual_Ent, False);
- end if;
- end if;
-
- Next_Non_Pragma (Formal_Node);
- Next (Actual_Of_Formal);
-
- else
- -- No further formals to match, but the generic part may
- -- contain inherited operation that are not hidden in the
- -- enclosing instance.
-
- Next_Entity (Actual_Ent);
- end if;
- end loop;
-
- -- Inherited subprograms generated by formal derived types are
- -- also visible if the types are.
-
- Actual_Ent := First_Entity (Actual_Pack);
- while Present (Actual_Ent)
- and then Actual_Ent /= First_Private_Entity (Actual_Pack)
- loop
- if Is_Overloadable (Actual_Ent)
- and then
- Nkind (Parent (Actual_Ent)) = N_Subtype_Declaration
- and then
- not Is_Hidden (Defining_Identifier (Parent (Actual_Ent)))
- then
- Set_Is_Hidden (Actual_Ent, False);
- Set_Is_Potentially_Use_Visible
- (Actual_Ent, In_Use (Actual_Pack));
- end if;
-
- Next_Entity (Actual_Ent);
- end loop;
- end;
-
- -- If the formal is not declared with a box, reanalyze it as an
- -- abbreviated instantiation, to verify the matching rules of 12.7.
- -- The actual checks are performed after the generic associations
- -- have been analyzed, to guarantee the same visibility for this
- -- instantiation and for the actuals.
-
- -- In Ada 2005, the generic associations for the formal can include
- -- defaulted parameters. These are ignored during check. This
- -- internal instantiation is removed from the tree after conformance
- -- checking, because it contains formal declarations for those
- -- defaulted parameters, and those should not reach the back-end.
-
- if not Box_Present (Formal) then
- declare
- I_Pack : constant Entity_Id :=
- Make_Defining_Identifier (Sloc (Actual),
- Chars => New_Internal_Name ('P'));
-
- begin
- Set_Is_Internal (I_Pack);
-
- Append_To (Decls,
- Make_Package_Instantiation (Sloc (Actual),
- Defining_Unit_Name => I_Pack,
- Name =>
- New_Occurrence_Of
- (Get_Instance_Of (Gen_Parent), Sloc (Actual)),
- Generic_Associations =>
- Generic_Associations (Formal)));
- end;
- end if;
-
- return Decls;
- end if;
- end Instantiate_Formal_Package;
-
- -----------------------------------
- -- Instantiate_Formal_Subprogram --
- -----------------------------------
-
- function Instantiate_Formal_Subprogram
- (Formal : Node_Id;
- Actual : Node_Id;
- Analyzed_Formal : Node_Id) return Node_Id
- is
- Loc : Source_Ptr;
- Formal_Sub : constant Entity_Id :=
- Defining_Unit_Name (Specification (Formal));
- Analyzed_S : constant Entity_Id :=
- Defining_Unit_Name (Specification (Analyzed_Formal));
- Decl_Node : Node_Id;
- Nam : Node_Id;
- New_Spec : Node_Id;
-
- function From_Parent_Scope (Subp : Entity_Id) return Boolean;
- -- If the generic is a child unit, the parent has been installed on the
- -- scope stack, but a default subprogram cannot resolve to something on
- -- the parent because that parent is not really part of the visible
- -- context (it is there to resolve explicit local entities). If the
- -- default has resolved in this way, we remove the entity from
- -- immediate visibility and analyze the node again to emit an error
- -- message or find another visible candidate.
-
- procedure Valid_Actual_Subprogram (Act : Node_Id);
- -- Perform legality check and raise exception on failure
-
- -----------------------
- -- From_Parent_Scope --
- -----------------------
-
- function From_Parent_Scope (Subp : Entity_Id) return Boolean is
- Gen_Scope : Node_Id;
-
- begin
- Gen_Scope := Scope (Analyzed_S);
- while Present (Gen_Scope)
- and then Is_Child_Unit (Gen_Scope)
- loop
- if Scope (Subp) = Scope (Gen_Scope) then
- return True;
- end if;
-
- Gen_Scope := Scope (Gen_Scope);
- end loop;
-
- return False;
- end From_Parent_Scope;
-
- -----------------------------
- -- Valid_Actual_Subprogram --
- -----------------------------
-
- procedure Valid_Actual_Subprogram (Act : Node_Id) is
- Act_E : Entity_Id;
-
- begin
- if Is_Entity_Name (Act) then
- Act_E := Entity (Act);
-
- elsif Nkind (Act) = N_Selected_Component
- and then Is_Entity_Name (Selector_Name (Act))
- then
- Act_E := Entity (Selector_Name (Act));
-
- else
- Act_E := Empty;
- end if;
-
- if (Present (Act_E) and then Is_Overloadable (Act_E))
- or else Nkind_In (Act, N_Attribute_Reference,
- N_Indexed_Component,
- N_Character_Literal,
- N_Explicit_Dereference)
- then
- return;
- end if;
-
- Error_Msg_NE
- ("expect subprogram or entry name in instantiation of&",
- Instantiation_Node, Formal_Sub);
- Abandon_Instantiation (Instantiation_Node);
-
- end Valid_Actual_Subprogram;
-
- -- Start of processing for Instantiate_Formal_Subprogram
-
- begin
- New_Spec := New_Copy_Tree (Specification (Formal));
-
- -- The tree copy has created the proper instantiation sloc for the
- -- new specification. Use this location for all other constructed
- -- declarations.
-
- Loc := Sloc (Defining_Unit_Name (New_Spec));
-
- -- Create new entity for the actual (New_Copy_Tree does not)
-
- Set_Defining_Unit_Name
- (New_Spec, Make_Defining_Identifier (Loc, Chars (Formal_Sub)));
-
- -- Create new entities for the each of the formals in the
- -- specification of the renaming declaration built for the actual.
-
- if Present (Parameter_Specifications (New_Spec)) then
- declare
- F : Node_Id;
- begin
- F := First (Parameter_Specifications (New_Spec));
- while Present (F) loop
- Set_Defining_Identifier (F,
- Make_Defining_Identifier (Sloc (F),
- Chars => Chars (Defining_Identifier (F))));
- Next (F);
- end loop;
- end;
- end if;
-
- -- Find entity of actual. If the actual is an attribute reference, it
- -- cannot be resolved here (its formal is missing) but is handled
- -- instead in Attribute_Renaming. If the actual is overloaded, it is
- -- fully resolved subsequently, when the renaming declaration for the
- -- formal is analyzed. If it is an explicit dereference, resolve the
- -- prefix but not the actual itself, to prevent interpretation as call.
-
- if Present (Actual) then
- Loc := Sloc (Actual);
- Set_Sloc (New_Spec, Loc);
-
- if Nkind (Actual) = N_Operator_Symbol then
- Find_Direct_Name (Actual);
-
- elsif Nkind (Actual) = N_Explicit_Dereference then
- Analyze (Prefix (Actual));
-
- elsif Nkind (Actual) /= N_Attribute_Reference then
- Analyze (Actual);
- end if;
-
- Valid_Actual_Subprogram (Actual);
- Nam := Actual;
-
- elsif Present (Default_Name (Formal)) then
- if not Nkind_In (Default_Name (Formal), N_Attribute_Reference,
- N_Selected_Component,
- N_Indexed_Component,
- N_Character_Literal)
- and then Present (Entity (Default_Name (Formal)))
- then
- Nam := New_Occurrence_Of (Entity (Default_Name (Formal)), Loc);
- else
- Nam := New_Copy (Default_Name (Formal));
- Set_Sloc (Nam, Loc);
- end if;
-
- elsif Box_Present (Formal) then
-
- -- Actual is resolved at the point of instantiation. Create an
- -- identifier or operator with the same name as the formal.
-
- if Nkind (Formal_Sub) = N_Defining_Operator_Symbol then
- Nam := Make_Operator_Symbol (Loc,
- Chars => Chars (Formal_Sub),
- Strval => No_String);
- else
- Nam := Make_Identifier (Loc, Chars (Formal_Sub));
- end if;
-
- elsif Nkind (Specification (Formal)) = N_Procedure_Specification
- and then Null_Present (Specification (Formal))
- then
- -- Generate null body for procedure, for use in the instance
-
- Decl_Node :=
- Make_Subprogram_Body (Loc,
- Specification => New_Spec,
- Declarations => New_List,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements => New_List (Make_Null_Statement (Loc))));
-
- Set_Is_Intrinsic_Subprogram (Defining_Unit_Name (New_Spec));
- return Decl_Node;
-
- else
- Error_Msg_Sloc := Sloc (Scope (Analyzed_S));
- Error_Msg_NE
- ("missing actual&", Instantiation_Node, Formal_Sub);
- Error_Msg_NE
- ("\in instantiation of & declared#",
- Instantiation_Node, Scope (Analyzed_S));
- Abandon_Instantiation (Instantiation_Node);
- end if;
-
- Decl_Node :=
- Make_Subprogram_Renaming_Declaration (Loc,
- Specification => New_Spec,
- Name => Nam);
-
- -- If we do not have an actual and the formal specified <> then set to
- -- get proper default.
-
- if No (Actual) and then Box_Present (Formal) then
- Set_From_Default (Decl_Node);
- end if;
-
- -- Gather possible interpretations for the actual before analyzing the
- -- instance. If overloaded, it will be resolved when analyzing the
- -- renaming declaration.
-
- if Box_Present (Formal)
- and then No (Actual)
- then
- Analyze (Nam);
-
- if Is_Child_Unit (Scope (Analyzed_S))
- and then Present (Entity (Nam))
- then
- if not Is_Overloaded (Nam) then
-
- if From_Parent_Scope (Entity (Nam)) then
- Set_Is_Immediately_Visible (Entity (Nam), False);
- Set_Entity (Nam, Empty);
- Set_Etype (Nam, Empty);
-
- Analyze (Nam);
-
- Set_Is_Immediately_Visible (Entity (Nam));
- end if;
-
- else
- declare
- I : Interp_Index;
- It : Interp;
-
- begin
- Get_First_Interp (Nam, I, It);
-
- while Present (It.Nam) loop
- if From_Parent_Scope (It.Nam) then
- Remove_Interp (I);
- end if;
-
- Get_Next_Interp (I, It);
- end loop;
- end;
- end if;
- end if;
- end if;
-
- -- The generic instantiation freezes the actual. This can only be done
- -- once the actual is resolved, in the analysis of the renaming
- -- declaration. To make the formal subprogram entity available, we set
- -- Corresponding_Formal_Spec to point to the formal subprogram entity.
- -- This is also needed in Analyze_Subprogram_Renaming for the processing
- -- of formal abstract subprograms.
-
- Set_Corresponding_Formal_Spec (Decl_Node, Analyzed_S);
-
- -- We cannot analyze the renaming declaration, and thus find the actual,
- -- until all the actuals are assembled in the instance. For subsequent
- -- checks of other actuals, indicate the node that will hold the
- -- instance of this formal.
-
- Set_Instance_Of (Analyzed_S, Nam);
-
- if Nkind (Actual) = N_Selected_Component
- and then Is_Task_Type (Etype (Prefix (Actual)))
- and then not Is_Frozen (Etype (Prefix (Actual)))
- then
- -- The renaming declaration will create a body, which must appear
- -- outside of the instantiation, We move the renaming declaration
- -- out of the instance, and create an additional renaming inside,
- -- to prevent freezing anomalies.
-
- declare
- Anon_Id : constant Entity_Id :=
- Make_Defining_Identifier
- (Loc, New_Internal_Name ('E'));
- begin
- Set_Defining_Unit_Name (New_Spec, Anon_Id);
- Insert_Before (Instantiation_Node, Decl_Node);
- Analyze (Decl_Node);
-
- -- Now create renaming within the instance
-
- Decl_Node :=
- Make_Subprogram_Renaming_Declaration (Loc,
- Specification => New_Copy_Tree (New_Spec),
- Name => New_Occurrence_Of (Anon_Id, Loc));
-
- Set_Defining_Unit_Name (Specification (Decl_Node),
- Make_Defining_Identifier (Loc, Chars (Formal_Sub)));
- end;
- end if;
-
- return Decl_Node;
- end Instantiate_Formal_Subprogram;
-
- ------------------------
- -- Instantiate_Object --
- ------------------------
-
- function Instantiate_Object
- (Formal : Node_Id;
- Actual : Node_Id;
- Analyzed_Formal : Node_Id) return List_Id
- is
- Acc_Def : Node_Id := Empty;
- Act_Assoc : constant Node_Id := Parent (Actual);
- Actual_Decl : Node_Id := Empty;
- Formal_Id : constant Entity_Id := Defining_Identifier (Formal);
- Decl_Node : Node_Id;
- Def : Node_Id;
- Ftyp : Entity_Id;
- List : constant List_Id := New_List;
- Loc : constant Source_Ptr := Sloc (Actual);
- Orig_Ftyp : constant Entity_Id :=
- Etype (Defining_Identifier (Analyzed_Formal));
- Subt_Decl : Node_Id := Empty;
- Subt_Mark : Node_Id := Empty;
-
- begin
- if Present (Subtype_Mark (Formal)) then
- Subt_Mark := Subtype_Mark (Formal);
- else
- Check_Access_Definition (Formal);
- Acc_Def := Access_Definition (Formal);
- end if;
-
- -- Sloc for error message on missing actual
-
- Error_Msg_Sloc := Sloc (Scope (Defining_Identifier (Analyzed_Formal)));
-
- if Get_Instance_Of (Formal_Id) /= Formal_Id then
- Error_Msg_N ("duplicate instantiation of generic parameter", Actual);
- end if;
-
- Set_Parent (List, Parent (Actual));
-
- -- OUT present
-
- if Out_Present (Formal) then
-
- -- An IN OUT generic actual must be a name. The instantiation is a
- -- renaming declaration. The actual is the name being renamed. We
- -- use the actual directly, rather than a copy, because it is not
- -- used further in the list of actuals, and because a copy or a use
- -- of relocate_node is incorrect if the instance is nested within a
- -- generic. In order to simplify ASIS searches, the Generic_Parent
- -- field links the declaration to the generic association.
-
- if No (Actual) then
- Error_Msg_NE
- ("missing actual&",
- Instantiation_Node, Formal_Id);
- Error_Msg_NE
- ("\in instantiation of & declared#",
- Instantiation_Node,
- Scope (Defining_Identifier (Analyzed_Formal)));
- Abandon_Instantiation (Instantiation_Node);
- end if;
-
- if Present (Subt_Mark) then
- Decl_Node :=
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => New_Copy (Formal_Id),
- Subtype_Mark => New_Copy_Tree (Subt_Mark),
- Name => Actual);
-
- else pragma Assert (Present (Acc_Def));
- Decl_Node :=
- Make_Object_Renaming_Declaration (Loc,
- Defining_Identifier => New_Copy (Formal_Id),
- Access_Definition => New_Copy_Tree (Acc_Def),
- Name => Actual);
- end if;
-
- Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc);
-
- -- The analysis of the actual may produce insert_action nodes, so
- -- the declaration must have a context in which to attach them.
-
- Append (Decl_Node, List);
- Analyze (Actual);
-
- -- Return if the analysis of the actual reported some error
-
- if Etype (Actual) = Any_Type then
- return List;
- end if;
-
- -- This check is performed here because Analyze_Object_Renaming will
- -- not check it when Comes_From_Source is False. Note though that the
- -- check for the actual being the name of an object will be performed
- -- in Analyze_Object_Renaming.
-
- if Is_Object_Reference (Actual)
- and then Is_Dependent_Component_Of_Mutable_Object (Actual)
- then
- Error_Msg_N
- ("illegal discriminant-dependent component for in out parameter",
- Actual);
- end if;
-
- -- The actual has to be resolved in order to check that it is a
- -- variable (due to cases such as F(1), where F returns
- -- access to an array, and for overloaded prefixes).
-
- Ftyp :=
- Get_Instance_Of (Etype (Defining_Identifier (Analyzed_Formal)));
-
- if Is_Private_Type (Ftyp)
- and then not Is_Private_Type (Etype (Actual))
- and then (Base_Type (Full_View (Ftyp)) = Base_Type (Etype (Actual))
- or else Base_Type (Etype (Actual)) = Ftyp)
- then
- -- If the actual has the type of the full view of the formal, or
- -- else a non-private subtype of the formal, then the visibility
- -- of the formal type has changed. Add to the actuals a subtype
- -- declaration that will force the exchange of views in the body
- -- of the instance as well.
-
- Subt_Decl :=
- Make_Subtype_Declaration (Loc,
- Defining_Identifier =>
- Make_Defining_Identifier (Loc, New_Internal_Name ('P')),
- Subtype_Indication => New_Occurrence_Of (Ftyp, Loc));
-
- Prepend (Subt_Decl, List);
-
- Prepend_Elmt (Full_View (Ftyp), Exchanged_Views);
- Exchange_Declarations (Ftyp);
- end if;
-
- Resolve (Actual, Ftyp);
-
- if not Denotes_Variable (Actual) then
- Error_Msg_NE
- ("actual for& must be a variable", Actual, Formal_Id);
-
- elsif Base_Type (Ftyp) /= Base_Type (Etype (Actual)) then
-
- -- Ada 2005 (AI-423): For a generic formal object of mode in out,
- -- the type of the actual shall resolve to a specific anonymous
- -- access type.
-
- if Ada_Version < Ada_05
- or else
- Ekind (Base_Type (Ftyp)) /=
- E_Anonymous_Access_Type
- or else
- Ekind (Base_Type (Etype (Actual))) /=
- E_Anonymous_Access_Type
- then
- Error_Msg_NE ("type of actual does not match type of&",
- Actual, Formal_Id);
- end if;
- end if;
-
- Note_Possible_Modification (Actual, Sure => True);
-
- -- Check for instantiation of atomic/volatile actual for
- -- non-atomic/volatile formal (RM C.6 (12)).
-
- if Is_Atomic_Object (Actual)
- and then not Is_Atomic (Orig_Ftyp)
- then
- Error_Msg_N
- ("cannot instantiate non-atomic formal object " &
- "with atomic actual", Actual);
-
- elsif Is_Volatile_Object (Actual)
- and then not Is_Volatile (Orig_Ftyp)
- then
- Error_Msg_N
- ("cannot instantiate non-volatile formal object " &
- "with volatile actual", Actual);
- end if;
-
- -- OUT not present
-
- else
- -- The instantiation of a generic formal in-parameter is constant
- -- declaration. The actual is the expression for that declaration.
-
- if Present (Actual) then
- if Present (Subt_Mark) then
- Def := Subt_Mark;
- else pragma Assert (Present (Acc_Def));
- Def := Acc_Def;
- end if;
-
- Decl_Node :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => New_Copy (Formal_Id),
- Constant_Present => True,
- Object_Definition => New_Copy_Tree (Def),
- Expression => Actual);
-
- Set_Corresponding_Generic_Association (Decl_Node, Act_Assoc);
-
- -- A generic formal object of a tagged type is defined to be
- -- aliased so the new constant must also be treated as aliased.
-
- if Is_Tagged_Type
- (Etype (Defining_Identifier (Analyzed_Formal)))
- then
- Set_Aliased_Present (Decl_Node);
- end if;
-
- Append (Decl_Node, List);
-
- -- No need to repeat (pre-)analysis of some expression nodes
- -- already handled in Preanalyze_Actuals.
-
- if Nkind (Actual) /= N_Allocator then
- Analyze (Actual);
-
- -- Return if the analysis of the actual reported some error
-
- if Etype (Actual) = Any_Type then
- return List;
- end if;
- end if;
-
- declare
- Typ : constant Entity_Id :=
- Get_Instance_Of
- (Etype (Defining_Identifier (Analyzed_Formal)));
-
- begin
- Freeze_Before (Instantiation_Node, Typ);
-
- -- If the actual is an aggregate, perform name resolution on
- -- its components (the analysis of an aggregate does not do it)
- -- to capture local names that may be hidden if the generic is
- -- a child unit.
-
- if Nkind (Actual) = N_Aggregate then
- Preanalyze_And_Resolve (Actual, Typ);
- end if;
-
- if Is_Limited_Type (Typ)
- and then not OK_For_Limited_Init (Actual)
- then
- Error_Msg_N
- ("initialization not allowed for limited types", Actual);
- Explain_Limited_Type (Typ, Actual);
- end if;
- end;
-
- elsif Present (Default_Expression (Formal)) then
-
- -- Use default to construct declaration
-
- if Present (Subt_Mark) then
- Def := Subt_Mark;
- else pragma Assert (Present (Acc_Def));
- Def := Acc_Def;
- end if;
-
- Decl_Node :=
- Make_Object_Declaration (Sloc (Formal),
- Defining_Identifier => New_Copy (Formal_Id),
- Constant_Present => True,
- Object_Definition => New_Copy (Def),
- Expression => New_Copy_Tree
- (Default_Expression (Formal)));
-
- Append (Decl_Node, List);
- Set_Analyzed (Expression (Decl_Node), False);
-
- else
- Error_Msg_NE
- ("missing actual&",
- Instantiation_Node, Formal_Id);
- Error_Msg_NE ("\in instantiation of & declared#",
- Instantiation_Node,
- Scope (Defining_Identifier (Analyzed_Formal)));
-
- if Is_Scalar_Type
- (Etype (Defining_Identifier (Analyzed_Formal)))
- then
- -- Create dummy constant declaration so that instance can be
- -- analyzed, to minimize cascaded visibility errors.
-
- if Present (Subt_Mark) then
- Def := Subt_Mark;
- else pragma Assert (Present (Acc_Def));
- Def := Acc_Def;
- end if;
-
- Decl_Node :=
- Make_Object_Declaration (Loc,
- Defining_Identifier => New_Copy (Formal_Id),
- Constant_Present => True,
- Object_Definition => New_Copy (Def),
- Expression =>
- Make_Attribute_Reference (Sloc (Formal_Id),
- Attribute_Name => Name_First,
- Prefix => New_Copy (Def)));
-
- Append (Decl_Node, List);
-
- else
- Abandon_Instantiation (Instantiation_Node);
- end if;
- end if;
- end if;
-
- if Nkind (Actual) in N_Has_Entity then
- Actual_Decl := Parent (Entity (Actual));
- end if;
-
- -- Ada 2005 (AI-423): For a formal object declaration with a null
- -- exclusion or an access definition that has a null exclusion: If the
- -- actual matching the formal object declaration denotes a generic
- -- formal object of another generic unit G, and the instantiation
- -- containing the actual occurs within the body of G or within the body
- -- of a generic unit declared within the declarative region of G, then
- -- the declaration of the formal object of G must have a null exclusion.
- -- Otherwise, the subtype of the actual matching the formal object
- -- declaration shall exclude null.
-
- if Ada_Version >= Ada_05
- and then Present (Actual_Decl)
- and then
- Nkind_In (Actual_Decl, N_Formal_Object_Declaration,
- N_Object_Declaration)
- and then Nkind (Analyzed_Formal) = N_Formal_Object_Declaration
- and then not Has_Null_Exclusion (Actual_Decl)
- and then Has_Null_Exclusion (Analyzed_Formal)
- then
- Error_Msg_Sloc := Sloc (Analyzed_Formal);
- Error_Msg_N
- ("actual must exclude null to match generic formal#", Actual);
- end if;
-
- return List;
- end Instantiate_Object;
-
- ------------------------------
- -- Instantiate_Package_Body --
- ------------------------------
-
- procedure Instantiate_Package_Body
- (Body_Info : Pending_Body_Info;
- Inlined_Body : Boolean := False;
- Body_Optional : Boolean := False)
- is
- Act_Decl : constant Node_Id := Body_Info.Act_Decl;
- Inst_Node : constant Node_Id := Body_Info.Inst_Node;
- Loc : constant Source_Ptr := Sloc (Inst_Node);
-
- Gen_Id : constant Node_Id := Name (Inst_Node);
- Gen_Unit : constant Entity_Id := Get_Generic_Entity (Inst_Node);
- Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Unit);
- Act_Spec : constant Node_Id := Specification (Act_Decl);
- Act_Decl_Id : constant Entity_Id := Defining_Entity (Act_Spec);
-
- Act_Body_Name : Node_Id;
- Gen_Body : Node_Id;
- Gen_Body_Id : Node_Id;
- Act_Body : Node_Id;
- Act_Body_Id : Entity_Id;
-
- Parent_Installed : Boolean := False;
- Save_Style_Check : constant Boolean := Style_Check;
-
- begin
- Gen_Body_Id := Corresponding_Body (Gen_Decl);
-
- -- The instance body may already have been processed, as the parent of
- -- another instance that is inlined (Load_Parent_Of_Generic).
-
- if Present (Corresponding_Body (Instance_Spec (Inst_Node))) then
- return;
- end if;
-
- Expander_Mode_Save_And_Set (Body_Info.Expander_Status);
-
- -- Re-establish the state of information on which checks are suppressed.
- -- This information was set in Body_Info at the point of instantiation,
- -- and now we restore it so that the instance is compiled using the
- -- check status at the instantiation (RM 11.5 (7.2/2), AI95-00224-01).
-
- Local_Suppress_Stack_Top := Body_Info.Local_Suppress_Stack_Top;
- Scope_Suppress := Body_Info.Scope_Suppress;
-
- if No (Gen_Body_Id) then
- Load_Parent_Of_Generic
- (Inst_Node, Specification (Gen_Decl), Body_Optional);
- Gen_Body_Id := Corresponding_Body (Gen_Decl);
- end if;
-
- -- Establish global variable for sloc adjustment and for error recovery
-
- Instantiation_Node := Inst_Node;
-
- if Present (Gen_Body_Id) then
- Save_Env (Gen_Unit, Act_Decl_Id);
- Style_Check := False;
- Current_Sem_Unit := Body_Info.Current_Sem_Unit;
-
- Gen_Body := Unit_Declaration_Node (Gen_Body_Id);
-
- Create_Instantiation_Source
- (Inst_Node, Gen_Body_Id, False, S_Adjustment);
-
- Act_Body :=
- Copy_Generic_Node
- (Original_Node (Gen_Body), Empty, Instantiating => True);
-
- -- Build new name (possibly qualified) for body declaration
-
- Act_Body_Id := New_Copy (Act_Decl_Id);
-
- -- Some attributes of spec entity are not inherited by body entity
-
- Set_Handler_Records (Act_Body_Id, No_List);
-
- if Nkind (Defining_Unit_Name (Act_Spec)) =
- N_Defining_Program_Unit_Name
- then
- Act_Body_Name :=
- Make_Defining_Program_Unit_Name (Loc,
- Name => New_Copy_Tree (Name (Defining_Unit_Name (Act_Spec))),
- Defining_Identifier => Act_Body_Id);
- else
- Act_Body_Name := Act_Body_Id;
- end if;
-
- Set_Defining_Unit_Name (Act_Body, Act_Body_Name);
-
- Set_Corresponding_Spec (Act_Body, Act_Decl_Id);
- Check_Generic_Actuals (Act_Decl_Id, False);
-
- -- If it is a child unit, make the parent instance (which is an
- -- instance of the parent of the generic) visible. The parent
- -- instance is the prefix of the name of the generic unit.
-
- if Ekind (Scope (Gen_Unit)) = E_Generic_Package
- and then Nkind (Gen_Id) = N_Expanded_Name
- then
- Install_Parent (Entity (Prefix (Gen_Id)), In_Body => True);
- Parent_Installed := True;
-
- elsif Is_Child_Unit (Gen_Unit) then
- Install_Parent (Scope (Gen_Unit), In_Body => True);
- Parent_Installed := True;
- end if;
-
- -- If the instantiation is a library unit, and this is the main unit,
- -- then build the resulting compilation unit nodes for the instance.
- -- If this is a compilation unit but it is not the main unit, then it
- -- is the body of a unit in the context, that is being compiled
- -- because it is encloses some inlined unit or another generic unit
- -- being instantiated. In that case, this body is not part of the
- -- current compilation, and is not attached to the tree, but its
- -- parent must be set for analysis.
-
- if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
-
- -- Replace instance node with body of instance, and create new
- -- node for corresponding instance declaration.
-
- Build_Instance_Compilation_Unit_Nodes
- (Inst_Node, Act_Body, Act_Decl);
- Analyze (Inst_Node);
-
- if Parent (Inst_Node) = Cunit (Main_Unit) then
-
- -- If the instance is a child unit itself, then set the scope
- -- of the expanded body to be the parent of the instantiation
- -- (ensuring that the fully qualified name will be generated
- -- for the elaboration subprogram).
-
- if Nkind (Defining_Unit_Name (Act_Spec)) =
- N_Defining_Program_Unit_Name
- then
- Set_Scope
- (Defining_Entity (Inst_Node), Scope (Act_Decl_Id));
- end if;
- end if;
-
- -- Case where instantiation is not a library unit
-
- else
- -- If this is an early instantiation, i.e. appears textually
- -- before the corresponding body and must be elaborated first,
- -- indicate that the body instance is to be delayed.
-
- Install_Body (Act_Body, Inst_Node, Gen_Body, Gen_Decl);
-
- -- Now analyze the body. We turn off all checks if this is an
- -- internal unit, since there is no reason to have checks on for
- -- any predefined run-time library code. All such code is designed
- -- to be compiled with checks off.
-
- -- Note that we do NOT apply this criterion to children of GNAT
- -- (or on VMS, children of DEC). The latter units must suppress
- -- checks explicitly if this is needed.
-
- if Is_Predefined_File_Name
- (Unit_File_Name (Get_Source_Unit (Gen_Decl)))
- then
- Analyze (Act_Body, Suppress => All_Checks);
- else
- Analyze (Act_Body);
- end if;
- end if;
-
- Inherit_Context (Gen_Body, Inst_Node);
-
- -- Remove the parent instances if they have been placed on the scope
- -- stack to compile the body.
-
- if Parent_Installed then
- Remove_Parent (In_Body => True);
- end if;
-
- Restore_Private_Views (Act_Decl_Id);
-
- -- Remove the current unit from visibility if this is an instance
- -- that is not elaborated on the fly for inlining purposes.
-
- if not Inlined_Body then
- Set_Is_Immediately_Visible (Act_Decl_Id, False);
- end if;
-
- Restore_Env;
- Style_Check := Save_Style_Check;
-
- -- If we have no body, and the unit requires a body, then complain. This
- -- complaint is suppressed if we have detected other errors (since a
- -- common reason for missing the body is that it had errors).
-
- elsif Unit_Requires_Body (Gen_Unit)
- and then not Body_Optional
- then
- if Serious_Errors_Detected = 0 then
- Error_Msg_NE
- ("cannot find body of generic package &", Inst_Node, Gen_Unit);
-
- -- Don't attempt to perform any cleanup actions if some other error
- -- was already detected, since this can cause blowups.
-
- else
- return;
- end if;
-
- -- Case of package that does not need a body
-
- else
- -- If the instantiation of the declaration is a library unit, rewrite
- -- the original package instantiation as a package declaration in the
- -- compilation unit node.
-
- if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
- Set_Parent_Spec (Act_Decl, Parent_Spec (Inst_Node));
- Rewrite (Inst_Node, Act_Decl);
-
- -- Generate elaboration entity, in case spec has elaboration code.
- -- This cannot be done when the instance is analyzed, because it
- -- is not known yet whether the body exists.
-
- Set_Elaboration_Entity_Required (Act_Decl_Id, False);
- Build_Elaboration_Entity (Parent (Inst_Node), Act_Decl_Id);
-
- -- If the instantiation is not a library unit, then append the
- -- declaration to the list of implicitly generated entities, unless
- -- it is already a list member which means that it was already
- -- processed
-
- elsif not Is_List_Member (Act_Decl) then
- Mark_Rewrite_Insertion (Act_Decl);
- Insert_Before (Inst_Node, Act_Decl);
- end if;
- end if;
-
- Expander_Mode_Restore;
- end Instantiate_Package_Body;
-
- ---------------------------------
- -- Instantiate_Subprogram_Body --
- ---------------------------------
-
- procedure Instantiate_Subprogram_Body
- (Body_Info : Pending_Body_Info;
- Body_Optional : Boolean := False)
- is
- Act_Decl : constant Node_Id := Body_Info.Act_Decl;
- Inst_Node : constant Node_Id := Body_Info.Inst_Node;
- Loc : constant Source_Ptr := Sloc (Inst_Node);
- Gen_Id : constant Node_Id := Name (Inst_Node);
- Gen_Unit : constant Entity_Id := Get_Generic_Entity (Inst_Node);
- Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Unit);
- Anon_Id : constant Entity_Id :=
- Defining_Unit_Name (Specification (Act_Decl));
- Pack_Id : constant Entity_Id :=
- Defining_Unit_Name (Parent (Act_Decl));
- Decls : List_Id;
- Gen_Body : Node_Id;
- Gen_Body_Id : Node_Id;
- Act_Body : Node_Id;
- Pack_Body : Node_Id;
- Prev_Formal : Entity_Id;
- Ret_Expr : Node_Id;
- Unit_Renaming : Node_Id;
-
- Parent_Installed : Boolean := False;
- Save_Style_Check : constant Boolean := Style_Check;
-
- begin
- Gen_Body_Id := Corresponding_Body (Gen_Decl);
-
- -- Subprogram body may have been created already because of an inline
- -- pragma, or because of multiple elaborations of the enclosing package
- -- when several instances of the subprogram appear in the main unit.
-
- if Present (Corresponding_Body (Act_Decl)) then
- return;
- end if;
-
- Expander_Mode_Save_And_Set (Body_Info.Expander_Status);
-
- -- Re-establish the state of information on which checks are suppressed.
- -- This information was set in Body_Info at the point of instantiation,
- -- and now we restore it so that the instance is compiled using the
- -- check status at the instantiation (RM 11.5 (7.2/2), AI95-00224-01).
-
- Local_Suppress_Stack_Top := Body_Info.Local_Suppress_Stack_Top;
- Scope_Suppress := Body_Info.Scope_Suppress;
-
- if No (Gen_Body_Id) then
-
- -- For imported generic subprogram, no body to compile, complete
- -- the spec entity appropriately.
-
- if Is_Imported (Gen_Unit) then
- Set_Is_Imported (Anon_Id);
- Set_First_Rep_Item (Anon_Id, First_Rep_Item (Gen_Unit));
- Set_Interface_Name (Anon_Id, Interface_Name (Gen_Unit));
- Set_Convention (Anon_Id, Convention (Gen_Unit));
- Set_Has_Completion (Anon_Id);
- return;
-
- -- For other cases, compile the body
-
- else
- Load_Parent_Of_Generic
- (Inst_Node, Specification (Gen_Decl), Body_Optional);
- Gen_Body_Id := Corresponding_Body (Gen_Decl);
- end if;
- end if;
-
- Instantiation_Node := Inst_Node;
-
- if Present (Gen_Body_Id) then
- Gen_Body := Unit_Declaration_Node (Gen_Body_Id);
-
- if Nkind (Gen_Body) = N_Subprogram_Body_Stub then
-
- -- Either body is not present, or context is non-expanding, as
- -- when compiling a subunit. Mark the instance as completed, and
- -- diagnose a missing body when needed.
-
- if Expander_Active
- and then Operating_Mode = Generate_Code
- then
- Error_Msg_N
- ("missing proper body for instantiation", Gen_Body);
- end if;
-
- Set_Has_Completion (Anon_Id);
- return;
- end if;
-
- Save_Env (Gen_Unit, Anon_Id);
- Style_Check := False;
- Current_Sem_Unit := Body_Info.Current_Sem_Unit;
- Create_Instantiation_Source
- (Inst_Node,
- Gen_Body_Id,
- False,
- S_Adjustment);
-
- Act_Body :=
- Copy_Generic_Node
- (Original_Node (Gen_Body), Empty, Instantiating => True);
-
- -- Create proper defining name for the body, to correspond to
- -- the one in the spec.
-
- Set_Defining_Unit_Name (Specification (Act_Body),
- Make_Defining_Identifier
- (Sloc (Defining_Entity (Inst_Node)), Chars (Anon_Id)));
- Set_Corresponding_Spec (Act_Body, Anon_Id);
- Set_Has_Completion (Anon_Id);
- Check_Generic_Actuals (Pack_Id, False);
-
- -- Generate a reference to link the visible subprogram instance to
- -- the generic body, which for navigation purposes is the only
- -- available source for the instance.
-
- Generate_Reference
- (Related_Instance (Pack_Id),
- Gen_Body_Id, 'b', Set_Ref => False, Force => True);
-
- -- If it is a child unit, make the parent instance (which is an
- -- instance of the parent of the generic) visible. The parent
- -- instance is the prefix of the name of the generic unit.
-
- if Ekind (Scope (Gen_Unit)) = E_Generic_Package
- and then Nkind (Gen_Id) = N_Expanded_Name
- then
- Install_Parent (Entity (Prefix (Gen_Id)), In_Body => True);
- Parent_Installed := True;
-
- elsif Is_Child_Unit (Gen_Unit) then
- Install_Parent (Scope (Gen_Unit), In_Body => True);
- Parent_Installed := True;
- end if;
-
- -- Inside its body, a reference to the generic unit is a reference
- -- to the instance. The corresponding renaming is the first
- -- declaration in the body.
-
- Unit_Renaming :=
- Make_Subprogram_Renaming_Declaration (Loc,
- Specification =>
- Copy_Generic_Node (
- Specification (Original_Node (Gen_Body)),
- Empty,
- Instantiating => True),
- Name => New_Occurrence_Of (Anon_Id, Loc));
-
- -- If there is a formal subprogram with the same name as the unit
- -- itself, do not add this renaming declaration. This is a temporary
- -- fix for one ACVC test. ???
-
- Prev_Formal := First_Entity (Pack_Id);
- while Present (Prev_Formal) loop
- if Chars (Prev_Formal) = Chars (Gen_Unit)
- and then Is_Overloadable (Prev_Formal)
- then
- exit;
- end if;
-
- Next_Entity (Prev_Formal);
- end loop;
-
- if Present (Prev_Formal) then
- Decls := New_List (Act_Body);
- else
- Decls := New_List (Unit_Renaming, Act_Body);
- end if;
-
- -- The subprogram body is placed in the body of a dummy package body,
- -- whose spec contains the subprogram declaration as well as the
- -- renaming declarations for the generic parameters.
-
- Pack_Body := Make_Package_Body (Loc,
- Defining_Unit_Name => New_Copy (Pack_Id),
- Declarations => Decls);
-
- Set_Corresponding_Spec (Pack_Body, Pack_Id);
-
- -- If the instantiation is a library unit, then build resulting
- -- compilation unit nodes for the instance. The declaration of
- -- the enclosing package is the grandparent of the subprogram
- -- declaration. First replace the instantiation node as the unit
- -- of the corresponding compilation.
-
- if Nkind (Parent (Inst_Node)) = N_Compilation_Unit then
- if Parent (Inst_Node) = Cunit (Main_Unit) then
- Set_Unit (Parent (Inst_Node), Inst_Node);
- Build_Instance_Compilation_Unit_Nodes
- (Inst_Node, Pack_Body, Parent (Parent (Act_Decl)));
- Analyze (Inst_Node);
- else
- Set_Parent (Pack_Body, Parent (Inst_Node));
- Analyze (Pack_Body);
- end if;
-
- else
- Insert_Before (Inst_Node, Pack_Body);
- Mark_Rewrite_Insertion (Pack_Body);
- Analyze (Pack_Body);
-
- if Expander_Active then
- Freeze_Subprogram_Body (Inst_Node, Gen_Body, Pack_Id);
- end if;
- end if;
-
- Inherit_Context (Gen_Body, Inst_Node);
-
- Restore_Private_Views (Pack_Id, False);
-
- if Parent_Installed then
- Remove_Parent (In_Body => True);
- end if;
-
- Restore_Env;
- Style_Check := Save_Style_Check;
-
- -- Body not found. Error was emitted already. If there were no previous
- -- errors, this may be an instance whose scope is a premature instance.
- -- In that case we must insure that the (legal) program does raise
- -- program error if executed. We generate a subprogram body for this
- -- purpose. See DEC ac30vso.
-
- -- Should not reference proprietary DEC tests in comments ???
-
- elsif Serious_Errors_Detected = 0
- and then Nkind (Parent (Inst_Node)) /= N_Compilation_Unit
- then
- if Body_Optional then
- return;
-
- elsif Ekind (Anon_Id) = E_Procedure then
- Act_Body :=
- Make_Subprogram_Body (Loc,
- Specification =>
- Make_Procedure_Specification (Loc,
- Defining_Unit_Name =>
- Make_Defining_Identifier (Loc, Chars (Anon_Id)),
- Parameter_Specifications =>
- New_Copy_List
- (Parameter_Specifications (Parent (Anon_Id)))),
-
- Declarations => Empty_List,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements =>
- New_List (
- Make_Raise_Program_Error (Loc,
- Reason =>
- PE_Access_Before_Elaboration))));
-
- else
- Ret_Expr :=
- Make_Raise_Program_Error (Loc,
- Reason => PE_Access_Before_Elaboration);
-
- Set_Etype (Ret_Expr, (Etype (Anon_Id)));
- Set_Analyzed (Ret_Expr);
-
- Act_Body :=
- Make_Subprogram_Body (Loc,
- Specification =>
- Make_Function_Specification (Loc,
- Defining_Unit_Name =>
- Make_Defining_Identifier (Loc, Chars (Anon_Id)),
- Parameter_Specifications =>
- New_Copy_List
- (Parameter_Specifications (Parent (Anon_Id))),
- Result_Definition =>
- New_Occurrence_Of (Etype (Anon_Id), Loc)),
-
- Declarations => Empty_List,
- Handled_Statement_Sequence =>
- Make_Handled_Sequence_Of_Statements (Loc,
- Statements =>
- New_List
- (Make_Simple_Return_Statement (Loc, Ret_Expr))));
- end if;
-
- Pack_Body := Make_Package_Body (Loc,
- Defining_Unit_Name => New_Copy (Pack_Id),
- Declarations => New_List (Act_Body));
-
- Insert_After (Inst_Node, Pack_Body);
- Set_Corresponding_Spec (Pack_Body, Pack_Id);
- Analyze (Pack_Body);
- end if;
-
- Expander_Mode_Restore;
- end Instantiate_Subprogram_Body;
-
- ----------------------
- -- Instantiate_Type --
- ----------------------
-
- function Instantiate_Type
- (Formal : Node_Id;
- Actual : Node_Id;
- Analyzed_Formal : Node_Id;
- Actual_Decls : List_Id) return List_Id
- is
- Gen_T : constant Entity_Id := Defining_Identifier (Formal);
- A_Gen_T : constant Entity_Id :=
- Defining_Identifier (Analyzed_Formal);
- Ancestor : Entity_Id := Empty;
- Def : constant Node_Id := Formal_Type_Definition (Formal);
- Act_T : Entity_Id;
- Decl_Node : Node_Id;
- Decl_Nodes : List_Id;
- Loc : Source_Ptr;
- Subt : Entity_Id;
-
- procedure Validate_Array_Type_Instance;
- procedure Validate_Access_Subprogram_Instance;
- procedure Validate_Access_Type_Instance;
- procedure Validate_Derived_Type_Instance;
- procedure Validate_Derived_Interface_Type_Instance;
- procedure Validate_Interface_Type_Instance;
- procedure Validate_Private_Type_Instance;
- -- These procedures perform validation tests for the named case
-
- function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean;
- -- Check that base types are the same and that the subtypes match
- -- statically. Used in several of the above.
-
- --------------------
- -- Subtypes_Match --
- --------------------
-
- function Subtypes_Match (Gen_T, Act_T : Entity_Id) return Boolean is
- T : constant Entity_Id := Get_Instance_Of (Gen_T);
-
- begin
- return (Base_Type (T) = Base_Type (Act_T)
- and then Subtypes_Statically_Match (T, Act_T))
-
- or else (Is_Class_Wide_Type (Gen_T)
- and then Is_Class_Wide_Type (Act_T)
- and then
- Subtypes_Match
- (Get_Instance_Of (Root_Type (Gen_T)),
- Root_Type (Act_T)))
-
- or else
- ((Ekind (Gen_T) = E_Anonymous_Access_Subprogram_Type
- or else Ekind (Gen_T) = E_Anonymous_Access_Type)
- and then Ekind (Act_T) = Ekind (Gen_T)
- and then
- Subtypes_Statically_Match
- (Designated_Type (Gen_T), Designated_Type (Act_T)));
- end Subtypes_Match;
-
- -----------------------------------------
- -- Validate_Access_Subprogram_Instance --
- -----------------------------------------
-
- procedure Validate_Access_Subprogram_Instance is
- begin
- if not Is_Access_Type (Act_T)
- or else Ekind (Designated_Type (Act_T)) /= E_Subprogram_Type
- then
- Error_Msg_NE
- ("expect access type in instantiation of &", Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- Check_Mode_Conformant
- (Designated_Type (Act_T),
- Designated_Type (A_Gen_T),
- Actual,
- Get_Inst => True);
-
- if Ekind (Base_Type (Act_T)) = E_Access_Protected_Subprogram_Type then
- if Ekind (A_Gen_T) = E_Access_Subprogram_Type then
- Error_Msg_NE
- ("protected access type not allowed for formal &",
- Actual, Gen_T);
- end if;
-
- elsif Ekind (A_Gen_T) = E_Access_Protected_Subprogram_Type then
- Error_Msg_NE
- ("expect protected access type for formal &",
- Actual, Gen_T);
- end if;
- end Validate_Access_Subprogram_Instance;
-
- -----------------------------------
- -- Validate_Access_Type_Instance --
- -----------------------------------
-
- procedure Validate_Access_Type_Instance is
- Desig_Type : constant Entity_Id :=
- Find_Actual_Type (Designated_Type (A_Gen_T), A_Gen_T);
- Desig_Act : Entity_Id;
-
- begin
- if not Is_Access_Type (Act_T) then
- Error_Msg_NE
- ("expect access type in instantiation of &", Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- if Is_Access_Constant (A_Gen_T) then
- if not Is_Access_Constant (Act_T) then
- Error_Msg_N
- ("actual type must be access-to-constant type", Actual);
- Abandon_Instantiation (Actual);
- end if;
- else
- if Is_Access_Constant (Act_T) then
- Error_Msg_N
- ("actual type must be access-to-variable type", Actual);
- Abandon_Instantiation (Actual);
-
- elsif Ekind (A_Gen_T) = E_General_Access_Type
- and then Ekind (Base_Type (Act_T)) /= E_General_Access_Type
- then
- Error_Msg_N ("actual must be general access type!", Actual);
- Error_Msg_NE ("add ALL to }!", Actual, Act_T);
- Abandon_Instantiation (Actual);
- end if;
- end if;
-
- -- The designated subtypes, that is to say the subtypes introduced
- -- by an access type declaration (and not by a subtype declaration)
- -- must match.
-
- Desig_Act := Designated_Type (Base_Type (Act_T));
-
- -- The designated type may have been introduced through a limited_
- -- with clause, in which case retrieve the non-limited view. This
- -- applies to incomplete types as well as to class-wide types.
-
- if From_With_Type (Desig_Act) then
- Desig_Act := Available_View (Desig_Act);
- end if;
-
- if not Subtypes_Match
- (Desig_Type, Desig_Act) then
- Error_Msg_NE
- ("designated type of actual does not match that of formal &",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
-
- elsif Is_Access_Type (Designated_Type (Act_T))
- and then Is_Constrained (Designated_Type (Designated_Type (Act_T)))
- /=
- Is_Constrained (Designated_Type (Desig_Type))
- then
- Error_Msg_NE
- ("designated type of actual does not match that of formal &",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- -- Ada 2005: null-exclusion indicators of the two types must agree
-
- if Can_Never_Be_Null (A_Gen_T) /= Can_Never_Be_Null (Act_T) then
- Error_Msg_NE
- ("non null exclusion of actual and formal & do not match",
- Actual, Gen_T);
- end if;
- end Validate_Access_Type_Instance;
-
- ----------------------------------
- -- Validate_Array_Type_Instance --
- ----------------------------------
-
- procedure Validate_Array_Type_Instance is
- I1 : Node_Id;
- I2 : Node_Id;
- T2 : Entity_Id;
-
- function Formal_Dimensions return Int;
- -- Count number of dimensions in array type formal
-
- -----------------------
- -- Formal_Dimensions --
- -----------------------
-
- function Formal_Dimensions return Int is
- Num : Int := 0;
- Index : Node_Id;
-
- begin
- if Nkind (Def) = N_Constrained_Array_Definition then
- Index := First (Discrete_Subtype_Definitions (Def));
- else
- Index := First (Subtype_Marks (Def));
- end if;
-
- while Present (Index) loop
- Num := Num + 1;
- Next_Index (Index);
- end loop;
-
- return Num;
- end Formal_Dimensions;
-
- -- Start of processing for Validate_Array_Type_Instance
-
- begin
- if not Is_Array_Type (Act_T) then
- Error_Msg_NE
- ("expect array type in instantiation of &", Actual, Gen_T);
- Abandon_Instantiation (Actual);
-
- elsif Nkind (Def) = N_Constrained_Array_Definition then
- if not (Is_Constrained (Act_T)) then
- Error_Msg_NE
- ("expect constrained array in instantiation of &",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- else
- if Is_Constrained (Act_T) then
- Error_Msg_NE
- ("expect unconstrained array in instantiation of &",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
- end if;
-
- if Formal_Dimensions /= Number_Dimensions (Act_T) then
- Error_Msg_NE
- ("dimensions of actual do not match formal &", Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- I1 := First_Index (A_Gen_T);
- I2 := First_Index (Act_T);
- for J in 1 .. Formal_Dimensions loop
-
- -- If the indices of the actual were given by a subtype_mark,
- -- the index was transformed into a range attribute. Retrieve
- -- the original type mark for checking.
-
- if Is_Entity_Name (Original_Node (I2)) then
- T2 := Entity (Original_Node (I2));
- else
- T2 := Etype (I2);
- end if;
-
- if not Subtypes_Match
- (Find_Actual_Type (Etype (I1), A_Gen_T), T2)
- then
- Error_Msg_NE
- ("index types of actual do not match those of formal &",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- Next_Index (I1);
- Next_Index (I2);
- end loop;
-
- -- Check matching subtypes. Note that there are complex visibility
- -- issues when the generic is a child unit and some aspect of the
- -- generic type is declared in a parent unit of the generic. We do
- -- the test to handle this special case only after a direct check
- -- for static matching has failed.
-
- if Subtypes_Match
- (Component_Type (A_Gen_T), Component_Type (Act_T))
- or else Subtypes_Match
- (Find_Actual_Type (Component_Type (A_Gen_T), A_Gen_T),
- Component_Type (Act_T))
- then
- null;
- else
- Error_Msg_NE
- ("component subtype of actual does not match that of formal &",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- if Has_Aliased_Components (A_Gen_T)
- and then not Has_Aliased_Components (Act_T)
- then
- Error_Msg_NE
- ("actual must have aliased components to match formal type &",
- Actual, Gen_T);
- end if;
- end Validate_Array_Type_Instance;
-
- -----------------------------------------------
- -- Validate_Derived_Interface_Type_Instance --
- -----------------------------------------------
-
- procedure Validate_Derived_Interface_Type_Instance is
- Par : constant Entity_Id := Entity (Subtype_Indication (Def));
- Elmt : Elmt_Id;
-
- begin
- -- First apply interface instance checks
-
- Validate_Interface_Type_Instance;
-
- -- Verify that immediate parent interface is an ancestor of
- -- the actual.
-
- if Present (Par)
- and then not Interface_Present_In_Ancestor (Act_T, Par)
- then
- Error_Msg_NE
- ("interface actual must include progenitor&", Actual, Par);
- end if;
-
- -- Now verify that the actual includes all other ancestors of
- -- the formal.
-
- Elmt := First_Elmt (Interfaces (A_Gen_T));
- while Present (Elmt) loop
- if not Interface_Present_In_Ancestor
- (Act_T, Get_Instance_Of (Node (Elmt)))
- then
- Error_Msg_NE
- ("interface actual must include progenitor&",
- Actual, Node (Elmt));
- end if;
-
- Next_Elmt (Elmt);
- end loop;
- end Validate_Derived_Interface_Type_Instance;
-
- ------------------------------------
- -- Validate_Derived_Type_Instance --
- ------------------------------------
-
- procedure Validate_Derived_Type_Instance is
- Actual_Discr : Entity_Id;
- Ancestor_Discr : Entity_Id;
-
- begin
- -- If the parent type in the generic declaration is itself a previous
- -- formal type, then it is local to the generic and absent from the
- -- analyzed generic definition. In that case the ancestor is the
- -- instance of the formal (which must have been instantiated
- -- previously), unless the ancestor is itself a formal derived type.
- -- In this latter case (which is the subject of Corrigendum 8652/0038
- -- (AI-202) the ancestor of the formals is the ancestor of its
- -- parent. Otherwise, the analyzed generic carries the parent type.
- -- If the parent type is defined in a previous formal package, then
- -- the scope of that formal package is that of the generic type
- -- itself, and it has already been mapped into the corresponding type
- -- in the actual package.
-
- -- Common case: parent type defined outside of the generic
-
- if Is_Entity_Name (Subtype_Mark (Def))
- and then Present (Entity (Subtype_Mark (Def)))
- then
- Ancestor := Get_Instance_Of (Entity (Subtype_Mark (Def)));
-
- -- Check whether parent is defined in a previous formal package
-
- elsif
- Scope (Scope (Base_Type (Etype (A_Gen_T)))) = Scope (A_Gen_T)
- then
- Ancestor :=
- Get_Instance_Of (Base_Type (Etype (A_Gen_T)));
-
- -- The type may be a local derivation, or a type extension of a
- -- previous formal, or of a formal of a parent package.
-
- elsif Is_Derived_Type (Get_Instance_Of (A_Gen_T))
- or else
- Ekind (Get_Instance_Of (A_Gen_T)) = E_Record_Type_With_Private
- then
- -- Check whether the parent is another derived formal type in the
- -- same generic unit.
-
- if Etype (A_Gen_T) /= A_Gen_T
- and then Is_Generic_Type (Etype (A_Gen_T))
- and then Scope (Etype (A_Gen_T)) = Scope (A_Gen_T)
- and then Etype (Etype (A_Gen_T)) /= Etype (A_Gen_T)
- then
- -- Locate ancestor of parent from the subtype declaration
- -- created for the actual.
-
- declare
- Decl : Node_Id;
-
- begin
- Decl := First (Actual_Decls);
- while Present (Decl) loop
- if Nkind (Decl) = N_Subtype_Declaration
- and then Chars (Defining_Identifier (Decl)) =
- Chars (Etype (A_Gen_T))
- then
- Ancestor := Generic_Parent_Type (Decl);
- exit;
- else
- Next (Decl);
- end if;
- end loop;
- end;
-
- pragma Assert (Present (Ancestor));
-
- else
- Ancestor :=
- Get_Instance_Of (Base_Type (Get_Instance_Of (A_Gen_T)));
- end if;
-
- else
- Ancestor := Get_Instance_Of (Etype (Base_Type (A_Gen_T)));
- end if;
-
- -- If the formal derived type has pragma Preelaborable_Initialization
- -- then the actual type must have preelaborable initialization.
-
- if Known_To_Have_Preelab_Init (A_Gen_T)
- and then not Has_Preelaborable_Initialization (Act_T)
- then
- Error_Msg_NE
- ("actual for & must have preelaborable initialization",
- Actual, Gen_T);
- end if;
-
- -- Ada 2005 (AI-251)
-
- if Ada_Version >= Ada_05
- and then Is_Interface (Ancestor)
- then
- if not Interface_Present_In_Ancestor (Act_T, Ancestor) then
- Error_Msg_NE
- ("(Ada 2005) expected type implementing & in instantiation",
- Actual, Ancestor);
- end if;
-
- elsif not Is_Ancestor (Base_Type (Ancestor), Act_T) then
- Error_Msg_NE
- ("expect type derived from & in instantiation",
- Actual, First_Subtype (Ancestor));
- Abandon_Instantiation (Actual);
- end if;
-
- -- Ada 2005 (AI-443): Synchronized formal derived type checks. Note
- -- that the formal type declaration has been rewritten as a private
- -- extension.
-
- if Ada_Version >= Ada_05
- and then Nkind (Parent (A_Gen_T)) = N_Private_Extension_Declaration
- and then Synchronized_Present (Parent (A_Gen_T))
- then
- -- The actual must be a synchronized tagged type
-
- if not Is_Tagged_Type (Act_T) then
- Error_Msg_N
- ("actual of synchronized type must be tagged", Actual);
- Abandon_Instantiation (Actual);
-
- elsif Nkind (Parent (Act_T)) = N_Full_Type_Declaration
- and then Nkind (Type_Definition (Parent (Act_T))) =
- N_Derived_Type_Definition
- and then not Synchronized_Present (Type_Definition
- (Parent (Act_T)))
- then
- Error_Msg_N
- ("actual of synchronized type must be synchronized", Actual);
- Abandon_Instantiation (Actual);
- end if;
- end if;
-
- -- Perform atomic/volatile checks (RM C.6(12))
-
- if Is_Atomic (Act_T) and then not Is_Atomic (Ancestor) then
- Error_Msg_N
- ("cannot have atomic actual type for non-atomic formal type",
- Actual);
-
- elsif Is_Volatile (Act_T)
- and then not Is_Volatile (Ancestor)
- and then Is_By_Reference_Type (Ancestor)
- then
- Error_Msg_N
- ("cannot have volatile actual type for non-volatile formal type",
- Actual);
- end if;
-
- -- It should not be necessary to check for unknown discriminants on
- -- Formal, but for some reason Has_Unknown_Discriminants is false for
- -- A_Gen_T, so Is_Indefinite_Subtype incorrectly returns False. This
- -- needs fixing. ???
-
- if not Is_Indefinite_Subtype (A_Gen_T)
- and then not Unknown_Discriminants_Present (Formal)
- and then Is_Indefinite_Subtype (Act_T)
- then
- Error_Msg_N
- ("actual subtype must be constrained", Actual);
- Abandon_Instantiation (Actual);
- end if;
-
- if not Unknown_Discriminants_Present (Formal) then
- if Is_Constrained (Ancestor) then
- if not Is_Constrained (Act_T) then
- Error_Msg_N
- ("actual subtype must be constrained", Actual);
- Abandon_Instantiation (Actual);
- end if;
-
- -- Ancestor is unconstrained, Check if generic formal and actual
- -- agree on constrainedness. The check only applies to array types
- -- and discriminated types.
-
- elsif Is_Constrained (Act_T) then
- if Ekind (Ancestor) = E_Access_Type
- or else
- (not Is_Constrained (A_Gen_T)
- and then Is_Composite_Type (A_Gen_T))
- then
- Error_Msg_N
- ("actual subtype must be unconstrained", Actual);
- Abandon_Instantiation (Actual);
- end if;
-
- -- A class-wide type is only allowed if the formal has unknown
- -- discriminants.
-
- elsif Is_Class_Wide_Type (Act_T)
- and then not Has_Unknown_Discriminants (Ancestor)
- then
- Error_Msg_NE
- ("actual for & cannot be a class-wide type", Actual, Gen_T);
- Abandon_Instantiation (Actual);
-
- -- Otherwise, the formal and actual shall have the same number
- -- of discriminants and each discriminant of the actual must
- -- correspond to a discriminant of the formal.
-
- elsif Has_Discriminants (Act_T)
- and then not Has_Unknown_Discriminants (Act_T)
- and then Has_Discriminants (Ancestor)
- then
- Actual_Discr := First_Discriminant (Act_T);
- Ancestor_Discr := First_Discriminant (Ancestor);
- while Present (Actual_Discr)
- and then Present (Ancestor_Discr)
- loop
- if Base_Type (Act_T) /= Base_Type (Ancestor) and then
- No (Corresponding_Discriminant (Actual_Discr))
- then
- Error_Msg_NE
- ("discriminant & does not correspond " &
- "to ancestor discriminant", Actual, Actual_Discr);
- Abandon_Instantiation (Actual);
- end if;
-
- Next_Discriminant (Actual_Discr);
- Next_Discriminant (Ancestor_Discr);
- end loop;
-
- if Present (Actual_Discr) or else Present (Ancestor_Discr) then
- Error_Msg_NE
- ("actual for & must have same number of discriminants",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- -- This case should be caught by the earlier check for
- -- constrainedness, but the check here is added for completeness.
-
- elsif Has_Discriminants (Act_T)
- and then not Has_Unknown_Discriminants (Act_T)
- then
- Error_Msg_NE
- ("actual for & must not have discriminants", Actual, Gen_T);
- Abandon_Instantiation (Actual);
-
- elsif Has_Discriminants (Ancestor) then
- Error_Msg_NE
- ("actual for & must have known discriminants", Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- if not Subtypes_Statically_Compatible (Act_T, Ancestor) then
- Error_Msg_N
- ("constraint on actual is incompatible with formal", Actual);
- Abandon_Instantiation (Actual);
- end if;
- end if;
-
- -- If the formal and actual types are abstract, check that there
- -- are no abstract primitives of the actual type that correspond to
- -- nonabstract primitives of the formal type (second sentence of
- -- RM95-3.9.3(9)).
-
- if Is_Abstract_Type (A_Gen_T) and then Is_Abstract_Type (Act_T) then
- Check_Abstract_Primitives : declare
- Gen_Prims : constant Elist_Id :=
- Primitive_Operations (A_Gen_T);
- Gen_Elmt : Elmt_Id;
- Gen_Subp : Entity_Id;
- Anc_Subp : Entity_Id;
- Anc_Formal : Entity_Id;
- Anc_F_Type : Entity_Id;
-
- Act_Prims : constant Elist_Id := Primitive_Operations (Act_T);
- Act_Elmt : Elmt_Id;
- Act_Subp : Entity_Id;
- Act_Formal : Entity_Id;
- Act_F_Type : Entity_Id;
-
- Subprograms_Correspond : Boolean;
-
- function Is_Tagged_Ancestor (T1, T2 : Entity_Id) return Boolean;
- -- Returns true if T2 is derived directly or indirectly from
- -- T1, including derivations from interfaces. T1 and T2 are
- -- required to be specific tagged base types.
-
- ------------------------
- -- Is_Tagged_Ancestor --
- ------------------------
-
- function Is_Tagged_Ancestor (T1, T2 : Entity_Id) return Boolean
- is
- Intfc_Elmt : Elmt_Id;
-
- begin
- -- The predicate is satisfied if the types are the same
-
- if T1 = T2 then
- return True;
-
- -- If we've reached the top of the derivation chain then
- -- we know that T1 is not an ancestor of T2.
-
- elsif Etype (T2) = T2 then
- return False;
-
- -- Proceed to check T2's immediate parent
-
- elsif Is_Ancestor (T1, Base_Type (Etype (T2))) then
- return True;
-
- -- Finally, check to see if T1 is an ancestor of any of T2's
- -- progenitors.
-
- else
- Intfc_Elmt := First_Elmt (Interfaces (T2));
- while Present (Intfc_Elmt) loop
- if Is_Ancestor (T1, Node (Intfc_Elmt)) then
- return True;
- end if;
-
- Next_Elmt (Intfc_Elmt);
- end loop;
- end if;
-
- return False;
- end Is_Tagged_Ancestor;
-
- -- Start of processing for Check_Abstract_Primitives
-
- begin
- -- Loop over all of the formal derived type's primitives
-
- Gen_Elmt := First_Elmt (Gen_Prims);
- while Present (Gen_Elmt) loop
- Gen_Subp := Node (Gen_Elmt);
-
- -- If the primitive of the formal is not abstract, then
- -- determine whether there is a corresponding primitive of
- -- the actual type that's abstract.
-
- if not Is_Abstract_Subprogram (Gen_Subp) then
- Act_Elmt := First_Elmt (Act_Prims);
- while Present (Act_Elmt) loop
- Act_Subp := Node (Act_Elmt);
-
- -- If we find an abstract primitive of the actual,
- -- then we need to test whether it corresponds to the
- -- subprogram from which the generic formal primitive
- -- is inherited.
-
- if Is_Abstract_Subprogram (Act_Subp) then
- Anc_Subp := Alias (Gen_Subp);
-
- -- Test whether we have a corresponding primitive
- -- by comparing names, kinds, formal types, and
- -- result types.
-
- if Chars (Anc_Subp) = Chars (Act_Subp)
- and then Ekind (Anc_Subp) = Ekind (Act_Subp)
- then
- Anc_Formal := First_Formal (Anc_Subp);
- Act_Formal := First_Formal (Act_Subp);
- while Present (Anc_Formal)
- and then Present (Act_Formal)
- loop
- Anc_F_Type := Etype (Anc_Formal);
- Act_F_Type := Etype (Act_Formal);
-
- if Ekind (Anc_F_Type)
- = E_Anonymous_Access_Type
- then
- Anc_F_Type := Designated_Type (Anc_F_Type);
-
- if Ekind (Act_F_Type)
- = E_Anonymous_Access_Type
- then
- Act_F_Type :=
- Designated_Type (Act_F_Type);
- else
- exit;
- end if;
-
- elsif
- Ekind (Act_F_Type) = E_Anonymous_Access_Type
- then
- exit;
- end if;
-
- Anc_F_Type := Base_Type (Anc_F_Type);
- Act_F_Type := Base_Type (Act_F_Type);
-
- -- If the formal is controlling, then the
- -- the type of the actual primitive's formal
- -- must be derived directly or indirectly
- -- from the type of the ancestor primitive's
- -- formal.
-
- if Is_Controlling_Formal (Anc_Formal) then
- if not Is_Tagged_Ancestor
- (Anc_F_Type, Act_F_Type)
- then
- exit;
- end if;
-
- -- Otherwise the types of the formals must
- -- be the same.
-
- elsif Anc_F_Type /= Act_F_Type then
- exit;
- end if;
-
- Next_Entity (Anc_Formal);
- Next_Entity (Act_Formal);
- end loop;
-
- -- If we traversed through all of the formals
- -- then so far the subprograms correspond, so
- -- now check that any result types correspond.
-
- if No (Anc_Formal)
- and then No (Act_Formal)
- then
- Subprograms_Correspond := True;
-
- if Ekind (Act_Subp) = E_Function then
- Anc_F_Type := Etype (Anc_Subp);
- Act_F_Type := Etype (Act_Subp);
-
- if Ekind (Anc_F_Type)
- = E_Anonymous_Access_Type
- then
- Anc_F_Type :=
- Designated_Type (Anc_F_Type);
-
- if Ekind (Act_F_Type)
- = E_Anonymous_Access_Type
- then
- Act_F_Type :=
- Designated_Type (Act_F_Type);
- else
- Subprograms_Correspond := False;
- end if;
-
- elsif
- Ekind (Act_F_Type)
- = E_Anonymous_Access_Type
- then
- Subprograms_Correspond := False;
- end if;
-
- Anc_F_Type := Base_Type (Anc_F_Type);
- Act_F_Type := Base_Type (Act_F_Type);
-
- -- Now either the result types must be
- -- the same or, if the result type is
- -- controlling, the result type of the
- -- actual primitive must descend from the
- -- result type of the ancestor primitive.
-
- if Subprograms_Correspond
- and then Anc_F_Type /= Act_F_Type
- and then
- Has_Controlling_Result (Anc_Subp)
- and then
- not Is_Tagged_Ancestor
- (Anc_F_Type, Act_F_Type)
- then
- Subprograms_Correspond := False;
- end if;
- end if;
-
- -- Found a matching subprogram belonging to
- -- formal ancestor type, so actual subprogram
- -- corresponds and this violates 3.9.3(9).
-
- if Subprograms_Correspond then
- Error_Msg_NE
- ("abstract subprogram & overrides " &
- "nonabstract subprogram of ancestor",
- Actual,
- Act_Subp);
- end if;
- end if;
- end if;
- end if;
-
- Next_Elmt (Act_Elmt);
- end loop;
- end if;
-
- Next_Elmt (Gen_Elmt);
- end loop;
- end Check_Abstract_Primitives;
- end if;
-
- -- Verify that limitedness matches. If parent is a limited
- -- interface then the generic formal is not unless declared
- -- explicitly so. If not declared limited, the actual cannot be
- -- limited (see AI05-0087).
- -- Disable check for now, limited interfaces implemented by
- -- protected types are common, Need to update tests ???
-
- if Is_Limited_Type (Act_T)
- and then not Is_Limited_Type (A_Gen_T)
- and then False
- then
- Error_Msg_NE
- ("actual for non-limited & cannot be a limited type", Actual,
- Gen_T);
- Explain_Limited_Type (Act_T, Actual);
- Abandon_Instantiation (Actual);
- end if;
- end Validate_Derived_Type_Instance;
-
- --------------------------------------
- -- Validate_Interface_Type_Instance --
- --------------------------------------
-
- procedure Validate_Interface_Type_Instance is
- begin
- if not Is_Interface (Act_T) then
- Error_Msg_NE
- ("actual for formal interface type must be an interface",
- Actual, Gen_T);
-
- elsif Is_Limited_Type (Act_T) /= Is_Limited_Type (A_Gen_T)
- or else
- Is_Task_Interface (A_Gen_T) /= Is_Task_Interface (Act_T)
- or else
- Is_Protected_Interface (A_Gen_T) /=
- Is_Protected_Interface (Act_T)
- or else
- Is_Synchronized_Interface (A_Gen_T) /=
- Is_Synchronized_Interface (Act_T)
- then
- Error_Msg_NE
- ("actual for interface& does not match (RM 12.5.5(4))",
- Actual, Gen_T);
- end if;
- end Validate_Interface_Type_Instance;
-
- ------------------------------------
- -- Validate_Private_Type_Instance --
- ------------------------------------
-
- procedure Validate_Private_Type_Instance is
- Formal_Discr : Entity_Id;
- Actual_Discr : Entity_Id;
- Formal_Subt : Entity_Id;
-
- begin
- if Is_Limited_Type (Act_T)
- and then not Is_Limited_Type (A_Gen_T)
- then
- Error_Msg_NE
- ("actual for non-limited & cannot be a limited type", Actual,
- Gen_T);
- Explain_Limited_Type (Act_T, Actual);
- Abandon_Instantiation (Actual);
-
- elsif Known_To_Have_Preelab_Init (A_Gen_T)
- and then not Has_Preelaborable_Initialization (Act_T)
- then
- Error_Msg_NE
- ("actual for & must have preelaborable initialization", Actual,
- Gen_T);
-
- elsif Is_Indefinite_Subtype (Act_T)
- and then not Is_Indefinite_Subtype (A_Gen_T)
- and then Ada_Version >= Ada_95
- then
- Error_Msg_NE
- ("actual for & must be a definite subtype", Actual, Gen_T);
-
- elsif not Is_Tagged_Type (Act_T)
- and then Is_Tagged_Type (A_Gen_T)
- then
- Error_Msg_NE
- ("actual for & must be a tagged type", Actual, Gen_T);
-
- elsif Has_Discriminants (A_Gen_T) then
- if not Has_Discriminants (Act_T) then
- Error_Msg_NE
- ("actual for & must have discriminants", Actual, Gen_T);
- Abandon_Instantiation (Actual);
-
- elsif Is_Constrained (Act_T) then
- Error_Msg_NE
- ("actual for & must be unconstrained", Actual, Gen_T);
- Abandon_Instantiation (Actual);
-
- else
- Formal_Discr := First_Discriminant (A_Gen_T);
- Actual_Discr := First_Discriminant (Act_T);
- while Formal_Discr /= Empty loop
- if Actual_Discr = Empty then
- Error_Msg_NE
- ("discriminants on actual do not match formal",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- Formal_Subt := Get_Instance_Of (Etype (Formal_Discr));
-
- -- Access discriminants match if designated types do
-
- if Ekind (Base_Type (Formal_Subt)) = E_Anonymous_Access_Type
- and then (Ekind (Base_Type (Etype (Actual_Discr)))) =
- E_Anonymous_Access_Type
- and then
- Get_Instance_Of
- (Designated_Type (Base_Type (Formal_Subt))) =
- Designated_Type (Base_Type (Etype (Actual_Discr)))
- then
- null;
-
- elsif Base_Type (Formal_Subt) /=
- Base_Type (Etype (Actual_Discr))
- then
- Error_Msg_NE
- ("types of actual discriminants must match formal",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
-
- elsif not Subtypes_Statically_Match
- (Formal_Subt, Etype (Actual_Discr))
- and then Ada_Version >= Ada_95
- then
- Error_Msg_NE
- ("subtypes of actual discriminants must match formal",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- Next_Discriminant (Formal_Discr);
- Next_Discriminant (Actual_Discr);
- end loop;
-
- if Actual_Discr /= Empty then
- Error_Msg_NE
- ("discriminants on actual do not match formal",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
- end if;
-
- end if;
-
- Ancestor := Gen_T;
- end Validate_Private_Type_Instance;
-
- -- Start of processing for Instantiate_Type
-
- begin
- if Get_Instance_Of (A_Gen_T) /= A_Gen_T then
- Error_Msg_N ("duplicate instantiation of generic type", Actual);
- return New_List (Error);
-
- elsif not Is_Entity_Name (Actual)
- or else not Is_Type (Entity (Actual))
- then
- Error_Msg_NE
- ("expect valid subtype mark to instantiate &", Actual, Gen_T);
- Abandon_Instantiation (Actual);
-
- else
- Act_T := Entity (Actual);
-
- -- Ada 2005 (AI-216): An Unchecked_Union subtype shall only be passed
- -- as a generic actual parameter if the corresponding formal type
- -- does not have a known_discriminant_part, or is a formal derived
- -- type that is an Unchecked_Union type.
-
- if Is_Unchecked_Union (Base_Type (Act_T)) then
- if not Has_Discriminants (A_Gen_T)
- or else
- (Is_Derived_Type (A_Gen_T)
- and then
- Is_Unchecked_Union (A_Gen_T))
- then
- null;
- else
- Error_Msg_N ("Unchecked_Union cannot be the actual for a" &
- " discriminated formal type", Act_T);
-
- end if;
- end if;
-
- -- Deal with fixed/floating restrictions
-
- if Is_Floating_Point_Type (Act_T) then
- Check_Restriction (No_Floating_Point, Actual);
- elsif Is_Fixed_Point_Type (Act_T) then
- Check_Restriction (No_Fixed_Point, Actual);
- end if;
-
- -- Deal with error of using incomplete type as generic actual.
- -- This includes limited views of a type, even if the non-limited
- -- view may be available.
-
- if Ekind (Act_T) = E_Incomplete_Type
- or else (Is_Class_Wide_Type (Act_T)
- and then
- Ekind (Root_Type (Act_T)) = E_Incomplete_Type)
- then
- if Is_Class_Wide_Type (Act_T)
- or else No (Full_View (Act_T))
- then
- Error_Msg_N ("premature use of incomplete type", Actual);
- Abandon_Instantiation (Actual);
- else
- Act_T := Full_View (Act_T);
- Set_Entity (Actual, Act_T);
-
- if Has_Private_Component (Act_T) then
- Error_Msg_N
- ("premature use of type with private component", Actual);
- end if;
- end if;
-
- -- Deal with error of premature use of private type as generic actual
-
- elsif Is_Private_Type (Act_T)
- and then Is_Private_Type (Base_Type (Act_T))
- and then not Is_Generic_Type (Act_T)
- and then not Is_Derived_Type (Act_T)
- and then No (Full_View (Root_Type (Act_T)))
- then
- Error_Msg_N ("premature use of private type", Actual);
-
- elsif Has_Private_Component (Act_T) then
- Error_Msg_N
- ("premature use of type with private component", Actual);
- end if;
-
- Set_Instance_Of (A_Gen_T, Act_T);
-
- -- If the type is generic, the class-wide type may also be used
-
- if Is_Tagged_Type (A_Gen_T)
- and then Is_Tagged_Type (Act_T)
- and then not Is_Class_Wide_Type (A_Gen_T)
- then
- Set_Instance_Of (Class_Wide_Type (A_Gen_T),
- Class_Wide_Type (Act_T));
- end if;
-
- if not Is_Abstract_Type (A_Gen_T)
- and then Is_Abstract_Type (Act_T)
- then
- Error_Msg_N
- ("actual of non-abstract formal cannot be abstract", Actual);
- end if;
-
- -- A generic scalar type is a first subtype for which we generate
- -- an anonymous base type. Indicate that the instance of this base
- -- is the base type of the actual.
-
- if Is_Scalar_Type (A_Gen_T) then
- Set_Instance_Of (Etype (A_Gen_T), Etype (Act_T));
- end if;
- end if;
-
- if Error_Posted (Act_T) then
- null;
- else
- case Nkind (Def) is
- when N_Formal_Private_Type_Definition =>
- Validate_Private_Type_Instance;
-
- when N_Formal_Derived_Type_Definition =>
- Validate_Derived_Type_Instance;
-
- when N_Formal_Discrete_Type_Definition =>
- if not Is_Discrete_Type (Act_T) then
- Error_Msg_NE
- ("expect discrete type in instantiation of&",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- when N_Formal_Signed_Integer_Type_Definition =>
- if not Is_Signed_Integer_Type (Act_T) then
- Error_Msg_NE
- ("expect signed integer type in instantiation of&",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- when N_Formal_Modular_Type_Definition =>
- if not Is_Modular_Integer_Type (Act_T) then
- Error_Msg_NE
- ("expect modular type in instantiation of &",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- when N_Formal_Floating_Point_Definition =>
- if not Is_Floating_Point_Type (Act_T) then
- Error_Msg_NE
- ("expect float type in instantiation of &", Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- when N_Formal_Ordinary_Fixed_Point_Definition =>
- if not Is_Ordinary_Fixed_Point_Type (Act_T) then
- Error_Msg_NE
- ("expect ordinary fixed point type in instantiation of &",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- when N_Formal_Decimal_Fixed_Point_Definition =>
- if not Is_Decimal_Fixed_Point_Type (Act_T) then
- Error_Msg_NE
- ("expect decimal type in instantiation of &",
- Actual, Gen_T);
- Abandon_Instantiation (Actual);
- end if;
-
- when N_Array_Type_Definition =>
- Validate_Array_Type_Instance;
-
- when N_Access_To_Object_Definition =>
- Validate_Access_Type_Instance;
-
- when N_Access_Function_Definition |
- N_Access_Procedure_Definition =>
- Validate_Access_Subprogram_Instance;
-
- when N_Record_Definition =>
- Validate_Interface_Type_Instance;
-
- when N_Derived_Type_Definition =>
- Validate_Derived_Interface_Type_Instance;
-
- when others =>
- raise Program_Error;
-
- end case;
- end if;
-
- Subt := New_Copy (Gen_T);
-
- -- Use adjusted sloc of subtype name as the location for other nodes in
- -- the subtype declaration.
-
- Loc := Sloc (Subt);
-
- Decl_Node :=
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => Subt,
- Subtype_Indication => New_Reference_To (Act_T, Loc));
-
- if Is_Private_Type (Act_T) then
- Set_Has_Private_View (Subtype_Indication (Decl_Node));
-
- elsif Is_Access_Type (Act_T)
- and then Is_Private_Type (Designated_Type (Act_T))
- then
- Set_Has_Private_View (Subtype_Indication (Decl_Node));
- end if;
-
- Decl_Nodes := New_List (Decl_Node);
-
- -- Flag actual derived types so their elaboration produces the
- -- appropriate renamings for the primitive operations of the ancestor.
- -- Flag actual for formal private types as well, to determine whether
- -- operations in the private part may override inherited operations.
- -- If the formal has an interface list, the ancestor is not the
- -- parent, but the analyzed formal that includes the interface
- -- operations of all its progenitors.
-
- if Nkind (Def) = N_Formal_Derived_Type_Definition then
- if Present (Interface_List (Def)) then
- Set_Generic_Parent_Type (Decl_Node, A_Gen_T);
- else
- Set_Generic_Parent_Type (Decl_Node, Ancestor);
- end if;
-
- elsif Nkind (Def) = N_Formal_Private_Type_Definition then
- Set_Generic_Parent_Type (Decl_Node, Ancestor);
- end if;
-
- -- If the actual is a synchronized type that implements an interface,
- -- the primitive operations are attached to the corresponding record,
- -- and we have to treat it as an additional generic actual, so that its
- -- primitive operations become visible in the instance. The task or
- -- protected type itself does not carry primitive operations.
-
- if Is_Concurrent_Type (Act_T)
- and then Is_Tagged_Type (Act_T)
- and then Present (Corresponding_Record_Type (Act_T))
- and then Present (Ancestor)
- and then Is_Interface (Ancestor)
- then
- declare
- Corr_Rec : constant Entity_Id :=
- Corresponding_Record_Type (Act_T);
- New_Corr : Entity_Id;
- Corr_Decl : Node_Id;
-
- begin
- New_Corr := Make_Defining_Identifier (Loc,
- Chars => New_Internal_Name ('S'));
- Corr_Decl :=
- Make_Subtype_Declaration (Loc,
- Defining_Identifier => New_Corr,
- Subtype_Indication =>
- New_Reference_To (Corr_Rec, Loc));
- Append_To (Decl_Nodes, Corr_Decl);
-
- if Ekind (Act_T) = E_Task_Type then
- Set_Ekind (Subt, E_Task_Subtype);
- else
- Set_Ekind (Subt, E_Protected_Subtype);
- end if;
-
- Set_Corresponding_Record_Type (Subt, Corr_Rec);
- Set_Generic_Parent_Type (Corr_Decl, Ancestor);
- Set_Generic_Parent_Type (Decl_Node, Empty);
- end;
- end if;
-
- return Decl_Nodes;
- end Instantiate_Type;
-
- -----------------------
- -- Is_Generic_Formal --
- -----------------------
-
- function Is_Generic_Formal (E : Entity_Id) return Boolean is
- Kind : Node_Kind;
- begin
- if No (E) then
- return False;
- else
- Kind := Nkind (Parent (E));
- return
- Nkind_In (Kind, N_Formal_Object_Declaration,
- N_Formal_Package_Declaration,
- N_Formal_Type_Declaration)
- or else
- (Is_Formal_Subprogram (E)
- and then
- Nkind (Parent (Parent (E))) in
- N_Formal_Subprogram_Declaration);
- end if;
- end Is_Generic_Formal;
-
- ---------------------
- -- Is_In_Main_Unit --
- ---------------------
-
- function Is_In_Main_Unit (N : Node_Id) return Boolean is
- Unum : constant Unit_Number_Type := Get_Source_Unit (N);
- Current_Unit : Node_Id;
-
- begin
- if Unum = Main_Unit then
- return True;
-
- -- If the current unit is a subunit then it is either the main unit or
- -- is being compiled as part of the main unit.
-
- elsif Nkind (N) = N_Compilation_Unit then
- return Nkind (Unit (N)) = N_Subunit;
- end if;
-
- Current_Unit := Parent (N);
- while Present (Current_Unit)
- and then Nkind (Current_Unit) /= N_Compilation_Unit
- loop
- Current_Unit := Parent (Current_Unit);
- end loop;
-
- -- The instantiation node is in the main unit, or else the current node
- -- (perhaps as the result of nested instantiations) is in the main unit,
- -- or in the declaration of the main unit, which in this last case must
- -- be a body.
-
- return Unum = Main_Unit
- or else Current_Unit = Cunit (Main_Unit)
- or else Current_Unit = Library_Unit (Cunit (Main_Unit))
- or else (Present (Library_Unit (Current_Unit))
- and then Is_In_Main_Unit (Library_Unit (Current_Unit)));
- end Is_In_Main_Unit;
-
- ----------------------------
- -- Load_Parent_Of_Generic --
- ----------------------------
-
- procedure Load_Parent_Of_Generic
- (N : Node_Id;
- Spec : Node_Id;
- Body_Optional : Boolean := False)
- is
- Comp_Unit : constant Node_Id := Cunit (Get_Source_Unit (Spec));
- Save_Style_Check : constant Boolean := Style_Check;
- True_Parent : Node_Id;
- Inst_Node : Node_Id;
- OK : Boolean;
- Previous_Instances : constant Elist_Id := New_Elmt_List;
-
- procedure Collect_Previous_Instances (Decls : List_Id);
- -- Collect all instantiations in the given list of declarations, that
- -- precede the generic that we need to load. If the bodies of these
- -- instantiations are available, we must analyze them, to ensure that
- -- the public symbols generated are the same when the unit is compiled
- -- to generate code, and when it is compiled in the context of a unit
- -- that needs a particular nested instance. This process is applied
- -- to both package and subprogram instances.
-
- --------------------------------
- -- Collect_Previous_Instances --
- --------------------------------
-
- procedure Collect_Previous_Instances (Decls : List_Id) is
- Decl : Node_Id;
-
- begin
- Decl := First (Decls);
- while Present (Decl) loop
- if Sloc (Decl) >= Sloc (Inst_Node) then
- return;
-
- -- If Decl is an instantiation, then record it as requiring
- -- instantiation of the corresponding body, except if it is an
- -- abbreviated instantiation generated internally for conformance
- -- checking purposes only for the case of a formal package
- -- declared without a box (see Instantiate_Formal_Package). Such
- -- an instantiation does not generate any code (the actual code
- -- comes from actual) and thus does not need to be analyzed here.
-
- elsif Nkind (Decl) = N_Package_Instantiation
- and then not Is_Internal (Defining_Entity (Decl))
- then
- Append_Elmt (Decl, Previous_Instances);
-
- -- For a subprogram instantiation, omit instantiations of
- -- intrinsic operations (Unchecked_Conversions, etc.) that
- -- have no bodies.
-
- elsif Nkind_In (Decl, N_Function_Instantiation,
- N_Procedure_Instantiation)
- and then not Is_Intrinsic_Subprogram (Entity (Name (Decl)))
- then
- Append_Elmt (Decl, Previous_Instances);
-
- elsif Nkind (Decl) = N_Package_Declaration then
- Collect_Previous_Instances
- (Visible_Declarations (Specification (Decl)));
- Collect_Previous_Instances
- (Private_Declarations (Specification (Decl)));
-
- elsif Nkind (Decl) = N_Package_Body then
- Collect_Previous_Instances (Declarations (Decl));
- end if;
-
- Next (Decl);
- end loop;
- end Collect_Previous_Instances;
-
- -- Start of processing for Load_Parent_Of_Generic
-
- begin
- if not In_Same_Source_Unit (N, Spec)
- or else Nkind (Unit (Comp_Unit)) = N_Package_Declaration
- or else (Nkind (Unit (Comp_Unit)) = N_Package_Body
- and then not Is_In_Main_Unit (Spec))
- then
- -- Find body of parent of spec, and analyze it. A special case arises
- -- when the parent is an instantiation, that is to say when we are
- -- currently instantiating a nested generic. In that case, there is
- -- no separate file for the body of the enclosing instance. Instead,
- -- the enclosing body must be instantiated as if it were a pending
- -- instantiation, in order to produce the body for the nested generic
- -- we require now. Note that in that case the generic may be defined
- -- in a package body, the instance defined in the same package body,
- -- and the original enclosing body may not be in the main unit.
-
- Inst_Node := Empty;
-
- True_Parent := Parent (Spec);
- while Present (True_Parent)
- and then Nkind (True_Parent) /= N_Compilation_Unit
- loop
- if Nkind (True_Parent) = N_Package_Declaration
- and then
- Nkind (Original_Node (True_Parent)) = N_Package_Instantiation
- then
- -- Parent is a compilation unit that is an instantiation.
- -- Instantiation node has been replaced with package decl.
-
- Inst_Node := Original_Node (True_Parent);
- exit;
-
- elsif Nkind (True_Parent) = N_Package_Declaration
- and then Present (Generic_Parent (Specification (True_Parent)))
- and then Nkind (Parent (True_Parent)) /= N_Compilation_Unit
- then
- -- Parent is an instantiation within another specification.
- -- Declaration for instance has been inserted before original
- -- instantiation node. A direct link would be preferable?
-
- Inst_Node := Next (True_Parent);
- while Present (Inst_Node)
- and then Nkind (Inst_Node) /= N_Package_Instantiation
- loop
- Next (Inst_Node);
- end loop;
-
- -- If the instance appears within a generic, and the generic
- -- unit is defined within a formal package of the enclosing
- -- generic, there is no generic body available, and none
- -- needed. A more precise test should be used ???
-
- if No (Inst_Node) then
- return;
- end if;
-
- exit;
-
- else
- True_Parent := Parent (True_Parent);
- end if;
- end loop;
-
- -- Case where we are currently instantiating a nested generic
-
- if Present (Inst_Node) then
- if Nkind (Parent (True_Parent)) = N_Compilation_Unit then
-
- -- Instantiation node and declaration of instantiated package
- -- were exchanged when only the declaration was needed.
- -- Restore instantiation node before proceeding with body.
-
- Set_Unit (Parent (True_Parent), Inst_Node);
- end if;
-
- -- Now complete instantiation of enclosing body, if it appears
- -- in some other unit. If it appears in the current unit, the
- -- body will have been instantiated already.
-
- if No (Corresponding_Body (Instance_Spec (Inst_Node))) then
-
- -- We need to determine the expander mode to instantiate the
- -- enclosing body. Because the generic body we need may use
- -- global entities declared in the enclosing package (including
- -- aggregates) it is in general necessary to compile this body
- -- with expansion enabled. The exception is if we are within a
- -- generic package, in which case the usual generic rule
- -- applies.
-
- declare
- Exp_Status : Boolean := True;
- Scop : Entity_Id;
-
- begin
- -- Loop through scopes looking for generic package
-
- Scop := Scope (Defining_Entity (Instance_Spec (Inst_Node)));
- while Present (Scop)
- and then Scop /= Standard_Standard
- loop
- if Ekind (Scop) = E_Generic_Package then
- Exp_Status := False;
- exit;
- end if;
-
- Scop := Scope (Scop);
- end loop;
-
- -- Collect previous instantiations in the unit that
- -- contains the desired generic.
-
- if Nkind (Parent (True_Parent)) /= N_Compilation_Unit
- and then not Body_Optional
- then
- declare
- Decl : Elmt_Id;
- Info : Pending_Body_Info;
- Par : Node_Id;
-
- begin
- Par := Parent (Inst_Node);
- while Present (Par) loop
- exit when Nkind (Parent (Par)) = N_Compilation_Unit;
- Par := Parent (Par);
- end loop;
-
- pragma Assert (Present (Par));
-
- if Nkind (Par) = N_Package_Body then
- Collect_Previous_Instances (Declarations (Par));
-
- elsif Nkind (Par) = N_Package_Declaration then
- Collect_Previous_Instances
- (Visible_Declarations (Specification (Par)));
- Collect_Previous_Instances
- (Private_Declarations (Specification (Par)));
-
- else
- -- Enclosing unit is a subprogram body, In this
- -- case all instance bodies are processed in order
- -- and there is no need to collect them separately.
-
- null;
- end if;
-
- Decl := First_Elmt (Previous_Instances);
- while Present (Decl) loop
- Info :=
- (Inst_Node => Node (Decl),
- Act_Decl =>
- Instance_Spec (Node (Decl)),
- Expander_Status => Exp_Status,
- Current_Sem_Unit =>
- Get_Code_Unit (Sloc (Node (Decl))),
- Scope_Suppress => Scope_Suppress,
- Local_Suppress_Stack_Top =>
- Local_Suppress_Stack_Top);
-
- -- Package instance
-
- if
- Nkind (Node (Decl)) = N_Package_Instantiation
- then
- Instantiate_Package_Body
- (Info, Body_Optional => True);
-
- -- Subprogram instance
-
- else
- -- The instance_spec is the wrapper package,
- -- and the subprogram declaration is the last
- -- declaration in the wrapper.
-
- Info.Act_Decl :=
- Last
- (Visible_Declarations
- (Specification (Info.Act_Decl)));
-
- Instantiate_Subprogram_Body
- (Info, Body_Optional => True);
- end if;
-
- Next_Elmt (Decl);
- end loop;
- end;
- end if;
-
- Instantiate_Package_Body
- (Body_Info =>
- ((Inst_Node => Inst_Node,
- Act_Decl => True_Parent,
- Expander_Status => Exp_Status,
- Current_Sem_Unit =>
- Get_Code_Unit (Sloc (Inst_Node)),
- Scope_Suppress => Scope_Suppress,
- Local_Suppress_Stack_Top =>
- Local_Suppress_Stack_Top)),
- Body_Optional => Body_Optional);
- end;
- end if;
-
- -- Case where we are not instantiating a nested generic
-
- else
- Opt.Style_Check := False;
- Expander_Mode_Save_And_Set (True);
- Load_Needed_Body (Comp_Unit, OK);
- Opt.Style_Check := Save_Style_Check;
- Expander_Mode_Restore;
-
- if not OK
- and then Unit_Requires_Body (Defining_Entity (Spec))
- and then not Body_Optional
- then
- declare
- Bname : constant Unit_Name_Type :=
- Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
-
- begin
- Error_Msg_Unit_1 := Bname;
- Error_Msg_N ("this instantiation requires$!", N);
- Error_Msg_File_1 := Get_File_Name (Bname, Subunit => False);
- Error_Msg_N ("\but file{ was not found!", N);
- raise Unrecoverable_Error;
- end;
- end if;
- end if;
- end if;
-
- -- If loading parent of the generic caused an instantiation circularity,
- -- we abandon compilation at this point, because otherwise in some cases
- -- we get into trouble with infinite recursions after this point.
-
- if Circularity_Detected then
- raise Unrecoverable_Error;
- end if;
- end Load_Parent_Of_Generic;
-
- -----------------------
- -- Move_Freeze_Nodes --
- -----------------------
-
- procedure Move_Freeze_Nodes
- (Out_Of : Entity_Id;
- After : Node_Id;
- L : List_Id)
- is
- Decl : Node_Id;
- Next_Decl : Node_Id;
- Next_Node : Node_Id := After;
- Spec : Node_Id;
-
- function Is_Outer_Type (T : Entity_Id) return Boolean;
- -- Check whether entity is declared in a scope external to that
- -- of the generic unit.
-
- -------------------
- -- Is_Outer_Type --
- -------------------
-
- function Is_Outer_Type (T : Entity_Id) return Boolean is
- Scop : Entity_Id := Scope (T);
-
- begin
- if Scope_Depth (Scop) < Scope_Depth (Out_Of) then
- return True;
-
- else
- while Scop /= Standard_Standard loop
- if Scop = Out_Of then
- return False;
- else
- Scop := Scope (Scop);
- end if;
- end loop;
-
- return True;
- end if;
- end Is_Outer_Type;
-
- -- Start of processing for Move_Freeze_Nodes
-
- begin
- if No (L) then
- return;
- end if;
-
- -- First remove the freeze nodes that may appear before all other
- -- declarations.
-
- Decl := First (L);
- while Present (Decl)
- and then Nkind (Decl) = N_Freeze_Entity
- and then Is_Outer_Type (Entity (Decl))
- loop
- Decl := Remove_Head (L);
- Insert_After (Next_Node, Decl);
- Set_Analyzed (Decl, False);
- Next_Node := Decl;
- Decl := First (L);
- end loop;
-
- -- Next scan the list of declarations and remove each freeze node that
- -- appears ahead of the current node.
-
- while Present (Decl) loop
- while Present (Next (Decl))
- and then Nkind (Next (Decl)) = N_Freeze_Entity
- and then Is_Outer_Type (Entity (Next (Decl)))
- loop
- Next_Decl := Remove_Next (Decl);
- Insert_After (Next_Node, Next_Decl);
- Set_Analyzed (Next_Decl, False);
- Next_Node := Next_Decl;
- end loop;
-
- -- If the declaration is a nested package or concurrent type, then
- -- recurse. Nested generic packages will have been processed from the
- -- inside out.
-
- if Nkind (Decl) = N_Package_Declaration then
- Spec := Specification (Decl);
-
- elsif Nkind (Decl) = N_Task_Type_Declaration then
- Spec := Task_Definition (Decl);
-
- elsif Nkind (Decl) = N_Protected_Type_Declaration then
- Spec := Protected_Definition (Decl);
-
- else
- Spec := Empty;
- end if;
-
- if Present (Spec) then
- Move_Freeze_Nodes (Out_Of, Next_Node,
- Visible_Declarations (Spec));
- Move_Freeze_Nodes (Out_Of, Next_Node,
- Private_Declarations (Spec));
- end if;
-
- Next (Decl);
- end loop;
- end Move_Freeze_Nodes;
-
- ----------------
- -- Next_Assoc --
- ----------------
-
- function Next_Assoc (E : Assoc_Ptr) return Assoc_Ptr is
- begin
- return Generic_Renamings.Table (E).Next_In_HTable;
- end Next_Assoc;
-
- ------------------------
- -- Preanalyze_Actuals --
- ------------------------
-
- procedure Preanalyze_Actuals (N : Node_Id) is
- Assoc : Node_Id;
- Act : Node_Id;
- Errs : constant Int := Serious_Errors_Detected;
-
- begin
- Assoc := First (Generic_Associations (N));
- while Present (Assoc) loop
- if Nkind (Assoc) /= N_Others_Choice then
- Act := Explicit_Generic_Actual_Parameter (Assoc);
-
- -- Within a nested instantiation, a defaulted actual is an empty
- -- association, so nothing to analyze. If the subprogram actual
- -- is an attribute, analyze prefix only, because actual is not a
- -- complete attribute reference.
-
- -- If actual is an allocator, analyze expression only. The full
- -- analysis can generate code, and if instance is a compilation
- -- unit we have to wait until the package instance is installed
- -- to have a proper place to insert this code.
-
- -- String literals may be operators, but at this point we do not
- -- know whether the actual is a formal subprogram or a string.
-
- if No (Act) then
- null;
-
- elsif Nkind (Act) = N_Attribute_Reference then
- Analyze (Prefix (Act));
-
- elsif Nkind (Act) = N_Explicit_Dereference then
- Analyze (Prefix (Act));
-
- elsif Nkind (Act) = N_Allocator then
- declare
- Expr : constant Node_Id := Expression (Act);
-
- begin
- if Nkind (Expr) = N_Subtype_Indication then
- Analyze (Subtype_Mark (Expr));
-
- -- Analyze separately each discriminant constraint,
- -- when given with a named association.
-
- declare
- Constr : Node_Id;
-
- begin
- Constr := First (Constraints (Constraint (Expr)));
- while Present (Constr) loop
- if Nkind (Constr) = N_Discriminant_Association then
- Analyze (Expression (Constr));
- else
- Analyze (Constr);
- end if;
-
- Next (Constr);
- end loop;
- end;
-
- else
- Analyze (Expr);
- end if;
- end;
-
- elsif Nkind (Act) /= N_Operator_Symbol then
- Analyze (Act);
- end if;
-
- if Errs /= Serious_Errors_Detected then
-
- -- Do a minimal analysis of the generic, to prevent spurious
- -- warnings complaining about the generic being unreferenced,
- -- before abandoning the instantiation.
-
- Analyze (Name (N));
-
- if Is_Entity_Name (Name (N))
- and then Etype (Name (N)) /= Any_Type
- then
- Generate_Reference (Entity (Name (N)), Name (N));
- Set_Is_Instantiated (Entity (Name (N)));
- end if;
-
- Abandon_Instantiation (Act);
- end if;
- end if;
-
- Next (Assoc);
- end loop;
- end Preanalyze_Actuals;
-
- -------------------
- -- Remove_Parent --
- -------------------
-
- procedure Remove_Parent (In_Body : Boolean := False) is
- S : Entity_Id := Current_Scope;
- -- S is the scope containing the instantiation just completed. The
- -- scope stack contains the parent instances of the instantiation,
- -- followed by the original S.
-
- E : Entity_Id;
- P : Entity_Id;
- Hidden : Elmt_Id;
-
- begin
- -- After child instantiation is complete, remove from scope stack the
- -- extra copy of the current scope, and then remove parent instances.
-
- if not In_Body then
- Pop_Scope;
-
- while Current_Scope /= S loop
- P := Current_Scope;
- End_Package_Scope (Current_Scope);
-
- if In_Open_Scopes (P) then
- E := First_Entity (P);
- while Present (E) loop
- Set_Is_Immediately_Visible (E, True);
- Next_Entity (E);
- end loop;
-
- if Is_Generic_Instance (Current_Scope)
- and then P /= Current_Scope
- then
- -- We are within an instance of some sibling. Retain
- -- visibility of parent, for proper subsequent cleanup,
- -- and reinstall private declarations as well.
-
- Set_In_Private_Part (P);
- Install_Private_Declarations (P);
- end if;
-
- -- If the ultimate parent is a top-level unit recorded in
- -- Instance_Parent_Unit, then reset its visibility to what
- -- it was before instantiation. (It's not clear what the
- -- purpose is of testing whether Scope (P) is In_Open_Scopes,
- -- but that test was present before the ultimate parent test
- -- was added.???)
-
- elsif not In_Open_Scopes (Scope (P))
- or else (P = Instance_Parent_Unit
- and then not Parent_Unit_Visible)
- then
- Set_Is_Immediately_Visible (P, False);
-
- -- If the current scope is itself an instantiation of a generic
- -- nested within P, and we are in the private part of body of this
- -- instantiation, restore the full views of P, that were removed
- -- in End_Package_Scope above. This obscure case can occur when a
- -- subunit of a generic contains an instance of a child unit of
- -- its generic parent unit.
-
- elsif S = Current_Scope
- and then Is_Generic_Instance (S)
- then
- declare
- Par : constant Entity_Id :=
- Generic_Parent
- (Specification (Unit_Declaration_Node (S)));
- begin
- if Present (Par)
- and then P = Scope (Par)
- and then (In_Package_Body (S) or else In_Private_Part (S))
- then
- Set_In_Private_Part (P);
- Install_Private_Declarations (P);
- end if;
- end;
- end if;
- end loop;
-
- -- Reset visibility of entities in the enclosing scope
-
- Set_Is_Hidden_Open_Scope (Current_Scope, False);
-
- Hidden := First_Elmt (Hidden_Entities);
- while Present (Hidden) loop
- Set_Is_Immediately_Visible (Node (Hidden), True);
- Next_Elmt (Hidden);
- end loop;
-
- else
- -- Each body is analyzed separately, and there is no context
- -- that needs preserving from one body instance to the next,
- -- so remove all parent scopes that have been installed.
-
- while Present (S) loop
- End_Package_Scope (S);
- Set_Is_Immediately_Visible (S, False);
- S := Current_Scope;
- exit when S = Standard_Standard;
- end loop;
- end if;
- end Remove_Parent;
-
- -----------------
- -- Restore_Env --
- -----------------
-
- procedure Restore_Env is
- Saved : Instance_Env renames Instance_Envs.Table (Instance_Envs.Last);
-
- begin
- if No (Current_Instantiated_Parent.Act_Id) then
-
- -- Restore environment after subprogram inlining
-
- Restore_Private_Views (Empty);
- end if;
-
- Current_Instantiated_Parent := Saved.Instantiated_Parent;
- Exchanged_Views := Saved.Exchanged_Views;
- Hidden_Entities := Saved.Hidden_Entities;
- Current_Sem_Unit := Saved.Current_Sem_Unit;
- Parent_Unit_Visible := Saved.Parent_Unit_Visible;
- Instance_Parent_Unit := Saved.Instance_Parent_Unit;
-
- Restore_Opt_Config_Switches (Saved.Switches);
-
- Instance_Envs.Decrement_Last;
- end Restore_Env;
-
- ---------------------------
- -- Restore_Private_Views --
- ---------------------------
-
- procedure Restore_Private_Views
- (Pack_Id : Entity_Id;
- Is_Package : Boolean := True)
- is
- M : Elmt_Id;
- E : Entity_Id;
- Typ : Entity_Id;
- Dep_Elmt : Elmt_Id;
- Dep_Typ : Node_Id;
-
- procedure Restore_Nested_Formal (Formal : Entity_Id);
- -- Hide the generic formals of formal packages declared with box
- -- which were reachable in the current instantiation.
-
- ---------------------------
- -- Restore_Nested_Formal --
- ---------------------------
-
- procedure Restore_Nested_Formal (Formal : Entity_Id) is
- Ent : Entity_Id;
-
- begin
- if Present (Renamed_Object (Formal))
- and then Denotes_Formal_Package (Renamed_Object (Formal), True)
- then
- return;
-
- elsif Present (Associated_Formal_Package (Formal)) then
- Ent := First_Entity (Formal);
- while Present (Ent) loop
- exit when Ekind (Ent) = E_Package
- and then Renamed_Entity (Ent) = Renamed_Entity (Formal);
-
- Set_Is_Hidden (Ent);
- Set_Is_Potentially_Use_Visible (Ent, False);
-
- -- If package, then recurse
-
- if Ekind (Ent) = E_Package then
- Restore_Nested_Formal (Ent);
- end if;
-
- Next_Entity (Ent);
- end loop;
- end if;
- end Restore_Nested_Formal;
-
- -- Start of processing for Restore_Private_Views
-
- begin
- M := First_Elmt (Exchanged_Views);
- while Present (M) loop
- Typ := Node (M);
-
- -- Subtypes of types whose views have been exchanged, and that
- -- are defined within the instance, were not on the list of
- -- Private_Dependents on entry to the instance, so they have to
- -- be exchanged explicitly now, in order to remain consistent with
- -- the view of the parent type.
-
- if Ekind (Typ) = E_Private_Type
- or else Ekind (Typ) = E_Limited_Private_Type
- or else Ekind (Typ) = E_Record_Type_With_Private
- then
- Dep_Elmt := First_Elmt (Private_Dependents (Typ));
- while Present (Dep_Elmt) loop
- Dep_Typ := Node (Dep_Elmt);
-
- if Scope (Dep_Typ) = Pack_Id
- and then Present (Full_View (Dep_Typ))
- then
- Replace_Elmt (Dep_Elmt, Full_View (Dep_Typ));
- Exchange_Declarations (Dep_Typ);
- end if;
-
- Next_Elmt (Dep_Elmt);
- end loop;
- end if;
-
- Exchange_Declarations (Node (M));
- Next_Elmt (M);
- end loop;
-
- if No (Pack_Id) then
- return;
- end if;
-
- -- Make the generic formal parameters private, and make the formal
- -- types into subtypes of the actuals again.
-
- E := First_Entity (Pack_Id);
- while Present (E) loop
- Set_Is_Hidden (E, True);
-
- if Is_Type (E)
- and then Nkind (Parent (E)) = N_Subtype_Declaration
- then
- Set_Is_Generic_Actual_Type (E, False);
-
- -- An unusual case of aliasing: the actual may also be directly
- -- visible in the generic, and be private there, while it is fully
- -- visible in the context of the instance. The internal subtype
- -- is private in the instance, but has full visibility like its
- -- parent in the enclosing scope. This enforces the invariant that
- -- the privacy status of all private dependents of a type coincide
- -- with that of the parent type. This can only happen when a
- -- generic child unit is instantiated within sibling.
-
- if Is_Private_Type (E)
- and then not Is_Private_Type (Etype (E))
- then
- Exchange_Declarations (E);
- end if;
-
- elsif Ekind (E) = E_Package then
-
- -- The end of the renaming list is the renaming of the generic
- -- package itself. If the instance is a subprogram, all entities
- -- in the corresponding package are renamings. If this entity is
- -- a formal package, make its own formals private as well. The
- -- actual in this case is itself the renaming of an instantiation.
- -- If the entity is not a package renaming, it is the entity
- -- created to validate formal package actuals: ignore.
-
- -- If the actual is itself a formal package for the enclosing
- -- generic, or the actual for such a formal package, it remains
- -- visible on exit from the instance, and therefore nothing needs
- -- to be done either, except to keep it accessible.
-
- if Is_Package
- and then Renamed_Object (E) = Pack_Id
- then
- exit;
-
- elsif Nkind (Parent (E)) /= N_Package_Renaming_Declaration then
- null;
-
- elsif Denotes_Formal_Package (Renamed_Object (E), True) then
- Set_Is_Hidden (E, False);
-
- else
- declare
- Act_P : constant Entity_Id := Renamed_Object (E);
- Id : Entity_Id;
-
- begin
- Id := First_Entity (Act_P);
- while Present (Id)
- and then Id /= First_Private_Entity (Act_P)
- loop
- exit when Ekind (Id) = E_Package
- and then Renamed_Object (Id) = Act_P;
-
- Set_Is_Hidden (Id, True);
- Set_Is_Potentially_Use_Visible (Id, In_Use (Act_P));
-
- if Ekind (Id) = E_Package then
- Restore_Nested_Formal (Id);
- end if;
-
- Next_Entity (Id);
- end loop;
- end;
- end if;
- end if;
-
- Next_Entity (E);
- end loop;
- end Restore_Private_Views;
-
- --------------
- -- Save_Env --
- --------------
-
- procedure Save_Env
- (Gen_Unit : Entity_Id;
- Act_Unit : Entity_Id)
- is
- begin
- Init_Env;
- Set_Instance_Env (Gen_Unit, Act_Unit);
- end Save_Env;
-
- ----------------------------
- -- Save_Global_References --
- ----------------------------
-
- procedure Save_Global_References (N : Node_Id) is
- Gen_Scope : Entity_Id;
- E : Entity_Id;
- N2 : Node_Id;
-
- function Is_Global (E : Entity_Id) return Boolean;
- -- Check whether entity is defined outside of generic unit. Examine the
- -- scope of an entity, and the scope of the scope, etc, until we find
- -- either Standard, in which case the entity is global, or the generic
- -- unit itself, which indicates that the entity is local. If the entity
- -- is the generic unit itself, as in the case of a recursive call, or
- -- the enclosing generic unit, if different from the current scope, then
- -- it is local as well, because it will be replaced at the point of
- -- instantiation. On the other hand, if it is a reference to a child
- -- unit of a common ancestor, which appears in an instantiation, it is
- -- global because it is used to denote a specific compilation unit at
- -- the time the instantiations will be analyzed.
-
- procedure Reset_Entity (N : Node_Id);
- -- Save semantic information on global entity, so that it is not
- -- resolved again at instantiation time.
-
- procedure Save_Entity_Descendants (N : Node_Id);
- -- Apply Save_Global_References to the two syntactic descendants of
- -- non-terminal nodes that carry an Associated_Node and are processed
- -- through Reset_Entity. Once the global entity (if any) has been
- -- captured together with its type, only two syntactic descendants need
- -- to be traversed to complete the processing of the tree rooted at N.
- -- This applies to Selected_Components, Expanded_Names, and to Operator
- -- nodes. N can also be a character literal, identifier, or operator
- -- symbol node, but the call has no effect in these cases.
-
- procedure Save_Global_Defaults (N1, N2 : Node_Id);
- -- Default actuals in nested instances must be handled specially
- -- because there is no link to them from the original tree. When an
- -- actual subprogram is given by a default, we add an explicit generic
- -- association for it in the instantiation node. When we save the
- -- global references on the name of the instance, we recover the list
- -- of generic associations, and add an explicit one to the original
- -- generic tree, through which a global actual can be preserved.
- -- Similarly, if a child unit is instantiated within a sibling, in the
- -- context of the parent, we must preserve the identifier of the parent
- -- so that it can be properly resolved in a subsequent instantiation.
-
- procedure Save_Global_Descendant (D : Union_Id);
- -- Apply Save_Global_References recursively to the descendents of the
- -- current node.
-
- procedure Save_References (N : Node_Id);
- -- This is the recursive procedure that does the work, once the
- -- enclosing generic scope has been established.
-
- ---------------
- -- Is_Global --
- ---------------
-
- function Is_Global (E : Entity_Id) return Boolean is
- Se : Entity_Id;
-
- function Is_Instance_Node (Decl : Node_Id) return Boolean;
- -- Determine whether the parent node of a reference to a child unit
- -- denotes an instantiation or a formal package, in which case the
- -- reference to the child unit is global, even if it appears within
- -- the current scope (e.g. when the instance appears within the body
- -- of an ancestor).
-
- ----------------------
- -- Is_Instance_Node --
- ----------------------
-
- function Is_Instance_Node (Decl : Node_Id) return Boolean is
- begin
- return (Nkind (Decl) in N_Generic_Instantiation
- or else
- Nkind (Original_Node (Decl)) = N_Formal_Package_Declaration);
- end Is_Instance_Node;
-
- -- Start of processing for Is_Global
-
- begin
- if E = Gen_Scope then
- return False;
-
- elsif E = Standard_Standard then
- return True;
-
- elsif Is_Child_Unit (E)
- and then (Is_Instance_Node (Parent (N2))
- or else (Nkind (Parent (N2)) = N_Expanded_Name
- and then N2 = Selector_Name (Parent (N2))
- and then
- Is_Instance_Node (Parent (Parent (N2)))))
- then
- return True;
-
- else
- Se := Scope (E);
- while Se /= Gen_Scope loop
- if Se = Standard_Standard then
- return True;
- else
- Se := Scope (Se);
- end if;
- end loop;
-
- return False;
- end if;
- end Is_Global;
-
- ------------------
- -- Reset_Entity --
- ------------------
-
- procedure Reset_Entity (N : Node_Id) is
-
- procedure Set_Global_Type (N : Node_Id; N2 : Node_Id);
- -- If the type of N2 is global to the generic unit. Save
- -- the type in the generic node.
-
- function Top_Ancestor (E : Entity_Id) return Entity_Id;
- -- Find the ultimate ancestor of the current unit. If it is
- -- not a generic unit, then the name of the current unit
- -- in the prefix of an expanded name must be replaced with
- -- its generic homonym to ensure that it will be properly
- -- resolved in an instance.
-
- ---------------------
- -- Set_Global_Type --
- ---------------------
-
- procedure Set_Global_Type (N : Node_Id; N2 : Node_Id) is
- Typ : constant Entity_Id := Etype (N2);
-
- begin
- Set_Etype (N, Typ);
-
- if Entity (N) /= N2
- and then Has_Private_View (Entity (N))
- then
- -- If the entity of N is not the associated node, this is
- -- a nested generic and it has an associated node as well,
- -- whose type is already the full view (see below). Indicate
- -- that the original node has a private view.
-
- Set_Has_Private_View (N);
- end if;
-
- -- If not a private type, nothing else to do
-
- if not Is_Private_Type (Typ) then
- if Is_Array_Type (Typ)
- and then Is_Private_Type (Component_Type (Typ))
- then
- Set_Has_Private_View (N);
- end if;
-
- -- If it is a derivation of a private type in a context where
- -- no full view is needed, nothing to do either.
-
- elsif No (Full_View (Typ)) and then Typ /= Etype (Typ) then
- null;
-
- -- Otherwise mark the type for flipping and use the full_view
- -- when available.
-
- else
- Set_Has_Private_View (N);
-
- if Present (Full_View (Typ)) then
- Set_Etype (N2, Full_View (Typ));
- end if;
- end if;
- end Set_Global_Type;
-
- ------------------
- -- Top_Ancestor --
- ------------------
-
- function Top_Ancestor (E : Entity_Id) return Entity_Id is
- Par : Entity_Id;
-
- begin
- Par := E;
- while Is_Child_Unit (Par) loop
- Par := Scope (Par);
- end loop;
-
- return Par;
- end Top_Ancestor;
-
- -- Start of processing for Reset_Entity
-
- begin
- N2 := Get_Associated_Node (N);
- E := Entity (N2);
-
- if Present (E) then
- if Is_Global (E) then
- Set_Global_Type (N, N2);
-
- elsif Nkind (N) = N_Op_Concat
- and then Is_Generic_Type (Etype (N2))
- and then
- (Base_Type (Etype (Right_Opnd (N2))) = Etype (N2)
- or else Base_Type (Etype (Left_Opnd (N2))) = Etype (N2))
- and then Is_Intrinsic_Subprogram (E)
- then
- null;
-
- else
- -- Entity is local. Mark generic node as unresolved.
- -- Note that now it does not have an entity.
-
- Set_Associated_Node (N, Empty);
- Set_Etype (N, Empty);
- end if;
-
- if Nkind (Parent (N)) in N_Generic_Instantiation
- and then N = Name (Parent (N))
- then
- Save_Global_Defaults (Parent (N), Parent (N2));
- end if;
-
- elsif Nkind (Parent (N)) = N_Selected_Component
- and then Nkind (Parent (N2)) = N_Expanded_Name
- then
- if Is_Global (Entity (Parent (N2))) then
- Change_Selected_Component_To_Expanded_Name (Parent (N));
- Set_Associated_Node (Parent (N), Parent (N2));
- Set_Global_Type (Parent (N), Parent (N2));
- Save_Entity_Descendants (N);
-
- -- If this is a reference to the current generic entity, replace
- -- by the name of the generic homonym of the current package. This
- -- is because in an instantiation Par.P.Q will not resolve to the
- -- name of the instance, whose enclosing scope is not necessarily
- -- Par. We use the generic homonym rather that the name of the
- -- generic itself, because it may be hidden by a local
- -- declaration.
-
- elsif In_Open_Scopes (Entity (Parent (N2)))
- and then not
- Is_Generic_Unit (Top_Ancestor (Entity (Prefix (Parent (N2)))))
- then
- if Ekind (Entity (Parent (N2))) = E_Generic_Package then
- Rewrite (Parent (N),
- Make_Identifier (Sloc (N),
- Chars =>
- Chars (Generic_Homonym (Entity (Parent (N2))))));
- else
- Rewrite (Parent (N),
- Make_Identifier (Sloc (N),
- Chars => Chars (Selector_Name (Parent (N2)))));
- end if;
- end if;
-
- if Nkind (Parent (Parent (N))) in N_Generic_Instantiation
- and then Parent (N) = Name (Parent (Parent (N)))
- then
- Save_Global_Defaults
- (Parent (Parent (N)), Parent (Parent ((N2))));
- end if;
-
- -- A selected component may denote a static constant that has been
- -- folded. If the static constant is global to the generic, capture
- -- its value. Otherwise the folding will happen in any instantiation,
-
- elsif Nkind (Parent (N)) = N_Selected_Component
- and then Nkind_In (Parent (N2), N_Integer_Literal, N_Real_Literal)
- then
- if Present (Entity (Original_Node (Parent (N2))))
- and then Is_Global (Entity (Original_Node (Parent (N2))))
- then
- Rewrite (Parent (N), New_Copy (Parent (N2)));
- Set_Analyzed (Parent (N), False);
-
- else
- null;
- end if;
-
- -- A selected component may be transformed into a parameterless
- -- function call. If the called entity is global, rewrite the node
- -- appropriately, i.e. as an extended name for the global entity.
-
- elsif Nkind (Parent (N)) = N_Selected_Component
- and then Nkind (Parent (N2)) = N_Function_Call
- and then N = Selector_Name (Parent (N))
- then
- if No (Parameter_Associations (Parent (N2))) then
- if Is_Global (Entity (Name (Parent (N2)))) then
- Change_Selected_Component_To_Expanded_Name (Parent (N));
- Set_Associated_Node (Parent (N), Name (Parent (N2)));
- Set_Global_Type (Parent (N), Name (Parent (N2)));
- Save_Entity_Descendants (N);
-
- else
- Set_Associated_Node (N, Empty);
- Set_Etype (N, Empty);
- end if;
-
- -- In Ada 2005, X.F may be a call to a primitive operation,
- -- rewritten as F (X). This rewriting will be done again in an
- -- instance, so keep the original node. Global entities will be
- -- captured as for other constructs.
-
- else
- null;
- end if;
-
- -- Entity is local. Reset in generic unit, so that node is resolved
- -- anew at the point of instantiation.
-
- else
- Set_Associated_Node (N, Empty);
- Set_Etype (N, Empty);
- end if;
- end Reset_Entity;
-
- -----------------------------
- -- Save_Entity_Descendants --
- -----------------------------
-
- procedure Save_Entity_Descendants (N : Node_Id) is
- begin
- case Nkind (N) is
- when N_Binary_Op =>
- Save_Global_Descendant (Union_Id (Left_Opnd (N)));
- Save_Global_Descendant (Union_Id (Right_Opnd (N)));
-
- when N_Unary_Op =>
- Save_Global_Descendant (Union_Id (Right_Opnd (N)));
-
- when N_Expanded_Name | N_Selected_Component =>
- Save_Global_Descendant (Union_Id (Prefix (N)));
- Save_Global_Descendant (Union_Id (Selector_Name (N)));
-
- when N_Identifier | N_Character_Literal | N_Operator_Symbol =>
- null;
-
- when others =>
- raise Program_Error;
- end case;
- end Save_Entity_Descendants;
-
- --------------------------
- -- Save_Global_Defaults --
- --------------------------
-
- procedure Save_Global_Defaults (N1, N2 : Node_Id) is
- Loc : constant Source_Ptr := Sloc (N1);
- Assoc2 : constant List_Id := Generic_Associations (N2);
- Gen_Id : constant Entity_Id := Get_Generic_Entity (N2);
- Assoc1 : List_Id;
- Act1 : Node_Id;
- Act2 : Node_Id;
- Def : Node_Id;
- Ndec : Node_Id;
- Subp : Entity_Id;
- Actual : Entity_Id;
-
- begin
- Assoc1 := Generic_Associations (N1);
-
- if Present (Assoc1) then
- Act1 := First (Assoc1);
- else
- Act1 := Empty;
- Set_Generic_Associations (N1, New_List);
- Assoc1 := Generic_Associations (N1);
- end if;
-
- if Present (Assoc2) then
- Act2 := First (Assoc2);
- else
- return;
- end if;
-
- while Present (Act1) and then Present (Act2) loop
- Next (Act1);
- Next (Act2);
- end loop;
-
- -- Find the associations added for default subprograms
-
- if Present (Act2) then
- while Nkind (Act2) /= N_Generic_Association
- or else No (Entity (Selector_Name (Act2)))
- or else not Is_Overloadable (Entity (Selector_Name (Act2)))
- loop
- Next (Act2);
- end loop;
-
- -- Add a similar association if the default is global. The
- -- renaming declaration for the actual has been analyzed, and
- -- its alias is the program it renames. Link the actual in the
- -- original generic tree with the node in the analyzed tree.
-
- while Present (Act2) loop
- Subp := Entity (Selector_Name (Act2));
- Def := Explicit_Generic_Actual_Parameter (Act2);
-
- -- Following test is defence against rubbish errors
-
- if No (Alias (Subp)) then
- return;
- end if;
-
- -- Retrieve the resolved actual from the renaming declaration
- -- created for the instantiated formal.
-
- Actual := Entity (Name (Parent (Parent (Subp))));
- Set_Entity (Def, Actual);
- Set_Etype (Def, Etype (Actual));
-
- if Is_Global (Actual) then
- Ndec :=
- Make_Generic_Association (Loc,
- Selector_Name => New_Occurrence_Of (Subp, Loc),
- Explicit_Generic_Actual_Parameter =>
- New_Occurrence_Of (Actual, Loc));
-
- Set_Associated_Node
- (Explicit_Generic_Actual_Parameter (Ndec), Def);
-
- Append (Ndec, Assoc1);
-
- -- If there are other defaults, add a dummy association in case
- -- there are other defaulted formals with the same name.
-
- elsif Present (Next (Act2)) then
- Ndec :=
- Make_Generic_Association (Loc,
- Selector_Name => New_Occurrence_Of (Subp, Loc),
- Explicit_Generic_Actual_Parameter => Empty);
-
- Append (Ndec, Assoc1);
- end if;
-
- Next (Act2);
- end loop;
- end if;
-
- if Nkind (Name (N1)) = N_Identifier
- and then Is_Child_Unit (Gen_Id)
- and then Is_Global (Gen_Id)
- and then Is_Generic_Unit (Scope (Gen_Id))
- and then In_Open_Scopes (Scope (Gen_Id))
- then
- -- This is an instantiation of a child unit within a sibling,
- -- so that the generic parent is in scope. An eventual instance
- -- must occur within the scope of an instance of the parent.
- -- Make name in instance into an expanded name, to preserve the
- -- identifier of the parent, so it can be resolved subsequently.
-
- Rewrite (Name (N2),
- Make_Expanded_Name (Loc,
- Chars => Chars (Gen_Id),
- Prefix => New_Occurrence_Of (Scope (Gen_Id), Loc),
- Selector_Name => New_Occurrence_Of (Gen_Id, Loc)));
- Set_Entity (Name (N2), Gen_Id);
-
- Rewrite (Name (N1),
- Make_Expanded_Name (Loc,
- Chars => Chars (Gen_Id),
- Prefix => New_Occurrence_Of (Scope (Gen_Id), Loc),
- Selector_Name => New_Occurrence_Of (Gen_Id, Loc)));
-
- Set_Associated_Node (Name (N1), Name (N2));
- Set_Associated_Node (Prefix (Name (N1)), Empty);
- Set_Associated_Node
- (Selector_Name (Name (N1)), Selector_Name (Name (N2)));
- Set_Etype (Name (N1), Etype (Gen_Id));
- end if;
-
- end Save_Global_Defaults;
-
- ----------------------------
- -- Save_Global_Descendant --
- ----------------------------
-
- procedure Save_Global_Descendant (D : Union_Id) is
- N1 : Node_Id;
-
- begin
- if D in Node_Range then
- if D = Union_Id (Empty) then
- null;
-
- elsif Nkind (Node_Id (D)) /= N_Compilation_Unit then
- Save_References (Node_Id (D));
- end if;
-
- elsif D in List_Range then
- if D = Union_Id (No_List)
- or else Is_Empty_List (List_Id (D))
- then
- null;
-
- else
- N1 := First (List_Id (D));
- while Present (N1) loop
- Save_References (N1);
- Next (N1);
- end loop;
- end if;
-
- -- Element list or other non-node field, nothing to do
-
- else
- null;
- end if;
- end Save_Global_Descendant;
-
- ---------------------
- -- Save_References --
- ---------------------
-
- -- This is the recursive procedure that does the work, once the
- -- enclosing generic scope has been established. We have to treat
- -- specially a number of node rewritings that are required by semantic
- -- processing and which change the kind of nodes in the generic copy:
- -- typically constant-folding, replacing an operator node by a string
- -- literal, or a selected component by an expanded name. In each of
- -- those cases, the transformation is propagated to the generic unit.
-
- procedure Save_References (N : Node_Id) is
- begin
- if N = Empty then
- null;
-
- elsif Nkind_In (N, N_Character_Literal, N_Operator_Symbol) then
- if Nkind (N) = Nkind (Get_Associated_Node (N)) then
- Reset_Entity (N);
-
- elsif Nkind (N) = N_Operator_Symbol
- and then Nkind (Get_Associated_Node (N)) = N_String_Literal
- then
- Change_Operator_Symbol_To_String_Literal (N);
- end if;
-
- elsif Nkind (N) in N_Op then
- if Nkind (N) = Nkind (Get_Associated_Node (N)) then
- if Nkind (N) = N_Op_Concat then
- Set_Is_Component_Left_Opnd (N,
- Is_Component_Left_Opnd (Get_Associated_Node (N)));
-
- Set_Is_Component_Right_Opnd (N,
- Is_Component_Right_Opnd (Get_Associated_Node (N)));
- end if;
-
- Reset_Entity (N);
-
- else
- -- Node may be transformed into call to a user-defined operator
-
- N2 := Get_Associated_Node (N);
-
- if Nkind (N2) = N_Function_Call then
- E := Entity (Name (N2));
-
- if Present (E)
- and then Is_Global (E)
- then
- Set_Etype (N, Etype (N2));
- else
- Set_Associated_Node (N, Empty);
- Set_Etype (N, Empty);
- end if;
-
- elsif Nkind_In (N2, N_Integer_Literal,
- N_Real_Literal,
- N_String_Literal)
- then
- if Present (Original_Node (N2))
- and then Nkind (Original_Node (N2)) = Nkind (N)
- then
-
- -- Operation was constant-folded. Whenever possible,
- -- recover semantic information from unfolded node,
- -- for ASIS use.
-
- Set_Associated_Node (N, Original_Node (N2));
-
- if Nkind (N) = N_Op_Concat then
- Set_Is_Component_Left_Opnd (N,
- Is_Component_Left_Opnd (Get_Associated_Node (N)));
- Set_Is_Component_Right_Opnd (N,
- Is_Component_Right_Opnd (Get_Associated_Node (N)));
- end if;
-
- Reset_Entity (N);
-
- else
- -- If original node is already modified, propagate
- -- constant-folding to template.
-
- Rewrite (N, New_Copy (N2));
- Set_Analyzed (N, False);
- end if;
-
- elsif Nkind (N2) = N_Identifier
- and then Ekind (Entity (N2)) = E_Enumeration_Literal
- then
- -- Same if call was folded into a literal, but in this case
- -- retain the entity to avoid spurious ambiguities if id is
- -- overloaded at the point of instantiation or inlining.
-
- Rewrite (N, New_Copy (N2));
- Set_Analyzed (N, False);
- end if;
- end if;
-
- -- Complete operands check if node has not been constant-folded
-
- if Nkind (N) in N_Op then
- Save_Entity_Descendants (N);
- end if;
-
- elsif Nkind (N) = N_Identifier then
- if Nkind (N) = Nkind (Get_Associated_Node (N)) then
-
- -- If this is a discriminant reference, always save it. It is
- -- used in the instance to find the corresponding discriminant
- -- positionally rather than by name.
-
- Set_Original_Discriminant
- (N, Original_Discriminant (Get_Associated_Node (N)));
- Reset_Entity (N);
-
- else
- N2 := Get_Associated_Node (N);
-
- if Nkind (N2) = N_Function_Call then
- E := Entity (Name (N2));
-
- -- Name resolves to a call to parameterless function. If
- -- original entity is global, mark node as resolved.
-
- if Present (E)
- and then Is_Global (E)
- then
- Set_Etype (N, Etype (N2));
- else
- Set_Associated_Node (N, Empty);
- Set_Etype (N, Empty);
- end if;
-
- elsif Nkind_In (N2, N_Integer_Literal, N_Real_Literal)
- and then Is_Entity_Name (Original_Node (N2))
- then
- -- Name resolves to named number that is constant-folded,
- -- We must preserve the original name for ASIS use, and
- -- undo the constant-folding, which will be repeated in
- -- each instance.
-
- Set_Associated_Node (N, Original_Node (N2));
- Reset_Entity (N);
-
- elsif Nkind (N2) = N_String_Literal then
-
- -- Name resolves to string literal. Perform the same
- -- replacement in generic.
-
- Rewrite (N, New_Copy (N2));
-
- elsif Nkind (N2) = N_Explicit_Dereference then
-
- -- An identifier is rewritten as a dereference if it is
- -- the prefix in a selected component, and it denotes an
- -- access to a composite type, or a parameterless function
- -- call that returns an access type.
-
- -- Check whether corresponding entity in prefix is global
-
- if Is_Entity_Name (Prefix (N2))
- and then Present (Entity (Prefix (N2)))
- and then Is_Global (Entity (Prefix (N2)))
- then
- Rewrite (N,
- Make_Explicit_Dereference (Sloc (N),
- Prefix => Make_Identifier (Sloc (N),
- Chars => Chars (N))));
- Set_Associated_Node (Prefix (N), Prefix (N2));
-
- elsif Nkind (Prefix (N2)) = N_Function_Call
- and then Is_Global (Entity (Name (Prefix (N2))))
- then
- Rewrite (N,
- Make_Explicit_Dereference (Sloc (N),
- Prefix => Make_Function_Call (Sloc (N),
- Name =>
- Make_Identifier (Sloc (N),
- Chars => Chars (N)))));
-
- Set_Associated_Node
- (Name (Prefix (N)), Name (Prefix (N2)));
-
- else
- Set_Associated_Node (N, Empty);
- Set_Etype (N, Empty);
- end if;
-
- -- The subtype mark of a nominally unconstrained object is
- -- rewritten as a subtype indication using the bounds of the
- -- expression. Recover the original subtype mark.
-
- elsif Nkind (N2) = N_Subtype_Indication
- and then Is_Entity_Name (Original_Node (N2))
- then
- Set_Associated_Node (N, Original_Node (N2));
- Reset_Entity (N);
-
- else
- null;
- end if;
- end if;
-
- elsif Nkind (N) in N_Entity then
- null;
-
- else
- declare
- Loc : constant Source_Ptr := Sloc (N);
- Qual : Node_Id := Empty;
- Typ : Entity_Id := Empty;
- Nam : Node_Id;
-
- use Atree.Unchecked_Access;
- -- This code section is part of implementing an untyped tree
- -- traversal, so it needs direct access to node fields.
-
- begin
- if Nkind_In (N, N_Aggregate, N_Extension_Aggregate) then
- N2 := Get_Associated_Node (N);
-
- if No (N2) then
- Typ := Empty;
- else
- Typ := Etype (N2);
-
- -- In an instance within a generic, use the name of the
- -- actual and not the original generic parameter. If the
- -- actual is global in the current generic it must be
- -- preserved for its instantiation.
-
- if Nkind (Parent (Typ)) = N_Subtype_Declaration
- and then
- Present (Generic_Parent_Type (Parent (Typ)))
- then
- Typ := Base_Type (Typ);
- Set_Etype (N2, Typ);
- end if;
- end if;
-
- if No (N2)
- or else No (Typ)
- or else not Is_Global (Typ)
- then
- Set_Associated_Node (N, Empty);
-
- -- If the aggregate is an actual in a call, it has been
- -- resolved in the current context, to some local type.
- -- The enclosing call may have been disambiguated by the
- -- aggregate, and this disambiguation might fail at
- -- instantiation time because the type to which the
- -- aggregate did resolve is not preserved. In order to
- -- preserve some of this information, we wrap the
- -- aggregate in a qualified expression, using the id of
- -- its type. For further disambiguation we qualify the
- -- type name with its scope (if visible) because both
- -- id's will have corresponding entities in an instance.
- -- This resolves most of the problems with missing type
- -- information on aggregates in instances.
-
- if Nkind (N2) = Nkind (N)
- and then
- Nkind_In (Parent (N2), N_Procedure_Call_Statement,
- N_Function_Call)
- and then Comes_From_Source (Typ)
- then
- if Is_Immediately_Visible (Scope (Typ)) then
- Nam := Make_Selected_Component (Loc,
- Prefix =>
- Make_Identifier (Loc, Chars (Scope (Typ))),
- Selector_Name =>
- Make_Identifier (Loc, Chars (Typ)));
- else
- Nam := Make_Identifier (Loc, Chars (Typ));
- end if;
-
- Qual :=
- Make_Qualified_Expression (Loc,
- Subtype_Mark => Nam,
- Expression => Relocate_Node (N));
- end if;
- end if;
-
- Save_Global_Descendant (Field1 (N));
- Save_Global_Descendant (Field2 (N));
- Save_Global_Descendant (Field3 (N));
- Save_Global_Descendant (Field5 (N));
-
- if Present (Qual) then
- Rewrite (N, Qual);
- end if;
-
- -- All other cases than aggregates
-
- else
- Save_Global_Descendant (Field1 (N));
- Save_Global_Descendant (Field2 (N));
- Save_Global_Descendant (Field3 (N));
- Save_Global_Descendant (Field4 (N));
- Save_Global_Descendant (Field5 (N));
- end if;
- end;
- end if;
- end Save_References;
-
- -- Start of processing for Save_Global_References
-
- begin
- Gen_Scope := Current_Scope;
-
- -- If the generic unit is a child unit, references to entities in the
- -- parent are treated as local, because they will be resolved anew in
- -- the context of the instance of the parent.
-
- while Is_Child_Unit (Gen_Scope)
- and then Ekind (Scope (Gen_Scope)) = E_Generic_Package
- loop
- Gen_Scope := Scope (Gen_Scope);
- end loop;
-
- Save_References (N);
- end Save_Global_References;
-
- --------------------------------------
- -- Set_Copied_Sloc_For_Inlined_Body --
- --------------------------------------
-
- procedure Set_Copied_Sloc_For_Inlined_Body (N : Node_Id; E : Entity_Id) is
- begin
- Create_Instantiation_Source (N, E, True, S_Adjustment);
- end Set_Copied_Sloc_For_Inlined_Body;
-
- ---------------------
- -- Set_Instance_Of --
- ---------------------
-
- procedure Set_Instance_Of (A : Entity_Id; B : Entity_Id) is
- begin
- Generic_Renamings.Table (Generic_Renamings.Last) := (A, B, Assoc_Null);
- Generic_Renamings_HTable.Set (Generic_Renamings.Last);
- Generic_Renamings.Increment_Last;
- end Set_Instance_Of;
-
- --------------------
- -- Set_Next_Assoc --
- --------------------
-
- procedure Set_Next_Assoc (E : Assoc_Ptr; Next : Assoc_Ptr) is
- begin
- Generic_Renamings.Table (E).Next_In_HTable := Next;
- end Set_Next_Assoc;
-
- -------------------
- -- Start_Generic --
- -------------------
-
- procedure Start_Generic is
- begin
- -- ??? More things could be factored out in this routine.
- -- Should probably be done at a later stage.
-
- Generic_Flags.Append (Inside_A_Generic);
- Inside_A_Generic := True;
-
- Expander_Mode_Save_And_Set (False);
- end Start_Generic;
-
- ----------------------
- -- Set_Instance_Env --
- ----------------------
-
- procedure Set_Instance_Env
- (Gen_Unit : Entity_Id;
- Act_Unit : Entity_Id)
- is
- begin
- -- Regardless of the current mode, predefined units are analyzed in
- -- the most current Ada mode, and earlier version Ada checks do not
- -- apply to predefined units. Nothing needs to be done for non-internal
- -- units. These are always analyzed in the current mode.
-
- if Is_Internal_File_Name
- (Fname => Unit_File_Name (Get_Source_Unit (Gen_Unit)),
- Renamings_Included => True)
- then
- Set_Opt_Config_Switches (True, Current_Sem_Unit = Main_Unit);
- end if;
-
- Current_Instantiated_Parent := (Gen_Unit, Act_Unit, Assoc_Null);
- end Set_Instance_Env;
-
- -----------------
- -- Switch_View --
- -----------------
-
- procedure Switch_View (T : Entity_Id) is
- BT : constant Entity_Id := Base_Type (T);
- Priv_Elmt : Elmt_Id := No_Elmt;
- Priv_Sub : Entity_Id;
-
- begin
- -- T may be private but its base type may have been exchanged through
- -- some other occurrence, in which case there is nothing to switch
- -- besides T itself. Note that a private dependent subtype of a private
- -- type might not have been switched even if the base type has been,
- -- because of the last branch of Check_Private_View (see comment there).
-
- if not Is_Private_Type (BT) then
- Prepend_Elmt (Full_View (T), Exchanged_Views);
- Exchange_Declarations (T);
- return;
- end if;
-
- Priv_Elmt := First_Elmt (Private_Dependents (BT));
-
- if Present (Full_View (BT)) then
- Prepend_Elmt (Full_View (BT), Exchanged_Views);
- Exchange_Declarations (BT);
- end if;
-
- while Present (Priv_Elmt) loop
- Priv_Sub := (Node (Priv_Elmt));
-
- -- We avoid flipping the subtype if the Etype of its full view is
- -- private because this would result in a malformed subtype. This
- -- occurs when the Etype of the subtype full view is the full view of
- -- the base type (and since the base types were just switched, the
- -- subtype is pointing to the wrong view). This is currently the case
- -- for tagged record types, access types (maybe more?) and needs to
- -- be resolved. ???
-
- if Present (Full_View (Priv_Sub))
- and then not Is_Private_Type (Etype (Full_View (Priv_Sub)))
- then
- Prepend_Elmt (Full_View (Priv_Sub), Exchanged_Views);
- Exchange_Declarations (Priv_Sub);
- end if;
-
- Next_Elmt (Priv_Elmt);
- end loop;
- end Switch_View;
-
- -----------------------------
- -- Valid_Default_Attribute --
- -----------------------------
-
- procedure Valid_Default_Attribute (Nam : Entity_Id; Def : Node_Id) is
- Attr_Id : constant Attribute_Id :=
- Get_Attribute_Id (Attribute_Name (Def));
- T : constant Entity_Id := Entity (Prefix (Def));
- Is_Fun : constant Boolean := (Ekind (Nam) = E_Function);
- F : Entity_Id;
- Num_F : Int;
- OK : Boolean;
-
- begin
- if No (T)
- or else T = Any_Id
- then
- return;
- end if;
-
- Num_F := 0;
- F := First_Formal (Nam);
- while Present (F) loop
- Num_F := Num_F + 1;
- Next_Formal (F);
- end loop;
-
- case Attr_Id is
- when Attribute_Adjacent | Attribute_Ceiling | Attribute_Copy_Sign |
- Attribute_Floor | Attribute_Fraction | Attribute_Machine |
- Attribute_Model | Attribute_Remainder | Attribute_Rounding |
- Attribute_Unbiased_Rounding =>
- OK := Is_Fun
- and then Num_F = 1
- and then Is_Floating_Point_Type (T);
-
- when Attribute_Image | Attribute_Pred | Attribute_Succ |
- Attribute_Value | Attribute_Wide_Image |
- Attribute_Wide_Value =>
- OK := (Is_Fun and then Num_F = 1 and then Is_Scalar_Type (T));
-
- when Attribute_Max | Attribute_Min =>
- OK := (Is_Fun and then Num_F = 2 and then Is_Scalar_Type (T));
-
- when Attribute_Input =>
- OK := (Is_Fun and then Num_F = 1);
-
- when Attribute_Output | Attribute_Read | Attribute_Write =>
- OK := (not Is_Fun and then Num_F = 2);
-
- when others =>
- OK := False;
- end case;
-
- if not OK then
- Error_Msg_N ("attribute reference has wrong profile for subprogram",
- Def);
- end if;
- end Valid_Default_Attribute;
-
-end Sem_Ch12;